Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas
NASA Astrophysics Data System (ADS)
Lou, Janet W.; Cranch, Geoffrey A.
2018-02-01
The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.
Semiempirical studies of atomic structure. Progress report, 1 July 1991--1 October 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, L.J.
1993-10-01
Atomic structure/properties of highly ionized many-electron systems are studied using sensitive semiempirical data systematization, experiment, and theory. Measurements are made using fast ion beams, combined with data from laser- and tokamak-produced plasmas, astrophysical sources, and light sources. Results during this 3-y period are discussed under the following headings: Invited review article (decay rates in systems of negative ions to very heavy one-electron ions), fast ion beam lifetime measurements (Pt sequence, neutral carbon, Na sequence), multiplexed decay curve measurements, multiplexed decay curve measurements (lifetimes of alkali-like resonance transitions, spin-forbidden intercombination lines), lifetimes in Ne sequence, lifetimes for H and He sequences,more » data-based semiempirical formulations, calculations, and accelerator studies.« less
Theory of Positron Annihilation in Helium-Filled Bubbles in Plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterne, P A; Pask, J E
2003-02-13
Positron annihilation lifetime spectroscopy is a sensitive probe of vacancies and voids in materials. This non-destructive measurement technique can identify the presence of specific defects in materials at the part-per-million level. Recent experiments by Asoka-Kumar et al. have identified two lifetime components in aged plutonium samples--a dominant lifetime component of around 182 ps and a longer lifetime component of around 350-400ps. This second component appears to increase with the age of the sample, and accounts for only about 5 percent of the total intensity in 35 year-old plutonium samples. First-principles calculations of positron lifetimes are now used extensively to guidemore » the interpretation of positron lifetime data. At Livermore, we have developed a first-principles finite-element-based method for calculating positron lifetimes for defects in metals. This method is capable of treating system cell sizes of several thousand atoms, allowing us to model defects in plutonium ranging in size from a mono-vacancy to helium-filled bubbles of over 1 nm in diameter. In order to identify the defects that account for the observed lifetime values, we have performed positron lifetime calculations for a set of vacancies, vacancy clusters, and helium-filled vacancy clusters in delta-plutonium. The calculations produced values of 143ps for defect-free delta-Pu and 255ps for a mono-vacancy in Pu, both of which are inconsistent with the dominant experimental lifetime component of 182ps. Larger vacancy clusters have even longer lifetimes. The observed positron lifetime is significantly shorter than the calculated lifetimes for mono-vacancies and larger vacancy clusters, indicating that open vacancy clusters are not the dominant defect in the aged plutonium samples. When helium atoms are introduced into the vacancy cluster, the positron lifetime is reduced due to the increased density of electrons available for annihilation. For a mono-vacancy in Pu containing one helium atom, the calculated lifetime is 190 ps, while a di-vacancy containing two helium atoms has a positron lifetime of 205 ps. In general, increasing the helium density in a vacancy cluster or He-filled bubble reduces the positron lifetime, so that the same lifetime value can arise fi-om a range of vacancy cluster sizes with different helium densities. In order to understand the variation of positron lifetime with vacancy cluster size and helium density in the defect, we have performed over 60 positron lifetime calculations with vacancy cluster sizes ranging from 1 to 55 vacancies and helium densities ranging fi-om zero to five helium atoms per vacancy. The results indicate that the experimental lifetime of 182 ps is consistent with the theoretical value of 190 ps for a mono-vacancy with a single helium atom, but that slightly better agreement is obtained for larger clusters of 6 or more vacancies containing 2-3 helium atoms per vacancy. For larger vacancy clusters with diameters of about 3-5 nm or more, the annihilation with helium electrons dominates the positron annihilation rate; the observed lifetime of 180ps is then consistent with a helium concentration in the range of 3 to 3.5 Hehacancy, setting an upper bound on the helium concentration in the vacancy clusters. In practice, the single lifetime component is most probably associated with a family of helium-filled bubbles rather than with a specific unique defect size. The longer 350-400ps lifetime component is consistent with a relatively narrow range of defect sizes and He concentration. At zero He concentration, the lifetime values are matched by small vacancy clusters containing 6-12 vacancies. With increasing vacancy cluster size, a small amount of He is required to keep the lifetime in the 350-400 ps range, until the value saturates for larger helium bubbles of more than 50 vacancies (bubble diameter > 1.3 nm) at a helium concentration close to 1 He/vacancy. These results, taken together with the experimental data, indicate that the features observed in TEM data by Schwartz et al are not voids, but are in fact helium-filled bubbles with a helium pressure of around 2-3 helium atoms per vacancy, depending on the bubble size. This is consistent with the conclusions of recently developed models of He-bubble growth in aged plutonium.« less
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb; John, Sajeev
2010-02-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence
NASA Technical Reports Server (NTRS)
O'Brian, T. R.; Lawler, J. E.
1992-01-01
Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.
Last results of DIRAC experiment on study hadronic hydrogen-like atoms at PS CERN
NASA Astrophysics Data System (ADS)
Afanasyev, Leonid
2016-04-01
Results on study the hydrogen-like atoms consisting of charged pions and Kaons are presented. The first measurement of K+ π and Kπ+ atoms lifetime was fulfilled basing on identification of 178 ± 49 Kπ pairs from the atom breakup. The measured lifetime is τ = (2.5-1.8+3.0) fs. This value is dictated by properties of the strong πK-interaction at low energy, namely S-wave πK scattering length. The first experimental value of the isospin-odd combination of S-wave πK scattering length was obtained | a0- | =1/3 |a/2 -a3/2 | = (0.11-0.04+0.09) Mπ-1 (ai for isospin I). A dedicated experiment with π+ π atoms allows further study of these already observed atoms. The preliminary results on observation of the long-lived (metastable) states of π+ π atoms are presented. The observation of long-lived states opens the possibility to measure the energy difference between ns and np states - the Lamb shift.
An atomic model for neutral and singly ionized uranium
NASA Technical Reports Server (NTRS)
Maceda, E. L.; Miley, G. H.
1979-01-01
A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.
Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina
2017-12-01
Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senaratne, Ruwan, E-mail: rsenarat@physics.ucsb.edu; Rajagopal, Shankari V.; Geiger, Zachary A.
We present a simple and inexpensive design for a multichannel effusive oven nozzle which provides improved atomic beam collimation and thus extended oven lifetimes. Using this design, we demonstrate an atomic lithium source suitable for trapped-atom experiments. At a nozzle temperature of 525 °C, the collimated atomic beam flux directly after the nozzle is 1.2 × 10{sup 14} atoms/s with a peak beam intensity greater than 5.0 × 10{sup 16} atoms/s/sr. This suggests an oven lifetime of several decades of continuous operation.
Atomic oxygen effects on candidate coatings for long-term spacecraft in low earth orbit
NASA Technical Reports Server (NTRS)
Lan, E. H.; Smith, Charles A.; Cross, J. B.
1988-01-01
Candidate atomic oxygen protective coatings for long-term low Earth orbit (LEO) spacecraft were evaluated using the Los Alamos National Laboratory O-atom exposure facility. The coatings studied include Teflon, Al2O3, SiO2, and SWS-V-10, a silicon material. Preliminary results indicate that sputtered PTFE Teflon (0.1 micrometers) has a fluence lifetime of 10 to the 19th power O-atoms/cm (2), and sputtered silicon dioxide (0.1 micrometers), aluminum oxide (0.1 micrometers), and SWS-V-10, a silicone, (4 micrometers) have fluence lifetimes of 10 to the 20th power to 10 to the 21st power O-atoms/cm (2). There are large variations in fluence lifetime data for these coatings.
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
NASA Astrophysics Data System (ADS)
Sasaki, K.; Kikuchi, S.
2014-10-01
In this work, we compared the sticking probabilities of Cu, Zn, and Sn atoms in magnetron sputtering deposition of CZTS films. The evaluations of the sticking probabilities were based on the temporal decays of the Cu, Zn, and Sn densities in the afterglow, which were measured by laser-induced fluorescence spectroscopy. Linear relationships were found between the discharge pressure and the lifetimes of the atom densities. According to Chantry, the sticking probability is evaluated from the extrapolated lifetime at the zero pressure, which is given by 2l0 (2 - α) / (v α) with α, l0, and v being the sticking probability, the ratio between the volume and the surface area of the chamber, and the mean velocity, respectively. The ratio of the extrapolated lifetimes observed experimentally was τCu :τSn :τZn = 1 : 1 . 3 : 1 . This ratio coincides well with the ratio of the reciprocals of their mean velocities (1 /vCu : 1 /vSn : 1 /vZn = 1 . 00 : 1 . 37 : 1 . 01). Therefore, the present experimental result suggests that the sticking probabilities of Cu, Sn, and Zn are roughly the same.
NASA Astrophysics Data System (ADS)
Roy, Chiranjeeb
In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of the atomic excited state. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption lineshapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
Fine tuning and MOND in a metamaterial "multiverse".
Smolyaninov, Igor I; Smolyaninova, Vera N
2017-08-14
We consider the recently suggested model of a multiverse based on a ferrofluid. When the ferrofluid is subjected to a modest external magnetic field, the nanoparticles inside the ferrofluid form small hyperbolic metamaterial domains, which from the electromagnetic standpoint behave as individual "Minkowski universes" exhibiting different "laws of physics", such as different strength of effective gravity, different versions of modified Newtonian dynamics (MOND) and different radiation lifetimes. When the ferrofluid "multiverse" is populated with atomic or molecular species, and these species are excited using an external laser source, the radiation lifetimes of atoms and molecules in these "universes" depend strongly on the individual physical properties of each "universe" via the Purcell effect. Some "universes" are better fine-tuned than others to sustain the excited states of these species. Thus, the ferrofluid-based metamaterial "multiverse" may be used to study models of MOND and to illustrate the fine-tuning mechanism in cosmology.
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
Statistical approaches to lifetime measurements with restricted observation times
NASA Astrophysics Data System (ADS)
Chen, X. C.; Zeng, Q.; Litvinov, Yu. A.; Tu, X. L.; Walker, P. M.; Wang, M.; Wang, Q.; Yue, K.; Zhang, Y. H.
2017-09-01
Two generic methods based on frequentism and Bayesianism are presented in this work aiming to adequately estimate decay lifetimes from measured data, while accounting for restricted observation times in the measurements. All the experimental scenarios that can possibly arise from the observation constraints are treated systematically and formulas are derived. The methods are then tested against the decay data of bare isomeric 44+94mRu, which were measured using isochronous mass spectrometry with a timing detector at the CSRe in Lanzhou, China. Applying both methods in three distinct scenarios yields six different but consistent lifetime estimates. The deduced values are all in good agreement with a prediction based on the neutral-atom value modified to take the absence of internal conversion into account. Potential applications of such methods are discussed.
Dark State Optical Lattice with a Subwavelength Spatial Structure
NASA Astrophysics Data System (ADS)
Wang, Y.; Subhankar, S.; Bienias, P.; ŁÄ cki, M.; Tsui, T.-C.; Baranov, M. A.; Gorshkov, A. V.; Zoller, P.; Porto, J. V.; Rolston, S. L.
2018-02-01
We report on the experimental realization of a conservative optical lattice for cold atoms with a subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We study the band structure and dissipation of this lattice and find good agreement with theoretical predictions. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 1 05 times the excited state lifetime, and could be further improved with more laser intensity. The potential is readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with subwavelength spacings.
NASA Astrophysics Data System (ADS)
Michailov, Michail; Ranguelov, Bogdan
2018-03-01
We present a model for hole-mediated spontaneous breakdown of ahomoepitaxial two-dimensional (2D) flat nanowire based exclusively on random, thermally-activated motion of atoms. The model suggests a consecutive three-step mechanism driving the rupture and complete disintegration of the nanowire on a crystalline surface. The breakdown scenario includes: (i) local narrowing of a part of the stripe to a monatomic chain, (ii) formation of a recoverable single vacancy or a 2D vacancy cluster that causes temporary nanowire rupture, (iii) formation of a non-recoverable 2D hole leading to permanent nanowire breakdown. These successive events in the temporal evolution of the nanowire morphology bring the nanowire stripe into an irreversible unstable state, leading to a dramatic change in its peculiar physical properties and conductivity. The atomistic simulations also reveal a strong increase of the nanowire lifetime with an enlargement of its width and open up a way for a fine atomic-scale control of the nanowire lifetime and structural, morphological and thermodynamic stability.
NASA Astrophysics Data System (ADS)
DeBord, J. Daniel; Verkhoturov, Stanislav V.; Perez, Lisa M.; North, Simon W.; Hall, Michael B.; Schweikert, Emile A.
2013-06-01
We present herein a framework for measuring the internal energy distributions of vibrationally excited molecular ions emitted from hypervelocity nanoprojectile impacts on organic surfaces. The experimental portion of this framework is based on the measurement of lifetime distributions of "thermometer" benzylpyridinium ions dissociated within a time of flight mass spectrometer. The theoretical component comprises re-evaluation of the fragmentation energetics of benzylpyridinium ions at the coupled-cluster singles and doubles with perturbative triples level. Vibrational frequencies for the ground and transition states of select molecules are reported, allowing for a full description of vibrational excitations of these molecules via Rice-Ramsperger-Kassel-Marcus unimolecular fragmentation theory. Ultimately, this approach is used to evaluate the internal energy distributions from the measured lifetime distributions. The average internal energies of benzylpyridinium ions measured from 440 keV Au400+4 impacts are found to be relatively low (˜0.24 eV/atom) when compared with keV atomic bombardment of surfaces (1-2 eV/atom).
Light-induced atomic desorption in a compact system for ultracold atoms
Torralbo-Campo, Lara; Bruce, Graham D.; Smirne, Giuseppe; Cassettari, Donatella
2015-01-01
In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters. PMID:26458325
Magneto-optical trap for thulium atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukachev, D.; Sokolov, A.; Chebakov, K.
2010-07-15
Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to 7x10{sup 4} atoms at a temperature of 0.8(2) mK after deceleration in a 40-cm-long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the magneto-optical trap which varies between 0.3 and 1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s{sup -1}. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives amore » 30% increase for the lifetime and the number of atoms in the trap.« less
Ikuta, Rikizo; Kobayashi, Toshiki; Kawakami, Tetsuo; Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka; Koashi, Masato; Mukai, Tetsuya; Yamamoto, Takashi; Imoto, Nobuyuki
2018-05-21
Long-lifetime quantum storages accessible to the telecom photonic infrastructure are essential to long-distance quantum communication. Atomic quantum storages have achieved subsecond storage time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater algorithm. However, the telecom photon cannot be directly interfaced to typical atomic storages. Solid-state quantum frequency conversions fill this wavelength gap. Here we report on the experimental demonstration of a polarization-insensitive solid-state quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an atomic ensemble. Atom-photon entanglement has been generated with a Rb atomic ensemble and the photon has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based frequency converter in a Sagnac interferometer.
NASA Astrophysics Data System (ADS)
Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.
2012-12-01
Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.
Coupled channel effects on resonance states of positronic alkali atom
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Kino, Yasushi
2018-01-01
S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.
Predicting the stability of nanodevices
NASA Astrophysics Data System (ADS)
Lin, Z. Z.; Yu, W. F.; Wang, Y.; Ning, X. J.
2011-05-01
A simple model based on the statistics of single atoms is developed to predict the stability or lifetime of nanodevices without empirical parameters. Under certain conditions, the model produces the Arrhenius law and the Meyer-Neldel compensation rule. Compared with the classical molecular-dynamics simulations for predicting the stability of monatomic carbon chain at high temperature, the model is proved to be much more accurate than the transition state theory. Based on the ab initio calculation of the static potential, the model can give out a corrected lifetime of monatomic carbon and gold chains at higher temperature, and predict that the monatomic chains are very stable at room temperature.
Annihilation of positronium atoms confined in mesoporous and macroporous SiO2 films
NASA Astrophysics Data System (ADS)
Cooper, B. S.; Boilot, J.-P.; Corbel, C.; Guillemot, F.; Gurung, L.; Liszkay, L.; Cassidy, D. B.
2018-05-01
We report experiments in which positronium (Ps) atoms were created in thin, porous silica films containing isolated voids with diameters ranging from 5 to 75 nm. Ps lifetimes in the pore structures were measured directly via time-delayed laser excitation of 13S1→23PJ transitions. In a film containing 5-nm pores Ps was predominantly emitted into vacuum, with a small component of confined Ps with a lifetime of 75 ns also observed. In films with larger pores Ps atoms were not emitted into vacuum except from the film surface, and confined Ps lifetimes of ≈90 ns were measured with no dependence on the pore size. However, for such large pores, extended Tao-Eldrup (ETE)-type models predict Ps lifetimes close to the 142-ns vacuum value. Moreover, 13S1→23PJ excitation of Ps atoms inside the pores was found to result in annihilation and exhibited an extremely broad (≈10 THz) linewidth. We attribute these observations to a process in which nonthermal Ps atoms in the isolated voids become temporarily trapped in a series of surface states that dissociate following excitation. The occurrence of this mechanism is not necessarily apparent from ground-state Ps decay rates without some prior knowledge of the sample structure, and it precludes the application of ETE-type models as they do not take into account surface interactions other than pickoff annihilation.
Phonon-based scalable platform for chip-scale quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinke, Charles M.; El-Kady, Ihab
Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less
Phonon-based scalable platform for chip-scale quantum computing
Reinke, Charles M.; El-Kady, Ihab
2016-12-19
Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less
Lifetime of a Chemically Bound Helium Compound
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)
2001-01-01
The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.
Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.
1991-01-01
Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.
Studies for the Loss of Atomic and Molecular Species from Io
NASA Technical Reports Server (NTRS)
Smyth, William H.
1998-01-01
Updated neutral emission rates for electron impact excitation of atomic oxygen and sulfur based upon the Collisional Radiative Equilibrium (COREQ) model have been incorporated in the neutral cloud models. An empirical model for the Io plasma torus wake has also been added in the neutral cloud model to describe important enhancements in the neutral emission rates and lifetime rates in this spatial region. New insights into Io's atmosphere and its interaction with the plasma torus are discussed. These insights are based upon an initial comparison of simultaneous lo observations on October 14, 1997, for [0I] 6300 Angstrom emissions acquired by groundbased facilities and several ultraviolet emissions acquired by HST/STIS in the form of high-spatial- resolution images for atomic oxygen and sulfur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Aryya; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav
2015-07-14
Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. Wemore » have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter
2014-08-15
We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.
Spin-polarized currents generated by magnetic Fe atomic chains.
Lin, Zheng-Zhe; Chen, Xi
2014-06-13
Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)).
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.; Sah, C. T.
1982-01-01
Design principles suggested here aim toward high conversion efficiency (greater than 15 percent) in polysilicon cells. The principles seek to decrease the liabilities of both intragranular and grain-boundary-surface defects. The advantages of a phosphorus atom concentration gradient in a thin (less than 50 microns) base of a p(+)/n(x)/n(+) drift-field solar cell, which produces favorable gradients in chemical potential, minority-carrier mobility and diffusivity, and recombination lifetime (via phosphorus gettering) are suggested. The degrading effects of grain boundaries are reduced by these three gradients and by substituting atoms (P, H, F or Li) for vacancies on the grain-boundary surface. From recent experiments comes support for the benefits of P diffusion down grain boundaries and, for quasi-grain-boundary-free and related structures. New analytic solutions for the n(x)-base include the effect of a power-law dependence between P concentration and lifetime. These provide an upper-bound estimate on the open circuit voltage. Finite-difference numerical solutions of the six Shockley equations furnish complete information about all solar-cell parameters and add insight concerning design.
Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms
NASA Astrophysics Data System (ADS)
Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor
2017-12-01
Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.
Containerless high temperature property measurements by atomic fluorescence
NASA Technical Reports Server (NTRS)
Schiffman, R. A.; Walker, C. A.
1984-01-01
Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.
NASA Astrophysics Data System (ADS)
Toh, George; Jaramillo-Villegas, Jose A.; Glotzbach, Nathan; Quirk, Jonah; Stevenson, Ian C.; Choi, J.; Weiner, Andrew M.; Elliott, D. S.
2018-05-01
We report a measurement of the lifetime of the cesium 7 s 1/2 2S state using time-correlated single-photon counting spectroscopy in a vapor cell. We excite the atoms using a Doppler-free two-photon transition from the 6 s 1/2 2S ground state, and detect the 1.47 -μ m photons from the spontaneous decay of the 7 s 1/2 2S to the 6 p 3/2 2P state. We use a gated single-photon detector in an asynchronous mode, allowing us to capture the fluorescence profile for a window much larger than the detector gate length. Analysis of the exponential decay of the photon count yields a 7 s 1/2 2S lifetime of 48.28 ±0.07 ns, an uncertainty of 0.14%. These measurements provide sensitive tests of theoretical models of the Cs atom, which play a central role in parity violation measurements.
Seo, Songwon; Lee, Dal Nim; Jin, Young Woo; Lee, Won Jin; Park, Sunhoo
2018-05-11
Risk projection models estimating the lifetime cancer risk from radiation exposure are generally based on exposure dose, age at exposure, attained age, gender and study-population-specific factors such as baseline cancer risks and survival rates. Because such models have mostly been based on the Life Span Study cohort of Japanese atomic bomb survivors, the baseline risks and survival rates in the target population should be considered when applying the cancer risk. The survival function used in the risk projection models that are commonly used in the radiological protection field to estimate the cancer risk from medical or occupational exposure is based on all-cause mortality. Thus, it may not be accurate for estimating the lifetime risk of high-incidence but not life-threatening cancer with a long-term survival rate. Herein, we present the lifetime attributable risk (LAR) estimates of all solid cancers except thyroid cancer, thyroid cancer, and leukemia except chronic lymphocytic leukemia in South Korea for lifetime exposure to 1 mGy per year using the cancer-free survival function, as recently applied in the Fukushima health risk assessment by the World Health Organization. Compared with the estimates of LARs using an overall survival function solely based on all-cause mortality, the LARs of all solid cancers except thyroid cancer, and thyroid cancer evaluated using the cancer-free survival function, decreased by approximately 13% and 1% for men and 9% and 5% for women, respectively. The LAR of leukemia except chronic lymphocytic leukemia barely changed for either gender owing to the small absolute difference between its incidence and mortality. Given that many cancers have a high curative rate and low mortality rate, using a survival function solely based on all-cause mortality may cause an overestimation of the lifetime risk of cancer incidence. The lifetime fractional risk was robust against the choice of survival function.
