Sample records for atomic layer growth

  1. Direct observation of nanowire growth and decomposition.

    PubMed

    Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G

    2017-09-26

    Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.

  2. Epitaxial Growth of Rhenium with Sputtering

    DTIC Science & Technology

    2016-05-06

    corresponds to two atomic Re layers , considering that the c-axis lattice constant of the tri- atomic layered hcp Re unit cell is ~4.5 Å. Frequently, two...Å) corresponds to two Re atomic layers since the c-axis lattice constant of hcp Re, which is composed of three Re atomic layers , is ~4.5 Å...The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin (~2 nm) seed layer

  3. Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions.

    PubMed

    Chou, Yi-Chia; Tang, Wei; Chiou, Chien-Jyun; Chen, Kai; Minor, Andrew M; Tu, K N

    2015-06-10

    Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.

  4. Self-limited growth of Si on B atomic-layer formed Ge(1 0 0) by ultraclean low-pressure CVD system

    NASA Astrophysics Data System (ADS)

    Yokogawa, Takashi; Ishibashi, Kiyohisa; Sakuraba, Masao; Murota, Junichi; Inokuchi, Yasuhiro; Kunii, Yasuo; Kurokawa, Harushige

    2008-07-01

    Utilizing BCl 3 reaction on Ge(1 0 0) and subsequent Si epitaxial growth by SiH 4 reaction at 300 °C, B atomic-layer doping in Si/Ge(1 0 0) heterostructure was investigated. Cl atoms on the B atomic-layer formed Ge(1 0 0) scarcely affect upon the SiH 4 reaction. It is also found that Si atom amount deposited by SiH 4 reaction on Ge(1 0 0) is effectively enhanced by the existence of B atomic layer and the deposition rate tends to decrease at around 2-3 atomic layers which is three times larger than that in the case without B. The results of angle-resolved X-ray photoelectron spectroscopy show that most B atoms are incorporated at the heterointerface between the Si and Ge.

  5. Growth of germanium on Au(111): formation of germanene or intermixing of Au and Ge atoms?

    PubMed

    Cantero, Esteban D; Solis, Lara M; Tong, Yongfeng; Fuhr, Javier D; Martiarena, María Luz; Grizzi, Oscar; Sánchez, Esteban A

    2017-07-19

    We studied the growth of Ge layers on Au(111) under ultra-high vacuum conditions from the submonolayer regime up to a few layers with Scanning Tunneling Microscopy (STM), Direct Recoiling Spectroscopy (DRS) and Low Energy Electron Diffraction (LEED). Most STM images for the thicker layers are consistent with a commensurate 5 × 8 arrangement. The high surface sensitivity of TOF-DRS allows us to confirm the coexistence of Au and Ge atoms in the top layer for all stages of growth. An estimation of the Au to Ge ratio at the surface of the thick layer gives about 1 Au atom per 2 Ge ones. When the growth is carried out at sample temperatures higher than about 420 K, a fraction of the deposited Ge atoms migrate into the bulk of Au. This incorporation of Ge into the bulk reduces the growth rate of the Ge films, making it more difficult to obtain films thicker than a few layers. After sputtering the Ge/Au surface, the segregation of bulk Ge atoms to the surface occurs for temperatures ≥600 K. The surface obtained after segregation of Ge reaches a stable condition (saturation) with an n × n symmetry with n on the order of 14.

  6. Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike

    2016-09-01

    For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.

  7. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  8. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  9. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; Lin, Junhao; Feng, Wei

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  10. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE PAGES

    Zheng, Wei; Lin, Junhao; Feng, Wei; ...

    2016-07-19

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  11. The initial stages of ZnO atomic layer deposition on atomically flat In0.53Ga0.47As substrates.

    PubMed

    Skopin, Evgeniy V; Rapenne, Laetitia; Roussel, Hervé; Deschanvres, Jean-Luc; Blanquet, Elisabeth; Ciatto, Gianluca; Fong, Dillon D; Richard, Marie-Ingrid; Renevier, Hubert

    2018-06-21

    InGaAs is one of the III-V active semiconductors used in modern high-electron-mobility transistors or high-speed electronics. ZnO is a good candidate material to be inserted as a tunneling insulator layer at the metal-semiconductor junction. A key consideration in many modern devices is the atomic structure of the hetero-interface, which often ultimately governs the electronic or chemical process of interest. Here, a complementary suite of in situ synchrotron X-ray techniques (fluorescence, reflectivity and absorption) as well as modeling is used to investigate both structural and chemical evolution during the initial growth of ZnO by atomic layer deposition (ALD) on In0.53Ga0.47As substrates. Prior to steady-state growth behavior, we discover a transient regime characterized by two stages. First, substrate-inhibited ZnO growth takes place on InGaAs terraces. This leads eventually to the formation of a 1 nm-thick, two-dimensional (2D) amorphous layer. Second, the growth behavior and its modeling suggest the occurrence of dense island formation, with an aspect ratio and surface roughness that depends sensitively on the growth condition. Finally, ZnO ALD on In0.53Ga0.47As is characterized by 2D steady-state growth with a linear growth rate of 0.21 nm cy-1, as expected for layer-by-layer ZnO ALD.

  12. Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.

    PubMed

    Hong, Hyo-Ki; Jo, Junhyeon; Hwang, Daeyeon; Lee, Jongyeong; Kim, Na Yeon; Son, Seungwoo; Kim, Jung Hwa; Jin, Mi-Jin; Jun, Young Chul; Erni, Rolf; Kwak, Sang Kyu; Yoo, Jung-Woo; Lee, Zonghoon

    2017-01-11

    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.

  13. Using atomistic simulations to model cadmium telluride thin film growth

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  14. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE PAGES

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad; ...

    2016-08-09

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  15. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  16. Atomic Layer Deposition of Titanium Oxide on Single-Layer Graphene: An Atomic-Scale Study toward Understanding Nucleation and Growth

    PubMed Central

    2017-01-01

    Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble. PMID:28356613

  17. Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.

    2018-01-01

    In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.

  18. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei

    2016-01-06

    Layered materials are an actively pursued area of research for realizing highly scaled technologies involving both traditional device structures as well as new physics. Lately, non-equilibrium growth of 2D materials using molecular beam epitaxy (MBE) is gathering traction in the scientific community and here we aim to highlight one of its strengths, growth of abrupt heterostructures, and superlattices (SLs). In this work we present several of the firsts: first growth of MoTe 2 by MBE, MoSe 2 on Bi 2Se 3 SLs, transition metal dichalcogenide (TMD) SLs, and lateral junction between a quintuple atomic layer of Bi 2Te 3 andmore » a triple atomic layer of MoTe 2. In conclusion, reflected high electron energy diffraction oscillations presented during the growth of TMD SLs strengthen our claim that ultrathin heterostructures with monolayer layer control is within reach.« less

  19. Enhancement of the emission efficiency of InGaN films by suppressing the incorporation of unintentional gallium atoms

    NASA Astrophysics Data System (ADS)

    Yang, J.; Liu, S. T.; Wang, X. W.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Liang, F.; Liu, W.; Zhang, L. Q.; Yang, H.; Wang, W. J.; Li, M.

    2018-01-01

    InGaN samples are grown using metalorganic chemical vapor deposition (MOCVD) and the dependences of structural and luminescence properties of InGaN layers on growth temperature are studied. It is found that the luminescence properties of InGaN layer are improved by increasing growth temperature properly. However, when the growth temperature of InGaN layer is too higher (740 °C in our work), a large amount of unintentionally incorporated gallium atoms enter into InGaN, and a spiral growth mode dominates in this case. It results in an inferior crystalline and interface quality, and ultimately degrades the luminescence of InGaN.

  20. Influence of atomic layer deposition valve temperature on ZrN plasma enhanced atomic layer deposition growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muneshwar, Triratna, E-mail: muneshwa@ualberta.ca; Cadien, Ken

    2015-11-15

    Atomic layer deposition (ALD) relies on a sequence of self-limiting surface reactions for thin film growth. The effect of non-ALD side reactions, from insufficient purging between pulses and from precursor self-decomposition, on film growth is well known. In this article, precursor condensation within an ALD valve is described, and the effect of the continuous precursor source from condensate evaporation on ALD growth is discussed. The influence of the ALD valve temperature on growth and electrical resistivity of ZrN plasma enhanced ALD (PEALD) films is reported. Increasing ALD valve temperature from 75 to 95 °C, with other process parameters being identical, decreasedmore » both the growth per cycle and electrical resistivity (ρ) of ZrN PEALD films from 0.10 to 0.07 nm/cycle and from 560 to 350 μΩ cm, respectively. Our results show that the non-ALD growth resulting from condensate accumulation is eliminated at valve temperatures close to the pressure corrected boiling point of precursor.« less

  1. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale

    NASA Astrophysics Data System (ADS)

    Tang, Sai; Wang, Jincheng; Li, Junjie; Wang, Zhijun; Guo, Yaolin; Guo, Can; Zhou, Yaohe

    2017-06-01

    Through phase-field-crystal (PFC) simulations, we investigated, on the atomic scale, the crucial role played by interface energy anisotropy and growth driving force during the morphological evolution of a dendrite tip at low growth driving force. In the layer-by-layer growth manner, the interface energy anisotropy drives the forefront of the dendrite tip to evolve to be highly similar to the corner of the corresponding equilibrium crystal from the aspects of atom configuration and morphology, and thus affects greatly the formation and growth of a steady-state dendrite tip. Meanwhile, the driving force substantially influences the part behind the forefront of the dendrite tip, rather than the forefront itself. However, as the driving force increases enough to change the layer-by-layer growth to the multilayer growth, the morphology of the dendrite tip's forefront is completely altered. Parabolic fitting of the dendrite tip reveals that an increase in the influence of interface energy anisotropy makes dendrite tips deviate increasingly from a parabolic shape. By quantifying the deviations under various interface energy anisotropies and growth driving forces, it is suggested that a perfect parabola is an asymptotic limit for the shape of the dendrite tips. Furthermore, the atomic scale description of the dendrite tip obtained in the PFC simulation is compatible with the mesoscopic results obtained in the phase-field simulation in terms of the dendrite tip's morphology and the stability criterion constant.

  2. Dynamic atomic layer epitaxy of InN on/in +c-GaN matrix: Effect of “In+N” coverage and capping timing by GaN layer on effective InN thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp; Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015; Kusakabe, Kazuhide

    2016-01-11

    The growth front in the self-organizing and self-limiting epitaxy of ∼1 monolayer (ML)-thick InN wells on/in +c-GaN matrix by molecular beam epitaxy (MBE) has been studied in detail, with special attention given to the behavior and role of the N atoms. The growth temperatures of interest are above 600 °C, far higher than the typical upper critical temperature of 500 °C in MBE. It was confirmed that 2 ML-thick InN wells can be frozen/inserted in GaN matrix at 620 °C, but it was found that N atoms at the growth front tend to selectively re-evaporate more quickly than In atoms at temperatures highermore » than 650 °C. As a result, the effective thickness of inserted InN wells in the GaN matrix at 660–670 °C were basically 1 ML or sub-ML, even though they were capped by a GaN barrier at the time of 2 ML “In+N” coverage. Furthermore, it was found that the N atoms located below In atoms in the dynamic atomic layer epitaxy growth front had remarkably weaker bonding to the +c-GaN surface.« less

  3. Growth kinetics of indium metal atoms on Si(1 1 2) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Vidur; Chauhan, Amit Kumar Singh; Gupta, Govind, E-mail: govind@nplindia.org

    Graphical abstract: Controlled growth of indium atoms on Si(1 1 2) surface has been carried out systematically and the influence of substrate temperature on the kinetics is analysed under various growth conditions. Temperature induced anomalous layer-to-clusters transformation during thermal desorption has also been reported. - Highlights: • Controlled growth of indium atoms on Si(1 1 2) surface & their thermal stability. • Influence of substrate temperature on the kinetics under various growth conditions. • Temperature induced layer-to-clusters transformation during thermal desorption. - Abstract: The growth kinetics and desorption behavior of indium (In) atoms grown on high index Si(1 1 2)more » surface at different substrate temperatures has been studied. Auger electron spectroscopy analysis revealed that In growth at room temperature (RT) and high substrate temperature (HT) ∼250 °C follows Frank–van der Merve growth mode whereas at temperatures ≥450 °C, In growth evolves through Volmer–Weber growth mode. Thermal desorption studies of RT and 250 °C grown In/Si(1 1 2) systems show temperature induced rearrangement of In atoms over Si(1 1 2) surface leading to clusters to layer transformation. The monolayer and bilayer desorption energies for RT grown In/Si(1 1 2) system are calculated to be 2.5 eV and 1.52 eV, while for HT-250 °C the values are found to be 1.6 eV and 1.3 eV, respectively. This study demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway of In on Si(1 1 2) surface.« less

  4. Simulation of fundamental atomization mechanisms in fuel sprays

    NASA Technical Reports Server (NTRS)

    Childs, Robert, E.; Mansour, Nagi N.

    1988-01-01

    Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.

  5. Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.

    2015-03-01

    Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.

  6. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    PubMed

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  7. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  8. The vertical growth of MoS2 layers at the initial stage of CVD from first-principles

    NASA Astrophysics Data System (ADS)

    Xue, Xiong-Xiong; Feng, Yexin; Chen, Keqiu; Zhang, Lixin

    2018-04-01

    Chemical vapor deposition (CVD) is the highly preferred method for mass production of transition metal dichalcogenide (TMD) layers, yet the atomic-scale knowledge is still lacking about the nucleation and growth. In this study, by using first-principles calculations, we show that, on Au(111) surface, one-dimensional (1D) MoxSy chains are first formed by coalescing of smaller feeding species and are energetically favored at the early stage of nucleation. Two-dimensional (2D) layers can be stabilized only after the number of Mo atoms exceeds ˜12. A vertical growth mode is revealed which accomplishes the structural transformation from the 1D chains to the 2D layers for the clusters while growing. The competition between intralayer and interlayer interactions is the key. These findings serve as new insights for better understanding the atomistic mechanism of the nucleation and growth of TMDs on the surface.

  9. Vapor deposition of molybdenum oxide using bis(ethylbenzene) molybdenum and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, Tasha L.; Stair, Peter C., E-mail: pstair@u.northwestern.edu

    2016-09-15

    Three molybdenum precursors—bis(acetylacetonate) dioxomolybdenum, molybdenum isopropoxide, and bis(ethylbenzene) molybdenum—were tested for molybdenum oxide vapor deposition. Quartz crystal microbalance studies were performed to monitor growth. Molybdenum isopropoxide and bis(ethylbenzene) molybdenum achieved linear growth rates 0.01 and 0.08 Å/cycle, respectively, using atomic layer deposition techniques. Negligible MoO{sub x} growth was observed on alumina powder using molybdenum isopropoxide, as determined by inductively coupled plasma optical emission spectroscopy. Bis(ethylbenzene) molybdenum achieved loadings of 0.5, 1.1, and 1.9 Mo/nm{sup 2} on alumina powder after one, two, and five cycles, respectively, using atomic layer deposition techniques. The growth window for bis(ethylbenzene) molybdenum is 135–150 °C. An alternative pulsingmore » strategy was also developed for bis(ethylbenzene) molybdenum that results in higher growth rates in less time compared to atomic layer deposition techniques. The outlined process serves as a methodology for depositing molybdenum oxide for catalytic applications. All as-deposited materials undergo further calcination prior to characterization and testing.« less

  10. Fabrication of Nanolaminates with Ultrathin Nanolayers Using Atomic Layer Deposition: Nucleation & Growth Issues

    DTIC Science & Technology

    2009-02-01

    Tecnologia de Superficies y Materiales (SMCTSM), XXVII Congreso Nacional, Oaxaca, Oaxaca, Mexico, September 26, 2007. 26. "Atomic Layer Deposition of...Nanolaminates: Fabrication and Properties" (Plenary Lecture), Sociedad Mexicana de Ciencia y Tecnologia de Superficies y Materiales (SMCTSM), XXVII

  11. An atomic carbon source for high temperature molecular beam epitaxy of graphene.

    PubMed

    Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V

    2017-07-26

    We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

  12. Synthesis of millimeter-scale transition metal dichalcogenides single crystals

    DOE PAGES

    Gong, Yongji; Ye, Gonglan; Lei, Sidong; ...

    2016-02-10

    The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm -2, leading to millimeter-scale MoSe 2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation canmore » also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm 2 V -1 s -1, for back-gated MoSe 2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe 2 single crystals.« less

  13. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Impact of excess In-atoms at high growth temperature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Imai, Daichi; Hwang, Eun-Sook

    2016-12-01

    The growth kinetics of nominally one-monolayer (˜1-ML)-thick InN wells on/in the +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the impacts of excess In atoms and/or In droplets at a high growth temperature of 650 °C. Even at a constant growth temperature of 650 °C, the thickness of the sheet-island-like InN-well layers could be controlled/varied from 1-ML to 2-ML owing to the effect of excess In atoms and/or In droplets accumulated during growth. The possible growth mechanism is discussed based on the ring-shaped bright cathodoluminescence emissions introduced along the circumference of the In droplets during growth. The effective thermal stability of N atoms below the bilayer adsorbed In atoms was increased by the presence of In droplets, resulting in the freezing of 2-ML-thick InN wells into the GaN matrix. It therefore became possible to study the difference between the emission properties of 1-ML and 2-ML-thick InN wells/GaN matrix quantum wells (QWs) having similar GaN matrix crystallinity grown at the same temperature. InN/GaN QW-samples grown under widely different In + N* supply conditions characteristically separated into two groups with distinctive emission-peak wavelengths originating from 1-ML and 2-ML-thick InN wells embedded in the GaN matrix. Reflecting the growth mechanism inherent to the D-ALEp of InN on/in the +c-GaN matrix at high temperature, either 1-ML or 2-ML-thick "binary" InN well layers tended to be frozen into the GaN matrix rather InGaN random ternary-alloys. Both the structural quality and uniformity of the 1-ML InN well sample were better than those of the 2-ML InN well sample, essentially owing to the quite thin critical thickness of around 1-ML arising from the large lattice mismatch of InN and GaN.

  14. Liquid-phase growth of few-layered graphene on sapphire substrates using SiC micropowder source

    NASA Astrophysics Data System (ADS)

    Maruyama, Takahiro; Yamashita, Yutaka; Saida, Takahiro; Tanaka, Shin-ichiro; Naritsuka, Shigeya

    2017-06-01

    We demonstrated direct synthesis of graphene films consisting of a few layers (few-layered graphene) on sapphire substrates by liquid-phase growth (LPG), using liquid Ga as the melt and SiC micropowder as the source material. When the dissolution temperature was above 700 °C, almost all Si atoms of SiC diffused into the Ga melt and only carbon atoms remained at the interface beneath the liquid Ga. Above 800 °C, X-ray photoelectron spectra showed that most of the remaining carbon was graphitized. When the dissolution temperature was 1000 °C, Raman spectra showed that few-layered graphene films grew on the sapphire substrates.

  15. Selective growth of Pb islands on graphene/SiC buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6√(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Sincemore » Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.« less

  16. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  17. Subdaily growth patterns and organo-mineral nanostructure of the growth layers in the calcitic prisms of the shell of Concholepas concholepas Bruguière, 1789 (Gastropoda, Muricidae).

    PubMed

    Guzman, Nury; Ball, Alexander D; Cuif, Jean-Pierre; Dauphin, Yannicke; Denis, Alain; Ortlieb, Luc

    2007-10-01

    Fluorochrome marking of the gastropod Concholepas concholepas has shown that the prismatic units of the shell are built by superimposition of isochronic growth layers of about 2 mum. Fluorescent growth marks make it possible to establish the high periodicity of the cyclic biomineralization process at a standard growth rhythm of about 45 layers a day. Sulphated polysaccharides have been identified within the growth layers by using synchrotron radiation, whereas high resolution mapping enables the banding pattern of the mineral phase to be correlated with the layered distribution of polysaccharides. Atomic force microscopy has shown that the layers are made of nanograins densely packed in an organic component.

  18. Impeding effect of Ce on He bubble growth in bcc Fe

    NASA Astrophysics Data System (ADS)

    Hao, W.; Geng, W. T.

    2012-06-01

    Our first-principles density functional theory calculations suggest that the rare earth element Ce has a strong attraction to He (-1.31 eV/atom pair) in bcc Fe, even stronger than He-He attraction (-1.18 eV). The segregated Ce layer at the He bubble surface could introduce an additional energy barrier (0.40 eV) to trespassing He atoms. Therefore, Ce could not only have a pinning effect on mobile He atoms and hence reduce merging rate of He clusters, but also serve as a cover layer to repel further He atoms and thus slows down the bubble growth. The low cost makes Ce a great advantage over Au, which was recently predicted to have similar effect.

  19. Atomic layer deposition of Cu( i ) oxide films using Cu( ii ) bis(dimethylamino-2-propoxide) and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, J. R.; Peters, A. W.; Li, Zhanyong

    2017-01-01

    To grow fIlms of Cu2O, bis-(dimethylamino-2-propoxide)Cu(II), or Cu(dmap), is used as an atomic layer deposition precursor using only water vapor as a co-reactant. Between 110 and 175 °C, a growth rate of 0.12 ± 0.02 Å per cycle was measured using an in situ quartz crystal microbalance (QCM). X-ray photoelectron spectroscopy (XPS) confirms the growth of metal– oxide films featuring Cu(I).

  20. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significantmore » anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.« less

  1. Large scale atomistic simulation of single-layer graphene growth on Ni(111) surface: molecular dynamics simulation based on a new generation of carbon-metal potential

    NASA Astrophysics Data System (ADS)

    Xu, Ziwei; Yan, Tianying; Liu, Guiwu; Qiao, Guanjun; Ding, Feng

    2015-12-01

    To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results.To explore the mechanism of graphene chemical vapor deposition (CVD) growth on a catalyst surface, a molecular dynamics (MD) simulation of carbon atom self-assembly on a Ni(111) surface based on a well-designed empirical reactive bond order potential was performed. We simulated single layer graphene with recorded size (up to 300 atoms per super-cell) and reasonably good quality by MD trajectories up to 15 ns. Detailed processes of graphene CVD growth, such as carbon atom dissolution and precipitation, formation of carbon chains of various lengths, polygons and small graphene domains were observed during the initial process of the MD simulation. The atomistic processes of typical defect healing, such as the transformation from a pentagon into a hexagon and from a pentagon-heptagon pair (5|7) to two adjacent hexagons (6|6), were revealed as well. The study also showed that higher temperature and longer annealing time are essential to form high quality graphene layers, which is in agreement with experimental reports and previous theoretical results. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06016h

  2. Atomic layer epitaxy of YBaCuO for optoelectronic applications

    NASA Technical Reports Server (NTRS)

    Skogman, R. A.; Khan, M. A.; Van Hove, J. M.; Bhattarai, A.; Boord, W. T.

    1992-01-01

    An MOCVD-based atomic-layer epitaxy process is being developed as a potential solution to the problems of film-thickness and interface-abruptness control which are encountered when fabricating superconductor-insulator-superconductor devices using YBa2Cu3O(7-x). In initial studies, the atomic-layer MOCVD process yields superconducting YBa2Cu3O(7-x) films with substrate temperatures of 605 C during film growth, and no postdeposition anneal. The low temperature process yields a smooth film surface and can reduce interface degradation due to diffusion.

  3. Materials Design Through Chemical Control of Precursors

    DTIC Science & Technology

    2008-08-22

    Ligand Sets,” H. M. El-Kaderi, M.J. Heeg, and C.H. Winter, Polyhedron 2006, 25, 224-234. 7. “Atomic Layer Deposition of Ga2O3 Films from a...poster presentation. 4. “Atomic Layer Deposition (ALD) of High Quality Ga2O3 Thin Films from a Dimeric Dialkylamido-Bridged Gallium Complex,” C. L...growth of Ga2O3 films from a new metalorganic precursor (“Atomic Layer Deposition of Ga2O3 Films from a 4 Dialkylamido-Based Precursor,” C. L

  4. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw; Wu, Jia-Yuan; Jhou, Ming-Kuan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kindsmore » of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.« less

  5. Growth and interfacial structure of methylammonium lead iodide thin films on Au(111)

    NASA Astrophysics Data System (ADS)

    She, Limin; Liu, Meizhuang; Li, Xiaoli; Cai, Zeying; Zhong, Dingyong

    2017-02-01

    Due to the promising optoelectronic properties, organic-inorganic hybrid perovskites have been intensively studied as the active layers in perovskite solar cells. However, the structural information about their interface, one of the key factors determining device performances, is so far very rare. Herein, we report on the growth of CH3NH3PbI3 (MAPbI3, MA=CH3NH3) thin films by means of vapor deposition under ultrahigh vacuum. The surface morphology and interfacial structure have been investigated by scanning tunneling microscopy. At the initial growth stage, a complicated transient phase consisting of three atomic layers, i.e., iodine, MA-PbI4 and MA-I, was formed on the Au(111) substrate. With the coverage increasing, atomically smooth MAPbI3 films with orthorhombic structure have been obtained after annealing to 373 K. The films followed a self-organized twofold-layer by twofold-layer growth mode with the formation of complete PbI6 octahedrons and the exposure of MA-I terminated (001) surface.

  6. The influence of radiation-induced vacancy on the formation of thin-film of compound layer during a reactive diffusion process

    NASA Astrophysics Data System (ADS)

    Akintunde, S. O.; Selyshchev, P. A.

    2016-05-01

    A theoretical approach is developed that describes the formation of a thin-film of AB-compound layer under the influence of radiation-induced vacancy. The AB-compound layer is formed as a result of a chemical reaction between the atomic species of A and B immiscible layers. The two layers are irradiated with a beam of energetic particles and this process leads to several vacant lattice sites creation in both layers due to the displacement of lattice atoms by irradiating particles. A- and B-atoms diffuse via these lattice sites by means of a vacancy mechanism in considerable amount to reaction interfaces A/AB and AB/B. The reaction interfaces increase in thickness as a result of chemical transformation between the diffusing species and surface atoms (near both layers). The compound layer formation occurs in two stages. The first stage begins as an interfacial reaction controlled process, and the second as a diffusion controlled process. The critical thickness and time are determined at a transition point between the two stages. The influence of radiation-induced vacancy on layer thickness, speed of growth, and reaction rate is investigated under irradiation within the framework of the model presented here. The result obtained shows that the layer thickness, speed of growth, and reaction rate increase strongly as the defect generation rate rises in the irradiated layers. It also shows the feasibility of producing a compound layer (especially in near-noble metal silicide considered in this study) at a temperature below their normal formation temperature under the influence of radiation.

  7. Formation of pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer.

    PubMed

    Kim, Chaeho; Jeon, D

    2008-09-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO(2) surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO(2) and pentacene wetting layer.

  8. Formation of atomically smooth epitaxial metal films on a chemically reactive interface: Mg on Si(111)

    NASA Astrophysics Data System (ADS)

    Özer, Mustafa M.; Weitering, Hanno H.

    2013-07-01

    Deposition of Mg on Si(111)7 × 7 produces an epitaxial magnesium silicide layer. Under identical annealing conditions, the thickness of this Mg2Si(111) layer increases with deposition amount, reaching a maximum of 4 monolayer (ML) and decreasing to ˜3 ML at higher Mg coverage. Excess Mg coalesces into atomically flat, crystalline Mg(0001) films. This surprising growth mode can be attributed to the accidental commensurability of the Mg(0001), Si(111), and Mg2Si(111) interlayer spacing and the concurrent minimization of in-plane Si mass transfer and domain-wall energies. The commensurability of the interlayer spacing defines a highly unique solid-phase epitaxial growth process capable of producing trilayer structures with atomically abrupt interfaces and atomically smooth surface morphologies.

  9. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE PAGES

    Boichot, R.; Tian, L.; Richard, M. -I.; ...

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al 2O 3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  10. Atomic Layer Epitaxy of Aluminum Nitride: Unraveling the Connection between Hydrogen Plasma and Carbon Contamination.

    PubMed

    Erwin, Steven C; Lyons, John L

    2018-06-13

    Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.

  11. Cost-Effective Systems for Atomic Layer Deposition

    ERIC Educational Resources Information Center

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  12. Functionalized graphene-Pt composites for fuel cells and photoelectrochemical cells

    DOEpatents

    Diankov, Georgi; An, Jihwan; Park, Joonsuk; Goldhaber, David J. K.; Prinz, Friedrich B.

    2017-08-29

    A method of growing crystals on two-dimensional layered material is provided that includes reversibly hydrogenating a two-dimensional layered material, using a controlled radio-frequency hydrogen plasma, depositing Pt atoms on the reversibly hydrogenated two-dimensional layered material, using Atomic Layer Deposition (ALD), where the reversibly hydrogenated two-dimensional layered material promotes loss of methyl groups in an ALD Pt precursor, and forming Pt-O on the reversibly hydrogenated two-dimensional layered material, using combustion by O.sub.2, where the Pt-O is used for subsequent Pt half-cycles of the ALD process, where growth of Pt crystals occurs.

  13. Carbon Displacement-Induced Single Carbon Atomic Chain Formation and its Effects on Sliding of SiC Fibers in SiC/graphene/SiC Composite

    DOE PAGES

    Wallace, Joseph B.; Chen, Di; Shao, Lin

    2015-11-03

    Understanding radiation effects on the mechanical properties of SiC composites is important to their application in advanced reactor designs. By means of molecular dynamics simulations, we found that due to strong interface bonding between the graphene layers and SiC, the sliding friction of SiC fibers is largely determined by the frictional behavior between graphene layers. Upon sliding, carbon displacements between graphene layers can act as seed atoms to induce the formation of single carbon atomic chains (SCACs) by pulling carbon atoms from the neighboring graphene planes. The formation, growth, and breaking of SCACs determine the frictional response to irradiation.

  14. Nanostructured double-layer FeO as nanotemplate for tuning adsorption of titanyl phthalocyanine molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuangzan; University of Chinese Academy of Sciences, Beijing 100049; Qin, Zhihui, E-mail: zhqin@wipm.ac.cn

    2014-06-23

    The growth, structure of Pt(111) supported double-layer FeO and the adsorption of titanyl phthalocyanine (TiOPc) molecules with tunable site and orientation were presented. According to the atomic-resolution STM image, the structure was rationalized as (8√3 × 8√3) R30°/Pt(111) nanostructure constructed by Fe species coordinated with different number of oxygen on top of non-rotated (8 × 8) FeO /Pt(111) structure. Due to the modulation of the stacking of Fe atoms in the second layer relative to the O atoms in the second layer and the underlying layer, the interface and total dipole moment periodically vary within (8√3 × 8√3) R30°/Pt(111) structure. The resulted periodically distributed dipole-dipole interactionmore » benefits the growth of TiOPc molecules with area-selective sites and molecular orientations. Thus, this study provides a reliable method to govern the adsorption process of the polar molecules for potential applications in future functional molecular devices.« less

  15. Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass

    NASA Astrophysics Data System (ADS)

    Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.

    2016-09-01

    The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).

  16. Superconducting ferecrystals: turbostratically disordered atomic-scale layered (PbSe)1.14(NbSe2)n thin films.

    PubMed

    Grosse, Corinna; Alemayehu, Matti B; Falmbigl, Matthias; Mogilatenko, Anna; Chiatti, Olivio; Johnson, David C; Fischer, Saskia F

    2016-09-16

    Hybrid electronic heterostructure films of semi- and superconducting layers possess very different properties from their bulk counterparts. Here, we demonstrate superconductivity in ferecrystals: turbostratically disordered atomic-scale layered structures of single-, bi- and trilayers of NbSe2 separated by PbSe layers. The turbostratic (orientation) disorder between individual layers does not destroy superconductivity. Our method of fabricating artificial sequences of atomic-scale 2D layers, structurally independent of their neighbours in the growth direction, opens up new possibilities of stacking arbitrary numbers of hybrid layers which are not available otherwise, because epitaxial strain is avoided. The observation of superconductivity and systematic Tc changes with nanostructure make this synthesis approach of particular interest for realizing hybrid systems in the search of 2D superconductivity and the design of novel electronic heterostructures.

  17. Growth mechanism of Al2O3 film on an organic layer in plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kim, D. W.; Kang, W. S.; Lee, J. O.; Hur, M.; Han, S. H.

    2018-01-01

    Differences in the physical and chemical properties of Al2O3 films on a Si wafer and a C x H y layer were investigated in the case of plasma-enhanced atomic layer deposition. The Al2O3 film on the Si had a sharper interface and lower thickness than the Al2O3 film on the C x H y . The amount of carbon-impurity near the interface was larger for Al2O3 on the C x H y than for Al2O3 on the Si. In order to understand these differences, the concentrations of Al, O, C, and Si atoms through the Al2O3 films were evaluated by using x-ray photoelectron spectroscopy (XPS) depth profiling. The emission intensities of CO molecule were analyzed for different numbers of deposition cycles, by using time-resolved optical emission spectroscopy (OES). Finally, a growth mechanism for Al2O3 on an organic layer was proposed, based on the XPS and OES results for the Si wafer and the C x H y layer.

  18. Chemical reaction of atomic oxygen with evaporated films of copper, part 4

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Williams, J. R.

    1990-01-01

    Evaporated copper films were exposed to an atomic oxygen flux of 1.4 x 10(exp 17) atoms/sq cm per sec at temperatures in the range 285 to 375 F (140 to 191 C) for time intervals between 2 and 50 minutes. Rutherford backscattering spectroscopy (RBS) was used to determine the thickness of the oxide layers formed and the ratio of the number of copper to oxygen atoms in the layers. Oxide film thicknesses ranged from 50 to 3000 A (0.005 to 0.3 microns, or equivalently, 5 x 10(exp -9) to 3 x 10(exp -7); it was determined that the primary oxide phase was Cu2O. The growth law was found to be parabolic (L(t) varies as t(exp 1/2)), in which the oxide thickness L(t) increases as the square root of the exposure time t. The analysis of the data is consistent with either of the two parabolic growth laws. (The thin-film parabolic growth law is based on the assumption that the process is diffusion controlled, with the space charge within the growing oxide layer being negligible. The thick-film parabolic growth law is also based on a diffusion controlled process, but space-charge neutrality prevails locally within very thick oxides.) In the absence of a voltage measurement across the growing oxide, a distinction between the two mechanisms cannot be made, nor can growth by the diffusion of neutral atomic oxygen be entirely ruled out. The activation energy for the reaction is on the order of 1.1 eV (1.76 x 10(exp -19) joule, or equivalently, 25.3 kcal/mole).

  19. Inhibition of Crystal Growth during Plasma Enhanced Atomic Layer Deposition by Applying BIAS

    PubMed Central

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-01-01

    In this study, the influence of direct current (DC) biasing on the growth of titanium dioxide (TiO2) layers and their nucleation behavior has been investigated. Titania films were prepared by plasma enhanced atomic layer deposition (PEALD) using Ti(OiPr)4 as metal organic precursor. Oxygen plasma, provided by remote inductively coupled plasma, was used as an oxygen source. The TiO2 films were deposited with and without DC biasing. A strong dependence of the applied voltage on the formation of crystallites in the TiO2 layer is shown. These crystallites form spherical hillocks on the surface which causes high surface roughness. By applying a higher voltage than the plasma potential no hillock appears on the surface. Based on these results, it seems likely, that ions are responsible for the nucleation and hillock growth. Hence, the hillock formation can be controlled by controlling the ion energy and ion flux. The growth per cycle remains unchanged, whereas the refractive index slightly decreases in the absence of energetic oxygen ions. PMID:28793679

  20. Growth process optimization of ZnO thin film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  1. Atomically Precise Interfaces from Non-stoichiometric Deposition

    NASA Astrophysics Data System (ADS)

    Nie, Yuefeng; Zhu, Ye; Lee, Che-Hui; Kourkoutis, Lena; Mundy, Julia; Junquera, Javier; Ghosez, Philippe; Baek, David; Sung, Suk Hyun; Xi, Xiaoxing; Shen, Kyle; Muller, David; Schlom, Darrell

    2015-03-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinO3n+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control--from just the n = 1 end members (perovskites) to the entire RP homologous series--enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  2. Atomically precise interfaces from non-stoichiometric deposition

    NASA Astrophysics Data System (ADS)

    Nie, Y. F.; Zhu, Y.; Lee, C.-H.; Kourkoutis, L. F.; Mundy, J. A.; Junquera, J.; Ghosez, Ph.; Baek, D. J.; Sung, S.; Xi, X. X.; Shen, K. M.; Muller, D. A.; Schlom, D. G.

    2014-08-01

    Complex oxide heterostructures display some of the most chemically abrupt, atomically precise interfaces, which is advantageous when constructing new interface phases with emergent properties by juxtaposing incompatible ground states. One might assume that atomically precise interfaces result from stoichiometric growth. Here we show that the most precise control is, however, obtained by using deliberate and specific non-stoichiometric growth conditions. For the precise growth of Srn+1TinOn+1 Ruddlesden-Popper (RP) phases, stoichiometric deposition leads to the loss of the first RP rock-salt double layer, but growing with a strontium-rich surface layer restores the bulk stoichiometry and ordering of the subsurface RP structure. Our results dramatically expand the materials that can be prepared in epitaxial heterostructures with precise interface control—from just the n=∞ end members (perovskites) to the entire RP homologous series—enabling the exploration of novel quantum phenomena at a richer variety of oxide interfaces.

  3. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, andmore » therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.« less

  4. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com

    2016-07-06

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seedmore » layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.« less

  5. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  6. MBE growth and processing of III/V-nitride semiconductor thin film structures: Growth of gallium indium arsenic nitride and nano-machining with focused ion beam and electron beam

    NASA Astrophysics Data System (ADS)

    Park, Yeonjoon

    The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.

  7. Atomistics of Ge deposition on Si(100) by atomic layer epitaxy.

    PubMed

    Lin, D S; Wu, J L; Pan, S Y; Chiang, T C

    2003-01-31

    Chlorine termination of mixed Ge/Si(100) surfaces substantially enhances the contrast between Ge and Si sites in scanning tunneling microscopy observations. This finding enables a detailed investigation of the spatial distribution of Ge atoms deposited on Si(100) by atomic layer epitaxy. The results are corroborated by photoemission measurements aided by an unusually large chemical shift between Cl adsorbed on Si and Ge. Adsorbate-substrate atomic exchange during growth is shown to be important. The resulting interface is thus graded, but characterized by a very short length scale of about one monolayer.

  8. Atomic-order thermal nitridation of group IV semiconductors for ultra-large-scale integration

    NASA Astrophysics Data System (ADS)

    Murota, Junichi; Le Thanh, Vinh

    2015-03-01

    One of the main requirements for ultra-large-scale integration (ULSI) is atomic-order control of process technology. Our concept of atomically controlled processing for group IV semiconductors is based on atomic-order surface reaction control in Si-based CVD epitaxial growth. On the atomic-order surface nitridation of a few nm-thick Ge/about 4 nm-thick Si0.5Ge0.5/Si(100) by NH3, it is found that N atoms diffuse through nm-order thick Ge layer into Si0.5Ge0.5/Si(100) substrate and form Si nitride, even at 500 °C. By subsequent H2 heat treatment, although N atomic amount in Ge layer is reduced drastically, the reduction of the Si nitride is slight. It is suggested that N diffusion in Ge layer is suppressed by the formation of Si nitride and that Ge/atomic-order N layer/Si1-xGex/Si (100) heterostructure is formed. These results demonstrate the capability of CVD technology for atomically controlled nitridation of group IV semiconductors for ultra-large-scale integration. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  9. Effects of SiO 2 overlayer at initial growth stage of epitaxial Y 2O 3 film growth

    NASA Astrophysics Data System (ADS)

    Cho, M.-H.; Ko, D.-H.; Choi, Y. G.; Lyo, I. W.; Jeong, K.; Whang, C. N.

