Sample records for atomic fluorescence determination

  1. Determination of atomic sodium in coal combustion using laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeny, P.G.; Abrahamson, H.B.; Radonovich, L.J.

    1987-01-01

    A laser-induced fluorescence spectrometer (LIFS) was assembled and sodium atom densities produced from the aspiration of solutions and direct introduction of a lignite into a flame were determined from fluorescence measurements. The average flame volume observed was 0.4mm/sup 3/. This small volume allowed the measurement of sodium concentrations as a function of vertical and horizontal flame position. Temperature profiles of the flames employed were also obtained and compared with the sodium atom densities. The sodium atom densities calculated from the fluorescence measurements (N/sub tt/) are compared with the sodium atom densities calculated from thermodynamic considerations (N/sub tt/) and sodium concentrationsmore » derived from aspiration/introduction rates (N/sub ta/).« less

  2. An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas

    NASA Astrophysics Data System (ADS)

    Davydov, V. G.; Kulyasov, V. N.

    2018-01-01

    A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.

  3. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  4. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.

    PubMed

    Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng

    2018-08-17

    Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  6. Laser-Excited Atomic Fluorescence and Ionization in a Graphite Furnace for the Determination of Metals and Nonmetals

    NASA Astrophysics Data System (ADS)

    Butcher, David James

    1990-01-01

    Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium, and lithium, detection limits between 0.7 and 2 pg were obtained, with an LDR of 3.5 orders of magnitude. Sodium was shown to severely depress the indium LEI signal in an ETA.

  7. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.

    PubMed

    Zhou, Panwang; Ning, Cai; Alsaedi, Ahmed; Han, Keli

    2016-10-05

    The effects of the incorporated heteroatoms Si and S on tuning the optical properties of rhodamine- and fluorescein-based fluorescence probes is investigated using DFT and time-dependent DFT with four different functionals. As previously proposed, the large redshift (90 nm) produced by a Si atom in both the absorption and emission spectra can be attributed to the σ*-π* conjugation between the σ* orbital of the Si atom and the π* orbital of the adjacent carbon atoms. However, the presence of a Si atom does not alter the fluorescence quenching mechanism of the nonfluorescent forms of the investigated compounds. For the first time, these theoretical results indicate that the n orbital of the S atom plays an important role in determining the optical properties of the nonfluorescent form of rhodamine-based fluorescence probes. It alters the fluorescence quenching mechanism by lowering the energy of the dark nπ* state, which is due to breakage of the C10-S52 bond upon photoexcitation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Wavelength Modulated, Continuum Excited Furnance Atomic Fluorescence System for the Determination of Wear Metals in Jet Engine Lubricating Oils.

    DTIC Science & Technology

    1980-01-01

    ting Oils 6. PERFORMING 04G. REPORT NUMBER -7 AUTHOR(s) 8 . CONTRACT OR GRANT NUMBER(s) O /Thomna-s F. Wynn, Jr: Capt, USAF 9. PERFORMING ORGANIZATION...EXCITED FURNACE ATOMIC FLUORESCENCE SYSTEM FOR THE DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS \\Ac ces-.ic’flr For DDC TL3 Unp-nnounced...DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS By Thomas F. Wynn, Jr. March, 1980 Chairman: James D. Winefordner Major Department: Chemistry A

  9. Method of trivalent chromium concentration determination by atomic spectrometry

    DOEpatents

    Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  10. The influence of molecular symmetry and topological factors on the internal heavy atom effect in aromatic and heteroaromatic compounds

    NASA Astrophysics Data System (ADS)

    Nijegorodov, N.; Mabbs, R.

    2001-06-01

    The absorption and fluorescence properties of 26 specially selected aromatic and heteroaromatic compounds, from different classes, are studied quantum chemically and experimentally at room temperature (293 K). Seven of these compounds have not been studied before. The compounds are arranged in seven groups, which illustrate different cases of the internal heavy atom effect. The quantum yield of fluorescence, γ and fluorescence decay time, τf of deaerated and non-deaerated cyclohexane or ethanol solutions are measured. The oscillator strength, fe, fluorescence rate constant, kf, natural lifetime, τ0t, and intersystem crossing rate constant, kST, were calculated for each compound. The orbital nature of the lowest excited singlet state and direction of polarization of the S0→ S1 transitions are determined using the PPP-CI method for each molecule. The investigation shows that substitution of a heavy atom(s) (Cl, S, Br, I etc.) into an aromatic or heteroaromatic molecule may produce different changes in all the fluorescence parameters (sometimes dramatically) and not necessarily lead to the quenching of fluorescence. Substitution of a heavy atom(s) may increase the value of the spin-orbit operator, \\Hcirc SO, if the S0→ S1 excitation is localized to some extent on a carbon atom bonded to a heavy atom(s) or on the heavy atom itself (Ö or S). Such substitution may change the symmetry of a molecule and hence the values of the ΨS 1\\HcircsoΨT i' matrix elements would change (in molecules of higher symmetry groups not all Ti states are able to mix with the perturbing S1 state). Such substitution may change the arrangement of Ti states below the S1, state and hence, the Franck-Condon factors would change. Such substitution may also change the value of the ΨS 0M jΨS 1 matrix element and, consequently, the oscillator strength of the S0→ S1 transition would change. A combination of all these possible changes determines the value of kf and kST and, consequently, determines the value of γ and τf. It is observed that in many cases, the value of the spin-orbit operator is related to the dipole moment operator, e.g. if the introduction of a heavy atom increases kST then, as a rule, it decreases fe( 1A→ 1La).

  11. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  12. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry

    USDA-ARS?s Scientific Manuscript database

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...

  13. Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2014-03-01

    We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.

  14. Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy

    PubMed Central

    Oreopoulos, John; Yip, Christopher M.

    2009-01-01

    Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557

  15. ADVANCED APPROACHES TO ARSINE ATOMIZATION FOR AS SPECIATION BY CRYOFOCUSING WITH ATOMIC ABSORPTION AND ATOMIC FLUORESCENCE DETECTORS

    EPA Science Inventory

    Human metabolism of inorganic arsenic (iAs) yields methylated arsenicals that contain arsenic in +3 or +5 oxidation state. Trivalent methylated arsenicals are significantly more toxic than their pentavalent counterparts. Therefore, determination of tri- and pentavalent forms of m...

  16. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.

    PubMed

    Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B

    2005-11-01

    Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

  17. Determination of the implantation dose in silicon wafers by X-ray fluorescence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klockenkaemper, R.; Becker, M.; Bubert, H.

    1990-08-01

    The ion dose implanted in silicon wafers was determined by X-ray fluorescence analysis after the implantation process. As only near-surface layers below 1-{mu}m thickness were considered, the calibration could be carried out with external standards consisting of thin films of doped gelatine spread on pure wafers. Dose values for Cr and Co were determined between 4 {times} 10{sup 15} and 2 {times} 10{sup 17} atoms/cm{sup 2}, the detection limits being about 3 {times} 10{sup 14} atoms/cm{sup 2}. The results are precise and accurate apart from a residual scatter of less than 7%. This was confirmed by flame atomic absorption spectrometrymore » after volatilization of the silicon matrix as SiF{sub 4}. It was found that ion-current measurements carried out during the implantation process can have considerable systematic errors.« less

  18. Saturated fluorescence method for determination of atomic transition probabilities: Application to the Ar i 430.0-nm (1s4-3p8) transition and the lifetime determination of the upper level

    NASA Astrophysics Data System (ADS)

    Hirabayashi, A.; Okuda, S.; Nambu, Y.; Fujimoto, T.

    1987-01-01

    We have developed a new method for determination of atomic transition probabilities based on laser-induced-fluorescence spectroscopy (LIFS). In the method one produces a known population of atoms in the upper level under investigation and relates it to an observed absolute line intensity. We have applied this method to the argon 430.0-nm line (1s4-3p8): In an argon discharge plasma the 1s5-level population and spatial distribution are determined by the self-absorption method combined with LIFS under conditions where the 3p8-level population is much lower than that of the 1s5 level. When intense laser light of 419.1 nm (1s5-3p8) irradiates the plasma and saturates the 3p8-level population, the produced 3p8-level population and its alignment can be determined from the 1s5-level parameters as determined above, by solving the master equation on the basis of broad-line excitation. By comparing the observed absolute fluorescence intensity of the 430.0-nm line with the above population, we have determined the transition probability to be A=(3.94+/-0.60)×105 s-1. We also determined the 3p8-level lifetime by LIFS. Several factors which might affect the measurement are discussed. The result is τ=127+/-10 ns.

  19. Non-aqueous phase cold vapor generation and determination of trace cadmium by atomic fluorescence spectrometry.

    PubMed

    Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong

    2018-06-05

    Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Optical Diagnostics in the Gaseous Electronics Conference Reference Cell

    PubMed Central

    Hebner, G. A.; Greenberg, K. E.

    1995-01-01

    A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748

  1. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Detection of iron atoms by emission spectroscopy and laser-induced fluorescence in solid propellant flames.

    PubMed

    Vilmart, G; Dorval, N; Orain, M; Lambert, D; Devillers, R; Fabignon, Y; Attal-Tretout, B; Bresson, A

    2018-05-10

    Planar laser-induced fluorescence on atomic iron is investigated in this paper, and a measurement strategy is proposed to monitor the fluorescence of iron atoms with good sensitivity. A model is proposed to fit the experimental fluorescence spectra, and good agreement is found between simulated and experimental spectra. Emission and laser-induced fluorescence measurements are performed in the flames of ammonium perchlorate composite propellants containing iron-based catalysts. A fluorescence signal from iron atoms after excitation at 248 nm is observed for the first time in propellant flames. Images of the spatial distribution of iron atoms are recorded in the flame in which turbulent structures are generated. Iron fluorescence is detected up to 1.0 MPa, which opens the way to application in propellant combustion.

  3. Emission spectroscopy and laser-induced fluorescence measurements on the plume from a 1-kW arcjet operated on simulated ammonia

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Burtner, D.; Keefer, Dennis

    1993-01-01

    Spectroscopic and laser-induced fluorescence measurements were performed on the exhaust plume from a 1 kW NASA Lewis arcjet, operated on simulated ammonia. In particular, emissions were analyzed from the Balmer lines of atomic hydrogen and from one of the rotational bands of the NH radical. The laser-induced fluorescence measurements were performed on the Balmer-alpha line of atomic hydrogen. We find that exit plane temperatures are in the range 1500 to 3500 K and that the electron density upstream of the exit plane is on the order of 1.5 x 10(exp 14)/cu cm as determined by the Stark width of the Balmer-alpha line. Both emission spectroscopy and laser-induced fluorescence were used to measure the plume velocities of atomic hydrogen. Using either technique, velocities on the order of 4 km/sec were found at the exit plane and significant acceleration of the flow was observed in the first 2 mm beyond the exit plane. This result indicates that the design of the arcjet nozzle may not be optimum.

  4. Optical Thin Film Thickness Measurement for the Single Atom Microscope

    NASA Astrophysics Data System (ADS)

    Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team

    2017-09-01

    The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.

  5. Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation.

    PubMed

    Gómez-Ariza, José Luis; Lorenzo, Fernando; García-Barrera, Tamara

    2005-05-01

    Mercury and arsenic are two elements of undoubted importance owing to their toxic character. Although speciation of these elements has been developed separately, in this work for the first time the speciation of As and Hg using two atomic fluorescence detectors in a sequential ensemble is presented. A coupling based on the combination of high-performance liquid chromatography (where mercury and arsenic species are separated) and two atomic fluorescence detectors in series, with several online treatments, including photooxidation (UV) and hydride generation, has allowed the determination of mercury and arsenic compounds simultaneously. The detection limits for this device were 16, 3, 17, 12 and 8 ng mL(-1) for As(III), monomethylarsinic acid, As(V), Hg2+ and methylmercury, respectively. This coupling was compared with an analogous one based on inductively coupled plasma-mass spectrometry (ICP-MS) detection, with detection limits of 0.7, 0.5, 0.8, 0.9 and 1.1 ng mL(-1), respectively. Multispeciation based on ICP-MS exhibits better sensitivity than the coupling based on tandem atomic fluorescence, but this second device is a very robust system and exhibits obvious advantages related to the low cost of acquisition and maintenance, as well as easy handling, which makes it a suitable system for routine laboratories.

  6. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  7. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  8. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.

    2018-05-01

    In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.

  9. An on-line system using ion-imprinted polymer for preconcentration and determination of bismuth in seawater employing atomic fluorescence spectrometry.

    PubMed

    Felix, Caio S A; Silva, Darllen G; Andrade, Heloysa M C; Riatto, Valeria B; Victor, Mauricio M; Ferreira, Sergio L C

    2018-07-01

    This work proposes an on-line preconcentration system using ion-imprinted polymer (IIP) for determination of bismuth in seawater employing atomic fluorescence spectrometry (AFS). The polymer was synthesized using 2- (5-bromo-2-pyridylazo) -5-diethylaminophenol (Br-PADAP) for complex formation, ethylene glycol dimethacrylate (EGDMA), cross-linking reagent and methacrylic acid (AMA) reagents, used as the functional monomer, 2,2-azobisisobutyronitrile was used as the radical initiator. The polymer was characterized employing the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The determination of bismuth was performed employing hydride generation atomic fluorescence spectrometry (HG AFS) and the experimental conditions were optimized using a Box Behnken design involving the factors sample pH, eluent concentration and sodium tetrahydroborate concentration. So, using the optimized conditions the system allows the determination of bismuth with limits of detection and quantification of 26 and 88 ng L -1 , a preconcentration factor of 19.8. All these parameters were determined using a sample volume of 25 mL. The precision expressed as relative standard deviation (RSD%) was 3.7% for a bismuth(III) solution of concentration 0.25 µg L -1 . The system proposed was applied for the determination of bismuth in four seawater samples collected in Salvador City, Bahia State, Brazil. The concentrations obtained varied from 0.38 to 0.45 μg L -1 . The accuracy was evaluated by addition/recovery test, and the recoveries found varied from 92% to 101%. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Shifts due to quantum-mechanical interference from distant neighboring resonances for saturated fluorescence spectroscopy of the 23S to 23P intervals of helium

    NASA Astrophysics Data System (ADS)

    Marsman, A.; Hessels, E. A.; Horbatsch, M.

    2014-04-01

    Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23S-to-23P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector, the intensity and size of laser beams, and the properties of the atomic beam. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23P fine structure.

  11. Determination of the atomic density of rubidium-87

    NASA Astrophysics Data System (ADS)

    Zhao, Meng; Zhang, Kai; Chen, Li-Qing

    2015-09-01

    Atomic density is a basic and important parameter in quantum optics, nonlinear optics, and precision measurement. In the past few decades, several methods have been used to measure atomic density, such as thermionic effect, optical absorption, and resonance fluorescence. The main error of these experiments stemmed from depopulation of the energy level, self-absorption, and the broad bandwidth of the laser. Here we demonstrate the atomic density of 87Rb vapor in paraffin coated cell between 297 K and 334 K mainly using fluorescence measurement. Optical pumping, anti-relaxation coating, and absorption compensation approaches are used to decrease measurement error. These measurement methods are suitable for vapor temperature at dozens of degrees. The fitting function for the experimental data of 87Rb atomic density is given. Project supported by the Natural Science Foundation of China (Grant Nos. 11274118 and 11474095), the Innovation Program of Shanghai Municipal Education Commission of China (Grant No. 13ZZ036), and the Fundamental Research Funds for the Central Universities of China.

  12. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  13. Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens.

    PubMed

    Gan, Shifeng; Hu, Shimin; Li, Xiang-Long; Zeng, Jiajie; Zhang, Dongdong; Huang, Tianyu; Luo, Wenwen; Zhao, Zujin; Duan, Lian; Su, Shi-Jian; Tang, Ben Zhong

    2018-05-23

    Raising triplet exciton utilization of pure organic luminescent materials is of significant importance for efficiency advancement of organic light-emitting diodes (OLEDs). Herein, by introducing bromine atom(s) onto a typical molecule (bis(carbazol-9-yl)-4,5-dicyanobenzene) with thermally activated delayed fluorescence, we demonstrate that the heavy atom effect of bromine can increase spin-orbit coupling and promote the reverse intersystem crossing, which endow the molecules with more distinct delayed fluorescence. In consequence, the triplet exciton utilization is improved greatly with the increase of bromine atoms, affording apparently advanced external quantum efficiencies of OLEDs. Utilizing the enhancement effect of bromine atoms on delayed fluorescence should be a simple and promising design concept for efficient organic luminogens with high exciton utilization.

  14. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  15. Determination of cadmium in seawater by chelate vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Ma, Guopeng; Duan, Xuchuan; Sun, Jinsheng

    2018-03-01

    A method for the determination of cadmium in seawater by chelate vapor generation (Che-VG) atomic fluorescence spectrometry is described. Several commercially available chelating agents, including ammonium pyrrolidine dithiocarbamate (APDC), sodium dimethyl dithiocarbamate (DMDTC), ammonium dibutyl dithiophosphate (DBDTP) and sodium O,O-diethyl dithiophosphate (DEDTP), are compared with sodium diethyldithiocarbamate (DDTC) for the Che-VG of cadmium, and results showed that DDTC and DEDTP had very good cadmium signal intensity. The effect of the conditions of Che-VG with DDTC on the intensity of cadmium signal was investigated. Under the optimal conditions, 85 ± 3% Che-VG efficiency is obtained for cadmium. The detection limit (3σ) obtained in the optimal conditions was 0.19 ng ml- 1. The relative standard deviation (RSD, %) for ten replicate determinations at 2 ng ml- 1 Cd was 3.42%. The proposed method was successfully applied to the ultratrace determination of cadmium in seawater samples by the standard addition method.

  16. Single atoms in a MOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meschede, Dieter; Ueberholz, Bernd; Gomer, Victor

    1999-06-11

    We are experimenting with individual neutral cesium atoms stored in a magneto-optical trap. The atoms are detected by their resonance fluorescence, and fluorescence fluctuations contain signatures of the atomic internal and external degrees of freedom. This noninvasive probe provides a rich source of information about atomic dynamics at all relevant time scales.

  17. 40 CFR Appendix G to Part 50 - Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Absorption Spectroscopy.” Published by Interscience Company, New York, NY (1968). 5. Kirkbright, G. F., and Sargent, M., “Atomic Absorption and Fluorescence Spectroscopy.” Published by Academic Press, New York, NY... County, IL, by Atomic Absorption Spectroscopy.” Envir. Sci. and Tech., 3, 472-475 (1969). 7. “Proposed...

  18. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  19. Arc Jet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Nitrogen

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas; Wercinski, Paul F. (Technical Monitor)

    1998-01-01

    An laser-spectroscopic investigation of the thermocheMical state of arcjet flows is currently being conducted in the Aerodynamic Heating Facility (AHF) Circlet at NASA Ames Research Center. Downstream of the nozzle exit, but upstream of the test article, Laser-Induced Fluorescence (LIF) of atomic nitrogen is used to assess the nonequilibriuM distribution of flow enthalpy in the free stream. The two-photon LIF technique provides simultaneous measurements of free stream velocity, translational temperature, and nitrogen number density on the flow centerline. Along with information from facility instrumentation, these measurements allow a determination of the free stream total enthalpy, and its apportionment in to thermal, kinetic, and chemical mode contributions. Experimental results are presented and discussed for two different niti-ogen/argon test gas flow runs during which the current is varied while the pressure remains constant .

  20. Determination of selenium in the environment and in biological material.

    PubMed Central

    Bem, E M

    1981-01-01

    This paper reviews the following problems, sampling, decomposition procedures and most important analytical methods used for selenium determination, e.g., neutron activation analysis, atomic absorption spectrometry, gas-liquid chromatography, spectrophotometry, fluorimetry, and x-ray fluorescence. This review covers the literature mainly from 1975 to 1977. PMID:7007035

  1. Determination of copper (II) in foodstuffs based on its quenching effect on the fluorescence of N,N'-bis(pyridoxal phosphate)-o-phenylenediamine.

    PubMed

    Xu, Canhui; Liao, Lifu; He, Yunfei; Wu, Rurong; Li, Shijun; Yang, Yanyan

    2015-01-01

    A Schiff base-type fluorescence probe was prepared for the detection of copper (II) in foodstuffs. The probe is N,N'-bis(pyridoxal phosphate)-o-phenylenediamine (BPPP). It was synthesized by utilizing the Schiff base condensation reaction of pyridoxal 5-phosphate with 1,2-phenylenediamine. BPPP has the properties of high fluorescence stability, good water solubility and low toxicity. Its maximum excitation wavelength and maximum fluorescence emission wavelength are at 389 and 448 nm, respectively. When BPPP coexists with copper (II), its fluorescence is dramatically quenched. Under a certain condition, the fluorescence intensity decreased proportionally to the concentration of copper (II) by the quenching effect. Based on this fact, we established a fluorescence quenching method for the determination of copper (II). Under optimal conditions a linear range was found to be 0.5-50 ng/mL with a detection limit of 0.2 ng/mL. The method has been applied to determine copper (II) in foodstuff samples and the analytical results show good agreement with that obtained from atomic absorption spectrometry method. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Arsenic species analysis in porewaters and sediments using hydride generation atomic fluorescence spectrometry.

    PubMed

    Liao, Meng-xia; Deng, Tian-long

    2006-01-01

    It was observed that the atomic fluorescence emission due to As(V) could has a 10% to 40% of fluorescence emission signal during the determination of As(III) in the mixture of As(III) and As(V). Besides, interferes from heavy metals such as Pb(lIl), Cu(ll) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(II), Zn(ll), Mn(II) and Fe(Ill). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(V) emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples of porewaters and sediments in Poyang Lake, China.

  3. Laser excited atomic fluorescence spectrometry as a powerful tool for analytical applications and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gornushkin, Igor B.

    1997-12-01

    Laser-excited atomic fluorescence spectrometry (LEAFS) with a novel diffusive tube electrothermal atomizer (ETA) has been used for the study of atomization and diffusion processes and for the direct trace analysis of complex matrices. A novel ETA was a graphite tube sealed by two graphite electrodes. A sample was introduced into the tube and the furnace assembly was heated. The vaporized sample diffused through the hot graphite and the atomic fraction of the vapor was excited by a tunable dye laser above the tube. Temporal behavior of atomic fluorescence of Cu, Ag, and Ni atoms, diffused through the furnace tube, was studied at different temperatures; the values for activation energies and diffusion coefficients were derived on the basis of the diffusion/vaporization kinetic model. The femtogram/nanogram concentrations of silver were determined in coastal Atlantic water and soil samples. Use of the new ETA resulted in significant reduction of matrix interferences, ultra-low limits of detection, good accuracy and precision. LEAFS coupled with laser ablation (LA) was studied in terms of its analytical and spectroscopic potential. Low concentrations of lead (0.15 ppm-750 ppm) in metallic matrices (copper, brass, steel, and zinc) were measured in a low pressure argon atmosphere. No matrix effect was observed, providing a universal calibration curve for all samples. A limit of detection of 22 ppb (0.5 fg) was achieved. Also, the lifetime of the metastable 6p21D level of lead was measured and found to be in good agreement with the literature data. A simple open-air LA-LEAFS system was used for the determination of cobalt in solid matrices (graphite, soil, and steel). The fluorescence of cobalt was excited from a level which was already populated in the ablation plasma and was monitored at the Stokes-shifted wavelength. Detection limits in the ppb to ppm range and linearity over four orders of magnitude were achieved. The resonance shadowgraph technique has been developed for time-resolved imaging of laser-produced plasmas. The shadowgraphs were obtained by igniting the plasma on the lead or tin surface and by illuminating the plasma by a laser tuned in resonance with a strong atomic transition. UV-photodecomposition of lead and tin clusters was visualized. The evolution of the plasmas was studied at different pressures of argon. A shock wave produced by the laser ablation was monitored and its speed was measured.

  4. Resonant fluorescence for multilevel systems in intense nonmonochromatic fields: possibilities for applications in laser medicine

    NASA Astrophysics Data System (ADS)

    Karagodova, Tamara Y.

    1999-03-01

    The theory of resonant fluorescence of multilevel system in two monochromatic intense laser fields has been applied for investigating the temporal decay of magnetic sublevels of an atom. As for two-level system the triplet of resonant fluorescence is observed, for real atom being the multilevel system the multiplet of resonant fluorescence can be observed. The excitation spectra, defining the intensities of lines in the multiplet of resonant fluorescence, and shifts of components of spectra are shown. Typical temporal dependence of fluorescence intensity for magnetic sublevels of an atom having different relaxation constants is shown. The computer simulation of resonant fluorescence for simple systems can help to understand the regularities in temporal decay curves of atherosclerotic plaque, malignant tumor compared to normal surrounding tissue.

  5. UV light-emitting-diode photochemical mercury vapor generation for atomic fluorescence spectrometry.

    PubMed

    Hou, Xiaoling; Ai, Xi; Jiang, Xiaoming; Deng, Pengchi; Zheng, Chengbin; Lv, Yi

    2012-02-07

    A new, miniaturized and low power consumption photochemical vapor generation (PVG) technique utilizing an ultraviolet light-emitting diode (UV-LED) lamp is described, and further validated via the determination of trace mercury. In the presence of formic acid, the mercury cold vapor is favourably generated from Hg(2+) solutions by UV-LED irradiation, and then rapidly transported to an atomic fluorescence spectrometer for detection. Optimum conditions for PVG and interferences from concomitant elements were investigated in detail. Under optimum conditions, a limit of detection (LOD) of 0.01 μg L(-1) was obtained, and the precision was better than 3.2% (n = 11, RSD) at 1 μg L(-1) Hg(2+). No obvious interferences from any common ions were evident. The methodology was successfully applied to the determination of mercury in National Research Council Canada DORM-3 fish muscle tissue and several water samples.

  6. Determination of K shell absorption jump factors and jump ratios of 3d transition metals by measuring K shell fluorescence parameters.

    PubMed

    Kaçal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring K-shell absorption jump factors and jump ratios for Ti, Cr, Fe, Co, Ni and Cu elements. The jump factors and jump ratios for these elements were determined by measuring K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to-Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation and transmission experimental geometry. The measured values for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  8. Simultaneous determination of thorium, niobium, lead, and zinc by photon-induced x-ray fluorescence of lateritic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBrecque, J.J.; Adames, D.; Parker, W.C.

    1981-01-01

    A rapid method is presented for the simultaneous determinations of thorium, niobium, lead, and zinc in lateritic material from Cerro Impacto, Estado Bolivar, Venezuela. This technique uses a PDP - 11/05 processor - based photon induced x-ray fluorescence system. The total variations of approximately 5% for concentrations of approximately 1 and 10% for concentrations of approximately 0.1% were obtained with only 500 s of fluorescent time. The values obtained by this method were in agreement with values measured by conventional flame atomic absorption spectroscopy for lead and zinc. The values for thorium measured were in agreement with the reported valuesmore » for the reference materials supplied by NBL.« less

  9. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  10. Sequential determination of lead and cobalt in tap water and foods samples by fluorescence.

    PubMed

    Talio, María Carolina; Alesso, Magdalena; Acosta, María Gimena; Acosta, Mariano; Fernández, Liliana P

    2014-09-01

    In this work, a new procedure was developed for the separation and preconcentration of lead(II) and cobalt(II) in several water and foods samples. Complexes of metal ions with 8-hydroxyquinolein (8-HQ) were formed in aqueous solution. The proposed methodology is based on the preconcentration/separation of Pb(II) by solid-phase extraction using paper filter, followed by spectrofluorimetric determination of both metals, on the solid support and the filtered aqueous solution, respectively. The solid surface fluorescence determination was carried out at λem=455 nm (λex=385 nm) for Pb(II)-8-HQ complex and the fluorescence of Co(II)-8-HQ was determined in aqueous solution using λem=355 nm (λex=225 nm). The calibration graphs are linear in the range 0.14-8.03×10(4) μg L(-1) and 7.3×10(-2)-4.12×10(3) μg L(-1), for Pb(II) and Co(II), respectively, with a detection limit of 4.3×10(-2) and 2.19×10(-2) μg L(-1) (S/N=3). The developed methodology showed good sensitivity and adequate selectivity and it was successfully applied to the determination of trace amounts of lead and cobalt in tap waters belonging of different regions of Argentina and foods samples (milk powder, express coffee, cocoa powder) with satisfactory results. The new methodology was validated by electrothermal atomic absorption spectroscopy with adequate agreement. The proposed methodology represents a novel application of fluorescence to Pb(II) and Co(II) quantification with sensitivity and accuracy similar to atomic spectroscopies. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Collisional quenching of atoms and molecules on spacecraft thermal protection surfaces

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Green, B. D.

    1988-01-01

    Preliminary results of a research program to determine energy partitioning in spacecraft thermal protection materials due to atom recombination at the gas-surface interface are presented. The primary focus of the research is to understand the catalytic processes which determine heat loading on Shuttle, Aeroassisted OTV, and NASP thermal protection surfaces in nonequilibrium flight regimes. Highly sensitive laser diagnostics based on laser-induced fluorescence and resonantly-enhanced multiphoton ionization spectroscopy are used to detect atoms and metastable molecules. At low temperatures, a discharge flow reactor is employed to measure deactivation/recombination coefficients for O-atoms, N-atoms, and O2. Detection methods are presented for measuring O-atoms, O2 and N2, and results for deactivation of O2 and O-atoms on reaction-cured glass and Ni surfaces. Both atom recombination and metastable product formation are examined. Radio-frequency discharges are used to produce highly dissociated beams of atomic species at energies characteristic of the surface temperature. Auger electron spectroscopy is employed as a diagnostic of surface composition in order to accurately define and control measurement conditions.

  12. Resonance fluorescence from an atom in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  13. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  14. Theoretical considerations on the optogalvanic detection of laser induced fluorescence in atmospheric pressure atomizers

    NASA Astrophysics Data System (ADS)

    Omenetto, N.; Smith, B. W.; Winefordner, J. D.

    1989-01-01

    Several theoretical considerations are given on the potential and practical capabilities of a detector of fluorescence radiation whose operating principle is based on a multi-step excitation-ionization scheme involving the fluorescence photons as the first excitation step. This detection technique, which was first proposed by MATVEEVet al. [ Zh. Anal Khim.34, 846 (1979)], combines two independent atomizers, one analytical cell for the excitation of the sample fluorescence and one cell, filled with pure analyte atomic vapor, acting as the ionization detector. One laser beam excites the analyte fluorescence in the analytical cell and one (or two) laser beams are used to ionize the excited atoms in the detector. Several different causes of signal and noise are evaluated, together with a discussion on possible analytical atom reservoirs (flames, furnaces) and laser sources which could be used with this approach. For properly devised conditions, i.e. optical saturation of the fluorescence and unity ionization efficiency, detection limits well below pg/ml in solution and well below femtograms as absolute amounts in furnaces can be predicted. However, scattering problems, which are absent in a conventional laser-enhanced ionization set-up, may be important in this approach.

  15. Complementarity and Young's interference fringes from two atoms

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Bollinger, J. J.; Wineland, D. J.; Eichmann, U.; Raizen, M. G.

    1998-06-01

    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. The thermal motion of the atoms is included. Agreement is obtained with experiments [U. Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.

  16. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE PAGES

    Singh, Andy; Luening, Katharina; Brennan, Sean; ...

    2017-01-01

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  17. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Andy; Luening, Katharina; Brennan, Sean

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  18. Determination of K shell absorption jump factors and jump ratios in the elements between Tm( Z = 69) and Os( Z = 76) by measuring K shell fluorescence parameters

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tıraşoğlu, E.; Apaydın, G.

    2008-04-01

    The K shell absorption jump factors and jump ratios have been measured in the elements between Tm ( Z = 69) and Os( Z = 76) without having any mass attenuation coefficient at the upper and lower energy branch of the K absorption edge. The jump factors and jump ratios for these elements have been determined by measuring K shell fluorescence parameters such as the total atomic absorption cross-sections, the K α X-ray production cross-sections, the intensity ratio of the K β and K α X-rays and the K shell fluorescence yields. We have performed the measurements for the calculations of these values in attenuation and direct excitation experimental geometry. The K X-ray photons are excited in the target using 123.6 keV gamma-rays from a strong 57Co source, and detected with an Ultra-LEGe solid state detector with a resolution 0.15 keV at 5.9 keV. The measured values have been compared with theoretical and others' experimental values. The results have been plotted versus atomic number.

  19. Intensity and amplitude correlations in the fluorescence from atoms with interacting Rydberg states

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Mølmer, Klaus

    2015-09-01

    We explore the fluorescence signals from a pair of atoms driven towards Rydberg states on a three-level ladder transition. The dipole-dipole interactions between Rydberg excited atoms significantly distort the dark state and electromagnetically induced transparency behavior observed with independent atoms and, thus, their steady-state light emission. We calculate and analyze the temporal correlations between intensities and amplitudes of the signals emitted by the atoms and explain their origin in the atomic Rydberg state interactions.

  20. Application of Atomic Fluorescence to Measurement of Combustion Temperature in Solid Propellants.

    DTIC Science & Technology

    1986-12-04

    into a cytal (yttrium- aluminum -garnet) is shown to be an ideal seed, the fluoresce. f which is stimulated by the ultra-violet output of a Nd:YAG...been successfully employed in atmospheric flames for making thermometric measurements. However, because of the amorphous nature of energetic materials...be determined. R. 6 A .6 An example of this type of behavior is found in trivalent dysprosium, doped at 3% in yttrium- aluminum -garnet (Dy+3 :YAG

  1. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  2. Laser-Induced Fluorescence Measurements for Optical Single Atom Detection for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Parzuchowski, Kristen; Singh, Jaideep; Wenzl, Jennifer; Frisbie, Dustin; Johnson, Maegan

    2016-09-01

    We propose a new highly selective detector to measure rare nuclear reactions relevant for nuclear astrophysics. Our primary interest is the 22Ne(α , n) 25Mg reaction, which is a primary source of neutrons for the s-process. Our proposed detector, in conjunction with a recoil separator, captures the recoil products resulting from the reaction in a cryogenically frozen thin film of solid neon. The fluorescence spectra of the captured atoms is shifted from the absorption spectra by hundreds of nanometers. This allows for the optical detection of individual fluorescence photons against a background of intense excitation light. We will describe our initial studies of laser-induced fluorescence of Yb and Mg in solid Ne. Neon is an attractive medium because it is optically transparent and provides efficient, pure, stable, & chemically inert confinement for a wide variety of atomic and molecular species. Yb is used as a test atom because of its similar atomic structure to Mg and much brighter fluorescence signal. This work is supported by funds from Michigan State University.

  3. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  4. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  5. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.

    PubMed

    Leffler, Tomas; Brackmann, Christian; Aldén, Marcus; Li, Zhongshan

    2017-06-01

    Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.

  6. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less

  7. Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    O'Brian, T. R.; Lawler, J. E.

    1992-01-01

    Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.

  8. Photoluminescence of epoxy resin modified by carbazole and its halogen derivative at 82 K

    NASA Astrophysics Data System (ADS)

    Mandowska, E.; Mandowski, A.; Tsvirko, M.

    2009-10-01

    The spectra and relative quantum yield of fluorescence and phosphorescence were measured for 9-(2,3-epoxypropyl)carbazole (EPK) added to epoxy resin (R) (R 5EPK - 5% weight content of the carbazole group in a polymer) and its mono and dihalogen derivative (Cl and Br). The materials under study have excellent mechanical properties. At 82 K photoluminescence (PL) spectra of these materials are composed of fluorescence (FL) and phosphorescence (PH) components while at 280 K, PH component is not observed. The vibrational frequencies of fluorescence and phosphorescence for R 5EPK were determined using Gaussian deconvolution. A decrease in the fluorescence and an increase in the phosphorescence quantum efficiency were observed after chemical bonding of heavy atoms Cl and Br.

  9. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  10. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms.

    PubMed

    Miao, Xuepei; Liu, Tuan; Zhang, Chen; Geng, Xinxin; Meng, Yan; Li, Xiaoyu

    2016-02-14

    The strong fluorescence, in both the solution and the bulk state, of a chromophore-free aliphatic hyperbranched polyether which does not contain N and P atoms was reported for the first time. Effects of concentration and solvent solubility were measured. Its ethanol solution shows a strong blue-green fluorescence (Yu = 0.11-0.39), and its fluorescence shows a strong selective quenching with respect to Fe(3+).

  11. Taking into Account Interelement Interference in X-Ray Fluorescence Analysis of Thin Two-Layer Ti/V Systems

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Razuvaev, A. G.; Cherniaeva, E. A.; Gafarova, L. M.; Ershov, A. V.

    2018-03-01

    We propose a new method for determining the thickness of layers in x-ray fluorescence analysis of two-layer Ti/V systems, using easily fabricated standardized film layers obtained by sputter deposition of titanium on a polymer film substrate. We have calculated correction factors taking into account the level of attenuation for the intensity of the primary emission from the x-ray tube and the analytical line for the element of the bottom layer in the top layer, and the enhancement of the fluorescence intensity for the top layer by the emission of atoms in the bottom layer.

  12. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  13. Atomic level characterization of cadmium selenide nanocrystal systems using atomic number contrast scanning transmission electron microscopy and Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    McBride, James R.

    This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.

  14. Nonradiative transport of atomic excitation in Na vapor

    NASA Astrophysics Data System (ADS)

    Zajonc, Arthur G.; Phelps, A. V.

    1981-05-01

    Measurements are reported which show the effect of nonradiative losses at a gas-window interface on the backscattered fluorescence intensity for Na vapor at frequencies in the vicinity of the resonance lines near 589 nm. The Na 3P12,32 states are excited with a low-intensity single-mode tunable dye laser at high Na densities and the frequency integral of the backscattered fluorescence intensity in the D1 and D2 lines is measured. As the laser is tuned through resonance, the loss of atomic excitation to the window appears as a sharp decrease in the frequency-integrated fluorescence intensity. For example, at 7×1020 atoms m-3 the fluorescence intensity decreases by a factor of 4 in a frequency interval of 4 GHz. Measured absolute fluorescence intensities versus laser frequency are compared with predictions made using the theory of Hummer and Kunasz which includes both radiative and nonradiative transport processes. The agreement between theory and experiment is remarkably good when one considers that the theory contains only one unknown coefficient, i.e., the reflection coefficient for excited atoms at the windows. In our case the excited atoms are assumed to be completely destroyed at the window.