Photon-number statistics in resonance fluorescence
NASA Astrophysics Data System (ADS)
Lenstra, D.
1982-12-01
The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.
Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride
Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.
2014-01-01
The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685
Positron lifetime beam for defect studies in thin epitaxial semiconductor structures
NASA Astrophysics Data System (ADS)
Laakso, A.; Saarinen, K.; Hautojärvi, P.
2001-12-01
Positron annihilation spectroscopies are methods for direct identification of vacancy-type defects by measuring positron lifetime and Doppler broadening of annihilation radiation and providing information about open volume, concentration and atoms surrounding the defect. Both these techniques are easily applied to bulk samples. Only the Doppler broadening spectroscopy can be employed in thin epitaxial samples by utilizing low-energy positron beams. Here we describe the positron lifetime beam which will provide us with a method to measure lifetime in thin semiconductor layers.
Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...
2016-07-08
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Some historic and current aspects of plasma diagnostics using atomic spectroscopy
NASA Astrophysics Data System (ADS)
Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek
2010-07-01
In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.
Spin Lifetimes in III-V Semiconductor Heterostructures Originating from Zincblende Symmetry
NASA Astrophysics Data System (ADS)
Lau, Wayne; Olesberg, Jon; Flatté, Michael
2000-03-01
Electron spin relaxation in zincblende type semiconductors at room temperature is dominated by the D'yakonov-Perel' mechanism (DP), which is a direct result of the spin splitting of the conduction band due to the bulk inversion asymmetry (BIA) of zincblende materials. To accurately describe the DP spin relaxation mechanism in quantum wells we employ a heterostructure model based on a fourteen bulk band basis, which accounts for the zincblende symmetry of the heterostructure constituents. Electron spin lifetimes are calculated for 75Å n-doped GaAs/Al_0.4Ga_0.6As quantum wells at room temperature. Excellent agreement between theory and experiments is found. In contrast, the calculated spin lifetimes based on the D'yakonov-Kachorovskii theory are an order magnitude shorter than the experimental values. The spin splitting and spin lifetime in no common atom In_0.53Ga_0.47As/InP quantum wells are also investigated. The contribution to the conduction subband spin splitting is dominated by the native interface asymmetry (NIA) mechanism for thin quantum wells; while the spin splitting is governed by the BIA mechanism for thick quantum wells. We find that BIA provides a satisfactory explanation for the spin lifetime measured in an In_0.53Ga_0.47As/InP quantum well with a 97Å barrier and a 70Å well at room temperature.
NASA Astrophysics Data System (ADS)
Shpotyuk, Ya; Cebulski, J.; Ingram, A.; Shpotyuk, O.
2017-12-01
Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy in application to nanostructurized substances treated within three-term fitting procedure are reconsidered to parameterize their atomic-deficient structural arrangement. In contrast to conventional three-term fitting analysis of the detected PAL spectra based on admixed positron trapping and positronium (Ps) decaying, the nanostructurization due to guest nanoparticles embedded in host matrix is considered as producing modified trapping, which involves conversion between these channels. The developed approach referred to as x3-x2-coupling decomposition algorithm allows estimation free volumes of interfacial voids responsible for positron trapping and bulk lifetimes in nanoparticle-embedded substances. This methodology is validated using experimental data of Chakraverty et al. [Phys. Rev. B71 (2005) 024115] on PAL study of composites formed by guest NiFe2O4 nanocrystals grown in host SiO2 matrix.
NASA Technical Reports Server (NTRS)
Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.
2006-01-01
The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to detect low concentrations of the introduced species. The required lifetimes for atomic hydrogen and other species can only be realized at low temperatures to avoid recombination of atoms before use as a fuel.
Development of the Science Data System for the International Space Station Cold Atom Lab
NASA Technical Reports Server (NTRS)
van Harmelen, Chris; Soriano, Melissa A.
2015-01-01
Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix
Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less
A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry.
Thornton, Joel A; Kercher, James P; Riedel, Theran P; Wagner, Nicholas L; Cozic, Julie; Holloway, John S; Dubé, William P; Wolfe, Glenn M; Quinn, Patricia K; Middlebrook, Ann M; Alexander, Becky; Brown, Steven S
2010-03-11
Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury and hydrocarbons such as the greenhouse gas methane. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions. We also suggest that a significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants.
Ultracold Chemical Reactions of a Single Rydberg Atom in a Dense Gas
Schlagmüller, Michael; Liebisch, Tara Cubel; Engel, Felix; ...
2016-08-10
Within a dense environment (ρ ≈ 10 14 atoms/cm 3) at ultracold temperatures (T < 1 μK), a single atom excited to a Rydberg state acts as a reaction center for surrounding neutral atoms. At these temperatures, almost all neutral atoms within the Rydberg orbit are bound to the Rydberg core and interact with the Rydberg atom. We have studied the reaction rate and products for nS 87Rb Rydberg states, and we mainly observe a state change of the Rydberg electron to a high orbital angular momentum l, with the released energy being converted into kinetic energy of the Rydberg atom. Unexpectedly, the measurements show a threshold behavior at n ≈ 100 for the inelastic collision time leading to increased lifetimes of the Rydberg state independent of the densities investigated. Even at very high densities (ρ ≈ 4.8 x 10 14 cm -3), the lifetime of a Rydberg atom exceeds 10 μs at n > 140 compared to 1 μs at n = 90. In addition, a second observed reaction mechanism, namely, Rbmore » $$+\\atop{2}$$ molecule formation, was studied. Both reaction products are equally probable for n = 40, but the fraction of Rb + 2 created drops to below 10% for n ≥ 90.« less
NASA Technical Reports Server (NTRS)
Peterson, L. E.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1999-01-01
Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence. Probability density functions for high-LET radiation quality and dose-rate may be preferable to conventional risk assessment approaches. Nuclear reactions and track structure effects in tissue may not be properly estimated by existing data using in vitro models for estimating RBEs. The method used here is being extended to estimate uncertainty in spacecraft shielding effectiveness in various space radiation environments.
Time-resolved atomic inner-shell spectroscopy
NASA Astrophysics Data System (ADS)
Drescher, M.; Hentschel, M.; Kienberger, R.; Uiberacker, M.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, Th.; Kleineberg, U.; Heinzmann, U.; Krausz, F.
2002-10-01
The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9
Characterization of three-way automotive catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.; More, K.L.; LaBarge, W.
1997-04-01
The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improvedmore » performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.« less
NASA Astrophysics Data System (ADS)
Amjadi, Mohammad; Manzoori, Jamshid L.; Miller, James N.
2006-02-01
Liquid phase room temperature phosphorescence (RTP) properties of melatonin were studied using heavy atom induced-room temperature phosphorescence (HAI-RTP) technique. 1.2 M potassium iodide was used as a heavy atom reagent together with 0.002 M sodium sulphite as deoxygenating agent to produce the RTP signal. The maximum phosphorescence emission and excitation wavelengths of melatonin were 290 and 457 nm, respectively. The effect of potassium iodide concentration on the RTP lifetime of melatonin was also investigated and based on the results, the rate constants for phosphorescence decay ( kp) and radiationless deactivation through reaction with heavy atom ( kh) were determined. Based on the obtained results, a simple and sensitive room temperature phosphorimetric method was developed for the determination of melatonin. The method allowed the determination of 10.0-200 ng ml -1 melatonin in aqueous solution with the limits of detection and quantification of 3.6 and 12 ng ml -1, respectively. The proposed method was satisfactorily applied to the determination of melatonin in commercial pharmaceutical formulations.
Studies for the Loss of Atomic and Molecular Species from Io
NASA Technical Reports Server (NTRS)
Smyth, William H.
1998-01-01
Continued effort is reported to improve the emission rates of various emission lines for atomic oxygen and sulfur. Atomic hydrogen has been included as a new species in the neutral cloud model. The pertinent lifetime processes for hydrogen in the plasma torus and the relevant excitation processes for H Lyman-alpha emission in Io's atmosphere are discussed.
Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO
NASA Astrophysics Data System (ADS)
Sarkar, A.; Chakrabarti, Mahuya; Ray, S. K.; Bhowmick, D.; Sanyal, D.
2011-04-01
The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.
Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO.
Sarkar, A; Chakrabarti, Mahuya; Ray, S K; Bhowmick, D; Sanyal, D
2011-04-20
The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.
Positron lifetime calculation for the elements of the periodic table.
Campillo Robles, J M; Ogando, E; Plazaola, F
2007-04-30
Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dustin; Zhao, Fangchao; Tong, Kwing
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Berhe, Seare A; Rodriguez, Marco T; Park, Eunsol; Nesterov, Vladimir N; Pan, Hongjun; Youngblood, W Justin
2014-03-03
Organoborylazadipyrromethenes were synthesized from free base and fluoroborylazadipyrromethenes and characterized with regard to their structural and electronic properties. B-N bond lengths, along with photophysical and redox behavior, appear dependent on the effective electronegativity at the boron atom as tuned by its substituents, with stronger electronegativity correlating to a shorter B-N bond length, red-shifted absorbance, enhanced fluorescence lifetime and yield, and positively shifted redox potentials.
Efficient repumping of a Ca magneto-optical trap
NASA Astrophysics Data System (ADS)
Mills, Michael; Puri, Prateek; Yu, Yanmei; Derevianko, Andrei; Schneider, Christian; Hudson, Eric R.
2017-09-01
We investigate the limiting factors in the standard implementation of the Ca magneto-optical trap. We find that intercombination transitions from the 4 s 5 p 1P1 state used to repump the electronic population from the 3 d 4 s 1D2 state severely reduce the trap lifetime. We explore seven alternative repumping schemes theoretically and investigate five of them experimentally. We find that all five of these schemes yield a significant increase in the trap lifetime and consequently improve the number of atoms and peak atom density by as much as ˜20 times and ˜6 times, respectively. One of these transitions, at 453 nm, is shown to approach the fundamental limit for a Ca magneto-optical trap with repumping only from the dark 3 d 4 s 1D2 state, yielding a trap lifetime of ˜5 s.
Investigation of hydrogen interaction with defects in zirconia
NASA Astrophysics Data System (ADS)
Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.
2010-04-01
Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.
Cold Rydberg atoms in circular states
NASA Astrophysics Data System (ADS)
Anderson, David; Schwarzkopf, Andrew; Raithel, Georg
2012-06-01
Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).
Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys
NASA Astrophysics Data System (ADS)
Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi
2011-10-01
The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
Brownian motion of solitons in a Bose–Einstein condensate
Aycock, Lauren M.; Hurst, Hilary M.; Efimkin, Dmitry K.; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M.; Spielman, I. B.
2017-01-01
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated Rb87 Bose–Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton’s diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment. PMID:28196896
Monolayer dispersion of CoO on Al2O3 probed by positronium atom
NASA Astrophysics Data System (ADS)
Liu, Z. W.; Zhang, H. J.; Chen, Z. Q.
2014-02-01
CoO/Al2O3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N2. Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al2O3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al2O3. The positron lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al2O3. The presence of CoO significantly decreases both the lifetime and the intensity of τ4. Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.
NASA Astrophysics Data System (ADS)
Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram
2013-01-01
The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Guan, H.; Gao, K.
2018-02-01
We present for the first time a direct measurement of the lifetime ratio between the 3d{}2{D}3/2 and 3d{}2{D}5/2 metastable states in a single trapped 40Ca+. A high-efficiency quantum state detection technique is adopted to monitor the quantum jumps, and a high precision and synchronized measurement sequence is used for laser control to study the rule of spontaneous decay. Our method shows that the lifetime ratio is a constant and is irrelevant to the dwell time; it is only determined by the spontaneous decay probabilities of the two metastable states at one random decay time, independent of the lifetimes of the two metastable states. Systematic errors such as collisions with background gases, heating effects, impurity components, the shelving and pumping rates and the photon counts are analyzed, and the lifetime ratio between the 3d{}2{D}3/2 and 3d{}2{D}5/2 states is directly measured to be 1.0257(43) with an uncertainty of 0.42%. Our result is in good agreement with the most precise many-body atomic structure calculations. Our method can be used to obtain the lifetime of a state which is usually difficult to measure and can be used to determine the magnetic dipole transition matrix elements in heavy ions such as Ba+ and Ra+, and can also be universally applied to lifetime ratio measurements of other single atoms and ions with a similar structure.
Semiempirical studies of atomic structure. Progress report, 1 July 1984-1 January 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, L.J.
1985-01-01
Through the acquisition and systematization of empirical data, remarkably precise methods for predicting excitation energies, transition wavelengths, transition probabilities, level lifetimes, ionization potentials, core polarizabilities, and core penetrabilities have been and are being developed and applied. Although the data base for heavy, highly ionized atoms is still sparse, much new information has become available since this program was begun in 1980. The purpose of the project is to perform needed measurements and to utilize the available data through parametrized extrapolations and interpolations along isoelectronic, homologous, and Rydberg sequences to provide predictions for large classes of quantities with a precision thatmore » is sharpened by subsequent measurements.« less
NASA Astrophysics Data System (ADS)
Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Kim, Seung Hyun; Lee, Sang-Ju; Sung, Shi-Joon; Kim, Dae-Hwan
2018-03-01
This paper presents organic-inorganic hybrid solar cells (SCs) based on ZnO/Sb2S3/P3HT heterojunctions. The ZnO and the Sb2S3 layers were grown using atomic layer deposition (ALD). Although four cells were fabricated on one substrate by using the same process, their open-circuit voltages ( V OC ) and short-circuit current densities ( J SC ) were different. The SC with a high V OC has a low J SC . The causes of the changes in the V OC and the JSC were investigated by using photoluminescence (PL) spectroscopy and optically-biased time-resolved photocurrent (TRPC) measurements. The PL results at 300 K showed that the emission positions of the Sb2S3 layers in all cells were similar at approximately 1.71 eV. The carrier lifetime of the SCs was calculated from the TRPC results. The lifetime of cell 4 with the highest J SC decreased drastically with increasing intensity of the continuous-wave optical bias beam. Therefore, the defect states in the ZnO layer contribute to the J SC , but degrade the V OC .
Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory
NASA Astrophysics Data System (ADS)
Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei
2015-09-01
Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.
Antimatter plasmas in a multipole trap for antihydrogen.
Andresen, G; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Chartier, M; Deutsch, A; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Gomberoff, K; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Telle, H H; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2007-01-12
We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.
Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Rowan W. G.; Lee, Lucie A.; Findlay, Elizabeth A.
2015-09-15
The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here, we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore, we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular, where the inclusionmore » of a standard vacuum gauge is impractical.« less
NASA Astrophysics Data System (ADS)
Würschum, R.; Shapiro, E.; Dittmar, R.; Schaefer, H.-E.
2000-11-01
Atomic free volumes and vacancies in the ultrafine grained alloys Pd84Zr16, Cu 0.1 wt % ZrO2, and Fe91Zr9 were studied by means of positron lifetime. The thermally stable microstructures serve as a novel type of model system for studying positron trapping and annihilation as well as the thermal behavior of vacancy-sized free volumes over a wide temperature range up to ca. 1200 K by making use of a metallic 58Co positron source. In ultrafine grained Cu the thermal formation of lattice vacancies could be observed. In Pd84Zr16 an increase of the specific positron trapping rate of nanovoids and, in addition, detrapping of positrons from free volumes with a mean size slightly smaller than one missing atom in the grain boundaries contributes to a reversible increase of the positron lifetime of more than 60 ps with measuring temperature. In Fe91Zr9 similar linear high-temperature increases of the positron lifetime are observed in the nanocrystalline and the amorphous state. The question of thermal vacancy formation in grain boundaries is addressed taking into account the different types of interface structures of the present alloys.
Ding, Zihao; Karkare, Siddharth; Feng, Jun; ...
2017-11-09
K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method have been found to have excellent quantum efficiency (QE) and outstanding near-atomic surface smoothness and have been employed in the VHF gun in the Advanced Photoinjector Experiment (APEX), however, their robustness in terms of their lifetime at elevated photocathode temperature has not yet been investigated. In this paper, the relationship between the lifetime of the K-Cs-Sb photocathode and the photocathode temperature has been investigated. The origin of the significant QE degradation at photocathode temperatures over 70 °C has been identified as the loss of cesium atoms from the K-Cs-Sb photocathode,more » based on the in situ x-ray analysis on the photocathode film during the decay process. The findings from this work will not only further the understanding of the behavior of K-Cs-Sb photocathodes at elevated temperature and help develop more temperature-robust cathodes, but also will become an important guide to the design and operation of the future high-field rf guns employing the use of such photocathodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Zihao; Karkare, Siddharth; Feng, Jun
K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method have been found to have excellent quantum efficiency (QE) and outstanding near-atomic surface smoothness and have been employed in the VHF gun in the Advanced Photoinjector Experiment (APEX), however, their robustness in terms of their lifetime at elevated photocathode temperature has not yet been investigated. In this paper, the relationship between the lifetime of the K-Cs-Sb photocathode and the photocathode temperature has been investigated. The origin of the significant QE degradation at photocathode temperatures over 70 °C has been identified as the loss of cesium atoms from the K-Cs-Sb photocathode,more » based on the in situ x-ray analysis on the photocathode film during the decay process. The findings from this work will not only further the understanding of the behavior of K-Cs-Sb photocathodes at elevated temperature and help develop more temperature-robust cathodes, but also will become an important guide to the design and operation of the future high-field rf guns employing the use of such photocathodes.« less
Electromagnetically Induced Transparency In Rydberg Atomic Medium
NASA Astrophysics Data System (ADS)
Deng, Li; Cong, Lu; Chen, Ai-Xi
2018-03-01
Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.
NASA Technical Reports Server (NTRS)
Sugar, J.; Leckrone, D.
1993-01-01
This was the fourth in a series of colloquia begun at the University of Lund, Sweden in 1983 and subsequently held in Toledo, Ohio and Amsterdam, The Netherlands. The purpose of these meetings is to provide an international forum for communication between major users of atomic spectroscopic data and the providers of these data. These data include atomic wavelengths, line shapes, energy levels, lifetimes, and oscillator strengths. Speakers were selected from a wide variety of disciplines including astrophysics, laboratory plasma research, spectrochemistry, and theoretical and experimental atomic physics.
NASA Astrophysics Data System (ADS)
Le Gouët, Jean-Louis; Moiseev, Sergey
2012-06-01
Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The quest for higher efficiency, better fidelity, broader bandwidth, multimode capacity and longer storage lifetime is pursued in all those approaches, as shown in this special issue. The improvement of quantum memory operation specifically requires in-depth study and control of numerous physical processes leading to atomic decoherence. The present issue reflects the development of rare earth ion doped matrices offering long lifetime superposition states, either as bulk crystals or as optical waveguides. The need for quantum sources and high efficiency detectors at the single photon level is also illustrated. Several papers address the networking of quantum memories either in long-haul cryptography or in the prospect of quantum processing. In this context, much attention has been paid recently to interfacing quantum light with superconducting qubits and with nitrogen-vacancy centers in diamond. Finally, the quantum interfacing of light with matter raises questions on entanglement. The last two papers are devoted to the generation of entanglement by dissipative processes. It is shown that long lifetime entanglement may be built in this way. We hope this special issue will help readers to become familiar with the exciting field of ensemble-based quantum memories and will stimulate them to bring deeper insights and new ideas to this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoenig, M.; Elsen, Y.V.; Cauter, R.V.
The progressive degradation of the pyrolytic graphite surface of atomizers provides variable and misleading results of molybdenum peak-height measurements. The changes in the peak shapes produce no analytical problems during the lifetime of the atomizer (approx.300 firings) when integrated absorbance (A.s signals) is considered and the possible base-line drifts are controlled. This was demonstrated on plant samples mineralized by simple digestion with a mixture of HNO/sub 3/ and H/sub 2/O/sub 2/. The value of this method was assessed by comparison with a standard dry oxidation method and by molybdenum determination in National Bureau of Standards reference plant samples. The relativemore » standard deviations (n = 5) of the full analytical procedure do not exceed 7%. 13 references, 3 figures, 3 tables.« less
Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing
NASA Technical Reports Server (NTRS)
Bhattacharya, Pallab
2001-01-01
Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.
NASA Astrophysics Data System (ADS)
Hirabayashi, A.; Okuda, S.; Nambu, Y.; Fujimoto, T.
1987-01-01
We have developed a new method for determination of atomic transition probabilities based on laser-induced-fluorescence spectroscopy (LIFS). In the method one produces a known population of atoms in the upper level under investigation and relates it to an observed absolute line intensity. We have applied this method to the argon 430.0-nm line (1s4-3p8): In an argon discharge plasma the 1s5-level population and spatial distribution are determined by the self-absorption method combined with LIFS under conditions where the 3p8-level population is much lower than that of the 1s5 level. When intense laser light of 419.1 nm (1s5-3p8) irradiates the plasma and saturates the 3p8-level population, the produced 3p8-level population and its alignment can be determined from the 1s5-level parameters as determined above, by solving the master equation on the basis of broad-line excitation. By comparing the observed absolute fluorescence intensity of the 430.0-nm line with the above population, we have determined the transition probability to be A=(3.94+/-0.60)×105 s-1. We also determined the 3p8-level lifetime by LIFS. Several factors which might affect the measurement are discussed. The result is τ=127+/-10 ns.
Thermal stability of atomic layer deposition Al2O3 film on HgCdTe
NASA Astrophysics Data System (ADS)
Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.