    2000-12-01

    We investigated the dependence of the Y 2O 3 film growth on Si surface at initial growth stage. The reflection high-energy electron diffraction, X-ray scattering, and atomic force microscopy showed that the film crystallinity and morphology strongly depended on whether Si surface contained O or not. In particular, the films grown on oxidized surfaces revealed significant improvement in crystallinity and surface smoothness. A well-ordered atomic structure of Y 2O 3 film was formed on 1.5 nm thick SiO 2 layer with the surface and interfacial roughness markedly enhanced, compared with the film grown on the clean Si surfaces. The epitaxial film on the oxidized Si surface exhibited extremely small mosaic structures at interface, while the film on the clean Si surface displayed an island-like growth with large mosaic structures. The nucleation sites for Y 2O 3 were provided by the reaction between SiO 2 and Y at the initial growth stage. The SiO 2 layer known to hinder crystal growth is found to enhance the nucleation of Y 2O 3, and provides a stable buffer layer against the silicide formation. Thus, the formation of the initial SiO 2 layer is the key to the high-quality epitaxial growth of Y 2O 3 on Si.

  10. A Microstructural Comparison of the Initial Growth of AIN and GaN Layers on Basal Plane Sapphire and SiC Substrates by Low Pressure Metalorganic Chemical Vapor Depositon

    NASA Technical Reports Server (NTRS)

    George, T.; Pike, W. T.; Khan, M. A.; Kuznia, J. N.; Chang-Chien, P.

    1994-01-01

    The initial growth by low pressure metalorganic chemical vapor deposition and subsequent thermal annealing of AIN and GaN epitaxial layers on SiC and sapphire substrates is examined using high resolution transmission electron microscopy and atomic force microscopy.

  11. Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection

    PubMed Central

    2017-01-01

    We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779

  12. Large-scale molecular dynamics simulations of TiN/TiN(001) epitaxial film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edström, Daniel, E-mail: daned@ifm.liu.se; Sangiovanni, Davide G.; Hultman, Lars

    2016-07-15

    Large-scale classical molecular dynamics simulations of epitaxial TiN/TiN(001) thin film growth at 1200 K are carried out using incident flux ratios N/Ti = 1, 2, and 4. The films are analyzed as a function of composition, island size distribution, island edge orientation, and vacancy formation. Results show that N/Ti = 1 films are globally understoichiometric with dispersed Ti-rich surface regions which serve as traps to nucleate 111-oriented islands, leading to local epitaxial breakdown. Films grown with N/Ti = 2 are approximately stoichiometric and the growth mode is closer to layer-by-layer, while N/Ti = 4 films are stoichiometric with N-rich surfaces. As N/Ti is increased from 1 to 4, islandmore » edges are increasingly polar, i.e., 110-oriented, and N-terminated to accommodate the excess N flux, some of which is lost by reflection of incident N atoms. N vacancies are produced in the surface layer during film deposition with N/Ti = 1 due to the formation and subsequent desorption of N{sub 2} molecules composed of a N adatom and a N surface atom, as well as itinerant Ti adatoms pulling up N surface atoms. The N vacancy concentration is significantly reduced as N/Ti is increased to 2; with N/Ti = 4, Ti vacancies dominate. Overall, our results show that an insufficient N/Ti ratio leads to surface roughening via nucleation of small dispersed 111 islands, whereas high N/Ti ratios result in surface roughening due to more rapid upper-layer nucleation and mound formation. The growth mode of N/Ti = 2 films, which have smoother surfaces, is closer to layer-by-layer.« less

  13. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. © 2012 American Chemical Society

  14. Effects of growth temperature on the properties of atomic layer deposition grown ZrO2 films

    NASA Astrophysics Data System (ADS)

    Scarel, G.; Ferrari, S.; Spiga, S.; Wiemer, C.; Tallarida, G.; Fanciulli, M.

    2003-07-01

    Zirconium dioxide films are grown in 200 atomic layer deposition cycles. Zirconium tetrachloride (ZrCl4) and water (H2O) are used as precursors. A relatively high dielectric constant (κ=22), wide band gap, and conduction band offset (5.8 and 1.4 eV, respectively) indicate that zirconium dioxide is a most promising substitute for silicon dioxide as a dielectric gate in complementary metal-oxide-semiconductor devices. However, crystallization and chlorine ions in the films might affect their electrical properties. These ions are produced during atomic layer deposition in which the ZrCl4 precursor reacts with the growth surface. It is desirable to tune the composition, morphology, and structural properties in order to improve their benefit on the electrical ones. To address this issue it is necessary to properly choose the growth parameters. This work focuses on the effects of the growth temperature Tg. ZrO2 films are grown at different substrate temperatures: 160, 200, 250, and 350 °C. Relevant modification of the film structure with a change in substrate temperature during growth is expected because the density of reactive sites [mainly Si+1-(OH)-1 bonds] decreases with an increase in temperature [Y. B. Kim et al., Electrochem. Solid-State Lett. 3, 346 (2000)]. The amorphous film component, for example, that develops at Si+1-(OH)-1 sites on the starting growth surface, is expected to decrease with an increase in growth temperature. The size and consequences of film property modifications with the growth temperature are investigated in this work using x-ray diffraction and reflectivity, and atomic force microscopy. Time of flight-secondary ion mass spectrometry is used to study contaminant species in the films. From capacitance-voltage (CV) and current-voltage (IV) measurements, respectively, the dielectric constant κZrO2 and the leakage current are studied as a function of the film growth temperature.

  15. Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Thomas E., E-mail: zoomtotom@gmail.com; Goldberg, Alexander; Halls, Mat D.

    2016-01-15

    Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si{sub 9}H{sub 12} truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF{sub 3}, PCl{sub 3}, and PBr{sub 3}) and disilane (Si{sub 2}H{sub 6}). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF{sub 3} and Si{sub 2}H{sub 6} reactions and featuring SiFH{sub 3} as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactionsmore » for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated.« less

  16. Modeling growth kinetics of thin films made by atomic layer deposition in lateral high-aspect-ratio structures

    NASA Astrophysics Data System (ADS)

    Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.

    2018-05-01

    The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.

  17. Comparison of tungsten films grown by CVD and hot-wire assisted atomic layer deposition in a cold-wall reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengdi, E-mail: M.Yang@utwente.nl; Aarnink, Antonius A. I.; Kovalgin, Alexey Y.

    2016-01-15

    In this work, the authors developed hot-wire assisted atomic layer deposition (HWALD) to deposit tungsten (W) with a tungsten filament heated up to 1700–2000 °C. Atomic hydrogen (at-H) was generated by dissociation of molecular hydrogen (H{sub 2}), which reacted with WF{sub 6} at the substrate to deposit W. The growth behavior was monitored in real time by an in situ spectroscopic ellipsometer. In this work, the authors compare samples with tungsten grown by either HWALD or chemical vapor deposition (CVD) in terms of growth kinetics and properties. For CVD, the samples were made in a mixture of WF{sub 6} and molecularmore » or atomic hydrogen. Resistivity of the WF{sub 6}-H{sub 2} CVD layers was 20 μΩ·cm, whereas for the WF{sub 6}-at-H-CVD layers, it was 28 μΩ·cm. Interestingly, the resistivity was as high as 100 μΩ·cm for the HWALD films, although the tungsten films were 99% pure according to x-ray photoelectron spectroscopy. X-ray diffraction reveals that the HWALD W was crystallized as β-W, whereas both CVD films were in the α-W phase.« less

  18. High indium content homogenous InAlN layers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kyle, Erin C. H.; Kaun, Stephen W.; Wu, Feng; Bonef, Bastien; Speck, James S.

    2016-11-01

    InAlN grown by plasma-assisted molecular beam epitaxy often contains a honeycomb microstructure. The honeycomb microstructure consists of 5-10 nm diameter aluminum-rich regions which are surrounded by indium-rich regions. Layers without this microstructure were previously developed for nominally lattice-matched InAlN and have been developed here for higher indium content InAlN. In this study, InAlN was grown in a nitrogen-rich environment with high indium to aluminum flux ratios at low growth temperatures. Samples were characterized by high-resolution x-ray diffraction, atomic force microscopy, high-angle annular dark-field scanning transmission electron microscopy, and atom probe tomography. Atomic force microscopy showed InAlN layers grown at temperatures below 450 °C under nitrogen-rich conditions were free of droplets. InAlN films with indium contents up to 81% were grown at temperatures between 410 and 440 °C. High-angle annular dark-field scanning transmission electron microscopy and atom probe tomography showed no evidence of honeycomb microstructure for samples with indium contents of 34% and 62%. These layers are homogeneous and follow a random alloy distribution. A growth diagram for InAlN of all indium contents is reported.

  19. In Situ Infrared Spectroscopic Studies of Molecular Layer Deposition and Atomic Layer Etching Processes

    NASA Astrophysics Data System (ADS)

    DuMont, Jaime Willadean

    In this thesis, in situ Fourier transform infrared (FTIR) spectroscopy was used to study: i) the growth and pyrolysis of molecular layer deposition (MLD) films. ii) the surface chemistry of atomic layer etching (ALE) processes. Atomic layer processes such as molecular layer deposition (MLD) and atomic layer etching (ALE) are techniques that can add or remove material with atomic level precision using sequential, self-limiting surface reactions. Deposition and removal processes at the atomic scale are powerful tools for many industrial and research applications such as energy storage and semiconductor nanofabrication. The first section of this thesis describes the chemistry of reactions leading to the MLD of aluminum and tin alkoxide polymer films known as "alucone" and "tincone", respectively. The subsequent pyrolysis of these films to produce metal oxide/carbon composites was also investigated. In situ FTIR spectroscopy was conducted to monitor surface species during MLD film growth and to monitor the films background infrared absorbance versus pyrolysis temperature. Ex situ techniques such as transmission electron microscopy (TEM), four-point probe and X-ray diffraction (XRD) were utilized to study the properties of the films post-pyrolysis. TEM confirmed that the pyrolyzed films maintained conformality during post-processing. Four-point probe monitored film resistivity versus pyrolysis temperature and XRD determined the film crystallinity. The second section of this thesis focuses on the surface chemistry of Al2O3 and SiO2 ALE processes, respectively. Thermal ALE processes have been recently developed which utilize sequential fluorination and ligand exchange reactions. An intimate knowledge of the surface chemistry is important in understanding the ALE process. In this section, the competition between the Al2O3 etching and AlF 3 growth that occur during sequential HF (fluorinating agent) and TMA (ligand exchange) exposures is investigated using in situ FTIR spectroscopy. Also included in this section is the first demonstration of thermal ALE for SiO2. In situ FTIR spectroscopy was conducted to monitor the loss of bulk Si-O vibrational modes corresponding to the removal of SiO2. FTIR was also used to monitor surface species during each ALE half cycle and to verify self-limiting behavior. X-ray reflectivity experiments were conducted to establish etch rates on thermal oxide silicon wafers.

  20. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BNmore » until it may cover entire h-BN flakes.« less

  1. Secondary growth mechanism of SiGe islands deposited on a mixed-phase microcrystalline Si by ion beam co-sputtering.

    PubMed

    Ke, S Y; Yang, J; Qiu, F; Wang, Z Q; Wang, C; Yang, Y

    2015-11-06

    We discuss the SiGe island co-sputtering deposition on a microcrystalline silicon (μc-Si) buffer layer and the secondary island growth based on this pre-SiGe island layer. The growth phenomenon of SiGe islands on crystalline silicon (c-Si) is also investigated for comparison. The pre-SiGe layer grown on μc-Si exhibits a mixed-phase structure, including SiGe islands and amorphous SiGe (a-SiGe) alloy, while the layer deposited on c-Si shows a single-phase island structure. The preferential growth and Ostwald ripening growth are shown to be the secondary growth mechanism of SiGe islands on μc-Si and c-Si, respectively. This difference may result from the effect of amorphous phase Si (AP-Si) in μc-Si on the island growth. In addition, the Si-Ge intermixing behavior of the secondary-grown islands on μc-Si is interpreted by constructing the model of lateral atomic migration, while this behavior on c-Si is ascribed to traditional uphill atomic diffusion. It is found that the aspect ratios of the preferential-grown super islands are higher than those of the Ostwald-ripening ones. The lower lateral growth rate of super islands due to the lower surface energy of AP-Si on the μc-Si buffer layer for the non-wetting of Ge at 700 °C and the stronger Si-Ge intermixing effect at 730 °C may be responsible for this aspect ratio difference.

  2. Au/Ti resistors used for Nb/Pb-alloy Josephson junctions. II. Thermal stability

    NASA Astrophysics Data System (ADS)

    Murakami, Masanori; Kim, K. K.

    1984-10-01

    In the preceding paper bilayered Au/Ti resistors were found to have excellent electrical stability during storage at room temperature after preannealing at an elevated temperature, which is essential to design logic and memory circuits of Nb/Pb-alloy Josephson junction devices. The resistors could contact directly with the Pb-alloy control lines in which Pb and In atoms which are known to intermix easily with Au atoms are contained. Since Pb and In atoms in the control lines are separated from Au atoms of the resistors by thin Ti layers, thermal stability at the contacts is a major concern for use of the Au/Ti resistor material in the Josephson devices. In the present study, surface morphology change and diffusion mechanism at the resistor/control-line contacts were studied using x-ray diffraction and scanning electron microscopy for square-shaped Au/Ti resistors covered by Pb-In layers. The samples were isothermally annealed at temperatures ranging from 353 to 423 K. The diffusion did not occur immediately after annealing at these temperatures. After the incubation period, the interdiffusion was observed to initiate at the edges of the resistors facing to the center of the cathode. Significant amounts of the In atoms in the Pb-In layers were observed to diffuse into the Au layers of the resistors, forming AuIn2 compounds under the Ti layers. By measuring growth rates of the AuIn2 layers, the diffusion coefficients and the activation energy for the layer growth were determined. Also, by analyzing changes in the In concentration in the Pb-In layers during annealing, interdiffusion coefficients of In atoms in the Pb-In layers were determined using a computer simulation technique. The activation energy was about 1.1 eV. Since these diffusion coefficients were found to be very close to those determined previously in bulk materials, the diffusion kinetics is believed to be controlled by the lattice diffusion. Based on the present results, several methods to reduce the interdiffusion between Pb-alloy and Au/Ti resistors were proposed.

  3. Initial and steady-state Ru growth by atomic layer deposition studied by in situ Angle Resolved X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Egorov, Konstantin V.; Lebedinskii, Yury Yu.; Soloviev, Anatoly A.; Chouprik, Anastasia A.; Azarov, Alexander Yu.; Markeev, Andrey M.

    2017-10-01

    The clear substrate-dependent growth and delayed film continuity are essential challenges of Ru atomic layer deposition (ALD) demanding adequate and versatile approaches for their study. Here, we report on the application of in situ Angle Resolved X-ray Phototelectron Spectroscopy (ARXPS) for investigation of initial and steady-state ALD growth of Ru using Ru(EtCp)2 and O2 as precursors. Using ARXPS surface analysis technique we determine such parameters of Ru ALD initial growth as incubation period, fractional coverage and the thickness of islands/film depending on the substrate chemical state, governed by the presence/absence of NH3/Ar plasma pretreatment. It was demonstrated that NH3/Ar plasma pretreatment allows to obtain the lowest incubation period (∼7 ALD cycles) resulting in a continuous ultrathin (∼20 Å) and smooth Ru films after 70 ALD cycles. In situ XPS at UHV was used at steady state Ru growth for analysis of half-cycle reactions that revealed formation of RuOx (x ≈ 2) layer with thickness of ∼8 Å after O2 pulse (first half-cycle). It was also shown that oxygen of RuOx layer combusts Ru(EtCp)2 ligands in the second half-cycle reaction and the observed Ru growth of ∼0.34 Å per cycle is in a good agreement with the amount of oxygen in the RuOx layer.

  4. Optimization Methods on Synthesis of Atomically Thin Layered Materials and Heterostructures

    NASA Astrophysics Data System (ADS)

    Temiz, Selcuk

    Two dimensional (2D) materials have emerged as a new class of materials that only a few atoms thick. Owing to their low dimensionality, 2D materials bear rather unusual properties that do not exist in traditional three dimensional (3D) materials. Graphene, a single layer of carbon atoms arrange in a 2D hexagonal lattice, has started the revolutionary progress in materials science and condensed matter physics, and motivated intense research in other 2D materials such as h-BN, and layered metal dichalcogenides. Chemical vapor deposition (CVD) is the most studied bottom-up graphene production method for building the prototypes of next-generation electronic devices due to its scalability; however, there is still not an ultimate consensus of growth mechanisms on control the size and morphology of synthesized-crystals. In order to have better understanding the growth mechanisms, the role of oxygen exposure in the graphene growth has been comprehensively studied. The oxygen gas is introduced into the CVD reactor before and during the growth, and its effects on the morphology, crystallinity, and nucleation density of graphene are systematically studied. It is found that introducing oxygen during growth significantly improves the graphene crystallinity while pre-dosing oxygen before growth reduces the graphene nucleation density. The stacking of graphene and other layered materials in the lateral or vertical geometries can offer extended functionality by exploiting interfacial phenomena, quantum confinement and tunneling, which requires the interface between the layered materials be free of contaminates. The vertical heterostructures of CVD-grown graphene and h-BN single crystals are deeply investigated by analytical scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). It is shown that graphene contamination, undetectable using optical microscopy, is prevalent at the nanoscale, and the interfacial contamination between the layers reduces the interlayer coupling and ultimately undermines the graphene/h-BN heterostructures. Raman spectroscopy is a versatile and non-destructive technique for the identification of structural properties and phonon features of atomically thin layered materials. Especially, the second order resonant Raman spectroscopy, which can be applied to the resonance conditions in energy of the incoming photon and interband transitions of an electron in a crystal lattice, reveals additional phonon modes to typical Raman active modes in a spectra. Various 2D materials, including SnSe2, WSe2, SnS2, and MoTe2, and their heterostructures are fabricated by dry transfer method as a top-down approach. The vibrational characteristics of these 2D materials systems are unambiguously established by using second order Resonant Raman spectroscopy.

  5. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    PubMed

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  6. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

    2016-12-01

    The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

  7. Real-Time Observation of Atomic Layer Deposition Inhibition: Metal Oxide Growth on Self-Assembled Alkanethiols

    DOE PAGES

    Avila, Jason R.; DeMarco, Erica J.; Emery, Jonathan D.; ...

    2014-07-21

    Through in-situ quartz crystal microbalance (QCM) monitoring we resolve the growth of a self-assembled monolayer (SAM) and subsequent metal oxide deposition with high resolution. Here, we introduce the fitting of mass deposited during each atomic layer deposition (ALD) cycle to an analytical island-growth model that enables quantification of growth inhibition, nucleation density, and the uninhibited ALD growth rate. A long-chain alkanethiol was self-assembled as a monolayer on gold-coated quartz crystals in order to investigate its effectiveness as a barrier to ALD. Compared to solution-loading, vapor-loading is observed to produce a SAM with equal or greater inhibition-ability in minutes vs. days.more » The metal oxide growth temperature and the choice of precursor also significantly affect the nucleation density, which ranges from 0.001 to 1 sites/nm 2. Finally, we observe a minimum 100 cycle inhibition of an oxide ALD process, ZnO, under moderately optimized conditions.« less

  8. Nucleation and growth kinetics for intercalated islands during deposition on layered materials with isolated pointlike surface defects

    DOE PAGES

    Han, Yong; Lii-Rosales, A.; Zhou, Y.; ...

    2017-10-13

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less

  9. Atomically Thin Al2O3 Films for Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  10. Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

    NASA Astrophysics Data System (ADS)

    Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.

    2018-05-01

    Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.

  11. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    DOE PAGES

    Kwolek, Emma J.; Lei, Huaping; Lii-Rosales, Ann; ...

    2016-06-13

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. As a result, this island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less

  12. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwolek, Emma J.; Lii-Rosales, Ann; Department of Chemistry, Iowa State University, Ames, Iowa 50011

    2016-12-07

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less

  13. Relating electronic and geometric structure of atomic layer deposited BaTiO 3 to its electrical properties

    DOE PAGES

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; ...

    2016-03-24

    Atomic layer deposition allows the fabrication of BaTiO 3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO 2 and SiO 2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energymore » with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO 2 and its distorted growth on SiO 2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less

  14. Auger electron diffraction study of the initial stage of Ge heteroepitaxy on Si(001)

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Abukawa, T.; Yeom, H. W.; Yamada, M.; Suzuki, S.; Sato, S.; Kono, S.

    1994-12-01

    The initial stage of pure and surfactant (Sb)-assisted Ge growth on a Si(001) surface has been studied by Auger electron diffraction (AED) and X-ray photoelectron diffraction (XPD). A single-domain Si(001)2 × 1 substrate was used to avoid the ambiguity arising from the usual double-domain substrate. For the pure Ge growth, 1 monolayer of Ge was deposited onto the room temperature substrate followed by annealing at 350°C-600°C, which appeared to have (1 × 2) periodicity by LEED. Ge LMM AED patterns were measured to find that a substantial amount of Ge atoms diffuse to the bulk Si positions up to the fourth layer at least. For the Sb-assisted Ge growth, a Sb(1 × 2)/Si(001) surface was first prepared and Sb 3d XPD patterns were measured to find that Sb forms dimers on the substrate. 1 ML of Ge was deposited onto the Sb(1 × 2)/Si(001) surface and then the surface was annealed at 600°C. Ge LMM AED and Sb 3d XPD patterns measured for this surface showed that surfactant Sb atoms are indeed present on the first layer forming dimers and that Ge atoms are present mainly on the second layer with a substantial amount of Ge diffused into the third and fourth layers.

  15. Characterization of plasma-enhanced atomic layer deposition of Al{sub 2}O{sub 3} using dimethylaluminum isopropoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.

    2014-03-15

    In this research, Al{sub 2}O{sub 3} films were grown by remote plasma-enhanced atomic layer deposition using a nonpyrophoric precursor, dimethylaluminum isopropoxide (DMAI), and oxygen plasma. After optimization, the growth rate was determined to be ∼1.5 Å/cycle within a growth window of 25–220 °C; the higher growth rate than reported for thermal atomic layer deposition was ascribed to the higher reactivity of the plasma species compared with H{sub 2}O and the adsorption of active oxygen at the surface, which was residual from the oxygen plasma exposure. Both effects enhance DMAI chemisorption and increase the saturation density. In addition, a longer oxygen plasma timemore » was required at room temperature to complete the reaction and decrease the carbon contamination below the detection limit of x-ray photoemission spectroscopy. The properties of the subsequent Al{sub 2}O{sub 3} films were measured for different temperatures. When deposited at 25 °C and 200 °C, the Al{sub 2}O{sub 3} films demonstrated a single Al-O bonding state as measured by x-ray photoemission spectroscopy, a similar band gap of 6.8±0.2 eV as determined by energy loss spectroscopy, a similar index of refraction of 1.62±0.02 as determined by spectroscopic ellipsometry, and uniform growth with a similar surface roughness before and after growth as confirmed by atomic force microscopy. However, the room temperature deposited Al{sub 2}O{sub 3} films had a lower mass density (2.7 g/cm{sup 3} compared with 3.0 g/cm{sup 3}) and a higher atomic ratio of O to Al (2.1 compared with 1.6) as indicated by x-ray reflectivity and Rutherford backscattering spectroscopy, respectively.« less

  16. Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films

    PubMed Central

    Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan

    2014-01-01

    Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000

  17. A combined scanning tunneling microscope-atomic layer deposition tool.

    PubMed

    Mack, James F; Van Stockum, Philip B; Iwadate, Hitoshi; Prinz, Fritz B

    2011-12-01

    We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.

  18. Using ALD To Bond CNTs to Substrates and Matrices

    NASA Technical Reports Server (NTRS)

    Wong, Eric W.; Bronikowski, Michael J.; Kowalczyk, Robert S.

    2008-01-01

    Atomic-layer deposition (ALD) has been shown to be effective as a means of coating carbon nanotubes (CNTs) with layers of Al2O3 that form strong bonds between the CNTs and the substrates on which the CNTs are grown. ALD is a previously developed vaporphase thin-film-growth technique. ALD differs from conventional chemical vapor deposition, in which material is deposited continually by thermal decomposition of a precursor gas. In ALD, material is deposited one layer of atoms at a time because the deposition process is self-limiting and driven by chemical reactions between the precursor gas and the surface of the substrate or the previously deposited layer.

  19. Synthesis of ZrO 2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties

    NASA Astrophysics Data System (ADS)

    Cassir, Michel; Goubin, Fabrice; Bernay, Cécile; Vernoux, Philippe; Lincot, Daniel

    2002-06-01

    Ultra thin films of ZrO 2 were synthesized on soda lime glass and SnO 2-coated glass, using ZrCl 4 and H 2O precursors by atomic layer deposition (ALD), a sequential CVD technique allowing the formation of dense and homogeneous films. The effect of temperature on the film growth kinetics shows a first temperature window for ALD processing between 280 and 350 °C and a second regime or "pseudo-window" between 380 and 400 °C, with a growth speed of about one monolayer per cycle. The structure and morphology of films of less than 1 μm were characterized by XRD and SEM. From 275 °C, the ZrO 2 film is crystallized in a tetragonal form while a mixture of tetragonal and monoclinic phases appears at 375 °C. Impedance spectroscopy measurements confirmed the electrical properties of ZrO 2 and the very low porosity of the deposited layer.

  20. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-08

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

  1. Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John

    1995-01-01

    Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.

  2. Improved mobility in InAlN/AlGaN two-dimensional electron gas heterostructures with an atomically smooth heterointerface

    NASA Astrophysics Data System (ADS)

    Hosomi, Daiki; Miyachi, Yuta; Egawa, Takashi; Miyoshi, Makoto

    2018-04-01

    We attempted to improve the mobility of InAlN/AlGaN two-dimensional electron gas (2DEG) heterostructures by achieving an atomically smooth heterointerface in metalorganic chemical vapor deposition processes. In the result, it was confirmed that the high-growth-rate AlGaN layer was very effective to improve the surface morphology. The atomically smooth surface morphology with a root-mean-square roughness of 0.26 nm was achieved for an Al0.15Ga0.85N layer under the growth rate of approximately 6 µm/h. Furthermore, nearly lattice-matched In0.17Al0.83N/Al0.15Ga0.85N 2DEG heterostructures with the atomically smooth heterointerface exhibited a 2DEG mobility of 242 cm2 V-1 s-1 with a 2DEG density of 2.6 × 1013/cm2, which was approximately 1.5 times larger than the mobility in a sample grown under original conditions.

  3. Kinetic model for thin film stress including the effect of grain growth

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Engwall, A. M.; Rao, Z.; Nishimura, T.

    2018-05-01

    Residual stress during thin film deposition is affected by the evolution of the microstructure. This can occur because subsurface grain growth directly induces stress in the film and because changing the grain size at the surface affects the stress in new layers as they are deposited. We describe a new model for stress evolution that includes both of these effects. It is used to explain stress in films that grow with extensive grain growth (referred to as zone II) so that the grain size changes throughout the thickness of the layer as the film grows. Equations are derived for different cases of high or low atomic mobility where different assumptions are used to describe the diffusion of atoms that are incorporated into the grain boundary. The model is applied to measurements of stress and grain growth in evaporated Ni films. A single set of model parameters is able to explain stress evolution in films grown at multiple temperatures and growth rates. The model explains why the slope of the curvature measurements changes continuously with thickness and attributes it to the effect of grain size on new layers deposited on the film.

  4. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  5. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  6. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

    PubMed Central

    Schneider, Nathanaëlle; Lincot, Daniel

    2013-01-01

    Summary This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned. PMID:24367743

  7. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement.

    PubMed

    Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique

    2013-01-01

    This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.

  8. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGES

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; ...

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  9. An atomic scale study of surface termination and digital alloy growth in InGaAs/AlAsSb multi-quantum wells.

    PubMed

    Mauger, S J C; Bozkurt, M; Koenraad, P M; Zhao, Y; Folliot, H; Bertru, N

    2016-07-20

    An atomic scale study has been performed to understand the influence of the (As,Sb) shutter sequences during interface formation on the optical properties of InGaAs/AlAsSb quantum wells. Our cross-sectional scanning tunneling microscopy results show that the onset of the Sb profile is steep in the Sb-containing layers whereas an appreciable segregation of Sb in the subsequently grown Sb free layers is observed. The steep rise of the Sb profile is due to extra Sb that is supplied to the surface prior to the growth of the Sb-containing layers. No relation is found between the (As,Sb) termination conditions of the Sb-containing layers and the resulting Sb profiles in the capping layers. Correspondingly we see that the optical properties of these quantum wells are also nearly independent on the (As,Sb) shutter sequences at the interface. Digital alloy growth in comparison to conventional molecular beam epitaxy growth was also explored. X-ray results suggest that the structural properties of the quantum well structures grown by conventional molecular beam epitaxy techniques are slightly better than those formed by digital alloy growth. However photoluminescence studies indicate that the digital alloy samples give rise to a more intense and broader photoluminescence emission. Cross-sectional scanning tunneling microscopy measurements reveal that lateral composition modulations present in the digital alloys are responsible for the enhancement of the photoluminescence intensity and inhomogeneous broadening.

  10. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.

    2013-02-01

    Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.

  11. Diffusion induced atomic islands on the surface of Ni/Cu nanolayers

    NASA Astrophysics Data System (ADS)

    Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán

    2018-05-01

    Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.

  12. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2017-06-27

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.

  13. Layer by Layer Growth of 2D Quantum Superlattices (NBIT III)

    DTIC Science & Technology

    2017-02-28

    building quantum superlatticies using 2D materials as the building blocks. Specifically, we develop methods that allow i) large-scale growth of aligned...superlattice and heterostructures, iii) lateral and clean patterning of 2D materials for atomically-thin circuitry and iv) novel physical properties...high precision and flexibility beyond conventional methods. Moreover, it provides the solutions for current major barrier for 2D materials (e.g

  14. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    NASA Astrophysics Data System (ADS)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  15. Processing of catalysts by atomic layer epitaxy: modification of supports

    NASA Astrophysics Data System (ADS)

    Lindblad, Marina; Haukka, Suvi; Kytökivi, Arla; Lakomaa, Eeva-Liisa; Rautiainen, Aimo; Suntola, Tuomo

    1997-11-01

    Different supports were modified with titania, zirconia and chromia by the atomic layer epitaxy technique (ALE). In ALE, a metal precursor is bound to the support in saturating gas-solid reactions. Surface oxides are grown by alternating reactions of the metal precursor and an oxidizing agent. Growth mechanisms differ depending on the precursor-support pair and the processing conditions. In this work, the influences of the support, precursor and reaction temperature were investigated by comparing the growth of titania from Ti(OCH(CH 3) 2) 4 on silica and alumina, titania from TiCl 4 and Ti(OCH(CH 3) 2) 4 on silica, and zirconia from ZrCl 4 on silica and alumina. The modification of porous oxides supported on metal substrates (monoliths) was demonstrated for the growth of chromia from Cr(acac) 3.

  16. Enhancement of spin-lattice coupling in nanoengineered oxide films and heterostructures by laser MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Xiaoxing

    The objective of the proposed research is to investigate nanoengineered oxide films and multilayer structures that are predicted to show desirable properties. The main focus of the project is an atomic layer-by-layer laser MBE (ALL-Laser MBE ) technique that is superior to the conventional laser MBE in broadening the conditions for the synthesis of high quality nanoscale oxides and new designer materials. In ALL-Laser MBE, separate oxide targets are used instead of one compound target in the conventional laser MBE. The targets are switched back and forth in front of a UV laser beam as they are alternately ablated. Themore » oxide film is thus constructed one atomic layer at a time. The growth of each atomic layer is monitored and controlled by the reflection high energy electron diffraction (RHEED). The intensity of the diffraction spots increases or decreases depending on the chemistry of each atomic layer as well as the surface roughness. This allows us to determine whether the chemical ratio of the different elements in the films meets the desired value and whether each atomic layer is complete. ALL-Laser MBE is versatile: it works for non-polar film on non-polar substrate, polar film on polar substrate, and polar film on non-polar substrate. (In a polar material, each atomic layer is charged whereas in a non-polar material the atomic layers are charge neutral.) It allows one to push the thermodynamic boundary further in stabilizing new phases than reactive MBE and PLD, two of the most successful techniques for oxide thin films. For example, La 5Ni 4O 13, the Ruddlesden-Popper phase with n = 4, has never been reported in the literature because it needs atomic layer-by-layer growth at high oxygen pressures, not possible with other growth techniques. ALL-Laser MBE makes it possible. We have studied the interfacial 2-dimensional electron gas in the LaAlO 3/SrTiO 3 system, whose mechanism has been a subject of controversy. According to the most prevailing electronic reconstruction mechanism, a positive diverging electric potential is built up in the polar LaAlO 3 film when it is grown on a TiO 2-terminated SrTiO 3 substrate, which is non-polar. This leads to the transfer of half of an electron from the LaAlO 3 film surface to SrTiO 3 when the LaAlO 3 layer is thicker than 4 unit cells, creating a 2D electron gas at the interface with a sheet carrier density of 3.3×10 14/cm 2 for sufficiently thick LaAlO 3. A serious inconsistency with this mechanism is that the carrier densities reported experimentally are invariably lower than the expected value. The most likely reason is that the SrTiO 3 substrate is oxygen difficient due to the low oxygen pressures (< 10 mTorr) during growth, and post-growth annealing in oxygen is often used to remove the oxygen vacancies. People cannot grow the LaAlO 3 film in higher oxygen pressures - it results in insulating samples or 3D island growth. Because we grow the LaAlO 3 film one atomic layer at a time, we were able to grow conducting LaAlO 3/SrTiO 3 interfaces at a high oxygen pressure with ALL-Laser MBE, as high as 37 mTorr. The high oxygen pressure helps to prevent the possible oxygen reduction in SrTiO 3, ensure that the LaAlO 3 films are sufficiently oxygenated. Measurements of x-ray linear dichroism (XLD) and x-ray magnetic circular dichroism (XMCD) both show that the spectra of our films are similar to those of well oxygenated samples. In the LaAlO 3/SrTiO 3 interfaces grown by ALL-Laser MBE at 37 mTorr oxygen pressure, a quantitative agreement between our experimental result and the theoretical prediction was observed, which provides a strong support to the electronic reconstruction mechanism. The key differences between our result and the previous reports are the high oxygen pressure during the film growth and the high film crystallinity. The high oxygen pressure suppresses the likelihood of oxygen vacancies in SrTiO 3. Well oxygenated samples produced during film growth can avoid possible defects when sufficient oxygen is provided only after the growth by annealing. Using ALL-Laser MBE, we also synthesized high-quality singlec-rystalline CaMnO 3 films. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft x-ray XAS and hard x-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. The strain-induced oxygen-vacancy formation and ordering are a promising avenue for designing and controlling new functionalities in complex transition-metal oxides.« less

  17. Uniform large-area growth of nanotemplated high-quality monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Young, Justin R.; Chilcote, Michael; Barone, Matthew; Xu, Jinsong; Katoch, Jyoti; Luo, Yunqiu Kelly; Mueller, Sara; Asel, Thaddeus J.; Fullerton-Shirey, Susan K.; Kawakami, Roland; Gupta, Jay A.; Brillson, Leonard J.; Johnston-Halperin, Ezekiel

    2017-06-01

    Over the past decade, it has become apparent that the extreme sensitivity of 2D crystals to surface interactions presents a unique opportunity to tune material properties through surface functionalization and the mechanical assembly of 2D heterostructures. However, this opportunity carries with it a concurrent challenge: an enhanced sensitivity to surface contamination introduced by standard patterning techniques that is exacerbated by the difficulty in cleaning these atomically thin materials. Here, we report a templated MoS2 growth technique wherein Mo is deposited onto atomically stepped sapphire substrates through a SiN stencil with feature sizes down to 100 nm and subsequently sulfurized at high temperature. These films have a quality comparable to the best MoS2 prepared by other methodologies, and the thickness of the resulting MoS2 patterns can be tuned layer-by-layer by controlling the initial Mo deposition. The quality and thickness of the films are confirmed by scanning electron, scanning tunneling, and atomic force microscopies; Raman, photoluminescence, and x-ray photoelectron spectroscopies; and electron transport measurements. This approach critically enables the creation of patterned, single-layer MoS2 films with pristine surfaces suitable for subsequent modification via functionalization and mechanical stacking. Further, we anticipate that this growth technique should be broadly applicable within the family of transition metal dichalcogenides.

  18. Facile Phase Control of Multivalent Vanadium Oxide Thin Films (V2O5 and VO2) by Atomic Layer Deposition and Postdeposition Annealing.

    PubMed

    Song, Gwang Yeom; Oh, Chadol; Sinha, Soumyadeep; Son, Junwoo; Heo, Jaeyeong

    2017-07-19

    Atomic layer deposition was adopted to deposit VO x thin films using vanadyl tri-isopropoxide {VO[O(C 3 H 7 )] 3 , VTIP} and water (H 2 O) at 135 °C. The self-limiting and purge-time-dependent growth behaviors were studied by ex situ ellipsometry to determine the saturated growth conditions for atomic-layer-deposited VO x . The as-deposited films were found to be amorphous. The structural, chemical, and optical properties of the crystalline thin films with controlled phase formation were investigated after postdeposition annealing at various atmospheres and temperatures. Reducing and oxidizing atmospheres enabled the formation of pure VO 2 and V 2 O 5 phases, respectively. The possible band structures of the crystalline VO 2 and V 2 O 5 thin films were established. Furthermore, an electrochemical response and a voltage-induced insulator-to-metal transition in the vertical metal-vanadium oxide-metal device structure were observed for V 2 O 5 and VO 2 films, respectively.

  19. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  20. Synthesis of Large-area Crystalline MoTe2 Atomic layer from Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Zubair, Ahmad; Xu, Kai; Kong, Jing; Dresselhaus, Mildred

    The controlled synthesis of highly crystalline large-area molybdenum ditelluride MoTe2 atomic layers is crucial for the practical applications of this emerging material. Here we develop a novel approach for the growth of large-area, uniform and highly crystalline few-layer MoTe2 film via chemical vapour deposition (CVD). Large-area atomically thin MoTe2 film has been successfully synthesized by tellurization of a MoO3 film. The as-grown MoTe2 film is uniform, stoichiometric, and highly crystalline. As a result of the high crystallinity, the electronic properties of MoTe2 film are comparable with that of mechanically exfoliated MoTe2 flakes. Moreover, we found that two different phases of MoTe2 (2H and 1T') can be grown depending on the choice of Mo precursor. Since the MoTe2 film is highly homogenous, and the size of the film is only limited by the substrate and CVD system size, our growth method paves the way for large-scale application of MoTe2 in high performance nanoelectronics and optoelectronics.

  1. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.

    PubMed

    Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng

    2015-12-21

    The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

  2. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    PubMed Central

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  3. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  4. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  5. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy

    DOE PAGES

    Lee, J. H.; Luo, G.; Tung, I. C.; ...

    2014-08-03

    The A n+1B nO 3n+1 Ruddlesden–Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of themore » intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden–Popper phases. Lastly, we demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La 3Ni 2O 7.« less

  6. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-01

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2× the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  7. Low-temperature plasma-enhanced atomic layer deposition of 2-D MoS2: large area, thickness control and tuneable morphology.

    PubMed

    Sharma, Akhil; Verheijen, Marcel A; Wu, Longfei; Karwal, Saurabh; Vandalon, Vincent; Knoops, Harm C M; Sundaram, Ravi S; Hofmann, Jan P; Kessels, W M M Erwin; Bol, Ageeth A

    2018-05-10

    Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.

  8. The Antibacterial Polyamide 6-ZnO Hierarchical Nanofibers Fabricated by Atomic Layer Deposition and Hydrothermal Growth

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhang, Li; Liu, Zhongwei; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2017-06-01

    In this paper, we report the combination of atomic layer deposition (ALD) with hydrothermal techniques to deposit ZnO on electrospun polyamide 6 (PA 6) nanofiber (NF) surface in the purpose of antibacterial application. The micro- and nanostructures of the hierarchical fibers are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and scanning transmission electron microscopy (STEM). We find that NFs can grow into "water lily"- and "caterpillar"-like shapes, which depend on the number of ALD cycles and the hydrothermal reaction period. It is believed that the thickness of ZnO seed layer by ALD process and the period in hydrothermal reaction have the same importance in crystalline growth and hierarchical fiber formation. The tests of antibacterial activity demonstrate that the ZnO/PA 6 core-shell composite fabricated by the combination of ALD with hydrothermal are markedly efficient in suppressing bacteria survivorship.