  15. [Analysis of methylmercury in biological guano by the optimized atomic fluorescence spectrometry coupled with microwave assisted extraction].

    PubMed

    Chen, Qian-Qian; Liu, Xiao-Dong; Sun, Li-Guang; Jiang, Shan; Yan, Hong; Liu, Yi; Luo, Yu-Han; Huang, Jing

    2011-01-01

    The analytical method for the determination of methylmercury in seabird excrements was established using atomic fluorescence spectrometry coupled with microwave-assisted extraction In general, temperature and hydrochloric amount are the most important influencing factors on the extraction of MeHg in the samples, and the present paper optimized these two parameters. The result showed that 120 degrees C and 200 microL 6 mol x L(-1) hydrochloric acid are the best extraction conditions. Under these experimental conditions, the relative standard deviation (RSD) values of reduplicative analyses on standard reference material (human hair powder) and the same seabird excrement sample were 0.74% and 6.61% respectively, and their percent recoveries were over 90%. The combination of microwave-assisted extraction and atomic fluorescence spectrometry has many advantages such as simple operation, high sensitivity, low detection limit and low cost, therefore, it is suitable for rapid separation and analysis of trace methylmercury composition in the biological guanos. Using this method, we analyzed the methylmercury contents in the ancient and fresh seabird droppings taken from Xisha Islands of South China Sea, and the result showed that the Xisha guanos were rich in methylmercury and the large input of seabird guanos will cause serious environmental contamination in the remote island ecosystem of Xisha Islands.

  16. Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Wagenaars, E.; Gans, T.; O'Connell, D.; Niemi, K.

    2012-08-01

    The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0-0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.

  17. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2

    NASA Astrophysics Data System (ADS)

    Dubreuil, B.; Harnafi, M.

    1989-07-01

    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  18. Silver/oxygen depth profile in coins by using laser ablation, mass quadrupole spectrometer and X-rays fluorescence

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Caridi, F.; Sayed, R.; Gentile, C.; Mondio, G.; Serafino, T.; Castrizio, E. D.

    2013-05-01

    Silver coins belonging to different historical periods were investigated to determine the Ag/O atomic ratio depth profiles. Laser ablation has been employed to remove, in high vacuum, the first superficial layers of the coins. Mass quadrupole spectrometry has been used to detect the Ag and the O atomic elements vaporized from the coin surface. The depth profile allowed to determine the thickness of the oxidation layer indicating that, in general, it is high in old coins. A complementary technique, using scanning electron microscope and the associated XRF microprobe, have been devoted to confirm the measurements of Ag/O atomic ratio measured with the laser-coupled mass spectrometry. The oxidation layer thicknesses range between about 25 and 250 microns.

  19. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine.

    PubMed

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru; Zhao, Li; Zhao, Tingting; Chen, Xi

    2015-09-03

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel "off-on" fluorescent probe for the label-free determination of Cu(2+) and l-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu(2+) owing to the coordination reaction between Cu(2+) and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu(2+) to L-Cys via the Cu-S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1-10 μM for Cu(2+) and 0.5-50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu(2+) and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu(2+) and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A semiclassical study of laser-induced atomic fluorescence from Na2, K2 and NaK

    NASA Technical Reports Server (NTRS)

    Yuan, J.-M.; Bhattacharyya, D. K.; George, T. F.

    1982-01-01

    A semiclassical treatment of laser-induced atomic fluorescence for the alkali-dimer systems Na2, K2 and NaK is presented. The variation of the fluorescence intensity with the frequency of the exciting laser photon is studied and a comparison of theoretical results with a set of experimental data is presented.

  1. DNA Encapsulation of Ten Silver Atoms Produces a Bright, Modulatable, Near Infrared-Emitting Cluster

    PubMed Central

    Petty, Jeffrey T.; Fan, Chaoyang; Story, Sandra P.; Sengupta, Bidisha; Iyer, Ashlee St. John; Prudowsky, Zachary; Dickson, Robert M.

    2010-01-01

    Photostability, inherent fluorescence brightness, and optical modulation of fluorescence are key attributes distinguishing silver nanoclusters as fluorophores. DNA plays a central role both by protecting the clusters in aqueous environments and by directing their formation. Herein, we characterize a new near infrared-emitting cluster with excitation and emission maxima at 750 and 810 nm, respectively that is stabilized within C3AC3AC3TC3A. Following chromatographic resolution of the near infrared species, a stoichiometry of 10 Ag/oligonucleotide was determined. Combined with excellent photostability, the cluster’s 30% fluorescence quantum yield and 180,000 M−1cm−1 extinction coefficient give it a fluorescence brightness that significantly improves on that of the organic dye Cy7. Fluorescence correlation analysis shows an optically accessible dark state that can be directly depopulated with longer wavelength co-illumination. The coupled increase in total fluorescence demonstrates that enhanced sensitivity can be realized through Synchronously Amplified Fluorescence Image Recovery (SAFIRe), which further differentiates this new fluorophore. PMID:21116486

  2. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  3. Laser diagnostics of an evaporating electrospray

    NASA Astrophysics Data System (ADS)

    Yi, Tongxun

    2014-01-01

    An electrospray atomizer generates monodisperse, dilute sprays when working in the cone-jet mode. Evolution of an electrospray with droplet diameter below 10 μm is studied with phase Doppler particle analyzer (PDPA) and the exciplex-PLIF technique. The evaporation rate constant is determined from droplet velocity and diameter measured with a PDPA and is found to sharply increase with the velocity slip and the coflow temperature. Fluorescence around 400 nm, usually referred to as TMPD fluorescence, is calibrated with a heated, laminar, coflow vapor jet diluted with nitrogen. The TMPD fluorescence yield nonlinearly increases with temperature up to 538 K and then declines. Single-shot images show that fluorescence around 400 nm is mainly generated from TMPD vapor and that from droplets can be neglected as a first analysis; however, fluorescence around 490 nm, usually referred to as exciplex fluorescence, is generated from both droplets and fuel vapor immediately around droplets. Exciplex fluorescence is correlated with PDPA measurements and TMPD fluorescence. Effects of temperature, fuel composition, overlap of fluorescent spectra, and chemical equilibrium for exciplex formation are discussed. Technical challenges for quantitative exciplex-PLIF measurements are highlighted.

  4. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    USGS Publications Warehouse

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  5. Methodology using a portable X-ray fluorescence device for on-site and rapid evaluation of heavy-atom contamination in wounds: a model study for application to plutonium contamination.

    PubMed

    Yoshii, Hiroshi; Yanagihara, Kouta; Imaseki, Hitoshi; Hamano, Tsuyoshi; Yamanishi, Hirokuni; Inagaki, Masayo; Sakai, Yasuhiro; Sugiura, Nobuyuki; Kurihara, Osamu; Sakai, Kazuo

    2014-01-01

    Workers decommissioning the Fukushima-Daiichi nuclear power plant damaged from the Great East Japan Earthquake and resulting tsunami are at risk of injury with possible contamination from radioactive heavy atoms including actinides, such as plutonium. We propose a new methodology for on-site and rapid evaluation of heavy-atom contamination in wounds using a portable X-ray fluorescence (XRF) device. In the present study, stable lead was used as the model contaminant substitute for radioactive heavy atoms. First, the wound model was developed by placing a liquid blood phantom on an epoxy resin wound phantom contaminated with lead. Next, the correlation between the concentration of contaminant and the XRF peak intensity was formulated considering the thickness of blood exiting the wound. Methods to determine the minimum detection limit (MDL) of contaminants at any maximal equivalent dose to the wound by XRF measurement were also established. For example, in this system, at a maximal equivalent dose of 16.5 mSv to the wound and blood thickness of 0.5 mm, the MDL value for lead was 1.2 ppm (3.1 nmol). The radioactivity of 239Pu corresponding to 3.1 nmol is 1.7 kBq, which is lower than the radioactivity of 239Pu contaminating puncture wounds in previous severe accidents. In conclusion, the established methodology could be beneficial for future development of a method to evaluate plutonium contamination in wounds. Highlights: Methodology for evaluation of heavy-atom contamination in a wound was established. A portable X-ray fluorescence device enables on-site, rapid and direct evaluation. This method is expected to be used for evaluation of plutonium contamination in wounds.

  6. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.

    PubMed

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Many fluorescent proteins (FPs) exhibit fluorescence quenching at a low pH. This pH-induced non-fluorescent state of an FP serves as a useful indicator of the cellular pH. ZsYellow is widely used as an optical marker in molecular biology, but its pH-induced non-fluorescent state has not been characterized. Here, we report the pH-dependent spectral properties of ZsYellow, which exhibited the pH-induced non-fluorescence state at a pH below 4.0. We determined the crystal structures of ZsYellow at pH 3.5 (non-fluorescence state) and 8.0 (fluorescence state), which revealed the cis-configuration of the chromophore without pH-induced isomerization. In the non-fluorescence state, Arg95, which is involved in stabilization of the exited state of the chromophore, was found to more loosely interact with the carbonyl oxygen atom of the chromophore when compared to the interaction at pH 8.0. In the fluorescence state, Glu221, which is involved in the hydrogen bonding network around the chromophore, stably interacted with Gln42 and His202. By contrast, in the non-fluorescence state, the protonated conserved Glu221 residue exhibited a large conformational change and was separated from His202 by 5.46 Å, resulting in breakdown of the hydrogen bond network. Our results provide insight into the critical role of the conserved Glu221 residue for generating the pH-induced non-fluorescent state. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Determination of thimerosal in pharmaceutical industry effluents and river waters by HPLC coupled to atomic fluorescence spectrometry through post-column UV-assisted vapor generation.

    PubMed

    Acosta, Gimena; Spisso, Adrián; Fernández, Liliana P; Martinez, Luis D; Pacheco, Pablo H; Gil, Raúl A

    2015-03-15

    A high performance liquid chromatography coupled with atomic fluorescence spectrometry method for the determination of thimerosal (sodium ethylmercury thiosalicylate, C9H9HgNaO2S), ethylmercury, and inorganic mercury is proposed. Mercury vapor is generated by the post-column reduction of mercury species in formic acid media using UV-radiation. Thimerosal is quantitatively converted to Hg(II) followed by the reduction of Hg(II) to Hg(0). This method is applied to the determination of thimerosal (THM), ethylmercury (EtHg) and inorganic Hg in samples of a pharmaceutical industry effluent, and in waters of the San Luis River situated in the west side of San Luis city (Middle West, Argentine) where the effluents are dumped. The limit of detections, calculated on the basis of the 3σ criterion, where 0.09, 0.09 and 0.07 μg L(-1) for THM, EtHg(II) and for Hg(II), respectively. Linearity was attained from levels close to the detection limit up to at least 100 μg L(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-Photon Laser-Induced Fluorescence O and N Atoms for the Study of Heterogeneous Catalysis in a Diffusion Reactor

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Copeland, Richard A.; Arnold, James O. (Technical Monitor)

    1995-01-01

    Advanced laser-based diagnostics have been developed to examine catalytic effects and atom/surface interactions on thermal protection materials. This study establishes the feasibility of using laser-induced fluorescence for detection of O and N atom loss in a diffusion tube to measure surface catalytic activity. The experimental apparatus is versatile in that it allows fluorescence detection to be used for measuring species selective recombination coefficients as well as diffusion tube and microwave discharge diagnostics. Many of the potential sources of error in measuring atom recombination coefficients by this method have been identified and taken into account. These include scattered light, detector saturation, sample surface cleanliness, reactor design, gas pressure and composition, and selectivity of the laser probe. Recombination coefficients and their associated errors are reported for N and O atoms on a quartz surface at room temperature.

  10. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/supmore » -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.« less

  11. Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames

    NASA Astrophysics Data System (ADS)

    Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin

    2017-05-01

    Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.

  12. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  13. Determination of niobium in rocks, ores and alloys by atomic-absorption spectrophotometry.

    PubMed

    Husler, J

    1972-07-01

    Niobium, in concentrations as low as 0.02% Nb(2)O(5), is determined in a variety of materials without separation or enrichment. Chemical and ionization interferences are controlled, and sensitivity is increased, by maintaining the iron, aluminium, hydrofluoric acid and potassium content within certain broad concentration limits. There is close agreement with the results of analyses by emission spectrographic, electron microprobe and X-ray fluorescence methods.

  14. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation-atomic fluorescence spectrometry.

    PubMed

    Chaparro, L L; Ferrer, L; Cerdà, V; Leal, L O

    2012-09-01

    A multisyringe flow-injection approach has been coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS) with UV photo-oxidation for dimethylarsinic (DMA), inorganic As and total As determination, depending on the pre-treatment given to the sample (extraction or digestion). The implementation of a UV lamp allows on-line photo-oxidation of DMA and the following arsenic detection, whereas a bypass leads the flow directly to the HG-AFS system, performing inorganic arsenic determination. DMA concentration is calculated by the difference of total inorganic arsenic and measurement of the photo-oxidation step. The detection limits for DMA and inorganic arsenic were 0.09 and 0.47 μg L(-1), respectively. The repeatability values accomplished were of 2.4 and 1.8%, whereas the injection frequencies were 24 and 28 injections per hour for DMA and inorganic arsenic, respectively. This method was validated by means of a solid reference material BCR-627 (muscle of tuna) with good agreement with the certified values. Satisfactory results for DMA and inorganic arsenic determination were obtained in several water matrices. The proposed method offers several advantages, such as increasing the sampling frequency, low detection limits and decreasing reagents and sample consumption, which leads to lower waste generation.

  15. Discharge-pumped cw gas lasers utilizing 'dressed-atom' gain media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, P.P.; Glownia, J.H.; Hodgson, R.T.

    The possibility of realizing an efficient gaseous laser-beam-generating medium that utilizes {lambda}-type coherently phased (i.e., 'dressed') atoms for the active laser species, but that does not inherently require the use of external laser beams for pumping, is explored. Specifically, it is investigated if multiphoton stimulated hyper-Raman scattering (SHRS) processes driven by fluorescence radiation generated in a continuous electrical discharge present within the vapor-containing cell could produce continuous-wave (cw) optical gain at the {lambda}-atom resonance frequencies {omega}{sub o} and {omega}{sub o}{sup '}. It is deduced that such gain could result from n-photon (n{>=}4) SHRS processes only if absorption of fluorescence pumpmore » light occurs in the first three transitions of the n-photon sequence representing the process unit step. Estimates of the amount of optical gain that could be produced in such a system indicate that it should be sufficient to allow multiwatt cw laser operation to occur on one set of {lambda} transitions connecting levels in a 'double-{lambda}' structure, with the pump light being discharge-produced fluorescence centered about the transitions of the other {lambda} pair. However, to initiate operation of such a device would require injection into the laser optical cavity of intense 'starter' laser pulses at both lasing frequencies. What should be an optimal experimental configuration for determining feasibility of the proposed laser device is described. In the suggested configuration, Cs-atom 6S{sub 1/2}-6P{sub 1/2} transitions form the double-{lambda} structure.« less

  16. Synchrotron applications in wood preservation and deterioration

    Treesearch

    Barbara L. Illman

    2003-01-01

    Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...

  17. A Geant4-based Simulation to Evaluate the Feasibility of Using Nuclear Resonance Fluorescence (NRF) in Determining Atomic Compositions of Body Tissue in Cancer Diagnostics and Irradiation

    NASA Astrophysics Data System (ADS)

    Gilbo, Yekaterina; Wijesooriya, Krishni; Liyanage, Nilanga

    2017-01-01

    Customarily applied in homeland security for identifying concealed explosives and chemical weapons, NRF (Nuclear Resonance Fluorescence) may have high potential in determining atomic compositions of body tissue. High energy photons incident on a target excite the target nuclei causing characteristic re-emission of resonance photons. As the nuclei of each isotope have well-defined excitation energies, NRF uniquely indicates the isotopic content of the target. NRF radiation corresponding to nuclear isotopes present in the human body is emitted during radiotherapy based on Bremsstrahlung photons generated in a linear electron accelerator. We have developed a Geant4 simulation in order to help assess NRF capabilities in detecting, mapping, and characterizing tumors. We have imported a digital phantom into the simulation using anatomical data linked to known chemical compositions of various tissues. Work is ongoing to implement the University of Virginia's cancer center treatment setup and patient geometry, and to collect and analyze the simulation's physics quantities to evaluate the potential of NRF for medical imaging applications. Preliminary results will be presented.

  18. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Matos Reyes, M. N.; Cervera, M. L.; Campos, R. C.; de la Guardia, M.

    2007-09-01

    A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L - 1 H 3PO 4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g - 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.

  19. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  20. Concentration of atomic hydrogen in a dielectric barrier discharge measured by two-photon absorption fluorescence

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Talába, M.; Obrusník, A.; Kratzer, J.; Dědina, J.

    2017-08-01

    Two-photon absorption laser-induced fluorescence (TALIF) was utilized for measuring the concentration of atomic hydrogen in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar, H2 and O2 at atmospheric pressure. The method was calibrated by TALIF of krypton diluted in argon at atmospheric pressure, proving that three-body collisions had a negligible effect on quenching of excited krypton atoms. The diagnostic study was complemented with a 3D numerical model of the gas flow and a zero-dimensional model of the chemistry in order to better understand the reaction kinetics and identify the key pathways leading to the production and destruction of atomic hydrogen. It was determined that the density of atomic hydrogen in Ar-H2 mixtures was in the order of 1021 m-3 and decreased when oxygen was added into the gas mixture. Spatially resolved measurements and simulations revealed a sharply bordered region with low atomic hydrogen concentration when oxygen was added to the gas mixture. At substoichiometric oxygen/hydrogen ratios, this H-poor region is confined to an area close to the gas inlet and it is shown that the size of this region is not only influenced by the chemistry but also by the gas flow patterns. Experimentally, it was observed that a decrease in H2 concentration in the feeding Ar-H2 mixture led to an increase in H production in the DBD.

  1. Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography

    NASA Astrophysics Data System (ADS)

    Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano

    2018-01-01

    We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.

  2. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure

    PubMed Central

    Chen, Tao; Yang, Sha; Chai, Jinsong; Song, Yongbo; Fan, Jiqiang; Rao, Bo; Sheng, Hongting; Yu, Haizhu; Zhu, Manzhou

    2017-01-01

    We report the first noble metal nanocluster with a formula of Au4Ag13(DPPM)3(SR)9 exhibiting crystallization-induced emission enhancement (CIEE), where DPPM denotes bis(diphenylphosphino)methane and HSR denotes 2,5-dimethylbenzenethiol. The precise atomic structure is determined by x-ray crystallography. The crystalline state of Au4Ag13 shows strong luminescence at 695 nm, in striking contrast to the weak emission of the amorphous state and hardly any emission in solution phase. The structural analysis and the density functional theory calculations imply that the compact C–H⋯π interactions significantly restrict the intramolecular rotations and vibrations and thus considerably enhance the radiative transitions in the crystalline state. Because the noncovalent interactions can be easily modulated via varying the chemical environments, the CIEE phenomenon might represent a general strategy to amplify the fluorescence from weakly (or even non-) emissive nanoclusters. PMID:28835926

  3. Evidence for the Role of Proton Shell Closure in Quasifission Reactions from X-Ray Fluorescence of Mass-Identified Fragments

    NASA Astrophysics Data System (ADS)

    Morjean, M.; Hinde, D. J.; Simenel, C.; Jeung, D. Y.; Airiau, M.; Cook, K. J.; Dasgupta, M.; Drouart, A.; Jacquet, D.; Kalkal, S.; Palshetkar, C. S.; Prasad, E.; Rafferty, D.; Simpson, E. C.; Tassan-Got, L.; Vo-Phuoc, K.; Williams, E.

    2017-12-01

    The atomic numbers and the masses of fragments formed in quasifission reactions are simultaneously measured at scission in 48Ti + 238U reactions at a laboratory energy of 286 MeV. The atomic numbers are determined from measured characteristic fluorescence x rays, whereas the masses are obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasifission fragments on a broad angular range, the important role of the proton shell closure at Z =82 is evidenced by the associated maximum production yield, a maximum predicted by time-dependent Hartree-Fock calculations. This new experimental approach gives now access to precise studies of the time dependence of the N /Z (neutron over proton ratios of the fragments) evolution in quasifission reactions.

  4. Rate constant for the reaction of atomic chlorine with methane

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Leu, M. T.; Demore, W. B.

    1978-01-01

    The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.

  5. A first evaluation of the analytical capabilities of the new X-ray fluorescence facility at International Atomic Energy Agency-Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Hidalgo, Manuela; Migliori, Alessandro; Leani, Juan José; Queralt, Ignasi; Kallithrakas-Kontos, Nikolaos; Streli, Christina; Prost, Josef; Karydas, Andreas Germanos

    2018-07-01

    The aim of the work is to present a systematic evaluation of the analytical capabilities of the new X-ray fluorescence facility jointly operated between the International Atomic Energy Agency and the Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis. The analytical performance of the XRF beamline end-station (IAEAXspe) was systematically evaluated under TXRF excitation geometry by analyzing different types of aqueous (lake, waste and fresh water) and solid (soil, vegetal, biological) certified reference materials using an excitation energy of 13.0 keV (for the purpose of multielemental analysis). The results obtained for both types of samples in terms of limits of detection and accuracy were also compared with those obtained using laboratory X-ray tube based TXRF systems with different features (including Mo and W X-ray tube systems). Taking advantage of the possibility to work under high vacuum, the IAEAXspe set-up instrumental sensitivity was also determined using an excitation energy of 6.2 keV to explore the possibilities for light elements determination. A clear improvement of the element detection limits is achieved when comparing this facility to conventional X-ray tube based TXRF systems highlighting the benefits of using the monoenergetic synchrotron exciting radiation and the ultra-high vacuum chamber in comparison with conventional laboratory systems. The results of the present work are discussed in view of further exploitation of the facility for different environmental and biological related applications.

  6. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  7. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  8. Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.

    PubMed

    Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue

    2012-10-08

    We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.

  9. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  10. Experimental determination of the x-ray atomic fundamental parameters of nickel

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.; Hönicke, P.; Müller, M.; Unterumsberger, R.; Beckhoff, B.; Hoszowska, J.; Dousse, J.-Cl; Błachucki, W.; Ito, Y.; Yamashita, M.; Fukushima, S.

    2018-02-01

    The x-ray atomic properties of nickel (Ni) were investigated in a unique approach combining different experimental techniques to obtain new, useful and reliable values of atomic fundamental parameters for x-ray spectrometric purposes and for comparison with theoretical predictions. We determined the mass attenuation coefficients in an energy range covering the L- and K-absorption edges, the K-shell fluorescence yield and the Kβ/Kα and Kβ1, 3/Kα1, 2 transition probability ratios. The obtained line profiles and linewidths of the Kα and Kβ transitions in Ni can be considered as the contribution of the satellite lines arising from the [KM] shake processes suggested by Deutsch et al (1995 Phys. Rev. A 51 283) and Ito et al (2016 Phys. Rev. A 94 042506). Comparison of the new data with several databases showed good agreement, but also discrepancies were found with existing tabulated values.

  11. Simultaneous measurement of the surface temperature and the release of atomic sodium from a burning black liquor droplet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Woei L.; Nathan, Graham J.; School of Mechanical Engineering, The University of Adelaide

    2010-04-15

    Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificantmore » presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO{sub 2} content in and around the particle. (author)« less

  12. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  13. Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm

    NASA Astrophysics Data System (ADS)

    Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.

    2017-11-01

    The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.

  14. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.

  15. Resonance Fluorescence of Many Interacting Adatoms at a Metal Surface.

    DTIC Science & Technology

    1983-06-01

    we must know the complex function f(d , which can be determined by the Sommerfeld-Hertz vector procedure,2 M 2 1 24 ,+ 2 sp (W p W2 CA) 4 62 {-L...Chem. Phys. 37: 1 (1978). 6. J. H. Eberly, Atomic Relaxation in the Presence of Intense Partially Coherent Radiation Feilds , Phys. Rev. Lett. 37

  16. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  17. Velocity measurements by laser resonance fluorescence. [single atom diffusional motion

    NASA Technical Reports Server (NTRS)

    She, C. Y.; Fairbank, W. M., Jr.

    1980-01-01

    The photonburst correlation method was used to detect single atoms in a buffer gas. Real time flow velocity measurements with laser induced resonance fluorescence from single or multiple atoms was demonstrated and this method was investigated as a tool for wind tunnel flow measurement. Investigations show that single atoms and their real time diffusional motion on a buffer gas can be measured by resonance fluorescence. By averaging over many atoms, flow velocities up to 88 m/s were measured in a time of 0.5 sec. It is expected that higher flow speeds can be measured and that the measurement time can be reduced by a factor of 10 or more by careful experimental design. The method is clearly not ready for incorporation in high speed wind tunnels because it is not yet known whether the stray light level will be higher or lower, and it is not known what detection efficiency can be obtained in a wind tunnel situation.

  18. Determination of phenformin hydrochloride employing a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Shi, Lin; Xie, Jian-Hong; Du, Li-Ming; Chang, Yin-xia; Wu, Hao

    2016-06-01

    A complexation of non-fluorescent phenformin hydrochloride (PFH) with cucurbit [7]uril (CB [7]) in aqueous solution was investigated using the fluorescent probe of palmatine (PAL) coupled with CB [7]. The fluorescent probe of CB [7]-PAL exhibited strong fluorescence in aqueous solution, which was quenched gradually with the increase of PFH. This effect is observed because when PFH was added to the host-guest system of CB [7]-PAL, PFH and PAL competed to occupy the CB [7] cavity. Portions of the PAL molecule were expelled from the CB [7] cavity owing to the introduction of PFH. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescence method of high sensitivity and selectivity was developed to determine PFH with good precision and accuracy for the first time. The linear range of the method was 0.005-1.9 μg mL- 1 with a detection limit of 0.003 μg mL- 1. In this work, association constants (K) of PFH with CB [7] were also determined. KCB [7]-PFH = (2.52 ± 0.05) × 105 L mol- 1. The ability of PFH to bind with CB [7] is stronger than that of PAL. The results of a density functional theory calculation authenticated that the moiety of PFH was embedded in the hydrophobic cavity of CB [7] tightly, and the nitrogen atom is located in the vicinity of a carbonyl-laced portal in the energy-minimized structure. The molecular modelling of the interaction between PFH and CB [7] was also confirmed by 1H NMR spectra (Bruker 600 MHz).

  19. Red/near-infrared luminescence tuning of group-14 element complexes of dipyrrins based on a central atom.

    PubMed

    Yamamura, Masaki; Albrecht, Marcel; Albrecht, Markus; Nishimura, Yoshinobu; Arai, Tatsuo; Nabeshima, Tatsuya

    2014-02-03

    A dipyrrin complex has been one of the most utilized fluorescent dyes, and a variety of dipyrrin complexes show intriguing functions based on the various coordination structures of the central element. We now report the synthesis, structure, and photophysical properties of germanium and stannane complexes of the N2O2-type tetradentate dipyrrin, L·Ge and L·Sn, which are heavier analogues of the previously reported dipyrrin silicon complex, L·Si. The central group-14 atoms of the monomeric complexes have geometries close to trigonal bipyramidal (TBP), in which the contribution of the square-pyramidal (SP) character becomes higher as the central atom is heavier. Interestingly, L·Sn formed a dimeric structure in the crystal. All complexes L·Si, L·Ge, and L·Sn showed a fluorescence in the red/NIR region. Fluorescence quantum yields of L·Ge and L·Sn are higher than that of L·Si. These results indicated that the central atom on the dipyrrin complexes contributes not only to the geometry difference but also to tuning the fluorescence properties.

  20. Compact fast analyzer of rotary cuvette type

    DOEpatents

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  1. Shifts due to quantum-mechanical interference from distant neighboring resonances for saturated fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Marsman, Alain; Horbatsch, Marko; Hessels, Eric A.

    2014-05-01

    Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23 S -to- 23 P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20 000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector and the intensity and size of laser beams. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23 P fine structure. The work represents the first study of such interference shifts for saturated fluorescence spectroscopy and follows up on our previous study of similar shifts for laser spectroscopy. This work is supported by NSERC, CRC, ORF, CFI, NIST and SHARCNET.

  2. Nanostructural origin of blue fluorescence in the mineral karpatite.

    PubMed

    Potticary, Jason; Jensen, Torsten T; Hall, Simon R

    2017-08-29

    The colour of crystals is a function of their atomic structure. In the case of organic crystals, it is the spatial relationships between molecules that determine the colour, so the same molecules in the same arrangement should produce crystals of the same colour, regardless of whether they arise geologically or synthetically. There is a naturally-occurring organic crystal known as karpatite which is prized for its beautiful blue fluorescence under ultra-violet illumination. When grown under laboratory conditions however, the crystals fluoresce with an intense green colour. For 20 years, this difference has been thought to be due to chemical impurities in the laboratory-grown material. Using electron microscopy coupled with fluorescence spectroscopy and X-Ray diffraction, we report here that this disparity is instead due to differences in the structure of the crystals at the nanoscale. The results show that in nature, karpatite has a nanotexture that is not present in the synthetic crystals, which enables different photonic pathways and therefore a blue, rather than green colour whilst undergoing fluorescence.

  3. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids.

    PubMed

    Villa, Jordan K; Tran, Hong-Anh; Vipani, Megha; Gianturco, Stephanie; Bhasin, Konark; Russell, Brent L; Harbron, Elizabeth J; Young, Douglas D

    2017-07-16

    The ability to modulate protein function through minimal perturbations to amino acid structure represents an ideal mechanism to engineer optimized proteins. Due to the novel spectroscopic properties of green fluorescent protein, it has found widespread application as a reporter protein throughout the fields of biology and chemistry. Using site-specific amino acid mutagenesis, we have incorporated various fluorotyrosine residues directly into the fluorophore of the protein, altering the fluorescence and shifting the pKa of the phenolic proton associated with the fluorophore. Relative to wild type GFP, the fluorescence spectrum of the protein is altered with each additional fluorine atom, and the mutant GFPs have the potential to be employed as pH sensors due to the altered electronic properties of the fluorine atoms.

  4. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).

    PubMed

    Keller, Nicole S; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    A method for the analysis of arsenic species in aqueous sulfide samples is presented. The method uses an ion chromatography system connected with a Hydride-Generation Atomic Fluorescence Spectrometer (IC-HG-AFS). With this method inorganic As(III) and As(V) species in water samples can be analyzed, including arsenite (HnAs(III)O3(n-3)), thioarsenite (HnAs(III)S3(n-3)), arsenate (HnAs(V)O4(n-3)), monothioarsenate (HnAs(V)SO3(n-3)), dithioarsenate (HnAs(V)S2O2(n-3)), trithioarsenate (HnAs(V)S3O(n-3)) and tetrathioarsenate (HnAs(V)S4(n-3)). The peak identification and retention times were determined based on standard analysis of the various arsenic compounds. The analytical detection limit was ~1-3 µg L(-1) (LOD), depending on the quality of the baseline. This low detection limit makes this method also applicable to discriminate between waters meeting the drinking water standard of max. 10 µg L(-1) As, and waters that do not meet this standard. The new method was successfully applied for on-site determination of arsenic species in natural sulfidic waters, in which seven species were unambiguously identified. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Novel method for determination of zinc traces in beverages and water samples by solid surface fluorescence using a conventional quartz cuvette.

    PubMed

    Talio, María Carolina; Acosta, María Gimena; Acosta, Mariano; Olsina, Roberto; Fernández, Liliana P

    2015-05-15

    A new method for zinc pre-concentration/separation and determination by molecular fluorescence is proposed. The metal was complexed with o-phenanthroline and eosin at pH 7.5 in Tris; a piece of filter paper was used as a solid support and solid fluorescent emission measured using a conventional quartz cuvette. Under optimal conditions, the limits of detection and quantification were 0.36 × 10(-3) and 1.29 × 10(-3) μg L(-1), respectively, and the linear range from 1.29 × 10(-3) to 4.50 μg L(-1). This method showed good sensitivity and selectivity, and it was applied to the determination of zinc in foods and tap water. The absence of filtration reduced the consumption of water and electricity. Additionally, the use of common filter papers makes it a simpler and more rapid alternative to conventional methods, with sensitivity and accuracy similar to atomic spectroscopies using a typical laboratory instrument. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Barium Tagging n Solid Xenon for nEXO Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Walton, Tim; Chambers, Chris; Craycraft, Adam; Fairbank, William; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Since the daughter of this decay is barium (Ba136), detecting the presence of Ba136 at a decay site (called ``barium tagging'') would provide strong rejection of backgrounds in the search for this decay. This would involve detecting a single barium ion from within a macroscopic volume of liquid xenon. This technique may be available for a second phase of the nEXO detector and sensitivity beyond the inverted hierarchy to neutrino oscillations. Several methods of barium tagging are being explored by the nEXO collaboration, but here we present a method of trapping the barium ion/atom (it may neutralize) in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Our group at CSU has been studying the fluorescence of Ba in SXe by laser excitation, in order to ultimately detect a single Ba +/Ba in a SXe sample. We present studies of fluorescence signals, as well as recent results on imaging small numbers of Ba atoms in SXe, in a focused laser region. This work is supported by grants from the National Science Foundation and the Department of Energy.

  7. Emission- and fluorescence-spectroscopic investigation of a glow discharge plasma: absolute number density of radiative and nonradiative atoms in the negative glow.

    PubMed

    Takubo, Y; Sato, T; Asaoka, N; Kusaka, K; Akiyama, T; Muroo, K; Yamamoto, M

    2008-01-01

    The excited-state atom densities in the negative glow of a direct-current glow discharge are derived from the spectral-line intensity of radiative atoms and the resonance-fluorescence photon flux of nonradiative atoms. The discharge is operated in a helium-argon gas mixture (molar fraction ratio 91:9; total gas pressure 5 Torr) at a dc current of 0.7-1.2 mA. The observations are made in the region of the maximum luminance in the cathode region, where high-energy electrons accelerated in the cathode fall are injected into the negative glow. The emission intensities of the He I, He II, Ar I, and Ar II spectral lines are measured with a calibrated tungsten ribbon lamp as an absolute spectral-radiance standard. Fluorescence photons scattered by helium and argon atoms in the metastable state and argon atoms in the resonance state are detected by the laser-induced fluorescence (LIF) method with the Rayleigh scattering of nitrogen molecules as an absolute standard of scattering cross section. The laser absorption method is incorporated to confirm the result of the LIF measurement. Excitation energies of the measured spectral lines range from 11.6 (Ar I) to 75.6 eV (He II), where the excitation energy is measured from the ground state of the neutral atom on the assumption that, in the plasma of this study, both the neutral and the ionic lines are excited by electron impact in a single-step process from the ground state of the corresponding neutral atoms. Experimental evidence is shown for the validity of this assumption.

  8. Atomic Decay Data for Modeling K Lines of Iron Peak and Light Odd-Z Elements*

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Garcia, J.; Witthoeft, M. C.; Kallman, T. R.

    2012-01-01

    Complete data sets of level energies, transition wavelengths, A-values, radiative and Auger widths and fluorescence yields for K-vacancy levels of the F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn isonuclear sequences have been computed by a Hartree-Fock method that includes relativistic corrections as implemented in Cowan's atomic structure computer suite. The atomic parameters for more than 3 million fine-structure K lines have been determined. Ions with electron number N greater than 9 are treated for the first time, and detailed comparisons with available measurements and theoretical data for ions with N less than or equal to 9 are carried out in order to estimate reliable accuracy ratings.

  9. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  10. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Gan, Wuer; Deng, Yun; Sun, Huihui

    2011-11-01

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H + exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H + generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As 3 + to generate AsH 3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As 3 + for sample blank solution was 0.12 μg L - 1 , the RSD was 2.9% for 10 consecutive measurements of 5 μg L - 1 As 3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  11. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  12. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  13. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less

  14. Effects of Anisotropic Excitation in Laser-Induced Fluorescence Spectroscopy (LIFS)

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takashi; Goto, Chiaki; Uetani, Yasunori; Fukuda, Kuniya

    1985-07-01

    Various features of the effect of alignment in the upper-level population on the observed emission-line intensity, i.e., the spatially-anisotropic intensity distribution and polarization, are demonstrated using laser-induced fluorescence spectroscopy on the neon 2p53s-2p53p transitions in a plasma. Disalignment by atomic collision is observed on the 2p2 level, and its rate coefficient is determined as (1.70± 0.03)× 10-10 cm3s-1. The case of hyperfine-structure lines is discussed. Polarization is observed in the hydrogen Balmer α line fluorescence following the laser excitation of the same transition. Conditions are given under which the alignment effect is eliminated or can be neglected. Cases of unpolarized-light excitation and high-intensity excitation are discussed.

  15. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  16. THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS

    EPA Science Inventory

    Three decades of study of environmental conditions necessary for the protection of freshwater
    aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
    The...

  17. Absolute rate of the reaction of C l(2P) with methane from 200-500 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    Rate constants for the reaction of atomic chlorine with methane have been measured from 200-500K using the flash photolysis-resonance fluorescence technique. When the results from fourteen equally spaced experimental determinations are plotted in Arrhenius form a definite curvature is noted. The results are compared to previous work and are theoretically discussed.

  18. Improvements and application of a modified gas chromatography atomic fluorescence spectroscopy method for routine determination of methylmercury in biota samples.