2015-06-01
Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.
Liu, Tiandong; Zhang, Guoqing; Evans, Ruffin E; Trindle, Carl O; Altun, Zikri; DeRosa, Christopher A; Wang, Fang; Zhuang, Meng; Fraser, Cassandra L
2018-02-06
Difluoroboron β-diketonates (BF 2 bdks) show both fluorescence (F) and room-temperature phosphorescence (RTP) when confined to a rigid matrix, such as poly(lactic acid). These materials have been utilized as optical oxygen sensors (e.g., in tumors, wounds, and cells). Spectral features include charge transfer (CT) from the major aromatic donor to the dioxaborine acceptor. A series of naphthyl-phenyl dyes (BF 2 nbm) (1-6) were prepared to test heavy-atom placement effects. The BF 2 nbm dye (1) was substituted with Br on naphthyl (2), phenyl (3), or both rings (4) to tailor the fluorescence/phosphorescence ratio and RTP lifetime-important features for designing O 2 sensing dyes by means of the heavy atom effect. Computational studies identify the naphthyl ring as the major donor. Thus, Br substitution on the naphthyl ring produced greater effects on the optical properties, such as increased RTP intensity and decreased RTP lifetime compared to phenyl substitution. However, for electron-donating piperidyl-phenyl dyes (5), the phenyl aromatic is the major donor. As a result, Br substitution on the naphthyl ring (6) did not alter the optical properties significantly. Experimental data and computational modeling show the importance of Br position. The S 1 and T 1 states are described by two singly occupied MOs (SOMOs). When both of these SOMOs have substantial amplitude on the heavy atom, passage from S 1 to T 1 and emission from T 1 to S 0 are both favored. This shortens the excited-state lifetimes and enhances phosphorescence. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Yong Hwan; Cha, Hamchorom; Choi, Sunho; Chang, Hyo Sik; Jang, Boyun; Oh, Jihun
2018-05-01
A systematic characterization of sub-50-μm-thick, kerf-less monocrystalline Si wafers fabricated by a controlled fracture method is presented. The spalling process introduces various defects on the Si surface, which result in high surface roughness levels, residual stress, and low effective minority carrier lifetimes. In addition, metals used to induce fracturing in Si diffuse in the Si at room temperature and degrade the effective minority carrier lifetime. Selective removal of these defected Si regions improves the residual stress and effective lifetimes of spalled Si wafers.
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
NASA Astrophysics Data System (ADS)
Papanastasiou, Dimitrios K.; Beltrone, Allison; Marshall, Paul; Burkholder, James B.
2018-05-01
Hydrochlorofluorocarbons (HCFCs) are ozone depleting substances and potent greenhouse gases that are controlled under the Montreal Protocol. However, the majority of the 274 HCFCs included in Annex C of the protocol do not have reported global warming potentials (GWPs) which are used to guide the phaseout of HCFCs and the future phase down of hydrofluorocarbons (HFCs). In this study, GWPs for all C1-C3 HCFCs included in Annex C are reported based on estimated atmospheric lifetimes and theoretical methods used to calculate infrared absorption spectra. Atmospheric lifetimes were estimated from a structure activity relationship (SAR) for OH radical reactivity and estimated O(1D) reactivity and UV photolysis loss processes. The C1-C3 HCFCs display a wide range of lifetimes (0.3 to 62 years) and GWPs (5 to 5330, 100-year time horizon) dependent on their molecular structure and the H-atom content of the individual HCFC. The results from this study provide estimated policy-relevant GWP metrics for the HCFCs included in the Montreal Protocol in the absence of experimentally derived metrics.
Performance of silvered Teflon thermal control blankets on spacecraft
NASA Astrophysics Data System (ADS)
Pippin, G.; Stuckey, W. K.; Hemminger, C. S.
1993-03-01
Silver-backed fluorinated ethylene propylene Teflon (Ag/FEP) thin film material was used for thermal control in many locations on the Long Duration Exposure Facility (LDEF). The Ag/FEP registered the effects of atomic oxygen, solar ultraviolet radiation, meteoroid and debris impacts, thermal cycling, and contamination. This report summarizes the post-flight condition of the Ag/FEP, compares the results with performance on other spacecraft, and presents lifetime estimates for use under a variety of environmental exposures. Measurements of optical property and mechanical property and surface chemistry changes with exposure conditions, and their significance for design considerations and expected performance lifetimes, are reported for material flown on LDEF. The LDEF based data provides detailed information performance of Ag/FEP under relatively long term exposure in low Earth orbit. Comparison of this data with results from short term shuttle flights, Solar Max, SCATHA, other satellites, and ground based measurements is made to present a comprehensive summary of the use of this material for spacecraft applications.
Lifetime degradation of n-type Czochralski silicon after hydrogenation
NASA Astrophysics Data System (ADS)
Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.
2018-04-01
Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.
Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.
Dutta, Sourav; Sawant, Rahul; Rangwala, S A
2017-03-17
We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.
REVIEWS OF TOPICAL PROBLEMS: Astrophysical and laboratory applications of self-alignment
NASA Astrophysics Data System (ADS)
Kazantsev, S. A.
1983-04-01
Self-alignment of excited atoms which is observed in the laboratory and in astrophysical situations is reviewed. It is described classically and in terms of quantum mechanics. Astrophysical manifestations of selfalignment of excited atoms in the solar atmosphere and applications of self-alignment in magnetometry are analyzed. Self-alignment in low-pressure gas-discharge plasmas in the laboratory is described in detail. The cross sections for depolarizing collisions measured by this method are tabulated along with the lifetimes of excited inert gas atoms. These atomic constants can be used in practical magnetometry of the outer solar atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klie, Robert
It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functionalmore » theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.« less
Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction
NASA Astrophysics Data System (ADS)
Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg
2018-03-01
Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .
Electronic spectroscopy of diatomic molecules
NASA Technical Reports Server (NTRS)
Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.
1994-01-01
This article provides an overview of the principal computational approaches and their accuracy for the study of electronic spectroscopy of diatomic molecules. We include a number of examples from our work that illustrate the range of application. We show how full configuration interaction benchmark calculations were instrumental in improving the understanding of the computational requirements for obtaining accurate results for diatomic spectroscopy. With this understanding it is now possible to compute radiative lifetimes accurate to within 10% for systems involving first- and second-row atoms. We consider the determination of the infrared vibrational transition probabilities for the ground states of SiO and NO, based on a globally accurate dipole moment function. We show how we were able to assign the a(sup "5)II state of CO as the upper state in the recently observed emission bands of CO in an Ar matrix. We next discuss the assignment of the photoelectron detachment spectra of NO and the alkali oxide negative ions. We then present several examples illustrating the state-of-the-art in determining radiative lifetimes for valence-valence and valence-Rydberg transitions. We next compare the molecular spectroscopy of the valence isoelectronic B2, Al2, and AlB molecules. The final examples consider systems involving transition metal atoms, which illustrate the difficulty in describing states with different numbers of d electrons.
ARC: An open-source library for calculating properties of alkali Rydberg atoms
NASA Astrophysics Data System (ADS)
Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.
2017-11-01
We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.
Radiative decay lifetime of neutrinos and the evolution of the universe after the recombination era
NASA Astrophysics Data System (ADS)
Rephaeli, Yoel; Szalay, Alexander S.
1981-10-01
If the radiative decay lifetime τ of massive neutrinos is less than 1025 s, but exceeding present constraints, the epoch of neutral hydrogen in the history of the universe could have been short or altogether absent. Erasure of small scale fluctuations in the cosmic microwave background radiation and other consequences of such lifetimes are discussed. From observations of neutral hydrogen in the nearby galaxy M 31 a lower limit τ >= 1024 s is obtained (for neutrino masses in the range 30 eV <= m <= 150 eV). Permanent address: Department of Atomic Physics, R. Eotvos University, 1088 Budapest, Hungary.
Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV.
Zhang, Z G; Svanberg, S; Quinet, P; Palmeri, P; Biémont, E
2001-12-31
Radiative lifetimes have been measured for two excited levels of Ce IV using the time-resolved laser-induced fluorescence technique. Ce3+ ions were produced in a laser-induced plasma. In the measurements, a suitable magnetic field was applied to reduce the recombination between electrons and the ions and thus the background light from the recombination, and special care was exercised to avoid flight-out-of-view effects on the lifetime measurements for the high-velocity ions. The experimental lifetime results, tau = 30(2) ns for the level 49 737 cm(-1) and tau = 30(3) ns for the level 52 226 cm(-1), were compared with relativistic Hartree-Fock calculations (tau = 30.5 and 30.0 ns) indicating a particularly excellent agreement.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1993-01-01
Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
Electrostatic interaction energy and factor 1.23
NASA Astrophysics Data System (ADS)
Rubčić, A.; Arp, H.; Rubčić, J.
The factor F≫1.23 has originally been found in the redshift of quasars. Recently, it has been found in very different physical phenomena: the life-time of muonium, the masses of elementary particles (leptons, quarks,...), the correlation of atomic weight (A) and atomic number (Z) and the correlation of the sum of masses of all orbiting bodies with the mass of the central body in gravitational systems.
Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor
1976-11-01
11, 15(1975). of Type 6p 3 -6p 2 7s in the Bismuth Atomic Spectrum in Intermediate Coupling," Acta Physica Polonica A47, 231(1975). 19. A.N. Nesmeyanov...Calculated Transit n Probabilities and Lifetimes for the First Excited Configuration np (n+l)s in the Neutral As, Sb and Bi Atoms, " Physica Scripta
PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses
NASA Astrophysics Data System (ADS)
Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.
2016-04-01
Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.
Argon metastable dynamics and lifetimes in a direct current microdischarge
NASA Astrophysics Data System (ADS)
Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc
2014-09-01
In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.
LAD Prize Talk: Lab Astro and the Origins of the Chemical Elements
NASA Astrophysics Data System (ADS)
Lawler, James E.
2017-06-01
Only a few of the lightest or primordial nuclei were made just after the Big Bang. Other light nuclei up to the Fe-group are made by fusion in stars. Heavier nuclei are made primarily via r(apid)-process and s(low)-process n(eutron)-capture events. Although the s-process n-capture is fairly well understood, the r-process n-capture events remain poorly understood. The relative role of Core Collapse SNe and n-star mergers will likely be understood in the next few decades. I will discuss recent studies of old Metal-Poor stars that are revealing some new details of nucleosynthesis. This progress is due to the availability of high resolution spectra from large ground based telescopes, access to the UV via HST, and better laboratory data. Our laboratory astrophysics program has focused primarily on the measurement of transition probabilities by combining radiative lifetimes with emission branching fractions. The use of Time Resolved Laser Induced Fluorescence (TRLIF) to measure radiative lifetimes in metallic atoms and ions provides an absolute scale for transition probabilities accurate to a few percent [e.g. 1]. The development and application of TRLIF to neutral and ionized atoms of nearly all elements is due to a simple, versatile, and reliable atom/ion beam source based on a hollow cathode discharge [2, 3]. Fourier transform spectrometers (FTSs) are essential in the measurement of emission branching fractions for atoms and ions with dense spectra such as the rare earths [e.g. 4, 5]. A 3 m focal length echelle spectrometer is important to the measurement of weak branches which might otherwise be obscured by multiplex noise in FTS data [6, 7]. References: [1] E. A. Den Hartog et al., ApJS 194: 35 (2011). [2] D. W. Duquette et al., Phys. Rev. A24, 2847 (1981). [3] S. Salih & J. E. Lawler, Phys. Rev. A29, 3753, (1983). [4] J. W. Brault, J. Opt. Soc. Am. 66, 1081 (1976). [5] J. E. Lawler et al., ApJS 182, 51 (2009). [6] M. P. Wood & J. E. Lawler, Appl. Opt. 51, 8407 (2012). [7] C. Sneden et al., ApJ 817:53 (2016).
Röttger, Katharina; Marroux, Hugo J B; Grubb, Michael P; Coulter, Philip M; Böhnke, Hendrik; Henderson, Alexander S; Galan, M Carmen; Temps, Friedrich; Orr-Ewing, Andrew J; Roberts, Gareth M
2015-12-01
Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron-driven proton transfer (EDPT) in Watson-Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine-cytosine (G⋅C) Watson-Crick base pairs by ultrafast time-resolved UV/visible and mid-infrared spectroscopy. The formation of an intermediate biradical species (G[-H]⋅C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G⋅C Watson-Crick pairs, but up to 10% of the initially excited molecules instead form a stable photoproduct G*⋅C* that has undergone double hydrogen-atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minnikanti, Saugandhika; Diao, Guoqing; Pancrazio, Joseph J; Xie, Xianzong; Rieth, Loren; Solzbacher, Florian; Peixoto, Nathalia
2014-02-01
The lifetime and stability of insulation are critical features for the reliable operation of an implantable neural interface device. A critical factor for an implanted insulation's performance is its barrier properties that limit access of biological fluids to the underlying device or metal electrode. Parylene C is a material that has been used in FDA-approved implantable devices. Considered a biocompatible polymer with barrier properties, it has been used as a substrate, insulation or an encapsulation for neural implant technology. Recently, it has been suggested that a bilayer coating of Parylene C on top of atomic-layer-deposited Al2O3 would provide enhanced barrier properties. Here we report a comprehensive study to examine the mean time to failure of Parylene C and Al2O3-Parylene C coated devices using accelerated lifetime testing. Samples were tested at 60°C for up to 3 months while performing electrochemical measurements to characterize the integrity of the insulation. The mean time to failure for Al2O3-Parylene C was 4.6 times longer than Parylene C coated samples. In addition, based on modeling of the data using electrical circuit equivalents, we show here that there are two main modes of failure. Our results suggest that failure of the insulating layer is due to pore formation or blistering as well as thinning of the coating over time. The enhanced barrier properties of the bilayer Al2O3-Parylene C over Parylene C makes it a promising candidate as an encapsulating neural interface. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thin film GaP for solar cell application
NASA Astrophysics Data System (ADS)
Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.
2016-08-01
A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure
Cooperative single-photon subradiant states in a three-dimensional atomic array
NASA Astrophysics Data System (ADS)
Jen, H. H.
2016-11-01
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.
Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors
NASA Technical Reports Server (NTRS)
Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab
2003-01-01
Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.
Development of composite facets for the surface of a space-based solar dynamic concentrator
NASA Technical Reports Server (NTRS)
Ayers, Schuyler R.; Morel, Donald E.; Sanborn, James A.
1986-01-01
An account is given of the composite fabrication techniques envisioned for the production of mirror-quality substrates furnishing the specular reflectance required for the NASA Space Station's solar dynamic concentrator energy system. The candidate materials were graphite fiber-reinforced glass, aluminum, and polymer matrices whose surfaces would be coated with thin metal layers and with atomic oxygen degradation-inhibiting protective coatings to obtain the desired mirror surface. Graphite-epoxy mirror substrate samples have been found to perform satisfactorily for the required concentrator lifetime.
Spin-split silicon states at step edges of Si(553)-Au
NASA Astrophysics Data System (ADS)
Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.
2012-06-01
The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.
Improving the lifetime in optical microtraps by using elliptically polarized dipole light
NASA Astrophysics Data System (ADS)
Garcia, Sébastien; Reichel, Jakob; Long, Romain
2018-02-01
Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.
Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor
NASA Astrophysics Data System (ADS)
Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.
2017-10-01
We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.
A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart
2014-01-15
We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less
Towards Quantum Simulation with Circular Rydberg Atoms
NASA Astrophysics Data System (ADS)
Nguyen, T. L.; Raimond, J. M.; Sayrin, C.; Cortiñas, R.; Cantat-Moltrecht, T.; Assemat, F.; Dotsenko, I.; Gleyzes, S.; Haroche, S.; Roux, G.; Jolicoeur, Th.; Brune, M.
2018-01-01
The main objective of quantum simulation is an in-depth understanding of many-body physics, which is important for fundamental issues (quantum phase transitions, transport, …) and for the development of innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1 /2 arrays, providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the detection of arbitrary spin observables with single-site resolution. The proposed simulator realizes an X X Z spin-1 /2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum simulation of regular spin chains. We discuss extensions towards more general quantum simulations of interacting spin systems with full control on individual interactions.
Bažant, Zdeněk P.; Le, Jia-Liang; Bazant, Martin Z.
2009-01-01
The failure probability of engineering structures such as aircraft, bridges, dams, nuclear structures, and ships, as well as microelectronic components and medical implants, must be kept extremely low, typically <10−6. The safety factors needed to ensure it have so far been assessed empirically. For perfectly ductile and perfectly brittle structures, the empirical approach is sufficient because the cumulative distribution function (cdf) of random material strength is known and fixed. However, such an approach is insufficient for structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared with the structure size. The reason is that the strength cdf of quasibrittle structure varies from Gaussian to Weibullian as the structure size increases. In this article, a recently proposed theory for the strength cdf of quasibrittle structure is refined by deriving it from fracture mechanics of nanocracks propagating by small, activation-energy-controlled, random jumps through the atomic lattice. This refinement also provides a plausible physical justification of the power law for subcritical creep crack growth, hitherto considered empirical. The theory is further extended to predict the cdf of structural lifetime at constant load, which is shown to be size- and geometry-dependent. The size effects on structure strength and lifetime are shown to be related and the latter to be much stronger. The theory fits previously unexplained deviations of experimental strength and lifetime histograms from the Weibull distribution. Finally, a boundary layer method for numerical calculation of the cdf of structural strength and lifetime is outlined. PMID:19561294
Resolving the neutron lifetime puzzle
NASA Astrophysics Data System (ADS)
Mumm, Pieter
2018-05-01
Free electrons and protons are stable, but outside atomic nuclei, free neutrons decay into a proton, electron, and antineutrino through the weak interaction, with a lifetime of ∼880 s (see the figure). The most precise measurements have stated uncertainties below 1 s (0.1%), but different techniques, although internally consistent, disagree by 4 standard deviations given the quoted uncertainties. Resolving this “neutron lifetime puzzle” has spawned much experimental effort as well as exotic theoretical mechanisms, thus far without a clear explanation. On page 627 of this issue, Pattie et al. (1) present the most precise measurement of the neutron lifetime to date. A new method of measuring trapped neutrons in situ allows a more detailed exploration of one of the more pernicious systematic effects in neutron traps, neutron phase-space evolution (the changing orbits of neutrons in the trap), than do previous methods. The precision achieved, combined with a very different set of systematic uncertainties, gives hope that experiments such as this one can help resolve the current situation with the neutron lifetime.
Xie, Xianzong; Rieth, Loren; Caldwell, Ryan; Diwekar, Mohit; Tathireddy, Prashant; Sharma, Rohit; Solzbacher, Florian
2013-10-01
We present an encapsulation scheme that combines atomic layer deposited (ALD) Al₂O₃ and Parylene C for the encapsulation of implantable devices. The encapsulation performances of combining alumina and Parylene C was compared to individual layers of Parylene C or alumina and the bilayer coating had superior encapsulation properties. The alumina-Parylene coated interdigitated electrodes (IDEs) soaked in PBS for up to nine months at temperatures from 37 to 80 °C for accelerated lifetime testing. For 52-nm alumina and 6-μm Parylene C, leakage current was ∼20 pA at 5 VDC, and the impedance was about 3.5 MΩ at 1 kHz with a phase near -87° from electrochemical impedance spectroscopy for samples soaked at 67 °C for equivalent lifetime of 72 months at 37 °C. The change of impedance during the whole soaking period (up to 70 months of equivalent soaking time at 37 °C) over 1 to 10⁶ Hz was within 5%. The stability of impedance indicated almost no degradation of the encapsulation. Bias voltage effect was studied by continuously applying 5 VDC, and it reduced the lifetime of Parylene coating by ∼75% while it showed no measurable effect on the bilayer coating. Lifetime of encapsulation of IDEs with topography generated by attaching a coil and surface mount device (SMD) capacitor was about half of that of planer IDEs. The stable long-term insulation impedance, low leakage current, and better lifetime under bias voltage and topography made this double-layer encapsulation very promising for chronic implantable devices.
Time-dependent dielectric breakdown of atomic-layer-deposited Al2O3 films on GaN
NASA Astrophysics Data System (ADS)
Hiraiwa, Atsushi; Sasaki, Toshio; Okubo, Satoshi; Horikawa, Kiyotaka; Kawarada, Hiroshi
2018-04-01
Atomic-layer-deposited (ALD) Al2O3 films are the most promising surface passivation and gate insulation layers in non-Si semiconductor devices. Here, we carried out an extensive study on the time-dependent dielectric breakdown characteristics of ALD-Al2O3 films formed on homo-epitaxial GaN substrates using two different oxidants at two different ALD temperatures. The breakdown times were approximated by Weibull distributions with average shape parameters of 8 or larger. These values are reasonably consistent with percolation theory predictions and are sufficiently large to neglect the wear-out lifetime distribution in assessing the long-term reliability of the Al2O3 films. The 63% lifetime of the Al2O3 films increases exponentially with a decreasing field, as observed in thermally grown SiO2 films at low fields. This exponential relationship disproves the correlation between the lifetime and the leakage current. Additionally, the lifetime decreases with measurement temperature with the most remarkable reduction observed in high-temperature (450 °C) O3-grown films. This result agrees with that from a previous study, thereby ruling out high-temperature O3 ALD as a gate insulation process. When compared at 200 °C under an equivalent SiO2 field of 4 MV/cm, which is a design guideline for thermal SiO2 on Si, high-temperature H2O-grown Al2O3 films have the longest lifetimes, uniquely achieving the reliability target of 20 years. However, this target is accomplished by a relatively narrow margin and, therefore, improvements in the lifetime are expected to be made, along with efforts to decrease the density of extrinsic Al2O3 defects, if any, to promote the practical use of ALD Al2O3 films.