  9. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    PubMed

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  10. Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes

    DOE PAGES

    Wang, Siming; Antonakos, C.; Bordel, C.; ...

    2016-11-07

    Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less

  11. Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition.

    PubMed

    Whitney, Alyson V; Elam, Jeffrey W; Zou, Shengli; Zinovev, Alex V; Stair, Peter C; Schatz, George C; Van Duyne, Richard P

    2005-11-03

    Atomic layer deposition (ALD) is used to deposit 1-600 monolayers of Al(2)O(3) on Ag nanotriangles fabricated by nanosphere lithography (NSL). Each monolayer of Al(2)O(3) has a thickness of 1.1 A. It is demonstrated that the localized surface plasmon resonance (LSPR) nanosensor can detect Al(2)O(3) film growth with atomic spatial resolution normal to the nanoparticle surface. This is approximately 10 times greater spatial resolution than that in our previous long-range distance-dependence study using multilayer self-assembled monolayer shells. The use of ALD enables the study of both the long- and short-range distance dependence of the LSPR nanosensor in a single unified experiment. Ag nanoparticles with fixed in-plane widths and decreasing heights yield larger sensing distances. X-ray photoelectron spectroscopy, variable angle spectroscopic ellipsometry, and quartz crystal microbalance measurements are used to study the growth mechanism. It is proposed that the growth of Al(2)O(3) is initiated by the decomposition of trimethylaluminum on Ag. Semiquantitative theoretical calculations were compared with the experimental results and yield excellent agreement.

  12. Parametric Investigation of the Isothermal Kinetics of Growth of Graphene on a Nickel Catalyst in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.

    2016-11-01

    A kinetic model of isothermal synthesis of multilayer graphene on the surface of a nickel foil in the process of chemical vapor deposition, on it, of hydrocarbons supplied in the pulsed regime is considered. The dependences of the number of graphene layers formed and the time of their growth on the temperature of the process, the concentration of acetylene, and the thickness of the nickel foil were calculated. The regime parameters of the process of chemical vapor deposition, at which single-layer graphene and bi-layer graphene are formed, were determined. The dynamics of growth of graphene domains at chemical-vapor-deposition parameters changing in wide ranges was investigated. It is shown that the time dependences of the rates of growth of single-layer graphene and bi-layer graphene are nonlinear in character and that they are determined by the kinetics of nucleation and growth of graphene and the diffusion flow of carbon atoms in the nickel foil.

  13. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Denggui; Zhang, Xingwang; Liu, Heng; Meng, Junhua; Xia, Jing; Yin, Zhigang; Wang, Ye; You, Jingbi; Meng, Xiang-Min

    2017-09-01

    Group IVB transition metal (Zr and Hf) dichalcogenides (TMDs) have been attracting intensive attention as promising candidates in the modern electronic and/or optoelectronic fields. However, the controllable growth of HfS2 monolayers or few layers still remains a great challenge, thus hindering their further applications so far. Here, for the first time we demonstrate the epitaxial growth of high-quality HfS2 with a controlled number of layers on c-plane sapphire substrates by chemical vapor deposition (CVD). The HfS2 layers exhibit an atomically sharp interface with the sapphire substrate, followed by flat, 2D layers with octahedral coordination. The epitaxial relationship between HfS2 and substrate was determined by x-ray diffraction and transmission electron microscopy measurements to be: HfS2 (0 0 0 1) [10-10]||sapphire (0 0 0 1)[1-100]. Moreover, a high-performance photodetector with a high on/off ratio of more than 103 and an ultrafast response rate of 130 µs for the rise and 155 µs for the decay times were fabricated based on the CVD-grown HfS2 layers on sapphire substrates. This simple and controllable approach opens up a new way to produce highly crystalline HfS2 atomic layers, which are promising materials for nanoelectronics.

  14. Low-Temperature Atomic Layer Deposition of MoS2 Films.

    PubMed

    Jurca, Titel; Moody, Michael J; Henning, Alex; Emery, Jonathan D; Wang, Binghao; Tan, Jeffrey M; Lohr, Tracy L; Lauhon, Lincoln J; Marks, Tobin J

    2017-04-24

    Wet chemical screening reveals the very high reactivity of Mo(NMe 2 ) 4 with H 2 S for the low-temperature synthesis of MoS 2 . This observation motivated an investigation of Mo(NMe 2 ) 4 as a volatile precursor for the atomic layer deposition (ALD) of MoS 2 thin films. Herein we report that Mo(NMe 2 ) 4 enables MoS 2 film growth at record low temperatures-as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of carbon nanofibers by CVD as a catalyst support material using atomically ordered Ni3C nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Meifeng; Li, Na; Shao, Wei; Zhou, Chungen

    2016-12-01

    Atomically ordered nickel carbide (Ni3C) nanoparticles in polygonal shapes were prepared through the reduction of nickelocene. A novel type of carbon nanofiber (CNF) with twisted conformation was synthesized successfully by catalytic chemical vapor deposition (CCVD) using the obtained Ni3C nanoparticles at a relatively low temperature of 350 °C, which is below the lower limit temperature of 400 °C for the growth of CNFs using metal catalysts. The growth mechanism of the twisted CNFs from Ni3C was freshly derived based on the detailed characterizations. Compared with the growth of CNFs from Ni, graphene layers nucleate at monoatomic step edges and grow in a layer-by-layer manner, while the rotation of the polygonal Ni3C nanoparticles fabricates the twisted conformation during the CNF growth. The electrochemical activity and performance of the twisted CNFs loaded with Pt as electrode catalysts for a polymer electrolyte membrane fuel cell (PEMFC) were measured to be better than those of straight CNFs grown from Ni nanoparticles at 500 °C, since the specific surface conformation helps to make the loaded Pt more homogeneous.

  16. Synthesis of carbon nanofibers by CVD as a catalyst support material using atomically ordered Ni3C nanoparticles.

    PubMed

    Li, Meifeng; Li, Na; Shao, Wei; Zhou, Chungen

    2016-11-22

    Atomically ordered nickel carbide (Ni 3 C) nanoparticles in polygonal shapes were prepared through the reduction of nickelocene. A novel type of carbon nanofiber (CNF) with twisted conformation was synthesized successfully by catalytic chemical vapor deposition (CCVD) using the obtained Ni 3 C nanoparticles at a relatively low temperature of 350 °C, which is below the lower limit temperature of 400 °C for the growth of CNFs using metal catalysts. The growth mechanism of the twisted CNFs from Ni 3 C was freshly derived based on the detailed characterizations. Compared with the growth of CNFs from Ni, graphene layers nucleate at monoatomic step edges and grow in a layer-by-layer manner, while the rotation of the polygonal Ni 3 C nanoparticles fabricates the twisted conformation during the CNF growth. The electrochemical activity and performance of the twisted CNFs loaded with Pt as electrode catalysts for a polymer electrolyte membrane fuel cell (PEMFC) were measured to be better than those of straight CNFs grown from Ni nanoparticles at 500 °C, since the specific surface conformation helps to make the loaded Pt more homogeneous.

  17. Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    PubMed Central

    Narayan, Roger J.; Adiga, Shashishekar P.; Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.; Stafslien, Shane; Chisholm, Bret; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.; Elam, Jeffrey W.

    2010-01-01

    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. PMID:20308114

  18. Application of the ALE and MBE Methods to the Growth of Layered Hg sub x Cd sub 1-x Te Films.

    DTIC Science & Technology

    1986-09-26

    films / We have studied the applicability of the Atomic Layer Epitaxy (ALE, vee Ref. -1pand Molecular Beam Epitaxy (MBE) ito growth of Hg2 Cdi- ,Te...thin- films throughout the composition range 0 x $ 0.8. The progress of the Contract has been reported periodically in five interim reports. This final...I separate sources) yielded films with high x values. On the grounds of these observations we do not find ALE suitable for growth of HgCdTe. 2) ALE

  19. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less

  20. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less

  1. Enhanced Atom Mobility on the Surface of a Metastable Film

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Fratesi, G.; Brambilla, A.; Bussetti, G.; Finazzi, M.; Duò, L.; Ciccacci, F.

    2014-07-01

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chi; Aldosary, Mohammed; Jiang, Zilong

    A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness. The root-mean-square roughness is as low as 0.067 nm. The easy-axis lies in the film plane, indicating the dominance of shape anisotropy. For (110)-YIG films, there is well-defined two-fold in-plane anisotropy, with the easiest axis directed along [001]. The Gilbert damping constant is determined to be 1.0 × 10{sup −4} for 100 nm thick films.

  3. Enhanced atom mobility on the surface of a metastable film.

    PubMed

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napari, Mari, E-mail: mari.napari@jyu.fi; Malm, Jari; Lehto, Roope

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{submore » 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.« less

  5. Mg concentration profile and its control in the low temperature grown Mg-doped GaN epilayer

    NASA Astrophysics Data System (ADS)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Liu, W.; Xing, Y.; Zhang, L. Q.; Wang, W. J.; Li, M.; Zhang, Y. T.; Du, G. T.

    2018-01-01

    In this work, the Cp2Mg flux and growth pressure influence to Mg doping concentration and depth profiles is studied. From the SIMS measurement we found that a transition layer exists at the bottom region of the layer in which the Mg doping concentration changes gradually. The thickness of transition layer decreases with the increases of Mg doping concentration. Through analysis, we found that this is caused by Ga memory effect which the Ga atoms stay residual in MOCVD system will react with Mg source, leading a transition layer formation and improve the growth rate. And the Ga memory effect can be well suppressed by increasing Mg doping concentration and growth pressure and thus get a steep Mg doping at the bottom region of p type layer.

  6. Surface-interface exploration of Mg deposited on Si(100) and oxidation effect on interfacial layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarpi, B.; Daineche, R.; Girardeaux, C.

    Using scanning tunneling microscopy and spectroscopy, Auger electron spectroscopy, and low energy electron diffraction, we have studied the growth of Mg deposited on Si(100)-(2 × 1). Coverage from 0.05 monolayer (ML) to 3 ML was investigated at room temperature. The growth mode of the magnesium is a two steps process. At very low coverage, there is formation of an amorphous ultrathin silicide layer with a band gap of 0.74 eV, followed by a layer-by-layer growth of Mg on top of this silicide layer. Topographic images reveal that each metallic Mg layer is formed by 2D islands coalescence process on top of the silicidemore » interfacial layer. During oxidation of the Mg monolayer, the interfacial silicide layer acts as diffusion barrier for the oxygen atoms with a decomposition of the silicide film to a magnesium oxide as function of O{sub 2} exposure.« less

  7. Controllable Growth and Formation Mechanisms of Dislocated WS2 Spirals.

    PubMed

    Fan, Xiaopeng; Zhao, Yuzhou; Zheng, Weihao; Li, Honglai; Wu, Xueping; Hu, Xuelu; Zhang, Xuehong; Zhu, Xiaoli; Zhang, Qinglin; Wang, Xiao; Yang, Bin; Chen, Jianghua; Jin, Song; Pan, Anlian

    2018-06-13

    Two-dimensional (2D) layered metal dichalcogenides can form spiral nanostructures by a screw-dislocation-driven mechanism, which leads to changes in crystal symmetry and layer stackings that introduce attractive physical properties different from their bulk and few-layer nanostructures. However, controllable growth of spirals is challenging and their growth mechanisms are poorly understood. Here, we report the controllable growth of WS 2 spiral nanoplates with different stackings by a vapor phase deposition route and investigate their formation mechanisms by combining atomic force microscopy with second harmonic generation imaging. Previously not observed "spiral arm" features could be explained as covered dislocation spiral steps, and the number of spiral arms correlates with the number of screw dislocations initiated at the bottom plane. The supersaturation-dependent growth can generate new screw dislocations from the existing layers, or even new layers templated by existing screw dislocations. Different number of dislocations and orientation of new layers result in distinct morphologies, different layer stackings, and more complex nanostructures, such as triangular spiral nanoplates with hexagonal spiral pattern on top. This work provides the understanding and control of dislocation-driven growth of 2D nanostructures. These spiral nanostructures offer diverse candidates for probing the physical properties of layered materials and exploring new applications in functional nanoelectronic and optoelectronic devices.

  8. Large-scale Growth and Simultaneous Doping of Molybdenum Disulfide Nanosheets

    PubMed Central

    Kim, Seong Jun; Kang, Min-A; Kim, Sung Ho; Lee, Youngbum; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok

    2016-01-01

    A facile method that uses chemical vapor deposition (CVD) for the simultaneous growth and doping of large-scale molybdenum disulfide (MoS2) nanosheets was developed. We employed metalloporphyrin as a seeding promoter layer for the uniform growth of MoS2 nanosheets. Here, a hybrid deposition system that combines thermal evaporation and atomic layer deposition (ALD) was utilized to prepare the promoter. The doping effect of the promoter was verified by X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the carrier density of the MoS2 nanosheets was manipulated by adjusting the thickness of the metalloporphyrin promoter layers, which allowed the electrical conductivity in MoS2 to be manipulated. PMID:27044862

  9. Low Temperature, Selective Atomic Layer Deposition of Nickel Metal Thin Films.

    PubMed

    Kerrigan, Marissa M; Klesko, Joseph P; Blakeney, Kyle J; Winter, Charles H

    2018-04-25

    We report the growth of nickel metal films by atomic layer deposition (ALD) employing bis(1,4-di- tert-butyl-1,3-diazadienyl)nickel and tert-butylamine as the precursors. A range of metal and insulating substrates were explored. An initial deposition study was carried out on platinum substrates. Deposition temperatures ranged from 160 to 220 °C. Saturation plots demonstrated self-limited growth for both precursors, with a growth rate of 0.60 Å/cycle. A plot of growth rate versus substrate temperature showed an ALD window from 180 to 195 °C. Crystalline nickel metal was observed by X-ray diffraction for a 60 nm thick film deposited at 180 °C. Films with thicknesses of 18 and 60 nm grown at 180 °C showed low root mean square roughnesses (<2.5% of thicknesses) by atomic force microscopy. X-ray photoelectron spectroscopies of 18 and 60 nm thick films deposited on platinum at 180 °C revealed ionizations consistent with nickel metal after sputtering with argon ions. The nickel content in the films was >97%, with low levels of carbon, nitrogen, and oxygen. Films deposited on ruthenium substrates displayed lower growth rates than those observed on platinum substrates. On copper substrates, discontinuous island growth was observed at ≤1000 cycles. Film growth was not observed on insulating substrates under any conditions. The new nickel metal ALD procedure gives inherently selective deposition on ruthenium and platinum from 160 to 220 °C.

  10. EDITORIAL: Atomic layer deposition Atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Godlewski, Marek

    2012-07-01

    The growth method of atomic layer deposition (ALD) was introduced in Finland by Suntola under the name of atomic layer epitaxy (ALE). The method was originally used for deposition of thin films of sulphides (ZnS, CaS, SrS) activated with manganese or rare-earth ions. Such films were grown for applications in thin-film electroluminescence (TFEL) displays. The ALE mode of growth was also tested in the case of molecular beam epitaxy. Films grown by ALD are commonly polycrystalline or even amorphous. Thus, the name ALE has been replaced by ALD. In the 80s ALD was developed mostly in Finland and neighboring Baltic countries. Deposition of a range of different materials was demonstrated at that time, including II-VI semiconductors (e.g. CdTe, CdS) and III-V (e.g. GaAs, GaN), with possible applications in e.g. photovoltaics. The number of publications on ALD was slowly increasing, approaching about 100 each year. A real boom in interest came with the development of deposition methods of thin films of high-k dielectrics. This research was motivated by a high leakage current in field-effect transistors with SiO2-based gate dielectrics. In 2007 Intel introduced a new generation of integrated circuits (ICs) with thin films of HfO2 used as gate isolating layers. In these and subsequent ICs, films of HfO2 are deposited by the ALD method. This is due to their unique properties. The introduction of ALD to the electronics industry led to a booming interest in the ALD growth method, with the number of publications increasing rapidly to well above 1000 each year. A number of new applications were proposed, as reflected in this special issue of Semiconductor Science and Technology. The included articles cover a wide range of possible applications—in microelectronics, transparent electronics, optoelectronics, photovoltaics and spintronics. Research papers and reviews on the basics of ALD growth are also included, reflecting a growing interest in precursor chemistry and growth processes. Summarizing, this special issue of Semiconductor Science and Technology reflects the rapidly growing interest in the ALD growth method and demonstrates the wide range of possible practical applications of ALD-grown materials, not only of high-k dielectrics, but also of a range of different materials (e.g. ZnO). Finally, I would like to thank the IOP editorial staff, in particular Alice Malhador, for their support and efforts in making this special issue possible.

  11. Mechanism of growth of the Ge wetting layer upon exposure of Si(100)-2 x 1 to GeH4.

    PubMed

    Liu, Chie-Sheng; Chou, Li-Wei; Hong, Lu-Sheng; Jiang, Jyh-Chiang

    2008-04-23

    This paper describes the initial reaction kinetics of Ge deposition after exposure of Si(100)-2 x 1 to GeH4 in a UHV-CVD system. The rate of Ge growth, especially at the wetting layer stage, was investigated using in situ X-ray photoelectron spectroscopy to measure the Ge signal at the onset of deposition. A kinetic analysis of the initial growth of the Ge wetting layer at temperatures ranging from 698 to 823 K revealed an activation energy of 30.7 kcal/mol. Density functional theory calculations suggested that opening of the Si dimer--with a closely matching energy barrier of 29.7 kcal/mol, following hydrogen atom migration--was the rate controlling step for the incorporation of a GeH2 unit into the lattice to complete the growth of the Ge wetting layer after dissociative adsorption of GeH4.

  12. Planar regions of GaAs (001) prepared by Ga droplet motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Changxi, E-mail: changxi.zheng@monash.edu; Tang, Wen-Xin; Jesson, David E., E-mail: jessonDE@cardiff.ac.uk

    2016-07-15

    The authors describe a simple method for obtaining planar regions of GaAs (001) suitable for surface science studies. The technique, which requires no buffer layer growth, atomic hydrogen source, or the introduction of As flux, employs controllable Ga droplet motion to create planar trail regions during Langmuir evaporation. Low-energy electron microscopy/diffraction techniques are applied to monitor the droplet motion and characterize the morphology and the surface reconstruction. It is found that the planar regions exhibit atomic flatness at the level of a high-quality buffer layer.

  13. Thin film GaP for solar cell application

    NASA Astrophysics Data System (ADS)

    Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.

    2016-08-01

    A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure

  14. Influence of growth temperature on laser molecular beam epitaxy and properties of GaN layers grown on c-plane sapphire

    NASA Astrophysics Data System (ADS)

    Dixit, Ripudaman; Tyagi, Prashant; Kushvaha, Sunil Singh; Chockalingam, Sreekumar; Yadav, Brajesh Singh; Sharma, Nita Dilawar; Kumar, M. Senthil

    2017-04-01

    We have investigated the influence of growth temperature on the in-plane strain, structural, optical and mechanical properties of heteroepitaxially grown GaN layers on sapphire (0001) substrate by laser molecular beam epitaxy (LMBE) technique in the temperature range 500-700 °C. The GaN epitaxial layers are found to have a large in-plane compressive stress of about 1 GPa for low growth temperatures but the strain drastically reduced in the layer grown at 700 °C. The nature of the in-plane strain has been analyzed using high resolution x-ray diffraction, atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) measurements. From AFM, a change in GaN growth mode from grain to island is observed at the high growth temperature above 600 °C. A blue shift of 20-30 meV in near band edge PL emission line has been noticed for the GaN layers containing the large in-plane strain. These observations indicate that the in-plane strain in the GaN layers is dominated by a biaxial strain. Using nanoindentation, it is found that the indentation hardness and Young's modulus of the GaN layers increases with increasing growth temperature. The results disclose the critical role of growth mode in determining the in-plane strain and mechanical properties of the GaN layers grown by LMBE technique.

  15. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Di; Baek, David J.; Hong, Seung Sae

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-solublemore » Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.« less

  16. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  17. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE PAGES

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; ...

    2016-10-19

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  18. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    PubMed Central

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-01-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024

  19. Crossover from layering to island formation in Langmuir-Blodgett growth: Role of long-range intermolecular forces

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay

    2011-04-01

    Combined studies by atomic force microscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy on transition-metal stearate (M-St, M = Mn, Co, Zn, and Cd) Langmuir-Blodgett films clearly indicate association of bidentate coordination of the metal-carboxylate head group to layer-by-layer growth as observed in MnSt and CoSt and partially in ZnSt. Crossover to islandlike growth, as observed in CdSt and ZnSt, is associated with the presence of unidentate coordination in the head group. Morphological evolutions as obtained from one, three, and nine monolayers (MLs) of M-St films are consistent with Frank van der Merwe, Stranski-Krastanov, and Volmer Weber growth modes for M=Mn/Co, Zn, and Cd, respectively, as previously assigned, and are found to vary with number (n) of metal atoms per head group, viz. n=1 (Mn/Co), n=0.75 (Zn), and n=0.5 (Cd). The parameter n is found to decide head-group coordination such that n=1.0 corresponds to bidentate and n=0.5 corresponds to unidentate coordination; the intermediate value in Zn corresponds to a mixture of both. The dependence of the growth mode on head-group structure is explained by the fact that in bidentate head groups, with the in-plane dipole moment being zero, intermolecular forces between adjacent molecules are absent and hence growth proceeds via layering. On the other hand, in unidentate head groups, the existence of a nonzero in-plane dipole moment results in the development of weak in-plane intermolecular forces between adjacent molecules causing in-plane clustering leading to islandlike growth.

  20. Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition.

    PubMed

    O'Donoghue, Richard; Rechmann, Julian; Aghaee, Morteza; Rogalla, Detlef; Becker, Hans-Werner; Creatore, Mariadriana; Wieck, Andreas Dirk; Devi, Anjana

    2017-12-21

    Herein we describe an efficient low temperature (60-160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga 2 O 3 ) thin films using hexakis(dimethylamido)digallium [Ga(NMe 2 ) 3 ] 2 with oxygen (O 2 ) plasma on Si(100). The use of O 2 plasma was found to have a significant improvement on the growth rate and deposition temperature when compared to former Ga 2 O 3 processes. The process yielded the second highest growth rates (1.5 Å per cycle) in terms of Ga 2 O 3 ALD and the lowest temperature to date for the ALD growth of Ga 2 O 3 and typical ALD characteristics were determined. From in situ quartz crystal microbalance (QCM) studies and ex situ ellipsometry measurements, it was deduced that the process is initially substrate-inhibited. Complementary analytical techniques were employed to investigate the crystallinity (grazing-incidence X-ray diffraction), composition (Rutherford backscattering analysis/nuclear reaction analysis/X-ray photoelectron spectroscopy), morphology (X-ray reflectivity/atomic force microscopy) which revealed the formation of amorphous, homogeneous and nearly stoichiometric Ga 2 O 3 thin films of high purity (carbon and nitrogen <2 at.%) under optimised process conditions. Tauc plots obtained via UV-Vis spectroscopy yielded a band gap of 4.9 eV and the transmittance values were more than 80%. Upon annealing at 1000 °C, the transformation to oxygen rich polycrystalline β-gallium oxide took place, which also resulted in the densification and roughening of the layer, accompanied by a slight reduction in the band gap. This work outlines a fast and efficient method for the low temperature ALD growth of Ga 2 O 3 thin films and provides the means to deposit Ga 2 O 3 upon thermally sensitive polymers like polyethylene terephthalate.

  1. Effects of Mg pre-flow, memory, and diffusion on the growth of p-GaN with MOCVD (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tu, Charng-Gan; Chen, Hao-Tsung; Chen, Sheng-Hung; Chao, Chen-Yao; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    In MOCVD growth, two key factors for growing a p-type structure, when the modulation growth or delta-doping technique is used, include Mg memory and diffusion. With high-temperature growth (>900 degree C), doped Mg can diffuse into the under-layer. Also, due to the high-pressure growth and growth chamber coating in MOCVD, plenty Mg atoms exist in the growth chamber for a duration after Mg supply is ended. In this situation, Mg doping continues in the following designated un-doped layers. In this paper, we demonstrate the study results of Mg preflow, memory, and diffusion. The results show that pre-flow of Mg into the growth chamber can lead to a significantly higher Mg doping concentration in growing a p-GaN layer. In other words, a duration for Mg buildup is required for high Mg incorporation. Based on SIMS study, we find that with the pre-flow growth, a high- and a low-doping p-GaN layer are formed. The doping concentration difference between the two layers is about 10 times. The thickness of the high- (low-) doping layer is about 40 (65) nm. The growth of the high-doping layer starts 10-15 min after Mg supply starts (Mg buildup time). The diffusion length of Mg into the AlGaN layer beneath (Mg content reduced to <5%) is about 10 nm. The memory time of Mg in the growth chamber is about 60 min, after which the Mg doping concentration is reduced to <1%.

  2. Atomic structure of (111) SrTiO3/Pt interfaces

    NASA Astrophysics Data System (ADS)

    Schmidt, Steffen; Klenov, Dmitri O.; Keane, Sean P.; Lu, Jiwei; Mates, Thomas E.; Stemmer, Susanne

    2006-03-01

    Atomic resolution high-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy was used to investigate the interface atomic structure of epitaxial, (111) oriented SrTiO3 films on epitaxial Pt electrodes grown on (0001) sapphire. The cube-on-cube orientation relationship of SrTiO3 on Pt was promoted by the use of a Ti adhesion layer underneath the Pt electrode. While a Ti-rich Pt surface was observed before SrTiO3 growth, HAADF images showed an atomically abrupt SrTiO3/Pt interface with no interfacial layers. The SrTiO3 films contained two twin variants that were related by a 180° rotation about the ⟨111⟩ surface normal. HAADF images showed two different interface atomic arrangements for the two twins. The role of Ti in promoting (111) epitaxy and the implications for the dielectric properties are discussed.

  3. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes.

    PubMed

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-07

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  4. Effect of Enhanced Thermal Stability of Alumina Support Layer on Growth of Vertically Aligned Single-Walled Carbon Nanotubes and Their Application in Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco

    2018-06-01

    We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.

  5. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Lii-Rosales, A.; Zhou, Y.

    Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less

  7. A benchmark of co-flow and cyclic deposition/etch approaches for the selective epitaxial growth of tensile-strained Si:P

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Veillerot, M.; Prévitali, B.

    2017-10-01

    We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).

  8. Synthesis of two-dimensional TlxBi1−x compounds and Archimedean encoding of their atomic structure

    PubMed Central

    Gruznev, Dimitry V.; Bondarenko, Leonid V.; Matetskiy, Andrey V.; Mihalyuk, Alexey N.; Tupchaya, Alexandra Y.; Utas, Oleg A.; Eremeev, Sergey V.; Hsing, Cheng-Rong; Chou, Jyh-Pin; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.

    2016-01-01

    Crystalline atomic layers on solid surfaces are composed of a single building block, unit cell, that is copied and stacked together to form the entire two-dimensional crystal structure. However, it appears that this is not an unique possibility. We report here on synthesis and characterization of the one-atomic-layer-thick TlxBi1−x compounds which display quite a different arrangement. It represents a quasi-periodic tiling structures that are built by a set of tiling elements as building blocks. Though the layer is lacking strict periodicity, it shows up as an ideally-packed tiling of basic elements without any skips or halting. The two-dimensional TlxBi1−x compounds were formed by depositing Bi onto the Tl-covered Si(111) surface where Bi atoms substitute appropriate amount of Tl atoms. Atomic structure of each tiling element as well as arrangement of TlxBi1−x compounds were established in a detail. Electronic properties and spin texture of the selected compounds having periodic structures were characterized. The shown example demonstrates possibility for the formation of the exotic low-dimensional materials via unusual growth mechanisms. PMID:26781340

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susarla, Sandhya; Kochat, Vidya; Kutana, Alex

    Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less

  10. Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors

    DTIC Science & Technology

    2013-01-01

    013110 (2013) Demonstration of high performance bias-selectable dual- band short-/mid-wavelength infrared photodetectors based on type-II InAs/ GaSb ...been used for the growth of QD structures . These include the formation of self-assembled QD, for example, Stranski-Krastanov (SK) growth mode,8,9 atomic...confinement in SML-QD and the reduction in the amount of InAs used per layer of QD can help stack more layers in a 3-dimensional QD structure . Several

  11. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.

    PubMed

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-11

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10(10) cm(-2), and that the lateral and the vertical interdot spacing were ~10 and ~2.5 nm, respectively.

  12. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements.

    PubMed

    Trindade, I G; Fermento, R; Leitão, D; Sousa, J B

    2009-07-01

    In this article, a method to measure the electrical resistivity/conductivity of metallic thin films during layer growth on specific underlayers is described. The in situ monitoring of an underlayer electrical resistance, its change upon the incoming of new material atoms/molecules, and the growth of a new layer are presented. The method is easy to implement and allows obtaining in situ experimental curves of electrical resistivity dependence upon film thickness with a subatomic resolution, providing insight in film growth microstructure characteristics, specular/diffuse electron scattering surfaces, and optimum film thicknesses.

  13. Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Skogman, R. A.; van Hove, J. M.; Olson, D. T.; Kuznia, J. N.

    1992-03-01

    In this letter the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates is reported. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. As best as is known this is the first report of insulating GaN films which show excellent band-edge photoluminescence.

  14. Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Skogman, R. A.; Van Hove, J. M.; Olson, D. T.; Kuznia, J. N.

    1992-03-01

    In this letter we report the first switched atomic layer epitaxy (SALE) of single crystal GaN over basal plane sapphire substrates. A low pressure metalorganic chemical vapor deposition (LPMOCVD) system was used for the epilayer depositions. In contrast to conventional LPMOCVD requiring temperatures higher than 700 °C, the SALE process resulted in single crystal insulating GaN layers at growth temperatures ranging from 900 to 450 °C. The band-edge transmission and the photoluminescence of the films from the SALE process were comparable to the best LPMOCVD films. To the best of our knowledge this is the first report of insulating GaN films which show excellent band-edge photoluminescence.

  15. Influence of growth temperature on properties of zirconium dioxide films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kukli, Kaupo; Ritala, Mikko; Aarik, Jaan; Uustare, Teet; Leskela, Markku

    2002-08-01

    ZrO2 films were grown by atomic layer deposition from ZrCl4 and H2O or a mixture of H2O and H2O2 on Si(100) substrates in the temperature range of 180-600 degC. The films were evaluated in the as-deposited state, in order to follow the effect of deposition temperature on the film quality. The rate of crystal growth increased and the content of residual impurities decreased with increasing temperature. The zirconium-to-oxygen atomic ratio, determined by ion-beam analysis, corresponded to the stoichiometric dioxide regardless of the growth temperature. The effective permittivity of ZrO2 in Al/ZrO2/Si capacitor structures increased from 13-15 in the films grown at 180 degC to 19 in the films grown at 300-600 degC, measured at 100 kHz. The permittivity was relatively high in the crystallized films, compared to the amorphous ones, but rather insensitive to the crystal structure. The permittivity was higher in the films grown using water. The leakage current density tended to be lower and the breakdown field higher in the films grown using hydrogen peroxide.

  16. Atomic-Level Properties of Thermal Barrier Coatings: Characterization of Metal-Ceramic Interfaces

    DTIC Science & Technology

    2001-01-01

    these cases metal - metal bonds were stronger than metal - substrate bonds, thus predicting a 3D (cluster) growth mode as opposed to layer-by-layer...coat layer must be deposited. The top coat serves as the insulator and the bond coat mediates contact between the top coat and metal alloy substrate ...in thermomechanical properties between a YSZ top coat and a metal -alloy substrate is enough to require the introduction of an intermediate layer. This

  17. Atomic and molecular layer deposition for surface modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi; Sievänen, Jenni; Salo, Erkki

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjetmore » printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.« less

  18. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  19. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    NASA Astrophysics Data System (ADS)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  20. Resolving the Chemically Discrete Structure of Synthetic Borophene Polymorphs.

    PubMed

    Campbell, Gavin P; Mannix, Andrew J; Emery, Jonathan D; Lee, Tien-Lin; Guisinger, Nathan P; Hersam, Mark C; Bedzyk, Michael J

    2018-05-09

    Atomically thin two-dimensional (2D) materials exhibit superlative properties dictated by their intralayer atomic structure, which is typically derived from a limited number of thermodynamically stable bulk layered crystals (e.g., graphene from graphite). The growth of entirely synthetic 2D crystals, those with no corresponding bulk allotrope, would circumvent this dependence upon bulk thermodynamics and substantially expand the phase space available for structure-property engineering of 2D materials. However, it remains unclear if synthetic 2D materials can exist as structurally and chemically distinct layers anchored by van der Waals (vdW) forces, as opposed to strongly bound adlayers. Here, we show that atomically thin sheets of boron (i.e., borophene) grown on the Ag(111) surface exhibit a vdW-like structure without a corresponding bulk allotrope. Using X-ray standing wave-excited X-ray photoelectron spectroscopy, the positions of boron in multiple chemical states are resolved with sub-angström spatial resolution, revealing that the borophene forms a single planar layer that is 2.4 Å above the unreconstructed Ag surface. Moreover, our results reveal that multiple borophene phases exhibit these characteristics, denoting a unique form of polymorphism consistent with recent predictions. This observation of synthetic borophene as chemically discrete from the growth substrate suggests that it is possible to engineer a much wider variety of 2D materials than those accessible through bulk layered crystal structures.

  1. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2

    DOE PAGES

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...

    2017-02-17

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  2. Toward the growth of an aligned single-layer MoS2 film.

    PubMed

    Kim, Daeho; Sun, Dezheng; Lu, Wenhao; Cheng, Zhihai; Zhu, Yeming; Le, Duy; Rahman, Talat S; Bartels, Ludwig

    2011-09-20

    Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth. © 2011 American Chemical Society

  3. Theoretical modeling and experimental observations of the atomic layer deposition of SrO using a cyclopentadienyl Sr precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Kurt D.; Slepko, Alex; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu

    2016-08-14

    First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp){sub 2}] on TiO{sub 2}-terminated strontium titanate, SrTiO{sub 3} (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp){sub 2} precursor is shown to adsorb on the TiO{sub 2}-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C–Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculationsmore » are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr({sup i}Pr{sub 3}Cp){sub 2}], adsorbed on TiO{sub 2}-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO{sub 2}-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp){sub 2}, may initiate film growth on non-hydroxylated surfaces.« less

  4. Interface Energy Alignment of Atomic-Layer-Deposited VOx on Pentacene: an in Situ Photoelectron Spectroscopy Investigation.

    PubMed

    Zhao, Ran; Gao, Yuanhong; Guo, Zheng; Su, Yantao; Wang, Xinwei

    2017-01-18

    Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VO x ) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VO x grown on pentacene to understand the role of the ALD VO x interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VO x and trace the evolutions of the work function, pentacene HOMO level, and VO x defect states during the growth. The initial VO x growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VO x is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VO x defect states to provide an efficient hole-injection pathway at the contact interface.

  5. Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohl, Christopher; Lenz, Andrea, E-mail: alenz@physik.tu-berlin.de; Döscher, Henning

    2016-05-15

    In a fundamental cross-sectional scanning tunneling microscopy investigation on epitaxially grown GaP layers on a Si(001) substrate, differently oriented antiphase boundaries are studied. They can be identified by a specific contrast and by surface step edges starting/ending at the position of an antiphase boundary. Moreover, a change in the atomic position of P and Ga atoms along the direction of growth is observed in agreement with the structure model of antiphase boundaries in the GaP lattice. This investigation opens the perspective to reveal the orientation and position of the antiphase boundaries at the atomic scale due to the excellent surfacemore » sensitivity of this method.« less

  6. Porphyrins as Templates for Site-Selective Atomic Layer Deposition: Vapor Metalation and in Situ Monitoring of Island Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Jason R.; Emery, Jonathan D.; Pellin, Michael J.

    Examinations of enzymatic catalysts suggest one key to efficient catalytic activity is discrete size metallo clusters. Mimicking enzymatic cluster systems is synthetically challenging because conventional solution methods are prone to aggregation or require capping of the cluster, thereby limiting its catalytic activity. We introduce site-selective atomic layer deposition (ALD) on porphyrins as an alternative approach to grow isolated metal oxide islands that are spatially separated. Surface-bound tetra-acid free base porphyrins (H2TCPP) may be metalated with Mn using conventional ALD precursor exposure to induce homogeneous hydroxide synthetic handles which acts as a nucleation point for subsequent ALD MnO island growth. Analyticalmore » fitting of in situ QCM mass uptake reveals island growth to be hemispherical with a convergence radius of 1.74 nm. This growth mode is confirmed with synchrotron grazing-incidence small-angle X-ray scattering (GISAXS) measurements. Finally, we extend this approach to other ALD chemistries to demonstrate the generality of this route to discrete metallo island materials.« less

  7. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    DOE PAGES

    Wang, Gang; Zhang, Miao; Liu, Su; ...

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substratemore » surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.« less

  8. Transition from overlayer growth to alloying growth of Ga on Si(111)-alpha-(sqrt[3]xsqrt[3])-Au.

    PubMed

    Yamanaka, T; Ino, S

    2002-11-04

    Atomic depth distribution and growth modes of Ga on an Si(111)-alpha-(sqrt[3]xsqrt[3])-Au surface at room temperature were studied after each monolayer deposition of Ga via reflection high-energy electron diffraction and characteristic x-ray spectroscopy measurements as functions of glancing angle theta(g) of the incident electron beam. One monolayer of Ga grew on the Au layer, and the sqrt[3]xsqrt[3] periodicity was conserved below the Ga overlayer. Above a critical Ga coverage of about one monolayer, this growth mode drastically changed; i.e., Au atoms dissociated from the sqrt[3]xsqrt[3] structure and Ga grew into islands of Ga-Au alloy.

  9. Thermally activated decomposition of (Ga,Mn)As thin layer at medium temperature post growth annealing

    NASA Astrophysics Data System (ADS)

    Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.

    2016-05-01

    The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.

  10. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  11. Growth of single crystal silicon carbide by halide chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fanton, Mark A.

    The goal of this thesis is to understand relationships between the major process variables and the growth rate, doping, and defect density of SiC grown by halide chemical vapor deposition (HCVD). Specifically this work addresses the maximum C/Si ratios that can be utilized for single crystal SiC growth by providing a thermodynamic model for determining the boundary between single crystal growth and SiC+C mixed phase growth in the Si-C-Cl-H system. SiC epitaxial layers ranging from 50--200microm thick were grown at temperatures near 2000°C on 6H and 4H-SiC substrates at rates up to 250microm/hr. Experimental trends in the growth rate as a function of precursor flow rates and temperature closely match those expected from thermodynamic equilibrium in a closed system. The equilibrium model can be used to predict the trends in growth rate with the changes in precursor flow rates as well as the boundary between deposition of pure SiC and deposition of a mixture of SiC and C. Calculation of the boundary position in terms of the SiCl 4 and CH4 concentrations provides an upper limit on the C/Si ratio that can be achieved for any given set of crystal growth conditions. The model can be adjusted for changes in temperature, pressure, and chlorine concentration as well. The boundary between phase pure and mixed phase growth was experimentally shown to be very abrupt, thereby providing a well defined window for Si-rich and C-rich growth conditions. Growth of SiC epitaxial layers by HCVD under both Si-rich and C-rich conditions generally yielded the same trends in dopant incorporation as those observed in conventional silane-based CVD processes. Nitrogen incorporation was highest on the C-face of 4H-SiC substrates but could be reduced to concentrations as low as 1x1015 atoms/cm3 at C/Si ratios greater than 1. Residual B concentrations were slightly higher for epitaxial layers grown on the Si-face of substrates. However, changes in the C/Si ratio had no effect on B incorporation at concentrations on the order of 1x10 15 atoms/cm3. No significant trends in structural quality or defect density were evident as the C/Si ratio was varied from 0.72 to 1.81. Structural quality and defect density were more closely related to substrate off-cut and polarity. The highest quality crystals were grown on the C-face of 4° off-axis substrates as measured by HRXRD rocking curves. Growth on on-axis substrates was most successful on the C-face, although the x-ray rocking curves were nearly twice as wide as those on off-axis substrates. Etch pit densities obtained by KOH etching layers grown on Si-face substrates were closely related to the defect density of the substrate not the C/Si ratio. Thick p-type layers with B or Al dopant concentrations on the order of 1019 atoms/cm3 were readily achieved with the HCVD process. Trimethylaluminum and BCl3 were successfully employed as dopant sources. Aluminum incorporation was sensitive to both the substrate surface polarity and the C/Si ratio employed for growth. Dopant concentrations were maximized under C-rich growth conditions on the Si-face of SiC substrates. Boron incorporation was insensitive to both the surface polarity of the substrate and the C/Si used for layer growth even though B appears to favor incorporation on Si lattice sites. Boron acceptors in HCVD grown SiC are not passivated by H to any significant extent based on a comparison of net acceptor concentrations and B doping concentrations. In addition, the lattice parameters epitaxial layers doped with B at concentrations on the order of 1019 atoms/cm3 showed no change as a function of B concentration. This was in contrast to the lattice parameter decrease as expected from a comparison between the size of the Si and B atoms. The HCVD process has demonstrated an order of magnitude higher growth rates than conventional SiC CVD and while providing control over the C/Si ratio. This allows the user to directly influence dopant incorporation and growth morphology. However, this control should also permit several other material properties to be tailored. (Abstract shortened by UMI.)