    PubMed

    Gorecki, Jerzy; Díez, Sergi; Macherzynski, Mariusz; Kalisinska, Elżbieta; Golas, Janusz

    2013-10-15

    Improvements to the application of a combined solid-phase microextraction followed by gas chromatography coupled to pyrolysis and atomic fluorescence spectrometry method (SPME-GC-AFS) for methylmercury (MeHg) determination in biota samples are presented. Our new method includes improvements in the methodology of determination and the quantification technique. A shaker instead of a stirrer was used, in order to reduce the possibility of sample contamination and to simplify cleaning procedures. Then, optimal rotation frequency and shaking time were settled at 800 rpm and 10 min, respectively. Moreover, the GC-AFS system was equipped with a valve and an argon heater to eliminate the effect of the decrease in analytical signal caused by the moisture released from SPME fiber. For its determination, MeHg was first extracted from biota samples with a 25% KOH solution (3h) and then it was quantified by two methods, a conventional double standard addition method (AC) and a modified matrix-matched calibration (MQ) which is two times faster than the AC method. Both procedures were successfully tested with certified reference materials, and applied for the first time to the determination of MeHg in muscle samples of goosander (Mergus merganser) and liver samples of white-tailed eagle (Haliaeetus albicilla) with values ranging from 1.19 to 3.84 mg/kg dry weight (dw), and from 0.69 to 6.23 mg kg(-1) dw, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Determination of phenformin hydrochloride employing a sensitive fluorescent probe.

    PubMed

    Shi, Lin; Xie, Jian-Hong; Du, Li-Ming; Chang, Yin-xia; Wu, Hao

    2016-06-05

    A complexation of non-fluorescent phenformin hydrochloride (PFH) with cucurbit [7]uril (CB [7]) in aqueous solution was investigated using the fluorescent probe of palmatine (PAL) coupled with CB [7]. The fluorescent probe of CB [7]-PAL exhibited strong fluorescence in aqueous solution, which was quenched gradually with the increase of PFH. This effect is observed because when PFH was added to the host-guest system of CB [7]-PAL, PFH and PAL competed to occupy the CB [7] cavity. Portions of the PAL molecule were expelled from the CB [7] cavity owing to the introduction of PFH. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescence method of high sensitivity and selectivity was developed to determine PFH with good precision and accuracy for the first time. The linear range of the method was 0.005-1.9 μg mL(-1) with a detection limit of 0.003 μg mL(-1). In this work, association constants (K) of PFH with CB [7] were also determined. KCB [7]-PFH=(2.52±0.05)×10(5) L mol(-1). The ability of PFH to bind with CB [7] is stronger than that of PAL. The results of a density functional theory calculation authenticated that the moiety of PFH was embedded in the hydrophobic cavity of CB [7] tightly, and the nitrogen atom is located in the vicinity of a carbonyl-laced portal in the energy-minimized structure. The molecular modelling of the interaction between PFH and CB [7] was also confirmed by (1)H NMR spectra (Bruker 600 MHz). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Microscopy basics and the study of actin-actin-binding protein interactions.

    PubMed

    Thomasson, Maggie S; Macnaughtan, Megan A

    2013-12-15

    Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    PubMed Central

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  2. Ultraviolet absorption experiment MA-059

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1976-01-01

    The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.

  3. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  4. The role of atomic fluorescence spectrometry in the automatic environmental monitoring of trace element analysis

    PubMed Central

    Stockwell, P. B.; Corns, W. T.

    1993-01-01

    Considerable attention has been drawn to the environmental levels of mercury, arsenic, selenium and antimony in the last decade. Legislative and environmental pressure has forced levels to be lowered and this has created an additional burden for analytical chemists. Not only does an analysis have to reach lower detection levels, but it also has to be seen to be correct. Atomic fluorescence detection, especially when coupled to vapour generation techniques, offers both sensitivity and specificity. Developments in the design of specified atomic fluorescence detectors for mercury, for the hydride-forming elements and also for cadmium, are described in this paper. Each of these systems is capable of analysing samples in the part per trillion (ppt) range reliably and economically. Several analytical applications are described. PMID:18924964

  5. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  6. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.

    1999-01-01

    Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.

  7. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  8. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    PubMed

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  9. Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation

    PubMed Central

    2015-01-01

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L–1 for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry). PMID:25300934

  10. Speciation analysis of arsenic by selective hydride generation-cryotrapping-atomic fluorescence spectrometry with flame-in-gas-shield atomizer: achieving extremely low detection limits with inexpensive instrumentation.

    PubMed

    Musil, Stanislav; Matoušek, Tomáš; Currier, Jenna M; Stýblo, Miroslav; Dědina, Jiří

    2014-10-21

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L(-1) for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry).

  11. Correlation between Wavelength Dispersive X-ray Fluorescence (WDXRF) analysis of hardened concrete for chlorides vs. Atomic Absorption (AA) analysis in accordance with AASHTO T- 260; sampling and testing for chloride ion in concrete and concrete raw mater

    DOT National Transportation Integrated Search

    2014-04-01

    A correlation between Wavelength Dispersive X-ray Fluorescence(WDXRF) analysis of Hardened : Concrete for Chlorides and Atomic Absorption (AA) analysis (current method AASHTO T-260, procedure B) has been : found and a new method of analysis has been ...

  12. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  13. Local atomic structure of Fe/Cr multilayers: Depth-resolved method

    NASA Astrophysics Data System (ADS)

    Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.

    2017-10-01

    A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.

  14. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  15. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less

  16. Highly Fluorescent Noble Metal Quantum Dots

    PubMed Central

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  17. State-dependent fluorescence of neutral atoms in optical potentials

    NASA Astrophysics Data System (ADS)

    Martinez-Dorantes, M.; Alt, W.; Gallego, J.; Ghosh, S.; Ratschbacher, L.; Meschede, D.

    2018-02-01

    Recently we have demonstrated scalable, nondestructive, and high-fidelity detection of the internal state of 87Rb neutral atoms in optical dipole traps using state-dependent fluorescence imaging [M. Martinez-Dorantes, W. Alt, J. Gallego, S. Ghosh, L. Ratschbacher, Y. Völzke, and D. Meschede, Phys. Rev. Lett. 119, 180503 (2017), 10.1103/PhysRevLett.119.180503]. In this paper we provide experimental procedures and interpretations to overcome the detrimental effects of heating-induced trap losses and state leakage. We present models for the dynamics of optically trapped atoms during state-dependent fluorescence imaging and verify our results by comparing Monte Carlo simulations with experimental data. Our systematic study of dipole force fluctuations heating in optical traps during near-resonant illumination shows that off-resonant light is preferable for state detection in tightly confining optical potentials.

  18. X-ray fluorescence holography studies for a Cu3Au crystal

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.

    2015-12-01

    In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.

  19. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  20. Fluorescence "turn on" detection of mercuric ion based on bis(dithiocarbamato)copper(II) complex functionalized carbon nanodots.

    PubMed

    Yuan, Chao; Liu, Bianhua; Liu, Fei; Han, Ming-Yong; Zhang, Zhongping

    2014-01-21

    A new "turn on" fluorescence nanosensor for selective Hg(2+) determination is reported based on bis(dithiocarbamato)copper(II) functionalized carbon nanodots (CuDTC2-CDs). The CuDTC2 complex was conjugated to the prepared amine-coated CDs by the condensation of carbon disulfide onto the nitrogen atoms in the surface amine groups, followed by the coordination of copper(II) to the resulting dithiocarbamate groups (DTC) and finally by the additional coordination of ammonium N-(dithicarbaxy) sarcosine (DTCS) to form the CuDTC2-complexing CDs. The CuDTC2 complex at surface strongly quenched the bright-blue fluorescence of the CDs by a combination of electron transfer and energy transfer mechanism. Hg(2+) could immediately switch on the fluorescence of the CuDTC2-CDs by promptly displacing the Cu(2+) in the CuDTC2 complex and thus shutting down the energy transfer pathway, in which the sensitive limit for Hg(2+) as low as 4 ppb was reached. Moreover, a paper-based sensor has been fabricated by printing the CuDTC2-CDs probe ink on a piece of cellulose acetate paper using a commercial inkjet printer. The fluorescence "turn on" on the paper provided the most conveniently visual detection of aqueous Hg(2+) ions by the observation with naked eye. The very simple and effective strategy reported here facilitates the development of portable and reliable fluorescence nanosensors for the determination of Hg(2+) in real samples.

  1. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less

  2. Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives.

    PubMed

    Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing

    2014-10-15

    Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, (1)H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu=0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives

    NASA Astrophysics Data System (ADS)

    Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing

    2014-10-01

    Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, 1H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445 nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu = 0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules.

  4. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity.

    PubMed

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-02-01

    This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5'-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2015-05-01

    Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.

  6. [Improvement of the method for methylmercury determination in aquatic products using liquid chromatography online coupled with atomic fluorescence spectrometry].

    PubMed

    Shang, Xiaohong; Zhao, Yunfeng; Zhang, Lei; Li, Xiaowei; Wu, Yongning

    2011-07-01

    The improvement method was developed for methylmercury determination using liquid chromatography online coupled with cold vapor atomic fluorescence spectrometry (LC-CV-AFS). Cysteine was used as complexing agent in mobile phase instead of mercaptoethanol. Under the optimized conditions, baseline separation of mercury species could be achieved within 8 min on a C18 column with a mobile phase of 5% (v/v) acetonitrile-1 g/L L-cysteine-50 mmol/L ammonium acetate aqueous solution. The linear range of calibration curve of methylmercury was 1-50 microg/L and the limit of detection (S/N = 3) for methylmercury was 0.3 microg/L. Ultrasonication assisted hydrochloric acid extraction was used to extract methylmercury from seafood samples. The sample extract was cleaned up by a C18 solid phase extraction (SPE) cartridge. For validation of the method, certified reference materials and spiked seafood samples were analyzed. The determined methylmercury contents of certified reference materials NIST1566b, BCR464 and GBW10029 agreed well with the certified values. The determined methylmercury values for Food Analysis Performance Assessment Scheme (FAPAS) sample 07115 were satisfied. The recoveries of methylmercury in seafood samples at three spiked levels (10, 50 and 500 microg/kg) ranged from 89% to 112%, including cooked seafood food. The precision of the method based on relative standard deviation (RSD) was not more than 7%. The present method of LC-CV-AFS is accurate, sensitive, simple, and can meet the demand of methylmercury determination in seafood.

  7. Multichannel processes of H2O in the 18 eV region

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert; Judge, D. L.

    1988-01-01

    Measurements were made of: (1) the fluorescence cross sections of OH(A 2Sigma+) fragments; (2) the absolute cross sections producing H atoms in the n = 2, 3, and 4 states; (3) the cross section for producing excited O atoms which has an upper limit of 5 x 10 to the -21 sq cm; and (4) the fluorescence cross section for producing H2(a 3Sigma g +) fragments. It is shown that, in the 16-20 eV region, there are excellent correspondences in the peak positions and spacings among the photoabsorption, photoionization spectra, and fluorescence functions of OH(A) and H(n).

  8. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasingmore » the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.« less

  9. Measurement of the cytosolic sodium ion concentration in rat brain synaptosomes by a fluorescence method.

    PubMed

    Kongsamut, S; Nachshen, D A

    1988-05-24

    A method for the measurement of the cytosolic Na+ concentration in intact synaptosomes is described. This method makes use of a pH sensitive dye (BCECF) that can be loaded into the cytosol and a relatively specific ionophore (monensin) that can exchange Na+ for H+ across the synaptosomal membrane. By setting conditions such that there is no electrochemical potential difference for H+ across the membrane (no membrane potential and pHi = pHo), addition of ionophore would induce a H+ flux only if there is a concentration difference for Na+. Thus, when there is no fluorescence change (no cytosolic pH change) extracellular [Na+] equals intrasynaptosomal [Na+]. The intrasynaptosomal [Na+] concentration was determined to be 7 +/- 3 mM (n = 5; mean +/- S.E.). The results obtained with this fluorescence method are compared with estimates obtained by atomic absorption spectrometry. Limitations and applications of the method are discussed.

  10. Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan

    2017-12-01

    A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.

  11. Flash photolysis resonance fluorescence investigation of the reaction of O /P-3/ atoms with ClONO2

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.

    1977-01-01

    The rate constant for the reaction of O (P-3) atoms with ClONO2 at 10 torr total pressure is assessed over the temperature range 225-273 K by the flash photolysis resonance fluorescence technique. The data, taken together with results given by Molina et al. (1977), have been used to formulate an Arrhenius expression suitable for stratospheric modeling applications. Comparison of the rate of ClONO2 destruction via the oxygen atom reaction with the solar photolysis rate shows that chemical reaction accounts for less than 15% of the CLONO2 removal at altitudes between 20 and 30 km.

  12. Observation of a barium xenon exciplex within a large argon cluster.

    PubMed

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  13. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.

    PubMed

    Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-12

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

  14. X-ray fluorescence analysis of K, Al and trace elements in chloroaluminate melts

    NASA Astrophysics Data System (ADS)

    Shibitko, A. O.; Abramov, A. V.; Denisov, E. I.; Lisienko, D. G.; Rebrin, O. I.; Bunkov, G. M.; Rychkov, V. N.

    2017-09-01

    Energy dispersive x-ray fluorescence spectrometry was applied to quantitative determination of K, Al, Cr, Fe and Ni in chloroaluminate melts. To implement the external standard calibration method, an unconventional way of samples preparation was suggested. A mixture of metal chlorides was melted in a quartz cell at 350-450 °C under a slightly excessive pressure of purified argon (99.999 %). The composition of the calibration samples (CSs) prepared was controlled by means of the inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for analytical lines excitation were determined, the analytes calibration curves were obtained. There was some influence of matrix effects in synthesized samples on the analytical signal of some elements. The CSs are to be stored in inert gas atmosphere. The precision, accuracy, and reproducibility factors of the quantitative chemical analysis were computed.

  15. Interaction of three new tetradentates Schiff bases containing N2O2 donor atoms with calf thymus DNA.

    PubMed

    Ajloo, Davood; Shabanpanah, Sajede; Shafaatian, Bita; Ghadamgahi, Maryam; Alipour, Yasin; Lashgarbolouki, Taghi; Saboury, Ali Akbar

    2015-01-01

    Interaction of 1,3-bis(2-hydroxy-benzylidene)-urea (H2L1), 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea (H2L2) and 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea nickel(II) (NiL2) with calf-thymus DNA were investigated by UV-vis absorption, fluorescence emission and circular dichroism (CD) spectroscopy as well as cyclic voltammetry, viscosity measurements, molecular docking and molecular dynamics simulation. Binding constants were determined using UV-vis absorption and fluorescence spectra. The results indicated that studied Schiff-bases bind to DNA in the intercalative mode in which the metal derivative is more effective than non metals. Their interaction trend is further determined by molecular dynamics (MD) simulation. MD results showed that Ni derivative reduces oligonucleotide intermolecular hydrogen bond and increases solvent accessible surface area more than other compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Reaction dynamics of H + O2 at 1.6 eV collision energy

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zhang, Rong; Rakestraw, David J.; Zare, Richard N.

    1989-01-01

    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0)/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.

  17. Reaction dynamics of H + O2 at 1.6 eV collision energy

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Rong, Zhang; Rakestraw, David J.; Zare, Richard N.

    1989-01-01

    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.

  18. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  19. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  20. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  1. Synthesis and Fluorescence Properties of Structurally Characterized Heterobimetalic Cu(II)⁻Na(I) Bis(salamo)-Based Complex Bearing Square Planar, Square Pyramid and Triangular Prism Geometries of Metal Centers.

    PubMed

    Dong, Xiu-Yan; Zhao, Qing; Wei, Zhi-Li; Mu, Hao-Ran; Zhang, Han; Dong, Wen-Kui

    2018-04-25

    A novel heterotrinuclear complex [Cu₂(L)Na( µ -NO₃)]∙CH₃OH∙CHCl₃ derived from a symmetric bis(salamo)-type tetraoxime H₄L having a naphthalenediol unit, was prepared and structurally characterized via means of elemental analyses, UV-Vis, FT-IR, fluorescent spectra and single-crystal X-ray diffraction. The heterobimetallic Cu(II)⁻Na(I) complex was acquired via the reaction of H₄L with 2 equivalents of Cu(NO₃)₂·2H₂O and 1 equivalent of NaOAc. Clearly, the heterotrinuclear Cu(II)⁻Na(I) complex has a 1:2:1 ligand-to-metal (Cu(II) and Na(I)) ratio. X-ray diffraction results exhibited the different geometric behaviors of the Na(I) and Cu(II) atoms in the heterotrinuclear complex; the both Cu(II) atoms are sited in the N₂O₂ coordination environments of fully deprotonated (L) 4− unit. One Cu(II) atom (Cu1) is five-coordinated and possesses a geometry of slightly distorted square pyramid, while another Cu(II) atom (Cu2) is four-coordination possessing a square planar coordination geometry. Moreover, the Na(I) atom is in the O₆ cavity and adopts seven-coordination with a geometry of slightly distorted single triangular prism. In addition, there are abundant supramolecular interactions in the Cu(II)⁻Na(I) complex. The fluorescence spectra showed the Cu(II)⁻Na(I) complex possesses a significant fluorescent quenching and exhibited a hypsochromic-shift compared with the ligand H₄L.

  2. COMPARISON OF FEMTOSECOND AND NANOSECOND TWO PHOTON ABSORPTION LASER INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS

    DTIC Science & Technology

    2016-08-01

    OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS James D. Scofield (AFRL/RQQE) and James R. Gord (AFRL/RQTC) Electrical Systems Branch, Power and Control...Division (AFRL/RQQE) Combustion Branch, Turbine Engine Division (AFRL/RQTC) Jacob B. Schmidt and Sukesh Roy Spectral Energies LLC Brian Sands...LASER-INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM

  3. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  4. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  5. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    PubMed

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  6. Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Oba, Masaki; Miyabe, Masabumi; Akaoka, Katsuaki; Wakaida, Ikuo

    2016-02-01

    We used laser-induced fluorescence imaging with a varying beam focal point to observe ablation plumes from metal and oxide samples of gadolinium. The plumes expand vertically when the focal point is far from the sample surface. In contrast, the plume becomes hemispherical when the focal point is on the sample surface. In addition, the internal plume structure and the composition of the ablated atomic and ionic particles also vary significantly. The fluorescence intensity of a plume from a metal sample is greater than that from an oxide sample, which suggests that the number of monatomic species produced in each plume differs. For both the metal and oxide samples, the most intense fluorescence from atomic (ionic) species is observed with the beam focal point at 3-4 mm (2 mm) from the sample surface.

  7. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump.

  8. Fluorescence responses and photosynthetic rates of sunlit and shaded leaves of Italian alpine forest species: Summer 1997 ATOM-LIFT campaign

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Cecchi, Giovanna; Chappelle, Emmett W.; Bazzani, Marco; McMurtrey, James E., III; Corp, Lawrence A.; Sandu, R.; Tirelli, Daniele

    1998-07-01

    Terrestrial vegetation studies were carried out in the Italian Northeastern Alps in Val Visdende. The measurement site was 15 Kilometers Northeast of the town of St. Stefano di Calore (Belluno), Italy. Measurements were acquired on a wooded site at the Italian Department of Forestry Station on species native to the Italian Alps. The species included spruce (Picea abies) and alder (Alnus incana) trees. Characterization was also made of the fluorescence responses of several under-story species such as Dactylorhiza fuchsii of the Orchidaceae family, Caltha palustris and Ranunculus ficaria of the Ranuncolcee family, and Trifolium pratense and Trifolium repens of the Leguminosae family. Terrestrial vegetation monitoring was conducted with the Italian FLIDAR remote sensing instrument mounted in a mobile van, the NASA/USDA Fluorescence Imaging System (FIS), and the Spectron SE-590 for optical properties. Photosynthetic CO2 gas exchange rates we made with LI-COR 6400 infrared gas analyzer. Pigments from the samples were extracted and analyzed with a Perkin Elmer Lamda 7 Spectrometer to determine pigment concentrations. Fluorescence responses were collected from vegetation samples grown under different ambient light regimes of sun-lit versus shaded. The vegetation showed different fluorescence characteristics. A fluorescence algorithm, (F740/F680)/F550, and rate of photosynthesis showed a strong linear relationship.

  9. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate.

    PubMed

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui

    2016-03-01

    A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

  10. Thermally Induced Depolarization of the Photoluminescence of Carbon Nanodots in a Colloidal Matrix

    NASA Astrophysics Data System (ADS)

    Starukhin, A. N.; Nelson, D. K.; Kurdyukov, D. A.; Eurov, D. A.; Stovpiaga, E. Yu.; Golubev, V. G.

    2018-02-01

    The effect of temperature on fluorescence polarization in a colloidal system of carbon nanodots in glycerol under linearly polarized excitation is investigated for the first time. It is found that the experimentally obtained temperature dependence of the degree of linear polarization of fluorescence can be described by the Levshin-Perrin equation, taking into account the rotational diffusion of luminescent particles (fluorophores) in the liquid matrix. The fluorophore size determined in the context of the Levshin-Perrin model is significantly smaller than the size of carbon nanodots. This discrepancy gives evidence that small atomic groups responsible for nanodot luminescence are characterized by high segmental mobility with a large amplitude of motion with respect to the nanodot core.

  11. Laser induced fluorescence spectroscopy used for the investigation of Landé gJ- factors of praseodymium energy levels

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-06-01

    Laser induced fluorescence (LIF) spectroscopy was used for the investigation of structures of 52 spectral lines of Pr I in the wavelength range 561.3 - 613.9 nm. As a source of free Pr atoms a hollow cathode discharge lamp was used. We monitored selected LIF signals appearing when the laser beam excites the hollow cathode plasma. LIF spectra were recorded in the presence of a magnetic field of about 800 G produced by a permanent magnet for two linear polarizations of the exciting laser beam. We have determined for the first time Landé gJ- factors for 71 levels of neutral Pr and reinvestigated data for several other levels.

  12. Spatial Concentrations of Silicon Atoms in RF Discharges of Silane.

    DTIC Science & Technology

    1985-02-18

    regions. These profiles were much more sensitive to plasma chemistry changes than profiles obtained from plasma emission. Experiments with nitrogen...addition demonstrated significant changes in the silicon atom profiles near the sheath boundary. Originator supplied keywords include: rf discharge, silane, plasma chemistry , silicon atom, laser-induced fluorescence.

  13. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry.

    PubMed

    Liang, Jing; Wang, Qiuquan; Huang, Benli

    2005-01-01

    An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.

  14. Arcjet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Species

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas G.

    1997-01-01

    Flow property measurements that were recently acquired in the Ames Research Center Aerodynamic Heating Facility (AHF) arc jet using two-photon Laser-Induced Fluorescence (LIF) of atomic nitrogen and oxygen are reported. The measured properties, which include velocity, translational temperature, and species concentration, cover a wide range of facility operation for the 30 cm nozzle. During the tests, the arc jet pressure and input stream composition were maintained at fixed values and the arc current was varied to vary the flow enthalpy. As part of this ongoing effort, a measurement of the two-photon absorption coefficient for the 3p4D<-2p4S transition of atomic nitrogen was performed, and the measured value is used to convert the relative concentration measurements to absolute values. A flow reactor is used to provide a known temperature line shape profile to deconvolve the laser line width contribution to the translational temperature measurements. Results from the current experiments are compared with previous results obtained using NO-Beta line profiles at room temperature and the problem of multimode laser oscillation and its impact on the two-photon excitation line shape are discussed. One figure is attached, and this figure shows relative N atom concentration measurements as a function of the arc power. Other measurements have already been acquired and analyzed. This poster represents an application of laser-spectroscopic measurements in an important test facility. The arc jet flow facilities are heavily used in thermal protection material development and evaluation. All hypersonic flight and planetary atmospheric entry vehicles will use materials tested in these arc jet facilities.

  15. Recoilless Nuclear Resonance Absorption of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Mössbauer, Rudolf L.

    It is a high distinction to be permitted to address you on the subject of recoilless nuclear resonance absorption of gamma radiation. The methods used in this special branch of experimental physics have recently found acceptance in many areas of science. I take the liberty to confine myself essentially to the work which I was able to carry out in the years 1955-1958 at the Max Planck Institute in Heidelberg, and which finally led to establishment of the field of recoilless nuclear resonance absorption. Many investigators shared in the preparations of the basis for the research we are concerned with in this lecture. As early as the middle of the last century Stokes observed, in the case of fluorite, the phenomenon now known as fluorescence - namely, that solids, liquids, and gases under certain conditions partially absorb incident electromagnetic radiation which immediately is reradiated. A special case is the so-called resonance fluorescence, a phenomenon in which the re-emitted and the incident radiation both are of the same wavelength. The resonance fluorescence of the yellow D lines of sodium in sodium vapour is a particularly notable and exhaustively studied example. In this optical type of resonance fluorescence, light sources are used in which the atoms undergo transitions from excited states to their ground states (Fig. 1.1). The light quanta emitted in these transitions (A → B) are used to initiate the inverse process of resonance absorption in the atoms of an absorber which are identical with the radiating atoms. The atoms of the absorber undergo a transition here from the ground state (B) to the excited state (A), from which they again return to the ground state, after a certain time delay, by emission of fluorescent light.

  16. Erosion rate diagnostics in ion thrusters using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.

    1993-01-01

    We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.

  17. Laser-induced fluorescence of space-exposed polyurethane

    NASA Technical Reports Server (NTRS)

    Hill, Ralph H., Jr.

    1993-01-01

    The object of this work was to utilize laser-induced fluorescence technique to characterize several samples of space-exposed polyurethane. These samples were flown on the Long Duration Exposure Facility (LDEF), which was in a shuttle-like orbit for nearly 6 years. Because of our present work to develop laser-induced-fluorescence inspection techniques for polymers, space-exposed samples and controls were lent to us for evaluation. These samples had been attached to the outer surface of LDEF; therefore, they were subjected to thermal cycling, solar ultraviolet radiation, vacuum, and atomic oxygen. It is well documented that atomic oxygen and ultraviolet exposure have detrimental effects on many polymers. This was a unique opportunity to make measurements on material that had been naturally degraded by an unusual environment. During our past work, data have come from artificially degraded samples and generally have demonstrated a correlation between laser-induced fluorescence and tensile strength or elasticity.

  18. Combining atomic force and fluorescence microscopy for analysis of quantum-dot labeled protein–DNA complexes

    PubMed Central

    Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon

    2011-01-01

    Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA. PMID:19452448

  19. Simple interface of high-performance liquid chromatography-atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent.

    PubMed

    Yin, Yongguang; Liu, Jingfu; He, Bin; Shi, Jianbo; Jiang, Guibin

    2008-02-15

    Photo-induced chemical vapour generation (CVG) with formic acid in mobile phase as reaction reagent was developed as interface to on-line couple HPLC with atomic fluorescence spectrometry for the separation and determination of inorganic mercury, methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg). In the developed procedure, formic acid in mobile phase was used to decompose organomercuries and reduce Hg(2+) to mercury cold vapour under UV irradiation. Therefore, no post-column reagent was used and the flow injection system in traditional procedure is omitted. A number of operating parameters including pH of mobile phase, concentration of formate, flow rate of mobile phase, length of PTFE reaction coil, flow rate of carrier gas and Na(2)S(2)O(3) in sample matrix were optimized. The limits of detection at the optimized conditions were 0.085, 0.033, 0.029 and 0.038 microg L(-1) for inorganic mercury, MeHg, EtHg and PhHg, respectively. The developed method was validated by determination of certified reference material DORM-2 and was further applied in analyses of seafood samples from Yantai port, China. The UV-CVG with formic acid simplifies the instrumentation and reduces the analytical cost significantly.

  20. Laser-induced Fluorescence Spectroscopy for applications in chemical sensing and optical refrigeration

    NASA Astrophysics Data System (ADS)

    Kumi Barimah, Eric

    Laser-induced breakdown spectroscopy (LIBS) is an innovative technique that has been used as a method for fast elemental analysis in real time. Conventional ultraviolet-visible (UV-VIS) LIBS has been applied to detect the elemental composition of different materials, including explosives, pharmaceutical drugs, and biological samples. The extension of conventional LIBS to the infrared region (˜1-12 mum) promises to provide additional information on molecular emission signatures due to rotational-vibrational transitions. In this research, a pulsed Nd: YAG laser operating at 1064 nm was focused onto several sodium compounds (NaCl, NaClO3, Na2CO3 and NaClO4) and potassium compounds (KCl, KClO3, K2CO3 and KClO4) to produce an intense plasma at the target surface. Several distinct infrared (IR) atomic emission signatures were observed from all sodium and potassium containing compounds. The atomic emission lines observed from the investigated samples matched assigned transitions of neutral sodium and potassium atoms published in the National Institute of Standards and Technology (NIST) atomic database. In addition to the intense atomic lines, the rst evidence of molecular LIBS emission structures were observed at ˜10.0 m in KClO3 and NaClO3 for the chlorate anion (ClO3 --1), at ˜6.7 to 8.0 mum in KNO3 and NaNO 3 for the nitrate anion (NO3--1 ), ˜8.0 to 10.0 mum in KClO4 and NaClO4 for perchlorate anion (ClO4--1 ), and ˜6.88 mum and 11.53 mum in Na2CO3 for the carbonate anion (CO3--1 ). The observed molecular emission showed strong correlation with the conventional Fourier Transform Infrared Spectrometry (FTIR) absorption spectra of the investigated samples. IR LIBS was also applied to determine the limit of detection (LOD) for the perchlorate anion in KClO4 using the 8.0 -11.0 mum IR-LIBS emission band. The calibration curve of ClO4 in KClO4 was constructed using peak and integrated emission intensities for known concentrations of mixed KClO4/NH4NO3 samples. The limit of detection for ClO4, was determined to be 14.7 +/- 0.5 wt%/wt for the given experimental conditions. In the second part of this research, the temperature-dependent absorption and emission properties of Tm doped KPb2Cl5 (KPC) and KPb2Br5 (KPB) were evaluated for applications in laser cooling. A Tm doped Y3Al5O12 (YAG) crystal was also included for comparative studies. Under laser pumping, all crystals exhibited broad IR fluorescence at room temperature with a mean fluorescence wavelength of ˜1.82 mum and bandwidth of 0.14 mum (FWHM) for Tm:KPC/KPB and ˜1.79 mum for Tm:YAG. Initial experiments on laser-induced heating/cooling were performed using a combined IR imaging and fluorescence thermometry setup. Employing a continuous-wave laser operating at 1.907 mum, Tm: KPC and Tm: KPB crystals revealed a very small heat load resulting in temperature increase of ˜ 0.3 ( +/- 0.1)°C. The heat loading in Tm:YAG was signicantly larger and resulted in a temperature increase of ˜0.9 (+/-0.1)°C. The results derived from IR imaging were also conrmed by the fluorescence thermometry experiments, which showed only minimal changes in the FIR intensity ratio of the green Er3+ fluorescence lines from Er:KPC.

  1. [Microsecond Pulsed Hollow Cathode Lamp as Enhanced Excitation Source of Hydride Generation Atomic Fluorescence Spectrometry].

    PubMed

    Zhang, Shuo

    2015-09-01

    The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.

  2. Realizing performance improvement of blue thermally activated delayed fluorescence molecule DABNA by introducing substituents on the para-position of boron atom

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Pan, Qing-Qing; Zhao, Liang; Geng, Yun; Su, Tan; Gao, Ting; Su, Zhong-Min

    2018-06-01

    To seek effective thermally activated delayed fluorescence (TADF) molecules, we have designed compounds 1-4 by introducing substituents on the para-position of boron atom of blue TADF molecule (DABNA-1). The results indicate that 1-4 not only retain the blue emission from 454 to 466 nm, but also possess larger oscillator strength. Besides, the fluorescence radiative rates (kr) of 1-4 are higher than that of DABNA-1. The singlet-triplet energy splitting (ΔΕST) values of designed compounds are smaller than that of DABNA-1. Taking both ΔΕST and kr into account, designed compounds show better TADF performances, indicating their potential as TADF materials.

  3. Evaluation of zirconium as a permanent chemical modifier using synchrotron radiation and imaging techniques for lithium determination in sediment slurry samples by ET AAS.

    PubMed

    Flores, Araceli V; Pérez, Carlos A; Arruda, Marco A Z

    2004-02-27

    In the present paper, lithium was determined in river sediment using slurry sampling and electrothermal atomic absorption spectrometry (ET AAS) after L'vov platform coating with zirconium (as a permanent chemical modifier). The performance of this modifier and its distribution on the L'vov platform after different heating cycles were evaluated using synchrotron radiation X-ray fluorescence (SRXRF) and imaging scanning electron microscopy (SEM) techniques. The analytical conditions for lithium determination in river sediment slurries were also investigated and the best conditions were obtained employing 1300 and 2300 degrees C for pyrolysis and atomization temperatures, respectively. In addition, 100mg of sediment samples were prepared using 4.0moll(-1) HNO(3). The Zr-coating permitted lithium determination with good precision and accuracy after 480 heating cycles using the same platform for slurry samples. The sediment samples were collected from five different points of the Cachoeira river, São Paulo, Brazil. The detection and quantification limits were, respectively, 0.07 and 0.23mugl(-1).

  4. Comparison of femtosecond- and nanosecond-two-photon-absorption laser-induced fluorescence (TALIF) of atomic oxygen in atmospheric-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Sands, Brian; Scofield, James; Gord, James R.; Roy, Sukesh

    2017-05-01

    Absolute number densities of atomic species produced by nanosecond (ns)-duration, repetitively pulsed electric discharges are measured by two-photon-absorption laser-induced fluorescence (TALIF). Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF) that offers a number of advantages over more conventional nanosecond (ns)-pulse-duration laser techniques, such as higher-fidelity quenching rate measurements over a wide pressure range, significantly reduced photolytic interference (including photo-dissociation and photo-ionization), ability to collect two-dimensional images of atomic-species number densities with high spatial resolution aided by higher signal level, and efficient and accurate measurements of atomic-species number densities due to the higher repetition rates of the laser. For full quantification of these advantages, atomic-oxygen TALIF signals are collected from an atmospheric-pressure plasma jet employing both ns- and fs-duration laser-excitation pulses and the results are compared and contrasted.

  5. Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.

  6. Resonance fluorescence microscopy via three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar

    2018-02-01

    A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.

  7. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  8. New diagnostic methods for laser plasma- and microwave-enhanced combustion

    PubMed Central

    Miles, Richard B; Michael, James B; Limbach, Christopher M; McGuire, Sean D; Chng, Tat Loon; Edwards, Matthew R; DeLuca, Nicholas J; Shneider, Mikhail N; Dogariu, Arthur

    2015-01-01

    The study of pulsed laser- and microwave-induced plasma interactions with atmospheric and higher pressure combusting gases requires rapid diagnostic methods that are capable of determining the mechanisms by which these interactions are taking place. New rapid diagnostics are presented here extending the capabilities of Rayleigh and Thomson scattering and resonance-enhanced multi-photon ionization (REMPI) detection and introducing femtosecond laser-induced velocity and temperature profile imaging. Spectrally filtered Rayleigh scattering provides a method for the planar imaging of temperature fields for constant pressure interactions and line imaging of velocity, temperature and density profiles. Depolarization of Rayleigh scattering provides a measure of the dissociation fraction, and multi-wavelength line imaging enables the separation of Thomson scattering from Rayleigh scattering. Radar REMPI takes advantage of high-frequency microwave scattering from the region of laser-selected species ionization to extend REMPI to atmospheric pressures and implement it as a stand-off detection method for atomic and molecular species in combusting environments. Femtosecond laser electronic excitation tagging (FLEET) generates highly excited molecular species and dissociation through the focal zone of the laser. The prompt fluorescence from excited molecular species yields temperature profiles, and the delayed fluorescence from recombining atomic fragments yields velocity profiles. PMID:26170432

  9. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    NASA Astrophysics Data System (ADS)

    Qiu, Jianhua; Wang, Qiuquan; Ma, Yuning; Yang, Limin; Huang, Benli

    2006-07-01

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH 4/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL - 1 when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL - 1 , respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  10. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  11. Solvation and Spectral Line Shifts of Chromium Atoms in Helium Droplets Based on a Density Functional Theory Approach

    PubMed Central

    2014-01-01

    The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y7P, a5S, and y5P excited states. The necessary Cr–He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z7P ← a7S, y7P ← a7S, z5P ← a5S, and y5P ← a5S are compared to recent fluorescence and photoionization experiments. PMID:24906160

  12. Solvation and spectral line shifts of chromium atoms in helium droplets based on a density functional theory approach.

    PubMed

    Ratschek, Martin; Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E

    2014-08-21

    The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y(7)P, a(5)S, and y(5)P excited states. The necessary Cr-He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z(7)P ← a(7)S, y(7)P ← a(7)S, z(5)P ← a(5)S, and y(5)P ← a(5)S are compared to recent fluorescence and photoionization experiments.

  13. Molecular complexes of L-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: Spectral and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Ganesh, K.; El-Mossalamy, E. H.; Satheshkumar, A.; Balraj, C.; Elango, K. P.

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ1-4). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH = 7). The interaction of MQ1-4 with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.

  14. Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste

    NASA Astrophysics Data System (ADS)

    Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.

    2003-08-01

    A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.

  15. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  16. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors.

    PubMed

    Wong, Brian A; Friedle, Simone; Lippard, Stephen J

    2009-05-27

    The mechanism by which dipicolylamine (DPA) chelate-appended fluorophores respond to zinc was investigated by the synthesis and study of five new analogues of the 2',7'-dichlorofluorescein-based Zn(2+) sensor Zinpyr-1 (ZP1). With the use of absorption and emission spectroscopy in combination with potentiometric titrations, a detailed molecular picture has emerged of the Zn(2+) and H(+) binding properties of the ZP1 family of sensors. The two separate N(3)O donor atom sets on ZP1 converge to form binding pockets in which all four heteroatoms participate in coordination to either Zn(2+) or protons. The position of the pyridyl group nitrogen atom, 2-pyridyl or 4-pyridyl, has a large impact on the fluorescence response of the dyes to protons despite relatively small changes in pK(a) values. The fluorescence quenching effects of such multifunctional electron-donating units are often taken as a whole. Despite the structural complexity of ZP1, however, we provide evidence that the pyridyl arms of the DPA appendages participate in the quenching process, in addition to the contribution from the tertiary nitrogen amine atom. Potentiometric titrations reveal ZP1 dissociation constants (K(d)) for Zn(2+) of 0.04 pM and 1.2 nM for binding to the first and second binding pockets of the ligand, respectively, the second of which correlates with the value observed by fluorescence titration. This result demonstrates that both binding pockets of this symmetric, ditopic sensor need to be occupied in order for full fluorescence turn-on to be achieved. These results have significant implications for the design and implementation of fluorescent sensors for studies of mobile zinc ions in biology.