Liu, Jian; Banis, Mohammad N; Sun, Qian; Lushington, Andrew; Li, Ruying; Sham, Tsun-Kong; Sun, Xueliang
2014-10-08
Atomic layer deposition is successfully applied to synthesize lithium iron phosphate in a layer-by-layer manner by using self-limiting surface reactions. The lithium iron phosphate exhibits high power density, excellent rate capability, and ultra-long lifetime, showing great potential for vehicular lithium batteries and 3D all-solid-state microbatteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.
1982-12-01
Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2011-01-01
This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Selig, Malte; Berghäuser, Gunnar; Raja, Archana; ...
2016-11-07
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. We investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS 2 and MoSe 2) through a study combining microscopic theory with spectroscopic measurements. We also show that the excitonicmore » coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. Particularly, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures, in WS 2.« less
Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maj, Michał; Oh, Younjun; Park, Kwanghee
2014-06-21
The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysiamore » Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beterov, I. I.; Ryabtsev, I. I.; Tretyakov, D. B.
2009-05-15
Rates of depopulation by blackbody radiation (BBR) and effective lifetimes of alkali-metal nS, nP, and nD Rydberg states have been calculated in a wide range of principal quantum numbers n{<=}80 at the ambient temperatures of 77, 300, and 600 K. Quasiclassical formulas were used to calculate the radial matrix elements of the dipole transitions from Rydberg states. Good agreement of our numerical results with the available theoretical and experimental data has been found. We have also obtained simple analytical formulas for estimates of effective lifetimes and BBR-induced depopulation rates, which well agree with the numerical data.
On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.
2017-01-01
It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.
NASA Astrophysics Data System (ADS)
Yeh, Hsin-Chih; Sharma, Jaswinder; Yoo, Hyojong; Martinez, Jennifer S.; Werner, James H.
2010-02-01
The size transition from bulk conducting metals to insulating nanoparticles and eventually to single atoms passes through the relatively unexplored few-atom nanocluster region. With dimensions close to the Fermi wavelength, these nanoclusters demonstrate molecule-like properties distinct from bulk metals or atoms, such as discrete and size-tunable electronic transitions which lead to photoluminescence. Current research aims to elucidate the fundamental photophysical properties of metal nanoclusters made by different means and based on different encapsulation agents. Here, we report the study of the photophysical properties, including quantum yields, lifetimes, extinction coefficients, blinking dynamics and sizes, of silver and gold nanoclusters synthesized using oligonucleotides, a protein (bovine serum albumin) and a Good's buffer molecule (MES, 2-(N-morpholino) ethanesulfonic acid) as encapsulation agents. We also investigate the change of photoluminescence as a function of temperature. Furthermore, we show that the fluorescent metal clusters can be used as a donor in forming a resonance energy transfer pair with a commercial organic quencher. These new fluorophores have great potential as versatile tools for a broad range of applications in biological and chemical detection.
Semi-empirical studies of atomic structure. Progress report, 1 July 1982-1 February 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, L.J.
1983-01-01
A program of studies of the properties of the heavy and highly ionized atomic systems which often occur as contaminants in controlled fusion devices is continuing. The project combines experimental measurements by fast-ion-beam excitation with semi-empirical data parametrizations to identify and exploit regularities in the properties of these very heavy and very highly ionized systems. The increasing use of spectroscopic line intensities as diagnostics for determining thermonuclear plasma temperatures and densities requires laboratory observation and analysis of such spectra, often to accuracies that exceed the capabilities of ab initio theoretical methods for these highly relativistic many electron systems. Through themore » acquisition and systematization of empirical data, remarkably precise methods for predicting excitation energies, transition wavelengths, transition probabilities, level lifetimes, ionization potentials, core polarizabilities, and core penetrabilities are being developed and applied. Although the data base for heavy, highly ionized atoms is still sparse, parametrized extrapolations and interpolations along isoelectronic, homologous, and Rydberg sequences are providing predictions for large classes of quantities, with a precision that is sharpened by subsequent measurements.« less
Semiempirical studies of atomic structure. Progress report, 1 July 1983-1 June 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, L.J.
1984-01-01
A program of studies of the properties of the heavy and highly ionized atomic systems which often occur as contaminants in controlled fusion devices is continuing. The project combines experimental measurements by fast ion beam excitation with semiempirical data parametrizations to identify and exploit regularities in the properties of these very heavy and very highly ionized systems. The increasing use of spectroscopic line intensities as diagnostics for determining thermonuclear plasma temperatures and densities requires laboratory observation and analysis of such spectra, often to accuracies that exceed the capabilities of ab initio theoretical methods for these highly relativistic many electron systems.more » Through the acquisition and systematization of empirical data, remarkably precise methods for predicting excitation energies, transition wavelengths, transition probabilities, level lifetimes, ionization potentials, core polarizabilities, and core penetrabilities are being developed and applied. Although the data base for heavy, highly ionized atoms is still sparse, parametrized extrapolations and interpolations along isoelectronic, homologous, and Rydberg sequences are providing predictions for large classes of quantities, with a precision that is sharpened by subsequent measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegmund, O. H. W.; McPhate, J. B.; Tremsin, A. S.
Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 mu m and 10 mu m pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannelmore » plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.« less
Quantum memory with a controlled homogeneous splitting
NASA Astrophysics Data System (ADS)
Hétet, G.; Wilkowski, D.; Chanelière, T.
2013-04-01
We propose a quantum memory protocol where an input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal electromagnetically induced transparency is only formal because no ground state coherence-based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time; the protocols are perfectly efficient and noise free. We compare the technique with other quantum memories, and propose atomic systems where the experiment can be realized.
Single-crystalline monolayer and multilayer graphene nano switches
NASA Astrophysics Data System (ADS)
Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong
2014-03-01
Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.
Single-crystalline monolayer and multilayer graphene nano switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Peng; Cui, Tianhong, E-mail: tcui@me.umn.edu; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
2014-03-17
Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1 V, and high switching speed about 100 ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.
Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk
2017-01-01
The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097
Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...
2017-05-26
The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael
The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less
Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging
NASA Astrophysics Data System (ADS)
Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.
2017-10-01
This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, T.M.
1987-01-01
A theoretical investigation of the interaction potential between the helium atom and the antihydrogen atom was performed for the purpose of determining the feasibility of antihydrogen atom containment. The interaction potential showed an energy barrier to collapse of this system. A variational estimate of the height of this energy barrier and estimates of lifetime with respect to electron-positron annihilation were determined by the Variational Monte Carlo method. This calculation allowed for an improvement over an SCF result through the inclusion of explicit correlation factors in the trial wave function. An estimate of the correlation energy of this system was determinedmore » by the Green's Function Monte Carlo (GFMC) method.« less
Silicon as a model ion trap: Time domain measurements of donor Rydberg states
Vinh, N. Q.; Greenland, P. T.; Litvinenko, K.; Redlich, B.; van der Meer, A. F. G.; Lynch, S. A.; Warner, M.; Stoneham, A. M.; Aeppli, G.; Paul, D. J.; Pidgeon, C. R.; Murdin, B. N.
2008-01-01
One of the great successes of quantum physics is the description of the long-lived Rydberg states of atoms and ions. The Bohr model is equally applicable to donor impurity atoms in semiconductor physics, where the conduction band corresponds to the vacuum, and the loosely bound electron orbiting a singly charged core has a hydrogen-like spectrum according to the usual Bohr–Sommerfeld formula, shifted to the far-infrared because of the small effective mass and high dielectric constant. Manipulation of Rydberg states in free atoms and ions by single and multiphoton processes has been tremendously productive since the development of pulsed visible laser spectroscopy. The analogous manipulations have not been conducted for donor impurities in silicon. Here, we use the FELIX pulsed free electron laser to perform time-domain measurements of the Rydberg state dynamics in phosphorus- and arsenic-doped silicon and we have obtained lifetimes consistent with frequency domain linewidths for isotopically purified silicon. This implies that the dominant decoherence mechanism for excited Rydberg states is lifetime broadening, just as for atoms in ion traps. The experiments are important because they represent a step toward coherent control and manipulation of atomic-like quantum levels in the most common semiconductor and complement magnetic resonance experiments in the literature, which show extraordinarily long spin lattice relaxation times—key to many well known schemes for quantum computing qubits—for the same impurities. Our results, taken together with the magnetic resonance data and progress in precise placement of single impurities, suggest that doped silicon, the basis for modern microelectronics, is also a model ion trap.
Luckey, T D
2008-01-01
Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment.
NASA Astrophysics Data System (ADS)
Campuzano Jost, P.; Schroder, J. C.; Nault, B.; Day, D. A.; Jimenez, J. L.; Heald, C. L.; Hodzic, A.; Katich, J. M.; Schwarz, J. P.; Blake, N. J.; Blake, D. R.; Daube, B. C.; Wofsy, S. C.; Ray, E. A.; Bian, H.; Colarco, P. R.; Chin, M.; Pawson, S.; Newman, P. A.
2017-12-01
Submicron aerosols in the remote free troposphere (FT) originate mostly from long-range transport from distant biogenic, anthropogenic, and biomass burning sources. Very limited local production in this region heightens the sensitivity of aerosol concentrations to slow removal processes. As yet, few studies with an advanced aerosol payload have targeted the remote FT. Current global models exhibit a very large diversity in predicting aerosol concentrations in these regions of the atmosphere, particularly when trying to model organic aerosol (OA), which, together with sulfate, is the most prevalent type of non-refractory aerosol in the remote FT. As part of NASA's Atmospheric Tomography (ATom) aircraft mission, we have acquired a global dataset of organic aerosol (OA) concentration and composition over the remote Atlantic and Pacific Oceans from 0 to 12 km and from 65 S to 80 N for both Summer and Winter seasons. This dataset provides unique new constraints on the spatial distribution of OA and its contribution to the global aerosol background; of particular interest are the OA/Sulfate ratio and OA oxidation state that are critical for estimating the activity of cloud condensation nuclei (CCN) in the remote troposphere. We find that, except for the cleanest of the ATom-sampled airmasses, OA concentrations are comparable and often larger than sulfate. OA was highly oxidized, significantly more than over the continental FT, with O:C ratios often in excess of 1 (i.e. OA/OC >2.5). Using several different hydrocarbon-ratio based photochemical clocks in combination with backtrajectories to infer the age of the airmasses sampled during ATom, we estimate that the lifetime of OA in the remote FT is on the order of 10 days. This is significantly shorter than the FT lifetime assuming just wet and dry deposition as the primary loss mechanisms, and suggests a chemical removal mechanism such as heterogeneous oxidation or photolysis. This provides a key constraint for modeling of OA in the FT, based solely on measurements. The likelihood of different chemical removal mechanisms will be discussed and their potential implementation in global models such as GEOS-Chem explored. The contributions of methanesulfonic acid (MSA) and particulate organic nitrates (pRONO2) to total OA in the remote troposphere will be discussed as well.
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
NASA Astrophysics Data System (ADS)
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
Amorphous and crystalline silicon based heterojunction solar cells
NASA Astrophysics Data System (ADS)
Schüttauf, J. A.
2011-10-01
In this thesis, research on amorphous and crystalline silicon heterojunction (SHJ) solar cells is described. Probably the most important feature of SHJ solar cells is a thin intrinsic amorphous silicion (a-Si:H) layer that is deposited before depositing the doped emitter and back surface field. The passivation properties of such intrinsic layers made by three different chemical vapor deposition (CVD) techniques have been investigated. For layers deposited at 130°C, all techniques show a strong reduction in surface recombination velocity (SRV) after annealing. Modelling indicates that dangling bond saturation by atomic hydrogen is the predominant mechanism. We obtain outstanding carrier lifetimes of 10.3 ms, corresponding to SRVs of 0.56 cm/s. For a-Si:H films made at 250°C, an as-deposited minority carrier lifetime of 2.0 ms is observed. In contrast to a-Si:H films fabricated at 130°C, however, no change in passivation quality upon thermal annealing is observed. These films were fabricated for the first time using a continuous in-line HWCVD mode. Wafer cleaning before a-Si:H deposition is a crucial step for c-Si surface passivation. We tested the influence of an atomic hydrogen treatment before a-Si:H deposition on the c-Si surface. The treatments were performed in a new virgin chamber to exclude Si deposition from the chamber walls. Subsequently, we deposited a-Si:H layers onto the c-Si wafers and measured the lifetime for different H treatment times. We found that increasing hydrogen treatment times led to lower effective lifetimes. Modelling of the measured minority carrier lifetime data shows that the decreased passivation quality is caused by an increased defect density at the amorphous-crystalline interface. Furtheremore, the passivation of different a-Si:H containing layers have been tested. For intrinsic films and intrinsic/n-type stacks, an improvement in passivation up to 255°C and 270°C is observed. This improvement is attributed to dangling bond saturation by H, whereas the decrease at higher temperatures is caused by H effusion. For intrinsic/n-type a-Si:H layer stacks, a record minority carrier lifetime of 13.3 ms is obtained. In contrast, for intrinsic/p-type a-Si:H layer stacks, a deterioration in passivation is observed over the whole temperature range, due to the asymmetric Fermi-level dependent defect formation enthalpy in n- and p-type a-Si:H. Comparing the lifetime values and trends for the different layer stacks to the performance of the corresponding cells, it is observed that the intrinsic/p-layer stack is limiting device performance. Based on these findings, the solar cells were prepared in a modified order, reaching an efficiency of 16.7% (VOC = 681 mV), versus 15.8% (VOC = 659 mV) in the ‘standard’ order. Finally, transparent conductive oxide (TCO) layers are studied for application into solar cells. It is observed that both types of TCO deposition have no significant influence on the passivation properties of standard a-Si:H layer stacks forming the emitter structure in the used SHJ cells. On flat wafers, a conversion efficiency of 16.7% has been obtained when ITO is used as TCO, versus an efficiency of 16.3% for ZnO:Al; slightly lower due to increased electrical losses.
Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Emerson, Preston; Crockett, Julie; Maynes, Daniel
2017-11-01
Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.
1988-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Safronova, M. S.; Nakamura, N.
2017-04-01
Atomic properties of Cd-like W26 +, In-like W25 +, and Sn-like W24 + ions are evaluated by using a relativistic CI+all -order approach that combines configuration-interaction and the coupled-cluster methods. The energies, transition rates, and lifetimes of low-lying levels are calculated and compared with available theoretical and experimental values. The magnetic-dipole transition rates are calculated to determine the branching ratios and lifetimes for the 4 f3 states in W25 + and for the 4 f4 states in W24 + ions. Excellent agreement of the CI+all -order values provided a benchmark test of this method for the 4 fn configurations validating the recommended values of tungsten ion properties calculated in this work.
Guo, San-Dong; Liu, Bang-Gui
2018-03-14
Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44 , TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 [Formula: see text] along the a axis and 1080.40 [Formula: see text] along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) [Formula: see text] along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.
NASA Astrophysics Data System (ADS)
Guo, San-Dong; Liu, Bang-Gui
2018-03-01
Topological semimetals may have potential applications such as in topological qubits, spintronics and quantum computations. Efficient heat dissipation is a key factor for the reliability and stability of topological semimetal-based nano-electronics devices, which is closely related to high thermal conductivity. In this work, the elastic properties and lattice thermal conductivity of TaN are investigated using first-principles calculations and the linearized phonon Boltzmann equation within the single-mode relaxation time approximation. According to the calculated bulk modulus, shear modulus and C 44, TaN can be regarded as a potential incompressible and hard material. The room-temperature lattice thermal conductivity is predicted to be 838.62 W~m-1~K^{-1} along the a axis and 1080.40 W~m-1~K^{-1} along the c axis, showing very strong anisotropy. It is found that the lattice thermal conductivity of TaN is several tens of times higher than other topological semimetals, such as TaAs, MoP and ZrTe, which is due to the very longer phonon lifetimes for TaN than other topological semimetals. The very different atomic masses of Ta and N atoms lead to a very large acoustic-optical band gap, and then prohibit the scattering between acoustic and optical phonon modes, which gives rise to very long phonon lifetimes. Calculated results show that isotope scattering has little effect on lattice thermal conductivity, and that phonons with mean free paths larger than 20 (80) μm along the c direction at 300 K have little contribution to the total lattice thermal conductivity. This work implies that TaN-based nano-electronics devices may be more stable and reliable due to efficient heat dissipation, and motivates further experimental works to study lattice thermal conductivity of TaN.
Electronic damping of anharmonic adsorbate vibrations at metallic surfaces
NASA Astrophysics Data System (ADS)
Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter
2010-03-01
The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Jeffrey I.; Chapman, Jenny; Pohlmann, Karl F.
As part of the Environmental Management Program at the Nevada National Security Site (NNSS), the Underground Test Area (UGTA) Activity investigates the potential impacts of radionuclides that were introduced into groundwater from the underground nuclear tests conducted near or below the NNSS water table between 1951 and 1992. Groundwater models are being used to simulate contaminant transport and forecast contaminant boundaries that encompass areas where the groundwater has a five percent or greater probability of containing contaminants above the Safe Drinking Water Act Maximum Contaminant Levels (SDWA MCLs) at any time during the next 1,000 years. Transport modeling conducted formore » the Frenchman Flat Corrective Action Unit (CAU) at the NNSS identified the beta/photon-emitting radionuclides tritium (3H), carbon-14 (14C), chlorine-36 (36Cl), technetium-99 (99Tc), and iodine-129 (129I) as having the greatest influence in defining the farthest extent of the modeled CAU contaminant boundary. These same radionuclides are assumed here as the contaminants of concern (COCs) for all underground nuclear tests at the NNSS because models are not yet complete for the other CAUs.Potential public exposure to the COCs will only occur and be of concern if the COCs migrate into the groundwater beneath public or private lands at levels that exceed either individual SDWA MCLs or dose and risk limits. Groundwater flow directions strongly suggest that any contaminant boundary predicted by contaminant fate and transport modeling to overlap public or private lands is more likely to occur to the west and/or southwest of the NNSS and the adjacent Nevada Test and Training Range (NTTR). Well-established, rural communities exist in these directions. Estimates of representative activity concentrations at the applicable SDWA MCL were developed for the five COCs. It is assumed that these COC concentrations may collectively occur at some public or private location in the future, but that situation does not exist today. These representative activity concentrations are evaluated with respect to conforming collectively to a modern annual committed effective dose (CED) and lifetime excess cancer morbidity risk for a hypothetical reasonably maximally exposed individual (RMEI). This approach goes beyond the SDWA MCL focus of the contaminant boundary because individual COC concentrations may comply with the SDWA MCL but not collectively meet the modern health-protection metrics and the SDWA language, especially if future modeling studies or monitoring activities show multiple radionuclides from different SDWA MCL categories to be COCs. For the drinking water exposure pathway alone, the annual committed effective dose (CED) for the RMEI from all five COCs that are collectively at estimated activity concentrations equal to their SDWA MCL is well below the U.S. Department of Energy health-protective CED limit of 100 millirem (mrem)/yr. This is consistent using both the NNSS unclassified, 1992 decay-corrected radionuclide atom inventory and the atom inventory based on radionuclides measured in groundwater obtained from the ALMENDRO cavity in 2009 to calculate the SDWA MCL activity concentrations in groundwater. The RMEI’s total lifetime excess cancer risk from the drinking water exposure pathway for both atom inventories is within the range of 1 × 10 -4 to ≤ 1 × 10 -6, which is considered health protective according to modern SDWA MCL regulatory language. The biosphere exposure pathways are drinking water, garden produce, animal products, inadvertent soil ingestion, and indoor and outdoor air inhalation. The exposure parameters for communities west and southwest of the NNSS were developed when the Yucca Mountain high-level, nuclear-waste disposal facility was under consideration. For all biosphere exposure pathways, calculations of the annual CED and lifetime excess cancer morbidity risk for the RMEI revealed that: 1) The annual CED is well within health-protective guidance (<< 100 mrem CED/yr) for the COC activity concentrations at the SDWA MCL, regardless of the atom inventory used. 2) The calculated 70-year lifetime excess cancer morbidity risk (6 x 10 -5) is within the health-protective range when the five COC activity concentrations are derived using the NNSS 1992 atom inventory, but it is at the upper limit of the acceptable range (1 x 10 -4) using the ALMENDRO 2009 atom inventory. 3) Tritium (3H) is the principal COC for producing annual dose and lifetime excess cancer risk, regardless of the atom inventory used. 4) Overall, the drinking water ingestion pathway is the dominant exposure pathway contributing to the total annual CED and lifetime excess cancer risk, followed by eating locally grown produce and animal products. 5) When tritium completely decays (after about 100 years), the RMEI’s lifetime risk will fall well within the health-protective range (i.e., 1 × 10-4 to ≤ 1 × 10 -6) and 36Cl will then become the most important contributor to the RMEI’s total annual CED and lifetime excess cancer morbidity risk from eating local produce and animal products. In the event that radionuclide concentrations begin to approach SDWA MCLs, a reasonable risk-management strategy for keeping lifetime risk more in compliance with regulatory guidance would be to use local sources of groundwater that are below SDWA MCLs or to limit the consumption of local produce and animal products that have ingested COC-contaminated groundwater. The viability of the latter strategy increases where the annual CED due to 36Cl approaches that of 3H.The dose and risk values calculated here for an RMEI are specific to the assumption that the five COCs occur in groundwater beneath public or private lands at concentrations that are collectively at the SDWA MCL. Currently, these COCs are essentially absent from groundwater beneath public or private lands beyond the boundaries of the NNSS and NTTR other than at very low, naturally occurring concentrations. The analyses presented here can be readily applied to determine dose and risk for COC concentrations actually measured in future monitoring samples.« less
Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders
2013-01-01
This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, J. D.; Miller, M. K.; Young, G. A.
Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°Fmore » (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.« less
All-optical control of long-lived nuclear spins in rare-earth doped nanoparticles.