  12. CFD Growth of 3C-SiC on 4H/6H Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Huang, XianRong; Dudley, Michael

    2006-01-01

    This article describes growth and characterization of the highest quality reproducible 3C-SiC heteroepitaxial films ever reported. By properly nucleating 3C-SiC growth on top of perfectly on-axis (0001) 4H-SiC mesa surfaces completely free of atomic scale steps and extended defects, growth of 3C-SiC mesa heterofilms completely free of extended crystal defects can be achieved. In contrast, nucleation and growth of 3C-SiC mesa heterofilms on top of 4H-SiC mesas with atomic-scale steps always results in numerous observable dislocations threading through the 3C-SiC epilayer. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate non-trivial in-plane lattice mismatch between the 3C and 4H layers. This mismatch is somewhat relieved in the step-free mesa case via misfit dislocations confined to the 3C/4H interfacial region without dislocations threading into the overlying 3C-SiC layer. These results indicate that the presence or absence of steps at the 3C/4H heteroepitaxial interface critically impacts the quality, defect structure, and relaxation mechanisms of single-crystal heteroepitaxial 3C-SiC films.

  13. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    PubMed

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-08

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  14. Disilane-based cyclic deposition/etch of Si, Si:P and Si1-yCy:P layers: I. The elementary process steps

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Deguet, C.

    2013-02-01

    We have benchmarked the 550 °C, 20 Torr growth of Si:P and Si1-yCy:P using SiH4 and Si2H6. P segregation has prevented us from reaching P+ ion concentrations in Si higher than a few 1019 cm-3 using SiH4; the resulting surface ‘poisoning’ led to a severe growth rate reduction. Meanwhile, [P+] increased linearly with the phosphine flow when using Si2H6 as the Si precursor; values as high as 1.7 × 1020 cm-3 were obtained. The Si:P growth rate using Si2H6 was initially stable then increased as the PH3 flow increased. Mono-methylsilane flows 6.5-10 times higher were needed with Si2H6 than with SiH4 to reach the same substitutional C concentrations in intrinsic Si1-yCy layers ([C]subst. up to 1.9%). Growth rates were approximately six times higher with Si2H6 than with SiH4, however. 30 nm thick Si1-yCy layers became rough as [C]subst. exceeded 1.6% (formation of increasing numbers of islands). We have also studied the structural and electrical properties of ‘low’ and ‘high’ C content Si1-yCy:P layers (˜ 1.5 and 1.8%, respectively) grown with Si2H6. Adding significant amounts of PH3 led to a reduction of the tensile strain in the films. This was due to the incorporation of P atoms (at the expense of C atoms) in the substitutional sites of the Si matrix. Si1-yCy:P layers otherwise became rough as the PH3 flow increased. Resistivities lower than 1 mΩ cm were nevertheless associated with those Si1-yCy:P layers, with P atomic concentrations at most 3.9 × 1020 cm-3. Finally, we have quantified the beneficial impact of adding GeH4 to HCl for the low-temperature etching of Si. Etch rates 12-36 times higher with HCl + GeH4 than with pure HCl were achieved at 20 Torr. Workable etch rates close to 1 nm min-1 were obtained at 600 °C (versus 750 °C for pure HCl), enabling low-temperature cyclic deposition/etch strategies for the selective epitaxial growth of Si, Si:P and Si1-yCy:P layers on patterned wafers.

  15. Island growth as a growth mode in atomic layer deposition: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Puurunen, Riikka L.; Vandervorst, Wilfried

    2004-12-01

    Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are discussed.

  16. Synthesis and Transfer of Large-Area Monolayer WS2 Crystals: Moving Toward the Recyclable Use of Sapphire Substrates.

    PubMed

    Xu, Zai-Quan; Zhang, Yupeng; Lin, Shenghuang; Zheng, Changxi; Zhong, Yu Lin; Xia, Xue; Li, Zhipeng; Sophia, Ponraj Joice; Fuhrer, Michael S; Cheng, Yi-Bing; Bao, Qiaoliang

    2015-06-23

    Two-dimensional layered transition metal dichalcogenides (TMDs) show intriguing potential for optoelectronic devices due to their exotic electronic and optical properties. Only a few efforts have been dedicated to large-area growth of TMDs. Practical applications will require improving the efficiency and reducing the cost of production, through (1) new growth methods to produce large size TMD monolayer with less-stringent conditions, and (2) nondestructive transfer techniques that enable multiple reuse of growth substrate. In this work, we report to employ atmospheric pressure chemical vapor deposition (APCVD) for the synthesis of large size (>100 μm) single crystals of atomically thin tungsten disulfide (WS2), a member of TMD family, on sapphire substrate. More importantly, we demonstrate a polystyrene (PS) mediated delamination process via capillary force in water which reduces the etching time in base solution and imposes only minor damage to the sapphire substrate. The transferred WS2 flakes are of excellent continuity and exhibit comparable electron mobility after several growth cycles on the reused sapphire substrate. Interestingly, the photoluminescence emission from WS2 grown on the recycled sapphire is much higher than that on fresh sapphire, possibly due to p-type doping of monolayer WS2 flakes by a thin layer of water intercalated at the atomic steps of the recycled sapphire substrate. The growth and transfer techniques described here are expected to be applicable to other atomically thin TMD materials.

  17. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad

    ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural andmore » chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.« less

  18. Homoepitaxial growth of metal halide crystals investigated by reflection high-energy electron diffraction

    DOE PAGES

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; ...

    2017-01-10

    Here, we report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flowmore » growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.« less

  19. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE PAGES

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...

    2016-04-27

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  20. Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke

    Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.

  1. Nanoparticle layer deposition for highly controlled multilayer formation based on high- coverage monolayers of nanoparticles

    PubMed Central

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2015-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273

  2. Atomic Layer Deposition of HfO2 and Si Nitride on Ge Substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyang; Nakajima, Anri

    2007-12-01

    Hafnium oxide (HfO2) thin films were deposited on Ge substrates at 300 °C using atomic layer deposition (ALD) with tetrakis(diethylamino)hafnium (termed as TDEAH) as a precursor and water as an oxidant. The deposition rate was estimated to be 0.09 nm/cycle and the deposited HfO2 films have a smooth surface and an almost stoichiometric composition, indicating that the growth follows a layer-by-layer kinetics, similarly to that on Si substrates. Si nitride thin films were also deposited on Ge by ALD using SiCl4 as a precursor and NH3 as an oxidant. Si nitride has a smaller deposition rate of about 0.055 nm/cycle and a larger gate leakage current than HfO2 deposited on Ge by ALD.

  3. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers

    DOE PAGES

    Lu, Di; Baek, David J.; Hong, Seung Sae; ...

    2016-09-12

    Here, the ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals 1, 2, 3, 4, 5, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality 6, 7, 8, 9 and emergent phenomena, as seen in perovskite heterostructures 10, 11, 12. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general methodmore » to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr 3Al 2O 6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr 3Al 2O 6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds 13, 14.« less

  4. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  5. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    NASA Astrophysics Data System (ADS)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  6. Volmer–Weber InAs quantum dot formation on InP (113)B substrates under the surfactant effect of Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yu, E-mail: yu.zhao@insa-rennes.fr; Bertru, Nicolas; Folliot, Hervé

    We report on Sb surfactant growth of InAs nanostructures on GaAs{sub 0.51}Sb{sub 0.49} layers deposited on InP (001) and on (113)B oriented substrates. On the (001) orientation, the presence of Sb significantly favors the two-dimensional growth regime. Even after the deposition of 5 mono-layers of InAs, the epitaxial film remains flat and InAs/GaAs{sub 0.51}Sb{sub 0.49} type-II quantum wells are achieved. On (113)B substrates, same growth runs resulted in formation of high density InAs islands. Microscopic studies show that wetting layer is missing on (113)B substrates, and thus, a Volmer-Weber growth mode is concluded. These different behaviors are attributed to themore » surface energy changes induced by Sb atoms on surface.« less

  7. Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing

    2017-10-01

    High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.

  8. The interaction of atomic oxygen with thin copper films

    NASA Technical Reports Server (NTRS)

    Gibson, B. C.; Williams, J. R.; Fromhold, A. T., Jr.; Bozack, M. J.; Neely, W. C.; Whitaker, Ann F.

    1992-01-01

    A source of thermal, ground-state atomic oxygen has been used to expose thin copper films at a flux of 1.4 x 10 exp 17 atoms/sq cm s for times up to 50 min for each of five temperatures between 140 and 200 C. Rutherford backscattering spectroscopy was used to characterize the oxide formed during exposure. The observations are consistent with the oxide phase Cu2O. The time dependence and the temperature dependence of the oxide layer thickness can be described using oxide film growth theory based on rate limitation by diffusion. Within the time and temperature ranges of this study, the growth of the oxide layers is well described by the equation L(T,t) = 3.6 x 10 to 8th exp(- 1.1/2k sub B T)t exp 1/2, where L,T, and t are measured in angstroms, degrees Kelvin, and minutes, respectively. The deduced activation energy is 1.10 +/- 0.15 eV, with the attendant oxidation rate being greater than that for the corresponding reaction in molecular oxygen.

  9. Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Budde, Melanie; Tschammer, Carsten; Franz, Philipp; Feldl, Johannes; Ramsteiner, Manfred; Goldhahn, Rüdiger; Feneberg, Martin; Barsan, Nicolae; Oprea, Alexandru; Bierwagen, Oliver

    2018-05-01

    NiO layers were grown on MgO(100), MgO(110), and MgO(111) substrates by plasma-assisted molecular beam epitaxy under Ni-flux limited growth conditions. Single crystalline growth with a cube-on-cube epitaxial relationship was confirmed by X-ray diffraction measurements for all used growth conditions and substrates except MgO(111). A detailed growth series on MgO(100) was prepared using substrate temperatures ranging from 20 °C to 900 °C to investigate the influence on the layer characteristics. Energy-dispersive X-ray spectroscopy indicated close-to-stoichiometric layers with an oxygen content of ≈ 47 at. % and ≈ 50 at. % grown under low and high O-flux, respectively. All NiO layers had a root-mean-square surface roughness below 1 nm, measured by atomic force microscopy, except for rougher layers grown at 900 °C or using molecular oxygen. Growth at 900 °C led to a significant diffusion of Mg from the substrate into the film. The relative intensity of the quasi-forbidden one-phonon Raman peak is introduced as a gauge of the crystal quality, indicating the highest layer quality for growth at low oxygen flux and high growth temperature, likely due to the resulting high adatom diffusion length during growth. The optical and electrical properties were investigated by spectroscopic ellipsometry and resistance measurements, respectively. All NiO layers were transparent with an optical bandgap around 3.6 eV and semi-insulating at room temperature. However, changes upon exposure to reducing or oxidizing gases of the resistance of a representative layer at elevated temperature were able to confirm p-type conductivity, highlighting their suitability as a model system for research on oxide-based gas sensing.

  10. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  11. Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size

    NASA Astrophysics Data System (ADS)

    Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo

    2018-02-01

    Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.

  12. Laboratory Studies of Ice Growth in the Presence of Oxygen Atoms

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Boulter, J. E.; Marschall, J.

    2003-12-01

    In the mesopause region, where noctilucent clouds (NLCs) form and polar summertime echoes are present, atomic oxygen is the dominant reactive species. Observations by Gumbel et al. (1998) reveal sharp gradients and distinctive minima in oxygen atom concentration coinciding with observed NLC layers. These observations suggest an interaction between oxygen atoms and NLC particles. Recent laboratory studies conclude that the uptake coefficient of atomic oxygen on ice is not large enough to change the gas-phase concentrations in the mesosphere lower thermosphere (MLT) region (Murray and Plane, 2003). However, the question of whether or not atomic oxygen can affect the formation and growth of ice has not been experimentally addressed. To gain insight into possible interactions between atomic oxygen and ice surfaces, we directly measure ice growth rates at temperatures associated with the summertime mesopause region (110-150 K), with and without exposure of the growing ice layer to partially dissociated oxygen. A liquid nitrogen cooled cryostat is used to control the temperature of a gold mirror in a high vacuum chamber. Water vapor, either from the residual background or from an introduced source, is allowed to condense on the mirror. A microwave discharge is used to partially dissociate an oxygen stream, which is sampled into the chamber through a small orifice facing the gold mirror. Grazing angle Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS) is used to monitor the rate of ice growth. Preliminary results at 130 K indicate that the ice growth rate in the presence of oxygen slows when the microwave discharge is activated and the ratio of water to oxygen is low. For H2O/O2 = ˜0.3 %, at a total chamber pressure of about 7 μ Torr, the growth rate reduction amounts to 24+/-9 %. Changes in the FTIR-RAS absorption profile of the OH stretching vibrations are also noted, which may indicate changes in ice morphology. Both results suggest that the presence of atomic oxygen influences how ice forms and grows, though more extensive experimentation is required to solidify this conclusion. This testing is underway and results will be presented and discussed. Gumbel, J., D. P. Murtagh, P. J. Espy, and G. Witt, "Odd Oxygen measurements during the Noctilucent Cloud 93 rocket campaign," Journal of Geophysical Research, Vol. 103, No. A10, 1998, pp. 23,399-23,414. Murray, B. J, and J. M. C. Plane, personal communications, 2003

  13. 3-D Observation of dopant distribution at NAND flash memory floating gate using Atom probe tomography

    NASA Astrophysics Data System (ADS)

    Lee, Ji-hyun; Chae, Byeong-Kyu; Kim, Joong-Jeong; Lee, Sun Young; Park, Chan Gyung

    2015-01-01

    Dopant control becomes more difficult and critical as silicon devices become smaller. We observed the dopant distribution in a thermally annealed polysilicon gate using Transmission Electron Microscopy (TEM) and Atom probe tomography (APT). Phosphorus was doped at the silicon-nitride-diffusion-barrier-layer-covered polycrystalline silicon gate. Carbon also incorporated at the gate for the enhancement of operation uniformity. The impurity distribution was observed using atom probe tomography. The carbon atoms had segregated at grain boundaries and suppressed silicon grain growth. Phosphorus atoms, on the other hand, tended to pile-up at the interface. A 1-nm-thick diffusion barrier effectively blocked P atom out-diffusion. [Figure not available: see fulltext.

  14. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    PubMed

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. High temperature growth of Pt on the Rh(111) surface

    NASA Astrophysics Data System (ADS)

    Duisberg, M.; Dräger, M.; Wandelt, K.; Gruber, E. L. D.; Schmid, M.; Varga, P.

    1999-08-01

    The epitaxial growth of Pt on the Rh(111) surface at 700 K was studied with AES, UPS, ISS and STM. From AES and ISS measurements a 2D growth mode is concluded at this substrate temperature. The morphology of the surface is studied by photoemission spectra of adsorbed Xe (PAX) and STM. A disperse distribution of the Pt atoms is suggested by PAX and is consistent with an incorporation of these atoms into the first substrate layer. Atomically and chemically resolved STM measurements confirm these conclusions. The interaction of CO with the surface alloy is investigated by UPS. The CO-induced features in UP spectra show significant differences in the peak positions and shape between the clean substrate and the surface precovered with different amounts of Pt. The CO induced emissions are, thus, used for a quantitative titration of Pt on the Rh surface.

  16. Phase Segregation Behavior of Two-Dimensional Transition Metal Dichalcogenide Binary Alloys Induced by Dissimilar Substitution

    DOE PAGES

    Susarla, Sandhya; Kochat, Vidya; Kutana, Alex; ...

    2017-08-15

    Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less

  17. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition.

    PubMed

    Meng, Xiangbo; Geng, Dongsheng; Liu, Jian; Li, Ruying; Sun, Xueliang

    2011-04-22

    Atomic layer deposition (ALD) was used to synthesize graphene-based metal oxide nanocomposites. This strategy was fulfilled on the preparation of TiO(2)-graphene nanosheet (TiO(2)-GNS) nanocomposites using titanium isopropoxide and water as precursors. The synthesized nanocomposites demonstrated that ALD exhibited many benefits in a controllable means. It was found that the as-deposited TiO(2) was tunable not only in its morphologies but also in its structural phases. As for the former, TiO(2) was transferable from nanoparticles to nanofilms with increased cycles. With regard to the latter, TiO(2) was changeable from amorphous to crystalline phase, and even a mixture of the two with increased growth temperatures (up to 250 °C). The underlying growth mechanisms were discussed and the resultant TiO(2)-GNS nanocomposites have great potentials for many applications, such as photocatalysis, lithium-ion batteries, fuel cells, and sensors.

  18. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  19. What is limiting low-temperature atomic layer deposition of Al{sub 2}O{sub 3}? A vibrational sum-frequency generation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandalon, V., E-mail: v.vandalon@tue.nl, E-mail: w.m.m.kessels@tue.nl; Kessels, W. M. M., E-mail: v.vandalon@tue.nl, E-mail: w.m.m.kessels@tue.nl

    2016-01-04

    The surface reactions during atomic layer deposition (ALD) of Al{sub 2}O{sub 3} from Al(CH{sub 3}){sub 3} and H{sub 2}O have been studied with broadband sum-frequency generation to reveal what is limiting the growth at low temperatures. The –CH{sub 3} surface coverage was measured for temperatures between 100 and 300 °C and the absolute reaction cross sections, describing the reaction kinetics, were determined for both half-cycles. It was found that –CH{sub 3} groups persisted on the surface after saturation of the H{sub 2}O half-cycle. From a direct correlation with the growth per cycle, it was established that the reduced reactivity of H{submore » 2}O towards –CH{sub 3} is the dominant factor limiting the ALD process at low temperatures.« less

  20. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder.

    PubMed

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf

    2018-06-01

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures (<120 mbar s) little to no Pt is deposited after the first cycle and most of the Pt is atomically dispersed. Increasing the oxygen exposure above 120 mbar s results in a rapid increase in the Pt loading, which saturates at exposures > 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic layer deposition and post-growth thermal annealing of ultrathin MoO3 layers on silicon substrates: Formation of surface nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Hongfei; Yang, Ren Bin; Yang, Weifeng; Jin, Yunjiang; Lee, Coryl J. J.

    2018-05-01

    Ultrathin MoO3 layers have been grown on Si substrates at 120 °C by atomic layer deposition (ALD) using molybdenum hexacarbonyl [Mo(CO)6] and ozone (O3) as the Mo- and O-source precursors, respectively. The ultrathin films were further annealed in air at Tann = 550-750 °C for 15 min. Scanning-electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy have been employed to evaluate the morphological and elemental properties as well as their evolutions upon annealing of the thin films. They revealed an interfacial SiOx layer in between the MoO3 layer and the Si substrate; this SiOx layer converted into SiO2 during the annealing; and the equivalent thickness of the MoO3 (SiO2) layer decreased (increased) with the increase in Tann. Particles with diameters smaller than 50 nm emerged at Tann = 550 °C and their sizes (density) were reduced (increased) by increasing Tann to 650 °C. A further increase of Tann to 750 °C resulted in telephone-cord-like MoO3 structures, initiated from isolated particles on the surface. These observations have been discussed and interpreted based on temperature-dependent atomic interdiffusions, surface evaporations, and/or melting of MoO3, which shed new light on ALD MoO3 towards its electronic applications.

  2. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  3. Atomic layer deposition of nanoporous biomaterials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.more » Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.« less

  4. Toward a Mechanistic Understanding of Vertical Growth of van der Waals Stacked 2D Materials: A Multiscale Model and Experiments.

    PubMed

    Ye, Han; Zhou, Jiadong; Er, Dequan; Price, Christopher C; Yu, Zhongyuan; Liu, Yumin; Lowengrub, John; Lou, Jun; Liu, Zheng; Shenoy, Vivek B

    2017-12-26

    Vertical stacking of monolayers via van der Waals (vdW) interaction opens promising routes toward engineering physical properties of two-dimensional (2D) materials and designing atomically thin devices. However, due to the lack of mechanistic understanding, challenges remain in the controlled fabrication of these structures via scalable methods such as chemical vapor deposition (CVD) onto substrates. In this paper, we develop a general multiscale model to describe the size evolution of 2D layers and predict the necessary growth conditions for vertical (initial + subsequent layers) versus in-plane lateral (monolayer) growth. An analytic thermodynamic criterion is established for subsequent layer growth that depends on the sizes of both layers, the vdW interaction energies, and the edge energy of 2D layers. Considering the time-dependent growth process, we find that temperature and adatom flux from vapor are the primary criteria affecting the self-assembled growth. The proposed model clearly demonstrates the distinct roles of thermodynamic and kinetic mechanisms governing the final structure. Our model agrees with experimental observations of various monolayer and bilayer transition metal dichalcogenides grown by CVD and provides a predictive framework to guide the fabrication of vertically stacked 2D materials.

  5. AFM investigation of effect of absorbed water layer structure on growth mechanism of octadecyltrichlorosilane self-assembled monolayer on oxidized silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaowei; Zheng, Yanjun, E-mail: zhengyj@cup.edu.cn; Chen, Changfeng

    2016-06-28

    The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought tomore » play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.« less

  6. AFM investigation of effect of absorbed water layer structure on growth mechanism of octadecyltrichlorosilane self-assembled monolayer on oxidized silicon

    NASA Astrophysics Data System (ADS)

    Li, Shaowei; Zheng, Yanjun; Chen, Changfeng

    2016-06-01

    The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought to play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.

  7. Growth parameter dependent structural and optical properties of ZnO nanostructures on Si substrate by a two-zone thermal CVD.

    PubMed

    Lee, Hee Kwan; Yu, Jae Su

    2012-04-01

    We investigated the effect of growth parameters on the structural and optical properties of the ZnO nanostructures (NSs) grown on Au-coated Si substrate by a two-zone thermal chemical vapor deposition. The morphologies of ZnO NSs were controlled by various growth parameters, such as growth temperature, O2 flow rate, and working pressure, for different thicknesses of Au layer. The nanorod-like ZnO NSs were formed at 915 degrees C and the growth of two-dimensional structures, i.e., nanosheets, was enhanced with the increase of growth temperature up to 965 degrees C. It was found that the low working pressure contributed to improvement in vertical alignment and uniformity of ZnO NSs. The Zn/O atomic % ratio, which plays a key role in the growth mechanism of ZnO NSs, was changed by the growth parameters. The Zn/O atomic % ratio was increased with increasing the growth temperature, while it was decreased with increasing the working pressure. Under proper O2 flow rate, the ZnO nanorods with good crystallinity were fabricated with a Zn/O atomic % ratio of -0.9. For various growth parameters, the photoluminescence emission was slightly shifted with the ultraviolet emission related to the near band edge transition.

  8. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  9. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S; Bradford, Philip D

    2018-07-20

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam's extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  10. Modifying the morphology and properties of aligned CNT foams through secondary CNT growth

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; Stano, Kelly; Akyildiz, Halil; Yildiz, Ozkan; Jur, Jesse S.; Bradford, Philip D.

    2018-07-01

    In this work, we report for the first time, growth of secondary carbon nanotubes (CNTs) throughout a three-dimensional assembly of CNTs. The assembly of nanotubes was in the form of aligned CNT/carbon (ACNT/C) foams. These low-density CNT foams were conformally coated with an alumina buffer layer using atomic layer deposition. Chemical vapor deposition was further used to grow new CNTs. The CNT foam’s extremely high porosity allowed for growth of secondary CNTs inside the bulk of the foams. Due to the heavy growth of new nanotubes, density of the foams increased more than 2.5 times. Secondary nanotubes had the same graphitic quality as the primary CNTs. Microscopy and chemical analysis revealed that the thickness of the buffer layer affected the diameter, nucleation density as well as growth uniformity across the thickness of the foams. The effects of secondary nanotubes on the compressive mechanical properties of the foams was also investigated.

  11. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...

    2014-05-05

    Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less

  12. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I.; Seibt, M.

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  13. MBE grown III-V strain relaxed buffer layers and superlattices characterized by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, A.J.; Fritz, I.J.; Drummond, T.J.

    1993-11-01

    Using atomic force microscopy (AFM), the authors have investigated the effects of growth temperature and dopant incorporation on the surface morphology of MBE grown graded buffer layers and strained layer superlattices (SLSs) in the InGaAlAs/GaAs and InAsSb/InSb material systems. The AFM results show quantitatively that over the temperature range from 380 to 545 C, graded in{sub x}Al{sub 1{minus}x}As(x = 0.05 {minus} 0.32) buffer layers grown at high temperatures ({approximately}520 C), and graded In{sub x}Ga{sub 1{minus}x}As (x = 0.05 {minus} 0.33) buffer layers and In{sub 0.4}Ga{sub 0.6}As/In{sub 0.26}Al{sub 0.35}Ga{sub 0.39}As SLSs grown at low temperatures ({approximately}400 C) have the lowest RMSmore » roughness. Also, for SLSs InAs{sub 0.21}Sb{sub 0.79}/InSb, undoped layers grown at 470 C were smoother than undoped layers grown at 420 C and Be-doped layers grown at 470 C. These results illustrate the role of surface tension in the growth of strained layer materials near the melting temperature of the InAs{sub x}Sb{sub {minus}x}/InSb superlattice. Nomarski interference and transmission electron microscopies, IR photoluminescence, x-ray diffraction, and photocurrent spectroscopy were also used to evaluate the relative quality of the material but usually, the results were not conclusive.« less

  14. Growth and structural evolution of Sn on Ag(001): Epitaxial monolayer to thick alloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Suvankar; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in

    The growth and structure of Sn on Ag(001), from submonolayer to thick film coverages at room temperature, are studied using low energy electron diffraction, x-ray photoemission spectroscopy and angle-resolved photoemission spectroscopy (ARPES) techniques. The authors observe different growth modes for submonolayer Sn coverages and for higher Sn coverages. Systematic surface structural evolution, consistent with the substitution of surface Ag atoms by Sn atoms, is observed for submonolayer Sn coverages while an ordered Ag-Sn bulk alloy film is formed for higher Sn coverages with an Ag overlayer. For monolayer coverage of Sn, a pseudomorphic growth of a Sn layer without alloyingmore » is determined. ARPES results also confirm the presence of an ordered Ag overlayer on the bulk Ag-Sn alloy film, suggesting the formation of an Ag/Ag{sub 3}Sn/Ag(001) sandwich structure at the surface for higher Sn coverages. The present results illustrate the complex interplay of atomic mobilities, surface free-energies, and alloy formation energies in determining the growth and structural properties of the system.« less

  15. Ultrathin epitaxial barrier layer to avoid thermally induced phase transformation in oxide heterostructures

    DOE PAGES

    Baek, David J.; Lu, Di; Hikita, Yasuyuki; ...

    2016-12-22

    Incorporating oxides with radically different physical and chemical properties into heterostructures offers tantalizing possibilities to derive new functions and structures. Recently, we have fabricated freestanding 2D oxide membranes using the water-soluble perovskite Sr 3Al 2O 6 as a sacrificial buffer layer. Here, with atomic-resolution spectroscopic imaging, we observe that direct growth of oxide thin films on Sr 3Al 2O 6 can cause complete phase transformation of the buffer layer, rendering it water-insoluble. More importantly, we demonstrate that an ultrathin SrTiO 3 layer can be employed as an effective barrier to preserve Sr 3Al 2O 6 during subsequent growth, thus allowingmore » its integration in a wider range of oxide heterostructures.« less

  16. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp; Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027; Huang, P.-C.

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x}more » interfacial layer.« less

  17. Band Offsets and Interfacial Properties of HfAlO Gate Dielectric Grown on InP by Atomic Layer Deposition.

    PubMed

    Yang, Lifeng; Wang, Tao; Zou, Ying; Lu, Hong-Liang

    2017-12-01

    X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy have been used to determine interfacial properties of HfO 2 and HfAlO gate dielectrics grown on InP by atomic layer deposition. An undesirable interfacial InP x O y layer is easily formed at the HfO 2 /InP interface, which can severely degrade the electrical performance. However, an abrupt interface can be achieved when the growth of the HfAlO dielectric on InP starts with an ultrathin Al 2 O 3 layer. The valence and conduction band offsets for HfAlO/InP heterojunctions have been determined to be 1.87 ± 0.1 and 2.83 ± 0.1 eV, respectively. These advantages make HfAlO a potential dielectric for InP MOSFETs.

  18. Mössbauer spectroscopy and the structure of interfaces on the atomic scale in metallic nanosystems

    NASA Astrophysics Data System (ADS)

    Uzdin, V. M.

    2007-10-01

    A microscopic model of the formation of an alloy on the interface has been constructed, which takes into account the exchange of atoms with the substrate atoms and the “floating up” of the latter into the upper layers in the process of epitaxial growth. The self-consistent calculations of atomic magnetic moments of spatially inhomogeneous structures obtained in this case are used for the interpretation of data of Mössbauer spectroscopy. The proposed scenario of mixing leads to the appearance of a preferred direction in the sample and the asymmetry of interfaces in the direction of epitaxial growth. In the multilayer M 1/ M 2 ( M 1,2 = Fe, Cr, V, Sn, or Ag) systems, this asymmetry makes it possible to understand the difference in the magnetic behavior of M 1-on M 2 and M 2-on- M 1 interfaces which has been observed experimentally. The correlation between the calculated distributions of magnetic moments and the measured distributions of hyperfine fields at iron atoms confirms the assumption about their proportionality for a broad class of metallic multilayer systems. However, a linear decrease of hyperfine fields at the 57Fe nuclei with increasing number of impurity atoms among the nearest and next-nearest neighbors is not confirmed for Fe/Cr systems, although is correct in Fe/V superlattices. In the Fe/Cr multilayer systems, the experimentally measured value of magnetoresistance grows with increasing fraction of the “floated up” atoms of 57Fe. Thus, it is the bulk scattering by impurity atoms that gives the basic contribution to the effect of giant magnetoresistance. The problem of the influence of mixing and adsorption of hydrogen in the vanadium layers on the state of the spin-density wave in V/Cr superlattices has been considered.

  19. Lattice Transparency of Graphene.

    PubMed

    Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O

    2017-03-08

    Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.

  20. Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.

    2018-05-01

    The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.

  1. Atomic scale morphology, growth behaviour and electronic properties of semipolar {101[overline]3} GaN surfaces.

    PubMed

    Kioseoglou, J; Kalesaki, E; Lymperakis, L; Karakostas, Th; Komninou, Ph

    2013-01-30

    First-principles calculations relating to the atomic structure and electronic properties of {101[overline]3} GaN surfaces reveal significant differentiations between the two polarity orientations. The (101[overline]3) surface exhibits a remarkable morphological stability, stabilizing a metallic structure (Ga adlayer) over the entire range of the Ga chemical potential. In contrast, the semiconducting, cleaved surface is favoured on (101[overline]3[overline]) under extremely and moderately N-rich conditions, a Ga bilayer is stabilized under corresponding Ga-rich conditions and various transitions between metallic reconstructions take place in intermediate growth stoichiometries. Efficient growth schemes for smooth, two-dimensional GaN layers and the isolation of {101[overline]3} material from parasitic orientations are identified.

  2. Inherent substrate-dependent growth initiation and selective-area atomic layer deposition of TiO{sub 2} using “water-free” metal-halide/metal alkoxide reactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanasov, Sarah E.; Kalanyan, Berç; Parsons, Gregory N., E-mail: gnp@ncsu.edu

    2016-01-15

    Titanium dioxide atomic layer deposition (ALD) is shown to proceed selectively on oxidized surfaces with minimal deposition on hydrogen-terminated silicon using titanium tetrachloride (TiCl{sub 4}) and titanium tetra-isopropoxide [Ti(OCH(CH{sub 3}){sub 2}){sub 4}, TTIP] precursors. Ex situ x-ray photoelectron spectroscopy shows a more rapid ALD nucleation rate on both Si–OH and Si–H surfaces when water is the oxygen source. Eliminating water delays the oxidation of the hydrogen-terminated silicon, thereby impeding TiO{sub 2} film growth. For deposition at 170 °C, the authors achieve ∼2 nm of TiO{sub 2} on SiO{sub 2} before substantial growth takes place on Si–H. On both Si–H and Si–OH, themore » surface reactions proceed during the first few TiCl{sub 4}/TTIP ALD exposure steps where the resulting products act to impede subsequent growth, especially on Si–H surfaces. Insight from this work helps expand understanding of “inherent” substrate selective ALD, where native differences in substrate surface reaction chemistry are used to promote desired selective-area growth.« less

  3. Atomic layer deposition of TiO{sub 2} from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Qi; Jiang Yulong; Detavernier, Christophe

    2007-10-15

    Atomic layer deposition (ALD) of TiO{sub 2} thin films using Ti isopropoxide and tetrakis-dimethyl-amido titanium (TDMAT) as two kinds of Ti precursors and water as another reactant was investigated. TiO{sub 2} films with high purity can be grown in a self-limited ALD growth mode by using either Ti isopropoxide or TDMAT as Ti precursors. Different growth behaviors as a function of deposition temperature were observed. A typical growth rate curve-increased growth rate per cycle (GPC) with increasing temperatures was observed for the TiO{sub 2} film deposited by Ti isopropoxide and H{sub 2}O, while surprisingly high GPC was observed at lowmore » temperatures for the TiO{sub 2} film deposited by TDMAT and H{sub 2}O. An energetic model was proposed to explain the different growth behaviors with different precursors. Density functional theory (DFT) calculation was made. The GPC in the low temperature region is determined by the reaction energy barrier. From the experimental results and DFT calculation, we found that the intermediate product stability after the ligand exchange is determined by the desorption behavior, which has a huge effect on the width of the ALD process window.« less

  4. Atomic Layer Deposition of Aluminum Sulfide: Growth Mechanism and Electrochemical Evaluation in Lithium-Ion Batteries

    DOE PAGES

    Meng, Xiangbo; Cao, Yanqiang; Libera, Joseph A.; ...

    2017-10-01

    This work describes the synthesis of aluminum sulfide (AlS x) thin films by atomic layer deposition (ALD) using tris(dimethylamido)aluminum and hydrogen sulfide. We employed a suite of in situ measurement techniques to explore the ALD AlS x growth mechanism, including quartz crystal microbalance, quadrupole mass spectrometry, and Fourier transform infrared spectroscopy. A variety of ex situ characterization techniques were used to determine the growth characteristics, morphology, elemental composition, and crystallinity of the resultant AlS x films. This study revealed that the AlS x growth was self-limiting in the temperature range 100–250 °C, and the growth per cycle decreased linearly withmore » increasing temperature from ~0.45 Å/cycle at 100 °C to ~0.1 Å/cycle at 250 °C. The AlSx films were amorphous in this temperature range. We conducted electrochemical testing to evaluate the ALD AlS x as a potential anode material for lithium-ion batteries (LIBs). Finally, the ALD AlS x exhibited reliable cyclability over 60 discharge–charge cycles with a sustainable discharge capacity of 640 mAh/g at a current density of 100 mA/g in the voltage window of 0.6–3.5 V.« less

  5. Template-free vapor-phase growth of patrónite by atomic layer deposition

    DOE PAGES

    Weimer, Matthew S.; McCarthy, Robert F.; Emery, Jonathan D.; ...

    2017-03-09

    Despite challenges to control stoichiometry in the vanadium-sulfur system, template-free growth of patrónite, VS 4, thin films is demonstrated for the first time. A novel atomic layer deposition (ALD) process enables the growth of phase pure films and the study of electrical and vibrational properties of the quasi-one-dimensional (1D) transition metal sulfide. Self-limiting surface chemistry during ALD of VS4 is established via in situ quartz crystal microbalance and quadrupole mass spectrometry between 150 to 200 °C. The V precursor, unconventionally, sheds all organic components in the first half-cycle, while the H 2S half-cycle generates the disulfide dimer moiety, S 2more » -2, and oxidizes V 3+ to V 4+. X-ray analysis establishes VS 4 crystallinity and phase purity, as well as a self-limiting growth rate of 0.33 Å/cy, modest roughness (2.4 nm) and expected density (2.7g/cm 3 ). Phase pure films enable a new assignment of vibrational modes and corresponding Raman activity of VS4 that is corroborated by density functional theory (DFT) calculations. Lastly, at elevated growth temperatures, a change in the surface mechanism provides a synthetic route to a second vanadium-sulfur phase, V 2S 3.« less

  6. Atomic Layer Deposition of Aluminum Sulfide: Growth Mechanism and Electrochemical Evaluation in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangbo; Cao, Yanqiang; Libera, Joseph A.

    This work describes the synthesis of aluminum sulfide (AlS x) thin films by atomic layer deposition (ALD) using tris(dimethylamido)aluminum and hydrogen sulfide. We employed a suite of in situ measurement techniques to explore the ALD AlS x growth mechanism, including quartz crystal microbalance, quadrupole mass spectrometry, and Fourier transform infrared spectroscopy. A variety of ex situ characterization techniques were used to determine the growth characteristics, morphology, elemental composition, and crystallinity of the resultant AlS x films. This study revealed that the AlS x growth was self-limiting in the temperature range 100–250 °C, and the growth per cycle decreased linearly withmore » increasing temperature from ~0.45 Å/cycle at 100 °C to ~0.1 Å/cycle at 250 °C. The AlSx films were amorphous in this temperature range. We conducted electrochemical testing to evaluate the ALD AlS x as a potential anode material for lithium-ion batteries (LIBs). Finally, the ALD AlS x exhibited reliable cyclability over 60 discharge–charge cycles with a sustainable discharge capacity of 640 mAh/g at a current density of 100 mA/g in the voltage window of 0.6–3.5 V.« less

  7. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    PubMed

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  8. Investigation of nucleation and growth processes of diamond films by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.

    1994-01-01

    The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.

  9. Atomic layer deposition of molybdenum oxide from (N{sup t}Bu){sub 2}(NMe{sub 2}){sub 2}Mo and O{sub 2} plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vos, Martijn F. J.; Macco, Bart; Thissen, Nick F. W.

    2016-01-15

    Molybdenum oxide (MoO{sub x}) films have been deposited by atomic layer deposition using bis(tert-butylimido)-bis(dimethylamido)molybdenum and oxygen plasma, within a temperature range of 50–350 °C. Amorphous film growth was observed between 50 and 200 °C at a growth per cycle (GPC) around 0.80 Å. For deposition temperatures of 250 °C and higher, a transition to polycrystalline growth was observed, accompanied by an increase in GPC up to 1.88 Å. For all deposition temperatures the O/Mo ratio was found to be just below three, indicating the films were slightly substoichiometric with respect to MoO{sub 3} and contained oxygen vacancies. The high purity of the films was demonstratedmore » in the absence of detectable C and N contamination in Rutherford backscattering measurements, and a H content varying between 3 and 11 at. % measured with elastic recoil detection. In addition to the chemical composition, the optical properties are reported as well.« less

  10. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  11. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Grehl, Thomas; Brongersma, Hidde H.

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitivemore » technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.« less

  12. NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface.

    PubMed

    Li, Ming-Yang; Shi, Yumeng; Cheng, Chia-Chin; Lu, Li-Syuan; Lin, Yung-Chang; Tang, Hao-Lin; Tsai, Meng-Lin; Chu, Chih-Wei; Wei, Kung-Hwa; He, Jr-Hau; Chang, Wen-Hao; Suenaga, Kazu; Li, Lain-Jong

    2015-07-31

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface. Copyright © 2015, American Association for the Advancement of Science.