  17. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5-6 J/cm2) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis.

  18. Detection of the barium daughter in 136Xe -->136Ba + 2e- by in situ single-molecule fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2015-10-01

    To proceed toward effective ``discovery class'' ton-scale detectors in the search for neutrino-less double beta decay, a robust technique for rejection of all radioactivity-induced backgrounds is urgently needed. An efficient technique for detection of the barium daughter in the decay 136Xe -->136Ba + 2e- would provide a long-sought pathway toward this goal. Single-molecule fluorescent imaging appears to offer a new way to detect the barium daughter atom, which emerges naturally in an ionized state in pure xenon. A doubly charged barium ion can initiate a chelation process with a non-fluorescent precursor molecule, leading to a highly fluorescent complex. Repeated photo-excitation of the complex can reveal both presence and location of a single ionized atom with high precision and selectivity. Detection within the active volume of a xenon gas Time Projection Chamber operating at high pressure would be automatic, and with a capability for redundant confirmation.

  19. Energy resolved actinometry for simultaneous measurement of atomic oxygen densities and local mean electron energies in radio-frequency driven plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greb, Arthur, E-mail: ag941@york.ac.uk; Niemi, Kari; O'Connell, Deborah

    2014-12-08

    A diagnostic method for the simultaneous determination of atomic oxygen densities and mean electron energies is demonstrated for an atmospheric pressure radio-frequency plasma jet. The proposed method is based on phase resolved optical emission measurements of the direct and dissociative electron-impact excitation dynamics of three distinct emission lines, namely, Ar 750.4 nm, O 777.4 nm, and O 844.6 nm. The energy dependence of these lines serves as basis for analysis by taking into account two line ratios. In this frame, the method is highly adaptable with regard to pressure and gas composition. Results are benchmarked against independent numerical simulations and two-photon absorption laser-inducedmore » fluorescence experiments.« less

  20. A novel fluorescent probe for Cr3 + based on rhodamine-crown ether conjugate and its application to drinking water examination and bioimaging

    NASA Astrophysics Data System (ADS)

    Diao, Quanping; Ma, Pinyi; Lv, Linlin; Li, Tiechun; Wang, Xinghua; Song, Daqian

    2016-03-01

    A trivalent chromium (Cr3 +) fluorescence probe (RhC) was designed and synthesized via Schiff base reaction based on rhodamine-crown ether conjugate. This probe displayed a favorable selectivity for Cr3 + over a range of other common metal ions in DMF/H2O (3:7, v/v; PBS buffer 50 mmol L- 1; pH = 6.8) solution, leading to prominent fluorescence "OFF-ON" switching of the rhodamine fluorophore. The limit of detection was calculated to be 1.5 μmol L- 1 (S/N = 3). The binding ratio of RhC-Cr3 + complex was determined to be 1:2 according to the Job's plot and HR-MS. The probe was successfully applied to examination of Cr3 + in drinking water spiked samples. The average recoveries ranged from 104.9% to 106.9% at spiked concentration level of 10.00 μmol L- 1, and the obtained results were consistent with those obtained using atomic absorption spectrometry (AAS). Moreover, bioimaging experiments showed that RhC can sense the Cr3 + in living cells with a fluorescence enhancement signal.

  1. Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide in a Heptane Spray Flame

    NASA Technical Reports Server (NTRS)

    Cooper, Clayton S.; Laurendeau, Normand M.; Lee, Chi (Technical Monitor)

    1997-01-01

    We report spatially resolved laser-saturated fluorescence measurements of NO concentration in a pre-heated, lean-direct injection (LDI) spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q2(26.5) transition of the gamma(0,0) band. Detection is performed in a 2-nm region centered on the gamma(0,1) band. Because of the relatively close spectral spacing between the excitation (226 nm) and detection wavelengths (236 nm), the gamma(0,1) band of NO cannot be isolated from the spectral wings of the Mie scattering signal produced by the spray. To account for the resulting superposition of the fluorescence and scattering signals, a background subtraction method has been developed that utilizes a nearby non-resonant wavelength. Excitation scans have been performed to locate the optimum off-line wavelength. Detection scans have been performed at problematic locations in the flame to determine possible fluorescence interferences from UHCs and PAHs at both the on-line and off-line excitation wavelengths. Quantitative radial NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors.

  2. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio

    2017-10-01

    We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.

  3. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  4. Application of a demountable water-cooled hollow-cathode lamp to atomic-fluorescence spectrometry.

    PubMed

    Rossi, G; Omenetto, N

    1969-02-01

    A demountable water-cooled hollow-cathode lamp has been investigated as a primary source in atomic fluorescence spectrometry. The discharge current ranged from 300 to 500 mA, and the flowing argon pressure between 0.4 and 4 mbar. Sensitivities ranging from 0.03 to 2 mug ml were obtained for 12 elements. The performances of the hollow-cathode lamp and those of the customary metal vapour discharge lamps for thallium, indium and gallium are compared. The role of the narrowness of the exciting lines in increasing the signal-to-scattering ratios is stressed.

  5. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  6. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    NASA Astrophysics Data System (ADS)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on microsecond time scale.

  7. Element Specific Imaging Using Muonic X-rays

    NASA Astrophysics Data System (ADS)

    Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.

    The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.

  8. Selective determination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry.

    PubMed

    Yang, Xin-An; Lu, Xiao-Ping; Liu, Lin; Chi, Miao-Bin; Hu, Hui-Hui; Zhang, Wang-Bing

    2016-10-01

    This work describes a novel non-chromatographic approach for the accurate and selective determining As species by modified graphite electrode-based electrolytic hydride generation (EHG) for sample introduction coupled with atomic fluorescence spectrometry (AFS) detection. Two kinds of sulfydryl-containing modifiers, l-cysteine (Cys) and glutathione (GSH), are used to modify cathode. The EHG performance of As has been changed greatly at the modified cathode, which has never been reported. Arsenite [As(III)] on the GSH modified graphite electrode (GSH/GE)-based EHG can be selectively and quantitatively converted to AsH3 at applied current of 0.4A. As(III) and arsenate [As(V)] on the Cys modified graphite electrode (Cys/GE) EHG can be selectively and efficiently converted to arsine at applied current of 0.6A, whereas monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) do not form any or only less volatile hydrides under this condition. By changing the analytical conditions, we also have achieved the analysis of total As (tAs) and DMA. Under the optimal condition, the detection limits (3s) of As(III), iAs and tAs in aqueous solutions are 0.25μgL(-1), 0.22μgL(-1) and 0.10μgL(-1), respectively. The accuracy of the method is verified through the analysis of standard reference materials (SRM 1568a). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography - hydride generation atomic fluorescence spectrometry.

    PubMed

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Martinez, Luis D; Wuilloud, Rodolfo G

    2016-09-02

    The application of different ionic liquids (ILs) as modifiers for chromatographic separation and determination of arsenite [As(III)], arsenate [As(V)], dimethylarsonic acid (DMA) and monomethylarsonic acid (MMA) species in wine samples, by reversed-phase high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry detection (RP-HPLC-HG-AFS) was studied in this work. Several factors influencing the chromatographic separation of the As species, such as pH of the mobile phase, buffer solution concentration, buffer type, IL concentration and length of alkyl groups in ILs were evaluated. The complete separation of As species was achieved using a C18 column in isocratic mode with a mobile phase composed of 0.5% (v/v) 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 5% (v/v) methanol at pH 8.5. A multivariate methodology was used to optimize the variables involved in AFS detection of As species after they were separated by HPLC. The ILs showed remarkable performance for the separation of As species, which was obtained within 18min with a resolution higher than 0.83. The limits of detection for As(III), As(V), MMA and DMA were 0.81, 0.89, 0.62 and 1.00μg As L(-1). The proposed method was applied for As speciation analysis in white and red wine samples originated from different grape varieties. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    PubMed

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    USGS Publications Warehouse

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  12. Improved Tracking of an Atomic-Clock Resonance Transition

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.; Tu, Meirong

    2010-01-01

    An improved method of making an electronic oscillator track the frequency of an atomic-clock resonance transition is based on fitting a theoretical nonlinear curve to measurements at three oscillator frequencies within the operational frequency band of the transition (in other words, at three points within the resonance peak). In the measurement process, the frequency of a microwave oscillator is repeatedly set at various offsets from the nominal resonance frequency, the oscillator signal is applied in a square pulse of the oscillator signal having a suitable duration (typically, of the order of a second), and, for each pulse at each frequency offset, fluorescence photons of the transition in question are counted. As described below, the counts are used to determine a new nominal resonance frequency. Thereafter, offsets are determined with respect to the new resonance frequency. The process as described thus far is repeated so as to repeatedly adjust the oscillator to track the most recent estimate of the nominal resonance frequency.

  13. Comparison of experimental proton-induced fluorescence spectra for a selection of thin high-Z samples with Geant4 Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Incerti, S.; Barberet, Ph.; Dévès, G.; Michelet, C.; Francis, Z.; Ivantchenko, V.; Mantero, A.; El Bitar, Z.; Bernal, M. A.; Tran, H. N.; Karamitros, M.; Seznec, H.

    2015-09-01

    The general purpose Geant4 Monte Carlo simulation toolkit is able to simulate radiative and non-radiative atomic de-excitation processes such as fluorescence and Auger electron emission, occurring after interaction of incident ionising radiation with target atomic electrons. In this paper, we evaluate the Geant4 modelling capability for the simulation of fluorescence spectra induced by 1.5 MeV proton irradiation of thin high-Z foils (Fe, GdF3, Pt, Au) with potential interest for nanotechnologies and life sciences. Simulation results are compared to measurements performed at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan AIFIRA nanobeam line irradiation facility in France. Simulation and experimental conditions are described and the influence of Geant4 electromagnetic physics models is discussed.

  14. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  15. A highly selective and ratiometric fluorescent probe for cyanide by rationally altering the susceptible H-atom.

    PubMed

    Hao, Yuanqiang; Nguyen, Khac Hong; Zhang, Yintang; Zhang, Guan; Fan, Shengnan; Li, Fen; Guo, Chao; Lu, Yuanyuan; Song, Xiaoqing; Qu, Peng; Liu, You-Nian; Xu, Maotian

    2018-01-01

    A highly selective and ratiometric fluorescent probe for cyanide was rationally designed and synthesized. The probe comprises a fluorophore unit of naphthalimide and a CN - acceptor of methylated trifluoroacetamide group. For these previous reported trifluoroacetamide derivative-based cyanide chemosensors, the H-atom of amide adjacent to trifluoroacetyl group is susceptible to be attacked by various anions (CN - itself, F - , AcO - , et al.) and even the solvent molecule, which resulted in the bewildered reaction mechanism and poor selectivity of the assay. In this work, the susceptible H-atom of trifluoroacetamide was artfully substituted by alkyl group. Thus a highly specific fluorescent probe was developed for cyanide sensing. Upon the nucleophilic addition of cyanide anion to the carbonyl of trifluoroacetamide moiety of the probe, the ICT process of the probe was significantly enhanced and leading to a remarkable red shift in both absorption and emission spectra of the probe. This fluorescent assay showed a linear range of 1.0-80.0µM and a LOD (limit of detection) of 0.23µM. All the investigated interference have no influence on the sensing behavior of the probe toward cyanide. Moreover, by coating on TLC plate, the probe can be utilized for practical detection of trace cyanide in water samples. Copyright © 2017. Published by Elsevier B.V.

  16. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  17. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  18. Destroying activity of magnetoferritin on lysozyme amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kopcansky, Peter; Siposova, Katarina; Melnikova, Lucia; Bednarikova, Zuzana; Timko, Milan; Mitroova, Zuzana; Antosova, Andrea; Garamus, Vasil M.; Petrenko, Viktor I.; Avdeev, Mikhail V.; Gazova, Zuzana

    2015-03-01

    Presence of protein amyloid aggregates (oligomers, protofilaments, fibrils) is associated with many diseases as diabetes mellitus or Alzheimer's disease. The interaction between lysozyme amyloid fibrils and magnetoferritin loaded with different amount of iron atoms (168 or 532 atoms) has been investigated by small-angle X-rays scattering and thioflavin T fluorescence measurements. Results suggest that magnetoferritin caused an iron atom-concentration dependent reduction of lysozyme fibril size.

  19. Containerless study of metal evaporation by laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, Robert A.; Nordine, Paul C.

    1987-01-01

    Laser induced fluorescence (LIF) detection of atomic vapors was used to study evaporation from electromagnetically levitated and CW CO2 laser-heated molybdenum spheres and resistively-heated tungsten filaments. Electromagnetic (EM) levitation in combination with laser heating of tungsten, zirconium, and aluminum specimens was also investigated. LIF intensity vs temperature data were obtained for molybdenum atoms and six electronic states of atomic tungsten, at temperatures up to the melting point of each metal. The detected fraction of the emitted radiation was reduced by self-absorption effects at the higher experimental temperatures. Vaporization enthalpies derived from data for which less than half the LIF intensity was self-absorbed were -636 + or - 24 kJ/g-mol for Mo and 831 + or - 32 kJ/g-mol for W. Space-based applications of EM levitation in combination with radiative heating are discussed.

  20. Use of filler limestone and construction and demolition residues for remediating soils contaminated with heavy metals: an assessment by means of plant uptake.

    NASA Astrophysics Data System (ADS)

    Banegas, Ascension; Martinez-Sanchez, Maria Jose; Agudo, Ines; Perez-Sirvent, Carmen

    2010-05-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (lettuce, broccoli and alfalfa), different parts of which are destined for human and animal consumption (leaves, roots, fruits). The plants were cultivated in four types of soil, one uncontaminated (T1), one soil collected in the surrounding area of Sierra Minera (T2), the third being remediated with residues coming from demolition and construction activities (T3) and the four remediated with filler limestone (T4). To determine the metal content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. The DTPA-extractable content was also determined to calculate the bioavailable amount of metal. Finally, the translocation factor (TF) and bioconcentration factor (BCF) were calculated. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer and Cd, Pb and Zn was determined by electrothermal atomization atomic absorption spectrometry (ETAAS) or flame atomic absorption spectrometry (FAAS). Samples of the leached water were also obtained and analyzed. According to our results, the retention of the studied elements varies with the type of plant and is strongly decreased by the incorporation of filler limestone and/or construction and demolition residues to the soils. This practice represents a suitable way to reduce the risk posed to the biota by the presence of high levels of heavy metal in soil.

  1. Low Z total reflection X-ray fluorescence analysis — challenges and answers

    NASA Astrophysics Data System (ADS)

    Streli, C.; Kregsamer, P.; Wobrauschek, P.; Gatterbauer, H.; Pianetta, P.; Pahlke, S.; Fabry, L.; Palmetshofer, L.; Schmeling, M.

    1999-10-01

    Low Z elements, like C, O, ... Al are difficult to measure, due to the lack of suitable low-energy photons for efficient excitation using standard X-ray tubes, as well as difficult to detect with an energy dispersive detector, if the entrance window is not thin enough. Special excitation sources and special energy dispersive detectors are required to increase the sensitivity and to increase the detected fluorescence signal and so to improve the detection limits. Synchrotron radiation, due to its features like high intensity and wide spectral range covering also the low-energy region, is the ideal source for TXRF, especially of low-Z elements. Experiments at a specific beamline (BL 3-4) at SSRL, Stanford, designed for the exclusive use of low-energy photons has been used as an excitation source. Detection limits <100 fg for Al, Mg and Na have been achieved using quasimonochromatic radiation of 1.7 keV. A Ge(HP) detector with an ultra-thin NORWAR entrance window is used. One application is the determination of low-Z surface contamination on Si-wafers. Sodium, as well as Al, are elements of interest for the semiconductor industry, both influencing the yield of ICs negatively. A detection capacity of 10 10 atoms/cm 2 is required which can be reached using synchrotron radiation as excitation source. Another promising application is the determination of low-Z atoms implanted in Si wafers. Sodium, Mg and Al were implanted in Si-wafers at various depths. From measuring the dependence of the fluorescence signal on the glancing angle, characteristic shapes corresponding to the depth profile and the relevant implantation depth are found. Calculations are compared with measurements. Finally, aerosols sampled on polycarbonate plates in a Battelle impactor were analyzed with LZ-TXRF using multilayer monochromatized Cr-Kα radiation from a 1300-W fine-focus tube for excitation. Results are presented.

  2. Propylene oxidation mechanisms and intermediates using in situ soft X-ray fluorescence methods on the Pt(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.

    2000-01-12

    The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Investigation of the populations of excited states of barium atoms in a laser plasma

    NASA Astrophysics Data System (ADS)

    Burimov, V. N.; Zherikhin, A. N.; Popkov, V. L.

    1995-02-01

    Laser-induced fluorescence was used in an investigation of the populations of the ground and excited (6s5d 3D1 and 3D2) states of Ba atoms in a plasma formed by laser ablation of Y—Ba—Cu—O target. A nonequilibrium velocity distribution of the atoms was detected. At large distances from the target about 4% of the atoms were in an excited state.

  4. Speciation analysis of organoarsenic compounds in livestock feed by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry.

    PubMed

    Saucedo-Velez, A A; Hinojosa-Reyes, L; Villanueva-Rodríguez, M; Caballero-Quintero, A; Hernández-Ramírez, A; Guzmán-Mar, J L

    2017-10-01

    The development of a new method to determine the presence of the organoarsenic additives p-arsanilic acid (ASA), roxarsone (ROX) and nitarsone (NIT) in livestock feeds by high performance liquid chromatography coupled to ultraviolet oxidation hydride generation atomic fluorescence spectrometry (HPLC-UV/HG-AFS) after microwave assisted extraction (MAE) was proposed. Chromatographic separation was achieved on a C18 column with 2% acetic acid/methanol (96:4, v/v) as the mobile phase. The limits of detection (LODs) were 0.13, 0.09 and 0.08mgL -1 , and the limits of quantification (LOQs) were 0.44, 0.30 and 0.28mgL -1 . The relative standard deviations (RSDs) for ASA, ROX and NIT determined from five measurements of the mixed calibration standard were 3.3, 5.3, and 5.4%, respectively. MAE extraction of phenylated arsenic compounds using 1.5M H 3 PO 4 at 120°C for 45min allowed for maximum recoveries (%) of total arsenic (As) and organoarsenic species, with no degradation of these compounds. The extraction of total As was approximately 97%, and the As species recoveries were between 95.2 and 97.0%. The results of the analysis were validated using mass balance by comparing the sum of extracted As with the total concentration of As in the corresponding samples. The method was successfully applied to determine the presence of these compounds in feed samples. ASA was the only As species detected in chicken feed samples, with a concentration between 0.72 and 12.91mgkg -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.

  6. Measurement techniques for trace metals in coal-plant effluents: A brief review

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  7. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles.

    PubMed

    Huang, Dawei; Niu, Chenggang; Ruan, Min; Wang, Xiaoyu; Zeng, Guangming; Deng, Canhui

    2013-05-07

    The authors herein described a time-gated fluorescence resonance energy transfer (TGFRET) sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg(2+) ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA, except for four deliberately designed T-T mismatches. The quantum dot acted as the energy-transfer donor, and the gold nanoparticle acted as the energy-transfer acceptor. When Hg(2+) ions were present in the aqueous solution, DNA hybridization will occur because of the formation of T-Hg(2+)-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occur from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots to decrease obviously. The decrement fluorescence intensity is proportional to the concentration of Hg(2+) ions. Under the optimum conditions, the sensing system exhibits the same liner range from 1 × 10(-9) to 1 × 10(-8) M for Hg(2+) ions, with the detection limits of 0.49 nM in buffer and 0.87 nM in tap water samples. This sensor was also used to detect Hg(2+) ions from samples of tap water, river water, and lake water spiked with Hg(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. In comparison to some reported colorimetric and fluorescent sensors, the proposed method displays the advantage of higher sensitivity. The TGFRET sensor also exhibits excellent selectivity and can provide promising potential for Hg(2+) ion detection.

  8. Fast intramolecular electron transfer and dual fluorescence. Configurational change of the amino nitrogen (pyramidal{yields}planar)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haar, Th. von der; Hebecker, A.; Il'Ichev, Yu.

    1996-04-01

    The fast excited state intramolecular charge transfer (ICT) and dual fluorescence observed with several 4-aminobenzonitriles is discussed. It is shown that the magnitude of the energy gap between the two lowest excited states determines the occurrence or absence of ICT. The photophysical behavior of a series of four 4-aminobenzonitriles in which the amino nitrogen atom is part of a four- to seven-membered heterocyclic ring, P4C to P7C, is studied by using time-resolved fluorescence measurements. The ICT rate constant strongly decreases with decreasing ring size. With P4C in diethyl ether ICT does not occur. This is attributed to the increase ofmore » the amino nitrogen inversion barrier with decreasing ring size. The change of the amino nitrogen from pyramidal to planar is considered to be an important reaction coordinate. The photophysics of the 4-aminobenzonitriles is different from that of other ICT systems such as donor/acceptor-substituted stilbenes and 9,9'-bianthryl, which are governed by the charge distribution and macroscopic Coulombic interaction in their CT states.« less

  9. Fast intramolecular electron transfer and dual fluorescence. Configurational change of the amino nitrogen (pyramidal-->planar)

    NASA Astrophysics Data System (ADS)

    von der Haar, Th.; Hebecker, A.; Il'Ichev, Yu.; Kühnle, W.; Zachariasse, K. A.

    1996-04-01

    The fast excited state intramolecular charge transfer (ICT) and dual fluorescence observed with several 4-aminobenzonitriles is discussed. It is shown that the magnitude of the energy gap between the two lowest excited states determines the occurrence or absence of ICT. The photophysical behavior of a series of four 4-aminobenzonitriles in which the amino nitrogen atom is part of a four- to seven-membered heterocyclic ring, P4C to P7C, is studied by using time-resolved fluorescence measurements. The ICT rate constant strongly decreases with decreasing ring size. With P4C in diethyl ether ICT does not occur. This is attributed to the increase of the amino nitrogen inversion barrier with decreasing ring size. The change of the amino nitrogen from pyramidal to planar is considered to be an important reaction coordinate. The photophysics of the 4-aminobenzonitriles is different from that of other ICT systems such as donor/acceptor-substituted stilbenes and 9,9'-bianthryl, which are governed by the charge distribution and macroscopic Coulombic interaction in their CT states.

  10. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOEpatents

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  11. Antibody immobilization on to polystyrene substrate--on-chip immunoassay for horse IgG based on fluorescence.

    PubMed

    Darain, Farzana; Gan, Kai Ling; Tjin, Swee Chuan

    2009-06-01

    A simple microfluidic immunoassay card was developed based on polystyrene (PS) substrate for the detection of horse IgG, an inexpensive model analyte using fluorescence microscope. The primary antibody was captured onto the PS based on covalent bonding via a self-assembled monolayer (SAM) of thiol to pattern the surface chemistry on a gold-coated PS. The immunosensor chip layers were fabricated from sheets by CO(2) laser ablation. The functionalized PS surfaces after each step were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). After the antibody-antigen interaction as a sandwich immunoassay with a fluorescein isothiocyanate (FITC)-conjugated secondary antibody, the intensity of fluorescence was measured on-chip to determine the concentration of the target analyte. The present immunosensor chip showed a linear response range for horse IgG between 1 microg/ml and 80 microg/ml (r = 0.971, n = 3). The detection limit was found to be 0.71 microg/ml. The developed microfluidic system can be extended for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.

  12. A porphyrin-based fluorescence method for zinc determination in commercial propolis extracts without sample pretreatment.

    PubMed

    Pierini, Gastón Darío; Pinto, Victor Hugo A; Maia, Clarissa G C; Fragoso, Wallace D; Reboucas, Julio S; Centurión, María Eugenia; Pistonesi, Marcelo Fabián; Di Nezio, María Susana

    2017-11-01

    The quantification of zinc in over-the-counter drugs as commercial propolis extracts by molecular fluorescence technique using meso-tetrakis(4-carboxyphenyl)porphyrin (H 2 TCPP 4 ) was developed for the first time. The calibration curve is linear from 6.60 to 100 nmol L -1 of Zn 2+ . The detection and quantification limits were 6.22 nmol L -1 and 19.0 nmol L -1 , respectively. The reproducibility and repeatability calculated as the percentage variation of slopes of seven calibration curves were 6.75% and 4.61%, respectively. Commercial propolis extract samples from four Brazilian states were analyzed and the results (0.329-0.797 mg/100 mL) obtained with this method are in good agreement with that obtained with the Atomic Absorption Spectroscopy (AAS) technique. The method is simple, fast, of low cost and allows the analysis of the samples without pretreatment. Moreover the major advantage is that Zn-porphyrin complex presents fluorescent characteristic promoting the selectivity and sensitivity of the method. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    PubMed

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  14. An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry.

    PubMed

    Castor, José Martín Rosas; Portugal, Lindomar; Ferrer, Laura; Hinojosa-Reyes, Laura; Guzmán-Mar, Jorge Luis; Hernández-Ramírez, Aracely; Cerdà, Víctor

    2016-08-01

    A simple, inexpensive and rapid method was proposed for the determination of bioaccessible arsenic in corn and rice samples using an in vitro bioaccessibility assay. The method was based on the preconcentration of arsenic by cloud point extraction (CPE) using o,o-diethyldithiophosphate (DDTP) complex, which was generated from an in vitro extract using polyethylene glycol tert-octylphenyl ether (Triton X-114) as a surfactant prior to its detection by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). The CPE method was optimized by a multivariate approach (two-level full factorial and Doehlert designs). A photo-oxidation step of the organic species prior to HG-AFS detection was included for the accurate quantification of the total As. The limit of detection was 1.34μgkg(-1) and 1.90μgkg(-1) for rice and corn samples, respectively. The accuracy of the method was confirmed by analyzing certified reference material ERM BC-211 (rice powder). The corn and rice samples that were analyzed showed a high bioaccessible arsenic content (72-88% and 54-96%, respectively), indicating a potential human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  16. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    PubMed Central

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events. PMID:23823461

  17. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    PubMed

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  18. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    NASA Astrophysics Data System (ADS)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  19. Remarks on a Johann spectrometer for exotic-atom research and more

    NASA Astrophysics Data System (ADS)

    Gotta, Detlev E.; Simons, Leopold M.

    2016-06-01

    General properties of a Johann-type spectrometer equipped with spherically bent crystals are described leading to simple rules of thumb for practical use. They are verified by comparing with results from Monte-Carlo studies and demonstrated by selected measurements in exotic-atom and X-ray fluorescence research.

  20. Detection of individual atoms in helium buffer gas and observation of their real-time motion

    NASA Technical Reports Server (NTRS)

    Pan, C. L.; Prodan, J. V.; Fairbank, W. M., Jr.; She, C. Y.

    1980-01-01

    Single atoms are detected and their motion measured for the first time to our knowledge by the fluorescence photon-burst method in the presence of large quantities of buffer gas. A single-clipped digital correlator records the photon burst in real time and displays the atom's transit time across the laser beam. A comparison is made of the special requirements for single-atom detection in vacuum and in a buffer gas. Finally, the probability distribution of the bursts from many atoms is measured. It further proves that the bursts observed on resonance are due to single atoms and not simply to noise fluctuations.

  1. Synthesis and photophysical properties of halogenated derivatives of (dibenzoylmethanato)boron difluoride

    NASA Astrophysics Data System (ADS)

    Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.

    2017-03-01

    A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int; Martins, Marco

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discussmore » sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.« less

  3. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    NASA Astrophysics Data System (ADS)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  4. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  5. Development of a collinear laser spectrometer facility at VECC: First test result

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  6. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  7. Prospects of Optical Single Atom Detection in Noble Gas Solids for Measurements of Rare Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep; Bailey, Kevin G.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Thomas P.; Xu, Chen-Yu; Tang, Xiaodong

    2013-04-01

    Optical detection of single atoms captured in solid noble gas matrices provides an alternative technique to study rare nuclear reactions relevant to nuclear astrophysics. I will describe the prospects of applying this approach for cross section measurements of the ^22Ne,,),25Mg reaction, which is the crucial neutron source for the weak s process inside of massive stars. Noble gas solids are a promising medium for the capture, detection, and manipulation of atoms and nuclear spins. They provide stable and chemically inert confinement for a wide variety of guest species. Because noble gas solids are transparent at optical wavelengths, the guest atoms can be probed using lasers. We have observed that ytterbium in solid neon exhibits intersystem crossing (ISC) which results in a strong green fluorescence (546 nm) under excitation with blue light (389 nm). Several groups have observed ISC in many other guest-host pairs, notably magnesium in krypton. Because of the large wavelength separation of the excitation light and fluorescence light, optical detection of individual embedded guest atoms is feasible. This work is supported by DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  8. Optical Materials with a Genome: Nanophotonics with DNA-Stabilized Silver Clusters

    NASA Astrophysics Data System (ADS)

    Copp, Stacy M.

    Fluorescent silver clusters with unique rod-like geometries are stabilized by DNA. The sizes and colors of these clusters, or AgN-DNA, are selected by DNA base sequence, which can tune peak emission from blue-green into the near-infrared. Combined with DNA nanostructures, AgN-DNA promise exciting applications in nanophotonics and sensing. Until recently, however, a lack of understanding of the mechanisms controlling AgN-DNA fluorescence has challenged such applications. This dissertation discusses progress toward understanding the role of DNA as a "genome" for silver clusters and toward using DNA to achieve atomic-scale precision of silver cluster size and nanometer-scale precision of silver cluster position on a DNA breadboard. We also investigate sensitivity of AgN-DNA to local solvent environment, with an eye toward applications in chemical and biochemical sensing. Using robotic techniques to generate large data sets, we show that fluorescent silver clusters are templated by certain DNA base motifs that select "magic-sized" cluster cores of enhanced stabilities. The linear arrangement of bases on the phosphate backbone imposes a unique rod-like geometry on the clusters. Harnessing machine learning and bioinformatics techniques, we also demonstrate that sequences of DNA templates can be selected to stabilize silver clusters with desired optical properties, including high fluorescence intensity and specific fluorescence wavelengths, with much higher rates of success as compared to current strategies. The discovered base motifs can be also used to design modular DNA host strands that enable individual silver clusters with atomically precise sizes to bind at specific programmed locations on a DNA nanostructure. We show that DNA-mediated nanoscale arrangement enables near-field coupling of distinct clusters, demonstrated by dual-color cluster assemblies exhibiting resonant energy transfer. These results demonstrate a new degree of control over the optical properties and relative positions of nanoparticles, selected almost solely by the sequence of DNA. AgN-DNA are promising chemical and biochemical sensors due to the sensitivity of their fluorescence to local environment. However, the mechanisms behind many sensing schemes are not understood, and the nature of the excited state of the silver cluster itself remains unknown. To probe the fluorescence mechanisms of AgN-DNA, we investigate the behavior of purified solutions of these clusters in various solvents. We find that standard models for fluorophore solvatochromism, including the Lippert-Mataga model, do not describe AgN-DNA fluorescence because such models neglect specific interactions between the cluster and surrounding solvent molecules. Fluorescence colors are well-modeled by Mie-Gans theory, suggesting that the local dielectric environment of the cluster does play a role in fluorescence, although additional specific solvent interactions and cluster shape changes may also determine fluorescence color and intensity. These results suggest that AgN-DNA may be sensitive to changes in local dielectric environment on nanometer length scales and may also act as sensors for small molecules with affinity for DNA.

  9. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes.

    PubMed

    Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Takayanagi, Toshio; Toki, Yuko; Egawa, Takahiro; Kamiya, Mako; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Yoshida, Kengo; Uchiyama, Masanobu; Nagano, Tetsuo; Urano, Yasuteru

    2015-09-01

    Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKa inversion, i.e., pKa1 > pKa2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.

  10. The Effect of Intense Laser Radiation on Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Young, Stephen Michael Radley

    1991-02-01

    Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on atomic collisions. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field collision rate. Absorption of weak field 253.7 nm laser photons by ground state mercury atoms yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift collision switch'. The competition between collision and radiation induced transitions within the mercury atom has then been studied. The resonant, strong lambda 435.8 nm field was used in conjunction with the weak lambda 253.7 nm field detuned by 0 to 6 cm^ {-1}. Measurement of fluorescence intensity in two perpendicular planes of polarisation has revealed the dominant | e_1> to | e_2> excitation channel as a function of the Stark shift by way of the U.V. detuning. Competition between the channels was dependent on the generalised Rabi frequency. However, we could only monitor the relative strength of the channels and were thus unable to say that the Stark shift switched collisions off. (Abstract shortened by UMI.).

  11. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  12. Nuclear resonance fluorescence imaging in non-intrusive cargo inspection

    NASA Astrophysics Data System (ADS)

    Bertozzi, William; Ledoux, Robert J.

    2005-12-01

    Nuclear resonance fluorescence is able to non-intrusively interrogate a region space and measure the isotopic content of the material in that space for any element with atomic number greater than that of helium. The technique involves exposing material to a continuous energy distribution of photons and detecting the scattered photons that have a discrete energy distribution unique to an isotope. The interrogating photons, which range from 2 to 8 MeV, are the most penetrating probes and can "see" through many inches of steel. Determination of the chemical components of the material occupying a region of space greatly enhances the identification of threats such as explosives, fissile materials, toxic materials and weapons of mass destruction. Systems can be designed to involve minimal operator intervention, to minimize dose to the sample, and to provide high throughput at commercial seaports, airports and other entry points.

  13. Method and apparatus for diagnosis of lead toxicity

    DOEpatents

    Rosen, John F.; Slatkin, Daniel N.; Wielopolski, Lucian

    1989-01-01

    Improved methods and apparatus for in vivo measurement of the skeletal lead burden of a patient and for diagnosis of lead toxicity are disclosed. The apparatus comprises an x-ray tube emitting soft low energy x-rays from a silver anode, a polarizer for polarizing the emitted x-rays, and a detector for detecting photons fluoresced from atoms in the patient's tibia upon irradiation by the polarized x-rays. The fluoresced photons are spectrally analyzed to determine their energy distribution. Peaks indicating the presence of lead are identified if the patient has relatively high bone lead content. The data may be compared to data recorded with respect to a similar test performed on patients having also had the conventional EDTA chelation tests performed thereon in order to correlate the test results with respect to a particular patient to the conventionally accepted EDTA chelation test.

  14. Development of an X-ray surface analyzer for planetary exploration

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1972-01-01

    An ultraminiature X-ray fluorescence spectrometer was developed which can obtain data on element composition not provided by present spacecraft instrumentation. The apparatus employs two radioisotope sources (Fe-55 and Cd-109) which irradiate adjacent areas on a soil sample. Fluorescent X-rays emitted by the sample are detected by four thin-window proportional counters. Using pulse-height discrimination, the energy spectra are determined. Virtually all elements above sodium in the periodic table are detected if present at sufficient levels. Minimum detection limits range from 30 ppm to several percent, depending upon the element and the matrix. For most elements, they are below 0.5 percent. Accuracies likewise depend upon the matrix, but are generally better than plus or minus 0.5 percent for all elements of atomic number greater than 14. Elements below sodium are also detected, but as a single group.

  15. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.

    PubMed

    Tshangana, Charmaine; Nyokong, Tebello

    2015-01-01

    L-Glutathione (GSH) capped core CdSe (2.3 nm) and core shell CdSe@ZnS quantum dots (QDs) (3.0 nm and 3.5 nm) were coordinated to gallium octacarboxy phthalocyanine (ClGaPc(COOH)8) to form ClGaPc(COOH)8-QDs conjugates. An efficient transfer of energy from the QDs to the Pcs was demonstrated through Förster resonance energy transfer (FRET), the FRET efficiencies in all cases was above 50%. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were also determined for the conjugates. There was a decrease in the fluorescence lifetimes of ClGaPc(COOH)8 in the presence of all the QDs, due to the heavy atom effect. The triplet quantum yields increased in the conjugates. The lifetimes also became longer for the conjugates compared to Pc alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  17. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions

    NASA Astrophysics Data System (ADS)

    Vanessa, Hinterberger; Wenshuo, Wang; Cornelia, Damm; Simon, Wawra; Martin, Thoma; Wolfgang, Peukert

    2018-06-01

    In this contribution, we demonstrate that an aqueous solution with adjustable fluorescent color, including white light emission, can be achieved by a rapid one-step microwave synthesis method resulting in a mixture of blue-emitting carbon dots (CDs) and the yellow-emitting 2,3-diaminophenazine (DAP). Aqueous mixtures of o-phenylene-diamine (oPD) and citric acid (CA) are used as precursors. The resulting product structures are analyzed by FT-IR and NMR spectroscopy and the size of the resulting CDs is determined by atomic force microscopy to be 1.1 ± 0.3 nm. The synthesized solution exhibits two fluorescence emission peaks at 430 and 560 nm, which were found to originate from the CDs and DAP, respectively. The intensity ratio of both fluorescence peaks depends on pH, which is driven by the protonation state of DAP. In consequence, the fluorescence emission color of the CD solution can be tuned precisely and reproducibly from blue to white to yellow by careful control of the pH. Finally, at a pH level of 5.4, at which there is equal blue and yellow emission intensity, a white light emitting solution can be successfully produced in a very fast and simple synthesis procedure.