Serrano, D; Karlsson, J; Fossati, A; Ferrier, A; Goldner, P
2018-05-29
Nanoscale systems that coherently couple to light and possess spins offer key capabilities for quantum technologies. However, an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. Here, we report optically controlled nuclear spins with long coherence lifetimes (T 2 ) in rare-earth-doped nanoparticles. We detect spins echoes and measure a spin coherence lifetime of 2.9 ± 0.3 ms at 5 K under an external magnetic field of 9 mT, a T 2 value comparable to those obtained in bulk rare-earth crystals. Moreover, we achieve spin T 2 extension using all-optical spin dynamical decoupling and observe high fidelity between excitation and echo phases. Rare-earth-doped nanoparticles are thus the only nano-material in which optically controlled spins with millisecond coherence lifetimes have been reported. These results open the way to providing quantum light-atom-spin interfaces with long storage time within hybrid architectures.
Reaction between NiO and Al2O3 in NiO/γ-Al2O3 catalysts probed by positronium atom
NASA Astrophysics Data System (ADS)
Li, C. Y.; Zhang, H. J.; Chen, Z. Q.
2013-02-01
NiO/γ-Al2O3 catalysts with NiO content of 9 wt% and 24 wt% were prepared by solid state reaction method. They are annealed in air at temperatures from 100 °C to 1000 °C. Positron lifetime spectra were measured to study the microstructure variation during annealing process. Four positron lifetime components were resolved with two long lifetime τ3 and τ4, which can be attributed to the ortho-positronium lifetime in microvoids and large pores, respectively. It was found that the longest lifetime τ4 is rather sensitive to the chemical environment of the large pores. The NiO active centers in the catalysts cause decrease of both τ4 and its intensity I4, which is due to the spin-conversion of positronium induced by NiO. However, after heating the catalysts above 600 °C, abnormal increase of the lifetime τ4 is observed. This is due to the formation of NiAl2O4 spinel from the reaction of NiO and γ-Al2O3. The generated NiAl2O4 weakens the spin-conversion effect of positronium, thus leads to the increase of o-Ps lifetime τ4. Formation of NiAl2O4 is further confirmed by both X-ray diffraction and X-ray photoelectron spectroscopy measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farley, J.W.; Wing, W.H.
1981-05-01
A highly excited (Rydberg) atom bathed in blackbody radiation is perturbed in two ways. A dynamic Stark shift is induced by the off-resonant components of the blackbody radiation. Additionally, electric-dipole transitions to other atomic energy levels are induced by the resonant components of the blackbody radiation. This depopulation effect shortens the Rydberg-state lifetime, thereby broadening the energy level. Calculations of these two effects in many states of hydrogen, helium, and the alkali-metal atoms Li, Na, K, Rb, and Cs are presented for T = 300 K. Contributions from the entire blackbody spectrum and from both discrete and continuous perturbing statesmore » are included. The accuracy is considerably greater than that of previous estimates.« less
Theory of a Quantum Scanning Microscope for Cold Atoms
NASA Astrophysics Data System (ADS)
Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.
2018-03-01
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Theory of a Quantum Scanning Microscope for Cold Atoms.
Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P
2018-03-30
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon
2014-01-01
Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.
Atomic layer deposition of alternative glass microchannel plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Mahony, Aileen, E-mail: aom@incomusa.com; Craven, Christopher A.; Minot, Michael J.
The technique of atomic layer deposition (ALD) has enabled the development of alternative glass microchannel plates (MCPs) with independently tunable resistive and emissive layers, resulting in excellent thickness uniformity across the large area (20 × 20 cm), high aspect ratio (60:1 L/d) glass substrates. Furthermore, the use of ALD to deposit functional layers allows the optimal substrate material to be selected, such as borosilicate glass, which has many benefits compared to the lead-oxide glass used in conventional MCPs, including increased stability and lifetime, low background noise, mechanical robustness, and larger area (at present up to 400 cm{sup 2}). Resistively stable, high gain MCPs are demonstratedmore » due to the deposition of uniform ALD resistive and emissive layers on alternative glass microcapillary substrates. The MCP performance characteristics reported include increased stability and lifetime, low background noise (0.04 events cm{sup −2} s{sup −1}), and low gain variation (±5%)« less
Plastic Deformation and Failure Analysis of Phase Change Random Access Memory
NASA Astrophysics Data System (ADS)
Yang; Hongxin; Shi; Luping; Lee; Koon, Hock; Zhao; Rong; Li; Jianming; Lim; Guan, Kian; Chong; Chong, Tow
2009-04-01
Although lateral phase change random access memory (PCRAM) has attracted a lot of interest due to its simpler fabrication process and lower current compared to ovonic unified memory (OUM), it faces a problem of poor lifetime. This paper studied relation between plastic deformation and the failure of PCRAM through both experiment and simulation. OUM and lateral PCRAM incorporating Ge2Sb2Te5 were fabricated and tested. The overwriting test showed that lifetime of OUM exceeded 106 while that of lateral PCRAM was only about 100. Using atomic force microscopy (AFM), it was found that the plastic deformation after 106 overwriting reached several tens of nm for lateral PCRAM while it was negligible for OUM. The thermo-mechanical simulation results confirmed the similar results on larger plastic deformation of lateral PCRAM than that of OUM during overwriting. As plastic deformation involves of atomic bonds breaking and reforming in phase change material, the plastic deformation may be one main reason for the failure of lateral PCRAM.
Halocarbon ozone depletion and global warming potentials
NASA Technical Reports Server (NTRS)
Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.
1990-01-01
Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).
Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon
2014-01-01
Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097
Luckey, T. D.
2008-01-01
Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation, leukemia and solid tissue cancer mortality rates, and increased average lifespan. Each study exhibits a threshold that repudiates the LNT dogma. The average threshold for acute exposures to atomic bombs is about 100 cSv. Conclusions from these studies of atomic bomb survivors are: One burst of low dose irradiation elicits a lifetime of improved health.Improved health from low dose irradiation negates the LNT paradigm.Effective triage should include radiation hormesis for survivor treatment. PMID:19088902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aufderheide, A.C.; Neiman, F.D.; Wittmers, L.E. Jr.
1981-07-01
Measurements of skeletal-lead content (by atomic absorption spectroscopy) were made for 16 individuals recovered from a Colonial (1670-1730) plantation cemetery in Virginia. Archaeological and historical evidence allowed the identification of two social groups (plantation proprietors and laborers) within this small population, each with vastly different estimated lifetime lead exposure, reflecting different living conditions. Measured bone-lead levels confirmed these differences. The character of plantation social organization proved a more important determinant of skeletal-lead content in the individuals studied than age, sex or race.
Chip-Scale Combinatorial Atomic Navigator (C-SCAN) Low Drift Nuclear Spin Gyroscope
2018-01-01
in the 129Xe spin lifetime was related to the temperature of the cell bake -out prior to filling. Using spherical aluminosilicate glass blown cells...we have achieved a 129Xe T2 lifetime of 1000 sec by baking the cells for a week at 550°C, as shown in Fig. 11b). A similar bake out procedure was...with high temperature baking . Insets above show the time zoom of the signal with 3He and 129Xe frequencies Residual 129Xe T2 = 5.3s 3He T2 = 2300s
NASA Astrophysics Data System (ADS)
Krause, O.; Bouchiat, V.; Bonnot, A. M.
2007-03-01
Due to their extreme aspect ratios and exceptional mechanical properties Carbon Nanotubes terminated silicon probes have proven to be the ''ideal'' probe for Atomic Force Microscopy. But especially for the manufacturing and use of Single Walled Carbon Nanotubes there are serious problems, which have not been solved until today. Here, Single and Double Wall Carbon Nanotubes, batch processed and used as deposited by Chemical Vapor Deposition without any postprocessing, are compared to standard and high resolution silicon probes concerning resolution, scanning speed and lifetime behavior.
Cooperative single-photon subradiant states in a three-dimensional atomic array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, H.H., E-mail: sappyjen@gmail.com
2016-11-15
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less
NASA Astrophysics Data System (ADS)
Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.
2017-12-01
In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.
NASA Astrophysics Data System (ADS)
Nazir, R. T.; Bari, M. A.; Bilal, M.; Sardar, S.; Nasim, M. H.; Salahuddin, M.
2017-02-01
We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (^2P^o3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.
Jubb, Aaron M; Gierczak, Tomasz; Baasandorj, Munkhbayar; Waterland, Robert L; Burkholder, James B
2014-05-06
Mixtures of methyl-perfluoroheptene-ethers (CH3OC7F13, MPHEs) are currently in use as replacements for perfluorinated alkanes (PFCs) and poly-ether heat transfer fluids, which are persistent greenhouse gases with lifetimes >1000 years. At present, the atmospheric processing and environmental impact from the use of MPHEs is unknown. In this work, rate coefficients at 296 K for the gas-phase reaction of the OH radical with six key isomers (including stereoisomers and enantiomers) of MPHEs used commercially were measured using a relative rate method. Rate coefficients for the six MPHE isomers ranged from ∼ 0.1 to 2.9 × 10(-12) cm(3) molecule(-1) s(-1) with a strong stereoisomer and -OCH3 group position dependence; the (E)-stereoisomers with the -OCH3 group in an α- position relative to the double bond had the greatest reactivity. Rate coefficients measured for the d3-MPHE isomer analogues showed decreased reactivity consistent with a minor contribution of H atom abstraction from the -OCH3 group to the overall reactivity. Estimated atmospheric lifetimes for the MPHE isomers range from days to months. Atmospheric lifetimes, radiative efficiencies, and global warming potentials for these short-lived MPHE isomers were estimated based on the measured OH rate coefficients along with measured and theoretically calculated MPHE infrared absorption spectra. Our results highlight the importance of quantifying the atmospheric impact of individual components in an isomeric mixture.
Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2013-12-13
Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200 μs and 78.4% at 4.5 ms, respectively.
VizieR Online Data Catalog: H2 d3{Pi}u excitation by elec
NASA Astrophysics Data System (ADS)
Liu, X.; Shemansky, D. E.; Yoshii, J.; Johnson, P. V.; Malone, C. P.; Ajello, J. M.
2016-05-01
Electron-impact excitation of H2 triplet states plays an imp role in the heating of outer planet upper thermospheres. The d3{Pi}u state is the third ungerade triplet state, and the d3{Pi}u-a3{Sigma}g+ emission is the largest cascade channel for the a3{Sigma}g+ state. Accurate energies of the d3{Pi}u-(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the d3{Pi}u(v,J) levels are obtained by an accurate evaluation of the d3{Pi}u-a3{Sigma}g+ transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic d3{Pi}u-a3{Sigma}g+ spectra at 20eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the X1{Sigma}g+-d3{Pi}u excitation, and significant cascade excitation occurs at the d3{Pi}u (v=0,1) levels. Kinetic energy (Ek) distributions of H atoms produced via predissociation of the 3{Pi}u state and the d3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade dissociative emission are obtained. Predissociation of the d3{Pi}u state produces H atoms with an average Ek of 2.3+/-0.4 eV/atom, while the Ekdistribution of the d3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ channel is similar to that of the X1{Sigma}g+-a3{Sigma}g+-b3{Sigma}u+ channel and produces H(1s) atoms with an average Ek of 1.15+/-0.05eV/atom. On average, each H2 excited to the d3{Pi}u state in an H2-dominated atmosphere deposits 3.3+/-0.4eV into the atmosphere, while each H2directly excited to the a3{Sigma}g+ state gives 2.2-2.3eV to the atmosphere. The spectral distribution of the calculated a3{Sigma}g+-b3{Sigma}u+ continuum emission due to the X1{Sigma}g+-d3{Pi}u excitation is significantly different from that of direct a3{Sigma}g+ excitation. (2 data files).
Interatomic Coulombic Decay Mediated by Ultrafast Superexchange Energy Transfer.
Miteva, Tsveta; Kazandjian, Sévan; Kolorenč, Přemysl; Votavová, Petra; Sisourat, Nicolas
2017-08-25
Inner-valence ionized states of atoms and molecules live shorter if these species are embedded in an environment due to the possibility for ultrafast deexcitation known as interatomic Coulombic decay (ICD). In this Letter we show that the lifetime of these ICD active states decreases further when a bridge atom is in proximity to the two interacting monomers. This novel mechanism, termed superexchange ICD, is an electronic correlation effect driven by the efficient energy transfer via virtual states of the bridge atom. The superexchange ICD is discussed in detail on the example of the NeHeNe trimer. We demonstrate that the decay width of the Ne^{+}(2s^{-1}) ^{2}Σ_{g}^{+} resonance increases 6 times in the presence of the He atom at a distance of 4 Å between the two Ne atoms. Using a simple model, we provide a qualitative explanation of the superexchange ICD and we derive analytical expressions for the dependence of the decay width on the distance between the neon atoms.
Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattie, Jr., R. W.; Callahan, N. B.; Cude-Woods, C.
Here, the precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of anmore » in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/–0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.« less
Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection
Pattie, Jr., R. W.; Callahan, N. B.; Cude-Woods, C.; ...
2018-05-11
Here, the precise value of the mean neutron lifetime, τn, plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of anmore » in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/–0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties.« less
Lifetimes of excited states in triaxially deformed 107Tc and 109,111,113Rh
NASA Astrophysics Data System (ADS)
Hagen, T. W.; Görgen, A.; Korten, W.; Grente, L.; Salsac, M.-D.; Farget, F.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clément, E.; de France, G.; Delaune, O.; Dewald, A.; Dijon, A.; Hackstein, M.; Jacquot, B.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Rother, W.; Sahin, E.; Siem, S.; Sulignano, B.; Theisen, Ch.; Valiente-Dobon, J. J.
2018-03-01
Lifetimes of excited states in 107Tc, 109Rh, 111Rh, and 113Rh were measured at GANIL using the Recoil-Distance Doppler Shift method. The neutron-rich nuclei were produced in fission reactions in inverse kinematics with a 238U beam impinging on a 9Be target. Fission fragments were identified event-by-event in the ray-tracing spectrometer VAMOS++ and correlated with prompt γ rays observed around the target position with the EXOGAM Ge detector array. Several lifetimes were obtained for states in the positive-parity yrast bands in the four nuclei and compared to triaxial particle-rotor calculations. The results clarify the configuration for the strongest positive-parity band in 107Tc and suggest a gradual increase of triaxial deformation with atomic number Z, reaching almost maximum triaxiality for the neutron-rich Rh nuclei.
Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A
2013-07-24
We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.
Experimental Investigation of the Influence of the Laser Beam Waist on Cold Atom Guiding Efficiency.
Song, Ningfang; Hu, Di; Xu, Xiaobin; Li, Wei; Lu, Xiangxiang; Song, Yitong
2018-02-28
The primary purpose of this study is to investigate the influence of the vertical guiding laser beam waist on cold atom guiding efficiency. In this study, a double magneto-optical trap (MOT) apparatus is used. With an unbalanced force in the horizontal direction, a cold atomic beam is generated by the first MOT. The cold atoms enter the second chamber and are then re-trapped and cooled by the second MOT. By releasing a second atom cloud, the process of transferring the cold atoms from MOT to the dipole trap, which is formed by a red-detuned converged 1064-nm laser, is experimentally demonstrated. And after releasing for 20 ms, the atom cloud is guided to a distance of approximately 3 mm. As indicated by the results, the guiding efficiency depends strongly on the laser beam waist; the efficiency reaches a maximum when the waist radius ( w ₀) of the laser is in the range of 15 to 25 μm, while the initial atom cloud has a radius of 133 μm. Additionally, the properties of the atoms inside the dipole potential trap, such as the distribution profile and lifetime, are deduced from the fluorescence images.
On the calculation of atomic term populations
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1992-01-01
The usefulness of calculations on model atomic term systems which can give spectral multiplet intensities is emphasized, in contrast to more detailed level calculations which are not always feasible because of lack of appropriate atomic data. A more general expression for the multiplet radiative transition rate is proposed to facilitate term representations. The differences between term and level representations are discussed quantitatively with respect to a model three-level atom and real examples of the C III and Ne IV ions. It is shown that term representations fail at lower densities when level inverse lifetimes within terms differ by only a few orders of magnitude. In such cases one must resort to other methods; a hybrid calculation is therefore proposed to fill this need and is carried out for the C III ion to demonstrate its feasibility and validity.
NASA Astrophysics Data System (ADS)
Cipolla, Sam J.; Mildebrath, Mark E.
1983-12-01
The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.
Remote entanglement between a single atom and a Bose-Einstein condensate.
Lettner, M; Mücke, M; Riedl, S; Vo, C; Hahn, C; Baur, S; Bochmann, J; Ritter, S; Dürr, S; Rempe, G
2011-05-27
Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μs exceeds the photon duration by 2 orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information. © 2011 American Physical Society
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Silicon-based ceramic components for next-generation jet turbine engines offer potential weight savings, as well as higher operating temperatures, both of which lead to increased efficiency and lower fuel costs. Silicon carbide (SiC), in particular, offers low density, good strength at high temperatures, and good oxidation resistance in dry air. However, reaction of SiC with high-temperature water vapor, as found in the hot section of jet turbine engines in operation, can cause rapid surface recession, which limits the lifetime of such components. Environmental Barrier Coatings (EBCs) are therefore needed if long component lifetime is to be achieved. Rare earth silicates such as Yb2Si2O7 and Yb2SiO5 have been proposed for such applications; in an effort to better understand diffusion in such materials, we have performed kinetic Monte Carlo (kMC) simulations of oxygen diffusion in Ytterbium disilicate, Yb2- Si2O7. The diffusive process is assumed to take place via the thermally activated hopping of oxygen atoms among oxygen vacancy sites or among interstitial sites. Migration barrier energies are computed using density functional theory (DFT).
Kinetic studies of halon replacements.
NASA Astrophysics Data System (ADS)
Orkin, Vladimir L.
2013-04-01
Despite their excellence as fire suppressants, the production of halons (bromofluorocarbons) is being phased out because of the danger they pose to the Earth's stratospheric ozone layer. A number of bromine free substances have been proposed and tested, but the effort to find replacements continues to return to bromine-containing compounds because of the properties of bromine as a chemically active flame suppressant. The primary approach to this problem has been to test candidate replacement compounds that have short atmospheric lifetimes or/and lack bromine, the halogen atoms that catalyze ozone destruction. Various chemical classes (alkanes, ethers, alkenes) have been studied both earlier and recently. The reaction with atmospheric hydroxyl radicals dictates the residence time and accumulation in the atmosphere of all potential halon replacements. Therefore, we improved a flash photolysis - resonance fluorescence apparatus to provide the most accurate OH reaction rate constants measured over the atmospheric temperatures. Supplementary UV absorption spectra were measured to allow the estimation of ODPs. Although a thorough 3-D modeling is required to assess ODPs, the simplified estimations can be made based on the compounds lifetimes.
Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.
Tshangana, Charmaine; Nyokong, Tebello
2015-01-01
L-Glutathione (GSH) capped core CdSe (2.3 nm) and core shell CdSe@ZnS quantum dots (QDs) (3.0 nm and 3.5 nm) were coordinated to gallium octacarboxy phthalocyanine (ClGaPc(COOH)8) to form ClGaPc(COOH)8-QDs conjugates. An efficient transfer of energy from the QDs to the Pcs was demonstrated through Förster resonance energy transfer (FRET), the FRET efficiencies in all cases was above 50%. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were also determined for the conjugates. There was a decrease in the fluorescence lifetimes of ClGaPc(COOH)8 in the presence of all the QDs, due to the heavy atom effect. The triplet quantum yields increased in the conjugates. The lifetimes also became longer for the conjugates compared to Pc alone. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jie; Krems, Roman V.; Li, Zhiying
We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexesmore » are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.« less
ANTICOOL: Simulating positron cooling and annihilation in atomic gases
NASA Astrophysics Data System (ADS)
Green, D. G.
2018-03-01
The Fortran program ANTICOOL, developed to simulate positron cooling and annihilation in atomic gases for positron energies below the positronium-formation threshold, is presented. Given positron-atom elastic scattering phase shifts, normalised annihilation rates Zeff, and γ spectra as a function of momentum k, ANTICOOL enables the calculation of the positron momentum distribution f(k , t) as a function of time t, the time-varying normalised annihilation rate Z¯eff(t) , the lifetime spectrum and time-varying annihilation γ spectra. The capability and functionality of the program is demonstrated via a tutorial-style example for positron cooling and annihilation in room temperature helium gas, using accurate scattering and annihilation cross sections and γ spectra calculated using many-body theory as input.
Protonium production in ATHENA
NASA Astrophysics Data System (ADS)
Venturelli, L.; Amoretti, M.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Rizzini, E. Lodi; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; van der Werf, D. P.; Variola, A.; Yamazaki, Y.; Zurlo, N.; Athena Collaboration
2007-08-01
The ATHENA experiment at CERN, after producing cold antihydrogen atoms for the first time in 2002, has synthesised protonium atoms in vacuum at very low energies. Protonium, i.e. the antiproton-proton bound system, is of interest for testing fundamental physical theories. In the nested penning trap of the ATHENA apparatus protonium has been produced as result of a chemical reaction between an antiproton and the simplest matter molecule, H2+. The formed protonium atoms have kinetic energies in the range 40-700 meV and are metastable with mean lifetimes of the order of 1 μs. Our result shows that it will be possible to start measurements on protonium at low energy antiproton facilities, such as the AD at CERN or FLAIR at GSI.
NASA Astrophysics Data System (ADS)
Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.; Blagoev, K.
2017-04-01
Aims: This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d84d levels of astrophysical interest in singly ionized nickel. Methods: Radiative lifetimes of seven high-lying levels of even parity in Ni II (98 400-100 600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. Results: A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194-520 nm depopulating even parity 3d84d levels. The new calculated gf-values are, on the average, about 20% higher than a previous calculation and yield lifetimes within 5% of the experimental values.
Enzymatic Transition States, Transition-State Analogs, Dynamics, Thermodynamics, and Lifetimes
Schramm, Vern L.
2017-01-01
Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein’s dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states. PMID:21675920
Tucker, J. D.; Miller, M. K.; Young, G. A.