  13. Growth model for arc-deposited fullerene-like CNx nanoparticles.

    PubMed

    Veisz, Bernadett; Radnóczi, György

    2005-06-01

    Multiwall CNx nanotubes, nanoonions, and amorphous nanoballs were formed by carbon DC arc evaporation in a nitrogen atmosphere. The samples were investigated by conventional and high-resolution transmission electron microscopy. We propose a fragment-by-fragment growth mechanism for the formation of the nanoparticles. Accordingly, particles and aggregates of particles form in the vacuum ambient by the collisions between atomic species and small fragments. This growth model is supported by the discontinuous inner shells and disordered surface layers composed from graphene fragments. Image simulations confirm the detectability of dangling and back-folding surface layers in the experimental images. Further, the simulated images also confirm that the growth of nanoonions starts from a single fullerene-like seed. The amorphous nanoballs form when ordering of the building blocks during growth is hindered by the cross-linking nitrogen bonds. Copyright (c) 2005 Wiley-Liss, Inc.

  14. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.

    PubMed

    Arnould, C; Volcke, C; Lamarque, C; Thiry, P A; Delhalle, J; Mekhalif, Z

    2009-08-15

    Titanium and its alloys are widely used in surgical implants due to their appropriate properties like corrosion resistance, biocompatibility, and load bearing. Unfortunately when metals are used for orthopedic and dental implants there is the possibility of loosening over a long period of time. Surface modification is a good way to counter this problem. A thin tantalum oxide layer obtained by layer-by-layer (LBL) sol-gel deposition on top of a titanium surface is expected to improve biocorrosion resistance in the body fluid, biocompatibility, and radio-opacity. This elaboration step is followed by a modification of the tantalum oxide surface with an organodiphosphonic acid self-assembled monolayer, capable of chemically binding to the oxide surface, and also improving hydroxyapatite growth. The different steps of this proposed process are characterized by surfaces techniques like contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).

  15. Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance.

    PubMed

    Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári; Saki, Zahra; Larsson, Fredrik; Törndahl, Tobias; Johansson, Erik; Boschloo, Gerrit; Edoff, Marika

    2017-09-06

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH 2 ) 2 , CH 3 NH 3 )Pb(I,Br) 3 (FAPbI 3 :MAPbBr 3 ) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnO x . Exposing the samples to the heat, the vacuum, and even the counter reactant of H 2 O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C 2 H 5 ) 2 either by itself or in combination with H 2 O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI 2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH 3 ) 2 ) 4 does not seem to degrade the bulk of the perovskite film, and conformal SnO x films can successfully be grown on top of it using atomic layer deposition. Using this SnO x film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C 70 -butyric acid methyl ester. However, the devices with SnO x show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnO x films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnO x interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnO x growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  16. Effect of Group-III precursors on unintentional gallium incorporation during epitaxial growth of InAlN layers by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.; Ryou, Jae-Hyun

    2015-09-01

    Unintentional incorporation of gallium (Ga) in InAlN layers grown with different molar flow rates of Group-III precursors by metalorganic chemical vapor deposition has been experimentally investigated. The Ga mole fraction in the InAl(Ga)N layer was increased significantly with the trimethylindium (TMIn) flow rate, while the trimethylaluminum flow rate controls the Al mole fraction. The evaporation of metallic Ga from the liquid phase eutectic system between the pyrolized In from injected TMIn and pre-deposited metallic Ga was responsible for the Ga auto-incorporation into the InAl(Ga)N layer. The theoretical calculation on the equilibrium vapor pressure of liquid phase Ga and the effective partial pressure of Group-III precursors based on growth parameters used in this study confirms the influence of Group-III precursors on Ga auto-incorporation. More Ga atoms can be evaporated from the liquid phase Ga on the surrounding surfaces in the growth chamber and then significant Ga auto-incorporation can occur due to the high equilibrium vapor pressure of Ga comparable to effective partial pressure of input Group-III precursors during the growth of InAl(Ga)N layer.

  17. Measuring 3D Alloy Composition Profiles at Surfaces

    NASA Astrophysics Data System (ADS)

    Hannon, James

    2006-03-01

    A key challenge in thin-film growth is controlling structure and composition. Of particular importance is understanding how and why atomic-scale heterogeneity develops during growth. We have used low-energy electron microscopy (LEEM) to measure how the three-dimensional composition of an alloy film evolves with time at the nanometer length scale. By quantitatively analyzing the reflected electron intensity in LEEM, we determine the alloy composition and structure, layer by layer near a surface, with 9 nm lateral spatial resolution. As an example, we show that heterogeneity during the growth of Pd on Cu(001) arises naturally from a generic step-overgrowth mechanism that is likely to be relevant in many growth systems. This work was performed in collaboration with Jiebing Sun (UNH), Karsten Pohl (UNH), and Gary Kellogg (Sandia Labs).

  18. Preferential incorporation of substitutional nitrogen near the atomic step edges in diluted nitride alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornet, C.; Nguyen Thanh, T.; Almosni, S.

    We have investigated the influence of the surface roughness on nitrogen incorporation during the molecular beam epitaxy of diluted nitrides, independently of the other growth parameters. GaPN/GaP layers grown simultaneously on surfaces displaying different roughnesses reveal a large difference in nitrogen incorporation despite the same growth temperature and growth rate. The same difference is found on quasi-lattice-matched GaAsPN demonstrating that the phenomenon is not related to any strain-induced mechanisms. The tendency is clearly confirmed when varying the growth conditions. As a direct consequence, the incorporation of substitutional nitrogen near the atomic step edges is found to be 6.7 times moremore » probable than the in-plane nitrogen incorporation. The formation of N-N{sub i} clusters and their stability on the surface is discussed.« less

  19. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    PubMed

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  20. Graphene/MoS2 heterostructures as templates for growing two-dimensional metals: Predictions from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Šljivančanin, Željko; Belić, Milivoj

    2017-09-01

    Preparation of single-atom-thick layers of ordinary metals has been a challenging task since their closely packed atoms lack layered structure with highly anisotropic bonding. Using computational modeling based on density functional theory we showed that graphene/MoS2 heterostructures can be used as suitable templates to grow stable two-dimensional (2D) clusters, as well as extended monoatomic layers of metals with nonlayered structure in the bulk. Considering gold and lithium as two metals with markedly different properties, we found that Li intercalants strengthen coupling between graphene (G) and MoS2, mainly due to electrostatic attraction of 2D materials with positively charged Li atoms. However, intercalation with large Au atoms gives rise to a significant increase in the distance between G and MoS2 and thus, weakens their interaction. In addition to strong preference for 2D growth, we demonstrated that Au intercalants weakly interact with both G and MoS2, and hence G /MoS2 vertical heterostructures could be a promising framework to prepare gold 2D structures with electronic properties closely resembling those of the hypothetical free-standing hexagonal gold monolayer.

  1. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain

    DOE PAGES

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; ...

    2016-06-13

    Two-dimensional (2D) nanostructures emerge as one of leading topics in fundamental materials science and could enable next generation nanoelectronic devices. Beyond graphene and molybdenum disulphide, layered complex oxides are another large group of promising 2D candidates because of their strong interplay of intrinsic charge, spin, orbital and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials exhibiting new phenomena beyond their conventional form. Here we report the strain-driven self-assembly of Bismuth-based supercells (SC) with a 2D layered structure, and elucidate the fundamental growth mechanism with combined experimental tools and first-principles calculations.more » The study revealed that the new layered structures were formed by the strain-enabled self-assembled atomic layer stacking, i.e., alternative growth of Bi 2O 2 layer and [Fe 0.5Mn 0.5]O 6 layer. The strain-driven approach is further demonstrated in other SC candidate systems with promising room-temperature multiferroic properties. This well-integrated theoretical and experimental study inspired by the Materials Genome Initiatives opens up a new avenue in searching and designing novel 2D layered complex oxides with enormous promises.« less

  2. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    PubMed

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke

    2016-04-11

    The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of themore » (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.« less

  4. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.

    PubMed

    Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-04-28

    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.

  5. Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

    PubMed Central

    Yin, Feng; Koskinen, Pekka; Kulju, Sampo; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. elastic atomic manipulation, and reflects the ultrasoft properties of the surface under strain. The method may be generally applicable to other soft e.g. molecular or biomolecular systems. PMID:25651973

  6. Observation of defects evolution in electronic materials

    NASA Astrophysics Data System (ADS)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2 annealing, ion-implantation, and thermal oxidation. Advanced characterization techniques have been used to obtain information about strain, relaxation, layer thickness, elemental composition, defects, surface/interface morphology changes and so on. Based on the understanding of defects behavior during the strain relaxation after post thermal processes, a new manufacturing process to obtain highly-relaxed and thin Si1-xGex layers, which could be used as virtual substrates for strained-Si applications, was found.

  7. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is coated on U.S. currency. After deposition, the growth is carried out in a hot-filament chemical vapor deposition apparatus. A tungsten hot filament placed in the flow of H2 at a temperature greater than 1,600 C creates atomic hydrogen, which serves to reduce the Fe catalyst into a metallic state. The catalyst can now precipitate SWNTs in the presence of growth gases. The gases used for the experiments reported are C2H2, H2O, and H2, at rates of 2, 2, and 400 standard cubic centimeters per minute (sccm), respectively. In order to retain the flakes, a cage is constructed by spot welding stainless steel or copper mesh to form an enclosed area, in which the flakes are placed prior to growth. This allows growth gases and atomic hydrogen to reach the flakes, but does not allow the flakes, which rapidly nucleate SWNTs, to escape from the cage.

  8. Electrochemical Control of Copper Intercalation into Nanoscale Bi 2Se 3

    DOE PAGES

    Zhang, Jinsong; Sun, Jie; Li, Yanbin; ...

    2017-02-20

    Intercalation of exotic atoms or molecules into the layered materials remains an extensively investigated subject in current physics and chemistry. However, traditionally melt-growth and chemical interaction strategies are either limited by insufficiency of intercalant concentrations or destitute of accurate controllability. Here, we have developed a general electrochemical intercalation method to efficaciously regulate the concentration of zerovalent copper atoms into layered Bi 2Se 3, followed by comprehensive experimental characterization and analyses. Up to 57% copper atoms (Cu 6.7Bi 2Se 3) can be intercalated with no disruption to the host lattice. Meanwhile the unconventional resistance dip accompanied by a hysteresis loop belowmore » 40 K, as well as the emergence of new Raman peak in Cu xBi 2Se 3, is a distinct manifestation of the interplay between intercalated Cu atoms with Bi 2Se 3 host. Furthermore, our work demonstrates a new methodology to study fundamentally new and unexpected physical behaviors in intercalated metastable materials.« less

  9. Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal–Organic Framework via Atomic Layer Deposition

    DOE PAGES

    Peters, Aaron W.; Li, Zhanyong; Farha, Omar K.; ...

    2015-08-04

    Atomic layer deposition (ALD) has been employed as a new synthetic route to thin films of cobalt sulfide on silicon and fluorine-doped tin oxide platforms. The self-limiting nature of the stepwise synthesis is established through growth rate studies at different pulse times and temperatures. Additionally, characterization of the materials by X-ray diffraction and X-ray photoelectron spectroscopy indicates that the crystalline phase of these films has the composition Co 9S 8. The nodes of the metal–organic framework (MOF) NU-1000 were then selectively functionalized with cobalt sulfide via ALD in MOFs (AIM). Spectroscopic techniques confirm uniform deposition of cobalt sulfide throughout themore » crystallites, with no loss in crystallinity or porosity. The resulting material, CoS-AIM, is catalytically active for selective hydrogenation of m-nitrophenol to m-aminophenol, and outperforms the analogous oxide AIM material (CoO-AIM) as well as an amorphous CoS x reference material. Here, these results reveal AIM to be an effective method of incorporating high surface area and catalytically active cobalt sulfide in metal–organic frameworks.« less

  10. Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide

    DOE PAGES

    Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.; ...

    2017-04-05

    The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less

  11. Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.

    The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less

  12. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  13. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  14. Semiconductor-metal nanostructures: Scanning tunneling microscopy investigation of the fullerene-gold and manganese-germanium-silicon system

    NASA Astrophysics Data System (ADS)

    Liu, Hui

    Nanostructures, assembled from a layer or cluster of atoms with size of the order of nanometers, have attracted much attention for decades, because it has been widely recognized that the properties of nanoscale materials are remarkably different from those of materials of large scale. As one of the most powerful techniques, Scanning Tunneling Microscopy (STM) has become an indispensable technique for studies in nanotechnology. This dissertation is focused on the investigation of the C60-Au system, which is relevant in photovoltaic applications and organic electronic devices, and the Mn-Ge-Si system which is central to the development of advanced spintronics system. The first part of the dissertation focuses on the C60-Au system. Exploring how fullerene molecules interact physically and electronically with each other and with other elements is highly relevant to the advancement of fullerene-based nanotechnology applications. The initial growth stage of C 60 thin film on graphite substrate has been investigated by STM at room temperature. It is observed that the C60 layer grows in a quasi-layer-by-layer mode and forms round 1st layer islands on the graphite surface. The fractal-dendritic growth of the 2nd layer islands has been successfully described by a combination of Monte Carlo simulation and molecular dynamics simulations. As a next step towards the application of fullerenes in device structures, the growth mechanisms of Au clusters on fullerene layers and co-deposition of Au and C60 were explored. The most prominent features of the growth of Au on C60 are the preferential nucleation of Au clusters at the graphite-first fullerene layer islands edge and the co-deposition of C60 and Au on graphite leading to the formation of highly organized structures, in which Au clusters are embedded in a ring of fullerene molecules with a constant width of about 4 nm. The second part of this dissertation concentrates on the Mn-Ge-Si system, a semiconductor/metal system, which is a potential building-block structure for the development of complex spin-electronic devices. In recent years the study of thin film magnetic materials and the doping of semiconductors with magnetically active dopant atoms has received increased attention due their potential applications in magnetic memory devices and spintronics. In particular, the importance of Mn-Ge-Si system emerges since it combines a technically relevant semiconductor surface with a metallic element with a large magnetic moment. The goal in this part is the early growth stage of Mn on a Si (100) 2x1surface, the formation of Mn-nanostructure and the interaction between Mn and Ge on the Si surface. The position of Mn atoms with respect to Si surface has been determined by high resolution STM images. It is found that Mn adatoms form relatively short monoatomic wires, with a typical length of 5 to about 20 atoms, which are oriented perpendicular to the Si-dimer rows. And at the same time, the modification of Si surface around Mn wires was observed. The formation of Mn silicide after annealing the sample was also studied. The stability of Mn wires during the growth of a Ge overlayer was investigated by comparing several STM images, which were taken at different bias voltages. Because of the different local density of states, Mn and Ge may be partially distinguished in STM images. It is turned out that Mn wires preserve their structures after the deposition of a small amount of Ge on the sample. And the growth of Ge at the early stage on Si surface has not been significantly influenced by the presence of Mn adatoms. In summary, an investigation of two semiconductor-metal nanostructures by STM has been reported in this dissertation.

  15. Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures

    PubMed Central

    Astuti, Budi; Tanikawa, Masahiro; Rahman, Shaharin Fadzli Abd; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI) structure by utilizing polycrystalline single layer graphene (SLG) as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD) technique. Cubic SiC (3C-SiC) thin film in (111) domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities.

  16. Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaut, Annette S.; Wurstbauer, Ulrich; Wang, Sheng

    We demonstrate growth of single-layer graphene (SLG) on hexagonal boron nitride (h-BN) by molecular beam epitaxy (MBE), only limited in area by the finite size of the h-BN flakes. Using atomic force microscopy and micro-Raman spectroscopy, we show that for growth over a wide range of temperatures (500 °C – 1000 °C) the deposited carbon atoms spill off the edge of the h-BN flakes. We attribute this spillage to the very high mobility of the carbon atoms on the BN basal plane, consistent with van der Waals MBE. The h-BN flakes vary in size from 30 μm to 100 μm,more » thus demonstrating that the migration length of carbon atoms on h-BN is greater than 100 μm. When sufficient carbon is supplied to compensate for this loss, which is largely due to this fast migration of the carbon atoms to and off the edges of the h-BN flake, we find that the best growth temperature for MBE SLG on h-BN is ~950 °C. Self-limiting graphene growth appears to be facilitated by topographic h-BN surface features: We have thereby grown MBE self-limited SLG on an h-BN ridge. This opens up future avenues for precisely tailored fabrication of nano- and hetero-structures on pre-patterned h-BN surfaces for device applications.« less

  17. Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur

    2018-04-01

    A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.

  18. Atomic Scale Imaging of Nucleation and Growth Trajectories of an Interfacial Bismuth Nanodroplet.

    PubMed

    Li, Yingxuan; Bunes, Benjamin R; Zang, Ling; Zhao, Jie; Li, Yan; Zhu, Yunqing; Wang, Chuanyi

    2016-02-23

    Because of the lack of experimental evidence, much confusion still exists on the nucleation and growth dynamics of a nanostructure, particularly of metal. The situation is even worse for nanodroplets because it is more difficult to induce the formation of a nanodroplet while imaging the dynamic process with atomic resolution. Here, taking advantage of an electron beam to induce the growth of Bi nanodroplets on a SrBi2Ta2O9 platelet under a high resolution transmission electron microscope (HRTEM), we directly observed the detailed growth pathways of Bi nanodroplets from the earliest stage of nucleation that were previously inaccessible. Atomic scale imaging reveals that the dynamics of nucleation involves a much more complex trajectory than previously predicted based on classical nucleation theory (CNT). The monatomic Bi layer was first formed in the nucleation process, which induced the formation of the prenucleated clusters. Following that, critical nuclei for the nanodroplets formed both directly from the addition of atoms to the prenucleated clusters by the classical growth process and indirectly through transformation of an intermediate liquid film based on the Stranski-Krastanov growth mode, in which the liquid film was induced by the self-assembly of the prenucleated clusters. Finally, the growth of the Bi nanodroplets advanced through the classical pathway and sudden droplet coalescence. This study allows us to visualize the critical steps in the nucleation process of an interfacial nanodroplet, which suggests a revision of the perspective of CNT.

  19. Unusual stoichiometry control in the atomic layer deposition of manganese borate films from manganese bis(tris(pyrazolyl)borate) and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.

    The atomic layer deposition (ALD) of films with the approximate compositions Mn{sub 3}(BO{sub 3}){sub 2} and CoB{sub 2}O{sub 4} is described using MnTp{sub 2} or CoTp{sub 2} [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp{sub 2} and CoTp{sub 2} are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp{sub 2} and CoTp{sub 2} at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp{sub 2} or CoTp{sub 2} with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth ratemore » for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp{sub 2} and CoTp{sub 2} are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.« less

  20. An Atomic-Scale X-ray View of Functional Oxide Films

    NASA Astrophysics Data System (ADS)

    Tung, I.-Cheng

    Complex oxides are a class of materials that exhibit a wide variety of physical functionalities, such as ferroelectricity, colossal magnetoresistance, mulitferroicity and superconductivity, with outstanding potential for meeting many of our technological demands. The primary objective of this dissertation is to understand the structural and electronic behavior of complex oxide ultrathin films subjected to confinement, lattice misfit and broken symmetry at the interface. In complex oxide ultrathin films, heteroepitaxial synthesis has evolved into a reliable strategy to engineer orbital-lattice interactions in correlated materials and led to new and entirely unexpected phenomena at their interfaces. I experimentally demonstrated that the bulk crystal symmetry directs the atomic and orbital responses adopted by coherently strained ultrathin films of RNiO3 (R = La, Nd) with detailed X-ray scattering, polarization-dependent X-ray absorption spectroscopy (XAS) and supported by a mathematical point group symmetry analysis, found that strain-stabilized phases maintain a ``memory'' of their bulk state. This topic, however, touched only upon the properties of such films. A fundamental challenge in this research area occurs before this and centers around the understanding of how to create high-quality films with arbitrary configurations. A longstanding challenge in the oxide thin film community has been the growth of An+1BnO3 n+1 Ruddlesden-Popper (RP) compounds. To understand this problem, we have utilized a newly constructed oxide MBE with in situ synchrotron X-ray scattering capability to study the initial growth of such layered oxides and track the dynamic evolution. X-ray results are supported by theoretical calculations that demonstrated the layered oxide films dynamically rearrange during growth, leading to structures that are highly unexpected, and suggest a general approach that may be essential for the construction of metastable RP phases with performing the first atomically controlled synthesis of single-crystalline La3Ni2O7. By building upon this knowledge, I have completed the first to date study of in situ surface X-ray scattering during homoepitaxial MBE growth of SrTiO3, which demonstrates codeposition is consistent with a 2D island growth mode with SrTiO3 islands, but shuttered deposition proceeds by the growth of SrO islands which then restructure into atomically flat SrTiO3 layer during the deposition of the TiO2. From this point, we have conducted a detailed microscopic study of epitaxial LaNiO3 ultrathin films grown on SrTiO3 (001) by using reactive MBE with in situ surface X-ray diffraction and ex situ soft XAS to explore the influence of polar mismatch on the resulting structural and electronic properties. Overall, this thesis highlights the power of artificial confinement to harness control over competing phases in complex oxides with atomic-scale precision.

  1. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  2. Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakhaie, S.; Wofford, J. M.; Schumann, T.; Jahn, U.; Ramsteiner, M.; Hanke, M.; Lopes, J. M. J.; Riechert, H.

    2015-05-01

    Hexagonal boron nitride (h-BN) is a layered two-dimensional material with properties that make it promising as a dielectric in various applications. We report the growth of h-BN films on Ni foils from elemental B and N using molecular beam epitaxy. The presence of crystalline h-BN over the entire substrate is confirmed by Raman spectroscopy. Atomic force microscopy is used to examine the morphology and continuity of the synthesized films. A scanning electron microscopy study of films obtained using shorter depositions offers insight into the nucleation and growth behavior of h-BN on the Ni substrate. The morphology of h-BN was found to evolve from dendritic, star-shaped islands to larger, smooth triangular ones with increasing growth temperature.

  3. Formation routes and structural details of the CaF1 layer on Si(111) from high-resolution noncontact atomic force microscopy data

    NASA Astrophysics Data System (ADS)

    Rahe, Philipp; Smith, Emily F.; Wollschläger, Joachim; Moriarty, Philip J.

    2018-03-01

    We investigate the CaF1/Si (111 ) interface using a combination of high-resolution scanning tunneling and noncontact atomic force microscopy operated at cryogenic temperature as well as x-ray photoelectron spectroscopy. Submonolayer CaF1 films grown at substrate temperatures between 550 and 600 ∘C on Si (111 ) surfaces reveal the existence of two island types that are distinguished by their edge topology, nucleation position, measured height, and inner defect structure. Our data suggest a growth model where the two island types are the result of two reaction pathways during CaF1 interface formation. A key difference between these two pathways is identified to arise from the excess species during the growth process, which can be either fluorine or silicon. Structural details as a result of this difference are identified by means of high-resolution noncontact atomic force microscopy and add insights into the growth mode of this heteroepitaxial insulator-on-semiconductor system.

  4. Wetting in a phase separating polymer blend film: quench depth dependence

    PubMed

    Geoghegan; Ermer; Jungst; Krausch; Brenn

    2000-07-01

    We have used 3He nuclear reaction analysis to measure the growth of the wetting layer as a function of immiscibility (quench depth) in blends of deuterated polystyrene and poly(alpha-methylstyrene) undergoing surface-directed spinodal decomposition. We are able to identify three different laws for the surface layer growth with time t. For the deepest quenches, the forces driving phase separation dominate (high thermal noise) and the surface layer grows with a t(1/3) coarsening behavior. For shallower quenches, a logarithmic behavior is observed, indicative of a low noise system. The crossover from logarithmic growth to t(1/3) behavior is close to where a wetting transition should occur. We also discuss the possibility of a "plating transition" extending complete wetting to deeper quenches by comparing the surface field with thermal noise. For the shallowest quench, a critical blend exhibits a t(1/2) behavior. We believe this surface layer growth is driven by the curvature of domains at the surface and shows how the wetting layer forms in the absence of thermal noise. This suggestion is reinforced by a slower growth at later times, indicating that the surface domains have coalesced. Atomic force microscopy measurements in each of the different regimes further support the above. The surface in the region of t(1/3) growth is initially somewhat rougher than that in the regime of logarithmic growth, indicating the existence of droplets at the surface.

  5. Overlayer growth and electronic properties of the Bi/GaSb(110) interface

    NASA Astrophysics Data System (ADS)

    Gavioli, Luca; Betti, Maria Grazia; Casarini, Paolo; Mariani, Carlo

    1995-06-01

    The overlayer growth and electronic properties of the Bi/GaSb(110) interface and of the two-dimensional ordered (1×1)- and (1×2)-Bi layers have been investigated by complementary spectroscopic techniques (high-resolution electron-energy-loss, photoemission, and Auger spectroscopy). Bismuth forms an epitaxial monolayer, followed by island formation (Stranski-Krastanov growth mode) covering an average surface area of 40% at a nominal coverage of 4 ML. The (1×2)-symmetry stable structural phase, obtained after annealing at ~220 °C, corresponds to an average nominal Bi coverage of about 0.7 ML, suggesting an atomic geometry different from the epitaxial-continued layer structure. The disposal of Bi atoms in the (1×2) structure should build up an ``open'' layer, as the Ga-related surface exciton quenched in the (1×1) epitaxial monolayer is present in the (1×2) stable phase. The two symmetry phases are characterized by strong absorption features at 1 eV [(1×1)-Bi] and 0.54 eV [(1×2)-Bi], related to interband electronic transitions between Bi-induced electronic states. The major Bi-related occupied electronic levels, present in the valence band of the (1×1)- and (1×2)-Bi layer, have been detected by angle-integrated ultraviolet photoemission spectroscopy. Both the (1×1) and (1×2) phases show a metallic nature, with a low density of electronic states at the Fermi level. Schottky barrier heights of 0.20 and 0.14 eV are estimated for the epitaxial (1×1)- and (1×2)-symmetry stage, respectively, by analyzing the space-charge layer conditions through the study of the dopant-induced free-carrier plasmon in the GaSb substrate.

  6. Understanding the mechanisms of interfacial reactions during TiO{sub 2} layer growth on RuO{sub 2} by atomic layer deposition with O{sub 2} plasma or H{sub 2}O as oxygen source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaker, A.; Szkutnik, P. D.; Pointet, J.

    2016-08-28

    In this paper, TiO{sub 2} layers grown on RuO{sub 2} by atomic layer deposition (ALD) using tetrakis (dimethyla-mino) titanium (TDMAT) and either oxygen plasma or H{sub 2}O as oxygen source were analyzed using X-ray diffraction (XRD), Raman spectroscopy, and depth-resolved X-ray Photoelectron spectroscopy (XPS). The main objective is to investigate the surface chemical reactions mechanisms and their influence on the TiO{sub 2} film properties. The experimental results using XRD show that ALD deposition using H{sub 2}O leads to anatase TiO{sub 2} whereas a rutile TiO{sub 2} is obtained when oxygen-plasma is used as oxygen source. Depth-resolved XPS analysis allows tomore » determine the reaction mechanisms at the RuO{sub 2} substrate surface after growth of thin TiO{sub 2} layers. Indeed, the XPS analysis shows that when H{sub 2}O assisted ALD process is used, intermediate Ti{sub 2}O{sub 3} layer is obtained and RuO{sub 2} is reduced into Ru as evidenced by high resolution transmission electron microscopy. In this case, there is no possibility to re-oxidize the Ru surface into RuO{sub 2} due to the weak oxidation character of H{sub 2}O and an anatase TiO{sub 2} layer is therefore grown on Ti{sub 2}O{sub 3}. In contrast, when oxygen plasma is used in the ALD process, its strong oxidation character leads to the re-oxidation of the partially reduced RuO{sub 2} following the first Ti deposition step. Consequently, the RuO{sub 2} surface is regenerated, allowing the growth of rutile TiO{sub 2}. A surface chemical reaction scheme is proposed that well accounts for the observed experimental results.« less

  7. Atomic configurations in AP-MOVPE grown lattice-mismatched InGaAsN films unravelled by X-ray photoelectron spectroscopy combined with bulk and surface characterization techniques

    NASA Astrophysics Data System (ADS)

    López-Escalante, M. C.; Ściana, B.; Dawidowski, W.; Bielak, K.; Gabás, M.

    2018-03-01

    This work presents the results of X-ray photoelectron spectroscopy studies on the bonding N configuration in InGaAsN epilayers grown by atmospheric pressure metal organic vapour phase epitaxy. Growth temperature has been tuned in order to obtain both, relaxed and strained layers. The studies were concentrated on analysing the influence of the growth temperature, post growth thermal annealing process and surface quality on the formation of Ga-N and In-N bonds as well as N-related defects. The contamination of InGaAsN films by growth precursor residues and oxides has also been addressed. The growth temperature stands out as a decisive factor boosting In-N bonds formation, while the thermal annealing seems to affect the N-related defects density in the layers.

  8. Influence of Substrate Bonding and Surface Morphology on Dynamic Organic Layer Growth: Perylenetetracarboxylic Dianhydride on Au(111).

    PubMed

    Schmidt, Thomas; Marchetto, Helder; Groh, Ullrich; Fink, Rainer H; Freund, Hans-Joachim; Umbach, Eberhard

    2018-05-15

    We investigated the dynamics of the initial growth of the first epitaxial layers of perylenetetracarboxylic dianhydride (PTCDA) on the Au(111) surface with high lateral resolution using the aberration-corrected spectro-microscope SMART. With this instrument, we could simultaneously study the different adsorption behaviors and layer growth on various surface areas consisting of either a distribution of flat (111) terraces, separated by single atomic steps ("ideal surface"), or on areas with a high density of step bunches and defects ("realistic surface"). The combined use of photoemission electron microscopy, low-energy electron microscopy, and μ-spot X-ray absorption provided a wealth of new information, showing that the growth of the archetype molecule PTCDA not only has similarities but also has significant differences when comparing Au(111) and Ag(111) substrate surfaces. For instance, under otherwise identical preparation conditions, we observed different growth mechanisms on different surface regions, depending on the density of step bunches. In addition, we studied the spatially resolved desorption behavior which also depends on the substrate morphology.

  9. Two-dimensional antimonene single crystals grown by van der Waals epitaxy.

    PubMed

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-11-15

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 10 4  S m -1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.

  10. Two-dimensional antimonene single crystals grown by van der Waals epitaxy

    PubMed Central

    Ji, Jianping; Song, Xiufeng; Liu, Jizi; Yan, Zhong; Huo, Chengxue; Zhang, Shengli; Su, Meng; Liao, Lei; Wang, Wenhui; Ni, Zhenhua; Hao, Yufeng; Zeng, Haibo

    2016-01-01

    Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications. PMID:27845327

  11. Interface structure in nanoscale multilayers near continuous-to-discontinuous regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in

    2016-07-28

    Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less

  12. Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD

    NASA Astrophysics Data System (ADS)

    Särkijärvi, Suvi; Sintonen, Sakari; Tuomisto, Filip; Bosund, Markus; Suihkonen, Sami; Lipsanen, Harri

    2014-07-01

    We report on the epitaxial growth of ZnO on GaN template by atomic layer deposition (ALD). Diethylzinc (DEZn) and water vapour (H2O) were used as precursors. The structure and the quality of the grown ZnO layers were studied with scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL) measurements and positron annihilation spectroscopy. The ZnO films were confirmed epitaxial, and the film quality was found to improve with increasing deposition temperature in the vicinity of the threshold temperature of two dimensional growth. We conclude that high quality ZnO thin films can be grown by ALD. Interestingly only separate Zn-vacancies were observed in the films, although ZnO thin films typically contain fairly high density of surface pits and vacancy clusters.

  13. Nanoscale investigation of platinum nanoparticles on strontium titanium oxide grown via physical vapor deposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Christensen, Steven Thomas

    This dissertation examines growth of platinum nanoparticles from vapor deposition on SrTiO3 using a characterization approach that combines imaging techniques and X-ray methods. The primary suite of characterization probes includes atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and X-ray absorption spectroscopy (XAS). The vapor deposition techniques include physical vapor deposition (PVD) by evaporation and atomic layer deposition (ALD). For the PVD platinum study, AFM/XRF showed ˜10 nm nanoparticles separated by an average of 100 nm. The combination of AFM, GISAXS, and XRF indicated that the nanoparticles observed with AFM were actually comprised of closely spaced, smaller nanoparticles. These conclusions were supported by high-resolution SEM. The unusual behavior of platinum nanoparticles to aggregate without coalescence or sintering was observed previously by other researchers using transmissision electron microscopy (TEM). Platinum nanoparticle growth was also investigated on SrTiO3 (001) single crystals using ALD to nucleate nanoparticles that subsequently grew and coalesced into granular films as the ALD progresses. The expected growth rate for the early stages of ALD showed a two-fold increase which was attributed to the platinum deposition occurring faster on the bare substrate. Once the nanoparticles had coalesced into a film, steady state ALD growth proceeded. The formation of nanoparticles was attributed to the atomic diffusion of platinum atoms on the surface in addition to direct growth from the ALD precursor gases. The platinum ALD nanoparticles were also studied on SrTiO3 nanocube powders. The SrTiO3 nanocubes average 60 nm on a side and the cube faces have a {001} orientation. The ALD proceeded in a similar fashion as on the single crystal substrates where the deposition rate was twice as fast as the steady state growth rate. The Pt nanoparticle size increased linearly starting at ˜0.7 nm for 1 ALD cycle to ˜3 nm for 5 ALD cycles. The platinum chemical state was also investigated using X-ray absorption spectroscopy. Platinum nanoparticles ˜1 nm or smaller tended to be oxidized. For larger nanoparticles, the platinum state systematically approached that of bulk platinum metal as the size (number of ALD cycles) increased. The platinum loading was exceptionally low, ˜10 -3 mg cm-2.

  14. Titanium dioxide thin films by atomic layer deposition: a review

    NASA Astrophysics Data System (ADS)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  15. Miscut dependent surface evolution in the process of N-polar GaN(000 1 bar) growth under N-rich condition

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.; Turski, Henryk; Sawicka, Marta; Skierbiszewski, Czesław

    2017-01-01

    The evolution of surface morphology during the growth of N-polar (000 1 bar) GaN under N-rich conditions is studied by kinetic Monte Carlo (kMC) simulations for two substrates miscuts 2° and 4°. The results are compared with experimentally observed surface morphologies of (000 1 bar) GaN layers grown by plasma-assisted molecular beam epitaxy. The proposed kMC two-component model of GaN(000 1 bar) surface where both types of atoms, nitrogen and gallium, attach to the surface and diffuse independently shows that at relatively high rates of the step flow (miscut angle < 2 °) the low mobility of gallium adatoms causes surface instabilities and leads to experimentally observed roughening while for low rates of the step flow (miscut 4°), smooth surface can be obtained. In the presence of almost immobile nitrogen atoms under N-rich conditions crystal growth is realized by the process of two-dimensional island nucleation and coalescence. Larger crystal miscut, lower growth rate or higher temperature results in similar effect of the surface smoothening. We show that the surface also smoothens for the growth conditions with very high N-excess. In the presence of large number of nitrogen atoms the mobility of gallium atoms changes locally thus providing easier coalescence of separated island.

  16. Interfaces in Si/Ge atomic layer superlattices on (001)Si: Effect of growth temperature and wafer misorientation

    NASA Astrophysics Data System (ADS)

    Baribeau, J.-M.; Lockwood, D. J.; Syme, R. W. G.

    1996-08-01

    We have used x-ray diffraction, specular reflectivity, and diffuse scattering, complemented by Raman spectroscopy, to study the interfaces in a series of (0.5 nm Ge/2 nm Si)50 atomic layer superlattices on (001)Si grown by molecular beam epitaxy in the temperature range 150-650 °C. X-ray specular reflectivity revealed that the structures have a well-defined periodicity with interface widths of about 0.2-0.3 nm in the 300-590 °C temperature range. Offset reflectivity scans showed that the diffuse scattering peaks at values of perpendicular wave vector transfer corresponding to the superlattice satellite peaks, indicating that the interfaces are vertically correlated. Transverse rocking scans of satellite peaks showed a diffuse component corresponding to an interface corrugation of typical length scale of ˜0.5 μm. The wavelength of the undulations is a minimum along the miscut direction and is typically 30-40 times larger than the surface average terrace width assuming monolayer steps, independently of the magnitude of the wafer misorientation. The amplitude of the undulation evolves with growth temperature and is minimum for growth at ˜460 °C and peaks at ˜520 °C. Raman scattering showed the chemical abruptness of the interfaces at low growth temperatures and indicated a change in the growth mode near 450 °C.

  17. InGaN/GaN blue light emitting diodes using Al-doped ZnO grown by atomic layer deposition as a current spreading layer

    NASA Astrophysics Data System (ADS)

    Kong, Bo Hyun; Cho, Hyung Koun; Kim, Mi Yang; Choi, Rak Jun; Kim, Bae Kyun

    2011-07-01

    For the fabrication of InGaN/GaN multiple quantum well-based blue light emitting diodes (LEDs) showing large area emission, transparent Al-doped ZnO (AZO) films grown by atomic layer deposition at relatively low temperatures were introduced as current spreading layers. These AZO films with an Al content of 3 at% showed a low electrical resistivity of <10 -3-10 -4 Ω cm, a high carrier concentration of >10 20 cm -3, and an excellent optical transmittance of ˜85%, in spite of the low growth temperature. The deposition of the AZO film induced an intense blue emission from the whole surface of the p-GaN and weak ultraviolet emission from the n-AZO and p-GaN junction. At an injection current of 50 mA, the output powers of the blue LEDs were 1760 and 1440 mcd for the samples with AZO thicknesses of 100 and 300 nm, respectively.

  18. Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yimin; Kou, Huanhuan; Li, Jiajia

    2012-10-15

    We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct bandmore » gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.« less

  19. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    PubMed

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

  20. Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, Anil U.; Allen, Amy J.; Kanjolia, Ravindra K.

    We investigated the atomic layer deposition (ALD) of indium oxide (In2O3) thin films using alternating exposures of trimethylindium (TMIn) and a variety of oxygen sources: ozone (O-3), O-2, deionized H2O, and hydrogen peroxide (H2O2). We used in situ quartz crystal microbalance measurements to evaluate the effectiveness of the different oxygen sources and found that only O-3 yielded viable and sustained 111203 growth with TMIn. These measurements also provided details about the In2O3 growth mechanism and enabled us to verify that both the TMIn and O-3 surface reactions were self-limiting. In2O3 thin films were prepared and characterized using X-ray diffraction, ultravioletmore » visible spectrophotometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrical transport properties of these layers were studied by Hall probe measurements. We found that, at deposition temperatures within the range of 100-200 degrees C, the In2O3 growth per cycle was nearly constant at 0.46 angstrom/cycle and the films were dense and pure. The film thickness was highly uniform (<0.3% variation) along the 45 cm length of our tubular ALD reactor. At higher growth temperatures the In2O3 growth per cycle increased due to thermal decomposition of the TMIn. The ALD In2O3 films showed resistivities as low as 3.2 x 10(-3) Omega cm, and carrier concentrations as large as 7.0 x 10(19) cm(-3). This TMIn/O-3 process for In2O3 ALD should be suitable for eventual scale-up in photovoltaics.« less

  1. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces

    DOE PAGES

    Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian; ...