  18. Room temperature fluorescence and phosphorescence study on the interactions of iodide ions with single tryptophan containing serum albumins

    NASA Astrophysics Data System (ADS)

    Gałęcki, Krystian; Kowalska-Baron, Agnieszka

    2016-12-01

    In this study, the influence of heavy-atom perturbation, induced by the addition of iodide ions, on the fluorescence and phosphorescence decay parameters of some single tryptophan containing serum albumins isolated from: human (HSA), equine (ESA) and leporine (LSA) has been studied. The obtained results indicated that, there exist two distinct conformations of the proteins with different exposure to the quencher. In addition, the Stern-Volmer plots indicated saturation of iodide ions in the binding region. Therefore, to determine quenching parameter, we proposed alternative quenching model and we have performed a global analysis of each conformer to define the effect of iodide ions in the cavity by determining the value of the association constant. The possible quenching mechanism may be based on long-range through-space interactions between the buried chromophore and quencher in the aqueous phase. The discrepancies of the decay parameters between the albumins studied may be related with the accumulation of positive charge at the main and the back entrance to the Drug Site 1 where tryptophan residue is located.

  19. The bacterial adhesion on and the cytotoxicity of various dental cements used for implant-supported fixed restorations.

    PubMed

    Winkler, Cornelia; Schäfer, Lina; Felthaus, Oliver; Allerdings, Juri; Hahnel, Sebastian; Behr, Michael; Bürgers, Ralf

    2014-05-01

    Bacterial adhesion on and cytotoxicity of eight luting agents used for implant-supported restorations were investigated. Surface roughness (Ra), surface free energy (SFE) values and three-dimensional images by atomic-force microscopy of circular specimens were determined. Bacterial suspensions of Streptococcus sanguinis and Streptococcus epidermidis were incubated at 37°C for 2 h. Adhering bacteria were examined with fluorescence dye CytoX-Violet, stained with 4',6-diamidino-2-phenylindole (DAPI) and visualized by fluorescence-microscopy. Cytotoxicity-testing was done with WST-1-tests (water soluble tetrazolium). No significant differences, neither with regard to Ra nor regarding SFE were determined. Adherence of S. sanguinis was less on titanium, TempBondNE and TempBond. TempBond, TempBondNE, RelyX Unicem and Implantlink Semi Classic presented low amounts of S. epidermidis. WST-testing showed high cytotoxic potential of Harvard, Aqualox, TempBondNE and TempBond. No combination of low adherent bacteria with low cytotoxicity was found. From a biological in-vitro perspective, none of the cements may be recommended for implant-supported restorations.

  20. Molecular complexes of l-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: spectral and theoretical investigations.

    PubMed

    Ganesh, K; El-Mossalamy, E H; Satheshkumar, A; Balraj, C; Elango, K P

    2013-12-01

    Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Fluorescence resonance energy transfer analysis of escherichia coli RNA polymerase and polymerase-DNA complexes.

    PubMed

    Heyduk, T; Niedziela-Majka, A

    Fluorescence resonance energy transfer (FRET) is a technique allowing measurements of atomic-scale distances in diluted solutions of macromolecules under native conditions. This feature makes FRET a powerful tool to study complicated biological assemblies. In this report we review the applications of FRET to studies of transcription initiation by Escherichia coli RNA polymerase. The versatility of FRET for studies of a large macromolecular assembly such as RNA polymerase is illustrated by examples of using FRET to address several different aspects of transcription initiation by polymerase. FRET has been used to determine the architecture of polymerase, its complex with single-stranded DNA, and the conformation of promoter fragment bound to polymerase. FRET has been also used as a binding assay to determine the thermodynamics of promoter DNA fragment binding to the polymerase. Functional conformational changes in the specificity subunit of polymerase responsible for the modulation of the promoter binding activity of the enzyme and the mechanistic aspects of the transition from the initiation to the elongation complex were also investigated. Copyright 2002 Wiley Periodicals, Inc.

  2. Novel Estimation of the Humification Degree of Soil Organic Matter by Laser-Induced Breakdown Spectroscopy (LIBS) Compared to Laser-Induced Fluorescence Spectroscopy (LIFS)

    NASA Astrophysics Data System (ADS)

    Ferreira, Edilene; Ferreira, Ednaldo; Villas-Boas, Paulino; Senesi, Giorgio; Carvalho, Camila; Romano, Renan; Martin-Neto, Ladislau; Milori, Debora

    2014-05-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration in soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of Laser-Induced Breakdown Spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. In a LIBS experiment a high-energy laser pulse irradiates the sample and the energy absorbed by the sample causes a local heating of the material that results in its evaporation or sublimation. The high temperature of the ablated material generates a small plasma plume and, as a result of the plasma temperature, the ablated material breaks down into excited atomic and ionic species. During the plasma cooling, the excited species return to their lower energy state emitting electromagnetic radiation at characteristic wavelengths. In a LIBS spectrum the measurement of the characteristic emission wavelengths provides qualitative information about the elemental composition of the sample, whereas the intensities of the signals can be used for quantitative determinations. The LIBS potential for the analysis of organic compounds has been explored recently by using the emission lines of elements that are commonly present in organic compounds, such as the predominant C, H, P, O and N. LIBS elemental emissions were correlated to fluorescence emissions determined by Laser-Induced Fluorescence Spectroscopy (LIFS), which was considered as the reference technique. The HD of SOM determined by LIBS showed a strong correlation to that determined by LIFS, suggesting a great potential of LIBS for this novel application.

  3. Improved Simulations of Astrophysical Plasmas: Computation of New Atomic Data

    NASA Technical Reports Server (NTRS)

    Gorczyca, Thomas W.; Korista, Kirk T.

    2005-01-01

    Our research program is designed to carry out state-of-the-art atomic physics calculations crucial to advancing our understanding of fundamental astrophysical problems. We redress the present inadequacies in the atomic data base along two important areas: dielectronic recombination and inner-shell photoionization and multiple electron ejection/Auger fluorescence therefrom. All of these data are disseminated to the astrophysical community in the proper format for implementation in spectral simulation code.

  4. Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope

    DTIC Science & Technology

    2017-09-14

    dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration the low magnification (1.25...axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100µm accuracy in a 3mm deep volume , with a 16µm in-focus...79 vi Page 4.5 Phase Term Effects on the 3D Volume

  5. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  6. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  7. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence

    NASA Astrophysics Data System (ADS)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-09-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp2-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  8. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence.

    PubMed

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-12-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp(2)-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  9. Poem: A Fast Monte Carlo Code for the Calculation of X-Ray Transition Zone Dose and Current

    DTIC Science & Technology

    1975-01-15

    stored on the photon interaction data tape. Following the photoelectric ionization the atom will relax emitting either a fluorescent photon or an Auger 50...shell fluorescence yield CL have been obtained from the Storm and Israel1 9 and 25 Bambynek, et al. compilations, with preference given to the...Bambynek compilation, and stored on the photon inter- action data tape. The mean M fluorescence yield wM is approximated by zero. The total electron source

  10. Determination of Lande gJ - factors of La I levels using laser spectroscopic methods: Complementary investigations

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.

  11. Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal

    2012-10-01

    Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.

  12. Calculation of K-shell fluorescence yields for low-Z elements

    NASA Astrophysics Data System (ADS)

    Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.

    2015-03-01

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ωK) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ωK) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ωk/(1 -ωk)) 1 /q (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.

  13. Laser-induced fluorescence spectroscopy for improved chemical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less

  14. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  15. Methods for identification and verification using vacuum XRF system

    NASA Technical Reports Server (NTRS)

    Kaiser, Bruce (Inventor); Schramm, Fred (Inventor)

    2005-01-01

    Apparatus and methods in which one or more elemental taggants that are intrinsically located in an object are detected by x-ray fluorescence analysis under vacuum conditions to identify or verify the object's elemental content for elements with lower atomic numbers. By using x-ray fluorescence analysis, the apparatus and methods of the invention are simple and easy to use, as well as provide detection by a non line-of-sight method to establish the origin of objects, as well as their point of manufacture, authenticity, verification, security, and the presence of impurities. The invention is extremely advantageous because it provides the capability to measure lower atomic number elements in the field with a portable instrument.

  16. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  17. Imaging measurements of atomic iron concentration with laser-induced fluorescence in a nanoparticle synthesis flame reactor

    NASA Astrophysics Data System (ADS)

    Hecht, C.; Kronemayer, H.; Dreier, T.; Wiggers, H.; Schulz, C.

    2009-01-01

    The iron-atom concentration distribution as well as the gas-phase temperature was measured via laser-induced fluorescence (LIF) during iron-oxide nanoparticle synthesis in a low-pressure hydrogen/oxygen/argon flame reactor using ironpentacarbonyl (Fe(CO)5) as precursor. Temperature measurements based on multi-line NO-LIF imaging are used to correct for temperature-dependent ground-state populations. The concentration measurement is calibrated based on line-of-sight absorption measurements. The influence of the precursor on the flame is observed at precursor concentrations larger than 70 ppm as the flame front moves closer to the burner surface with increasing Fe(CO)5 concentration.

  18. Measurement of gadolinium retention: current status and review from an applied radiation physics perspective.

    PubMed

    Gräfe, James L; McNeill, Fiona E

    2018-06-28

    This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.

  19. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1D) atoms in collisions with Kr

    NASA Astrophysics Data System (ADS)

    Nuñez-Reyes, Dianailys; Kłos, Jacek; Alexander, Millard H.; Dagdigian, Paul J.; Hickson, Kevin M.

    2018-03-01

    The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.

  20. The Origin of Fluorescence from Graphene Oxide

    PubMed Central

    Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G.

    2012-01-01

    Time-resolved fluorescence measurements of graphene oxide in water show multiexponential decay kinetics ranging from 1 ps to 2 ns. Electron-hole recombination from the bottom of the conduction band and nearby localized states to wide-range valance band is suggested as origin of the fluorescence. Excitation wavelength dependence of the fluorescence was caused by relative intensity changes of few emission species. By introducing the molecular orbital concept, the dominant fluorescence was found to originate from the electronic transitions among/between the non-oxidized carbon regions and the boundary of oxidized carbon atom regions, where all three kinds of functionalized groups C-O, C = O and O = C-OH were participating. In the visible spectral range, the ultrafast fluorescence of graphene oxide was observed for the first time. PMID:23145316

  1. Resonant Doppler velocimeter. Ph.D. Thesis. Final Report, 1 Jul. 1974 - 31 Oct. 1979; [velocity, temperature, and pressure measurement

    NASA Technical Reports Server (NTRS)

    Zimmermann, M.

    1980-01-01

    A technique is presented for visualizing and quantitatively measuring velocity, temperature, and pressure by shining a single frequency laser beam into a gaseous flow which is seeded with an atomic species. The laser is tuned through the absorption frequencies of the seeded species and the absorption profile is detected by observing fluorescence as the atoms relax back to the ground state. The flow velocity is determined by observing the Doppler shift in the absorption frequency. Spectroscopic absorption line broadening mechanisms furnish information regarding the static temperature and pressure of the moving gas. Results of experiments conducted in the free stream and in the bow shock of a conical model mounted in a hypersonic wind tunnel indicate that the experimental uncertainties in the measurement of average values for the velocity, temperature and pressure of the flow are 0.1, 5 and 10 percent respectively.

  2. Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis

    NASA Astrophysics Data System (ADS)

    Said-Galiev, E. E.; Vasil'kov, A. Yu.; Nikolaev, A. Yu.; Lisitsyn, A. I.; Naumkin, A. V.; Volkov, I. O.; Abramchuk, S. S.; Lependina, O. L.; Khokhlov, A. R.; Shtykova, E. V.; Dembo, K. A.; Erkey, C.

    2012-10-01

    Monometallic nanocomposites are obtained with the use of supercritical carbon dioxide (fluid technique) and metal-vapor synthesis (MVS), while bimetallic nanocomposites of Pt and Au noble metals and γ-Al2O3 oxide matrix are synthesized by a combination of these two methods. The structures, concentrations, and chemical states of metal atoms in composites are studied by means of small-angle X-ray scattering (SAXS), transparent electron microscopy (TEM), X-ray fluorescent analysis (XFA), and X-ray photoelectron spectroscopy (XPS). The neutral state of metal atoms in clusters is shown by XPS and their size distribution is found according to SAXS; as is shown, it is determined by the pore sizes of the oxide matrices and lies in the range of 1 to 50 nm. The obtained composites manifest themselves as effective catalysts in the oxidation of CO to CO2.

  3. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    PubMed Central

    Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda

    2017-01-01

    Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy. PMID:28441775

  4. Effect of dispersion forces on squeezing with Rydberg atoms

    NASA Technical Reports Server (NTRS)

    Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.

    1994-01-01

    We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.

  5. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  6. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  7. Compositional Data for Bengal Delta Sediment Collected from a Borehole at Rajoir, Bangladesh

    USGS Publications Warehouse

    Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Berry, Cyrus J.; Whitney, John W.

    2007-01-01

    Processes active within sediment of the Bengal basin have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from a borehole in the town of Rajoir, Rajoir upazila, Madaripur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediment was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion; Inductively Coupled Plasma Atomic Emission Spectroscopy; Energy Dispersive X-ray Fluorescence; and Hydride Generation Atomic Absorption Spectrophotometry. Sediment was treated with 0.5 N HCl and resulting solutions were analyzed, primarily to evaluate the abundance and oxidation state of acid-soluble iron. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured on a few samples. Sediment sampled at Rajoir is typically unlithified, gray, micaceous, feldspathic arenaceous sand with a few silt and clay layers. Arsenic content of the sediment ranges from 0.6 to 21 ppm with a median of 1.2 ppm.

  8. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Malone, C. P.; Kanik, I.; Johnson, P. V.

    2013-12-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S → 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is incident on a cryogenically cooled rare gas matrix, where excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.

  9. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, Jeffrey; Johnson, Paul; Kanik, Isik; Malone, Charles

    2014-05-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S --> 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is produced through electron impact, and is incident on a cryogenically cooled rare gas matrix. The excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.

  10. Multiple Doped Erbium Glasses,

    DTIC Science & Technology

    GLASS, LASERS, ERBIUM, ERBIUM COMPOUNDS, DOPING, OXIDES, OPTIMIZATION, ATOMIC ENERGY LEVELS, PHOSPHATES , YTTERBIUM COMPOUNDS, NEODYMIUM COMPOUNDS, OPTICAL PUMPING, FLUORESCENCE, LIFE EXPECTANCY(SERVICE LIFE), BAND SPECTRA.

  11. Photochemical properties of squarylium cyanine dyes.

    PubMed

    Ferreira, D P; Conceição, D S; Ferreira, V R A; Graça, V C; Santos, P F; Vieira Ferreira, L F

    2013-11-01

    This study presents several new squarylium dyes derived from benzothiazole and benzoselenazole with several structural variations, namely the nature of the heteroaromatic ring and the length of the N,N'-dialkyl groups. Before being investigated in connection with their effect on living cells and/or tissues, these novel compounds were characterized, namely with respect to the determination of their main photophysical parameters. Therefore, a study of the ground state absorption, fluorescence emission (quantum yields and lifetimes) and singlet oxygen generation quantum yields was performed for all the compounds synthesized in order to evaluate their efficiency as photosensitizers. An increase of the alkyl chain length from ethyl to hexyl did not produce a clear change in the fluorescence quantum yields, showing no influence on the photoisomerization process. Heavy atom inclusion (Se instead of S) enhanced the singlet oxygen generation efficiency and decreased the intensity of the fluorescence emission. The external heavy atom effect (I(-) as a counterion instead of CF3SO3(-)) produced a significant increase in the singlet oxygen formation quantum yield (about 20%). Transient absorption studies in aerated and oxygen free samples revealed that the photoisomerization process, which could compete with the triplet state formation for all dyes in solution, is a negligible pathway for the excited state deactivation, in accordance with the rigidity introduced by the squaric ring into the polymethine chain of the dye, both in chloroform and ethanol. However, in the case of the chloroform solution a new transient was detected in air equilibrated solutions, resulting from a reaction of the excited squarylium dye in the singlet state with CHCl3˙, and assigned to the radical cation (SQ(+)˙) of the dye.

  12. Application of CORSIKA Simulation Code to Study Lateral and Longitudinal Distribution of Fluorescence Light in Cosmic Ray Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad

    2017-03-01

    In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.

  13. Interference of resonance fluorescence from two four-level atoms

    NASA Astrophysics Data System (ADS)

    Wong, T.; Tan, S. M.; Collett, M. J.; Walls, D. F.

    1997-02-01

    In a recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)], polarization-sensitive measurements of the fluorescence from two four-level ions driven by a linearly polarized laser were made. Depending on the polarization chosen, different degrees of interference were observed. We carry out a theoretical and numerical study of this system, showing that the results can largely be understood by treating the atoms as independent radiators which are synchronized by the phase of the incident laser field. The interference and its loss may be described in terms of the difference between coherent and incoherent driving of the various atomic transitions in the steady state. In the numerical simulations, which are carried out using the Monte Carlo wave-function method, we remove the assumption that the atoms radiate independently and consider the photodetection process in detail. This allows us to see the total interference pattern build up from individual photodetections and also to see the effects of superfluorescence, which become important when the atomic separation is comparable to an optical wavelength. The results of the calculations are compared with the experiment. We also carry out simulations in the non-steady-state regime and discuss the relationship between the visibility of the interference pattern and which-path considerations.

  14. Philip A. Parilla | NREL

    Science.gov Websites

    atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence

  15. Ambient-Temperature Trap/Release of Arsenic by Dielectric Barrier Discharge and Its Application to Ultratrace Arsenic Determination in Surface Water Followed by Atomic Fluorescence Spectrometry.

    PubMed

    Mao, Xuefei; Qi, Yuehan; Huang, Junwei; Liu, Jixin; Chen, Guoying; Na, Xing; Wang, Min; Qian, Yongzhong

    2016-04-05

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HG-AFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical method was established for ultratrace arsenic in real samples. Moreover, the effects of voltage, oxygen, hydrogen, and water vapor on trapping and releasing arsenic by DBDR were investigated. For trapping, arsenic could be completely trapped in DBDR at 40 mL/min of O2 input mixed with 600 mL/min Ar carrier gas and 9.2 kV discharge potential; prior to release, the Ar carrier gas input should be changed from the upstream gas liquid separator (GLS) to the downstream GLS and kept for 180 s to eliminate possible water vapor interference; for arsenic release, O2 was replaced by 200 mL/min H2 and discharge potential was adjusted to 9.5 kV. Under optimized conditions, arsenic could be detected as low as 1.0 ng/L with an 8-fold enrichment factor; the linearity of calibration reached R(2) > 0.995 in the 0.05 μg/L-5 μg/L range. The mean spiked recoveries for tap, river, lake, and seawater samples were 98% to 103%; and the measured values of the CRMs including GSB-Z50004-200431, GBW08605, and GBW(E)080390 were in good agreement with the certified values. These findings proved the feasibility of DBDR as an arsenic preconcentration tool for atomic spectrometric instrumentation and arsenic recycling in industrial waste gas discharge.

  16. LIFS atomic hydrogen density measurements at the URAGAN-3M facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, E.D.; Zhmurin, P.N.; Letuchii, A.N.

    1994-12-31

    Molecular and atomic hydrogen behavior within a plasma column of the URAGAN-3M facility was numerically simulated for a low density regime ({bar n}{sub e} {approx_equal} 2 x 10{sup 12} cm{sup {minus}3}). Local density of hydrogen atoms in the axial region was measured by Laser-Induced Fluorescence Spectroscopy technique. A good agreement of the measurements and simulations was observed. In the regime under investigation the results of hydrogen density spectroscopic measurements were found to be greatly affected by dissociative population of hydrogen atom excited states. 2 refs., 3 figs.

  17. Parallel Low-Loss Measurement of Multiple Atomic Qubits

    NASA Astrophysics Data System (ADS)

    Kwon, Minho; Ebert, Matthew F.; Walker, Thad G.; Saffman, M.

    2017-11-01

    We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is <2 % and the initial hyperfine state is preserved with >98 % probability.

  18. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    PubMed

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru

    2017-06-01

    Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).

  20. A Novel Selenocystine-Accumulating Plant in Selenium-Mine Drainage Area in Enshi, China

    PubMed Central

    Yuan, Linxi; Zhu, Yuanyuan; Lin, Zhi-Qing; Banuelos, Gary; Li, Wei; Yin, Xuebin

    2013-01-01

    Plant samples of Cardamine hupingshanesis (Brassicaceae), Ligulariafischeri (Ledeb.) turcz (Steraceae) and their underlying top sediments were collected from selenium (Se) mine drainage areas in Enshi, China. Concentrations of total Se were measured using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) and Se speciation were determined using liquid chromatography/UV irradiation-hydride generation-atomic fluorescence spectrometry (LC-UV-HG-AFS). The results showed that C. hupingshanesis could accumulate Se to 239±201 mg/kg DW in roots, 316±184 mg/kg DW in stems, and 380±323 mg/kg DW in leaves, which identifies it as Se secondary accumulator. Particularly, it could accumulate Se up to 1965±271 mg/kg DW in leaves, 1787±167 mg/kg DW in stem and 4414±3446 mg/kg DW in roots, living near Se mine tailing. Moreover, over 70% of the total Se accumulated in C. hupingshanesis were in the form of selenocystine (SeCys2), increasing with increased total Se concentration in plant, in contrast to selenomethionine (SeMet) in non-accumulators (eg. Arabidopsis) and secondary accumulators (eg. Brassica juncea), and selenomethylcysteine (SeMeCys) in hyperaccumulators (eg. Stanleya pinnata). There is no convincing explanation on SeCys2 accumulation in C. hupingshanesis based on current Se metabolism theory in higher plants, and further study will be needed. PMID:23750270

  1. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.

    PubMed

    Chhatbar, Mahesh U; Meena, Ramavatar; Prasad, Kamalesh; Chejara, Dharmesh R; Siddhanta, A K

    2011-04-01

    A facile microwave-induced method was developed for synthesizing water-soluble fluorescent derivatives of alginic acid (ALG) with four different diamines, hydrazine (HY), ethylenediamine (EDA), 1,6-hexanediamine (HDA), and 1,4-cyclohexanediamine (CHDA), followed by a cross-linking reaction with a natural cross linker genipin. The ethylenediamine derivative of alginic acid (ALG-EDA) exhibited good fluorescent activity, which upon cross linking was enhanced threefold. The other amide derivatives, for example, ALG-HY, ALG-HDA, and ALG-CHDA, were not fluorescent, but their respective crosslinked products exhibited excellent fluorescent activity. The fluorescence intensity had an inverse correlation with the number of carbon atoms present in the amine, which in turn was a function of degree of substitution (DS). These fluorescent polysaccharide derivatives are of potential utility in the domain of sensor applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekkab, M., E-mail: mohammed-nekkab@yahoo.com; LESIMS laboratory, Physics Department, Faculty of Sciences, University of Setif 1, 19000 Setif; Kahoul, A.

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ω{sub K}) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ω{sub K}) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ω{sub k}/(1−ω{sub k})){sup 1/q} (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the resultsmore » of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.« less

  3. Crystal structures of palladium(II) ternary complexes of 5-x-2-aminobenzoic acid with 1,10-phenanthroline and their interaction with calf thymus DNA (where X=Cl, Br and I).

    PubMed

    Wang, Yue; Okabe, Nobuo; Odoko, Mamiko

    2005-10-01

    The crystal structures of a series of three palladium(II) ternary complexes of 5-halogeno-2-aminobenzoic acid (5-X-AB, where X=Cl, Br and I) with 1,10-phenanthroline [Pd(5-Cl-AB)(phen)] (1), [Pd(5-Br-AB)(phen)] (2) and [Pd(5-I-AB)(phen)] (3) have been determined, and their coordination geometries and the crystal architecture characterized. All of the complexes are an isostructure in which each Pd(II) atom has basically similar square planar coordination geometry. The substitute halogen group at 5-position of AB plays an important role in producing the coordination bonds of the carboxylate and amino groups in which the carboxylate O atom and the amino N atom act as the negative monodentate ligand atoms. The coordination bond distances of O-Pd increase in the order 1<2<3, while those of N-Pd decrease in the same order. The binding of the complexes to the calf thymus DNA has also been studied by the fluorescence method. Each of the complexes shows high binding propensity to DNA which can be reflected as the relative order 1<2<3.

  4. Excitation Anisotropy in Laser-Induced-Fluorescence Spectroscopy —High-Intensity, Broad-Line Excitation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Atsumu; Nambu, Yoshihiro; Fujimoto, Takashi

    1986-10-01

    The problem of excitation anisotropy in laser-induced-fluorescence spectroscopy (LIFS) was investigated for the intense excitation case under the broad-line condition. The depolarization coefficient for the fluorescence light was derived in the intense-excitation limit (linearly-polarized or unpolarized light excitation) and the results are presented in tables. In the region of intermediate intensity, between the weak and intense-excitation limits, the master equation was solved for a specific example of atomic transitions and its result is compared with experimental results.

  5. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    NASA Astrophysics Data System (ADS)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  6. Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less

  7. Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbwachs, J.A.

    1983-09-01

    This report summarizes the progress achieved over the past five years in the laser-induced-fluorescence spectroscopy (LIFS) for improved chemical-analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed-laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the first time, to themore » study of energy transfer in ions.« less

  8. Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less

  9. Entangled photons from single atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  10. Effect of (Ag, Sn) Doping on the Structure and Optical Properties of Au Nanocluster

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Karna, Shashi

    2014-03-01

    Noble metal nanoclusters (NCs) consisting of a few to 35 atoms in size in the sub 2 nm range dimension are considered to be nontoxic as opposed to nanoparticles that are cytotoxic. Also, due to the quantum confinement of electrons, these NCs exhibit atom-like energy spectrum and display fluorescent properties useful in a wide range of applications, including medical diagnosis. The unique features of NCs such as size-tunable optical properties, intense fluorescence in the visible, and biocompatibility have stimulated an active area of investigation of noble metal NCs comprised of Au, Ag, Cu, and Pt. Furthermore, the electronic properties of nanoclusters can be modified by combining them with other elements. In this study, we consider the space-filled configuration of Au32 NC and investigate the effects of Ag and Sn atom incorporation on geometry and electronic spectrum. Our study suggests that Ag and Sn doping of Au32 NC red-shifts the absorption maximum and also reduces the oscillator strength.

  11. A hydrazone based probe for selective sensing of Al(iii) and Al(iii)-probe complex mediated secondary sensing of PPi: framing of molecular logic circuit and memory device and computational studies.

    PubMed

    Mohammad, Hasan; Islam, Abu Saleh Musha; Prodhan, Chandraday; Chaudhuri, Keya; Ali, Mahammad

    2018-02-14

    A hydrazone-based conjugate Nap-hyz-pyz (H 3 L3) with potential N 2 O 2 donor atoms was found to act as a dual channel (colori- and fluori-metric) sensor towards Al 3+ and PPi in H 2 O-MeOH (6 : 4, v/v) at pH 7.2 (40 mM HEPES buffer) at 25 °C. The formation constants, K f = (3.49 ± 1.77) × 10 4 and (3.78 ± 0.1) × 10 4 M -1 , of the sensor towards Al 3+ were determined by absorption and fluorescence titrations, respectively. The 1 : 1 stoichiometry of the reaction was determined by Job's method and confirmed by ESI-MS + (m/z) studies. The LOD for Al 3+ , as determined by the 3σ method, was found to be 114.54 nM. Most strikingly, the addition of ∼115 μM PPi to the Nap-hyz-pyz-Al 3+ ensemble (20 μM ligand and 74 μM Al 3+ ) leads to complete quenching of fluorescence. The fluorescence response of Nap-hyz-pyz towards Al 3+ was not perturbed by the presence of 5 equivalents or more of other ions and inorganic anions. The structure of the [Al(L 3 )(H 2 O)] complex was delineated by DFT calculations. TD-DFT studies were performed to investigate various spectral transitions. Based on changes in the fluorescence intensities of Nap-hyz-pyz in the presence of Al 3+ and PPi at 487 nm, INHIBIT and molecular logic gates were constructed and interpreted. The probe was found to be bio-compatible and cell permeable with no or negligible cytotoxicity; thus, it provides a good opportunity for in vitro cell imaging studies of these ions. The presence of ATP or Pi did not interfere with the fluorescent detection of PPi. Thus, these evident and excellent sensing capabilities of Nap-hyz-pyz towards Al 3+ and PPi were further scrutinized in HepG2 cell lines.

  12. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively.more » Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of reagents. • Dimensionality and crystalline structure is a function of the zinc environments. • New coordination modes for 2-carboxyethylphosphonic acid are reported. • 3D-compound presents three different coordination environments for the zinc atoms. • Fluorescence properties are related to the structural dimensionality.« less

  13. Far ultraviolet excitation processes in comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Opal, C. B.; Meier, R. R.; Nicolas, K. R.

    1976-01-01

    Recent observations of atomic oxygen and carbon in the far ultraviolet spectrum of comet Kohoutek have demonstrated the existence of these atomic species in the cometary coma. However, in order to identify the source of their origin, it is necessary to relate the observed ultraviolet flux to the atomic production rate. Analyses of observed OI wavelength 1304 and CI wavelength 1657 A multiplets have been carried out using high resolution solar spectra. Also examined is the possibility of observing ultraviolet fluorescence from molecules such as CO and H2, as well as resonance scattering either from atomic ions for which there are strong corresponding solar lines (CII) or from atoms for which there is an accidental wavelength coincidence (SI).

  14. High-resolution TALIF measurements of atomic oxygen: determination of gas temperature and collisional broadening coefficients

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Marinov, Daniil; Guaitella, Olivier; Drag, Cyril; Engeln, Richard; Golda, Judith; Schultz-von der Gathern, Volker

    2016-09-01

    Two-photon Absorption Laser-Induced Fluorescence (TALIF) is a well-established technique to measure relative (and with appropriate calibration techniques, absolute) densities of atoms in plasmas and flames. The excitation line profiles can provide additional information, but this is usually overlooked due to the mediocre spectral resolution of commercial pulsed dye laser systems. We have investigated O-atom TALIF excitation line profiles using a house-built narrow line-width pulsed UV laser system, based on pulsed Ti:Sa ring laser seeded by a cw infrared diode laser. The observed Doppler profiles allow unambiguous measurement of gas temperature with high precision in O2 and CO2 DC glow discharges. Sub-Doppler measurements, performed by reflecting the laser beam back through excitation zone, allow the pressure-broadened line shapes to be observed, both in a pure O2 DC discharge (up to 10 Torr pressure) and in an atmospheric pressure RF plasma jet in He/O2. Pressure broadening coefficients of the 3p3PJ state of O were determined for O2 and He bath gases, and were found to be an order of magnitude bigger than that predicted from the measured quenching rate. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).

  15. Temporal VUV Emission Characteristics Related to Generations and Losses of Metastable Atoms in Xenon Pulsed Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Motomura, Hideki; Loo, Ka Hong; Ikeda, Yoshihisa; Jinno, Masafumi; Aono, Masaharu

    Although xenon pulsed dielectric barrier discharge is one of the most promising substitutes for mercury low-pressure discharge for fluorescent lamps, the efficacy of xenon fluorescent lamp is not enough for practical use for general lighting. To improve the efficacy it is indispensable to clarify mechanisms of vacuum ultraviolet (VUV) emissions, which excite phosphor, from xenon discharge related to plasma characteristics. In this paper emission waveforms and temporal change of metastable atom density are measured and temporal VUV emission characteristics related to generations and losses of metastable atoms in xenon pulsed barrier discharge is investigated. It is shown that the lamp efficacy is improved by about 10% with shorter pulse in which the two VUV emission peaks in a pulse are overlapped. It is also shown that at the lower pressure of 1.3 kPa metastable atoms generated during on-period of the voltage pulse are not efficiently consumed for VUV emissions in the off-period of the voltage pulse because of lower rate of three-body collision and quenching. This fact is thought to be one of the reasons why the lamp efficacy is low at lower pressure.

  16. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  17. Polarization effects in the interaction between multi-level atoms and two optical fields

    NASA Astrophysics Data System (ADS)

    Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.

    2015-06-01

    Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.

  18. First demonstration of iodine mapping in nonliving phantoms using an X-ray fluorescence computed tomography system with a cadmium telluride detector and a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuichi; Ehara, Shigeru; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects, and XRF is emitted by absorbing X-ray photons with energies beyond the K-edge energy of the target atom. Narrow-energy-width bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter. These rays are absorbed by iodine media in objects, and iodine XRF is produced from the iodine atoms. Next, iodine Kα photons are discriminated by a multichannel analyzer and the number of photons is counted by a counter card. CT is performed by repeated linear scans and rotations of an object. The X-ray generator has a 100 μm focus tube with a 0.5-mm-thick beryllium window, and the tube voltage and the current for XRF were 80 kV and 0.50 mA, respectively. The demonstration of XRF-CT for mapping iodine atoms was carried out by selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  19. Gamma spectrometry and chemical characterization of ceramic seeds with samarium-153 and holmium-166 for brachytherapy proposal.

    PubMed

    Valente, Eduardo S; Campos, Tarcísio P R

    2010-12-01

    Ceramic seeds were synthesized by the sol-gel technique with Si:Sm:Ca and Si:Ho:Ca. One set of seeds was irradiated in the TRIGA type nuclear reactor IPR-R1 and submitted to instrumental neutron activation analysis (INAA), K(0) method, to determine mass percentage concentration of natural samarium and holmium in the seed as well as to determine all existing radionuclides and their activities. Attention was paid to discrimination of Si-31, Ca-40, Ca-45, Ca-47, Ca-49, Sm-145, Sm-155, Sm-153 and Ho-166. A second sample was submitted to atomic emission spectrometry (ICP-AES) also to determine samarium and holmium concentrations in weight. A third sample was submitted to X-ray fluorescence spectrometry to qualitatively determine chemical composition. The measured activity was due to Sm-153 and Ho-166 with a well-characterized gamma spectrum. The X-ray fluorescence spectrum demonstrated that there is no discrepancy in seed composition. The maximum ranges in the water of beta particles from Sm-153 and Ho-166 decay were evaluated, as well as the dose rate and total dose delivered within the volume delimited by the range of the beta particles. The results are relevant for investigation of the viability of producing Sm-153 and Ho-166 radioactive seeds for use in brachytherapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. A Kinetic and Product Study of the Cl + HO2 Reaction

    NASA Technical Reports Server (NTRS)

    Hickson, Kevin M.; Keyser, Leon F.

    2005-01-01

    Absolute rate data and product branching ratios for the reactions Cl + HO2 to HCl + O2 (k1a) and Cl + HO2 to OH + ClO (k1b) have been measured from 226 to 336 K at a total pressure of 1 Torr of helium using the discharge flow resonance fluorescence technique coupled with infrared diode laser spectroscopy. For kinetic measurements, pseudo-first-order conditions were used with both reagents in excess in separate experiments. HO2 was produced by two methods: through the termolecular reaction of H atoms with O2 and also by the reaction of F atoms with H2O2. Cl atoms were produced by a microwave discharge of Cl2 in He. HO2 radicals were converted to OH radicals prior to detection by resonance fluorescence at 308 nm. Cl atoms were detected directly at 138 nm also by resonance fluorescence. Measurement of the consumption of HO2 in excess Cl yielded k1a and measurement of the consumption of Cl in excess HO2 yielded the total rate coefficient, k1. Values of k1a and k1 derived from kinetic experiments expressed in Arrhenius form are (1.6 +/- 0.2) x 10-11 exp[(249 +/- 34)/T] and (2.8 +/- 0.1) x 10-11 exp[(123 +/- 15)/T] cm3 molecule-1 s-1, respectively. As the expression for k1 is only weakly temperature dependent, we report a temperature-independent value of k1 = (4.5 +/- 0.4) x 10-11 cm3 molecule-1 s-1. Additionally, an Arrhenius expression for k1b can also be derived: k1b = (7.7 +/- 0.8) x 10-11 exp[-(708 +/- 29)/T] cm3 molecule-1 s-1. These expressions for k1a and k1b are valid for 226 K T 336 and 256 K T 296 K, respectively. The cited errors are at the level of a single standard deviation. For the product measurements, an excess of Cl was added to known concentrations of HO2 and the reaction was allowed to reach completion. HCl product concentrations were determined by IR absorption yielding the ratio k1a/k1 over the temperature range 236 K T 296 K. OH product concentrations were determined by resonance fluorescence giving rise to the ratio k1b/k1 over the temperature range 226 K T 336 K. Both of these ratios were subsequently converted to absolute numbers. Values of k1a and k1b from the product experiments expressed in Arrhenius form are (1.5 +/- 0.1) x 10-11 exp[(222 +/- 17)/T] and (10.6 +/- 1.5) x 10-11 exp[-(733 +/- 41)/T] cm3 molecule-1 s-1, respectively. These expressions for k1a and k1b are valid for 256 K T 296 and 226 K T 336 K, respectively. A combination of the kinetic and product data results in the following Arrhenius expressions for k1a and k1b of (1.4 +/- 0.3) x 10-11 exp[(269 +/- 58)/T] and (12.7 +/- 4.1) x 10-11 exp[-(801 +/- 94)/T] cm3 molecule-1 s-1, respectively. Numerical simulations were used to check for interferences from secondary chemistry in both the kinetic and product experiments and also to quantify the losses incurred during the conversion process HO2 to OH for detection purposes.

  1. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  2. Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region.

    PubMed

    Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi

    2017-09-26

    Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.

  3. Average M shell fluorescence yields for elements with 70≤Z≤92

    NASA Astrophysics Data System (ADS)

    Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.

    2015-03-01

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω¯M ) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.

  4. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, M., E-mail: mamalik2000@gmail.com; Islam, R.; Faisal, M.

    2015-03-30

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal showsmore » that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.« less

  5. Facile synthesis of fluorescent polymer nanoparticles by covalent modification-nanoprecipitation of amine-reactive ester polymers.

    PubMed

    Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon

    2015-06-01

    Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sub-micron scale patterning of fluorescent silver nanoclusters using low-power laser.