2015-04-01
Duplex stainless steels are desirable for use in power generation systems due to their attractive combination of strength, corrosion resistance, and cost. However, thermal embrittlement at intermediate homologous temperatures of ~887°F (475°C) and below, via spinodal decomposition, limits upper service temperatures for many applications. New lean grade duplex alloys have improved thermal stability over standard grades and potentially increase the upper service temperature or the lifetime at a given temperature for this class of material. The present work compares the thermal stability of lean grade, alloy 2003 to standard grade, alloy 2205, through a series of isothermal agings between 500°Fmore » (260°C) and 900°F (482°C) for times between 1 and 10,000 hours. Aged samples were characterized by changes in microhardness and impact toughness. Additionally, atom probe tomography was performed to illustrate the evolution of the α-α' phase separation in both alloys at select conditions. Atom probe tomography confirmed that phase separation occurs via spinodal decomposition for both alloys and identified the formation of Ni-Cu-Si-Mn-P clusters in alloy 2205 that may contribute to embrittlement of this alloy. The impact toughness model predictions for upper service temperature show that alloy 2003 can be considered for use in 550°F applications for 80 year service lifetimes based on a Charpy V-notch criteria of 35 ft-lbs at 70°F. Alloy 2205 should be limited to 500°F applications.« less
Laser peening for reducing hydrogen embrittlement
Hackel, Lloyd A.; Zaleski, Tania M.; Chen, Hao-Lin; Hill, Michael R.; Liu, Kevin K.
2010-05-25
A laser peening process for the densification of metal surfaces and sub-layers and for changing surface chemical activities provides retardation of the up-take and penetration of atoms and molecules, particularly Hydrogen, which improves the lifetime of such laser peened metals. Penetration of hydrogen into metals initiates an embrittlement that leaves the material susceptible to cracking.
Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai
2017-09-29
The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51 μs.
Chemical and electrical passivation of Si(1 1 1) surfaces
NASA Astrophysics Data System (ADS)
Tian, Fangyuan; Yang, Dan; Opila, Robert L.; Teplyakov, Andrew V.
2012-01-01
This paper compares the physical and chemical properties of hydrogen-passivated Si(1 1 1) single crystalline surfaces prepared by two main chemical preparation procedures. The modified RCA cleaning is commonly used to prepare atomically flat stable surfaces that are easily identifiable spectroscopically and are the standard for chemical functionalization of silicon. On the other hand electronic properties of these surfaces are sometimes difficult to control. A much simpler silicon surface preparation procedure includes HF dipping for a short period of time. This procedure yields an atomically rough surface, whose chemical identity is not well-defined. However, the surfaces prepared by this approach often exhibit exceptionally attractive electronic properties as determined by long charge carrier lifetimes. This work utilizes infrared spectroscopy and X-ray photoelectron spectroscopy to investigate chemical modification of the surfaces prepared by these two different procedures with PCl5 (leading to surface chlorination) and with short- and long-alkyl-chain alkenes (1-decene and 1-octodecene, respectively) and follows the electronic properties of the starting surfaces produced by measuring charge-carrier lifetimes.
Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li
2016-09-01
The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.
Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A
2013-10-01
We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.
Remote quantum entanglement between two micromechanical oscillators.
Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon
2018-04-01
Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.
Liu, Lihong; Fang, Wei-Hai; Long, Run; Prezhdo, Oleg V
2018-03-01
Nonradiative electron-hole recombination plays a key role in determining photon conversion efficiencies in solar cells. Experiments demonstrate significant reduction in the recombination rate upon passivation of methylammonium lead iodide perovskite with Lewis base molecules. Using nonadiabatic molecular dynamics combined with time-domain density functional theory, we find that the nonradiative charge recombination is decelerated by an order of magnitude upon adsorption of the molecules. Thiophene acts by the traditional passivation mechanism, forcing electron density away from the surface. In contrast, pyridine localizes the electron at the surface while leaving it energetically near the conduction band edge. This is because pyridine creates a stronger coordinative bond with a lead atom of the perovskite and has a lower energy unoccupied orbital compared with thiophene due to the more electronegative nitrogen atom relative to thiophene's sulfur. Both molecules reduce two-fold the nonadiabatic coupling and electronic coherence time. A broad range of vibrational modes couple to the electronic subsystem, arising from inorganic and organic components. The simulations reveal the atomistic mechanisms underlying the enhancement of the excited-state lifetime achieved by the perovskite passivation, rationalize the experimental results, and advance our understanding of charge-phonon dynamics in perovskite solar cells.
Alpha Lead Oxide (α-PbO): A New 2D Material with Visible Light Sensitivity.
Kumar, Prashant; Liu, Jing; Ranjan, Pranay; Hu, Yaowu; Yamijala, Sharma Srkc; Pati, Swapan K; Irudayaraj, Joseph; Cheng, Gary J
2018-03-01
Even though transition metal dichalcogenides (TMDCs) are deemed to be novel photonic and optoelectronic 2D materials, the visible band gap being often limited to monolayer, hampers their potential in niche applications due to fabrication challenges. Uncontrollable defects and degraded functionalities at elevated temperature and under extreme environments further restrict their prospects. To address such limitations, the discovery of a new 2D material, α-PbO is reported. Micromechanical as well as sonochemical exfoliation of 2D atomic sheets of α-PbO are demonstrated and its optical behavior is investigated. Spectroscopic investigations indicate layer dependent band gaps. In particular, even multilayered PbO sheets exhibit visible band gap > 2 eV (direct) which is rare among semiconducting 2D materials. The emission lifetime of multilayer PbO atomic sheets is 7 ns (dim light) as compared to the monolayer which gives 2.5 ns lifetime and an intense light. Density functional theory calculations of layer dependent band structure of α-PbO matches well with experimental results. Experimental findings suggest that PbO atomic sheets exhibit hydrophobic nature, thermal robustness, microwave stability, anti-corrosive behaviour and acid resistance. This new low-cost, abundant and robust 2D material is expected to find many applications in the fields of electronics, optoelectronics, sensors, photocatalysis and energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires
NASA Astrophysics Data System (ADS)
Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati
2018-06-01
Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H+ irradiation with fluences ranging from 1 × 1011 to 5 × 1013 p cm‑2. It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.
Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.
Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati
2018-06-01
Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H + irradiation with fluences ranging from 1 × 10 11 to 5 × 10 13 p cm -2 . It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.
Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors
NASA Astrophysics Data System (ADS)
Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.
1990-08-01
The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.
Extended atmospheres of outer planet satellites and comets
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1985-01-01
Collisions between neutral hydrogen atoms in the interstellar medium and those in the so-called Titan hydrogen torus may provide an additional lifetime sink for atoms in the Saturn environment. Progress toward re-sorting the Voyager UVS scans of neutral hydrogen in the Saturn system to enable both a factor of two increase in the amount of data to be analyzed as well as to help identify near-Titan hydrogen is discussed. Progress toward development of the cometary carbon and oxygen models is also discussed and a preliminary model run for the H2O source of cometary oxygen is presented.
Broadening and Shifting of Atomic Strontium and Diatomic Bismuth Spectral Lines
2003-05-01
Upper Energy State, Ek kA q kA q jA jA Figure 2-4. Transition between the lower and upper energy states of an atom or molecule affected by quenching...broadened by both lifetime effects and quenching. This profile has a F HM given by Equation 2-16. W q q jA kA qq vNA (2-17) where N is the...December 1998 (AD-A361408)(9921302). 42. Predoi-Cross, Adriana , J. P. Bouanich, D. C. Benner, A. D. May, and J. R. Drummond. “Broadening, Shifting
Statistical evidence of strain induced breaking of metallic point contacts
NASA Astrophysics Data System (ADS)
Alwan, Monzer; Candoni, Nadine; Dumas, Philippe; Klein, Hubert R.
2013-06-01
A scanning tunneling microscopy in break junction regime and a mechanically controllable break junction are used to acquire thousands of conductance-elongation curves by stretching until breaking and re-connecting Au junctions. From a robust statistical analysis performed on large sets of experiments, parameters such as lifetime, elongation and occurrence probabilities are extracted. The analysis of results obtained for different stretching speeds of the electrodes indicates that the breaking mechanism of di- and mono-atomic junction is identical, and that the junctions undergo atomic rearrangement during their stretching and at the moment of breaking.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe.
Gurevich, A S; Kochereshko, V P; Bleuse, J; Mariette, H; Waag, A; Akimoto, R
2011-09-07
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe
NASA Astrophysics Data System (ADS)
Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.
2011-09-01
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Background of the completed research; relevances to solar physics
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1973-01-01
Research activities reported consider the atomic structures of highly stripped heavy ions and their modes of formation and destruction in collisions. The lifetime of the metastable 2 3p1 state of the two electron ion F-7(+) was determined by measuring the radiative decay of an excited helium-like fluorine beam, Metastable state quenching measurements were performed on a helium-like ion to obtain the 1 1S0 to 2 3p2 transition probability. Exponential exchange state dependence of X-ray production cross sections was studied in heavy target atoms during collisions with light charged particles.
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.
Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi
2015-08-03
A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Gary D.; Assink, Roger Alan; Dargaville, Tim Richard
2005-11-01
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. Themore » overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.« less
Li, Ruiying; Ma, Wenting; Huang, Ning; Kang, Rui
2017-01-01
A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect on the network energy consumption, are often neglected and assumed as a continuous one, respectively, in the previous studies. In this paper, both retransmission and discrete power control are considered together, and a more realistic energy-consumption-based network lifetime model for linear WSNs is provided. Using this model, we then propose a generic deployment-based optimization model that maximizes network lifetime under coverage, connectivity and transmission rate success constraints. The more accurate lifetime evaluation conduces to a longer optimal network lifetime in the realistic situation. To illustrate the effectiveness of our method, both one-tiered and two-tiered uniformly and non-uniformly distributed linear WSNs are optimized in our case studies, and the comparisons between our optimal results and those based on relatively inaccurate lifetime evaluation show the advantage of our method when investigating WSN lifetime optimization problems.
Atomic and molecular gas phase spectrometry
NASA Astrophysics Data System (ADS)
Winefordner, J. D.
1985-10-01
The major goals of this research have been to develop diagnostical spectroscopic methods for measuring spatial/temporal temperatures and species of combustion flames and plasmas and to develop sensitive, selective, precise, reliable, rapid spectrometric methods of trace analysis of elements present in jet engine lubricating oils, metallurgical samples, and engine exhausts. The diagnostical approaches have been based upon the measurement of metal probes introduced into the flame or plasmas and the measurement of OH in flames. The measurement approaches have involved the use of laser-excited fluorescence, saturated absorption, polarization, and linear absorption. The spatial resolution in most studies is less than 1 cu mm and the temporal resolution is less than 10 ns with the use of pulsed lasers. Single pulse temperature and species measurements have also been carried out. Other diagnostical studies have involved the measurement of collisional redistribution of radiatively excited levels of Na and Tl in acetylene/02/Ar flames and the measurement of lifetimes and quantum efficiencies of atoms and ions in the inductively coupled plasmas, ICP. The latter studies indicate that the high electron number densities in ICPs are not efficient quenchers of excited atoms/ions. Temperatures of microwave atmospheric plasmas produced capacitatively and cool metastable N2 discharge produced by a dielectric discharge have also been measured.
Progress Toward an Neutral Yb Frequency Standard
NASA Astrophysics Data System (ADS)
Cramer, Claire; Hong, Tao; Nagourney, Warren; Fortson, Norval
2004-05-01
We report recent progress toward a direct observation of the ^1S_0^ -- ^3P0 clock transition at 578 nm in atomic Yb and review the experimental path to an optical frequency standard based on neutral Yb confined in a Stark-free optical lattice. Lamb-Dicke confinement in an optical lattice at the ``magic wavelength'' (λ _M) at which ground and excited state light shifts cancel will free the spectrum from Doppler and recoil shifts, providing an optimal environment for a clock consisting of an ensemble of cold, trapped atoms. In^171Yb the ^3P0 level has a hfs induced lifetime of 21 s. With this isotope in a Stark-free lattice at λ M ng 750 nm, perturbations to the clock energy levels can be held below the mHz level, providing an accuracy of a few parts in 10^18[1]. To observe the clock transition we use a shelving scheme that creates a leak in a MOT on the ^1S_0^ -- ^1P1 transition. A laser resonant with the clock transition drives atoms into the ^3P0 state, in which they can escape the MOT, leading to an observable decrease in MOT fluorescence. [1] S. Porsev and A. Derevianko, to be published in PRA
Understanding arsenic incorporation in CdTe with atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.
Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealingmore » treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.« less
Understanding arsenic incorporation in CdTe with atom probe tomography
Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; ...
2018-03-22
Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealingmore » treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.« less
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Duchovic, Ronald J.; Rohlfing, Celeste Mcmichael
1989-01-01
Results are reported from CASSCF externally contracted CI ab initio computations of the minimum-energy path for the addition of H to N2. The theoretical basis and numerical implementation of the computations are outlined, and the results are presented in extensive tables and graphs and characterized in detail. The zero-point-corrected barrier for HN2 dissociation is estimated as 8.5 kcal/mol, and the lifetime of the lowest-lying quasi-bound vibrational state of HN2 is found to be between 88 psec and 5.8 nsec (making experimental observation of this species very difficult).
Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J
2017-08-31
Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.
Photophysical investigaions and the bioimaings of α-, β-, γ-pyridine-based terpyridine derivatives
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wang, Hui
2018-04-01
Three unprecedented triphenylamine-based D-A type terpyridine derivatives (TriphenL1-TriphenL3) with different positions of nitrogen atom in the terpyridine moiety were carefully designed and fully characterized, which was further confirmed via single-crystal X-ray diffraction determination. The photophysical properties of all the three compounds were comprehensively studied by both theoretical calculations and experimental techniques, which revealed that TriphenL3 with γ-pyridine in the NIR region possessed large two-photon absorption cross-section. Experiments including photophysical tests and cytotoxicity demonstrated these dyes were characterized with larger Stokes shifts, longer fluorescence lifetime, low toxicity and good cell penetrability, thus TriphenL1-TriphenL3 were succeed to be devoted as cell stains, suggesting a prospect for applications of in vitro and vivo cellular imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Barry M.; McCaffrey, John G., E-mail: john.mccaffrey@nuim.ie
2016-01-28
Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅more » RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.« less
Theoretical overview and modeling of the sodium and potassium atmospheres of mercury
NASA Technical Reports Server (NTRS)
Smyth, William H.; Marconi, M. L.
1995-01-01
A general theoretical overview for the sources, sinks, gas-surface interactions, and transport dynamics of sodium and potassium in the exospheric atmsophere of Mercury is given. Information for these four factors, which control the spatial distribution of these two alkali-group gases about the planet, is incorporated in numerical models. The spatial nature and relative importance of the initial source atom atmosphere and the ambient (ballistic hopping) atom atmosphere are then examined and are shown to be controlled and coupled to a great extent by the extremely large and variable solar radiation acceleration experienced by sodium and potassium as they resonantly scatter solar photons. The lateral (antisunward) transport rate of thermally accommodated sodium and potassium ambient atoms is shown to be driven by the solar radiation acceleration and, over a significant portion of Mercury's orbit about the Sun, is sufficiently rapid to be competitive with the short photoionization lifetimes for these atoms when they are located on the summit surface near or within about 30 deg of the terminator. The lateral transport rate is characterized by a migration time determined by model calculations for an ensemble of atoms initially starting at a point source on the surface (i.e., a numerical spacetime dependent Green's function). Four animations for the spacetime evolution of the sodium (or potassium) atmosphere produced by a point source on the surface are presented on a videotape format. For extended surface sources for sodium and potassium, the local column density is determined by competition between the photoionization lifetimes and the lateral transport times of atoms originating from different surface source locations. Sodium surface source fluxes (referenced to Mercury at perihelion) that are required on the sunlit hemisphere to reproduce the typically observed several megarayleighs of D2 emission-line brightness and the inferred column densities of 1-2 x 10(exp 11) atoms per sq cm range from approximately 2-5 x 10(exp 7) atoms/sq cm/sec. The sodium model is applied to study observational data that document an anticorrelation in the average sodium column density and solar radiation acceleration. Lateral transport driven by the solar radiation acceleration is shown to produce this behavior for combinations of different sources and surface accomodation coefficients. The best fit model fits to the observational data require a significant degree of thermal accommodation of the ambient sodium atoms to the surface and a source rate that decreases as an inverse power of 1.5 to 2 in heliocentric distance.
Displacement damage and predicted non-ionizing energy loss in GaAs
NASA Astrophysics Data System (ADS)
Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.
2017-03-01
Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.
NASA Astrophysics Data System (ADS)
Ghatee, Mohammad Hadi; Bahrami, Maryam
2017-06-01
We investigate to contrasting structure, dynamic and thermophysical properties of quaternary ammonium and phosphonium ionic liquids (ILs) based on triethylalkylammonium [N222n]+ and triethylalkylphosphonium [P222n]+ cations (n = 5, 8, 12) and (bis(trifluoromethylsulfonyl)imide) anion [NTf2]- by quantum chemical calculations (QCC) and molecular dynamics (MD) simulations. QCCs conform to previous studies, showing that phosphonium cation alkyl chain rotational-energy-barrier is lower than ammonium cation. These molecular nature leads to no appreciable differences in their liquid density. However, their simulated transport properties (self-diffusion, conductivity, etc) are appreciably different. In particular, viscosity of phosphoniums are much lower than ammoniums. Ammoniums make nano-scale structural domains larger than phosphoniums. Employed analysis, vector re-orientational dynamics, ion-pair lifetime and nanostructure domain are in favor of faster dynamic for phosphoniums than ammoniums. [NTf2]- anion features a long lived pairing with ammoniums than phosphoniums. Overall, phosphoniums possess higher transference number, higher conductivity, and appreciably lower viscosity favorable for higher electrochemical performances.
Recent developments with microchannel-plate PMTs
NASA Astrophysics Data System (ADS)
Lehmann, A.; Böhm, M.; Britting, A.; Eyrich, W.; Pfaffinger, M.; Uhlig, F.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.
2017-12-01
Microchannel-plate (MCP) PMTs are the favored photon sensors for the DIRC detectors of the PANDA experiment at FAIR. Until recently the main drawback of MCP-PMTs were serious aging effects which led to a limited lifetime due to a rapidly decreasing quantum efficiency (QE) of the photo cathode (PC) as the integrated anode charge (IAC) increased. In the latest models of PHOTONIS and Hamamatsu an innovative atomic layer deposition (ALD) technique is applied to overcome these limitations. During the last five years comprehensive aging tests with ALD coated MCP-PMTs were performed and the results were compared to tubes treated with other techniques. The QE in dependence of the IAC was measured as a function of the wavelength and the position across the PC. For the best performing tubes the lifetime improvement in comparison to the older MCP-PMTs is a factor of > 50 based on an IAC of meanwhile > 10 C /cm2 . In addition, the performance results of a new 2-in. ALD coated MCP-PMT prototype from Hamamatsu with a very high position resolution (128×6 anode pixels) is presented and the first conclusions from investigations concerning the PC aging mechanism will be discussed.
Quasiclassical treatment of the Auger effect in slow ion-atom collisions
NASA Astrophysics Data System (ADS)
Frémont, F.
2017-09-01
A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He collisions. Electron-electron interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.
NASA Technical Reports Server (NTRS)
Cobb, Stephen H.
1991-01-01
An evaluation of prospective laser materials for a space-based solar pumped laser system over the past decade has resulted in the identification of the iodine photodissociation laser as that system best suited to solar-pumped high energy operation. The active medium for the solar-pumped iodine photodissociation laser is from the family of perfluoroalkyl iodides. These lasants have the general form C(n)F(2n + 1)I, often abbreviated as RI. These iodides are known to exhibit photodissociaiton of the C-I bond when irradiated by near UV photons. The focus was on the experimental determination of the lifetime of the excited iodine atom following photodissociation of C4F9I, and also to monitor fluorescence from the iodine molecule at 500 nm to determine if I2 is being produced in the process. Photodissociation is achieved using an XeCl excimer laser with an output wavelength of 308 nm. The XeCl beam is focused into the middle of a cylindrical quartz cell containing the lasant. The laser pulse is detected with a fast risetime photomultiplier tube as it exits the cell. Other aspects of the investigation are discussed.
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; ...
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
Transition probabilities for the 3s2 3p(2P0)-3s3p2(4P) intersystem lines of Si II
NASA Technical Reports Server (NTRS)
Calamai, Anthony G.; Smith, Peter L.; Bergeson, S. D.
1993-01-01
Intensity ratios of lines of the spin-changing 'intersystem' multiplet of S II (4P yields 2P0) at 234 nm have been used to determine electron densities and temperatures in a variety of astrophysical environments. However, the accuracy of these diagnostic calculations have been limited by uncertainties associated with the available atomic data. We report the first laboratory measurement, using an ion-trapping technique, of the radiative lifetimes of the three metastable levels of the 3s3p2 4P term of Si II. Our results are 104 +/- 16, 406 +/- 33, and 811 +/- 77 micro-s for lifetimes of the J = 1/2, 5/2, and 3/2 levels, respectively. A-values were derived from our lifetimes by use of measured branching fractions. Our A-values, which differ from calculated values by 30 percent or more, should give better agreement between modeled and observed Si II line ratios.
Optimization of the Surface Structure on Black Silicon for Surface Passivation
NASA Astrophysics Data System (ADS)
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-03-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al2O3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH4OH/H2O2/H2O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe
1996-01-01
Thermoset and thermoplastic polyimides have complementary physical and mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. A combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPN) of thermoset LaRC(TM)-RP46 and thermoplastic LaRC(TM)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0:100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical and mechanical properties. As expected, positronium atoms are not formed in these samples. The second lifetime component has been used to infer the positron trap dimensions. The 'free volume' goes through a minimum at a ratio of about 50:50, and this suggests that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples are discussed.
Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection.