    2017-04-12

    The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less

  2. Kinetic Monte Carlo simulations of GaN homoepitaxy on c- and m-plane surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongwei; Zapol, Peter; Stephenson, G. Brian

    The surface orientation can have profound effects on the atomic-scale processes of crystal growth and is essential to such technologies as GaN-based light-emitting diodes and high-power electronics. We investigate the dependence of homoepitaxial growth mechanisms on the surface orientation of a hexagonal crystal using kinetic Monte Carlo simulations. To model GaN metal-organic vapor phase epitaxy, in which N species are supplied in excess, only Ga atoms on a hexagonal close-packed (HCP) lattice are considered. The results are thus potentially applicable to any HCP material. Growth behaviors on c-plane (0001) and m-plane (011¯0) surfaces are compared. We present a reciprocal spacemore » analysis of the surface morphology, which allows extraction of growth mode boundaries and direct comparison with surface X-ray diffraction experiments. For each orientation, we map the boundaries between 3-dimensional, layer-by-layer, and step flow growth modes as a function of temperature and growth rate. Two models for surface diffusion are used, which produce different effective Ehrlich-Schwoebel step-edge barriers and different adatom diffusion anisotropies on m-plane surfaces. Simulation results in agreement with observed GaN island morphologies and growth mode boundaries are obtained. These indicate that anisotropy of step edge energy, rather than adatom diffusion, is responsible for the elongated islands observed on m-plane surfaces. As a result, island nucleation spacing obeys a power-law dependence on growth rate, with exponents of –0.24 and –0.29 for the m- and c-plane, respectively.« less

  3. Effect of Group-III precursors on unintentional gallium incorporation during epitaxial growth of InAlN layers by metalorganic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeomoh, E-mail: jkim610@gatech.edu; Ji, Mi-Hee; Detchprohm, Theeradetch

    2015-09-28

    Unintentional incorporation of gallium (Ga) in InAlN layers grown with different molar flow rates of Group-III precursors by metalorganic chemical vapor deposition has been experimentally investigated. The Ga mole fraction in the InAl(Ga)N layer was increased significantly with the trimethylindium (TMIn) flow rate, while the trimethylaluminum flow rate controls the Al mole fraction. The evaporation of metallic Ga from the liquid phase eutectic system between the pyrolized In from injected TMIn and pre-deposited metallic Ga was responsible for the Ga auto-incorporation into the InAl(Ga)N layer. The theoretical calculation on the equilibrium vapor pressure of liquid phase Ga and the effectivemore » partial pressure of Group-III precursors based on growth parameters used in this study confirms the influence of Group-III precursors on Ga auto-incorporation. More Ga atoms can be evaporated from the liquid phase Ga on the surrounding surfaces in the growth chamber and then significant Ga auto-incorporation can occur due to the high equilibrium vapor pressure of Ga comparable to effective partial pressure of input Group-III precursors during the growth of InAl(Ga)N layer.« less

  4. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  5. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  6. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nepal, Neeraj; Anderson, Virginia R.; Johnson, Scooter D.

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities duemore » to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to understand nucleation and growth mechanisms of ALEp to enable improvement in material quality and broaden its application.« less

  7. Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1

    2013-09-21

    The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSbmore » islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.« less

  8. Spray pyrolysis of ZnO-TFTs utilizing a perfume atomizer

    NASA Astrophysics Data System (ADS)

    Ortel, Marlis; Trostyanskaya, Yulia Sergeeva; Wagner, Veit

    2013-08-01

    Successful deposition of ZnO layers from non-toxic solvent by utilizing a perfume atomizer is demonstrated. The adsorption edge of the zinc oxide films was found to be 3.22 eV which is in good agreement with literature. In addition it is found that the homogeneity of the films increases in side geometry with increasing distance to the perfume atomizer due to the droplet size distribution along the x-axis of the aerosol. The films were used to fabricate ZnO-TFTs. A dominating influence of the grain sizes can be excluded by correlating atomic force microscopy (AFM) images to the electrical properties of the transistors deposited in different geometries but a strong influence of the transistor performance on the growth rate was found. The increase in performance with decreasing growth rate was attributed to a longer reaction time decreasing the impurity level in the films. The linear mobility, the on-set voltage and the on-off current ratio are found to be 5 cm2 V-1 s-1, 0 V and 106 for small growth rates, respectively. Hence the transistors show high mobility and an excellent switching behavior.

  9. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    NASA Astrophysics Data System (ADS)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.

  10. pn-Heterojunction effects of perylene tetracarboxylic diimide derivatives on pentacene field-effect transistor.

    PubMed

    Yu, Seong Hun; Kang, Boseok; An, Gukil; Kim, BongSoo; Lee, Moo Hyung; Kang, Moon Sung; Kim, Hyunjung; Lee, Jung Heon; Lee, Shichoon; Cho, Kilwon; Lee, Jun Young; Cho, Jeong Ho

    2015-01-28

    We investigated the heterojunction effects of perylene tetracarboxylic diimide (PTCDI) derivatives on the pentacene-based field-effect transistors (FETs). Three PTCDI derivatives with different substituents were deposited onto pentacene layers and served as charge transfer dopants. The deposited PTCDI layer, which had a nominal thickness of a few layers, formed discontinuous patches on the pentacene layers and dramatically enhanced the hole mobility in the pentacene FET. Among the three PTCDI molecules tested, the octyl-substituted PTCDI, PTCDI-C8, provided the most efficient hole-doping characteristics (p-type) relative to the fluorophenyl-substituted PTCDIs, 4-FPEPTC and 2,4-FPEPTC. The organic heterojunction and doping characteristics were systematically investigated using atomic force microscopy, 2D grazing incidence X-ray diffraction studies, and ultraviolet photoelectron spectroscopy. PTCDI-C8, bearing octyl substituents, grew laterally on the pentacene layer (2D growth), whereas 2,4-FPEPTC, with fluorophenyl substituents, underwent 3D growth. The different growth modes resulted in different contact areas and relative orientations between the pentacene and PTCDI molecules, which significantly affected the doping efficiency of the deposited adlayer. The differences between the growth modes and the thin-film microstructures in the different PTCDI patches were attributed to a mismatch between the surface energies of the patches and the underlying pentacene layer. The film-morphology-dependent doping effects observed here offer practical guidelines for achieving more effective charge transfer doping in thin-film transistors.

  11. Confining the nucleation and overgrowth of Rh to the {111} facets of Pd nanocrystal seeds: the roles of capping agent and surface diffusion.

    PubMed

    Xie, Shuifen; Peng, Hsin-Chieh; Lu, Ning; Wang, Jinguo; Kim, Moon J; Xie, Zhaoxiong; Xia, Younan

    2013-11-06

    This article describes a systematic study of the spatially confined growth of Rh atoms on Pd nanocrystal seeds, with a focus on the blocking effect of a surface capping agent and the surface diffusion of adatoms. We initially used Pd cuboctahedrons as the seeds to illustrate the concept and to demonstrate the capabilities of our approach. Because the Pd{100} facets were selectively capped by a layer of chemisorbed Br(–) or I(–) ions, we were able to confine the nucleation and deposition of Rh atoms solely on the {111} facets of a Pd seed. When the synthesis was conducted at a relatively low temperature, the deposition of Rh atoms followed an island growth mode because of the high Rh–Rh interatomic binding energy. We also facilitated the surface diffusion of deposited Rh atoms by increasing the reaction temperature and decreasing the injection rate for the Rh precursor. Under these conditions, the deposition of Rh on the Pd{111} facets was switched to a layered growth mode. We further successfully extended this approach to a variety of other types of Pd polyhedral seeds that contained Pd{111} and Pd{100} facets in different proportions on the surface. As expected, a series of Pd–Rh bimetallic nanocrystals with distinctive elemental distributions were obtained. We could remove the Pd cores through selective chemical etching to generate Rh hollow nanoframes with different types and degrees of porosity. This study clearly demonstrates the importance of facet capping, surface diffusion, and reaction kinetics in controlling the morphologies of bimetallic nanocrystals during a seed-mediated process. It also provides a new direction for the rational design and synthesis of nanocrystals with spatially controlled distributions of elements for a variety of applications.

  12. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    PubMed

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  13. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  14. Spore coat architecture of Clostridium novyi NT spores.

    PubMed

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  15. Diffusion and interface evolution during the atomic layer deposition of TiO{sub 2} on GaAs(100) and InAs(100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Liwang; Gougousi, Theodosia, E-mail: gougousi@umbc.edu

    2016-01-15

    Atomic layer deposition is used to form TiO{sub 2} films from tetrakis dimethyl amino titanium and H{sub 2}O on native oxide GaAs(100) and InAs(100) surfaces. The evolution of the film/substrate interface is examined as a function of the deposition temperature (100–325 °C) using ex situ x-ray photoelectron spectroscopy. An increase in the deposition temperature up to 250 °C leads to enhancement of the native oxide removal. For depositions at 300 °C and above, interface reoxidation is observed during the initial deposition cycles but when the films are thicker than 3 nm, the surface oxides are removed steadily. Based on these observations, two distinct filmmore » growth regimes are identified; up to 250 °C, layer-by-layer dominates while at higher temperatures island growth takes over. Angle resolved x-ray photoelectron spectroscopy measurements performed on 3 nm TiO{sub 2} film deposited at 325 °C on both surfaces demonstrates a very important difference between the two substrates: for GaAs the native oxides remaining in the stack are localized at the interface, while for InAs(100), the indium oxides are mixed in the TiO{sub 2} film.« less

  16. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    NASA Astrophysics Data System (ADS)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  17. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    PubMed Central

    Ladnorg, Tatjana; Welle, Alexander; Heißler, Stefan; Wöll, Christof

    2013-01-01

    Summary Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. PMID:24205458

  18. Investigating the Catalytic Growth of Carbon Nanotubes with In Situ Raman Monitoring

    DTIC Science & Technology

    2015-06-01

    single-walled carbon nanotube growth using cobalt deposited on Si/SiO2 as a model system. In situ Raman studies revealed that thin catalyst layers... cobalt thickness were studied. Surface analyses showed that during the catalyst preparation, catalyst atoms at the interface with silica form small...nanostructures. However, highly-reducing conditions are required to reduce the small silicate domains into small cobalt particles able to grow single-walled

  19. MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality

    NASA Astrophysics Data System (ADS)

    Lemettinen, J.; Okumura, H.; Kim, I.; Kauppinen, C.; Palacios, T.; Suihkonen, S.

    2018-04-01

    We present the effect of miscut angle of SiC substrates on N-polar AlN growth. The N-polar AlN layers were grown on C-face 4H-SiC substrates with a miscut towards 〈 1 bar 1 0 0 〉 by metal-organic vapor phase epitaxy (MOVPE). The optimal V/III ratios for high-quality AlN growth on 1 ° and 4 ° miscut substrates were found to be 20,000 and 1000, respectively. MOVPE grown N-polar AlN layer without hexagonal hillocks or step bunching was achieved using a 4H-SiC substrate with an intentional miscut of 1 ° towards 〈 1 bar 1 0 0 〉 . The 200-nm-thick AlN layer exhibited X-ray rocking curve full width half maximums of 203 arcsec and 389 arcsec for (0 0 2) and (1 0 2) reflections, respectively. The root mean square roughness was 0.4 nm for a 2 μm × 2 μm atomic force microscope scan.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, A. B. F.; DeVries, M. J.; Libera, J. A.

    Growing interest in Fe{sub 2}O{sub 3} as a light harvesting layer in solar energy conversion devices stems from its unique combination of stability, nontoxicity, and exceptionally low material cost. Unfortunately, the known methods for conformally coating high aspect ratio structures with Fe{sub 2}O{sub 3} leave a glaring gap in the technologically relevant temperature range of 170-350 C. Here, we elucidate a self-limiting atomic layer deposition (ALD) process for the growth of hematite, {alpha}-Fe{sub 2}O{sub 3}, over a moderate temperature window using ferrocene and ozone. At 200 C, the self-limiting growth of Fe{sub 2}O{sub 3} is observed at rates up tomore » 1.4 {angstrom}/cycle. Dense and robust thin films grown on both fused quartz and silicon exhibit the expected optical bandgap (2.1 eV). In situ mass spectrometric analysis reveals the evolution of two distinct cyclic reaction products during the layer-by-layer growth. The readily available and relatively high vapor pressure iron precursor is utilized to uniformly coat a high surface area template with aspect ratio 150.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, Alex B.F.; DeVries, Michael J.; Libera, J. A.

    Growing interest in Fe 2O 3 as a light harvesting layer in solar energy conversion devices stems from its unique combination of stability, nontoxicity, and exceptionally low material cost. Unfortunately, the known methods for conformally coating high aspect ratio structures with Fe 2O 3 leave a glaring gap in the technologically relevant temperature range of 170-350 °C. Here, we elucidate a self-limiting atomic layer deposition (ALD) process for the growth of hematite, α-Fe 2O 3, over a moderate temperature window using ferrocene and ozone. At 200 °C, the self-limiting growth of Fe 2O 3 is observed at rates up tomore » 1.4 Å/cycle. Dense and robust thin films grown on both fused quartz and silicon exhibit the expected optical bandgap (2.1 eV). In situ mass spectrometric analysis reveals the evolution of two distinct cyclic reaction products during the layer-by-layer growth. The readily available and relatively high vapor pressure iron precursor is utilized to uniformly coat a high surface area template with aspect ratio ~150.« less

  2. Ion-induced crystal damage during plasma-assisted MBE growth of GaN layers

    NASA Astrophysics Data System (ADS)

    Kirchner, V.; Heinke, H.; Birkle, U.; Einfeldt, S.; Hommel, D.; Selke, H.; Ryder, P. L.

    1998-12-01

    Gallium nitride layers were grown by plasma-assisted molecular-beam epitaxy on (0001)-oriented sapphire substrates using an electron cyclotron resonance (ECR) and a radio frequency (rf) plasma source. An applied substrate bias was varied from -200 to +250 V, resulting in a change of the density and energy of nitrogen ions impinging the growth surface. The layers were investigated by high-resolution x-ray diffractometry and high-resolution transmission electron microscopy (HRTEM). Applying a negative bias during growth has a marked detrimental effect on the crystal perfection of the layers grown with an ECR plasma source. This is indicated by a change in shape and width of (0002) and (202¯5) reciprocal lattice points as monitored by triple axis x-ray measurements. In HRTEM images, isolated basal plane stacking faults were found, which probably result from precipitation of interstitial atoms. The crystal damage in layers grown with a highly negative substrate bias is comparable to that observed for ion implantation processes at orders of magnitude larger ion energies. This is attributed to the impact of ions on the growing surface. None of the described phenomena was observed for the samples grown with the rf plasma source.

  3. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.

    PubMed

    Nolan, Michael; Tofail, Syed A M

    2010-05-01

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; ...

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe 2O 3 and superparamagnetic Fe 2O 3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe 2O 3 in a reducing atmosphere leads to the formation of the spinel Fe 3O 4 phase which displaysmore » a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  5. Atomic layer epitaxy of Ruddlesden-Popper SrO(SrTiO{sub 3}){sub n} films by means of metalorganic aerosol deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jungbauer, M.; Hühn, S.; Moshnyaga, V.

    2014-12-22

    We report an atomic layer epitaxial growth of Ruddlesden-Popper (RP) thin films of SrO(SrTiO{sub 3}){sub n} (n = ∞, 2, 3, 4) by means of metalorganic aerosol deposition (MAD). The films are grown on SrTiO{sub 3}(001) substrates by means of a sequential deposition of Sr-O/Ti-O{sub 2} atomic monolayers, monitored in-situ by optical ellipsometry. X-ray diffraction and transmission electron microscopy (TEM) reveal the RP structure with n = 2–4 in accordance with the growth recipe. RP defects, observed by TEM in a good correlation with the in-situ ellipsometry, mainly result from the excess of SrO. Being maximal at the film/substrate interface, the SrO excess rapidlymore » decreases and saturates after 5–6 repetitions of the SrO(SrTiO{sub 3}){sub 4} block at the level of 2.4%. This identifies the SrTiO{sub 3} substrate surface as a source of RP defects under oxidizing conditions within MAD. Advantages and limitations of MAD as a solution-based and vacuum-free chemical deposition route were discussed in comparison with molecular beam epitaxy.« less

  6. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    NASA Astrophysics Data System (ADS)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  7. Growth of strontium ruthenate films by hybrid molecular beam epitaxy

    DOE PAGES

    Marshall, Patrick B.; Kim, Honggyu; Ahadi, Kaveh; ...

    2017-09-01

    We report on the growth of epitaxial Sr 2RuO 4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO 4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr 2RuO 4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electronmore » microscopy. In conclusion, the method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.« less

  8. The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.

    2015-09-01

    We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.

  9. Effect of water layer at the SiO2/graphene interface on pentacene morphology.

    PubMed

    Chhikara, Manisha; Pavlica, Egon; Matković, Aleksandar; Gajić, Radoš; Bratina, Gvido

    2014-10-07

    Atomic force microscopy has been used to examine early stages of pentacene growth on exfoliated single-layer graphene transferred to SiO2 substrates. We have observed 2D growth with mean height of 1.5 ± 0.2 nm on as-transferred graphene. Three-dimensional islands of pentacene with an average height of 11 ± 2 nm were observed on graphene that was annealed at 350 °C prior to pentacene growth. Compellingly similar 3D morphology has been observed on graphene transferred onto SiO2 that was treated with hexamethyldisilazane prior to the transfer of graphene. On multilayer graphene we have observed 2D growth, regardless of the treatment of SiO2. We interpret this behavior of pentacene molecules in terms of the influence of the dipolar field that emerges from the water monolayer at the graphene/SiO2 interface on the surface energy of graphene.

  10. N-Type delta Doping of High-Purity Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh

    2005-01-01

    A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.

  11. Interfacial oxide re-growth in thin film metal oxide III-V semiconductor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, S.; Dong, H.; Hawkins, J. M.

    2012-04-02

    The Al{sub 2}O{sub 3}/GaAs and HfO{sub 2}/GaAs interfaces after atomic layer deposition are studied using in situ monochromatic x-ray photoelectron spectroscopy. Samples are deliberately exposed to atmospheric conditions and interfacial oxide re-growth is observed. The extent of this re-growth is found to depend on the dielectric material and the exposure temperature. Comparisons with previous studies show that ex situ characterization can result in misleading conclusions about the interface reactions occurring during the metal oxide deposition process.

  12. An investigation on the electrochemical behavior of the Co/Cu multilayer system.

    PubMed

    Mahshid, S S; Dolati, A

    2010-09-01

    Co/Cu multilayers were deposited in a sulfate solution by controlling the current and potential for the deposition of cobalt and copper layer respectively. The electrochemical behavior of these multilayers was studied by cyclic voltammetry and current transients. In addition, a mathematical analysis was used to characterize the electrodeposition system. Simultaneously, the nucleation and growth mechanisms were monitored by these techniques. In this case, the results clearly showed that electrodeposition of cobalt layers was a kinetically controlled process while the reduction of copper ions was a diffusion-control process. Although nucleation mechanism of the single Co deposit was found as a progressive system, it was found as an instantaneous system with three-dimensional growth mechanism in the Co/Cu bilayer deposition. Atomic Forced Microscopy images of the Co/Cu multilayer also confirmed the aforementioned nucleation mechanism, where it was expected that the growth of multilayer films would form a laminar-type structure containing a large number of equally-sized rounded grains in each layer.

  13. Single-crystalline monolayer and multilayer graphene nano switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-03-01

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  14. Single-crystalline monolayer and multilayer graphene nano switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Cui, Tianhong, E-mail: tcui@me.umn.edu; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455

    2014-03-17

    Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

  15. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH3

    NASA Astrophysics Data System (ADS)

    Pansila, P.; Kanomata, K.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirose, F.

    2015-12-01

    Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH3 are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 104 Langmuir (L), where 1 L corresponds to 1.33 × 10-4 Pa s (or 1.0 × 10-6 Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH3 on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH3.

  16. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Süle, P.; Horváth, Z. E.; Kaptás, D.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuummore » evaporation—support the results of the molecular dynamics calculations.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  18. Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy

    PubMed Central

    2017-01-01

    Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film. PMID:28530829

  19. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo 38) n

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.

    2003-11-01

    Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.

  20. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode ofmore » the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.« less

  1. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan Selvaraj, Sathees; Feinerman, Alan; Takoudis, Christos G., E-mail: takoudis@uic.edu

    In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac){sub 2}], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1 ± 0.01 nm/cycle within the wide ALD temperature window of 175–300 °C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure,more » refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnO{sub x}–Si interface. The resistivity of the SnO{sub x} films was calculated to be 0.3 Ω cm. Results of this work demonstrate the possibility of introducing Sn(acac){sub 2} as tin precursor to deposit conducting ALD SnO{sub x} thin films on a silicon surface, with clean interface and no formation of undesired SiO{sub 2} or other interfacial reaction products, for transparent conducting oxide applications.« less

  2. Growth mechanism of atomic-layer-deposited TiAlC metal gate based on TiCl4 and TMA precursors

    NASA Astrophysics Data System (ADS)

    Jinjuan, Xiang; Yuqiang, Ding; Liyong, Du; Junfeng, Li; Wenwu, Wang; Chao, Zhao

    2016-03-01

    TiAlC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atomic layer deposition method using TiCl4 and Al(CH3)3(TMA) as precursors. It is found that the major product of the TiCl4 and TMA reaction is TiAlC, and the components of C and Al are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCl4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TiCl4 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving Al into the TiC film and leading to TiAlC formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and Al in the TiAlC film. Thus, the film composition can be controlled by the growth temperature to a certain extent. Project supported by the Key Technology Study for 16/14 nm Program of the Ministry of Science and Technology of China (Grant No. 2013ZX02303).

  3. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    PubMed

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  4. Growth model and structure evolution of Ag layers deposited on Ge films.

    PubMed

    Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz

    2018-01-01

    We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.

  5. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE PAGES

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; ...

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe 2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe 2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe 2 and EG. Vertical transport measurements across the WSe 2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supportedmore » by density functional theory that predicts a 1.6 eV barrier for transport from WSe 2 to graphene.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  7. Chlorine mobility during annealing in N2 in ZrO2 and HfO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Scarel, G.; Wiemer, C.; Fanciulli, M.

    2002-12-01

    Atomic layer deposition (ALD) growth of high-κ dielectric films (ZrO2 and HfO2) was performed using ZrCl4, HfCl4, and H2O as precursors. In this work, we use time of flight secondary ion mass spectrometry to investigate the chlorine distribution in ALD grown ZrO2 and HfO2 films, and its evolution during rapid thermal processes in nitrogen atmosphere. Chlorine outdiffusion is found to depend strongly upon annealing temperature and weakly upon the annealing time. While in ZrO2 chlorine concentration is significantly decreased already at 900 °C, in HfO2 it is extremely stable, even at temperatures as high as 1050 °C.

  8. Iron-Terephthalate Coordination Network Thin Films Through In-Situ Atomic/Molecular Layer Deposition.

    PubMed

    Tanskanen, A; Karppinen, M

    2018-06-12

    Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.

  9. Optimal doping control of magnetic semiconductors via subsurfactant epitaxy.

    PubMed

    Zeng, Changgan; Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F; Weitering, Hanno H

    2008-02-15

    "Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors.

  10. Atomic Layer Deposition of Metastable β-Fe 2 O 3 via Isomorphic Epitaxy for Photoassisted Water Oxidation

    DOE PAGES

    Emery, Jonathan D.; Schlepütz, Christian M.; Guo, Peijun; ...

    2014-12-09

    Here, we report the growth and photoelectrochemical (PEC) characterization of the uncommon bibyite phase of iron(III) oxide (β-Fe 2O 3) epitaxially stabilized via atomic layer deposition on an conductive, transparent, and isomorphic template (Sn-doped In 2O 3). Furthermore, as a photoanode, unoptimized β-Fe 2O 3 ultrathin films perform similarly to their ubiquitous α-phase (hematite) counterpart, but reveal a more ideal bandgap (1.8 eV), a ~0.1 V improved photocurrent onset potential, and longer wavelength (>600 nm) spectral response. Finally, stable operation under basic water oxidation justifies further exploration of this atypical phase and motivates the investigation of other unexplored metastable phasesmore » as new PEC materials.« less

  11. Growth energetics of germanium quantum dots by atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Richard Joseph

    Strained epitaxial growth of Ge on Si(001) produces self-assembled, nanometer scale islands, or quantum dots. We study this growth by atomistic simulation, computing the energy of island structures to determine when and how islanding occurs. We also describe experimental methods of island growth and characterization in order to understand the relevant physical processes and to interpret experimental observations for comparison with simulation. We show that pyramidal Ge islands with rebonded step {105} facets are energetically favorable compared to growth of planar Ge (2 x 8) on Si(001). We determine how the chemical potential of these islands varies with size, lateral spacing, and wetting layer thickness. We also illustrate the atomic-level structure of these islands with favorable formation energy. Intermixing can occur between the growing Ge film and the Si substrate. We show that although Ge prefers to wet the surface, entropy drives some fraction into the underlying layers. We present a simple model of intermixing by equilibration of the top crystal layers. The equilibration is performed with a flexible lattice Monte Carlo simulation. Ultimately, intermixing produces a temperature-dependent graded Ge concentration. The resulting chemical potential leads to the onset of islanding after 3-4 monolayers of deposition, consistent with experimental observations. The distribution of island sizes on a surface is determined by the relation of island energy to size. We find that there exists a minimum-energy island size due to the interaction of surface energy and bulk relaxation. Applying the calculated chemical potential to the Boltzmann-Gibbs distribution, we predict size distributions as functions of coverage and temperature. The distributions, with peak populations around 86 000 atoms, compare favorably with experiment. This work explores the driving force in growth of Ge on Si(001). The knowledge derived here explains why islanding occurs and provides guidance for the control of island self-assembly to construct useful microelectronic devices from quantum dots.

  12. Relationship of Optical Anomalies, Zoning, and Microtopography in Vesuvianite from Jeffrey Mine, Asbestos, Quebec

    NASA Astrophysics Data System (ADS)

    Smith, Varina Campbell

    The role of growth steps in inducing disequilibrium is investigated in crystals of vesuvianite from the Jeffrey mine, Asbestos, Quebec, using optical microscopy, atomic force microscopy, electron microprobe analysis, and single-crystal X-ray diffraction. The selective uptake of elements Fe and Al by asymmetric growth-steps on three crystallographic forms, {100}, {110}, and {121}, is documented. The prisms {100} and {110} show hillocks that display kinetically controlled oscillatory zoning along growth steps parallel to <010> and <11¯1>, but not on vicinal faces defined by [001] steps. Sector-specific zoning of extinction angles and 2V angles indicate different degrees of optical dissymmetrization in crystals spanning a range of growth habits. Unit-cell parameters and the presence of violating reflections confirm sectoral deviations from P4/nnc symmetry in the prismatic sectors. The partial loss of three glide planes follows the pattern expected from order of the cations Al and Fe induced by tangential selectivity at the edge of non-equivalent steps during layer-by-layer growth.

  13. Conversion treatment of thin titanium layer deposited on carbon steel

    NASA Astrophysics Data System (ADS)

    Benarioua, Younes; Wendler, Bogdan; Chicot, Didier

    2018-05-01

    The present study has been conducted in order to obtain titanium carbide layer using a conversion treatment consisting of two main steps. In the first step a thin pure titanium layer was deposited on 120C4 carbon steel by PVD. In the second step, the carbon atoms from the substrate diffuse to the titanium coating due to a vacuum annealing treatment and the Ti coating transforms into titanium carbide. Depending on the annealing temperature a partial or complete conversion into TiC is obtained. The hardness of the layer can be expected to differ depending on the processing temperatures. By a systematic study of the hardness as a function of the applied load, we confirm the process of growth of the layer.

  14. Large grain growth of Ge-rich Ge1-xSnx (x ≈ 0.02) on insulating surfaces using pulsed laser annealing in flowing water

    NASA Astrophysics Data System (ADS)

    Kurosawa, Masashi; Taoka, Noriyuki; Ikenoue, Hiroshi; Nakatsuka, Osamu; Zaima, Shigeaki

    2014-02-01

    We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge1-xSnx (x < 0.02) on SiO2 crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (˜800 nmϕ) growth of Ge0.98Sn0.02 polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ˜0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

  15. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim

    2016-07-25

    The synthesis of a 50 unit cell thick n = 4 Sr{sub n+1}Ti{sub n}O{sub 3n+1} (Sr{sub 5}Ti{sub 4}O{sub 13}) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO{sub 2} layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO{sub 2} layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried outmore » over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO{sub 3} perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.« less

  16. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  17. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  18. Spatial resolution in thin film deposition on silicon surfaces by combining silylation and UV/ozonolysis

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zaera, Francisco

    2014-12-01

    A simple procedure has been developed for the processing of silicon wafers in order to facilitate the spatially resolved growth of thin solid films on their surfaces. Specifically, a combination of silylation and UV/ozonolysis was tested as a way to control the concentration of the surface hydroxo groups required for subsequent atomic layer deposition (ALD) of metals or oxides. Water contact angle measurements were used to evaluate the hydrophilicity/hydrophobicity of the surface, a proxy for OH surface coverage, and to optimize the UV/ozonolysis treatment. Silylation with hexamethyldisilazane, trichloro(octadecyl)silane, or trimethylchlorosilane was found to be an efficient way to block the hydroxo sites and to passivate the underlying surface, and UV/O3 treatments were shown to effectively remove the silylation layer and to regain the surface reactivity. Both O3 and 185 nm UV radiation were determined necessary for the removal of the silylation layer, and additional 254 nm radiation was found to enhance the process. Attenuated total reflection-infrared absorption spectroscopy was employed to assess the success of the silylation and UV/O3 removal steps, and atomic force microscopy data provided evidence for the retention of the original smoothness of the surface. Selective growth of HfO2 films via TDMAHf + H2O ALD was seen only on the UV/O3 treated surfaces; total inhibition of the deposition was observed on the untreated silylated surfaces (as determined by x-ray photoelectron spectroscopy and ellipsometry). Residual film growth was still detected on the latter if the ALD was carried out at high temperatures (250 °C), because the silylation layer deteriorates under such harsh conditions and forms surface defects that act as nucleation sites for the growth of oxide grains (as identified by electron microscopy and scanning electron microscopy). We believe that the silylation-UV/O3 procedure advanced here could be easily implemented for the patterning of surfaces in many microelectronic applications.

  19. Antiferromagnetic MnN layer on the MnGa(001) surface

    NASA Astrophysics Data System (ADS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2016-12-01

    Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  20. Control of nanoscale atomic arrangement in multicomponent thin films by temporally modulated vapour fluxes

    NASA Astrophysics Data System (ADS)

    Sarakinos, Kostas

    2016-09-01

    Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.

  1. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Hwang, Hyeon Jun; Ha, Min-Woo; Kim, Jiyoung

    2015-03-01

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm2/V.s and the lowest n-type carrier concentration of approximately 1.0 × 1018/cm3 were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  2. Plasma-enhanced atomic layer deposition of highly transparent zinc oxy-sulfide thin films

    NASA Astrophysics Data System (ADS)

    Bugot, C.; Schneider, N.; Lincot, D.; Donsanti, F.

    2018-05-01

    The potential of Plasma Enhanced Atomic Layer Deposition (PEALD) for the synthesis of zinc oxy-sulfide Zn(O,S) thin films was explored for the first time, using a supercycle strategy and DEZ, Ar/O2 plasma and H2S as precursors. The growth and the properties of the material were studied by varying the pulse ratio on the full range of composition and the process temperature from Tdep = 120 °C to 220 °C. PEALD-Zn(O,S) films could be grown from pure ZnO to pure ZnS compositions by varying the H2S/(O2 plasma + H2S) pulse ratio. Three distinct growth modes were identified depending on the nature of exchange mechanisms at the film surface during the growth. Films globally have an amorphous structure, except for the extremely sulfur-rich or sulfur-poor ones. High transmission values (up to 85% for Zn(O,S) for 500 < λ < 2500 nm) and optical band gaps (3.3-3.8 eV) have been obtained. The PEALD-Zn(O,S) process and the thin film properties were compared with ALD-Zn(O,S) to highlight the specificities, disadvantages and benefits of plasma enhancement for the synthesis of multi-element materials.

  3. MBE growth of Topological Isolators based on strained semi-metallic HgCdTe layers

    NASA Astrophysics Data System (ADS)

    Grendysa, J.; Tomaka, G.; Sliz, P.; Becker, C. R.; Trzyna, M.; Wojnarowska-Nowak, R.; Bobko, E.; Sheregii, E. M.

    2017-12-01

    Particularities of Molecular Beam Epitaxial (MBE) technology for the growth of Topological Insulators (TI) based on the semi-metal Hg1-xCdx Te are presented. A series of strained layers grown on GaAs substrates with a composition close to the 3D Dirac point were studied. The composition of the layers was verified by means of the position of the E1 maximum in optical reflectivity in the visible region. The surface morphology was determined via atomic force and electron microscopy. Magneto-transport measurements show quantized Hall resistance curves and Shubnikov de Hass oscillations (up to 50 K). It has been demonstrated that a well-developed MBE technology enables one to grow strained Hg1-xCdx Te layers on GaAs/CdTe substrates with a well-defined composition near the 3D Dirac point and consequently allows one to produce a 3D topological Dirac semimetal - 3D analogy of graphene - for future applications.

  4. Impact of thickness on the structural properties of high tin content GeSn layers

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  5. Theoretical aspects of graphene-like group IV semiconductors

    NASA Astrophysics Data System (ADS)

    Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas'ev, V. V.; Stesmans, A.

    2014-02-01

    Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1)Ag surfaces, focusing on the (4 × 4)silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices.

  6. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    PubMed

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  7. Mechanism of abnormally slow crystal growth of CuZr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. Q.; Lü, Y. J., E-mail: yongjunlv@bit.edu.cn; State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027

    2015-10-28

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. Wemore » find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.« less

  8. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.

    PubMed

    Lin, Yongjing; Xu, Yang; Mayer, Matthew T; Simpson, Zachary I; McMahon, Gregory; Zhou, Sa; Wang, Dunwei

    2012-03-28

    Mg-doped hematite (α-Fe(2)O(3)) was synthesized by atomic layer deposition (ALD). The resulting material was identified as p-type with a hole concentration of ca. 1.7 × 10(15) cm(-3). When grown on n-type hematite, the p-type layer was found to create a built-in field that could be used to assist photoelectrochemical water splitting reactions. A nominal 200 mV turn-on voltage shift toward the cathodic direction was measured, which is comparable to what has been measured using water oxidation catalysts. This result suggests that it is possible to achieve desired energetics for solar water splitting directly on metal oxides through advanced material preparations. Similar approaches may be used to mitigate problems caused by energy mismatch between water redox potentials and the band edges of hematite and many other low-cost metal oxides, enabling practical solar water splitting as a means for solar energy storage.

  9. Low-Temperature Wafer-Scale Deposition of Continuous 2D SnS2 Films.

    PubMed

    Mattinen, Miika; King, Peter J; Khriachtchev, Leonid; Meinander, Kristoffer; Gibbon, James T; Dhanak, Vin R; Räisänen, Jyrki; Ritala, Mikko; Leskelä, Markku

    2018-04-19

    Semiconducting 2D materials, such as SnS 2 , hold immense potential for many applications ranging from electronics to catalysis. However, deposition of few-layer SnS 2 films has remained a great challenge. Herein, continuous wafer-scale 2D SnS 2 films with accurately controlled thickness (2 to 10 monolayers) are realized by combining a new atomic layer deposition process with low-temperature (250 °C) postdeposition annealing. Uniform coating of large-area and 3D substrates is demonstrated owing to the unique self-limiting growth mechanism of atomic layer deposition. Detailed characterization confirms the 1T-type crystal structure and composition, smoothness, and continuity of the SnS 2 films. A two-stage deposition process is also introduced to improve the texture of the films. Successful deposition of continuous, high-quality SnS 2 films at low temperatures constitutes a crucial step toward various applications of 2D semiconductors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)

    1994-01-01

    The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.

  11. Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.

    PubMed

    Walther, T; Krysa, A B

    2017-12-01

    Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support.

    PubMed

    Nan, Jiangpu; Dong, Xueliang; Wang, Wenjin; Jin, Wanqin; Xu, Nanping

    2011-04-19

    Metal-organic framework (MOF) membranes have attracted considerable attention because of their striking advantages in small-molecule separation. The preparation of an integrated MOF membrane is still a major challenge. Depositing a uniform seed layer on a support for secondary growth is a main route to obtaining an integrated MOF membrane. A novel seeding method to prepare HKUST-1 (known as Cu(3)(btc)(2)) membranes on porous α-alumina supports is reported. The in situ production of the seed layer was realized in step-by-step fashion via the coordination of H(3)btc and Cu(2+) on an α-alumina support. The formation process of the seed layer was observed by ultraviolet-visible absorption spectroscopy and atomic force microscopy. An integrated HKUST-1 membrane could be synthesized by the secondary hydrothermal growth on the seeded support. The gas permeation performance of the membrane was evaluated. © 2011 American Chemical Society

  13. In-situ laser nano-patterning for ordered InAs/GaAs(001) quantum dot growth

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shi, Zhenwu; Huo, Dayun; Guo, Xiaoxiang; Zhang, Feng; Chen, Linsen; Wang, Qinhua; Zhang, Baoshun; Peng, Changsi

    2018-04-01

    A study of in-situ laser interference nano-patterning on InGaAs wetting layers was carried out during InAs/GaAs (001) quantum dot molecular beam epitaxy growth. Periodic nano-islands with heights of a few atomic layers were obtained via four-beam laser interference irradiation on the InGaAs wetting layer at an InAs coverage of 0.9 monolayer. The quantum dots nucleated preferentially at edges of nano-islands upon subsequent deposition of InAs on the patterned surface. When the nano-islands are sufficiently small, the patterned substrate could be spontaneously re-flattened and an ordered quantum dot array could be produced on the smooth surface. This letter discusses the mechanisms of nano-patterning and ordered quantum dot nucleation in detail. This study provides a potential technique leading to site-controlled, high-quality quantum dot fabrication.

  14. Thin film growth into the ion track structures in polyimide by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.

    2017-09-01

    High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.

  15. In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers

    PubMed Central

    Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar

    2017-01-01

    The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572

  16. Formation of nanotwin networks during high-temperature crystallization of amorphous germanium

    DOE PAGES

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-11-26

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, withmore » two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.« less

  17. Formation of Nanotwin Networks during High-Temperature Crystallization of Amorphous Germanium

    PubMed Central

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-01-01

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the 〈111〉 crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of 〈111〉 semiconductor crystals, where growth is restrained to one dimension. We calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation. PMID:26607496

  18. InAs wetting layer and quantum dots on GaAs(001) surface studied by in situ STM placed inside MBE growth chamber and kMC simulations based on first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukamoto, S.; Arakawa, Y.; Bell, G. R.

    2007-04-10

    Dynamic images of InAs quantum dots (QDs) formation are obtained using a unique scanning tunneling microscope (STM) placed within the growth chamber. These images are interpreted with the aid of kinetic Monte Carlo (kMC) simulations of the QD nucleation process. Alloy fluctuations in the InGaAs wetting layer prior to QD formation assist in the nucleation of stable InAs islands containing tens of atoms which grow extremely rapidly to form QDs. Furthermore, not all deposited In is initially incorporated into the lattice, providing a large supply of material to rapidly form QDs at the critical thickness.

  19. Silicon carbon(001) gas-source molecular beam epitaxy from methyl silane and silicon hydride: The effects of carbon incorporation and surface segregation on growth kinetics

    NASA Astrophysics Data System (ADS)

    Foo, Yong-Lim

    Si1-yCy alloys were grown on Si(001) by gas-source molecular-beam epitaxy (GS-MBE) from Si2H6/CH3 SiH3 mixtures as a function of C concentration y (0 to 2.6 at %) and deposition temperature Ts (500--600°C). High-resolution x-ray diffraction reciprocal lattice maps show that all layers are in tension and fully coherent with their substrates. Film growth rates R decrease with both y and Ts, and the rate of decrease in R as a function of y increases rapidly with Ts. In-situ isotopically-tagged D2 temperature-programmed desorption (TPD) measurements reveal that C segregates to the second-layer during steady-state Si1-y Cy(001) growth. This, in turn, results in charge-transfer from Si surface dangling bonds to second-layer C atoms, which have a higher electronegativity than Si. From the TPD results, we obtain the coverage θ Si*(y, Ts) of Si* surface sites with C backbonds as well as H2 desorption energies Ed from both Si and Si* surface sites. This leads to an increase in the H2 desorption rate, and hence should yield higher film deposition rates, with increasing y and/or Ts during Si1-yCy(001) growth. The effect, however, is more than offset by the decrease in Si2H 6 reactive sticking probabilities at Si* surface sites. Film growth rates R(Ts, JSi2H6,J CH3SiH3 ) calculated using a simple transition-state kinetic model, together with measured kinetic parameters, were found to be in good agreement with the experimental data. At higher growth temperature (725 and 750°C), superlattice structures consisting of alternating Si-rich and C-rich sublayers form spontaneously during the gas-source molecular beam epitaxial growth of Si1-y Cy layers from constant Si2H6 and CH 3SiH3 precursor fluxes. The formation of a self-organized superstructure is due to a complex interaction among competing surface reactions. During growth of the initial Si-rich sublayer, C strongly segregates to the second layer resulting in charge transfer from surface Si atom dangling bonds of to C backbonds. This, in turn, decreases the Si2H6 sticking probability and, hence, the sublayer deposition rate. This continues until a critical C coverage is reached allowing the nucleation and growth of a C-rich sublayer until the excess C is depleted. At this point, the self-organized bilayer process repeats itself.