    PubMed

    Kunwar, Puskal; Hassinen, Jukka; Bautista, Godofredo; Ras, Robin H A; Toivonen, Juha

    2016-04-05

    Noble metal nanoclusters are ultrasmall nanomaterials with tunable properties and huge application potential; however, retaining their enhanced functionality is difficult as they readily lose their properties without stabilization. Here, we demonstrate a facile synthesis of highly photostable silver nanoclusters in a polymer thin film using visible light photoreduction. Furthermore, the different stages of the nanocluster formation are investigated in detail using absorption and fluorescence spectroscopy, fluorescence microscopy, and atomic force microscopy. A cost-effective fabrication of photostable micron-sized fluorescent silver nanocluster barcode is demonstrated in silver-impregnated polymer films using a low-power continuous-wave laser diode. It is shown that a laser power of as low as 0.75 mW is enough to write fluorescent structures, corresponding to the specifications of a commercially available laser pointer. The as-formed nanocluster-containing microstructures can be useful in direct labeling applications such as authenticity marking and fluorescent labeling.

  7. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  8. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Anuradha; Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probemore » solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.« less

  9. Laser induced fluorescence spectroscopy of the Ca dimer deposited on helium and mixed helium/xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaveau, Marc-André; Pothier, Christophe; Briant, Marc

    2014-12-09

    We study how the laser induced fluorescence spectroscopy of the calcium dimer deposited on pure helium clusters is modified by the addition of xenon atoms. In the wavelength range between 365 and 385 nm, the Ca dimer is excited from its ground state up to two excited electronic states leading to its photodissociation in Ca({sup 1}P)+Ca({sup 1}S): this process is monitored by recording the Ca({sup 1}P) fluorescence at 422.7nm. One of these electronic states of Ca{sub 2} is a diexcited one correlating to the Ca(4s4p{sup 3}P(+Ca(4s3d{sup 3}D), the other one is a repulsive state correlating to the Ca(4s4p1P)+Ca(4s21S) asymptote, accountingmore » for the dissociation of Ca{sub 2} and the observation of the subsequent Ca({sup 1}P) emission. On pure helium clusters, the fluorescence exhibits the calcium atomic resonance line Ca({sup 1}S←{sup 1}P) at 422.7 nm (23652 cm{sup −1}) assigned to ejected calcium, and a narrow red sided band corresponding to calcium that remains solvated on the helium cluster. When adding xenon atoms to the helium clusters, the intensity of these two features decreases and a new spectral band appears on the red side of calcium resonance line; the intensity and the red shift of this component increase along with the xenon quantity deposited on the helium cluster: it is assigned to the emission of Ca({sup 1}P) associated with the small xenon aggregate embedded inside the helium cluster.« less

  10. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-01

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  11. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  12. A simple {sup 197}Hg RNAA procedure for the determination of mercury in urine, blood, and tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blotcky, A.J.; Rack, E.P.; Meade, A.G.

    1995-12-31

    Mercury has been implicated as a causal agent in such central nervous system diseases as Alzheimer`s and Parkinson`s. Consequently, there has been increased interest in the determination of ultra-trace-level mercury in biological matrices, especially in tissue. While such nonnuclear techniques as cold vapor atomic absorption spectrometry and cold vapor atomic fluorescence spectrometry have been employed routinely for mercury determinations in urine and blood, there is a paucity of nonnuclear techniques for the determination of mercury in the low parts-per-billion range in biological tissue. As pointed out by Fardy and Warner, instrumental and radiochemical neutron activation analysis (INAA and RNAA) requiremore » no blank determinations in contrast to nonnuclear analytical techniques employing digestion and/or chemical operations. Therefore, INAA and RNAA become the obvious choices for determination of ultra-trace levels of mercury in tissue. Most separation methods reported in the literature require different and separate methodologies for mercury determinations in urine, blood, or tissue. The purposes of this study are to develop a single methodology for the determination of low levels of mercury in all biological matrices by RNAA and to optimize parameters necessary for an efficacious trace-level determination. Previously, few studies have taken into account the effects of the Szilard-Chalmers reactions of the radioactivatable analyte within a biological matrix. It also would appear that little attention has been given to the optimum postirradiation carrier concentration of the analyte species necessary. This study discusses these various considerations.« less

  13. Principle and Reconstruction Algorithm for Atomic-Resolution Holography

    NASA Astrophysics Data System (ADS)

    Matsushita, Tomohiro; Muro, Takayuki; Matsui, Fumihiko; Happo, Naohisa; Hosokawa, Shinya; Ohoyama, Kenji; Sato-Tomita, Ayana; Sasaki, Yuji C.; Hayashi, Kouichi

    2018-06-01

    Atomic-resolution holography makes it possible to obtain the three-dimensional (3D) structure around a target atomic site. Translational symmetry of the atomic arrangement of the sample is not necessary, and the 3D atomic image can be measured when the local structure of the target atomic site is oriented. Therefore, 3D local atomic structures such as dopants and adsorbates are observable. Here, the atomic-resolution holography comprising photoelectron holography, X-ray fluorescence holography, neutron holography, and their inverse modes are treated. Although the measurement methods are different, they can be handled with a unified theory. The algorithm for reconstructing 3D atomic images from holograms plays an important role. Although Fourier transform-based methods have been proposed, they require the multiple-energy holograms. In addition, they cannot be directly applied to photoelectron holography because of the phase shift problem. We have developed methods based on the fitting method for reconstructing from single-energy and photoelectron holograms. The developed methods are applicable to all types of atomic-resolution holography.

  14. Quantum Error Correction with a Globally-Coupled Array of Neutral Atom Qubits

    DTIC Science & Technology

    2013-02-01

    magneto - optical trap ) located at the center of the science cell. Fluorescence...Bottle beam trap GBA Gaussian beam array EMCCD electron multiplying charge coupled device microsec. microsecond MOT Magneto - optical trap QEC quantum error correction qubit quantum bit ...developed and implemented an array of neutral atom qubits in optical traps for studies of quantum error correction. At the end of the three year

  15. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  16. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing

    NASA Astrophysics Data System (ADS)

    Saha, Dipika; Negi, Devendra P. S.

    2018-01-01

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.

  17. Experimental evaluation of analyte excitation mechanisms in the inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lehn, Scott A.; Hieftje, Gary M.

    2003-10-01

    The inductively coupled plasma (ICP) is a justifiably popular source for atomic emission spectrometry. However, despite its popularity, the ICP is still only partially understood. Even the mechanisms of analyte excitation remain unclear; some energy levels are quite clearly populated by charge transfer while others might be populated by electron-ion recombination, by electron impact, or by Penning processes. Distinguishing among these alternatives is possible by means of a steady-state kinetics approach that examines correlations between the emission of a selected atom, ion, or level and the local number densities of species assumed to produce the excitation. In an earlier investigation, strong correlations were found between either calcium atom or ion emission and selected combinations of calcium atom or ion number densities and electron number densities in the plasma. However, all radially resolved data employed in the earlier study were produced from Abel inversion and from measurements that were crude by today's standards. Now, by means of tomographic imaging, laser-saturated atomic fluorescence, and Thomson and Rayleigh scattering, it is possible to measure the required radially resolved data without Abel inversion and with far greater fidelity. The correlations previously studied for calcium have been investigated with these more reliable data. Ion-electron recombination, either radiative or with argon as a third body, was determined to be the most likely excitation mechanism for calcium atom, while electron impact appeared to be the most important process to produce excite-state calcium ions. These results were consistent with the previous study. However, the present study suggests that collisional deactivation, rather than radiative decay, is the most likely mode of returning both calcium atoms and ions to the ground state.

  18. Resonance fluorescence in the resolvent-operator formalism

    NASA Astrophysics Data System (ADS)

    Debierre, V.; Harman, Z.

    2017-10-01

    The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator formalism. The derivation is based on the construction of a master equation from the resolvent operator of the atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified, to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the spectrum derived matches that of Mollow.

  19. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling.

    PubMed

    Wang, Nan; Wei, Fang; Qi, Yuhang; Li, Hongxiang; Lu, Xin; Zhao, Guoqiang; Xu, Qun

    2014-11-26

    MoS2 nanosheets with polydispersity of the lateral dimensions from natural mineral molybdenite have been prepared in the emulsions microenvironment built by the water/surfactant/CO2 system. The size, thickness, and atomic structure are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), and laser-scattering particle size analysis. Meanwhile, by the analysis of photoluminescence spectroscopy and microscope, the MoS2 nanosheets with smaller lateral dimensions exhibit extraordinary photoluminescence properties different from those with relatively larger lateral dimensions. The discovery of the excitation dependent photoluminescence for MoS2 nanosheets makes them potentially of interests for the applications in optoelectronics and biology. Moreover, we demonstrate that the fabricated MoS2 nanosheets can be a nontoxic fluorescent label for cell-targeted labeling application.

  20. Low Cost Solar Array Project: Composition Measurements by Analytical Photo Catalysis

    NASA Technical Reports Server (NTRS)

    Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III

    1979-01-01

    The applicability of the photon catalysis technique for effecting composition analysis of silicon samples is discussed. A detector for the impurities Al, Cr, Fe, Mn, Ti, V, Mo and Zr is evaluated. During the first reporting period Al, Cr, Fe, and Mn were detected with the photon catalysis method. The best fluorescence lines to monitor and determine initial sensitivities to each of these elements by atomic absorption calibration were established. In the course of these tests vapor pressure curves for these four pure substances were also mapped. Ti and Si were detected. The best lines to monitor were catalogued and vapor pressure curves were determined. Attempts to detect vanadium were unsuccessful due to the refractory nature of this element and the limited temperature range of the evaporator.

  1. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  2. Resonant Doppler velocimetry in supersonic nitrogen flow. Ph.D. Thesis. Final Report, 31 Oct. 1979 - 31 Jul. 1982

    NASA Technical Reports Server (NTRS)

    Cheng, S. W. S.

    1982-01-01

    The development of the Resonant Doppler Velocimeter (RDV) is discussed. It is a new nonintrusive laser technique for flow diagnosis. The RDV technique is applied to supersonic nitrogen flow with sodium atoms as tracer particles. The measurements are achieved by shining a tunable single frequency laser beam into the flow. The resonant absorption spectrum of the seeded species is determined by observing the fluorescence signal intensity as a function of excitation wavelength. By comparing the peak absorption wavelength with a reference frequency marker, the flow velocity along the excitation beam can be obtained through the Doppler shift relation. By fitting the spectrum with a theoretical line profile, the static temperature and pressure of the flow an be determined.

  3. Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Sobolewski, Ł. M.; Windholz, L.; Kwela, J.

    2017-11-01

    Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.

  4. [Investigation on the homogeneity and stability of quality controlling cosmetic samples containing arsenic].

    PubMed

    Dong, Bing; Song, Yu; Fan, Wenjia; Zhu, Ying

    2010-11-01

    To study the homogeneity and stability of arsenic in quality controlling cosmetic samples. Arsenic was determined by atomic fluorescence spectrophotometric method. The t-test and F-test were used to evaluate the significant difference of the within-bottle and between-bottle results with three batches. The RSDs of arsenic obtained in different time were compared with the relative expanding uncertainties to evaluate the stability. Average and variance of within-bottle and between-bottle results of arsenic were not different significantly. The RSDs of Arsenic were less than the relative expanding uncertainties. Quality controlling cosmetic samples containing arsenic were considered homogeneous and stable.

  5. Environmental impact of the gold mining industry in Ghana.

    PubMed

    Bamford, S A; Osae, E; Aboh, I; Biney, C A; Antwi, L A

    1990-01-01

    X-ray Fluorescence (XRF) Analysis and Atomic Absorption Spectrophotometry (AAS) have been used in assessing heavy metal pollution from some gold mines in Ghana. The presence and levels of heavy metals in gold ore, gold tailings, inland waters, and river sediments have been determined. Using these techniques, the heavy metals: Cr, Mn, Fe, Cu, Zn, As, Pb, Rb, Sr, Y, Zr, and Nb were identified in some of the solid samples within a concentration range of 0.08 ppm--4.9%. However, the inland waters showed the presence of only Fe and Zn at levels of 0.08-2.4 micrograms/mL.

  6. Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.

    1993-01-01

    Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.

  7. Triarylborane-Based Materials for OLED Applications.

    PubMed

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-09-13

    Multidisciplinary research on organic fluorescent molecules has been attracting great interest owing to their potential applications in biomedical and material sciences. In recent years, electron deficient systems have been increasingly incorporated into fluorescent materials. Triarylboranes with the empty p orbital of their boron centres are electron deficient and can be used as strong electron acceptors in conjugated organic fluorescent materials. Moreover, their applications in optoelectronic devices, energy harvesting materials and anion sensing, due to their natural Lewis acidity and remarkable solid-state fluorescence properties, have also been investigated. Furthermore, fluorescent triarylborane-based materials have been commonly utilized as emitters and electron transporters in organic light emitting diode (OLED) applications. In this review, triarylborane-based small molecules and polymers will be surveyed, covering their structure-property relationships, intramolecular charge transfer properties and solid-state fluorescence quantum yields as functional emissive materials in OLEDs. Also, the importance of the boron atom in triarylborane compounds is emphasized to address the key issues of both fluorescent emitters and their host materials for the construction of high-performance OLEDs.

  8. A study of the reaction Li+HCl by the technique of time-resolved laser-induced fluorescence spectroscopy of Li (2 2PJ-2 2S1/2, λ=670.7 nm) between 700 and 1000 K

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Saltzman, Eric S.

    1987-10-01

    A kinetic study is presented of the reaction between lithium atoms and hydrogen chloride over the temperature range 700-1000 K. Li atoms are produced in an excess of HCl and He bath gas by pulsed photolysis of LiCl vapor. The concentration of the metal atoms is then monitored in real time by the technique of laser-induced fluorescence of Li atoms at λ=670.7 nm using a pulsed nitrogen-pumped dye laser and box-car integration of the fluorescence signal. Absolute second-order rate constants for this reaction have been measured at T=700, 750, 800, and 900 K. At T=1000 K the reverse reaction is sufficiently fast that equilibrium is rapidly established on the time scale of the experiment. A fit of the data between 700 and 900 K to the Arrhenius form, with 2σ errors calculated from the absolute errors in the rate constants, yields k(T)=(3.8±1.1)×10-10 exp[-(883±218)/T] cm3 molecule-1 s-1. This result is interpreted through a modified form of collision theory which is constrained to take account of the conservation of total angular momentum during the reaction. Thereby we obtain an estimate for the reaction energy threshold, E0=8.2±1.4 kJ mol-1 (where the error arises from uncertainty in the exothermicity of the reaction), in very good agreement with a crossed molecular beam study of the title reaction, and substantially lower than estimates of E0 from both semiempirical and ab initio calculations of the potential energy surface.

  9. Vapor phase tri-methyl-indium seeding system suitable for high temperature spectroscopy and thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiddon, R.; Zhou, B.; Borggren, J.

    2015-09-15

    Tri-methyl-indium (TMI) is used as an indium transport molecule to introduce indium atoms to reactive hot gas flows/combustion environments for spectroscopic diagnostics. A seeding system was constructed to allow the addition of an inert TMI laden carrier gas into an air/fuel mixture burning consequently on a burner. The amount of the seeded TMI in the carrier gas can be readily varied by controlling the vapor pressure through the temperature of the container. The seeding process was calibrated using the fluorescent emission intensity from the indium 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 1/2} and 6{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2}more » transitions as a function of the calculated TMI seeding concentration over a range of 2–45 ppm. The response was found to be linear over the range 3–22.5 ppm; at concentrations above 25 ppm there is a loss of linearity attributable to self-absorption or loss of saturation of TMI vapor pressure in the carrier gas flow. When TMI was introduced into a post-combustion environment via an inert carrier gas, molecular transition from InH and InOH radicals were observed in the flame emission spectrum. Combined laser-induced fluorescence and absorption spectroscopy were applied to detect indium atoms in the TMI seeded flame and the measured atomic indium concentration was found to be at the ppm level. This method of seeding organometallic vapor like TMI to a reactive gas flow demonstrates the feasibility for quantitative spectroscopic investigations that may be applicable in various fields, e.g., chemical vapor deposition applications or temperature measurement in flames with two-line atomic fluorescence.« less

  10. Sequential determination of nickel and cadmium in tobacco, molasses and refill solutions for e-cigarettes samples by molecular fluorescence.

    PubMed

    Talio, María Carolina; Alesso, Magdalena; Acosta, Mariano; Wills, Verónica S; Fernández, Liliana P

    2017-11-01

    In this work, a new procedure was developed for separation and preconcentration of nickel(II) and cadmium(II) in several and varied tobacco samples. Tobacco samples were selected considering the main products consumed by segments of the population, in particular the age (youth) and lifestyle of the consumer. To guarantee representative samples, a randomized strategy of sampling was used. In the first step, a chemofiltration on nylon membrane is carried out employing eosin (Eo) and carbon nanotubes dispersed in sodium dodecylsulfate (SDS) solution (phosphate buffer pH 7). In this condition, Ni(II) was selectively retained on the solid support. After that, the filtrate liquid with Cd(II) was re-conditioned with acetic acid /acetate buffer solution (pH 5) and followed by detection. A spectrofluorimetric determination of both metals was carried out, on the solid support and the filtered aqueous solution, for Ni(II) and Cd(II), respectively. The solid surface fluorescence (SSF) determination was performed at λ em = 545nm (λ ex = 515nm) for Ni(II)-Eo complex and the fluorescence of Cd(II)-Eo was quantified in aqueous solution using λ em = 565nm (λ ex = 540nm). The calibration graphs resulted linear in a range of 0.058-29.35μgL -1 for Ni(II) and 0.124-56.20μgL -1 for Cd(II), with detection limits of 0.019 and 0.041μgL -1 (S/N = 3). The developed methodology shows good sensitivity and adequate selectivity, and it was successfully applied to the determination of trace amounts of nickel and cadmium present in tobacco samples (refill solutions for e-cigarettes, snuff used in narguille (molasses) and traditional tobacco) with satisfactory results. The new methodology was validated by ICP-MS with adequate agreement. The proposed methodology represents a novel fluorescence application to Ni(II) and Cd(II) quantification with sensitivity and accuracy similar to atomic spectroscopies, introducing for the first time the quenching effect on SSF. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Simultaneous determination of multiple elements in airborne particulate samples by X-ray fluorescence spectrometry].

    PubMed

    Takada, T; Hitosugi, M; Kadowaki, T; Kudo, M

    1983-07-01

    An energy dispersive X-ray fluorescence spectrometer (EDX) has been applied to determine multielements in the workplace air. The standards for X-ray fluorescence analysis were prepared by the chelate precipitation method on polyvinyl chloride (PVC) membrane filter. And, the specimens were prepared to deposit various metal compounds of different chemical forms by the suspension method on PVC membrane filter, and they were determined with EDX and atomic absorption spectrometer (AAS). The results obtained were as follows. Though there is a difference by each element, an amount less than 3 microgram/cm2 per unit area makes it possible to undergo multielement analysis, that is, is has no influence on fine particle effect (particle size; under 5 microns). Then, effects of the X-ray intensity by different chemical forms are negligible. At the presence the neighboring element and other elements this technique showed greater precision by carrying out on corrective treatment, etc. The coefficient of variation of this technique was in the range of 2.5-6.5% at DDTC-Cu of 0.5-5.0 micrograms/cm2, with the limit of detection for As : 0.002 microgram/cm2, Zn : 0.003 microgram/cm2, Pb : 0.003 microgram/cm2, Cu : 0.004 microgram/cm2, Ni : 0.003 microgram/cm2, Fe : 0.005 microgram/cm2, Mn : 0.008 microgram/cm2, Cr : 0.013 microgram/cm2, respectively. Aerosols collected at the workplace were analyzed with EDX and AAS, and the obtained results showed good agreement with such regression line as y = 1.04 chi + 0.04, the coefficient of correlation being r = 0.995. From these results, this technique was found to be a very excellent method for monitoring of multielements in the workplace air.

  12. Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge.

    PubMed

    MacDonald, N A; Cappelli, M A; Hargus, W A

    2012-11-01

    A novel approach to time-synchronizing laser-induced fluorescence measurements to an oscillating current in a 60 Hz xenon discharge lamp using a continuous wave laser is presented. A sample-hold circuit is implemented to separate out signals at different phases along a current cycle, and is followed by a lock-in amplifier to pull out the resulting time-synchronized fluorescence trace from the large background signal. The time evolution of lower state population is derived from the changes in intensity of the fluorescence excitation line shape resulting from laser-induced fluorescence measurements of the 6s(')[1/2](1)(0)-6p(')[3/2](2) xenon atomic transition at λ = 834.68 nm. Results show that the lower state population oscillates at twice the frequency of the discharge current, 120 Hz.

  13. Collisional redistribution of radiation. II - The effects of degeneracy on the equations of motion for the density matrix. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.

  14. Average M shell fluorescence yields for elements with 70≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahoul, A., E-mail: ka-abdelhalim@yahoo.fr; LPMRN laboratory, Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030; Deghfel, B.

    2015-03-30

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement wasmore » typically obtained between our result and other works.« less

  15. Environment-sensitive fluorophores with benzothiadiazole and benzoselenadiazole structures as candidate components of a fluorescent polymeric thermometer.

    PubMed

    Uchiyama, Seiichi; Kimura, Kohki; Gota, Chie; Okabe, Kohki; Kawamoto, Kyoko; Inada, Noriko; Yoshihara, Toshitada; Tobita, Seiji

    2012-07-27

    An environment-sensitive fluorophore can change its maximum emission wavelength (λ(em)), fluorescence quantum yield (Φ(f)), and fluorescence lifetime in response to the surrounding environment. We have developed two new intramolecular charge-transfer-type environment-sensitive fluorophores, DBThD-IA and DBSeD-IA, in which the oxygen atom of a well-established 2,1,3-benzoxadiazole environment-sensitive fluorophore, DBD-IA, has been replaced by a sulfur and selenium atom, respectively. DBThD-IA is highly fluorescent in n-hexane (Φ(f) =0.81, λ(em) =537 nm) with excitation at 449 nm, but is almost nonfluorescent in water (Φ(f) =0.037, λ(em) =616 nm), similarly to DBD-IA (Φ(f) =0.91, λ(em) =520 nm in n-hexane; Φ(f) =0.027, λ(em) =616 nm in water). A similar variation in fluorescence properties was also observed for DBSeD-IA (Φ(f) =0.24, λ(em) =591 nm in n-hexane; Φ(f) =0.0046, λ(em) =672 nm in water). An intensive study of the solvent effects on the fluorescence properties of these fluorophores revealed that both the polarity of the environment and hydrogen bonding with solvent molecules accelerate the nonradiative relaxation of the excited fluorophores. Time-resolved optoacoustic and phosphorescence measurements clarified that both intersystem crossing and internal conversion are involved in the nonradiative relaxation processes of DBThD-IA and DBSeD-IA. In addition, DBThD-IA exhibits a 10-fold higher photostability in aqueous solution than the original fluorophore DBD-IA, which allowed us to create a new robust molecular nanogel thermometer for intracellular thermometry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Yeast-assisted synthesis of polypyrrole: Quantification and influence on the mechanical properties of the cell wall.

    PubMed

    Andriukonis, Eivydas; Stirke, Arunas; Garbaras, Andrius; Mikoliunaite, Lina; Ramanaviciene, Almira; Remeikis, Vidmantas; Thornton, Barry; Ramanavicius, Arunas

    2018-04-01

    In this study, the metabolism of yeast cells (Saccharomyces cerevisiae) was utilized for the synthesis of the conducting polymer - polypyrrole (Ppy).Yeast cells were modified in situ by synthesized Ppy. The Ppy was formed in the cell wall by redox-cycling of [Fe(CN) 6 ] 3-/4- , performed by the yeast cells. Fluorescence microscopy, enzymatic digestions, atomic force microscopy and isotope ratio mass spectroscopy were applied to determine both the polymerization reaction itself and the polymer location in yeast cells. Ppy formation resulted in enhanced resistance to lytic enzymes, significant increase of elasticity and alteration of other mechanical cell wall properties evaluated by atomic force microscopy (AFM). The suggested method of polymer synthesis allows the introduction of polypyrrole structures within the cell wall, which is build up from polymers consisting of carbohydrates. This cell wall modification strategy could increase the usefulness of yeast as an alternative energy source in biofuel cells, and in cell based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Investigation of Singly Ionized Iodine Spectroscopy in Support of Electrostatic Propulsion Diagnostics Development

    DTIC Science & Technology

    2012-07-02

    from complex user interactions due to the use of liquid lasing medium with finite lifetime. Solid state lasers such as titanium sapphire (Ti:Sapphire...transitions for laser -induced fluorescence of an accelerated atomic iodine singly charged ion (I+). While the second spectrum of iodine has been analyzed...diagnostics tools, such as laser -induced fluorescence (LIF), to examine the plasma acceleration within an electro-static plasma propulsion thruster. While

  18. Laser-Induced Fluorescence and Performance Analysis of the Ultra-Compact Combustor

    DTIC Science & Technology

    2008-06-01

    fiber as a sealant. .............................................................................................. 68  Figure 37. A view of AFIT’s flat...ratio cm Centimeters CO Carbon Monoxide CO2 Carbon Dioxide Cp Constant-pressure specific heat CxHy General formula of a hydrocarbon C2H4...Standard liters per minute T Temperature, thrust U Combustor inlet velocity v Velocity x Number of carbon atoms y Number of hydrogen atoms (A-X) OH

  19. Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure

    NASA Astrophysics Data System (ADS)

    Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus

    2018-01-01

    A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.

  20. RBS, SY-XRF, INAA and ICP-IDMS of antimony implanted in silicon - A multi-method approach to characterize and certify a reference material

    NASA Astrophysics Data System (ADS)

    Ecker, K. H.; Wätjen, U.; Berger, A.; Persson, L.; Pritzkow, W.; Radtke, M.; Riesemeier, H.

    2002-04-01

    A layer of Sb atoms, implanted with an energy of 400 keV and a nominal dose of 5×10 16 atoms/cm 2 into a high purity silicon wafer, was certified for its areal density (atoms/cm 2) using Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA) and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) and for its isotope ratio using INAA and ICP-IDMS. Excellent agreement between the results of the different independent methods was found. In the present work, the measurements of the homogeneity of the areal density of Sb, previously determined with RBS in spots having 1 mm diameter, are improved with synchrotron X-ray fluorescence analysis: Higher precision in even smaller sample spots allows to estimate a reduced inhomogeneity of the whole batch of samples of the order of only 0.4%. Thus the uncertainty of the certified value can further be reduced. Down to fractions of a chip with 0.3×0.4 mm 2 area, the areal density is now certified as (4.81±0.06)×10 16 Sb atoms/cm 2, where the expanded uncertainty 0.06 (coverage factor k=2) corresponds to only 1.2%. The relative merits of the different analytical methods are discussed.

  1. Photophysical characterization of fluorescent metal nanoclusters synthesized using oligonucleotides, proteins and small molecule ligands

    NASA Astrophysics Data System (ADS)

    Yeh, Hsin-Chih; Sharma, Jaswinder; Yoo, Hyojong; Martinez, Jennifer S.; Werner, James H.

    2010-02-01

    The size transition from bulk conducting metals to insulating nanoparticles and eventually to single atoms passes through the relatively unexplored few-atom nanocluster region. With dimensions close to the Fermi wavelength, these nanoclusters demonstrate molecule-like properties distinct from bulk metals or atoms, such as discrete and size-tunable electronic transitions which lead to photoluminescence. Current research aims to elucidate the fundamental photophysical properties of metal nanoclusters made by different means and based on different encapsulation agents. Here, we report the study of the photophysical properties, including quantum yields, lifetimes, extinction coefficients, blinking dynamics and sizes, of silver and gold nanoclusters synthesized using oligonucleotides, a protein (bovine serum albumin) and a Good's buffer molecule (MES, 2-(N-morpholino) ethanesulfonic acid) as encapsulation agents. We also investigate the change of photoluminescence as a function of temperature. Furthermore, we show that the fluorescent metal clusters can be used as a donor in forming a resonance energy transfer pair with a commercial organic quencher. These new fluorophores have great potential as versatile tools for a broad range of applications in biological and chemical detection.

  2. Laser flash photolysis studies of atmospheric free radical chemistry using optical diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.

    1993-01-01

    Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.

  3. Evaluation of uranium transitions for isotopically-selective laser induced fluorescence with diode lasers (technical report for ST064)

    NASA Astrophysics Data System (ADS)

    Cannon, B. D.

    1993-10-01

    Isotopically-selective excitation of uranium atoms by diode lasers can be the basis for a portable instrument to perform uranium isotopic assays in the field. Such an instrument would improve the ability of on-site inspections to detect and deter nuclear proliferation. Published and unpublished spectroscopic data on atomic uranium were examined to identify candidate transitions for isotopically-selective laser excitation with diode lasers. Eleven candidate transitions were identified and evaluated for their potential usefulness for a portable uranium assay instrument. Eight of these transitions are suitable for laser induced fluorescence using different excitation and detection wavelengths, which will improve sensitivity and elemental selectivity. Data sheets on the 25 uranium transitions in the wavelength range 629 nm to 1,000 nm that originate in the ground or first excited states of neutral atomic uranium are included. Each data sheet provides the wavelength, upper and lower energy levels, angular momentum quantum numbers, U-235 isotope shift (relative to U-238, and high-resolution spectra of weapons-grade uranium (93% U-235 and 7% U-238).

  4. Mirror-assisted coherent backscattering from the Mollow sidebands

    NASA Astrophysics Data System (ADS)

    Piovella, N.; Teixeira, R. Celistrino; Kaiser, R.; Courteille, Ph. W.; Bachelard, R.

    2017-11-01

    In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we show here that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance between the mirror and the atoms, due to the coherent interference between the carrier and the Mollow sidebands of the saturated resonant fluorescence spectrum emitted by the atoms. The setup thus represents a powerful platform to study the spectral properties of ensembles of correlated scatterers.

  5. Reactive thin polymer films as platforms for the immobilization of biomolecules.

    PubMed

    Feng, Chuan Liang; Zhang, Zhihong; Förch, Renate; Knoll, Wolfgang; Vancso, G Julius; Schönherr, Holger

    2005-01-01

    Spin-coated thin films of poly(N-hydroxysuccinimidyl methacrylate) (PNHSMA) on oxidized silicon and gold surfaces were investigated as reactive layers for obtaining platforms for biomolecule immobilization with high molecular loading. The surface reactivity of PNHSMA films in coupling reactions with various primary amines, including amine-terminated poly(ethylene glycol) (PEG-NH2) and fluoresceinamine, was determined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence microscopy, and ellipsometry measurements, respectively. The rate constants of PEG-NH2 attachment on the PNHSMA films were found to be significantly increased compared to the coupling on self-assembled monolayers (SAMs) of 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) on gold under the same conditions. More significantly, the PEG loading observed was about 3 times higher for the polymer thin films. These data indicate that the coupling reactions are not limited to the very surface of the polymer films, but proceed into the near-surface regions of the films. PNHSMA films were shown to be stable in contact with aqueous buffer; the swelling analysis, as performed by atomic force microscopy (AFM), indicated a film thickness independent swelling of approximately 2 nm. An increased loading was also observed by surface plasmon resonance for the covalent immobilization of amino-functionalized probe DNA. Hybridization of fluorescently labeled target DNA was successfully detected by fluorescence microscopy and surface plasmon resonance enhanced fluorescence spectroscopy (SPFS), thereby demonstrating that thin films of PNHSMA comprise an attractive and simple platform for the immobilization of biomolecules with high densities.

  6. 2-(2-Hydroxyphenyl)benzimidazole-based four-coordinate boron-containing materials with highly efficient deep-blue photoluminescence and electroluminescence.

    PubMed

    Zhang, Zhenyu; Zhang, Houyu; Jiao, Chuanjun; Ye, Kaiqi; Zhang, Hongyu; Zhang, Jingying; Wang, Yue

    2015-03-16

    Two novel four-coordinate boron-containing emitters 1 and 2 with deep-blue emissions were synthesized by refluxing a 2-(2-hydroxyphenyl)benzimidazole ligand with triphenylborane or bromodibenzoborole. The boron chelation produced a new π-conjugated skeleton, which rendered the synthesized boron materials with intense fluorescence, good thermal stability, and high carrier mobility. Both compounds displayed deep-blue emissions in solutions with very high fluorescence quantum yields (over 0.70). More importantly, the samples showed identical fluorescence in the solution and solid states, and the efficiency was maintained at a high level (approximately 0.50) because of the bulky substituents between the boron atom and the benzimidazole unit, which can effectively separate the flat luminescent units. In addition, neat thin films composed of 1 or 2 exhibited high electron and hole mobility in the same order of magnitude 10(-4), as determined by time-of-flight. The fabricated electroluminescent devices that employed 1 or 2 as emitting materials showed high-performance deep-blue emissions with Commission Internationale de L'Eclairage (CIE) coordinates of (X = 0.15, Y = 0.09) and (X = 0.16, Y = 0.08), respectively. Thus, the synthesized boron-containing materials are ideal candidates for fabricating high-performance deep-blue organic light-emitting diodes.

  7. Light Absorption and Excitation-Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure.

    PubMed

    Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro

    2016-10-18

    The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.

  8. Optical properties of novel environmentally benign biologically active ferrocenyl substituted chromophores: A detailed insight via experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Khan, Salman A.; Asiri, Abdullah M.; Al-Ghamdi, Najat Saeed M.; Zayed, Mohie E. M.; Sharma, Kamlesh; Parveen, Humaira

    2017-07-01

    Series of ferrocenyl substituted chromophores were synthesized via a reaction of acetyl ferrocene and a variety of aldehyde under microwave irradiation. The structure of synthesized compounds were established by spectroscopic (FT-IR, 1H NMR, 13C NMR, ESI-MS) and elemental analysis. UV-Vis and fluorescence spectroscopy measurements provided that all compounds have good absorbent and fluorescent properties. Fluorescence polarity studies demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, Stokes shift, oscillator strength and dipole moment, were investigated in order to explore the analytical potential of the synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria. The minimum inhibitory concentration was then determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors for both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Based on the density functional theory; total energy, the atomic orbital contribution to frontier orbitals: LUMO and HOMO, of all synthesized compounds were calculated to support the antibacterial activities.

  9. Comparative study of the double-K -shell-vacancy production in single- and double-electron-capture decay

    NASA Astrophysics Data System (ADS)

    Ratkevich, S. S.; Gangapshev, A. M.; Gavrilyuk, Yu. M.; Karpeshin, F. F.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Trzhaskovskaya, M. B.; Yakimenko, S. P.

    2017-12-01

    Background: A double-K -electron capture is a rare nuclear-atomic process in which two K electrons are captured simultaneously from the atomic shell. A "hollow atom" is created as a result of this process. In single-K -shell electron-capture decays, there is a small probability that the second electron in the K shell is excited to an unoccupied level or can (mostly) be ejected to the continuum. In either case, a double vacancy is created in the K shell. The relaxation of the double-K -shell vacancy, accompanied by the emission of two K -fluorescence photons, makes it possible to perform experimental studies of such rare processes with the large-volume proportional gas chamber. Purpose: The purpose of the present analysis is to estimate a double-K -shell vacancy creation probability per K -shell electron capture PK K of 81Kr, as well as to measure the half-life of 78Kr relative to 2 ν 2 K capture. Method: Time-resolving current pulse from the large low-background proportional counter (LPC), filled with the krypton sample, was applied to detect triple coincidences of "shaked" electrons and two fluorescence photons. Results: The number of K -shell vacancies per the K -electron capture, produced as a result of the shake-off process, has been measured for the decay of 81Kr. The probability for this decay was found to be PK K=(5.7 ±0.8 ) ×10-5 with a systematic error of (ΔPKK) syst=±0.4 ×10-5 . For the 78Kr(2 ν 2 K ) decay, the comparative study of single- and double-capture decays allowed us to obtain the signal-to-background ratio up to 15/1. The half-life T1/2 2 ν 2 K(g .s .→g .s .) =[1 .9-0.7+1.3(stat) ±0.3 (syst) ] ×1022 y is determined from the analysis of data that have been accumulated over 782 days of live measurements in the experiment that used samples consisted of 170.6 g of 78Kr. Conclusions: The data collected during low background measurements using the LPC were analyzed to search the rare atomic and nuclear processes. We have determined PKK exp for the E C decay of 81Kr, which are in satisfactory agreement with Z-2 dependence of PK K predicted by Primakoff and Porter. This made possible to more accurately determine the background contribution in the energy region of our interest for the search for the 2 K capture in 78Kr. The general procedure of data analysis allowed us to determine the half-life of 78Kr relative to 2 ν 2 K transition with a greater statistical accuracy than in our previous works.

  10. Geochemical background of zinc, cadmium and mercury in anthropically influenced soils in a semi-arid zone (SE, Spain)

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, M. L.; Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; Molina, J.; Tudela, M. L.; Hernández-Córdoba, M.

    2009-04-01

    This work seeks to establish the geochemical background for three potentially toxic trace elements (Zn, Cd and Hg) in a pilot zone included in the DesertNet project in the province of Murcia. The studied area, known as Campo de Cartagena, Murcia (SE Spain) is an area of intensive agriculture and has been much affected over the years by anthropic activity. The zone can be considered an experimental pilot zone for establishing background levels in agricultural soils. Sixty four samples were collected and corresponded to areas subjected to high and similar agricultural activity or soils with natural vegetation, which correspond to abandoned agricultural areas. The Zn content was determined by flame atomic absorption spectrometry. The Cd content was determined by electrothermal atomization atomic absorption spectrometry and mercury content was determined by atomic fluorescence spectrometry. Geostatistical analysis consisting of kriging and mapping was performed using the geostatistical analyst extension of ArcGIS 8.3. Zinc values ranged from 10 mg kg-1 to 151 mg kg-1, with an average value of 45 mg kg-1. Cadmium values ranged between 0.1 mg kg-1 and 0.9mg kg-1, with a mean value of 0.3 mg kg-1 and mercury values ranged from 0.1 mg kg-1 to 2.3 mg kg-1, with a mean value of 0.5 mg kg-1. At a national level, the Spanish Royal Decree 9/2005 proposes toxicological and statistical approaches to establish background values. According to the statistical approach, background values consist of the median value for the selected element. The background values for Zn, Cd and Hg in the studied area were 40 mg kg-1 for Zn, 0.3 mg kg-1 for Cd and 0.4 mg kg-1 for Hg.