Pattie, R W; Callahan, N B; Cude-Woods, C; Adamek, E R; Broussard, L J; Clayton, S M; Currie, S A; Dees, E B; Ding, X; Engel, E M; Fellers, D E; Fox, W; Geltenbort, P; Hickerson, K P; Hoffbauer, M A; Holley, A T; Komives, A; Liu, C-Y; MacDonald, S W T; Makela, M; Morris, C L; Ortiz, J D; Ramsey, J; Salvat, D J; Saunders, A; Seestrom, S J; Sharapov, E I; Sjue, S K; Tang, Z; Vanderwerp, J; Vogelaar, B; Walstrom, P L; Wang, Z; Wei, W; Weaver, H L; Wexler, J W; Womack, T L; Young, A R; Zeck, B A
2018-05-11
The precise value of the mean neutron lifetime, τ n , plays an important role in nuclear and particle physics and cosmology. It is used to predict the ratio of protons to helium atoms in the primordial universe and to search for physics beyond the Standard Model of particle physics. We eliminated loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls. As a result of this approach and the use of an in situ neutron detector, the lifetime reported here [877.7 ± 0.7 (stat) +0.4/-0.2 (sys) seconds] does not require corrections larger than the quoted uncertainties. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.
Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier
2017-03-03
Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of the Surface Structure on Black Silicon for Surface Passivation.
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-12-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Rotational Energy as Mass in H3 + and Lower Limits on the Atomic Masses of D and 3He
NASA Astrophysics Data System (ADS)
Smith, J. A.; Hamzeloui, S.; Fink, D. J.; Myers, E. G.
2018-04-01
We have made precise measurements of the cyclotron frequency ratios H3 +/HD+ and H3 +/ 3He+ and observe that different H3+ ions result in different cyclotron frequency ratios. We interpret these differences as due to the molecular rotational energy of H3 + changing its inertial mass. We also confirm that certain high J , K rotational levels of H3+ have mean lifetimes exceeding several weeks. From measurements with the lightest H3+ ion we obtain lower limits on the atomic masses of deuterium and helium-3 with respect to the proton.
Remnants of semiclassical bistability in the few-photon regime of cavity QED.
Kerckhoff, Joseph; Armen, Michael A; Mabuchi, Hideo
2011-11-21
Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing. © 2011 Optical Society of America
Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti
2018-05-01
Energy levels, radiative rates and lifetimes are reported for F-like Sc~XIII and Ne-like Sc~XII and Y~XXX for which the general-purpose relativistic atomic structure package ({\\sc grasp}) has been adopted. For all three ions limited data exist in the literature but comparisons have been made wherever possible to assess the accuracy of the calculations. In the present work the lowest 102, 125 and 139 levels have been considered for the respective ions. Additionally, calculations have also been performed with the flexible atomic code ({\\sc fac}) to (particularly) confirm the accuracy of energy levels.
NASA Astrophysics Data System (ADS)
Darancet, Pierre; Ferretti, Andrea; Mayou, Didier; Olevano, Valerio
2007-03-01
We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.
Dissociation dynamics of simple chlorine containing molecules upon resonant Cl K-σ{sup *} excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohinc, R., E-mail: rok.bohinc@ijs.si; Bučar, K.; Kavčič, M.
2014-04-28
A theoretical analysis of dissociation dynamics of chlorine K-σ{sup *} core-excited molecules is performed. The potential energy surfaces of HCl, Cl{sub 2}, CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, CCl{sub 4}, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, and CF{sub 3}Cl are calculated along the normal vibrational modes of the ground electronic state yielding the widths of the corresponding Franck-Condon distributions. An insight into the potential energy surface of 1st σ{sup *} resonances shows that the initial dissociation dynamics of chloro(fluoro)methanes mainly involves the distancing of the carbon and the core-excited chlorine atom and is practically independent of other atoms in themore » molecule, which is in agreement with the recent experimental findings. The carbon atom pulls out the remaining three atoms shortly after piercing the three-atom plane resulting in a high vibrationally excited state of the fragment if the reconnection time is smaller than the lifetime of the L shell.« less
NASA Astrophysics Data System (ADS)
Ponnusamy, S.; Sandhiya, L.; Senthilkumar, K.
2018-02-01
The reaction of terbacil with OH radical is studied by using electronic structure calculations. The reaction of terbacil with OH radical is found to proceed by H-atom abstraction, Cl-atom abstraction and OH addition reactions. The initially formed alkyl radical will undergo atmospheric transformation in the presence of molecular oxygen leading to the formation of peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals is studied. The rate constant is calculated for the H-atom abstraction reactions over the temperature range of 200-1000 K. The results obtained from electronic structure calculations and kinetic study show that the H-atom abstraction reaction is more favorable. The calculated lifetime of terbacil is 24 h in normal atmospheric OH concentration. The rate constant calculated for H-atom abstraction reactions is 6 × 10-12, 4.4 × 10-12 and 3.2 × 10-12 cm3molecule-1s-1, respectively which is in agreement with the previous literature value of 1.9 × 10-12 cm3molecule-1s-1.
Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F
2004-05-08
We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping. (c) 2004 American Institute of Physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder
2015-05-14
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and amore » microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.« less
Research investigation directed toward extending the useful range of the electromagnetic spectrum
NASA Technical Reports Server (NTRS)
Hartmann, S. R.
1971-01-01
The lifetimes and fine structure of He(-) were studied using time-of-flight techniques and quenching by a static axial magnetic field. Using level-crossing spectroscopy the hyperfine constants A and B and the lifetime of the 3 2P3/2 state of Li-7 were measured. Polarization of the Ru 7S level was created as a first step in determining the hyperfine structure of the alkali excited S state. The parametric interaction between light and microwaves in optically pumped Rb-87 vapor were investigated. Measurements and analyses of transitions in formaldehyde and its isotopic species and in the lowest two excited vibrational states of H2CO were also made, as well as of transitions in furan, pyrrole, formic acid, and cyanoacetylene. The Hanle effect was studied in the NO molecule, and RF oscillators were developed with flat, wideband output to observe excited state hyperfine transitions at zero field. Data was generated on the time-dependent behavior of photon echoes in ruby. Stimulated Raman scattering was studied in atomic Tl vapor. A Q switched, temperature-tuned ruby laser was developed which operates between 6934 and 6938 A. The frequency shift due to resonant interaction between identical radiating atoms was calculated.
NASA Astrophysics Data System (ADS)
Lashgari, H. R.; Cadogan, J. M.; Kong, C.; Tang, C.; Doherty, C.; Chu, D.; Li, S.
2018-06-01
In the present study, the effect of stress-relaxation treatment (Tstress-relaxation < Tglass transition) on the magnetic texture, nanomechanical properties, and variation of free-volume in FeSiBNb amorphous alloy was investigated using Mössbauer spectroscopy, nanoindentation, dynamic mechanical analysis (DMA), and positron annihilation lifetime spectroscopy (PALS) techniques. It was shown that stress-relaxation treatment slightly improved the magnetic texture by 6% at T ≪Tg due to small-scale displacement of atoms whereas the magnetic texture was deteriorated due to thermal treatment at temperatures around the glass transition point (large-scale displacement of atoms). According to nanoindentation results, the hardness (H) and reduced modulus (Er) of the amorphous ribbon increased by 15% and 13%, respectively, after stress-relaxation treatment at 716 K for 5 min. Increasing the stress-relaxation time from 5 min to 60 min at 716 K resulted in decreases in the hardness and reduced modulus which are attributed to the increase of free-volume defects (increase of τ2 lifetime measured by PALS). Transmission electron microscopy (TEM) showed the formation of extremely fine embryos of α-Fe (3-5 nm in size) after stress-relaxation treatment.
Study on using I - as heavy atom perturber in cyclodextrin-induced room temperature phosphorimetry
NASA Astrophysics Data System (ADS)
Li, Longdi; Hai, Xuan; Tong, Aijun
2000-07-01
A cyclodextrin induced room temperature phosphorimetry (CD-RTP) for determine β-NOA, which using I- as a heavy atom perturber (HAP) and sodium sulfite as a deoxygenator, was developed. The phosphorescence peak wavelength maxima λex/λem=287/496 521 nm. The analytical curve of β-NOA gives a linear dynamic range of 2.0×10-7-6.0×10-6 mol/l and a detection limit of 4×10-8 mol/l. The relative standard deviation (RSD; n=7) was 3.2% for the 4.0×10-6 mol/l β-NOA in spiked apple samples. The influence of I- concentration on RTP lifetime of β-NOA was studied in detail, the static Stern-Volmer equation for phosphorescence was derived and the luminescence kinetic parameters were calculated. It is found that the relation between I- concentration (x) and RTP lifetime (τ) can be expressed as τ=1.047 e-0.354x and the rate constants of phosphorescence emission kp and non-radiation process ki from T1→S0 were 0.9551s-1 and 0.4276 s-1l-1mol, respectively.
Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K
NASA Astrophysics Data System (ADS)
Jag, M.; Cetina, M.; Lous, R. S.; Grimm, R.; Levinsen, J.; Petrov, D. S.
2016-12-01
We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our 40K-6Li system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.
Short Range Photoassociation of Rb2 by a high power fiber laser
NASA Astrophysics Data System (ADS)
Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis
2016-05-01
Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.
Electrical Tuning of Interlayer Exciton Gases in WSe2 Bilayers.
Wang, Zefang; Chiu, Yi-Hsin; Honz, Kevin; Mak, Kin Fai; Shan, Jie
2018-01-10
van der Waals heterostructures formed by stacking two-dimensional atomic crystals are a unique platform for exploring new phenomena and functionalities. Interlayer excitons, bound states of spatially separated electron-hole pairs in van der Waals heterostructures, have demonstrated potential for rich valley physics and optoelectronics applications and been proposed to facilitate high-temperature superfluidity. Here, we demonstrate highly tunable interlayer excitons by an out-of-plane electric field in homobilayers of transition metal dichalcogenides. Continuous tuning of the exciton dipole from negative to positive orientation has been achieved, which is not possible in heterobilayers due to the presence of large built-in interfacial electric fields. A large linear field-induced redshift up to ∼100 meV has been observed in the exciton resonance energy. The Stark effect is accompanied by an enhancement of the exciton recombination lifetime by more than two orders of magnitude to >20 ns. The long recombination lifetime has allowed the creation of an interlayer exciton gas with density as large as 1.2 × 10 11 cm -2 by moderate continuous-wave optical pumping. Our results have paved the way for the realization of degenerate exciton gases in atomically thin semiconductors.
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information
Wang, Xiaohong; Wang, Lizhi
2017-01-01
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system. PMID:28926930
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.
Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi
2017-09-15
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saprykin, E. G., E-mail: Saprykin@gorodok.net
2016-02-15
Four types of anomalous optical magnetic resonances shifted with respect to the zero magnetic field and with different shapes are found in radiation of a glow discharge in a mixture of even neon isotopes placed in a swept longitudinal magnetic field. This testifies to the manifestation of collective processes of synchronous light emission by oscillators belonging to isotopically different spatially separated atoms in discharge plasma. The origin of resonances is associated with nonstationary interference of reactive fields in the near radiation-field zones of emission of atoms, averaged over the lifetime of the fields (interference), while different types of resonances aremore » associated with different methods of synchronization of the phases of the fields.« less
Development of an optically-pumped cesium standard at the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Chan, Yat C.
1992-01-01
We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.
Formation of the lunar helium corona and atmosphere
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.
1977-01-01
Helium is one of the dominant gases of the lunar atmosphere. Its presence is easily identified in data from the mass spectrometer at the Apollo 17 landing site. The major part of these data was obtained in lunar nighttime, where helium concentration reaches the maximum of its diurnal cyclic variation. The large night to day concentration ratio agrees with the basic theory of exospheric lateral transport reported by Hodges and Johnson (1968). A reasonable fraction of atmospheric helium atoms has a velocity in excess of the gravitational escape velocity. The result is a short average lifetime and a tenuous helium atmosphere. A description is presented of an investigation which shows that the atmosphere of the moon has two distinct components including low energy atoms, which are gravitationally bound in trajectories that intersect the lunar surface, and higher energy atoms, which are trapped in satellite orbits. The total helium abundance in the lunar corona is shown to be about 1.3 times 10 to the 30th power atoms.
Investigation of trapping levels in p-type Zn3P2 nanowires using transport and optical properties
NASA Astrophysics Data System (ADS)
Lombardi, G. A.; de Oliveira, F. M.; Teodoro, M. D.; Chiquito, A. J.
2018-05-01
Here, we report the synthesis and structural characterization of high-quality Zn3P2 nanowires via chemical vapour deposition. Structural and morphological characterization studies revealed a reliable growth process of long, uniform, and single-crystalline nanowires. From temperature dependent transport and photoluminescence measurements, we have observed the contribution of different acceptor levels (15, 50, 70, 90, and 197 meV) to the conduction mechanisms. These levels were associated with zinc vacancies and phosphorous interstitial atoms which assigned a p-type character to this semiconductor. From time resolved photoluminescence experiments, a 91 ps lifetime decay was found. Such a fast lifetime decay is in agreement with the exciton transition along the bulk emission from high quality crystalline nanowires.
Positronic probe of vacancy defects on surfaces of Au nanoparticles embedded in MgO
NASA Astrophysics Data System (ADS)
Xu, Jun; Moxom, J.; Somieski, B.; White, C. W.; Mills, A. P., Jr.; Suzuki, R.; Ishibashi, S.
2001-09-01
Clusters of four atomic vacancies were found in Au nanoparticle-embedded MgO by positron lifetime spectroscopy [Phys. Rev. Lett. 83, 4586 (1999)]. These clusters were also suggested to locate at the surface of Au nanoparticles by one-detector measurements of Doppler broadening of annihilation radiation. In this work we provide evidence, using two-detector coincidence experiments of Doppler broadening (2D-DBAR), to clarify that these vacancy clusters reside on the surfaces of Au nanoparticles. This work also demonstrates a method for identifying defects at nanomaterials interfaces: a combination of both positron lifetime spectroscopy, which tells the type of the defects, and 2D-DBAR measurements, which reveals chemical environment of the defects.
Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption
Laptev, Roman; Abzaev, Yuri; Lider, Andrey; Ivashutenko, Alexander
2018-01-01
The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation. PMID:29324712
Hu, Hang; Dong, Binghai; Hu, Huating; Chen, Fengxiang; Kong, Mengqin; Zhang, Qiuping; Luo, Tianyue; Zhao, Li; Guo, Zhiguang; Li, Jing; Xu, Zuxun; Wang, Shimin; Eder, Dominik; Wan, Li
2016-07-20
In this study we design and construct high-efficiency, low-cost, highly stable, hole-conductor-free, solid-state perovskite solar cells, with TiO2 as the electron transport layer (ETL) and carbon as the hole collection layer, in ambient air. First, uniform, pinhole-free TiO2 films of various thicknesses were deposited on fluorine-doped tin oxide (FTO) electrodes by atomic layer deposition (ALD) technology. Based on these TiO2 films, a series of hole-conductor-free perovskite solar cells (PSCs) with carbon as the counter electrode were fabricated in ambient air, and the effect of thickness of TiO2 compact film on the device performance was investigated in detail. It was found that the performance of PSCs depends on the thickness of the compact layer due to the difference in surface roughness, transmittance, charge transport resistance, electron-hole recombination rate, and the charge lifetime. The best-performance devices based on optimized TiO2 compact film (by 2000 cycles ALD) can achieve power conversion efficiencies (PCEs) of as high as 7.82%. Furthermore, they can maintain over 96% of their initial PCE after 651 h (about 1 month) storage in ambient air, thus exhibiting excellent long-term stability.
NASA Astrophysics Data System (ADS)
Rovey, Joshua Lucas
Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects is developed to explain active DCA erosion. The near-DCA electric field pulls ions into the DCA such that they bombard and erode the keeper. Charge-exchange collisions between bombarding ions and DCA-expelled neutral atoms reduce erosion. The theory explains ion thruster long-duration wear-test results and suggests increasing propellant flow rate may eliminate or reduce DCA erosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Weiwei; Domcke, Wolfgang; Farantos, Stavros C.
A trajectory method of calculating tunneling probabilities from phase integrals along straight line tunneling paths, originally suggested by Makri and Miller [J. Chem. Phys. 91, 4026 (1989)] and recently implemented by Truhlar and co-workers [Chem. Sci. 5, 2091 (2014)], is tested for one- and two-dimensional ab initio based potentials describing hydrogen dissociation in the {sup 1}B{sub 1} excited electronic state of pyrrole. The primary observables are the tunneling rates in a progression of bending vibrational states lying below the dissociation barrier and their isotope dependences. Several initial ensembles of classical trajectories have been considered, corresponding to the quasiclassical and themore » quantum mechanical samplings of the initial conditions. It is found that the sampling based on the fixed energy Wigner density gives the best agreement with the quantum mechanical dissociation rates.« less
Photoexcited Carrier Dynamics of Cu 2S Thin Films
Riha, Shannon C.; Schaller, Richard D.; Gosztola, David J.; ...
2014-11-11
Copper sulfide is a simple binary material with promising attributes for low-cost thin film photovoltaics. However, stable Cu 2S-based device efficiencies approaching 10% free from cadmium have yet to be realized. In this paper, transient absorption spectroscopy is used to investigate the dynamics of the photoexcited state of isolated Cu 2S thin films prepared by atomic layer deposition or vapor-based cation exchange of ZnS. While a number of variables including film thickness, carrier concentration, surface oxidation, and grain boundary passivation were examined, grain structure alone was found to correlate with longer lifetimes. A map of excited state dynamics is deducedmore » from the spectral evolution from 300 fs to 300 μs. Finally, revealing the effects of grain morphology on the photophysical properties of Cu 2S is a crucial step toward reaching high efficiencies in operationally stable Cu 2S thin film photovoltaics.« less
Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei
2015-10-07
Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.
A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.
2014-05-01
Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.
Computer modelling of cyclic deformation of high-temperature materials. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duesbery, M.S.; Louat, N.P.
1992-11-16
Current methods of lifetime assessment leave much to be desired. Typically, the expected life of a full-scale component exposed to a complex environment is based upon empirical interpretations of measurements performed on microscopic samples in controlled laboratory conditions. Extrapolation to the service component is accomplished by scaling laws which, if used at all, are empirical; little or no attention is paid to synergistic interactions between the different components of the real environment. With the increasingly hostile conditions which must be faced in modern aerospace applications, improvement in lifetime estimation is mandated by both cost and safety considerations. This program aimsmore » at improving current methods of lifetime assessment by building in the characteristics of the micro-mechanisms known to be responsible for damage and failure. The broad approach entails the integration and, where necessary, augmentation of the micro-scale research results currently available in the literature into a macro-scale model with predictive capability. In more detail, the program will develop a set of hierarchically structured models at different length scales, from atomic to macroscopic, at each level taking as parametric input the results of the model at the next smaller scale. In this way the known microscopic properties can be transported by systematic procedures to the unknown macro-scale region. It may not be possible to eliminate empiricism completely, because some of the quantities involved cannot yet be estimated to the required degree of precision. In this case the aim will be at least to eliminate functional empiricism.« less
Abbaspour, M; Moattar, F; Okhovatian, A; Kharrat Sadeghi, M
2010-12-01
The main goal of this study is to lay out the map of the soil radionuclide activity concentrations and the terrestrial outdoor gamma dose rates in the western Mazandaran Province of Iran, and to present an evaluation scheme. Mazandaran Province was selected due to its special geographical characteristics, high population density and the long terrestrial and aquatic borders with the neighbouring countries possessing nuclear facilities. A total of 54 topsoil samples were collected, ranging from the Nour to Ramsar regions, and were based on geological conditions, vegetation coverage and the sampling standards outlined by the International Atomic Energy Agency. The excess lifetime cancer risks (ELCRs) were evaluated and the coordinates of sampling locations were determined by the global positioning system. The average terrestrial outdoor gamma dose rate was 612.38 ± 3707.93 nGy h(-1), at 1 m above the ground. The annual effective gamma dose at the western part of Mazandaran Province was 750 μSv, and the ELCR was 0.26 × 10(-2). Soil samples were analysed by gamma spectrometry with a high-purity germanium detector. The average (226)Ra, (232)Th, (40)K and (137)Cs activities were 1188.50 ± 7838.40, 64.92 ± 162.26, 545.10 ± 139.42 and 10.41 ± 7.86 Bq kg(-1), respectively. The average soil radionuclide concentrations at the western part of Mazandaran Province were higher than the worldwide range. The excess lifetime risks of cancer and the annual effective gamma doses were also higher than the global average.
Superheavy-element spectroscopy: Correlations along element 115 decay chains
NASA Astrophysics Data System (ADS)
Rudolph, D.; Forsberg, U.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.
2016-05-01
Following a brief summary of the region of the heaviest atomic nuclei yet created in the laboratory, data on more than hundred α-decay chains associated with the production of element 115 are combined to investigate time and energy correlations along the observed decay chains. Several of these are analysed using a new method for statistical assessments of lifetimes in sets of decay chains.
Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning
2014-12-10
Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.
Transition Probabilities for Hydrogen-Like Atoms
NASA Astrophysics Data System (ADS)
Jitrik, Oliverio; Bunge, Carlos F.
2004-12-01
E1, M1, E2, M2, E3, and M3 transition probabilities for hydrogen-like atoms are calculated with point-nucleus Dirac eigenfunctions for Z=1-118 and up to large quantum numbers l=25 and n=26, increasing existing data more than a thousandfold. A critical evaluation of the accuracy shows a higher reliability with respect to previous works. Tables for hydrogen containing a subset of the results are given explicitly, listing the states involved in each transition, wavelength, term energies, statistical weights, transition probabilities, oscillator strengths, and line strengths. The complete results, including 1 863 574 distinct transition probabilities, lifetimes, and branching fractions are available at http://www.fisica.unam.mx/research/tables/spectra/1el
New Measurement of the 60Fe Half-Life.