  20. Determining the Molecular Growth Mechanisms of Protein Crystal Faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Pusey, Marc L.

    1999-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height. Theoretical analyses of the packing also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces as they were being incorporated into the lattice. Images of individual growth events on the (110) face of tetragonal lysozyme crystals were observed, shown by jump discontinuities in the growth step in the linescan images as shown in the figure. The growth unit dimension in the scanned direction was obtained from these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme growth unit sizes were obtained. A variety of unit sizes corresponding to 43 helices, were shown to participate in the growth process, with the 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  1. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al{sub 2}O{sub 3} gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Takeshi, E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, Noboru; Osada, Takenori

    2015-08-15

    This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resultingmore » MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.« less

  2. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions.

    PubMed

    Chen, Lei; Wen, Jialin; Zhang, Peng; Yu, Bingjun; Chen, Cheng; Ma, Tianbao; Lu, Xinchun; Kim, Seong H; Qian, Linmao

    2018-04-18

    Topographic nanomanufacturing with a depth precision down to atomic dimension is of importance for advancement of nanoelectronics with new functionalities. Here we demonstrate a mask-less and chemical-free nanolithography process for regio-specific removal of atomic layers on a single crystalline silicon surface via shear-induced mechanochemical reactions. Since chemical reactions involve only the topmost atomic layer exposed at the interface, the removal of a single atomic layer is possible and the crystalline lattice beneath the processed area remains intact without subsurface structural damages. Molecular dynamics simulations depict the atom-by-atom removal process, where the first atomic layer is removed preferentially through the formation and dissociation of interfacial bridge bonds. Based on the parametric thresholds needed for single atomic layer removal, the critical energy barrier for water-assisted mechanochemical dissociation of Si-Si bonds was determined. The mechanochemical nanolithography method demonstrated here could be extended to nanofabrication of other crystalline materials.

  3. Structure and optical properties of 2D layered MoS2 crystals implemented with novel friction induced crystal growth

    NASA Astrophysics Data System (ADS)

    Tanabe, Tadao; Ito, Takafumi; Oyama, Yutaka

    2018-03-01

    We used X-ray diffraction, and Raman and photoluminescence (PL) spectroscopies to examine the structure and optical properties of molybdenum disulfide (MoS2) crystals grown by friction at the interface between two materials. MoS2 is produced chemically from molybdenum dithiocarbamates (MoDTC) in synthetic oil under sliding friction conditions. The X-ray diffraction (XRD) patterns indicate that the structure of the MoS2 is layered with the c-axis perpendicular to the surface. The MoS2 layer was formed on stainless steel and germanium by friction at the interface between these materials and high carbon chromium bearing steel. The number of layers is estimated to be N (N > 6) from the distance between the Raman frequencies of the E12g and A1g modes. For MoS2 grown on stainless steel, exciton peak is observed in the PL spectrum at room temperature. These results show that this friction induced crystal growth method is viable for synthesizing atomic layers of MoS2 at solid surfaces.

  4. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics.

    PubMed

    Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R; De Yoreo, James J

    2010-09-21

    The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway.

  5. Low temperature synthesis of highly oriented p-type Si1-xGex (x: 0-1) on an insulator by Al-induced layer exchange

    NASA Astrophysics Data System (ADS)

    Toko, K.; Kusano, K.; Nakata, M.; Suemasu, T.

    2017-10-01

    A composition tunable Si1-xGex alloy has a wide range of applications, including in electronic and photonic devices. We investigate the Al-induced layer exchange (ALILE) growth of amorphous Si1-xGex on an insulator. The ALILE allowed Si1-xGex to be large grained (> 50 μm) and highly (111)-oriented (> 95%) over the whole composition range by controlling the growth temperature (≤ 400 °C). From a comparison with conventional solid-phase crystallization, we determined that such characteristics of the ALILE arose from the low activation energy of nucleation and the high frequency factor of lateral growth. The Si1-xGex layers were highly p-type doped, whereas the process temperatures were low, thanks to the electrically activated Al atoms with the amount of solid solubility limit. The electrical conductivities approached those of bulk single crystals within one order of magnitude. The resulting Si1-xGex layer on an insulator is useful not only for advanced SiGe-based devices but also for virtual substrates, allowing other materials to be integrated on three-dimensional integrated circuits, glass, and even a plastic substrate.

  6. Effect of intermediate layers on atomic layer deposition-aluminum oxide protected silver mirrors

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Diaz Leon, Juan J.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2017-07-01

    This work investigates intermediate materials deposited between silver (Ag) thin-film mirrors and an aluminum oxide (AlOx) barrier overlayer and compares the effects on mirror durability to environmental stresses. Physical vapor deposition of various fluorides, oxides, and nitrides in combination with AlOx by atomic layer deposition (ALD) is used to develop several coating recipes. Ag-AlOx samples with different intermediate materials undergo aggressive high-temperature (80°C), high-humidity (80%) (HTHH) testing for 10 days. Reflectivity of mirror samples is measured before and after HTHH testing, and image processing techniques are used to analyze the specular surface of the samples after HTHH testing. Among the seven intermediate materials used in this work, TiN, MgAl2O4, NiO, and Al2O3 intermediate layers offer more robust protection against chemical corrosion and moisture when compared with samples with no intermediate layer. In addition, results show that the performance of the ALD-AlOx barrier overlayer depends significantly on the ALD-growth process temperature. Because higher durability is observed in samples with less transparent TiN and NiO layers, we propose a figure of merit based on post-HTHH testing reflectivity change and specular reflective mirror surface area remaining after HTHH testing to judge overall barrier performance.

  7. Graphene by one-step chemical vapor deposition from ferrocene vapors: Properties and electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Pilatos, George; Perdikaki, Anna V.; Sapalidis, Andreas; Pappas, George S.; Giannakopoulou, Tatiana; Tsoutsou, Dimitra; Xenogiannopoulou, Evangelia; Boukos, Nikos; Dimoulas, Athanasios; Trapalis, Christos; Kanellopoulos, Nick K.; Karanikolos, Georgios N.

    2016-02-01

    Growth of few-layer graphene using ferrocene as precursor by chemical vapor deposition is reported. The growth did not involve any additional carbon or catalyst source or external hydrocarbon gases. Parametric investigation was performed using different conditions, namely, varying growth temperature from 600 to1000 °C, and growth duration from 5 min to 3 h, as well as using fast quenching or gradual cooling after the thermal treatment, in order to examine the effect on the quality of the produced graphene. The growth took place on silicon wafers and resulted, under optimal conditions, in formation of graphene with 2-3 layers and high graphitic quality, as evidenced by Raman spectroscopy, with characteristic full width at half maximum of the 2D band of 49.46 cm-1, and I2D/IG and ID/IG intensity ratios of 1.15 and 0.26, respectively. Atomic force microscopy and X-ray photoelectron spectroscopy were employed to further evaluate graphene characteristics and enlighten growth mechanism. Electrochemical evaluation of the developed material was performed using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge measurements.

  8. Nanomechanical properties of platinum thin films synthesized by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, M.A.; Gu, D.; Baumgart, H.

    2015-03-01

    The nanomechanical properties of Pt thin films grown on Si (100) using atomic layer deposition (ALD) were investigated using nanoindentation. Recently, atomic layer deposition (ALD) has successfully demonstrated the capability to deposit ultra-thin films of platinum (Pt). Using (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe3) as chemical platinum precursor and oxygen (O2) as the oxidizing agent, the ALD synthesis of Pt can be achieved with high conformity and excellent film uniformity. The ALD process window for Pt films was experimentally established in the temperature range between 270 °C and 320 °C, where the sheet conductance was constant over that temperature range, indicating stable ALDmore » Pt film growth rate. ALD growth of Pt films exhibits very poor nucleation and adhesion characteristics on bare Si surfaces when the native oxide was removed by 2% HF etch. Pt adhesion improves for thermally oxidized Si wafers and for Si wafers covered with native oxide. Three ALD Pt films deposited at 800, 900, and 1000 ALD deposition cycles were tested for the structural and mechanical properties. Additionally, the sample with 900 ALD deposition cycles was further annealed in forming gas (95% N2 and 5% H2) at 450 °C for 30 min in order to passivate dangling bonds in the grain boundaries of the polycrystalline Pt film. Cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscope (SEM) were employed to characterize the films' surface structure and morphology. Nanoindentation technique was used to evaluate the hardness and modulus of the ALD Pt films of various film thicknesses. The results indicate that the films depict comparable hardness and modulus results; however, the 800 and 1000 ALD deposition cycles films without forming gas annealing experienced significant amount of pileup, whereas the 900 ALD deposition cycles sample annealed in forming gas resulted in a smaller pileup.« less

  9. Simulation of the Dynamics of Isothermal Growth of Single-Layer Graphene on a Copper Catalyst in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.

    2018-01-01

    A new kinetic model of isothermal growth of single-layer graphene on a copper catalyst as a result of the chemical vapor deposition of hydrocarbons on it at a low pressure has been developed on the basis of in situ measurements of the growth of graphene in the process of its synthesis. This model defines the synthesis of graphene with regard for the chemisorption and catalytic decomposition of ethylene on the surface of a copper catalyst, the diffusion of carbon atoms in the radial direction to the nucleation centers within the thin melted near-surface copper layer, and the nucleation and autocatalytic growth of graphene domains. It is shown that the time dependence of the rate of growth of a graphene domain has a characteristic asymmetrical bell-like shape. The dependences of the surface area and size of a graphene domain and the rate of its growth on the time at different synthesis temperatures and ethylene concentrations have been obtained. Time characteristics of the growth of graphene domains depending on the parameters of their synthesis were calculated. The results obtained can be used for determining optimum regimes of synthesis of graphene in the process of chemical vapor deposition of hydrocarbons on different catalysts with a low solubility of carbon.

  10. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    PubMed

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  11. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  12. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  13. Transport in ultrathin gold films decorated with magnetic Gd atoms

    NASA Astrophysics Data System (ADS)

    Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances

    2008-03-01

    We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.

  14. Formation and evolution of multimodal size distributions of InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Pohl, U. W.; Pötschke, K.; Schliwa, A.; Lifshits, M. B.; Shchukin, V. A.; Jesson, D. E.; Bimberg, D.

    2006-05-01

    Self-organized formation and evolution of quantum dot (QD) ensembles with a multimodal size distribution is reported. Such ensembles form after fast deposition near the critical thickness during a growth interruption (GRI) prior to cap layer growth and consist of pure InAs truncated pyramids with heights varying in steps of complete InAs monolayers, thereby creating well-distinguishable sub-ensembles. Ripening during GRI manifests itself by an increase of sub-ensembles of larger QDs at the expense of sub-ensembles of smaller ones, leaving the wetting layer unchanged. The dynamics of the multimodal QD size distribution is theoretically described using a kinetic approach. Starting from a broad distribution of flat QDs, a predominantly vertical growth is found due to strain-induced barriers for nucleation of a next atomic layer on different facets. QDs having initially a shorter base length attain a smaller height, accounting for the experimentally observed sub-ensemble structure. The evolution of the distribution is described by a master equation, which accounts for growth or dissolution of the QDs by mass exchange between the QDs and the adatom sea. The numerical solution is in good agreement with the measured dynamics.

  15. Influences of misfit strains on liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Yu, Genggeng; Chen, Zheng

    2017-10-01

    Influences of misfit strains with different signs on liquid phase heteroepitaxial growth are studied by binary phase field crystal model. It is amazing to find that double islands are formed because of lateral and vertical separation. The morphological evolution of epitaxial layer depends on signs of misfit strains. The maximum atomic layer thickness of double islands under negative misfit strain is larger than that of under positive misfit strain at the same evolutional time, and size differences between light and dark islands is much smaller under negative misfit strain than that of under positive misfit strain. In addition, concentration field and density field approximately have similar variational law along x direction under the same misfit strain but show opposite variational trend under misfit strains with different signs. Generally, free energy of epitaxial growth systems keeps similar variational trend under misfit strains with different signs.

  16. Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni-Nb system by molecular dynamics simulations.

    PubMed

    Dai, X D; Li, J H; Liu, B X

    2005-03-17

    With the aid of ab initio calculations, an n-body potential of the Ni-Nb system is constructed under the Finnis-Sinclair formalism and the constructed potential is capable of not only reproducing some static physical properties but also revealing the atomistic mechanism of crystal-to-amorphous transition and associated kinetics. With application of the constructed potential, molecular dynamics simulations using the solid solution models reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing while the solute atoms are exceeding the critical solid solubilities, which are determined to be 19 atom % Ni and 13 atom % Nb for the Nb- and Ni-based solid solutions, respectively. It follows that an intrinsic glass-forming ability of the Ni-Nb system is within 19-87 atom % Ni, which matches well with that observed in ion beam mixing/solid-state reaction experiments. Simulations using the Nb/Ni/Nb (Ni/Nb/Ni) sandwich models indicate that the amorphous layer at the interfaces grows in a layer-by-layer mode and that, upon dissolving solute atoms, the Ni lattice approaches and exceeds its critical solid solubility faster than the Nb lattice, revealing an asymmetric behavior in growth kinetics. Moreover, an energy diagram is obtained by computing the energetic sequence of the Ni(x)Nb(100)(-)(x) alloy in fcc, bcc, and amorphous structures, respectively, over the entire composition range, and the diagram could serve as a guide for predicting the metastable alloy formation in the Ni-Nb system.

  17. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  18. Growth of Ni-Al alloys on Ni(1 1 1), from Al deposits of various thicknesses: (II) Formation of NiAl over a Ni 3Al interfacial layer

    NASA Astrophysics Data System (ADS)

    Le Pévédic, S.; Schmaus, D.; Cohen, C.

    2007-01-01

    This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni 3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 10 15 Al/cm 2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 10 15 Al/cm 2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni 3Al "interfacial" layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni 3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L1 2 Ni 3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni 3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the surface. The atomic diffusion is very limited in the NiAl phase that forms, and thus the progressive enrichment in Ni of the Al film, i.e. of the mean Ni concentration, becomes slower and slower. As a consequence, alloying is observed to take place in a very broad temperature range between 300 K and 700 K. For annealing temperatures above 800 K, the alloyed layer is decomposed, Al atoms diffusing in the bulk of the substrate.

  19. Perlwapin, an Abalone Nacre Protein with Three Four-Disulfide Core (Whey Acidic Protein) Domains, Inhibits the Growth of Calcium Carbonate Crystals

    PubMed Central

    Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika

    2006-01-01

    We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275

  20. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.

    PubMed

    Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli

    2017-01-01

    Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.

  1. Versatile buffer layer architectures based on Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.

    2005-05-01

    We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.

  2. Mechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine.

    PubMed

    Olafson, Katy N; Ketchum, Megan A; Rimer, Jeffrey D; Vekilov, Peter G

    2015-04-21

    Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, classical or nonclassical; and whether quinoline antimalarials inhibit crystallization by sequestering hematin in the solution, or by blocking surface sites crucial for growth. Here we use time-resolved in situ atomic force microscopy (AFM) and show that the lipid subphase in the parasite may be a preferred growth medium. We provide, to our knowledge, the first evidence of the molecular mechanisms of hematin crystallization and inhibition by chloroquine, a common quinoline antimalarial drug. AFM observations demonstrate that crystallization strictly follows a classical mechanism wherein new crystal layers are generated by 2D nucleation and grow by the attachment of solute molecules. We identify four classes of surface sites available for binding of potential drugs and propose respective mechanisms of drug action. Further studies reveal that chloroquine inhibits hematin crystallization by binding to molecularly flat {100} surfaces. A 2-μM concentration of chloroquine fully arrests layer generation and step advancement, which is ∼10(4)× less than hematin's physiological concentration. Our results suggest that adsorption at specific growth sites may be a general mode of hemozoin growth inhibition for the quinoline antimalarials. Because the atomic structures of the identified sites are known, this insight could advance the future design and/or optimization of new antimalarials.

  3. Effect of processing parameters on microstructure of MoS{sub 2} ultra-thin films synthesized by chemical vapor deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; You, Suping; Sun, Kewei

    2015-06-15

    MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less

  4. Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth

    NASA Astrophysics Data System (ADS)

    Mickevičius, J.; Dobrovolskas, D.; Steponavičius, T.; Malinauskas, T.; Kolenda, M.; Kadys, A.; Tamulaitis, G.

    2018-01-01

    Capabilities of repeated deposition of ultrathin layers by pulsed metalorganic chemical vapor deposition (MOCVD) for improvement of structural and luminescence properties of InN thin films on GaN/sapphire templates were studied by varying the growth temperature and the durations of pulse and pause in the delivery of In precursor. X-ray diffraction, atomic force microscopy, and spatially-resolved photoluminescence (PL) spectroscopy were exploited to characterize the structural quality, surface morphology and luminescence properties. Better structural quality is achieved by using longer trimethylindium pulses. However, it is shown that the luminescence properties of InN epilayers correlate with the pause and pulse ratio rather than with their absolute lengths, and the deposition of 1.5-2 monolayers of InN during one growth cycle is optimal to achieve the highest PL intensity. Moreover, the use of temperature ramping enabled achieving the highest PL intensity and the smallest blue shift of the PL band. The luminescence parameters are linked with the structural properties, and domain-like patterns of InN layers are revealed.

  5. Hollow Cathode Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using Pentachlorodisilane.

    PubMed

    Meng, Xin; Kim, Harrison Sejoon; Lucero, Antonio T; Hwang, Su Min; Lee, Joy S; Byun, Young-Chul; Kim, Jiyoung; Hwang, Byung Keun; Zhou, Xiaobing; Young, Jeanette; Telgenhoff, Michael

    2018-04-25

    In this work, a novel chlorodisilane precursor, pentachlorodisilane (PCDS, HSi 2 Cl 5 ), was investigated for the growth of silicon nitride (SiN x ) via hollow cathode plasma-enhanced atomic layer deposition (PEALD). A well-defined self-limiting growth behavior was successfully demonstrated over the growth temperature range of 270-360 °C. At identical process conditions, PCDS not only demonstrated approximately >20% higher growth per cycle than that of a commercially available chlorodisilane precursor, hexachlorodisilane (Si 2 Cl 6 ), but also delivered a better or at least comparable film quality determined by characterizing the refractive index, wet etch rate, and density of the films. The composition of the SiN x films grown at 360 °C using PCDS, as determined by X-ray photoelectron spectroscopy, showed low O content (∼2 at. %) and Cl content (<1 at. %; below the detection limit). Fourier transform infrared spectroscopy spectra suggested that N-H bonds were the dominant hydrogen-containing bonds in the SiN x films without a significant amount of Si-H bonds originating from the precursor molecules. The possible surface reaction pathways of the PEALD SiN x using PCDS on the surface terminated with amine groups (-NH 2 and -NH-) are proposed. The PEALD SiN x films grown using PCDS also exhibited a leakage current density as low as 1-2 nA/cm 2 at 2 MV/cm and a breakdown electric field as high as ∼12 MV/cm.

  6. Creation of economical and robust large area MCPs by ALD method for photodetectors

    NASA Astrophysics Data System (ADS)

    Mane, Anil U.; Elam, Jeffrey W.; Wagner, Robert G.; Siegmund, Oswald H. W.; Minot, Michael J.

    2016-09-01

    We report a cost-effective and production achievable path to fabricate robust large-area microchannel plates (MCPs), which offers the new prospect for larger area MCP-based detector technologies. We used atomic Layer Deposition (ALD), a thin film growth technique, to independently adjust the desired electrical resistance and secondary electron emission (SEE) properties of low cost borosilicate glass micro-capillary arrays (MCAs). These capabilities allow a separation of the substrate material properties from the signal amplification properties. This methodology enables the functionalization of microporous, highly insulating MCA substrates to produce sturdy, large format MCPs with unique properties such as high gain (<107/MCP pair), low background noise, 10ps time resolution, sub-micron spatial resolution and excellent stability after only a short (2-3days) scrubbing time. The ALD self-limiting growth mechanism allows atomic level control over the thickness and composition of resistive and secondary electron emission (SEE) layers that can be deposited conformally on high aspect ratio ( 100) capillary glass arrays. We have developed several robust and consistent production doable ALD processes for the resistive coatings and SEE layers to give us precise control over the MCP parameters. Further, the adjustment of MCPs resistance by tailoring the ALD material composition permits the use of these MCPs at high or low temperature detector applications. Here we discuss ALD method for MCP functionalization and a variety of MCP testing results.

  7. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less

  8. Structure and growth of Bi(110) islands on Si(111)√{3 }×√{3 }-B substrates

    NASA Astrophysics Data System (ADS)

    Nagase, Kentaro; Kokubo, Ikuya; Yamazaki, Shiro; Nakatsuji, Kan; Hirayama, Hiroyuki

    2018-05-01

    The structure and growth of ultrathin Bi(110) islands were investigated on a Si(111)√{3 }×√{3 }-B substrate by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Both even- and odd-layer-height islands nucleated on a one-monolayer-thick wetting layer. The islands preferred the even layer heights over the odd layer heights with an area ratio of 3:1. A weak, long-range corrugation was observed to overlap on the atomic arrangement at the top of the islands. The average distance between the peaks of the corrugation oscillated in accordance with the alternation of even and odd layer heights. Nucleation of single- and double-layer terraces occurred on the islands with even layer heights but not on those with odd layer heights. The unit cell of the single-layer terrace was aligned with that of the underlying even-layer-height island. The inequality in the height preference and the height-dependent oscillation of the corrugation suggested that the even- and odd-layer-height islands possessed different structures. The dominance and stability against terrace nucleation of the even-layer-height islands were consistent with the theoretically predicted stability of the paired layer-stacked black-phosphorus (BP)-like structure for ultrathin Bi(110) films. The alignment of the unit cell at the terrace on the island and STS spectra suggested a BP-like/bulklike/BP-like sandwich structure for the odd-layer-height Bi(110) islands.

  9. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Nigamananda; Du Hui; Luberoff, Russell

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for themore » DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.« less

  10. Highly effective synthesis of NiO/CNT nanohybrids by atomic layer deposition for high-rate and long-life supercapacitors.

    PubMed

    Yu, Lei; Wang, Guilong; Wan, Gengping; Wang, Guizhen; Lin, Shiwei; Li, Xinyue; Wang, Kan; Bai, Zhiming; Xiang, Yang

    2016-09-21

    In this work, we report an atomic layer deposition (ALD) method for the fabrication of NiO/CNT hybrid structures in order to improve electronic conductivity, enhance cycling stability and increase rate capability of NiO used as supercapacitor electrodes. A uniform NiO coating can be well deposited on carbon nanotubes (CNTs) through simultaneously employing O3 and H2O as oxidizing agents in a single ALD cycle of NiO for the first time, with a high growth rate of nearly 0.3 Å per cycle. The electrochemical properties of the as-prepared NiO/CNT were then investigated. The results show that the electrochemical capacitive properties are strongly associated with the thickness of the NiO coating. The NiO/CNT composite materials with 200 cycles of NiO deposition exhibit the best electrochemical properties, involving high specific capacitance (622 F g(-1) at 2 A g(-1), 2013 F g(-1) for NiO), excellent rate capability (74% retained at 50 A g(-1)) and outstanding cycling stability. The impressive results presented here suggest a great potential for the fabrication of composite electrode materials by atomic layer deposition applied in high energy density storage systems.

  11. Chelant Enhanced Solution Processing for Wafer Scale Synthesis of Transition Metal Dichalcogenide Thin Films.

    PubMed

    Ionescu, Robert; Campbell, Brennan; Wu, Ryan; Aytan, Ece; Patalano, Andrew; Ruiz, Isaac; Howell, Stephen W; McDonald, Anthony E; Beechem, Thomas E; Mkhoyan, K Andre; Ozkan, Mihrimah; Ozkan, Cengiz S

    2017-07-25

    It is of paramount importance to improve the control over large area growth of high quality molybdenum disulfide (MoS 2 ) and other types of 2D dichalcogenides. Such atomically thin materials have great potential for use in electronics, and are thought to make possible the first real applications of spintronics. Here in, a facile and reproducible method of producing wafer scale atomically thin MoS 2 layers has been developed using the incorporation of a chelating agent in a common organic solvent, dimethyl sulfoxide (DMSO). Previously, solution processing of a MoS 2 precursor, ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 ), and subsequent thermolysis was used to produce large area MoS 2 layers. Our work here shows that the use of ethylenediaminetetraacetic acid (EDTA) in DMSO exerts superior control over wafer coverage and film thickness, and the results demonstrate that the chelating action and dispersing effect of EDTA is critical in growing uniform films. Raman spectroscopy, photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and high-resolution scanning transmission electron microscopy (HR-STEM) indicate the formation of homogenous few layer MoS 2 films at the wafer scale, resulting from the novel chelant-in-solution method.

  12. Effect of Mn Nanoparticles on Interfacial Intermetallic Compound Growth in Low-Ag Sn-0.3Ag-0.7Cu- xMn Solder Joints

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Luo, S. M.; Li, G. Y.; Yang, Z.; Chen, R.; Han, Y.; Hou, C. J.

    2018-02-01

    Interfacial intermetallic compound (IMC) growth between Cu substrates and low-Ag Sn-0.3Ag-0.7Cu- xMn ( x = 0 wt.%, 0.02 wt.%, 0.05 wt.%, 0.1 wt.%, and 0.15 wt.%) (SAC0307- xMn) solders was investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was employed to observe the microstructural evolution of the solder joints and measure the IMC layer thickness. The IMC phases were identified by energy-dispersive x-ray spectroscopy and x-ray diffraction. The results showed that a Cu6Sn5 IMC layer formed in the as-soldered solder joints, while a duplex structure consisting of a Cu6Sn5 IMC layer near the solder matrix and a Cu3Sn IMC layer was observed after isothermal aging. A considerable drop in the IMC layer thickness was observed when 0.1 wt.% Mn nanoparticles were added. Beyond this amount, the thickness of the IMC layer only slightly increases. Adding Mn nanoparticles can increase the activation energy and thus reduce the interdiffusion rates of the Sn and Cu atoms, which suppresses excessive IMC growth. The solder joint containing 0.1 wt.% Mn nanoparticles has the highest activation energy. SEM images revealed that the number of small particles precipitated in the channels between the Cu6Sn5 IMC layers increases with an increasing proportion of Mn nanoparticles. Based on the microstructural evolution of the solder joints, this study revealed that grain boundary pinning is one of the most important mechanisms for IMC growth inhibition when Mn nanoparticles are added.

  13. High-resolution depth profile of the InGaP-on-GaAs heterointerface by FE-AES and its relationship to device properties

    NASA Astrophysics Data System (ADS)

    Ichikawa, O.; Fukuhara, N.; Hata, M.; Nakano, T.; Sugiyama, M.; Shimogaki, Y.; Nakano, Y.

    2007-01-01

    At InGaP-on-GaAs heterointerface, transition layer is formed during metalorganic vapor phase epitaxy (MOVPE) growth that can affect device properties. Many studies of this transition layer have been done but the characterization methods used are not direct measures of the atomic structure at the heterointerface. In this study, we investigated the abruptness and thickness of the InGaP-on-GaAs transition layers by field-emission Auger electron spectroscopy, by which a depth profile with a resolution of abruptness of 30 Å or below can be obtained. The group V switching position relative to that of In goes deeper into the GaAs with increasing PH 3 supply, suggesting an initial, quick replacement of As atoms with P atoms followed by a slow P diffusion into the bulk GaAs. Changes of abruptness of the As or P profiles at the heterointerface with varying PH 3 supply on the GaAs surface are not observed. Furthermore, we evaluated the effect of the GaAsP-like transition layers on the turn-on voltage of an InGaP emitter HBT. A linear relationship is shown between the shift of the group V switching position and the HBT turn-on voltage, which is consistent with the assumption that current flow decreases at the transition layer. Calculated difference of conduction band energy between InGaP and the transition layer is 0.15 eV for the sample with ordered InGaP and 0.04 eV for disordered InGaP, is consistent with the difference of the band gap energies between ordered and disordered InGaP. Calculated P compositions are 0.52 and 0.35, respectively.

  14. Temperature dependence of the crystalline quality of AlN layer grown on sapphire substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hang; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.

    2015-03-01

    We studied temperature dependence of crystalline quality of AlN layers at 1050-1250 °C with a fine increment step of around 18 °C. The AlN layers were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD) and characterized by X-ray diffraction (XRD) ω-scans and atomic force microscopy (AFM). At 1050-1068 °C, the templates exhibited poor quality with surface pits and higher XRD (002) and (102) full-width at half-maximum (FWHM) because of insufficient Al atom mobility. At 1086 °C, the surface became smooth suggesting sufficient Al atom mobility. Above 1086 °C, the (102) FWHM and thus edge dislocation density increased with temperatures which may be attributed to the shorter growth mode transition from three-dimension (3D) to two-dimension (2D). Above 1212 °C, surface macro-steps were formed due to the longer diffusion length of Al atoms than the expected step terrace width. The edge dislocation density increased rapidly above 1212 °C, indicating this temperature may be a threshold above which the impact of the transition from 3D to 2D is more significant. The (002) FWHM and thus screw dislocation density were insensitive to the temperature change. This study suggests that high-quality AlN/sapphire templates may be potentially achieved at temperatures as low as 1086 °C which is accessible by most of the III-nitride MOCVD systems.

  15. Determining the Molecular Growth Mechanisms of Protein Crystal faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height (Li et al., 1998). Theoretical analyses of the packing had also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces. The growth process of tetragonal lysozyme crystals was slowed down by employing very low supersaturations. As a result images of individual growth events on the (110) face were observed, shown by jump discontinuities in the growth step in the linescan images. The growth unit dimension in the scanned direction was obtained by suitably averaging these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme aggregate sizes were obtained. A variety of growth units, all of which were 43 helical lysozyme aggregates, were shown to participate in the growth process with a 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  16. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications.

    PubMed

    Park, Suk In; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-18

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  17. Growth of carbon structured over Pd, Pt and Ni: A comparative DFT study

    NASA Astrophysics Data System (ADS)

    Quiroga, Matías Abel

    2013-03-01

    To elucidate the graphene-like structures mechanisms growth over the M(1 1 1) surface (M = Pd, Pt and Ni) we performed ab initio calculus in the frame of density functional theory with the exchange-correlation functional treated according to the Generalized Gradient Approximation (GGA). In order to avoid the problem that represent the complex interaction between the well formed graphene layer and the metallic surface, we recreate the carbon rings formation initial steps, by adding one by one carbon atoms over M(1 1 1) surface. With this strategy, the chemical bonding is always present until the graphene layer is well formed, in which case the GGA neglects van der Waals dispersive forces. We investigate the electronic properties by studying the band structure and the density of states.

  18. GaAs droplet quantum dots with nanometer-thin capping layer for plasmonic applications

    NASA Astrophysics Data System (ADS)

    In Park, Suk; Trojak, Oliver Joe; Lee, Eunhye; Song, Jin Dong; Kyhm, Jihoon; Han, Ilki; Kim, Jongsu; Yi, Gyu-Chul; Sapienza, Luca

    2018-05-01

    We report on the growth and optical characterization of droplet GaAs quantum dots (QDs) with extremely-thin (11 nm) capping layers. To achieve such result, an internal thermal heating step is introduced during the growth and its role in the morphological properties of the QDs obtained is investigated via scanning electron and atomic force microscopy. Photoluminescence measurements at cryogenic temperatures show optically stable, sharp and bright emission from single QDs, at visible wavelengths. Given the quality of their optical properties and the proximity to the surface, such emitters are good candidates for the investigation of near field effects, like the coupling to plasmonic modes, in order to strongly control the directionality of the emission and/or the spontaneous emission rate, crucial parameters for quantum photonic applications.

  19. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance.

    PubMed

    Xu, Chen; Zeng, Yi; Rui, Xianhong; Xiao, Ni; Zhu, Jixin; Zhang, Wenyu; Chen, Jing; Liu, Weiling; Tan, Huiteng; Hng, Huey Hoon; Yan, Qingyu

    2012-06-26

    We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate growth conditions, the iron and sulfur atoms react to form thin layers of FeS while the hydrocarbon tails of 1-dodecanethiol separate the thin FeS layers, which turn to carbon after annealing in Ar. Such an approach can be extended to grow C@FeS nanospheres and nanoplates by modifying the synthesis parameters. The C@FeS nanosheets display excellent Li storage properties with high specific capacities and stable charge/discharge cyclability, especially at fast charge/discharge rates.

  20. Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.

  1. N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) on alkali halide (001) surfaces

    NASA Astrophysics Data System (ADS)

    Fendrich, Markus; Lange, Manfred; Weiss, Christian; Kunstmann, Tobias; Möller, Rolf

    2009-05-01

    The growth of N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) (DiMe-PTCDI) on KBr(001) and NaCl(001) surfaces has been studied. Experimental results have been achieved using frequency modulation atomic force microscopy at room temperature under ultrahigh vacuum conditions. On both substrates, DiMe-PTCDI forms molecular wires with a width of 10nm, typically, and a length of up to 600nm at low coverages. All wires grow along either the [110] direction (or [11¯0] direction, respectively) of the alkali halide (001) substrates. There is no wetting layer of molecules: atomic resolution of the substrates can be achieved between the wires. The wires are mobile on KBr but substantially more stable on NaCl. A p(2×2) superstructure in a brickwall arrangement on the ionic crystal surfaces is proposed based on electrostatic considerations. Calculations and Monte Carlo simulations using empirical potentials reveal possible growth mechanisms for molecules within the first layer for both substrates, also showing a significantly higher binding energy for NaCl(001). For KBr, the p(2×2) superstructure is confirmed by the simulations; for NaCl, a less dense, incommensurate superstructure is predicted.

  2. Atomic layer deposition of molybdenum disulfide films using MoF 6 and H 2 S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, Anil U.; Letourneau, Steven; Mandia, David J.

    2018-01-01

    Molybdenum sulfide films were grown by atomic layer deposition on silicon and fused silica substrates using molybdenum hexafluoride (MoF6) and hydrogen sulfide at 200 degrees C. In situ quartz crystal microbalance (QCM) measurements confirmed linear growth at 0.46 angstrom/cycle and self-limiting chemistry for both precursors. Analysis of the QCM step shapes indicated that MoS2 is the reaction product, and this finding is supported by x-ray photoelectron spectroscopy measurements showing that Mo is predominantly in the Mo(IV) state. However, Raman spectroscopy and x-ray diffraction measurements failed to identify crystalline MoS2 in the as-deposited films, and this might result from unreacted MoFxmore » residues in the films. Annealing the films at 350 degrees C in a hydrogen rich environment yielded crystalline MoS2 and reduced the F concentration in the films. Optical transmission measurements yielded a bandgap of 1.3 eV. Finally, the authors observed that the MoS2 growth per cycle was accelerated when a fraction of the MoF6 pulses were substituted with diethyl zinc. Published by the AVS« less

  3. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    PubMed

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  4. Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profijt, H. B.; Sanden, M. C. M. van de; Kessels, W. M. M.

    2013-01-15

    Two substrate-biasing techniques, i.e., substrate-tuned biasing and RF biasing, have been implemented in a remote plasma configuration, enabling control of the ion energy during plasma-assisted atomic layer deposition (ALD). With both techniques, substrate bias voltages up to -200 V have been reached, which allowed for ion energies up to 272 eV. Besides the bias voltage, the ion energy and the ion flux, also the electron temperature, the electron density, and the optical emission of the plasma have been measured. The effects of substrate biasing during plasma-assisted ALD have been investigated for Al{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, and TiO{sub 2}more » thin films. The growth per cycle, the mass density, and the crystallinity have been investigated, and it was found that these process and material properties can be tailored using substrate biasing. Additionally, the residual stress in substrates coated with Al{sub 2}O{sub 3} films varied with the substrate bias voltage. The results reported in this article demonstrate that substrate biasing is a promising technique to tailor the material properties of thin films synthesized by plasma-assisted ALD.« less

  5. Optimization of ion-atomic beam source for deposition of GaN ultrathin films.

    PubMed

    Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš

    2014-08-01

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  6. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    NASA Astrophysics Data System (ADS)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  7. Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors.

    PubMed

    Li, Hao; Gao, Yuanhong; Shao, Youdong; Su, Yantao; Wang, Xinwei

    2015-10-14

    Atomic layer deposition (ALD) of cobalt sulfide (Co9S8) is reported. The deposition process uses bis(N,N'-diisopropylacetamidinato)cobalt(II) and H2S as the reactants and is able to produce high-quality Co9S8 films with an ideal layer-by-layer ALD growth behavior. The Co9S8 films can also be conformally deposited into deep narrow trenches with aspect ratio of 10:1, which demonstrates the high promise of this ALD process for conformally coating Co9S8 on high-aspect-ratio 3D nanostructures. As Co9S8 is a highly promising electrochemical active material for energy devices, we further explore its electrochemical performance by depositing Co9S8 on porous nickel foams for supercapacitor electrodes. Benefited from the merits of ALD for making high-quality uniform thin films, the ALD-prepared electrodes exhibit remarkable electrochemical performance, with high specific capacitance, great rate performance, and long-term cyclibility, which highlights the broad and promising applications of this ALD process for energy-related electrochemical devices, as well as for fabricating complex 3D nanodevices in general.

  8. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  9. Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers

    NASA Astrophysics Data System (ADS)

    Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.

    2006-09-01

    Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.

  10. Epitaxial growth of a mono-crystalline metastable AuIn layer at the Au/InP(001) interface

    NASA Astrophysics Data System (ADS)

    Renda, M.; Morita, K.

    1990-01-01

    Thermal annealing of a gold layer deposited on the InP(001)-p(2×4) surface has been studied in-situ by means of LEED, AES and RBS techniques and by post analysis of RBS-channeling and glancing incidence X-ray diffraction. A clean LEED pattern of p(2×2) spots was observed for the specimen annealed for 10 min at 300°C. The composition ratio of Au/In in the epitaxial compound layer was found to be 49/51 by RBS and several at% of P was also detected by post sputter-AES analysis. It was also found that the epitaxial layer shows a clear channeling dip for an incident ion beam which is aligned along the <001> axis of InP substrate. The glancing incidence X-ray diffraction analysis indicates diffraction peaks from the pseudo-orthorombic phase of AuIn. From these experimental results, it is concluded that the epitaxial Au-compound layer is a mono-crystalline metastable phase of AuIn, of which every three atomic rows of Au or In in the [110] direction would be situated on every four atomic rows in the [010] direction of the In(001) face of the InP crystal.

  11. Atomic Layer Deposition of a Silver Nanolayer on Advanced Titanium Orthopedic Implants Inhibits Bacterial Colonization and Supports Vascularized de Novo Bone Ingrowth.