  11. Optical investigations of plasma properties in the interior of arcjet thrusters

    NASA Astrophysics Data System (ADS)

    Storm, Paul Victor

    1997-08-01

    Arcjet thrusters are electrically powered rockets used for satellite or space vehicle propulsion. The benefit of these thrusters over conventional chemical rockets is the higher exhaust velocity, which translates into less propellant mass required for a given impulse. With the desire to reduce launch costs, arcjets are destined to become one of a number of standard electric propulsion thrusters for satellite station-keeping roles, and have been proposed for more demanding propulsion applications such as longitude correction and LEO to GEO transfer. Given such a potential range of applications, there is a desire to increase both thermal efficiency and exhaust velocity of these rockets, as well as broaden their operating thrust range. Improvements in arcjet design and development will depend to a great extent on a better understanding of the plasma and gasdynamic processes occurring within the arcjet nozzle. Much of this understanding will arise through the use of numerical modeling; however as arcjet models are presently in the developmental stage, there is a considerable need to validate models by experimentation, primarily through optical measurements of plasma properties. This dissertation presents emission and laser-induced fluorescence spectroscopic analyses of hydrogen arcjets for the purpose of numerical model validation. Optical diagnostics of the plasma emission from the arcjet nozzle exit plane and from within the nozzle throat have yielded a wealth of properties, including cathode, electron and hydrogen atom temperatures, and number densities of electrons and excited-state hydrogen atoms. Measurements at the nozzle exit are of great significance as the performance and efficiency of the thruster is determined by the state of the exhausting plasma. Plasma properties within the gasdynamic expansion region of the nozzle were measured using laser-induced fluorescence spectroscopy of the Balmer-alpha transition of atomic hydrogen. Measurements of axial velocity, hydrogen atom temperature and electron number density were obtained. With the exception of the electron density measurements, the results are in very good agreement with a recently developed arcjet model, demonstrating the capacity and potential of the numerical model.

  12. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  13. X-ray fluorescence analysis of wear metals in used lubricating oils

    NASA Technical Reports Server (NTRS)

    Maddox, W. E.; Kelliher, W. C.

    1986-01-01

    Used oils from several aircraft at NASA's Langley Research Center were analyzed over a three year period using X-ray fluorescence (XRF) and atomic emission spectrometry. The results of both analyses are presented and comparisons are made. Fe and Cu data for oil from four internal combustion engines are provided and XRF and atomic emission spectrometry measurements were found to be in perfect agreement. However, distributions were found in the case of oil from a jet aircraft engine whereby the latter method gave values for total iron concentration in the oil and did not distinguish between suspended particles and oil additives. XRF does not have these particle-size limitations; moreover, it is a faster process. It is concluded that XRF is the preferred method in the construction of a man-portable oil wear analysis instrument.

  14. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ.

    PubMed

    Matsunaga, Tsunenori; Ishizaki, Hidetaka; Tanabe, Shuji; Hayashi, Yoshihiko

    2009-05-01

    Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing. The experiment was performed at the Photon Factory. Synchrotron radiation was monochromatized and X-rays were focused into a small beam spot. The X-ray fluorescence (XRF) from the sample was detected with a silicon (Si) (lithium (Li)) detector. X-ray beam energy was tuned to detect Zn. The examined samples were small enamel fragments remineralized after chewing calcium phosphate-containing gum in situ. The incorporation of Zn atom into hydroxyapatite (OHAP), the main component of enamel, was measured using Zn K-edge extended X-ray absorption fine structure (EXAFS) with fluorescence mode at the SPring-8. A high concentration of Zn was detected in a superficial area 10-microm deep of the sectioned enamel after gum chewing. This concentration increased over that in the intact enamel. The atomic distance between Zn and O in the enamel was calculated using the EXAFS data. The analyzed atomic distances between Zn and O in two sections were 0.237 and 0.240 nm. The present experiments suggest that Zn is effectively incorporated into remineralized enamel through the physiological processes of mineral deposition in the oral cavity through gum-chewing and that Zn substitution probably occurred at the calcium position in enamel hydroxyapatite.

  15. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  16. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  17. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE PAGES

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...

    2017-06-19

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  18. Laser induced fluorescence in Ar and He plasmas with a tunable diode laser

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Scime, E. E.

    2003-10-01

    A diode laser based laser induced fluorescence (LIF) diagnostic that uses an inexpensive diode laser system is described. This LIF diagnostic has been developed on the hot helicon experiment (HELIX) plasma device. The same diode laser is used to alternatively pump Ar II and He I transitions to obtain argon ion and atomic helium temperatures, respectively. The 1.5 MHz bandwidth diode laser has a Littrow external cavity with a mode-hop free tuning range up to 14 GHz (≈0.021 nm) and a total power output of about 12 mW. Wavelength scanning is achieved by varying the voltage on a piezoelectric controlled grating located within the laser cavity. The fluorescence radiation is monitored with a photomultiplier detector. A narrow band interference filter is used to eliminate all but the plasma radiation in the immediate vicinity of the fluorescence wavelength. Lock-in amplification is used to isolate the fluorescence signal from noise and electron-impact induced radiation. For the Ar ion, the laser tuned at 668.43 nm is used to pump the 3d 4F7/2 Ar II metastable level to the 4p 4D5/2 level. The 442.60 nm fluorescence radiation between the 4p 4D5/2 and the 4s 4P3/2 levels is captured by the photomultiplier tube. For atomic He, the laser is tuned at 667.82 nm to pump a fraction of the electron population from the 21P state to the 31D upper level. Although the 21P level is not a metastable, the close proximity of 21S metastable makes this new He I LIF scheme possible. In this scheme, a fraction of the laser-excited electrons undergo collisional excitation transfer from the 31D to the 31P level. In turn, the 31P state decays to the metastable 21S by emitting 501.57 nm fluorescence photons.

  19. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles as fluorescent probe for sensing of folic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan

    2016-09-15

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO{sub 3}-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn{sup 2+} ions of Zn-Al-CO{sub 3}-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO{sub 3}-LDH particles exhibited highly sensitive and selective response to FA over othermore » common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO{sub 3} groups in ANTS-anchored on the surface of Zn-Al-CO{sub 3}-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO{sub 3}-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution. - Highlights: • A novel fluorescent nanosensor has been developed. • The sensor exhibited highly sensitive and selective response to FA. • The fluorescence quenching was fitted to Stern–Volmer equation. • The linear response range was 1–200 μM with a limit of detection of 0.1 μM.« less

  20. A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe3.

    PubMed

    Wang, Lei; Yang, Xiaodong; Chen, Xiuli; Zhou, Yuping; Lu, Xiaodan; Yan, Chenggong; Xu, Yikai; Liu, Ruiyuan; Qu, Jinqing

    2017-03-01

    A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe 3+ and was able to detect Fe 3+ in aqueous solution with low detection limit of 0.511μM. Job plot showed that the binding stoichiometry of 1 with Fe 3+ was 1:1. Further observations of 1 H NMR titration suggested that coordination interaction between Fe 3+ and nitrogen atom on CN bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe 3+ in living cell and bioimaging. Copyright © 2016. Published by Elsevier B.V.

  1. The application of k-shell x-ray fluorescence to determine bone lead burden and its correlation with hypertension among African Americans in Gadsden County, Florida

    NASA Astrophysics Data System (ADS)

    Jackson-Edwards, Patrice

    Photons from k shell x-ray fluorescence illuminates lead atoms by measuring the characteristic x-rays which indicate the abundance of 210Pb present in a sample. The measurement utilizes a 109Cd source and a low-energy germanium detector, which has emerged as the best available technique for estimating cumulative exposure to lead in adults and for predicting lead-associated risks for adult chronic disease outcomes such as hypertension. The main focus of this study, was to show the correlation between bone lead concentration at the tibia (mean +/- standard deviation of 7+/-1 ppm) and patella (mean +/- standard deviation of 6+/-1 ppm) bone sites and hypertension (mean +/- standard deviation of the systolic standing 143+/-18mmHg, systolic sitting 140+/-17mmHg, diastolic standing 88+/-14 mmHg, and diastolic sitting 81+/-9 mmHg), among the 67 Gadsden County subjects that participated in this study. This was accomplished using FAMU's setup for the detector. The gamma rays emitted by the 109Cd source are scattered by atomic electrons in the k-shell. Excited electrons in the k-shell then spontaneously fluoresce at 88 keV as a signature of lead in the bone. The 88 keV photons are then detected at an angle of 180 degrees with respect to the incident x-ray direction and are detected by the Canberra Germanium solid-state detector bathed in liquid nitrogen. Results show that in this population all lead biomarkers (tibia lead, patella lead, and blood lead) were not significant contributors to the occurrence of hypertension. In the final logistic regression analysis, age and gender were predictors for the occurrence of hypertension at the p<0.05 level in the overall population. This study will help contribute to the understanding of the body's management of lead toxicity and to KXRF techniques currently used in physics research.

  2. An X-ray fluorescence spectrometer and its applications in materials studies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Han, K. S.

    1977-01-01

    An X-ray fluorescence system based on a Co(57) gamma-ray source has been developed. The system was used to calculate the atomic percentages of iron implanted in titanium targets. Measured intensities of Fe (k-alpha + k-beta) and Ti (k-alpha + k-beta) X-rays from the Fe-Ti targets are in good agreement with the calculated values based on photoelectric cross sections of Ti and Fe for the Co(57) gamma rays.

  3. Fluorescent bioassays for toxic metals in milk and yoghurt

    PubMed Central

    2012-01-01

    Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products. PMID:23098077

  4. Fluorescent bioassays for toxic metals in milk and yoghurt.

    PubMed

    Siddiki, Mohammad Shohel Rana; Ueda, Shunsaku; Maeda, Isamu

    2012-10-25

    From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow's milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

  5. Simultaneous Laser-induced Fluorescence of Nitric Oxide and Atomic Oxygen in the Hypersonic Materials Environment Test System Arcjet Facility

    NASA Technical Reports Server (NTRS)

    Johansen, Craig; Lincoln, Daniel; Bathel, Brett; Inman, Jennifer; Danehy, Paul

    2014-01-01

    Simultaneous nitric oxide (NO) and atomic oxygen (O) laser induced fluorescence (LIF) experiments were performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at the NASA Langley Research Center. The data serves as an experimental database for validation for chemical and thermal nonequilibrium models used in hypersonic flows. Measurements were taken over a wide range of stagnation enthalpies (6.7 - 18.5 MJ/kg) using an Earth atmosphere simulant with a composition of 75% N2, 20% O2, and 5% Ar (by volume). These are the first simultaneous measurements of NO and O LIF to be reported in literature for the HYMETS facility. The maximum O LIF mean signal intensity was observed at a stagnation enthalpy of approximately 12 MJ/kg while the maximum NO LIF mean signal intensity was observed at a stagnation enthalpy of 6.7 MJ/kg. Experimental results were compared to simple fluorescence model that assumes equilibrium conditions in the plenum and frozen chemistry in the isentropic nozzle expansion (Mach 5). The equilibrium calculations were performed using CANTERA v2.1.1 with 16 species. The fluorescence model captured the correlation in mean O and NO LIF signal intensities over the entire range of stagnation enthalpies tested. Very weak correlations between single-shot O and NO LIF intensities were observed in the experiments at all of the stagnation enthalpy conditions.

  6. Analysis of Indium Tin Oxide Film Using Argon Fluroide (ArF) Laser-Excited Atomic Fluorescence of Ablated Plumes.

    PubMed

    Ho, Sut Kam; Garcia, Dario Machado

    2017-04-01

    A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm 2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

  7. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    PubMed

    Saha, Dipika; Negi, Devendra P S

    2018-01-15

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Experimental and theoretical study of the electronic spectrum of the BAr2 complex: Transition to the excited valence B(2s2p2 2D) state

    NASA Astrophysics Data System (ADS)

    Krumrine, Jennifer R.; Alexander, Millard H.; Yang, Xin; Dagdigian, Paul J.

    2000-03-01

    The 2s2p22D←2s22p 2P valence transition in the BAr2 cluster is investigated in a collaborative experimental and theoretical study. Laser fluorescence excitation spectra of a supersonic expansion of B atoms entrained in Ar at high source backing pressures display several features not assignable to the BAr complex. Resonance fluorescence is not observed, but instead emission from the lower 3s state. Size-selected fluorescence depletion spectra show that these features in the excitation spectrum are primarily due to the BAr2 complex. This electronic transition within BAr2 is modeled theoretically, similarly to our earlier study of the 3s←2p transition [M. H. Alexander et al., J. Chem. Phys. 106, 6320 (1997)]. The excited potential energy surfaces of the fivefold degenerate B(2s2p22D) state within the ternary complex are computed in a pairwise-additive model employing diatomic BAr potential energy curves which reproduce our previous experimental observations on the electronic states emanating from the B(2D)+Ar asymptote. The simulated absorption spectrum reproduces reasonably well the observed fluorescence depletion spectrum. The theoretical model lends insight into the energetics of the approach of B to multiple Ar atoms, and how the orientation of B p-orbitals governs the stability of the complex.

  9. Fluorescence properties and conformational stability of the beta-hemocyanin of Helix pomatia.

    PubMed

    Idakieva, Krassimira; Siddiqui, Nurul I; Parvanova, Katja; Nikolov, Peter; Gielens, Constant

    2006-04-01

    The beta-hemocyanin (beta-HpH) is one of the three dioxygen-binding proteins found freely dissolved in the hemolymph of the gastropodan mollusc Helix pomatia. The didecameric molecule (molecular mass 9 MDa) is built up of only one type of subunits. The fluorescence properties of the oxygenated and apo-form (copper-deprived) of the didecamer and its subunits were characterized. Upon excitation of the hemocyanins at 295 or 280 nm, tryptophyl residues buried in the hydrophobic interior of the protein determine the fluorescence emission. This is confirmed by quenching experiments with acrylamide, cesium chloride and potassium iodide. The copper-dioxygen system at the binuclear active site quenches the tryptophan emission of the oxy-beta-HpH. The removal of this system increases the fluorescence quantum yield and causes structural rearrangement of the microenvironment of the emitting tryptophyl residues in the apo-form. Time-resolved fluorescence measurements show that the oxygenated and copper-deprived forms of the beta-HpH and its subunits exist in different conformations. The thermal stability of the oxy- and apo-beta-HpH is characterized by a transition temperature (Tm) of 84 degrees C and 63 degrees C, respectively, obtained by differential scanning calorimetry. Increase of the temperature influences the active site at lower temperatures than the environments of tryptophans and tyrosines causing a loss of oxygen bound to the copper atoms. This process is, at least partially, reversible as after cooling of the protein samples, around 60% reinstatement of the copper-peroxide band has been observed. The results confirm the role of the copper-dioxygen complex for the stabilization of the hemocyanin structure in solution. The other important stabilizing factor is oligomerization of the hemocyanin molecule.

  10. Absolute rate of the reaction of Cl(p-2) with molecular hydrogen from 200 - 500 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen are measured from 200 - 500 K using the flash photolysis-resonance fluorescence technique. The results are compared with previous work and are discussed with particular reference to the equilibrium constant for the reaction and to relative rate data for chlorine atom reactions. Theoretical calculations, using the BEBO method with tunneling, give excellent agreement with experiment.

  11. A novel strategy for estimation of selective photochromism by the fluorescence change in a multiswitchable dithienylethene system

    NASA Astrophysics Data System (ADS)

    Li, Ziyong; Xie, Yanfu; He, Chaojun; Li, Chaoyang; Li, Yanbo; Ya, Huiyuan

    2017-06-01

    Dithienylethenes 1 and 2, consisting of three photochromic units linked by imidazole bridges, together with its N-methylated derivatives 3 and 4, have been synthesized. Their photochromic properties and fluorescence behaviors have also been investigated in solution by irradiation with various wavelengths of UV light. It was found that the dithienylethene 1 showed selective photochromism, indicated by the fluorescence change upon irradiation with 365 nm and 302 nm light. However, dithienylethenes 2, 3 and 4 only underwent a photocyclization reaction in the middle switchable unit under the same conditions. Moreover, for dithienylethenes 2 and 4, introduction of fluorine atoms on the cyclopentene evidently enhanced the photochromic properties compared with perhydro-substituted dithienylethenes 1 and 3. And dithienylethene 3 could act as one potential fluorescent molecular switch.

  12. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  13. Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole.

    PubMed

    Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi

    2009-01-01

    The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. Time-resolved laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  15. Determination of fluorine concentrations using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry to analyze fluoride precipitates.

    NASA Astrophysics Data System (ADS)

    Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.

    2015-12-01

    In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.

  16. Determination of wear metals in engine oil by mild acid digestion and energy dispersive X-ray fluorescence spectrometry using solid phase extraction disks.

    PubMed

    Yang, Zheng; Hou, Xiandeng; Jones, Bradley T

    2003-03-10

    A simple, particle size-independent spectrometric method has been developed for the multi-element determination of wear metals in used engine oil. A small aliquot (0.5 ml) of an acid-digested oil sample is spotted onto a C-18 solid phase extraction disk to form a uniform thin film. The dried disk is then analyzed directly by energy dispersive X-ray fluorescence spectrometry. This technique provides a homogeneous and reproducible sample surface to the instrument, thus overcoming the typical problems associated with uneven particle size distribution and sedimentation. As a result, the method provides higher precision and accuracy than conventional methods. Furthermore, the disk sample may be stored and re-analyzed or extracted at a later date. The signals arising from the spotted disks, and the calibration curves constructed from them, are stable for at least 2 months. The limits of detection for Fe, Cu, Zn, Pb, and Cr are 5, 1, 4, 2, and 4 microg g(-1), respectively. Recoveries of these elements from spiked oil samples range from 92 to 110%. The analysis of two standard reference materials and a used oil sample produced results comparable to those found by inductively coupled plasma atomic emission spectrometry.

  17. Introducing double polar heads to highly fluorescent Thiazoles: Influence on supramolecular structures and photonic properties.

    PubMed

    Kaufmann, M; Hupfer, M L; Sachse, T; Herrmann-Westendorf, F; Weiß, D; Dietzek, B; Beckert, R; Presselt, M

    2018-04-30

    Supramolecular structures determine properties of optoelectronically active materials and can be tailored via the Langmuir-Blodgett (LB) technique. Interactions between dyes can cause high crystallinities of Langmuir monolayers, thus rendering retaining their integrity during the LB-deposition challenging. However, increasing degrees of freedom exclusively at the polar anchoring moieties of dyes might improve processability without perturbing the dye's optoelectronic properties nor the function-determining crystallinity of the layer. (Amphiphilic) thiazole dyes without, with a mono-polar, and with a double-polar anchor were synthesized, whereas the two constituting polar moieties of the latter derivate are separated by a flexible alkyl chain. The supramolecular structures and crystallinities of Langmuir and LB monolayers were characterized by means of LB isotherms, atomic force microscopy and polarization-resolved fluorescence spectroscopy. As compared to the mono-polar reference the introduction of a flexible double-polar head did not deteriorate UV-vis absorption, emission or electrochemical properties of the thiazole but significantly extended the range of constant compressibility modulus, thus indicating improved processability of the Langmuir monolayers. Indeed, AFM studies revealed that the integrity of the monolayers could be retained during LB-deposition. Additionally, also the underlying supramolecular structure of the chromophore moieties is largely identical to those obtained from the mono-polar reference thiazoles. Copyright © 2018. Published by Elsevier Inc.

  18. Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays

    NASA Astrophysics Data System (ADS)

    Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim

    2017-08-01

    Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.

  19. Atmospheric reactivity of alcohols, thiols and fluoroalcohols with chlorine atoms

    NASA Astrophysics Data System (ADS)

    Garzon Ruiz, Andres

    Alcohols, thiols and fluoroalcohols are volatile organic compounds (VOCs) which are emitted to the atmosphere from both natural (vegetation, oceans, volcanoes, etc.) and anthropogenic sources (fuels, solvents, wastewater, incinerators, refrigerants, etc.). These pollutants can be eliminated from the troposphere by deposition on the terrestrial surface, direct photolysis or reaction with different tropospheric oxidants. Reactions of VOCs with tropospheric oxidants are involved in the well-known atmospheric phenomenon of photochemical smog or the production of tropospheric ozone. The oxidation of these VOCs in the troposphere is mainly initiated by reaction with OH radicals during the daytime and with NO radicals at night. However, in recent years, the oxidation by chlorine atoms (Cl) has gained great importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments. In general, Cl atoms are much more reactive species than OH and NO; radicals and therefore low concentrations of Cl may compete with OH and NO3 in hydrocarbon oxidation processes. The main source of tropospheric Cl atoms is believed to be the photolysis of chlorine-containing molecules generated by heterogeneous reactions of sea salt aerosols. It has also been proposed that Cl atoms, produced in the photolysis of Cl2 emitted from industrial processes, may enhance hydrocarbon oxidation rates and ozone production in urban environments. In this work, a kinetic, theoretical and mechanistic study of the reaction of several alcohols, thiols, and fluoroalcohols with Cl atoms has been carried out. Pulsed laser photolysis-fluorescence resonance (PLP-RF) technique was used for the kinetic study as a function of temperature and pressure. An environmental chamber-Fourier transform infrared (FTIR) system was also employed in the kinetic studies. Tropospheric lifetimes of these pollutants were estimated using obtained kinetic data. Products of these reactions were determined by FTIR and derivatization with 2,4-dinitrophenylhydrazine and HPLC analysis. Finally, in order to determine the main reaction pathways a theoretical study at QCISD(T)/6-311G**//MP2(Full)(6-311C** level was performed for each reaction.

  20. Advanced Spectral Library (ASTRAL): Atomic Fluorescence in Cool, Evolved Stars

    NASA Astrophysics Data System (ADS)

    Carpenter, Ken G.; Nielsen, Krister E.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres) collected a definitive set of representative, high-resolution (R~46,000 in the FUV up to ~1700 Å, R~30,000 for 1700-2150 Å, and R~114,000 >2150 Å) and high signal/noise (S/N>100) UV spectra of eight F-M evolved cool stars. These extremely high-quality STIS UV echelle spectra are available from the HST archive and from the Univ. of Colorado (http://casa.colorado.edu/~ayres/ASTRAL/) and will enable investigations of a broad range of problems -- stellar, interstellar, and beyond -- for many years. In this paper, we extend our study of the very rich emission-line spectra of the four evolved K-M stars in the sample, Beta Gem (K0 IIIb), Gamma Dra (K5 III), Gamma Cru (M3.4 III), and Alpha Ori (M2 Iab), to study the atomic fluorescence processes operating in their outer atmospheres. We summarize the pumping transitions and fluorescent line products known on the basis of previous work (e.g. Carpenter 1988, etc.) and newly identified in our current, on-going analysis of these extraordinary ASTRAL STIS spectra.

  1. Measurements of neutral and ion velocity distribution functions in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Svarnas, Panagiotis; Romadanov, Iavn; Diallo, Ahmed; Raitses, Yevgeny

    2015-11-01

    Hall thruster is a plasma device for space propulsion. It utilizes a cross-field discharge to generate a partially ionized weakly collisional plasma with magnetized electrons and non-magnetized ions. The ions are accelerated by the electric field to produce the thrust. There is a relatively large number of studies devoted to characterization of accelerated ions, including measurements of ion velocity distribution function using laser-induced fluorescence diagnostic. Interactions of these accelerated ions with neutral atoms in the thruster and the thruster plume is a subject of on-going studies, which require combined monitoring of ion and neutral velocity distributions. Herein, laser-induced fluorescence technique has been employed to study neutral and single-charged ion velocity distribution functions in a 200 W cylindrical Hall thruster operating with xenon propellant. An optical system is installed in the vacuum chamber enabling spatially resolved axial velocity measurements. The fluorescence signals are well separated from the plasma background emission by modulating the laser beam and using lock-in detectors. Measured velocity distribution functions of neutral atoms and ions at different operating parameters of the thruster are reported and analyzed. This work was supported by DOE contract DE-AC02-09CH11466.

  2. Fluorescence quenching and the "ring-mode" to "red-mode" transition in alkali inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bazurto, R.; Camparo, J.

    2018-01-01

    The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, A. S.; Debefve, L. M.; Gates, B. C., E-mail: bcgates@ucdavis.edu

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell andmore » a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.« less

  4. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    NASA Astrophysics Data System (ADS)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan

    2016-07-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.

  5. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  6. An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo.

    PubMed

    Lozano-Torres, Beatriz; Galiana, Irene; Rovira, Miguel; Garrido, Eva; Chaib, Selim; Bernardos, Andrea; Muñoz-Espín, Daniel; Serrano, Manuel; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-07-05

    A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.

  7. M shell X-ray production cross sections and fluorescence yields for the elements with 71 <= Z <= 92 using 5.96 keV photons

    NASA Astrophysics Data System (ADS)

    Puri, S.; Mehta, D.; Chand, B.; Singh, Nirmal; Mangal, P. C.; Trehan, P. N.

    1993-03-01

    Total M X-ray production (XRP) cross sections for ten elements in the atomic number region 71 ≤ Z ≤ 92 were measured at 5.96 keV incident photon energy. The average M shell fluorescence yields < overlineωM> have also been computed using the present measured cross section values and the theoretical M shell photoionisation cross sections. The results are compared with theoretical values.

  8. Determination of hydrogen sulfide and volatile thiols in air samples by mercury probe derivatization coupled with liquid chromatography-atomic fluorescence spectrometry.

    PubMed

    Bramanti, Emilia; D'Ulivo, Lucia; Lomonte, Cristina; Onor, Massimo; Zamboni, Roberto; Raspi, Giorgio; D'Ulivo, Alessandro

    2006-10-02

    A new procedure is proposed for the sampling and storage of hydrogen sulphide (H2S) and volatile thiols (methanethiol or methyl mercaptan, ethanethiol and propanethiol) for their determination by liquid chromatography. The sampling procedure is based on the trapping/pre-concentration of the analytes in alkaline aqueous solution containing an organic mercurial probe p-hydroxymercurybenzoate, HO-Hg-C6H4-COO- (PHMB), where they are derivatized to stable PHMB complexes based on mercury-sulfur covalent bonds. PHMB complexes are separated on a C18 reverse phase column, allowing their determination by liquid chromatography coupled with sequential non-selective UV-vis (DAD) and mercury specific (chemical vapor generation atomic fluorescence spectrometry, CVGAFS) on-line detectors. PHMB complexes, S(PHMB)2CH3S-PHMB, C2H5S-PHMB and C3H7S-PHMB, are stable alt least for 12 h at room temperature and for 3 months if stored frozen (-20 degrees C). The best analytical figures of merits in the optimized conditions were obtained by CVGAFS detection, with detection limits (LODc) of 9.7 microg L(-1) for H2S, 13.7 microg L(-1) for CH(3)SH, 17.7 microg L(-1) for C2H5SH and 21.7 microg L(-1) for C3H7SH in the trapping solution in form of RS-PHMB complexes, the relative standard deviation (R.S.D.) ranging between 1.0 and 1.5%, and a linear dynamic range (LDR) between 10 and 9700 microg L(-1). Conventional UV absorbance detectors tuned at 254 nm can be employed as well with comparable R.S.D. and LDR, but with LODc one order of magnitude higher than AFS detector and lower specificity. The sampling procedure followed by LC-DAD-CVGAFS analysis has been validated, as example, for H2S determination by a certified gas permeation tube as a source of 3.071+/-0.154 microg min(-1) of H2S, giving a recovery of 99.8+/-7% and it has been applied to the determination of sulfur compounds in real gas samples (biogas and the air of a plant for fractional distillation of crude oil).

  9. Two novel magnesium(II) meso-tetraphenylporphyrin-based coordination complexes: Syntheses, combined experimental and theoretical structures elucidation, spectroscopy, photophysical properties and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Amiri, Nesrine; Hajji, Melek; Taheur, Fadia Ben; Chevreux, Sylviane; Roisnel, Thierry; Lemercier, Gilles; Nasri, Habib

    2018-02-01

    Two novel magnesium(II) tetraphenylporphyrin-based six-coordinate complexes; bis(hexamethylenetetramine)(5,10,15,2O tetrakis[4(benzoyloxy)phenyl]porphinato) magnesuim(II) (1) and bis(1,4-diazabicyclo(2.2.2)octane) (5,10,15,2O-tetrakis[4- (benzoyloxy)phenyl]porphinato)magnesium(II) (2) have been synthesised and confirmed by proton nuclear magnetic resonance, mass spectrometry, elemental analysis and IR spectroscopy. Both crystal structures were determined and described by single crystal X-ray diffraction analysis and Hirshfeld surfaces computational method. All Mg(II) atoms are surrounded by four porphyrin nitrogen atoms and two axial ligands coordinated to the metal ion through one nitrogen atom, forming a regular octahedron. In both complexes, molecular structures and three-dimensional framework are stabilised by inter-and intramolecular C-H ⋯O and C-H ⋯N hydrogen bonds, and by weak C-H ⋯Cg π interactions. UV-visible and Fluorescence investigations, respectively, show that studied complexes have a strong absorption in red part and exhibit an emission in the blue region. The HOMO-LUMO energy gap values, modelled using the DFT approach, indicates that both studied compounds can be classified as semiconductors. The role of these complexes as novel antibacterial agents was also performed.

  10. Towards Precision Measurement of the 21S0-31D2 Two-Photon Transition in Atomic Helium

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jan; Guan, Yu-Chan; Suen, Te-Hwei; Wang, Li-Bang; Shy, Jow-Tsong

    2017-04-01

    We intend to accurately measure the frequency for 2S-3D two-photon transition and to deduce the 2S ionization energy to an accuracy below 100 kHz from the theoretical calculation of the 3D state. In this talk, we present a precision measurement of the 21S0 -31D2 two-photon transition in atomic helium at 1009 nm. A master oscillator power amplifier (MOPA) is seeded by an external cavity diode laser (ECDL) is constructed to generate more than 700 mW laser power with TEM00 beam profile at 1009 nm. To observe the two-photon transition, a helium cell is placed inside a power enhancement optical cavity and the helium atoms at 21S metastable level are prepared by a pulsed RF discharge and monitor the 668 nm 31D2 to 21P1 fluorescence after RF discharge is turned off . The absolute frequency metrology of the ECDL is carried out by an Er-fiber optical frequency comb (OFC). The two-photon spectrum is obtained by tuning the repetition frequency of the OFC. The 21S0-31D2 frequency is determined to be 594414291.967 (80) MHz in He-4. More results will be presented at the annual meeting.

  11. Polarization Spectroscopy and Collisions in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2009-05-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.

  12. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Smart polymer brush nanostructures guide the self-assembly of pore-spanning lipid bilayers with integrated membrane proteins

    NASA Astrophysics Data System (ADS)

    Wilhelmina de Groot, G.; Demarche, Sophie; Santonicola, M. Gabriella; Tiefenauer, Louis; Vancso, G. Julius

    2014-01-01

    Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated atom transfer radical polymerization (ATRP), resulting in sensor chips that can be successfully reused over several assays. His-tagged proteins are selectively and reversibly bound to the nitrilotriacetic acid (NTA) functionalization of the PMAA brush, and consequently lipid bilayer membranes are formed. The enhanced membrane resistance as determined by electrochemical impedance spectroscopy and free diffusion of dyed lipids observed as fluorescence recovery after photobleaching confirmed the presence of lipid bilayers. Immobilization of the His-tagged membrane proteins on the NTA-modified PMAA brush near the pore edges is characterized by fluorescence microscopy. This system allows us to adjust the protein density in free-standing bilayers, which are stabilized by the polymer brush underneath. The potential application of the integrated platform for ion channel protein assays is demonstrated.

  14. Methods of chemical and phase composition analysis of gallstones

    NASA Astrophysics Data System (ADS)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  15. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  16. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less

  17. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Resonance fluorescence spectrum in a two-band photonic bandgap crystal

    NASA Astrophysics Data System (ADS)

    Lee, Ray-Kuang; Lai, Yinchieh

    2003-05-01

    Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.

  19. Investigation of the binding between pepsin and nucleoside analogs by spectroscopy and molecular simulation.

    PubMed

    Li, Zhen; Li, Zhigang; Yang, Lingling; Xie, Yuanzhe; Shi, Jie; Wang, Ruiyong; Chang, Junbiao

    2015-03-01

    In this paper, the interactions of pepsin with CYD (cytidine) or nucleoside analogs, including FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine) and CMP (cytidine monophosphate), were investigated by fluorescence, UV-visible absorption and synchronous fluorescence spectroscopy under mimic physiological conditions. The results indicated that FNC (CYD/CMP) caused the fluorescence quenching by the formation of complex. The binding constants and thermo-dynamic parameters at three different temperatures were obtained. The hydrophobic and electrostatic interactions were the predominant intermolecular forces to stabilize the complex. The F atom in FNC might weaken the binding of nucleoside analog to pepsin. Results showed that CYD was the strongest quencher and bound to pepsin with higher affinity.

  20. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed four separate Pb images, as shown in Fig.1. Using these images, we could obtain acute and obtuse rhombohedral structures of the crystal unit cells. Moreover, the Pb-Pb correlated images reconstructed from Pb Lα holograms showed a local structure of body center-like 2a0 ×2a0 × 2a0 superlattice, proving a rigid 3D network structural model combining the two kinds of rhombohedrons. This superstructure are believed to play an important role in the relaxor behaviour of PMN at atomic level[3].jmicro;63/suppl_1/i13/DFU047F1F1DFU047F1Fig. 1.3D images of the nearest Pb and O atoms around Nb in Pb(Mg1/3Nb2/3)O3. The cube represents 1/8 of the unit cell. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Multimodal Sensing Strategy Using pH Dependent Fluorescence Switchable System

    NASA Astrophysics Data System (ADS)

    Muthurasu, A.; Ganesh, V.

    2016-12-01

    Biomolecules assisted preparation of fluorescent gold nanoparticles (FL-Au NPs) has been reported in this work using glucose oxidase enzyme as both reducing and stabilizing agent and demonstrated their application through multimodal sensing strategy for selective detection of cysteine (Cys). Three different methods namely fluorescence turn OFF-ON strategy, naked eye detection and electrochemical methods are used for Cys detection by employing FL-Au NPs as a common probe. In case of fluorescence turn-OFF method a strong interaction between Au NPs and thiol results in quenching of fluorescence due to replacement of glucose oxidase by Cys at neutral pH. Second mode is based on fluorescence switch-ON strategy where initial fluorescence is significantly quenched by either excess acid or base and further addition of Cys results in appearance of rosy-red and green fluorescence respectively. Visual colour change and fluorescence emission arises due to etching of Au atoms on the surface by thiol leading to formation of Au nanoclusters. Finally, electrochemical sensing of Cys is also carried out using cyclic voltammetry in 0.1 M PBS solution. These findings provide a suitable platform for Cys detection over a wide range of pH and concentration levels and hence the sensitivity can also be tuned accordingly.

  2. Integrable models of quantum optics

    NASA Astrophysics Data System (ADS)

    Yudson, Vladimir; Makarov, Aleksander

    2017-10-01

    We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D) chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral) waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  3. Progress on laser technology for proposed space-based sodium lidar

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Li, Steven X.; Bai, Yingxin; Numata, Kenji; Chen, Jeffrey R.; Fahey, Molly E.; Micalizzi, Frankie; Konoplev, Oleg A.; Janches, Diego; Gardner, Chester S.; Allan, Graham R.

    2018-02-01

    We propose a nadir-pointing space-based Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS). The science instrument goal is temperature and vertical wind measurements of the Earth Mesosphere Lower Thermosphere (MLT) 75-115 km region using atomic sodium as a tracer. Our instrument concept uses a high-energy laser transmitter at 589 nm and highly sensitive photon counting detectors that permit range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are pursuing high power laser architectures that permit limited day time sodium lidar observations with the help of a narrow bandpass etalon filter. We discuss technology, prototypes, risks and trades for two 589 nm wavelength laser architectures: 1) Raman laser 2) Sum Frequency Generation. Laser-induced saturation of atomic sodium in the MLT region affects both sodium density and temperature measurements. We discuss the saturation impact on the laser parameters, laser architecture and instrument trades. Off-nadir pointing from the ISS causes Doppler shifts that effect the sodium spectroscopy. We discuss laser wavelength locking, tuning and spectroscopic-line sampling strategy.

  4. Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations.

    PubMed

    Kortkhonjia, Ekaterine; Brandman, Relly; Zhou, Joe Zhongxiang; Voelz, Vincent A; Chorny, Ilya; Kabakoff, Bruce; Patapoff, Thomas W; Dill, Ken A; Swartz, Trevor E

    2013-01-01

    The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous simulations. We analyze the correlated motions with a mutual information entropy quantity, and examine state transition rates in a Markov-state model, to give coarse-grained descriptors of the motions. Our MD simulations show that while there are many strongly correlated motions, antibodies are highly flexible, with F(ab) and F(c) domains constantly forming and breaking contacts, both polar and non-polar. We find that salt bridges break and reform, and not always with the same partners. While the MD simulations in explicit water give the right time scales for the motions, the simulated motions are about 3-fold faster than the experiments. Overall, the picture that emerges is that antibodies do not simply fluctuate around a single state of atomic contacts. Rather, in these large molecules, different atoms come in contact during different motions.

  5. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  6. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic fluorescence spectrometry.

    PubMed

    Zhang, Weihong; Qi, Yuehan; Qin, Deyuan; Liu, Jixin; Mao, Xuefei; Chen, Guoying; Wei, Chao; Qian, Yongzhong

    2017-08-01

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br - for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50μL of 10% KBr for converting iAs to AsBr 3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H 2 O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3μgkg -1 . The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500μgkg -1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  8. Temperature- and Pressure-Dependent Kinetics Studies of Atomic Chlorine Reactions with Some Fluorinated Olefins and Ethers

    NASA Astrophysics Data System (ADS)

    Nicovich, J. M.; Wine, P. H.; Mazumder, S.; Hatzis, G. P.; Jiang, M.