    PubMed

    Devlin-Mullin, Aine; Todd, Naomi M; Golrokhi, Zahra; Geng, Hua; Konerding, Moritz A; Ternan, Nigel G; Hunt, John A; Potter, Richard J; Sutcliffe, Chris; Jones, Eric; Lee, Peter D; Mitchell, Christopher A

    2017-06-01

    Joint replacement surgery is associated with significant morbidity and mortality following infection with either methicillin-resistant Staphylococcus aureus (MRSA) or Staphylococcus epidermidis. These organisms have strong biofilm-forming capability in deep wounds and on prosthetic surfaces, with 10 3 -10 4 microbes resulting in clinically significant infections. To inhibit biofilm formation, we developed 3D titanium structures using selective laser melting and then coated them with a silver nanolayer using atomic layer deposition. On bare titanium scaffolds, S. epidermidis growth was slow but on silver-coated implants there were significant further reductions in both bacterial recovery (p < 0.0001) and biofilm formation (p < 0.001). MRSA growth was similarly slow on bare titanium scaffolds and not further affected by silver coating. Ultrastructural examination and viability assays using either human bone or endothelial cells, demonstrated strong adherence and growth on titanium-only or silver-coated implants. Histological, X-ray computed microtomographic, and ultrastructural analyses revealed that silver-coated titanium scaffolds implanted into 2.5 mm defects in rat tibia promoted robust vascularization and conspicuous bone ingrowth. We conclude that nanolayer silver of titanium implants significantly reduces pathogenic biofilm formation in vitro, facilitates vascularization and osseointegration in vivo making this a promising technique for clinical orthopedic applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2016-10-01

    Ability to accelerate the morphological evolution of nanoscale precipitates is a fundamental challenge for atomistic simulations. Kinetic Monte Carlo (KMC) methodology is an effective approach for accelerating the evolution of nanoscale systems that are dominated by so-called rare events. The quality and accuracy of energy landscape used in KMC calculations can be significantly improved using DFT-informed interatomic potentials. Using newly developed computational framework that uses molecular simulator LAMMPS as a library function inside KMC solver SPPARKS, we investigated formation and growth of Guiner-Preston (GP) zones in dilute Al-Cu alloys at different temperature and copper concentrations. The KMC simulations with angular dependent potential (ADP) predict formation of coherent disc-shaped monolayers of copper atoms (GPI zones) in early stage. Such monolayers are then gradually transformed into energetically favored GPII phase that has two aluminum layers sandwiched between copper layers. We analyzed the growth kinetics of KMC trajectory using Johnson-Mehl-Avrami (JMA) theory and obtained a phase transformation index close to 1.0. In the presence of grain boundaries, the KMC calculations predict the segregation of copper atoms near the grain boundaries instead of formation of GP zones. The computational framework presented in this work is based on open source potentials and MD simulator and can predict morphological changes during the evolution of the alloys in the bulk and around grain boundaries.

  13. Effect of SiC buffer layer on GaN growth on Si via PA-MBE

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Mizerov, A. M.; Osipov, A. V.; Redkov, A. V.; Telyatnik, R. S.; Timoshnev, S. N.

    2017-11-01

    The study is devoted to comparison of GaN thin films grown on SiC/Si substrates made by the method of atoms substitution with the films grown directly on Si substrates. The growth was performed in a single process via plasma assisted molecular beam epitaxy. The samples were studied via optical microscopy, Raman spectroscopy, ellipsometry, and a comparison of their characteristics was made. Using chemical etching in KOH, the polarity of GaN films grown on SiC/Si and Si substrates was determined.

  14. Pulsed deposition of silicate films

    NASA Astrophysics Data System (ADS)

    He, W.; Solanki, R.; Conley, J. F.; Ono, Y.

    2003-09-01

    A sequential pulsed process is utilized for deposition of nonstoichiometric silicate films without employing an oxidizing agent. The metal precursors were HfCl4, AlCl3, and ZrCl4, as well as Hf(NO3)4 and the silicon source was tris(tert-butoxy)silanol. Unlike atomic layer deposition, the growth per cycle was several monolayers thick, where the enhancement in growth was due to a catalytic reaction. The bulk and electrical properties of these films are similar to those of silicon dioxide. Silicon carbide devices coated with these films show good insulating characteristics.

  15. The Effect of Growth Environment on the Morphological and Extended Defect Evolution in GaN Grown by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Fini, P.; Wu, X.; Tarsa, E.; Golan, Y.; Srikant, V.; Keller, S.; Denbaars, S.; Speck, J.

    1998-08-01

    The evolution of morphology and associated extended defects in GaN thin films grown on sapphire by metalorganic chemical vapor deposition (MOCVD) are shown to depend strongly on the growth environment. For the commonly used two-step growth process, a change in growth parameter such as reactor pressure influences the initial high temperature (HT) GaN growth mechanism. By means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and high resolution X-ray diffraction (HRXRD) measurements, it is shown that the initial density of HT islands on the nucleation layer (NL) and subsequently the threading dislocation density in the HT GaN film may be directly controlled by tailoring the initial HT GaN growth conditions.

  16. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  17. Atomic Layer Deposition of the Solid Electrolyte LiPON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan -Fu

    We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiO tBu), H 2O, trimethylphosphate (TMP), and plasma N 2 ( PN 2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN 2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen aremore » polycrystalline. Lastly, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.« less

  18. Metalorganic chemical vapor deposition growth of InAs/GaSb type II superlattices with controllable AsxSb1-x interfaces

    PubMed Central

    2012-01-01

    InAs/GaSb type II superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition (MOCVD). A plane of mixed As and Sb atoms connecting the InAs and GaSb layers was introduced to compensate the tensile strain created by the InAs layer in the SL. Characterizations of the samples by atomic force microscopy and high-resolution X-ray diffraction demonstrate flat surface morphology and good crystalline quality. The lattice mismatch of approximately 0.18% between the SL and GaSb substrate is small compared to the MOCVD-grown supperlattice samples reported to date in the literature. Considerable optical absorption in 2- to 8-μm infrared region has been realized. PACS: 78.67.Pt; 81.15.Gh; 63.22.Np; 81.05.Ea PMID:22373387

  19. Atomic Layer Deposition of the Solid Electrolyte LiPON

    DOE PAGES

    Kozen, Alexander C.; Pearse, Alexander J.; Lin, Chuan -Fu; ...

    2015-07-09

    We demonstrate an atomic layer deposition (ALD) process for the solid electrolyte lithium phosphorousoxynitride (LiPON) using lithium tert-butoxide (LiO tBu), H 2O, trimethylphosphate (TMP), and plasma N 2 ( PN 2) as precursors. We use in-situ spectroscopic ellipsometry to determine growth rates for process optimization to design a rational, quaternary precursor ALD process where only certain substrate–precursor chemical reactions are favorable. We demonstrate via in-situ XPS tunable nitrogen incorporation into the films by variation of the PN 2 dose and find that ALD films over approximately 4.5% nitrogen are amorphous, whereas LiPON ALD films with less than 4.5% nitrogen aremore » polycrystalline. Lastly, we characterize the ionic conductivity of the ALD films as a function of nitrogen content and demonstrate their functionality on a model battery electrode—a Si anode on a Cu current collector.« less

  20. Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.

    NASA Astrophysics Data System (ADS)

    Yeh, Jyh-Jye

    Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface. Preferential Si dioxide growth on the Au/Si surface is related to the strong distortion of the Si lattice when Au-Si bonds are formed. In comparison, a monolayer of Ni on a Si surface, with its weaker Ni-Si bond, does not enhance oxide formation.

  1. Quantitative Nanomechanical Properties of Multilayer Films Made of Polysaccharides through Spray Assisted Layer-by-Layer Assembly.

    PubMed

    Criado, Miryam; Rebollar, Esther; Nogales, Aurora; Ezquerra, Tiberio A; Boulmedais, Fouzia; Mijangos, Carmen; Hernández, Rebeca

    2017-01-09

    Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.

  2. Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: Effect of precursor decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muneshwar, Triratna, E-mail: muneshwa@ualberta.ca; Cadien, Ken; Shoute, Gem

    2016-09-15

    Although atomic layer deposition (ALD) of ZnO using diethyl zinc (DEZ) precursor has been extensively reported, variation in growth-per-cycle (GPC) values and the range of substrate temperature (T{sub sub}) for ALD growth between related studies remain unexplained. For identical processes, GPC for the characteristic self-limiting ALD growth is expected to be comparable. Hence, a significant variation in GPC among published ZnO ALD studies strongly suggests a concealed non-ALD growth component. To investigate this, the authors report plasma-enhanced ALD growth of ZnO using DEZ precursor and O{sub 2} inductively coupled plasma. The effect of T{sub sub} on ZnO GPC was studiedmore » with deposition cycles (1) 0.02 s–15 s–6 s–15 s, (2) 0.10 s–15 s–15 s–15 s, and (3) 0.20 s–15 s–30 s–15 s, where the cycle parameters t{sub 1}–t{sub 2}–t{sub 3}–t{sub 4} denote duration of DEZ pulse, post-DEZ purge, plasma exposure, and postplasma purge, respectively. The non-ALD growth characteristics observed at T{sub sub} ≥ 60 °C are discussed and attributed to DEZ precursor decomposition. The authors demonstrate ZnO growth at T{sub sub} = 50 °C to be self-limiting with respect to both t{sub 1} and t{sub 3} giving GPC of 0.101 ± 0.001 nm/cycle. The effect of precursor decomposition related (non-ALD) growth at T{sub sub} ≥ 60 °C is illustrated from comparison of optical dielectric function, electrical resistivity, and surface roughness of ZnO films deposited at T{sub sub} = 50, 125, and 200 °C.« less

  3. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part, the effect of ambient air on TMDs will be investigated and partial oxidation of TMDs. In the last part, uniform deposition of dielectric layers on 2D materials will be presented, employing organic seedling layer. Although 2D materials have been expected as next generation semiconductor platform, direct deposition of dielectric is still challenging and induces leakage current commonly, because inertness of their surface resulted from absent of dangling bond. Here, metal phthalocyanine monolayer (ML) is employed as seedling layers and the growth of atomic layer deposition (ALD) dielectric is investigated in each step using STM.

  4. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes

    PubMed Central

    2012-01-01

    Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer. PMID:23181826

  5. Growth and characterization of thin Cu-phthalocyanine films on MgO(001) layer for organic light-emitting diodes.

    PubMed

    Bae, Yu Jeong; Lee, Nyun Jong; Kim, Tae Hee; Cho, Hyunduck; Lee, Changhee; Fleet, Luke; Hirohata, Atsufumi

    2012-11-26

    Surface morphology and thermal stability of Cu-phthalocyanine (CuPc) films grown on an epitaxially grown MgO(001) layer were investigated by using atomic force microscope and X-ray diffractometer. The (002) textured β phase of CuPc films were prepared at room temperature beyond the epitaxial MgO/Fe/MgO(001) buffer layer by the vacuum deposition technique. The CuPc structure remained stable even after post-annealing at 350°C for 1 h under vacuum, which is an important advantage of device fabrication. In order to improve the device performance, we investigated also current-voltage-luminescence characteristics for the new top-emitting organic light-emitting diodes with different thicknesses of CuPc layer.

  6. High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange

    NASA Astrophysics Data System (ADS)

    Murata, H.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K.

    2017-12-01

    The Ni-induced layer-exchange growth of amorphous carbon is a unique method used to fabricate uniform multilayer graphene (MLG) directly on an insulator. To improve the crystal quality of MLG, we prepare AlOx or SiO2 interlayers between amorphous C and Ni layers, which control the extent of diffusion of C atoms into the Ni layer. The growth morphology and Raman spectra observed from MLG formed by layer exchange strongly depend on the material type and thickness of the interlayers; a 1-nm-thick AlOx interlayer is found to be ideal for use in experiments. Transmission electron microscopy and electron energy-loss spectra reveal that the crystal quality of the resulting MLG is much higher than that of a sample without an interlayer. The grain size reaches a few μm, leading to an electrical conductivity of 1290 S/cm. The grain size and the electrical conductivity are the highest among MLG synthesized using a solid-phase reaction including metal-induced crystallization. The direct synthesis of uniform, high-quality MLG on arbitrary substrates will pave the way for advanced electronic devices integrated with carbon materials.

  7. On atomic structure of Ge huts growing on the Ge/Si(001) wetting layer

    NASA Astrophysics Data System (ADS)

    Arapkina, Larisa V.; Yuryev, Vladimir A.

    2013-09-01

    Structural models of growing Ge hut clusters—pyramids and wedges—are proposed on the basis of data of recent STM investigations of nucleation and growth of Ge huts on the Si(001) surface in the process of molecular beam epitaxy. It is shown that extension of a hut base along ⟨110⟩ directions goes non-uniformly during the cluster growth regardless of its shape. Growing pyramids, starting from the second monolayer, pass through cyclic formation of slightly asymmetrical and symmetrical clusters, with symmetrical ones appearing after addition of every fourth monolayer. We suppose that pyramids of symmetrical configurations composed by 2, 6, 10, etc., monolayers over the wetting layer are more stable than asymmetrical ones. This might explain less stability of pyramids in comparison with wedges in dense arrays forming at low temperatures of Ge deposition. Possible nucleation processes of pyramids and wedges on wetting layer patches from identical embryos composed by 8 dimers through formation of 1 monolayer high 16-dimer nuclei different only in their symmetry is discussed. Schematics of these processes are presented. It is concluded from precise STM measurements that top layers of wetting layer patches are relaxed when huts nucleate on them.

  8. On atomic structure of Ge huts growing on the Ge/Si(001) wetting layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arapkina, Larisa V.; Yuryev, Vladimir A.

    Structural models of growing Ge hut clusters—pyramids and wedges—are proposed on the basis of data of recent STM investigations of nucleation and growth of Ge huts on the Si(001) surface in the process of molecular beam epitaxy. It is shown that extension of a hut base along <110> directions goes non-uniformly during the cluster growth regardless of its shape. Growing pyramids, starting from the second monolayer, pass through cyclic formation of slightly asymmetrical and symmetrical clusters, with symmetrical ones appearing after addition of every fourth monolayer. We suppose that pyramids of symmetrical configurations composed by 2, 6, 10, etc., monolayersmore » over the wetting layer are more stable than asymmetrical ones. This might explain less stability of pyramids in comparison with wedges in dense arrays forming at low temperatures of Ge deposition. Possible nucleation processes of pyramids and wedges on wetting layer patches from identical embryos composed by 8 dimers through formation of 1 monolayer high 16-dimer nuclei different only in their symmetry is discussed. Schematics of these processes are presented. It is concluded from precise STM measurements that top layers of wetting layer patches are relaxed when huts nucleate on them.« less

  9. Area-selective atomic layer deposition of Ru on electron-beam-written Pt(C) patterns versus SiO2 substratum

    NASA Astrophysics Data System (ADS)

    Junige, Marcel; Löffler, Markus; Geidel, Marion; Albert, Matthias; Bartha, Johann W.; Zschech, Ehrenfried; Rellinghaus, Bernd; van Dorp, Willem F.

    2017-09-01

    Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.

  10. Real-time spectro-ellipsometric approach to distinguish between two-dimensional Ge layer growth and Ge dot formation on SiO2 substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2018-04-01

    Morphological evolution of Ge layers on SiO2 substrates grown by photo-excited chemical vapor deposition from GeH4 was monitored in real time by recording (Ψ, Δ) angles of spectroscopic ellipsometry and ex-situ analyzed by atomic force microscopy (AFM). Distinct Ψ-Δ trajectory shapes were demonstrated to discriminate the two-dimensional (2D) and three-dimensional (3D) growth modes. While the trajectory of 2D growth is characterized by a one-turn spiral, that of 3D growth consisted of three sections corresponding to initial wetting of the SiO2 surface, creation of nucleation centers, and dot growth. The critical point where the system turns into 2D or 3D growth can be in situ identified in terms of the directions of the Ψ-Δ trajectories. AFM images revealed characteristic changes in the microstructure, including self-assembling dots and dots merging with one another. While the root-mean-square surface roughness increased linearly against film thickness, the maximum peak-to-valley height deviated once from linear dependence and later returned back to it, which reflected coarsening of dots and embedding of valleys between dots.

  11. Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition.

    PubMed

    Schlicht, Stefanie; Haschke, Sandra; Mikhailovskii, Vladimir; Manshina, Alina; Bachmann, Julien

    2018-05-01

    Nanoporous iridium electrodes are prepared and electrochemically investigated towards the water oxidation (oxygen evolution) reaction. The preparation is based on 'anodic' aluminum oxide templates, which provide straight, cylindrical nanopores. Their walls are coated using atomic layer deposition (ALD) with a newly developed reaction which results in a metallic iridium layer. The ALD film growth is quantified by spectroscopic ellipsometry and X-ray reflectometry. The morphology and composition of the electrodes are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Their catalytic activity is quantified for various pore geometries by cyclic voltammetry, steady-state electrolysis, and electrochemical impedance spectroscopy. With an optimal pore length of L ≈17-20 μm, we achieve current densities of J =0.28 mA cm -2 at pH 5 and J =2.4 mA cm -2 at pH 1. This platform is particularly competitive for achieving moderate current densities at very low overpotentials, that is, for a high degree of reversibility in energy storage.

  12. Modified Stranski-Krastanov growth in Ge/Si heterostructures via nanostenciled pulsed laser deposition.

    PubMed

    MacLeod, J M; Cojocaru, C V; Ratto, F; Harnagea, C; Bernardi, A; Alonso, M I; Rosei, F

    2012-02-17

    The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski-Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and μ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.

  13. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    PubMed

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  14. Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Guo-Wei; Xu, Ying-Qiang; Xing, Jun-Liang; Xiang, Wei; Tang, Bao; Zhu, Yan; Ren, Zheng-Wei; He, Zhen-Hong; Niu, Zhi-Chuan

    2013-07-01

    InAs/AlSb deep quantum well (QW) structures with high electron mobility were grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates. AlSb and Al0.75Ga0.25Sb buffer layers were grown to accommodate the lattice mismatch (7%) between the InAs/AlSb QW active region and GaAs substrate. Transmission electron microscopy shows abrupt interface and atomic force microscopy measurements display smooth surface morphology. Growth conditions of AlSb and Al0.75Ga0.25Sb buffer were optimized. Al0.75Ga0.25Sb is better than AlSb as a buffer layer as indicated. The sample with optimal Al0.75Ga0.25Sb buffer layer shows a smooth surface morphology with root-mean-square roughness of 6.67 Å. The electron mobility has reached as high as 27 000 cm2/Vs with a sheet density of 4.54 × 1011/cm2 at room temperature.

  15. Two-Dimensional Superconductivity in the Cuprates Revealed by Atomic-Layer-by- Layer Molecular Beam Epitaxy

    DOE PAGES

    A. T. Bollinger; Bozovic, I.

    2016-08-12

    Various electronic phases displayed by cuprates that exhibit high temperature superconductivity continue to attract much interest. We provide a short review of several experiments that we have performed aimed at investigating the superconducting state in these compounds. Measurements on single-phase films, bilayers, and superlattices all point to the conclusion that the high-temperature superconductivity in these materials is an essentially quasi-two dimensional phenomenon. With proper control over the film growth, high-temperature superconductivity can exist in a single copper oxide plane with the critical temperatures as high as that achieved in the bulk samples.

  16. Effects of in-situ UV irradiation on the uniformity and optical properties of GaAsBi epi-layers grown by MBE

    NASA Astrophysics Data System (ADS)

    Beaton, Daniel A.; Steger, M.; Christian, T.; Mascarenhas, A.

    2018-02-01

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs1-xBix epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  17. Brine rejection from freezing salt solutions: a molecular dynamics study.

    PubMed

    Vrbka, Lubos; Jungwirth, Pavel

    2005-09-30

    The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.

  18. Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.

    2018-03-01

    Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.

  19. Perspective: Oxide molecular-beam epitaxy rocks!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlom, Darrell G., E-mail: schlom@cornell.edu

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  20. Effects of in-situ UV irradiation on the uniformity and optical properties of GaAsBi epi-layers grown by MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaton, Daniel A.; Steger, M.; Christian, T.

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  1. Effects of in-situ UV irradiation on the uniformity and optical properties of GaAsBi epi-layers grown by MBE

    DOE PAGES

    Beaton, Daniel A.; Steger, M.; Christian, T.; ...

    2017-12-14

    In-situ UV illumination influences the incorporation dynamics of bismuth adatom in GaAs. Here we use the inherent variation of the fluence across the sample to explore the role of the incident irradiation. With illumination it is found that steady state growth processes are achieved more quickly resulting in more abrupt interfaces, as well as uniform GaAs 1-xBi x epi-layers. Comparisons of low temperature photoluminescence spectra show an increasing density of clusters of incorporated bismuth atoms with decreasing incident fluence.

  2. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bogdan

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grownmore » with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.« less

  3. Metallorganic chemical vapor deposition and atomic layer deposition approaches for the growth of hafnium-based thin films from dialkylamide precursors for advanced CMOS gate stack applications

    NASA Astrophysics Data System (ADS)

    Consiglio, Steven P.

    To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of the properties of conductive HfN grown via plasma-assisted atomic layer deposition (PA-ALD) using tetrakis(ethylmethylamido)hafnium on a modified commercially available wafer processing tool. Key properties of these materials for use as gate stack replacement materials are addressed and future directions for further characterization and novel material investigations are proposed.

  4. Experimental study of the effect of local atomic ordering on the energy band gap of melt grown InGaAsN alloys

    NASA Astrophysics Data System (ADS)

    Milanova, M.; Donchev, V.; Kostov, K. L.; Alonso-Álvarez, D.; Valcheva, E.; Kirilov, K.; Asenova, I.; Ivanov, I. G.; Georgiev, S.; Ekins-Daukes, N.

    2017-08-01

    We present a study of melt grown dilute nitride InGaAsN layers by x-ray photoelectron spectroscopy (XPS), Raman and photoluminescence (PL) spectroscopy. The purpose of the study is to determine the degree of atomic ordering in the quaternary alloy during the epitaxial growth at near thermodynamic equilibrium conditions and its influence on band gap formation. Despite the low In concentration (˜3%) the XPS data show a strong preference toward In-N bonding configuration in the InGaAsN samples. Raman spectra reveal that most of the N atoms are bonded to In instead of Ga atoms and the formation of N-centred In3Ga1 clusters. PL measurements reveal smaller optical band gap bowing as compared to the theoretical predictions for random alloy and localised tail states near the conduction band minimum.

  5. Atomic level characterization of cadmium selenide nanocrystal systems using atomic number contrast scanning transmission electron microscopy and Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    McBride, James R.

    This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.

  6. AxBAxB… pulsed atomic layer deposition: Numerical growth model and experiments

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2016-02-01

    Atomic layer deposition (ALD) is widely used for the fabrication of advanced semiconductor devices and related nanoscale structures. During ALD, large precursor doses (>1000 L per pulse) are often required to achieve surface saturation, of which only a small fraction is utilized in film growth while the rest is pumped from the system. Since the metal precursor constitutes a significant cost of ALD, strategies to enhance precursor utilization are essential for the scaling of ALD processes. In the precursor reaction step, precursor physisorption is restricted by steric hindrance (mA1) from ligands on the precursor molecules. On reaction, some of these ligands are removed as by-products resulting in chemisorbed species with reduced steric hindrance (mA1 → mA2, where mA2 < mA1) and some of the initially hindered surface reaction sites becoming accessible for further precursor physisorption. To utilize these additional reaction sites, we propose a generalized AxBAxB… pulsed deposition where the total precursor dose (ΦA) is introduced as multiple x (x > 1, x ∈ I) short-pulses rather than a single pulse. A numerical first-order surface reaction kinetics growth model is presented and applied to study the effect of AxBAxB… pulsed ALD on the growth per cycle (GPC). The model calculations predict higher GPC for AxBAxB… pulsing than with ABAB… deposition. In agreement with the model predictions, with AxBAxB… pulsed deposition, the GPC was found to increase by ˜46% for ZrN plasma enhanced ALD (PEALD), ˜49% for HfO2 PEALD, and ˜8% for thermal Al2O3 ALD with respect to conventional ABAB… pulsed growth.

  7. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  8. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less

  9. Extremely small bandgaps, engineered by controlled multi-scale ordering in InAsSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarney, W. L.; Svensson, S. P.; Lin, Y.

    2016-06-07

    The relationship between the effective bandgap and the crystalline structure in ordered InAsSb material has been studied. Modulation of the As/Sb ratio was induced along the growth direction during molecular beam epitaxy, producing a strained layer superlattice. To enable the use of concentration ratios near unity in both layers in the period, the structures were grown with negligible net strain on a virtual substrate with a lattice constant considerably larger than that of GaSb. The bandgap line-up of InAsSb layers with different compositions is such that a type II superlattice is formed, which exhibits smaller bandgaps than either of themore » two constituents. It can also be smaller than the possible minimum direct-bandgap of the alloy. From observations of CuPt ordering in bulk layers with small amounts of strain of both signs, we postulate that strain is the main driving force for atomic ordering in InAsSb. Because the modulated structures exhibit small but opposing amounts of strain, both layers in the period exhibit ordering at the atomic scale throughout the structure. Since the strain can be controlled, the ordering can be controlled and sustained for arbitrary thick layers, unlike the situation in uniform bulk layers where the residual strain eventually leads to dislocation formation. This offers a unique way of using ordering at two different scales to engineer the band-structure.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, M. Anwar; Center for Crystal Science and Technology, University of Yamanashi, Miyamae 7-32, Kofu, Yamanashi 400-8511; Tanaka, Isao

    We studied thermoelectric properties of YB{sub 41}Si{sub 1.3} single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers,more » with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also. - Graphical abstract: The growth direction ([510]) was determined for the first time in YB{sub 41}Si{sub 1.3} single crystals and revealed an interesting layered feature of boron clusters and metal atoms, along which the electrical conductivity and thermoelectric power factor was strongly enhanced. - Highlights: • We have grown YB{sub 41}Si{sub 1.3} single crystals by the floating zone method. • Growth direction of [510] determined for first time in REB{sub 41}Si{sub 1.2}. • Electrical resistivity was strongly anisotropic with possible enhancement along metal layers. • The obtained power factor along [510] is 3.6 times higher than that along [052].« less

  11. Molecular dynamics growth modeling of InAs1-xSbx-based type-II superlattice

    NASA Astrophysics Data System (ADS)

    Ciani, Anthony J.; Grein, Christoph H.; Irick, Barry; Miao, Maosheng; Kioussis, Nicholas

    2017-09-01

    Type-II strained-layer superlattices (T2SL) based on InAs1-xSbx are a promising photovoltaic detector material technology for thermal imaging; however, Shockley-Read-Hall recombination and generation rates are still too high for thermal imagers based on InAs1-xSbx T2SL to reach their ideal performance. Molecular dynamics simulations using the Stillinger-Weber (SW) empirical potentials are a useful tool to study the growth of tetrahedral coordinated crystals and the nonequilibrium formation of defects within them, including the long-range effects of strain. SW potentials for the possible atomic interactions among {Ga, In, As, Sb} were developed by fitting to ab initio calculations of elastically distorted zinc blende and diamond unit cells. The SW potentials were tested against experimental observations of molecular beam epitaxial (MBE) growth and then used to simulate the MBE growth of InAs/InAs0.5Sb0.5 T2SL on GaSb substrates over a range of processes parameters. The simulations showed and helped to explain Sb cross-incorporation into the InAs T2SL layers, Sb segregation within the InAsSb layers, and identified medium-range defect clusters involving interstitials and their induction of interstitial-vacancy pairs. Defect formation was also found to be affected by growth temperature and flux stoichiometry.

  12. A Theoretical Search for Supervelocity Semiconductors

    DTIC Science & Technology

    1992-10-01

    interfaces, doping control and compositional uniformity with atomic level dimensions. The development of ALE may very well prove to be the ultimate growth...pseudomorphic or strained-layer devices. These structures permit extended compositional ranges and, thus, have a number of potential advantages such as...in silicon devices For the past fifteen years, the silicon MOSFET industry has been dealing increasingly with prob- lems related to hot electron

  13. Atomic force microscopy of the intervessel pit membrane in the stem of Sapium sebiferum (Euphorbiacea)

    Treesearch

    Thomas C. Pesacreta; Leslie H. Groom; Timothy G. Rials

    2005-01-01

    Sapwood and juvenile wood of Sapium sebiferum (Euphorbiacea) was collected during 2000-2002. In air-dried vessel elements, the surface of pit membranes (PMs) in the outermost growth ring was coated with plaque-like or interstitial material that was 2-5 nm thick. This coating was phase dark and overlaid a phase bright layer of globules and...

  14. Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Choi, Sang; King, Glen; Park, Yeonjoon

    2009-01-01

    SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than plus or minus 10 deg.) sapphire (0001) substrate can be used to improve epitaxial relationships better by providing attractive atomic steps in the epitaxial process.

  15. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    PubMed

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  16. Atomic layer deposition of boron-containing films using B{sub 2}F{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mane, Anil U., E-mail: amane@anl.gov; Elam, Jeffrey W.; Goldberg, Alexander

    2016-01-15

    Ultrathin and conformal boron-containing atomic layer deposition (ALD) films could be used as a shallow dopant source for advanced transistor structures in microelectronics manufacturing. With this application in mind, diboron tetrafluoride (B{sub 2}F{sub 4}) was explored as an ALD precursor for the deposition of boron containing films. Density functional theory simulations for nucleation on silicon (100) surfaces indicated better reactivity of B{sub 2}F{sub 4} in comparison to BF{sub 3}. Quartz crystal microbalance experiments exhibited growth using either B{sub 2}F{sub 4}-H{sub 2}O for B{sub 2}O{sub 3} ALD, or B{sub 2}F{sub 4}-disilane (Si{sub 2}H{sub 6}) for B ALD, but in both cases,more » the initial growth per cycle was quite low (≤0.2 Å/cycle) and decreased to near zero growth after 8–30 ALD cycles. However, alternating between B{sub 2}F{sub 4}-H{sub 2}O and trimethyl aluminum (TMA)-H{sub 2}O ALD cycles resulted in sustained growth at ∼0.65 Å/cycle, suggesting that the dense –OH surface termination produced by the TMA-H{sub 2}O combination enhances the uptake of B{sub 2}F{sub 4} precursor. The resultant boron containing films were analyzed for composition by x-ray photoelectron spectroscopy, and capacitance measurements indicated an insulating characteristic. Finally, diffused boron profiles less than 100 Å were obtained after rapid thermal anneal of the boron containing ALD film.« less

  17. Understanding arsenic incorporation in CdTe with atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealingmore » treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.« less

  18. Understanding arsenic incorporation in CdTe with atom probe tomography

    DOE PAGES

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; ...

    2018-03-22

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealingmore » treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.« less

  19. Atomic structures of Ruddlesden-Popper faults in LaCoO3/SrRuO3 multilayer thin films induced by epitaxial strain

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhang, Hui; Shen, Xi; Guan, Xiangxiang; Yao, Yuan; Wang, Yanguo; Sun, Jirong; Yu, Richeng

    2018-05-01

    In this paper, scanning transmission electron microscopy is used to study the microstructures of the defects in LaCoO3/SrRuO3 multilayer films grown on the SrTiO3 substrates, and these films have different thickness of SrRuO3 (SRO) layers. Several types of Ruddlesden-Popper (R.P.) faults at an atomic level are found, and these chemical composition fluctuations in the growth process are induced by strain fields originating from the film-film and film-substrate lattice mismatches. Furthermore, we propose four types of structural models based on the atomic arrangements of the R.P. planar faults, which severely affect the functional properties of the films.

  20. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGES

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observedmore » that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.« less

  2. Atomistic mechanisms for bilayer growth of graphene on metal substrates

    DOE PAGES

    Chen, Wei; Cui, Ping; Zhu, Wenguang; ...

    2015-01-08

    Epitaxial growth on metal substrates has been shown to be the most powerful approach in producing large-scale high-quality monolayer graphene, yet it remains a major challenge to realize uniform bilayer graphene growth. Here we carry out a comparative study of the atomistic mechanisms for bilayer graphene growth on the (111) surfaces of Cu and Ni, using multiscale approaches combining first-principles calculations and rate-equation analysis. We first show that the relatively weak graphene-Cu interaction enhances the lateral diffusion and effective nucleation of C atoms underneath the graphene island, thereby making it more feasible to grow bilayer graphene on Cu. In contrast,more » the stronger graphene-Ni interaction suppresses the lateral mobility and dimerization of C atoms underneath the graphene, making it unlikely to achieve controlled growth of bilayer graphene on Ni. We then determine the critical graphene size beyond which nucleation of the second layer will take place. Intriguingly, the critical size exhibits an effective inverse "Ehrlich-Schwoebel barrier" effect, becoming smaller for faster C migration from the Cu surface to the graphene-Cu interface sites across the graphene edge. Lastly, these findings allow us to propose a novel alternating growth scheme to realize mass production of bilayer graphene.« less

  3. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG

    NASA Astrophysics Data System (ADS)

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2016-01-01

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  4. Orientation-dependent energy level alignment and film growth of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on HOPG.

    PubMed

    Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli

    2016-01-21

    Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.

  5. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes.

    PubMed

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F; Ajayan, Pulickel M; Harutyunyan, Avetik R

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.

  6. Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes

    PubMed Central

    Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F.; Ajayan, Pulickel M.; Harutyunyan, Avetik R.

    2013-01-01

    Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications. PMID:23712556

  7. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film.more » The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.« less

  8. Pulsed laser deposition for the synthesis of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Mohammed, A.; Nakamura, H.; Wochner, P.; Ibrahimkutty, S.; Schulz, A.; Müller, K.; Starke, U.; Stuhlhofer, B.; Cristiani, G.; Logvenov, G.; Takagi, H.

    2017-08-01

    Atomically thin films of WSe2 from one monolayer up to 8 layers were deposited on an Al2O3 r-cut ( 1 1 ¯ 02 ) substrate using a hybrid-Pulsed Laser Deposition (PLD) system where a laser ablation of pure W is combined with a flux of Se. Specular X-ray reflectivities of films were analysed and were consistent with the expected thickness. Raman measurement and atomic force microscopy confirmed the formation of a WSe2 monolayer and its spatial homogeneity over the substrate. Grazing-incidence X-ray diffraction uncovered an in-plane texture in which WSe2 [ 10 1 ¯ 0 ] preferentially aligned with Al2O3 [ 11 2 ¯ 0 ]. These results present a potential to create 2D transition metal dichalcogenides by PLD, where the growth kinetics can be steered in contrast to common growth techniques like chemical vapor deposition and molecular beam epitaxy.

  9. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE PAGES

    Perret, Edith; Xu, Dongwei; Highland, M. J.; ...

    2017-12-04

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  10. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    PubMed

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  11. Island dynamics and anisotropy during vapor phase epitaxy of m-plane GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perret, Edith; Xu, Dongwei; Highland, M. J.

    Using in situ grazing-incidence x-ray scattering, we have measured the diffuse scattering from islands that form during layer-by-layer growth of GaN by metal-organic vapor phase epitaxy on the (10more » $$\\bar{1}$$0) m-plane surface. The diffuse scattering is extended in the (0001) in-plane direction in reciprocal space, indicating a strong anisotropy with islands elongated along [1$$\\bar{2}$$10] and closely spaced along [0001]. This is confirmed by atomic force microscopy of a quenched sample. Islands were characterized as a function of growth rate F and temperature. Furthermore, the island spacing along [0001] observed during the growth of the first monolayer obeys a power-law dependence on growth rate F -n, with an exponent n=0.25±0.02. Our results are in agreement with recent kinetic Monte Carlo simulations, indicating that elongated islands result from the dominant anisotropy in step edge energy and not from surface diffusion anisotropy. The observed power-law exponent can be explained using a simple steady-state model, which gives n = 1/4.« less

  12. Growth temperature optimization of GaAs-based In0.83Ga0.17As on InxAl1-xAs buffers

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Gu, Y.; Zhang, Y. G.; Ma, Y. J.; Du, B.; Zhang, J.; Ji, W. Y.; Shi, Y. H.; Zhu, Y.

    2018-04-01

    Improved quality of gas source molecular beam epitaxy grown In0.83Ga0.17As layer on GaAs substrate was achieved by adopting a two-step InxAl1-xAs metamorphic buffer at different temperatures. With a high-temperature In0.83Al0.17As template following a low-temperature composition continuously graded InxAl1-xAs (x = 0.05-0.86) buffer, better structural, optical and electrical properties of succeeding In0.83Ga0.17As were confirmed by atomic force microscopy, photoluminescence and Hall-effect measurements. Cross-sectional transmission electron microscopy revealed significant effect of the two-step temperature grown InAlAs buffer layers on the inhibition of threading dislocations due to the deposition of high density nuclei on GaAs substrate at the low growth temperature. The limited reduction for the dark current of GaAs-based In0.83Ga0.17As photodetectors on the two-step temperature grown InxAl1-xAs buffer layers was ascribed to the contribution of impurities caused by the low growth temperature of InAlAs buffers.

  13. Mitigating leaks in membranes

    DOEpatents

    Karnik, Rohit N.; Bose, Suman; Boutilier, Michael S.H.; Hadjiconstantinou, Nicolas G.; Jain, Tarun Kumar; O'Hern, Sean C.; Laoui, Tahar; Atieh, Muataz A.; Jang, Doojoon

    2018-02-27

    Two-dimensional material based filters, their method of manufacture, and their use are disclosed. In one embodiment, a membrane may include an active layer including a plurality of defects and a deposited material associated with the plurality of defects may reduce flow therethrough. Additionally, a majority of the active layer may be free from the material. In another embodiment, a membrane may include a porous substrate and an atomic layer deposited material disposed on a surface of the porous substrate. The atomic layer deposited material may be less hydrophilic than the porous substrate and an atomically thin active layer may be disposed on the atomic layer deposited material.

  14. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    NASA Astrophysics Data System (ADS)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth of N-polar InGaN by MOCVD is challenging. These challenges arise from the lack of available native substrates suitable for N-polar film growth. As a result, InGaN layers are conventionally grown in the III-polar direction (i.e. III-polar InGaN) and typically grow under considerable amounts of stress on III-polar GaN base layers. While the structure-property relations of thin III-polar InGaN layers have been widely studied in quantum well structures, insight into the growth of thick films and N-polar InGaN layers have been limited. Therefore, this dissertation research compared the growth of both thick III-polar and N-polar InGaN films grown on optimized GaN base layers. III-polar InGaN films were rough and exhibited a high density of V-pits, while the growth of thick N-polar InGaN films showed improved structural quality and low surface roughness. The results of this dissertation work thereby provide an alternative route to the fabrication of thick InGaN films for potential use in solar cells as well as strain reducing schemes for deep-green and red light emitters. Moreover, this dissertation investigated stress relaxation in thick N-polar films using in situ reflectivity and curvature measurements. The results showed that stress relaxation in N-polar InGaN significantly differed from III-polar InGaN due to the absence of V-pits and it was hypothesized that plastic relaxation in N-polar InGaN could occur by dislocation glide, which typically is kinetically limited at such low growth temperatures required for InGaN. The second part of this dissertation research work focused on buffer free growth of GaN directly on SiC and on epitaxial graphene produced on SiC for potential vertical devices. The studies presented in this dissertation work on the growth of GaN directly on SiC compared the stress evolution of GaN films grown with and without an AlN buffer layer. Films grown directly on SiC showed reduced threading dislocation densities and improved surface roughness when compared to the growth of GaN on an AlN buffer layer. The dislocations in the GaN films grown di

  15. Homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100): An in-situ STM study

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo

    2015-01-01

    A study of homoepitaxial electrodeposition on reconstructed and unreconstructed Au(100) surfaces is presented. The growth behavior has been investigated by in-situ scanning tunneling microscopy for Au(100) in contact with 0.1 M H2SO4 + 5 μM K[AuCl4]. It is shown that the initial surface structure is decisive for the emerging Au structures, giving rise to clearly different surface morphologies for electro-crystallization of Au on the unreconstructed and on the reconstructed Au(100) surface. A layer-by-layer growth is observed at more positive potentials for unreconstructed Au(100). The electrodeposition proceeds initially by the formation of Au islands followed by island coalescence due to the high mobility of surface atoms. Monatomic recessed stripes are formed as a result of the coalescence of deposited Au islands. At more negative potentials, the growth of Au proceeds strongly anisotropic on the reconstructed surface by the formation of reconstructed elongated islands.

  16. Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.

  17. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhang; He, Wenjie; Duan, Chenlong

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation betweenmore » the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.« less

  18. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  19. Fabrication of GaAs/Al0.3Ga0.7As multiple quantum well nanostructures on (100) si substrate using a 1-nm InAs relief layer.

    PubMed

    Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J

    2014-04-01

    Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.

  20. Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Yousefi, Mohammad; Meskinfam, Masoumeh

    2012-06-01

    The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers.

Top