    2016-12-01

    Laser flash photolysis of Cl2CO/N2/CO2/X mixtures (X = CF3CH=CH2, E-CF3CH=CHCl, E-CF3CH=CHF, (CF3)2CHOCH3, and CF3CF2CH2OCH3), has been coupled with time-resolved detection of Cl atoms by atomic resonance fluorescence spectroscopy to study the kinetics of Cl + X reactions as a function of temperature (T) and pressure (P). The Cl + X reactions were chosen for study because (1) the compounds X are potentially useful substitutes for ozone depleting substances in practical applications, (2) literature results demonstrate that Cl + X reactions are 60-120 times faster than the corresponding OH + X reactions at ambient T and P, suggesting that reaction with Cl is a significant atmospheric loss process for the compounds X, and (3) to our knowledge, Cl + X kinetics have not previously been studied as functions of T and P. For the Cl + olefin reactions, falloff curves are measured over the approximate T ranges 220-300 K. At elevated temperatures, equilibrium constants are determined for Cl + olefin association/dissociation, thus allowing C-Cl bond strengths in the product haloalkyl radicals to be evaluated. Arrhenius expressions are determined for the (P-independent) Cl + ether reactions over the approximate range of T 200-500K. The Cl + CF3CF2CH2OCH3 reaction is quite fast and its rate coefficient is nearly independent of T. The Cl + (CF3)2CHOCH3 reaction is somewhat slower and has a non-Arrhenius T dependence.

  9. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    PubMed

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China.

    PubMed

    Haribala; Hu, Bitao; Wang, Chengguo; Gerilemandahu; Xu, Xiao; Zhang, Shuai; Bao, Shanhu; Li, Yuhong

    2016-08-01

    Natural and artificial radionuclides and heavy metals in the surface soil of the uranium mining area of Tongliao, China, were measured using gamma spectrometry, flame atomic absorption spectrophotometry, graphite furnace atomic absorption spectrophotometry and microwave dissolution atomic fluorescence spectrometry respectively. The estimated average activity concentrations of (238)U, (232)Th, (226)Ra, (40)K and (137)Cs are 27.53±16.01, 15.89±5.20, 12.64±4.27, 746.84±38.24 and 4.23±4.76Bq/kg respectively. The estimated average absorbed dose rate in the air and annual effective dose rate are 46.58±5.26nGy/h and 57.13±6.45μSv, respectively. The radium equivalent activity, external and internal hazard indices were also calculated and their mean values are within the acceptable limits. The heavy metal concentrations of Pb, Cd, Cu, Zn, Hg and As from the surface soil were measured and their health risks were then determined. Although the content of Cd is much higher than the average background in China, its non-cancer and cancer risk indices are all within the acceptable ranges. These calculated hazard indices to estimate the potential radiological health risk in soil and the dose rate are well below their permissible limit. In addition the correlations between the radioactivity concentrations of the radionuclides and the heavy metals in soil were determined by the Pearson linear coefficient. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Elemental assessment of vegetation via portable X-ray fluorescence (PXRF) spectrometry.

    PubMed

    McGladdery, Candice; Weindorf, David C; Chakraborty, Somsubhra; Li, Bin; Paulette, Laura; Podar, Dorina; Pearson, Delaina; Kusi, Nana Yaw O; Duda, Bogdan

    2018-03-15

    Elemental concentrations in vegetation are of critical importance, whether establishing plant essential element concentrations (toxicity vs. deficiency) or investigating deleterious elements (e.g., heavy metals) differentially extracted from the soil by plants. Traditionally, elemental analysis of vegetation has been facilitated by acid digestion followed by quantification via inductively coupled plasma (ICP) or atomic absorption (AA) spectroscopy. Previous studies have utilized portable X-ray fluorescence (PXRF) spectroscopy to quantify elements in soils, but few have evaluated the vegetation. In this study, a PXRF spectrometer was employed to scan 228 organic material samples (thatch, deciduous leaves, grasses, tree bark, and herbaceous plants) from smelter-impacted areas of Romania, as well as National Institute of Standards and Technology (NIST) certified reference materials, to demonstrate the application of PXRF for elemental determination in vegetation. Samples were scanned in three conditions: as received from the field (moist), oven dry (70 °C), and dried and powdered to pass a 2 mm sieve. Performance metrics of PXRF models relative to ICP atomic emission spectroscopy were developed to asses optimal scanning conditions. Thatch and bark samples showed the highest mean PXRF and ICP concentrations (e.g., Zn, Pb, Cd, Fe), with the exceptions of K and Cl. Validation statistics indicate that the stable validation predictive capacity of PXRF increased in the following order: oven dry intact < field moist < oven dried and powdered. Even under field moist conditions, PXRF could reasonably be used for the determination of Zn (coefficient of determination, R 2 val 0.86; residual prediction deviation, RPD 2.72) and Cu (R 2 val 0.77; RPD 2.12), while dried and powdered samples allowed for stable validation prediction of Pb (R 2 val 0.90; RPD 3.29), Fe (R 2 val 0.80; RPD 2.29), Cd (R 2 val 0.75; RPD 2.07) and Cu (R 2 val 0.98; RPD of 8.53). Summarily, PXRF was shown to be a useful approach for quickly assessing the elemental concentration in vegetation. Future PXRF/vegetation research should explore additional elements and investigate its usefulness in evaluating phytoremediation effectiveness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Pulp tissue in sex determination: A fluorescent microscopic study

    PubMed Central

    Nayar, Amit; Singh, Harkanwal Preet; Leekha, Swati

    2014-01-01

    Aims: To determine and compare the reliability of pulp tissue in determination of sex and to analyze whether caries have any effect on fluorescent body test. Materials and Methods: This study was carried on 50 maxillary and mandibular teeth (25 male teeth and 25 female teeth), which were indicated for extraction. The teeth are categorized into 5 groups, 10 each (5 from males and 5 from females) on the basis of caries progression. The pulp cells are stained with quinacrine hydrochloride and observed with fluorescent microscope for fluorescent body. Gender is determined by identification of Y chromosome fluorescence in dental pulp. Results: Fluorescent bodies were found to be more in sound teeth in males as the caries increase the mean percentage of fluorescent bodies observed decreases in males. We also observed the fluorescent spots in females, and the value of the spot increases in female as the caries progresses, thereby giving false positive results in females. Conclusion: Sex determination by fluorescent staining of the Y chromosome is a reliable technique in teeth with healthy pulps or caries with enamel or up to half way of dentin. Teeth with caries involving pulp cannot be used for sex determination. PMID:25125912

  13. Excitation wavelength dependence of excited state intramolecular proton transfer reaction of 4'-N,N-diethylamino-3-hydroxyflavone in room temperature ionic liquids studied by optical Kerr gate fluorescence measurement.

    PubMed

    Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi

    2013-10-17

    Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.

  14. Problems in determination of skeletal lead burden in archaeological samples: An example from the First African Baptist Church population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittmers Jr., L. E.; Aufderheide, A. C.; Pounds, Joel G.

    2008-08-01

    Human bone lead content has been demonstrated to be related to socioeconomic status, occupation and other social and environmental correlates. Skeletal tissue samples from 135 individuals from an early nineteenth century Philadelphia cemetery (First African Baptist Church) were studied by electrothermal atomic absorption spectrometry and x-ray fluorescence for lead content. High bone lead levels led to investigation of possible diagenetic effects. These were investigated by several different approaches including distribution of lead within bone by x-ray fluorescence, histological preservation, soil lead concentration and acidity as well as location and depth of burial. Bone lead levels were very high in themore » children, exceeding those of the adult population that were buried in the cemetery, and also those of present day adults. The antemortem age-related increase in bone lead, reported in other studies, was not evidenced in this population. Lead was even deposited in areas of taphonomic bone destruction. Synchrotron x-ray fluorescence studies revealed no consistent pattern of lead microdistribution within the bone. Our conclusions are that postmortem diagenesis of lead ion has penetrated these archaeological bones to a degree that makes their original bone lead content irretrievable by any known method. Increased bone porosity is most likely responsible for the very high levels of lead found in bones of newborns and children.« less

  15. Problems in Determination of Skeletal Lead Burden in Archaeological Samples: An Example From the First African Baptist Church Population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittmers Jr., L. E.; Aufderheide, A. C.; Pounds, Joel G.

    2008-08-01

    ABSTRACT Human bone lead content has been demonstrated to be related to socioeconomic status, occupation and other social and environmental correlates. Skeletal tissue samples from 135 individuals from an early nineteenth century Philadelphia cemetery (First African Baptist Church) were studied by electrothermal atomic absorption spectrometry and x-ray fluorescence for lead content. High bone lead levels led to investigation of possible diagenetic effects. These were investigated by several different approaches including distribution of lead within bone by x-ray fluorescence, histological preservation, soil lead concentration and acidity as well as location and depth of burial. Bone lead levels were very high inmore » children, exceeding those of the adult population that were buried in the cemetery, and also those of present day adults. The antemortem age-related increase in bone lead, reported in other studies, was not evidenced in this population. Lead was even deposited in areas of taphonomic bone destruction. Synchrotron x-ray fluorescence studies revealed no consistent pattern of lead microdistribution within the bone. Our conclusions are that postmortem diagenesis of lead ion has penetrated these archaeological bones to a degree that makes their original bone lead content irretrievable by any known method. Increased bone porosity is most likely responsible for the very high levels of lead found in bones of newborns and children.« less

  16. Study on performance of magnetic fluorescent nanoparticles as gene carrier and location in pig kidney cells

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Cui, Haixin; Sun, Changjiao; Du, Wei; Cui, Jinhui; Zhao, Xiang

    2013-03-01

    We evaluated the performance of green fluorescent magnetic Fe3O4 nanoparticles (NPs) as gene carrier and location in pig kidney cells. When the mass ratio of NPs to green fluorescent protein plasmid DNA reached 1:16 or above, DNA molecules can be combined completely with NPs, which indicates that the NPs have good ability to bind negative DNA. Atomic force microscopy (AFM) experiments were carried out to investigate the binding mechanism between NPs and DNA. AFM images show that individual DNA strands come off of larger pieces of netlike agglomerations and several spherical nanoparticles are attached to each individual DNA strand and interact with each other. The pig kidney cells were labelled with membrane-specific red fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and nucleus-specific blue fluorescent dye 4',6-diamidino-2-phenylindole dihydrochloride. We found that green fluorescent nanoparticles can past the cell membrane and spread throughout the interior of the cell. The NPs seem to locate more frequently in the cytoplasm than in the nucleus.

  17. One-Step Synthesis of Fluorescent Boron Nitride Quantum Dots via a Hydrothermal Strategy Using Melamine as Nitrogen Source for the Detection of Ferric Ions.

    PubMed

    Huo, Bingbing; Liu, Bingping; Chen, Tao; Cui, Liang; Xu, Gengfang; Liu, Mengli; Liu, Jingquan

    2017-10-10

    A facile and effective approach for the preparation of functionalized born nitride quantum dots (BNQDs) with blue fluorescence was explored by the hydrothermal treatment of the mixture of boric acid and melamine at 200 °C for 15 h. The as-prepared BNQDs were characterized by transmission electron microscopy (TEM), high-resolution TEM, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The single layered BNQDs with the average size of 3 nm showed a blue light emission under the illumination of the UV light. The BNQDs could be easily dispersed in an aqueous medium and applied as fluorescent probes for selective detection of Fe 3+ with remarkable selectivity and sensitivity (the lowest detection limit was 0.3 μM). The fluorescence fiber imaging demonstrated that the as-prepared quantum dots could be used as a valuable fluorchrome. Therefore, the BNQDs could be envisioned for potential applications in many fields such as biocompatible staining, fluorescent probes, and biological labeling.

  18. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  19. Nonmonotonic radial distribution of excited atoms in a positive column of pulsed direct currect discharges in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnat, E. V.; Kolobov, V. I.

    2013-01-21

    Nonmonotonic radial distributions of excited helium atoms have been experimentally observed in a positive column of pulsed helium discharges using planar laser induced fluorescence. Computational analysis of the discharge dynamics with a fluid plasma model confirms the experimental observations over a range of pressures and currents. The observed effect is attributed to the peculiarities of electron population-depopulation of the excited states during the 'dynamic discharge' conditions with strong modulations of the electric field maintaining the plasma.

  20. New energy levels of atomic niobium (Nb I) discovered by laser-spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Kröger, S.; Windholz, L.; Başar, Gü.; Başar, Gö.

    2018-06-01

    We report the discovery of 9 previously unknown energy levels of the atomic niobium, all having even parity. Two levels have energies below 19,500 cm-1 and angular momentum J = 3/2, while the energies of the others are located between 39,700 and 43,420 cm-1. The levels were discovered by laser excitation of several unclassified spectral lines in the wavelength range between 554 nm and 650 nm and detection of laser-induced fluorescence with a monochromator.

  1. A spectral study of a radio-frequency plasma-generated flux of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E.; Brown, Kenneth G.; Lewis, Beverley W.

    1994-01-01

    The active environment of a radio-frequency (RF) plasma generator, with and without low-pressure oxygen, has been characterized through the identification of emission lines in the spectral region from 250 to 900 nm. The environment is shown to be dependent on the partial pressure of oxygen and the power applied to the RF generator. Atomic oxygen has been found in significant amounts as well as atomic hydrogen and the molecular oxygen species O2((sup 1)Sigma). The only charged species observed was the singly charged molecular ion O2(+). With a polymer specimen in the plasma chamber, carbon monoxide was also observed. The significance of these observations with respect to previous studies using this type of generator to stimulate material degradation in space is discussed. The possibility of using these generators as atomic oxygen sources in the development of oxygen atom fluorescence sensors is explored.

  2. Shell-Isolated Tip-Enhanced Raman and Fluorescence Spectroscopy.

    PubMed

    Huang, Ya-Ping; Huang, Sheng-Chao; Wang, Xiang-Jie; Bodappa, Nataraju; Li, Chao-Yu; Yin, Hao; Su, Hai-Sheng; Meng, Meng; Zhang, Hua; Ren, Bin; Yang, Zhi-Lin; Zenobi, Renato; Tian, Zhong-Qun; Li, Jian-Feng

    2018-06-18

    Tip-enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip-enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell-isolated tip-enhanced Raman and fluorescence spectroscopies by employing ultrathin shell-isolated tips fabricated by atomic layer deposition. Such shell-isolated tips not only show outstanding electromagnetic field enhancement in TERS but also exclude interference by contaminants, thus greatly promoting applications in solution. Tip-enhanced fluorescence has also been achieved using these shell-isolated tips, with enhancement factors of up to 1.7×10 3 , consistent with theoretical simulations. Furthermore, tip-enhanced Raman and fluorescence signals are acquired simultaneously, and their relative intensities can be manipulated by changing the shell thickness. This work opens a new avenue for ultrahigh resolution surface analysis using plasmon-enhanced spectroscopies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions.

    PubMed

    Li, Ying; Liu, Weimin; Zhang, Panpan; Zhang, Hongyan; Wu, Jiasheng; Ge, Jiechao; Wang, Pengfei

    2017-04-15

    A fluorescent probe (1) for distinguishing amongst biothiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), is developed based on different cascade reactions. The key design feature of fluorescent probe 1 is the integration of two potential reaction groups for the thiol and amino groups of biothiols in one molecule. By reacting with the halogen atom and α, β-unsaturated malonitrile in probe 1, Cys, Hcy and GSH can generate a total of three main products with distinct photophysical properties. Probe 1 shows a strong fluorescence turn-on response to Cys with blue-green emission by using an excitation wavelength of 390nm. At an excitation wavelength of 500nm, probe 1 responds to GSH over Cys and Hcy and emits strong orange fluorescence. The discrimination of biothiols can be demonstrated by cell imaging experiments, indicating that probe 1 can be a useful tool for the selective imaging of Cys and GSH in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  5. Experimental triple-slit interference in a strongly driven V-type artificial atom

    NASA Astrophysics Data System (ADS)

    Dada, Adetunmise C.; Santana, Ted S.; Koutroumanis, Antonios; Ma, Yong; Park, Suk-In; Song, Jindong; Gerardot, Brian D.

    2017-08-01

    Rabi oscillations of a two-level atom appear as a quantum interference effect between the amplitudes associated with atomic superpositions, in analogy with the classic double-slit experiment which manifests a sinusoidal interference pattern. By extension, through direct detection of time-resolved resonance fluorescence from a quantum-dot neutral exciton driven in the Rabi regime, we experimentally demonstrate triple-slit-type quantum interference via quantum erasure in a V-type three-level artificial atom. This result is of fundamental interest in the experimental studies of the properties of V-type three-level systems and may pave the way for further insight into their coherence properties as well as applications for quantum information schemes. It also suggests quantum dots as candidates for multipath-interference experiments for probing foundational concepts in quantum physics.

  6. Optimal fluorescence waveband determination for detecting defect cherry tomatoes using fluorescence excitation-emission matrix

    USDA-ARS?s Scientific Manuscript database

    A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...

  7. Active substrates improving sensitivity in biomedical fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.

    2005-08-01

    Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.

  8. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.

    PubMed

    Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans

    2012-01-01

    The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.

  9. [Survey and evaluation of heavy metal in the major vegetables in Shaanxi Province].

    PubMed

    Nie, Xiaoling; Cheng, Guoxia; Wang, Minjuan; Wang, Caixia; Du, Kejun

    2015-09-01

    To evaluate the contamination condition of the Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province. The Pb and Cd contents were determined by inductively coupled plasma mass spectrometry, and the As contents were determined by hydride generation-atomic fluorescence spectrometry, and the Hg contents were determined by mercury vapourmeter. One factor contamination index was employed to evaluate the metal pollution situation of different types of vegetables. Moreover, the health risk after intake of those heavy metals through vegetables were described. In ten kinds of vegetables of Shaanxi Province, the Pb contents in cowpea reached the alertness level, while the contents of Cd, Hg and As were below the safety level. What' s more, the contents of the Pb, Cd, Hg and As were below the safety level in other nine vegetables, and the over standard rate of were Hg > Pb > Cd > As. The contamination extents of Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province were low.

  10. Mass attenuation coefficient of tannin-added Rhizophora spp. particleboards at 16.59-25.56 keV photons, and 137Cs and 60Co gamma energies.

    PubMed

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md

    2017-09-01

    The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm 3 . The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137 Cs and 60 Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.

  11. Towards laser spectroscopy of the proton-halo candidate boron-8

    NASA Astrophysics Data System (ADS)

    Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix

    2017-11-01

    We propose to determine the nuclear charge radius of 8B by high-resolution laser spectroscopy. 8B (t 1/2 = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or "one-proton-halo" in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes 8B, 10B and 11B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of 8B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.

  12. Colorimetric chemosensors based on diketopyrrolopyrrole for selective and reversible recognition of fluoride ions

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Yang, Xiaofeng; Sun, Guoxin; Zhang, Hao; Liu, Xiaolei; Zhu, Fengqiao; Qin, Shuchun; Zhao, Ziqi; Cui, Yu

    2018-06-01

    A series of colorimetric and reversible receptors for fluoride anions based on diketopyrrolopyrrole (DPP) were designed and synthesized successfully. The position of nitro substituent on the phenylhydrazide affected the alteration of photophysical properties to varying degrees. While the photoluminescence intensity of receptor 1 was weaker than that of receptor 2 and receptor 3 on account of the formation of intramolecular hydrogen bond deriving from oxygen atom of nitro substituent and hydrogen atom of hydrazide. The receptor 2 was a preferable chemosensor for responding fluoride anions. The fluorescence was quenched in the presence of fluoride anion resulted from the photo-induced electron transfer (PET) effect from the amide. The formation of deprotonation species, which produced by hydrazide Nsbnd H moiety and F- was answerable for the spectral changes. Especially, the spectral and color responses of receptors could be switched back and forth successively by adding F- and HSO4- anions in DMSO solution. These receptors could response fluoride anion sensitively, visually and selectively in a manner of reversible with a low determination.

  13. Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.

    PubMed

    Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong

    2018-02-28

    The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.

  14. TDDFT study on the sensing mechanism of a fluorescent sensor for fluoride anion: Inhibition of the ESPT process.

    PubMed

    Li, Guang-Yue; Liu, Dong; Zhang, Hang; Li, Wei-Wei; Wang, Feng; Liang, Ying-Hua

    2015-01-01

    The fluoride-sensing mechanism of a reported salicylaldehyde-based sensor (J. Photochem. Photobiol. B 2014, 138, 75) has been investigated by the TDDFT method. The present theoretical study indicates that there is an excited-state proton transfer (ESPT) process from the phenolic O-H moiety to the neighbor N atom in the sensor. The added fluoride anion could capture the proton in the O-H moiety and the corresponding phenolic anion is formed, which could inhibit the ESPT process. The experimental UV/Vis and fluorescence spectra are well reproduced by the calculated vertical excitation energies. Frontier molecular orbital analysis indicates that the local excited state of phenolic anion is responsible for its enhanced fluorescence. Due to this reason, the sensor can be used to sense fluoride anion by monitoring the fluorescent change. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles.

    PubMed

    Karunakaran, Chockalingam; Jayabharathi, Jayaraman; Sathishkumar, Ramalingam; Jayamoorthy, Karunamoorthy

    2013-06-01

    To sense superparamagnetic iron oxides (Fe2O3 and Fe3O4) nanocrystals a sensitive bioactive phenanthroimidazole based fluorescent molecule, 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d] imidazole has been designed and synthesized. Electronic spectral studies show that phenanthroimidazole is bound to the surface of iron oxide semiconductors. Fluorescent enhancement has been explained on the basis of photo-induced electron transfer (PET) mechanism and apparent binding constants have been deduced. Binding of phenanthroimidazole with iron oxide nanoparticles lowers the HOMO and LUMO energy levels of phenanthroimidazole molecule. Chemical affinity between the nitrogen atom of the phenanthroimidazole and Fe(2+) and Fe(3+) ions on the surface of the nano-oxide may result in strong binding of the phenanthroimidazole derivative with the nanoparticles. The electron injection from the photoexcited phenanthroimidazole to the iron oxides conduction band explains the enhanced fluorescence. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Geology orbiter comparison study

    NASA Technical Reports Server (NTRS)

    Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.

    1977-01-01

    Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.

  17. Chiral zinc phenylalanine nanofibers with fluorescence.

    PubMed

    Chen, Erdan; Guo, Beidou; Zhang, Baohong; Gan, Li-Hua; Gong, Jian Ru

    2011-09-01

    Chiral Zn(II)/D-,L-phenylalanine (Phe) bio-coordination polymer nanofibers with fluorescence were prepared by fast coordination-assisted assembly. The synthetic strategy is based on the fact that the Zn2+ ions were linked to oxygen atoms from carboxylate groups of the D- or L-amino acid by coordination interactions to form the chiral polymers. The Zn(II)/D-,L-Phe nanofibers had homogeneous diameters in the range of 700-900 nm and ultra-long length in several hundred micrometers, and the surface of the fiber was extremely smooth. In addition, the enantiomers of Zn(II)/Phe nanofibers exhibited both optical activity and fluorescent property in the solid state, which has great potential for application in the field of biomimetic nanofabrication and micro-/nano-optoelectronics.

  18. Two rhodamine 6G derivative compounds: a structural and fluorescence single-crystal study.

    PubMed

    Di Paolo, Matias; Bossi, Mariano L; Baggio, Ricardo; Suarez, Sebastián A

    2016-10-01

    The synthesis, characterization, structural analysis and fluorescence properties of two rhodamine 6G derivatives are described, namely a propargylamine derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-2-(methylcyanide)spiro[isoindole-1,9'-xanthen]-3(2H)-one (I), and a γ-aminobutyric acid (GABA) derivative, 3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindole-1,9'-xanthen]-2(3H)-yl)butyricacid (II). Both structures are compared with four similar ones from the Cambridge Structural Database (CSD), and the interactions involved in the stabilization are analyzed using the atoms in molecules (AIM) theory. Finally, a single-crystal in-situ reaction study is presented, carried out by fluorescence methods, which enabled the `opening' of the spirolactam ring in the solid phase.

  19. Dynamics of diamond nanoparticles in solution and cells.

    PubMed

    Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg

    2007-12-01

    The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.

  20. Characterization of Arcjet Flows Using Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bamford, Douglas J.; O'Keefe, Anthony; Babikian, Dikran S.; Stewart, David A.; Strawa, Anthony W.

    1995-01-01

    A sensor based on laser-induced fluorescence has been installed at the 20-MW NASA Ames Aerodynamic Heating Facility. The sensor has provided new, quantitative, real-time information about properties of the arcjet flow in the highly dissociated, partially ionized, nonequilibrium regime. Number densities of atomic oxygen, flow velocities, heavy particle translational temperatures, and collisional quenching rates have been measured. These results have been used to test and refine computational models of the arcjet flow. The calculated number densities, translational temperatures, and flow velocities are in moderately good agreement with experiment

  1. Laser frequency stabilization using a commercial wavelength meter

    NASA Astrophysics Data System (ADS)

    Couturier, Luc; Nosske, Ingo; Hu, Fachao; Tan, Canzhu; Qiao, Chang; Jiang, Y. H.; Chen, Peng; Weidemüller, Matthias

    2018-04-01

    We present the characterization of a laser frequency stabilization scheme using a state-of-the-art wavelength meter based on solid Fizeau interferometers. For a frequency-doubled Ti-sapphire laser operated at 461 nm, an absolute Allan deviation below 10-9 with a standard deviation of 1 MHz over 10 h is achieved. Using this laser for cooling and trapping of strontium atoms, the wavemeter scheme provides excellent stability in single-channel operation. Multi-channel operation with a multimode fiber switch results in fluctuations of the atomic fluorescence correlated to residual frequency excursions of the laser. The wavemeter-based frequency stabilization scheme can be applied to a wide range of atoms and molecules for laser spectroscopy, cooling, and trapping.

  2. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    PubMed

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  3. A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Young-Soo; Min, Kyoung-Wook; Seon, Kwang-Il

    We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H{sub 2}) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ∼76% of the sky. The extinction-corrected intensity of the fluorescent H{sub 2} emission has a strong linear correlation with the well-known tracers of the cold interstellar medium (ISM), including color excess E(B–V) , neutral hydrogen column density N (H i), and H α emission. The all-sky H{sub 2} column density map was also obtained using a simple photodissociation region model and interstellar radiation fields derived from UV star catalogs. We estimated the fraction of H{sub 2} ( f {submore » H2}) and the gas-to-dust ratio (GDR) of the diffuse ISM. The f {sub H2} gradually increases from <1% at optically thin regions where E(B–V) < 0.1 to ∼50% for E(B–V)  = 3. The estimated GDR is ∼5.1 × 10{sup 21} atoms cm{sup −2} mag{sup −1}, in agreement with the standard value of 5.8 × 10{sup 21} atoms cm{sup −2} mag{sup −1}.« less

  4. Spectral response characterization of CdTe sensors of different pixel size with the IBEX ASIC

    NASA Astrophysics Data System (ADS)

    Zambon, P.; Radicci, V.; Trueb, P.; Disch, C.; Rissi, M.; Sakhelashvili, T.; Schneebeli, M.; Broennimann, C.

    2018-06-01

    We characterized the spectral response of CdTe sensors with different pixel sizes - namely 75, 150 and 300 μm - bonded to the latest generation IBEX single photon counting ASIC developed at DECTRIS, to detect monochromatic X-ray energy in the range 10-60 keV. We present a comparison of pulse height spectra recorded for several energies, showing the dependence on the pixel size of the non-trivial atomic fluorescence and charge sharing effects that affect the detector response. The extracted energy resolution, in terms of full width at half maximum or FWHM, ranges from 1.5 to 4 keV according to the pixel size and chip configuration. We devoted a careful analysis to the Quantum Efficiency and to the Spectral Efficiency - a newly-introduced measure that quantifies the impact of fluorescence and escape phenomena on the spectrum integrity in high- Z material based detectors. We then investigated the influence of the photon flux on the aforementioned quantities up to 180 ṡ 106 cts/s/mm2 and 50 ṡ 106 cts/s/mm2 for the 150 μm and 300 μm pixel case, respectively. Finally, we complemented the experimental data with analytical and with Monte Carlo simulations - taking into account the stochastic nature of atomic fluorescence - with an excellent agreement.

  5. Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response.

    PubMed

    Stylianou, Andreas; Yova, Dido

    2015-12-01

    Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.

  6. Studies of Rotationally and Vibrationally Inelastic Collisions of NaK with Atomic Perturbers

    NASA Astrophysics Data System (ADS)

    Richter, Kara M.

    This dissertation discusses investigations of vibrationally and rotationally inelastic collisions of NaK with argon, helium and potassium as collision partners. We have investigated collisions of NaK molecules in the 2(A) 1Sigma+, state with argon and helium collision partners in a laser-induced fluorescence (LIF) experiment. The pump laser prepares the molecules in particular ro-vibrational (v, J) levels in the 2(A) 1Sigma+, state. These excited molecules then emit fluorescence as they make transitions back to the ground [2(X)1Sigma +] state, and this fluorescence is collected by a Bomem Fourier-transform spectrometer. Weak collisional satellite lines appear flanking strong, direct lines in the recorded spectra. These satellite lines are due to collisions of the NaK molecule in the 2(A)1Sigma+, state with noble gas and alkali atom perturbers, which carry population to nearby rotational levels [(v, J) →(v, J + DeltaJ)] or to various rotational levels of nearby vibrational levels, [(v, J)→ (v + Deltav, J + DeltaJ)]. Ratios of the intensity of each collisional line to the intensity of the direct line then yields information pertaining to the transfer of population in the collision. Our results show a propensity for DeltaJ = even collisions of NaK with noble gas atoms, which is slightly more pronounced for collisions with helium than with argon. Such a DeltaJ = even propensity was not observed in the vibrationally inelastic collisions. Although it would be desirable to operate in the single collision regime, practical considerations make that difficult to achieve. Therefore, we have developed a method to estimate the effects of multiple collisions on our measured rate coefficients and have obtained approximate corrected values.

  7. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  8. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Technical Reports Server (NTRS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-01-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  9. Studies of Ionic Photoionization Using Relativistic Random Phase Approximation and Relativistic Multichannel Quantum Defect Theory

    NASA Astrophysics Data System (ADS)

    Haque, Ghousia Nasreen

    The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The character of the autoionization resonances studied was determined in the present work and the effect of series perturbations in the Rydberg series due to interference between various multichannel processes was quantitatively determined. Furthermore, results of the present calculations also serve as important pointer to measure the relative strengths of radiative (fluorescence) decay modes and non -radiative (autoionization/auger) decay modes in an isoelectronic sequence.

  10. DEVELOPMENT OF ULTRATRACE LASER SPECTROMETRY TECHNIQUES FOR MEASUREMENTS OF ARSENIC

    EPA Science Inventory


    Development of Arsenic Speciation Techniques Based on High Performance Liquid Chromatography and Atomic Fluorescence Spectrometry

    J.B. Simeonsson, H.D. Beach and D.J. Thomas
    US EPA, Office of Research and Development, National Health and Environmental Effects Resear...

  11. Laser spectroscopic study of the Rydberg state structure of atomic lithium

    NASA Astrophysics Data System (ADS)

    Ballard, M. Kent

    1998-07-01

    Pulsed laser induced fluorescence spectroscopy was performed on both isotopic species of atomic lithium. Nonresonant multiphoton excitation spectra were recorded. The laser induced fluorescence of the lithium vapor was measured following excitation with a tunable, pulsed, nanosecond laser. Both two- and three-photon allowed transitions were observed resulting in four different transition series originating from the 22S and 22P levels, the latter likely originating from photodissociation products of the lithium dimer, Li2. Forty-seven identifiable transitions were assigned for 6Li. Evidence for a parity forbidden multiphoton transition is also present. For 7Li, fifty-three identifiable transitions were assigned including an additional series of parity forbidden multiphoton transitions. Laser polarization and power dependencies were measured and found to be consistent with the multiphoton transition probabilities. Due to the intense laser fields needed to produce the nonresonant multiphoton excitations, the lithium vapor was subjected to the laser induced ac Stark effect. The Autler-Townes doublets observed for the nF gets 2P transition series were found to exhibit normal asymmetry. The observed asymmetrical Autler-Townes profiles are explained in terms of the two-level and the three-level atomic systems which are based on different excitation schemes. A new computerized data acquisition system was developed as well as associated computer programs needed to analyze spectra.

  12. Uranyl interaction with the hydrated (001) basal face of gibbsite: a combined theoretical and spectroscopic study.

    PubMed

    Veilly, Edouard; Roques, Jérôme; Jodin-Caumon, Marie-Camille; Humbert, Bernard; Drot, Romuald; Simoni, Eric

    2008-12-28

    The sorption of uranyl cations and water molecules on the basal (001) face of gibbsite was studied by combining vibrational and fluorescence spectroscopies together with density functional theory (DFT) computations. Both the calculated and experimental values of O-H bond lengths for the gibbsite bulk are in good agreement. In the second part, water sorption with this surface was studied to take into account the influence of hydration with respect to the uranyl adsorption. The computed water configurations agreed with previously published molecular dynamics studies. The uranyl adsorption in acidic media was followed by time-resolved laser-induced fluorescence spectroscopy and Raman spectrometry measurements. The existence of only one kind of adsorption site for the uranyl cation was then indicated in good agreement with the DFT calculations. The computation of the uranyl adsorption has been performed by means of a bidentate interaction with two surface oxygen atoms. The optimized structures displayed strong hydrogen bonds between the surface and the -yl oxygen of uranyl. The uranium-surface bond strength depends on the protonation state of the surface oxygen atoms. The calculated U-O(surface) bond lengths range between 2.1-2.2 and 2.6-2.7 A for the nonprotonated and protonated surface O atoms, respectively.

  13. High-spatial-resolution mapping of catalytic reactions on single particles

    DOE PAGES

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; ...

    2017-01-26

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  14. Experimental and theoretical studies of the reactions of ground-state sulfur atoms with hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Thompson, Kristopher M.; Gao, Yide; Marshall, Paul; Wang, Han; Zhou, Linsen; Li, Yongle; Guo, Hua

    2017-10-01

    The gas-phase kinetics of S(3P) atoms with H2 and D2 have been studied via the laser flash photolysis—resonance fluorescence technique. S atoms were generated by pulsed photolysis of CS2 at 193 nm and monitored by time-resolved fluorescence at 181 nm. The rate coefficients for H2 (k1) and D2 (k2), respectively, are summarized as k1(600-1110 K) = 3.0 × 10-9 exp(-1.317/×105-2.703 ×107K /T 8.314 T /K ) cm3 molecule-1 s-1 and k2(770-1110 K) = 2.2 × 10-14 (T/298 K)3.55 exp(-5420 K/T) cm3 molecule-1 s-1. Error limits are discussed in the text. The rate coefficients for formation of SH(SD) + H(D) on a newly developed triplet potential energy surface were characterized via ring polymer molecular dynamics and canonical variational transition-state theory. There is excellent agreement above about 1000 K between theory and experiment. At lower temperatures, the experimental rate coefficient is substantially larger than the results computed for the adiabatic reaction, suggesting a significant role for intersystem crossing to the singlet potential energy surface at lower temperatures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  16. Photon-number statistics in resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Lenstra, D.

    1982-12-01

    The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.

  17. Synthesis and improved photochromic properties of pyrazolones in the solid state by incorporation of halogen

    NASA Astrophysics Data System (ADS)

    Guo, Jixi; Yuan, Hui; Jia, Dianzeng; Guo, Mingxi; Li, Yinhua

    2017-01-01

    Four novel photochromic pyrazolones have been prepared by introducing halogen atoms as substituents on the benzene ring. All as-synthesized compounds exhibited excellent reversible photochromic performances in the solid state. Upon UV light irradiation, the as-synthesized compounds can change their structures from E-form to K-form with yellow coloration. Further processed by heating, they rapidly reverted to their initial states at 120 °С. Their photo-response and thermal bleaching kinetics were detailed investigated by UV absorption spectra. The results showed that the time constants were higher than that of our previously reported compounds at least one order of magnitude and the rate constants of the as-synthesized compounds were significantly influenced by the size and electronegativity of different halogen atoms. The fluorescence emission were modulated in a high degree via photoisomerization of pyrazolones, which might be due to the efficient energy transfer from E-form to K-form isomers for their partly overlaps between their E-form absorption spectra and K-form fluorescence spectra.

  18. Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bis- β-diketone-type ligand

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ming; Chen, Zhe; Tang, Rui-Ren; Xiao, Lin-Xiang; Peng, Hong-Jian

    2008-02-01

    A novel bis- β-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.

  19. Organic-inorganic interface-induced multi-fluorescence of MgO nanocrystal clusters and their applications in cellular imaging.

    PubMed

    Xie, Shuifen; Bao, Shixiong; Ouyang, Junjie; Zhou, Xi; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2014-04-25

    Surface functionalization of inorganic nanomaterials through chemical binding of organic ligands on the surface unsaturated atoms, forming unique organic-inorganic interfaces, is a powerful approach for creating special functions for inorganic nanomaterials. Herein, we report the synthesis of hierarchical MgO nanocrystal clusters (NCs) with an organic-inorganic interface induced multi-fluorescence and their application as new alternative labels for cellular imaging. The synthetic method was established by a dissolution and regrowth process with the assistance of carboxylic acid, in which the as-prepared MgO NCs were modified with carboxylic groups at the coordinatively unsaturated atoms of the surface. By introducing acetic acid to partially replace oleic acid in the reaction, the optical absorption of the produced MgO NCs was progressively engineered from the UV to the visible region. Importantly, with wider and continuous absorption profile, those MgO NCs presented bright and tunable multicolor emissions from blue-violet to green and yellow, with the highest absolute quantum yield up to (33±1) %. The overlap for the energy levels of the inorganic-organic interface and low-coordinated states stimulated a unique fluorescence resonance energy transfer phenomenon. Considering the potential application in cellular imaging, such multi-fluorescent MgO NCs were further encapsulated with a silica shell to improve the water solubility and stability. As expected, the as-formed MgO@SiO2 NCs possessed great biocompatibility and high performance in cellular imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

Top