Rugel, G; Faestermann, T; Knie, K; Korschinek, G; Poutivtsev, M; Schumann, D; Kivel, N; Günther-Leopold, I; Weinreich, R; Wohlmuther, M
2009-08-14
We have made a new determination of the half-life of the radioactive isotope 60Fe using high precision measurements of the number of 60Fe atoms and their activity in a sample containing over 10(15) 60Fe atoms. Our new value for the half-life of 60Fe is (2.62+/-0.04) x 10(6) yr, significantly above the previously reported value of (1.49+/-0.27) x 10(6) yr. Our new measurement for the lifetime of 60Fe has significant implications for interpretations of galactic nucleosynthesis, for determinations of formation time scales of solids in the early Solar System, and for the interpretation of live 60Fe measurements from supernova-ejecta deposits on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuraptsev, A. S., E-mail: aleksej-kurapcev@yandex.ru; Sokolov, I. M.
We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry–Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity canmore » affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.« less
EXPERIMENTALLY MEASURED RADIATIVE LIFETIMES AND OSCILLATOR STRENGTHS IN NEUTRAL VANADIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, C. E.; Pickering, J. C.; Ruffoni, M. P.
2016-06-01
We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm{sup −1} and 37,518 cm{sup −1} and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify thosemore » measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm{sup −1}.« less
Continuous all-optical deceleration of molecular beams
NASA Astrophysics Data System (ADS)
Jayich, Andrew; Chen, Gary; Long, Xueping; Wang, Anna; Campbell, Wesley
2014-05-01
A significant impediment to generating ultracold molecules is slowing a molecular beam to velocities where the molecules can be cooled and trapped. We report on progress toward addressing this issue with a general optical deceleration technique for molecular and atomic beams. We propose addressing the molecular beam with a pump and dump pulse sequence from a mode-locked laser. The pump pulse counter-propagates with respect to the beam and drives the molecules to the excited state. The dump pulse co-propagates and stimulates emission, driving the molecules back to the ground state. This cycle transfers 2 ℏk of momentum and can generate very large optical forces, not limited by the spontaneous emission lifetime of the molecule or atom. Importantly, avoiding spontaneous emission limits the branching to dark states. This technique can later be augmented with cooling and trapping. We are working towards demonstrating this optical force by accelerating a cold atomic sample.
Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states
NASA Astrophysics Data System (ADS)
de Léséleuc, Sylvain; Barredo, Daniel; Lienhard, Vincent; Browaeys, Antoine; Lahaye, Thierry
2018-05-01
We study experimentally various physical limitations and technical imperfections that lead to damping and finite contrast of optically driven Rabi oscillations between ground and Rydberg states of a single atom. Finite contrast is due to preparation and detection errors, and we show how to model and measure them accurately. Part of these errors originates from the finite lifetime of Rydberg states, and we observe its n3 scaling with the principal quantum number n . To explain the damping of Rabi oscillations, we use simple numerical models taking into account independently measured experimental imperfections and show that the observed damping actually results from the accumulation of several small effects, each at the level of a few percent. We discuss prospects for improving the coherence of ground-Rydberg Rabi oscillations in view of applications in quantum simulation and quantum information processing with arrays of single Rydberg atoms.
Precision Muonium Spectroscopy
NASA Astrophysics Data System (ADS)
Jungmann, Klaus P.
2016-09-01
The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.
Lee, Seungjin; Park, Jong Hyun; Lee, Bo Ram; Jung, Eui Dae; Yu, Jae Choul; Di Nuzzo, Daniele; Friend, Richard H; Song, Myoung Hoon
2017-04-20
The use of hybrid organic-inorganic perovskites in optoelectronic applications are attracting an interest because of their outstanding characteristics, which enable a remarkable enhancement of device efficiency. However, solution-processed perovskite crystals unavoidably contain defect sites that cause hysteresis in perovskite solar cells (PeSCs) and blinking in perovskite light-emitting diodes (PeLEDs). Here, we report significant beneficial effects using a new treatment based on amine-based passivating materials (APMs) to passivate the defect sites of methylammonium lead tribromide (MAPbBr 3 ) through coordinate bonding between the nitrogen atoms and undercoordinated lead ions. This treatment greatly enhanced the PeLED's efficiency, with an external quantum efficiency (EQE) of 6.2%, enhanced photoluminescence (PL), a lower threshold for amplified spontaneous emission (ASE), a longer PL lifetime, and enhanced device stability. Using confocal microscopy, we observed the cessation of PL blinking in perovskite films treated with ethylenediamine (EDA) due to passivation of the defect sites in the MAPbBr 3 .
Investigating the Modification of Spontaneous Emission using Layer-by-Layer Self-Assembly
NASA Astrophysics Data System (ADS)
Ashry, Islam Ahmed Ibrahim Youssef
The process of spontaneous emission can be dramatically modified by optical micro- and nanostructures. We studied the modification of fluorescence dynamics using a polymer spacer layer fabricated through layer-by-layer (LbL) self-assembly. The advantages of this method are numerous: The self-assembled spacers can possess exceptional smooth surface morphology; The thickness of the spacer can be controlled with nanometer accuracy; And depending on fabrication conditions, the spacer layer is stimuli responsive and its thickness can be dynamically tuned. This thesis contains three interlinked components. First, we vary LbL spacer layer thickness and explore the change in fluorescence lifetime induced by the modified photonic density of states (PDOS), i.e., Purcell effects. Our experimental results agree well with theoretical predictions based on a classical dipole model, which also yields consistent values for the fluorophores' intrinsic fluorescence lifetime and quantum yield near a dielectric as well as a plasmonic interface. Based on this observation, we further demonstrate that self-assembled fluorophores can be used to probe the modified PDOS near optical micro- and nano-structures. These results naturally lead to the second component of our research. In particularly, based on the PDOS-induced changes in fluorescent lifetime, we develop a non-contact method that can measure morphological changes with nanoscale resolution. Our method relies on quantitatively linking fluorophore position with PDOS, and is validated through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. To demonstrate the potential application of this method, we investigated the swelling/deswelling of LbL films induced by pH changes. Our results indicate significant difference between a LbL film composed of a single polymer monolayer and a LbL film with 3 monolayers. Such stimuli-responsive polymers can be used to construct active and tunable plasmonic nano-devices. As a proof-of-principle demonstration, we experimentally confirm that it is possible to utilize the swelling/deswelling behavior of stimuli-responsive films to dynamically control the separation between Au nanoparticles and Texas Red (TR) dyes. This result is based on the strong correlation of TR fluorescence lifetime and nanoparticles-TR separation. Finally, we investigate the impact of different lithography processes on the fluorescence properties of self-assembled fluorophores. We consider three methods: direct fluorophore patterning through ultraviolet (UV) ablation, focused ion beam (FIB) milling of self-assembled fluorophores, and self-assembly of fluorescent materials over plasmonic nano-patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei
2015-10-15
We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc ismore » a promising HIL material for highly efficient OLEDs.« less
Electron-phonon interaction within classical molecular dynamics
Tamm, A.; Samolyuk, G.; Correa, A. A.; ...
2016-07-14
Here, we present a model for nonadiabatic classical molecular dynamics simulations that captures with high accuracy the wave-vector q dependence of the phonon lifetimes, in agreement with quantum mechanics calculations. It is based on a local view of the e-ph interaction where individual atom dynamics couples to electrons via a damping term that is obtained as the low-velocity limit of the stopping power of a moving ion in a host. The model is parameter free, as its components are derived from ab initio-type calculations, is readily extended to the case of alloys, and is adequate for large-scale molecular dynamics computermore » simulations. We also show how this model removes some oversimplifications of the traditional ionic damped dynamics commonly used to describe situations beyond the Born-Oppenheimer approximation.« less
Single-crystalline graphene radio-frequency nanoswitches
NASA Astrophysics Data System (ADS)
Li, Peng; Cui, Tianhong
2015-07-01
Growth of monolayer single-crystalline graphene (SCG) using the low-pressure chemical vapor deposition method is reported. Graphene’s superb quality and single-crystalline nature were characterized and verified by Raman microscopy, atomic force microscopy, and carrier mobility measurement. Radio-frequency (RF) nanoelectromechanical switches based on coplanar waveguide double-clamped SCG membrane were achieved, and the superb properties of SCG enable the switches to operate at a pull-in voltage as low as 1 V, with switch time in the nanosecond regime. Owing to their single-crystalline nature, the switches’ lifetime (>5000 times) is much longer than that of polycrystalline graphene ones reported. The RF devices exhibit good isolation (-30 dB at 40 GHz (Ka band)), which can be further improved by SCG’s conductivity variation due to actuation voltage.
A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu; Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003
2014-05-15
Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve themore » peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.« less
Whispering galleries and the control of artificial atoms.
Forrester, Derek Michael; Kusmartsev, Feodor V
2016-04-28
Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.
Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.
Kim, Jeongmin; Sung, Bong June
2015-06-17
The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rong; Wu, Yongquan, E-mail: yqwu@shu.edu.cn; Xiao, Junjiang
We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clustersmore » and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.« less
NASA Astrophysics Data System (ADS)
Wang, Bao-Zong; Lu, Yue-Hui; Sun, Wei; Chen, Shuai; Deng, Youjin; Liu, Xiong-Jun
2018-01-01
We propose a hierarchy set of minimal optical Raman lattice schemes to pave the way for experimental realization of high-dimensional spin-orbit (SO) couplings for ultracold atoms, including two-dimensional (2D) Dirac type, 2D Rashba type, and three-dimensional (3D) Weyl type. The proposed Dirac-type SO coupling exhibits precisely controllable high symmetry, for which a large topological phase region is predicted. The generation of 2D Rashba and 3D Weyl types requires that two sources of laser beams have distinct frequencies of factor 2 difference. Surprisingly, we find that 133Cs atoms provide an ideal candidate for the realization. A common and essential feature is of high controllability and absent of any fine-tuning in the realization, and the resulting SO coupled ultracold atoms have a long lifetime. In particular, a long-lived topological Bose gas of 2D Dirac SO coupling has been proved in the follow-up experiment. These schemes essentially improve over the current experimental accessibility and controllability, and open a realistic way to explore novel high-dimensional SO physics, particularly quantum many-body physics and quantum far-from-equilibrium dynamics with novel topology for ultracold atoms.
Widths of atomic 4s and 4p vacancy states, 46 less than or equal to Z less than or equal to 50
NASA Technical Reports Server (NTRS)
Hsiungchen, M.; Crasemann, B.; Yin, L. I.; Tsang, T.; Adler, I.
1975-01-01
Auger and X-ray photoelectron spectra involving N1, N2, and N3 vacancy states of Pd, Ag, Cd, In, and Sn were measured and compared with results of free atom calculations. As previously observed in Cu and Zn Auger spectra that involve 3d-band electrons, free-atom characteristics with regard to widths and structure were found in the Ag and Cd M4-N4,5N4,5 and M5-N4,5N4,5 Auger spectra that arise from transitions of 4d-band electrons. Theoretical N1 widths computed with calculated free-atom Auger energies agree well with measurements. Theory however predicts wider N2 than N3 vacancy states (as observed for Xe), while the measured N2 and N3 widths are nearly equal to each other and to the average of the calculated N2 and N3 widths. The calculations are made difficult by the exceedingly short lifetime of some 4p vacancies and by the extreme sensitivity of super-Coster-Kronig rates, which dominate the deexcitation, to the transition energy and to the fine details of the atomic potential.
Bot, M; Middeldorp, C M; de Geus, E J C; Lau, H M; Sinke, M; van Nieuwenhuizen, B; Smit, J H; Boomsma, D I; Penninx, B W J H
2017-01-01
There is a paucity of valid, brief instruments for the assessment of lifetime major depressive disorder (MDD) that can be used in, for example, large-scale genomics, imaging or biomarker studies on depression. We developed the LIfetime Depression Assessment Self-report (LIDAS), which assesses lifetime MDD diagnosis according to DSM criteria, and is largely based on the widely used Composite International Diagnostic Interview (CIDI). Here, we tested the feasibility and determined the sensitivity and specificity for measuring lifetime MDD with this new questionnaire, with a regular CIDI as reference. Sensitivity and specificity analyses of the online lifetime MDD questionnaire were performed in adults with (n = 177) and without (n = 87) lifetime MDD according to regular index CIDIs, selected from the Netherlands Study of Depression and Anxiety (NESDA) and Netherlands Twin Register (NTR). Feasibility was tested in an additional non-selective, population-based sample of NTR participants (n = 245). Of the 753 invited persons, 509 (68%) completed the LIDAS, of which 419 (82%) did this online. User-friendliness of the instrument was rated high. Median completion time was 6.2 min. Sensitivity and specificity for lifetime MDD were 85% [95% confidence interval (CI) 80-91%] and 80% (95% CI 72-89%), respectively. This LIDAS instrument gave a lifetime MDD prevalence of 20.8% in the population-based sample. Measuring lifetime MDD with an online instrument was feasible. Sensitivity and specificity were adequate. The instrument gave a prevalence of lifetime MDD in line with reported population prevalences. LIDAS is a promising tool for rapid determination of lifetime MDD status in large samples, such as needed for genomics studies.
NASA Astrophysics Data System (ADS)
Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.
2018-06-01
The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.
Fourier Transform Spectroscopy of Doubly Ionized Iron Group Elements for Astrophysical Applications
NASA Astrophysics Data System (ADS)
Smillie, D. G.; Pickering, J. C.; Smith, P. L.
2005-05-01
Exciting new astrophysical spectra provided by both space-based (such as STIS, Hubble) and ground-based spectrographs (such as HIRES, Keck-1 telescope) are unable to be fully interpreted due to deficiencies in the database of laboratory measured atomic data such as transition wavelengths and oscillator strengths. The transition elements, particularly the Iron (3d) group, are extremely important for stellar astrophysics providing much of the observed stellar opacity, and the doubly ionized species dominate the spectra of hot (B-type) stars [1]. Transition wavelengths with uncertainties of ˜1:107 and oscillator strengths with uncertainties of ˜10% are required to fully interpret the astrophysical spectra. At Imperial College, we use a Penning discharge lamp with our unique Fourier transform spectrometer (FTS) [1] capable of measurements from the visible to the VUV (down to 135nm) at high resolution (typical wavenumber uncertainty ˜1:108). These measurements are supplemented by IR FTS spectra and grating spectra (beyond the 135nm limit) taken at the National Institute of Standards and Technology (NIST), USA. The spectra are analyzed to provide intensity and wavenumber calibrated linelists. This allows term analysis (calculating energy levels from the measured transition line wavelengths) and branching ratios (which can be combined with level lifetimes to produce oscillator strengths) to be determined. FTS measurements of Fe III in the UV and IR have been completed at Imperial and NIST and grating measurements are planned at NIST to complete the Fe III work. Similarly, Co III and Cr III measurements are currently ongoing at both Imperial and NIST. After completion of the analysis, the data will be disseminated to atomic databases (such as the NIST Atomic Spectra Database and the Vienna Atomic Line Database). This work is supported in part by NASA Grant NAG5-12668, PPARC and the Royal Society of the UK. [1] J. C. Pickering, Vibrational Spectroscopy, 29, 27-43 (2002)
Heading error in an alignment-based magnetometer
NASA Astrophysics Data System (ADS)
Hovde, Chris; Patton, Brian; Versolato, Oscar; Corsini, Eric; Rochester, Simon; Budker, Dmitry
2011-06-01
A prototype magnetometer for anti-submarine warfare applications is being developed based on nonlinear magneto-optical rotation (NMOR) in atomic vapors. NMOR is an atomic spectroscopy technique that exploits coherences among magnetic sublevels of atoms such as cesium or rubidium to measure magnetic fields with high precision. NMOR uses stroboscopic optical pumping via frequency or amplitude modulation of a linearly polarized laser beam to create the alignment. An anti-relaxation coating on the walls of the atomic vapor cell can result in a long lifetime of 1 s or more for the coherence and enables precise measurement of the precession frequency. With proper feedback, the magnetometer can self-oscillate, resulting in accurate tracking and fast time response. The NMOR magnetic resonance spectrum of 87Rb has been measured as a function of heading in Earth's field. Optical pumping of alignment within the F=2 hyperfine manifold generates three resonances separated by the nonlinear Zeeman splitting. The spectra show a high degree of symmetry, consisting of a central peak and two side peaks of nearly equal intensity. As the heading changes, the ratio of the central peak to the average of the two side peaks changes. The amplitudes of the side peaks remain nearly equal. An analysis of the forced oscillation spectra indicates that, away from dead zones, heading error in self-oscillating mode should be less than 1 nT. A broader background is also observed in the spectra. While this background can be removed when fitting resonance spectra, understanding it will be important to achieving the small heading error in self-oscillating mode that is implied by the spectral measurements. Progress in miniaturizing the magnetometer is also reported. The new design is less than 10 cm across and includes fiber coupling of light to and from the magnetometer head. Initial tests show that the prototype has achieved a narrow spectral width and a strong polarization rotation signal.
Development of Next Generation Lifetime PSP Imaging Systems
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Jordan, Jeffrey D.; Leighty, Bradley D.; Ingram, JoAnne L.; Oglesby, Donald M.
2002-01-01
This paper describes a lifetime PSP system that has recently been developed using pulsed light-emitting diode (LED) lamps and a new interline transfer CCD camera technology. This system alleviates noise sources associated with lifetime PSP systems that use either flash-lamp or laser excitation sources and intensified CCD cameras for detection. Calibration curves have been acquired for a variety of PSP formulations using this system, and a validation test was recently completed in the Subsonic Aerodynamic Research Laboratory (SARL) at Wright-Patterson Air Force Base (WPAFB). In this test, global surface pressure distributions were recovered using both a standard intensity-based method and the new lifetime system. Results from the lifetime system agree both qualitatively and quantitatively with those measured using the intensity-based method. Finally, an advanced lifetime imaging technique capable of measuring temperature and pressure simultaneously is introduced and initial results are presented.
NASA Astrophysics Data System (ADS)
Wang, K.; Chen, Z. B.; Chen, C. Y.; Yan, J.; Dang, W.; Zhao, X. H.; Yang, X.
2017-09-01
Multi-configuration Dirac-Fock (MCDF) calculations of energy levels, wavelengths, oscillator strengths, lifetimes, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates are reported for the arsenic isoelectronic sequence Sn XVIII-Ba XXIV, W XLII. Results are presented among the 86 levels of the 4s2 4p3, 4 s 4p4, 4p5, 4s2 4p2 4 d, and 4 s 4p3 4 d configurations in each ion. The relativistic atomic structure package GRASP2K is adopted for the calculations, in which the contributions from the correlations within the n ≤ 7 complexes, Breit interaction (BI) and quantum electrodynamics (QED) effects are taking into account. The many-body perturbation theory (MBPT) method is also employed as an independent calculation for comparison purposes, taking W XLII as an example. Calculated results are compared with data from other calculations and the observed values from the Atomic Spectra Database (ASD) of the National Institute of Standards and Technology (NIST). Good agreements are obtained. i.e, the accuracy of our energy levels is assessed to be better than 0.6%. These accurate theoretical data should be useful for diagnostics of hot plasmas in fusion devices.
Non-stationary and relaxation phenomena in cavity-assisted quantum memories
NASA Astrophysics Data System (ADS)
Veselkova, N. G.; Sokolov, I. V.
2017-12-01
We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.
Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo
2017-12-01
Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.
Accelerated lifetime test of vibration isolator made of Metal Rubber material
NASA Astrophysics Data System (ADS)
Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan
2017-01-01
The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.
Tunable phonon-induced transparency in bilayer graphene nanoribbons.
Yan, Hugen; Low, Tony; Guinea, Francisco; Xia, Fengnian; Avouris, Phaedon
2014-08-13
In the phenomenon of plasmon-induced transparency, which is a classical analogue of electromagnetically induced transparency (EIT) in atomic gases, the coherent interference between two plasmon modes results in an optical transparency window in a broad absorption spectrum. With the requirement of contrasting lifetimes, typically one of the plasmon modes involved is a dark mode that has limited coupling to the electromagnetic radiation and possesses relatively longer lifetime. Plasmon-induced transparency not only leads to light transmission at otherwise opaque frequency regions but also results in the slowing of light group velocity and enhanced optical nonlinearity. In this article, we report an analogous behavior, denoted as phonon-induced transparency (PIT), in AB-stacked bilayer graphene nanoribbons. Here, light absorption due to the plasmon excitation is suppressed in a narrow window due to the coupling with the infrared active Γ-point optical phonon, whose function here is similar to that of the dark plasmon mode in the plasmon-induced transparency. We further show that PIT in bilayer graphene is actively tunable by electrostatic gating and estimate a maximum slow light factor of around 500 at the phonon frequency of 1580 cm(-1), based on the measured spectra. Our demonstration opens an avenue for the exploration of few-photon nonlinear optics and slow light in this novel two-dimensional material.
Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun
2014-07-09
Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.
Atomic structure calculations for F-like tungsten
NASA Astrophysics Data System (ADS)
Sunny, Aggarwal
2014-09-01
Energy levels, wavefunction compositions and lifetimes have been computed for all levels of 1s22s22p5, 1s22s2p6, 1s22s22p43s, 1s22s22p43p, and 1s22s22p43d configurations in highly charged F-like tungsten ion. The multiconfigurational Dirac—Fock method (MCDF) is adopted to generate the wavefunctions. We have also presented the transition wavelengths, oscillator strengths, transition probabilities, and line strengths for the electric dipole (E1) and magnetic quadrupole (M2) transition from the 1s22s22p5 ground configuration. We have performed parallel calculations with the flexible atomic code (FAC) for comparing the atomic data. The reliability of present data is assessed by comparison with other theoretical and experimental data available in the literature. Good agreement is found between our results and those obtained using different approaches confirm the quality of our results. Additionally, we have predicted some new atomic data for F-like W that were not available so far and may be important for plasma diagnostic analysis in fusion plasma.
Localizing gravitational wave sources with single-baseline atom interferometers
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Jung, Sunghoon
2018-02-01
Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. We show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization. The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.
Transport of Gas-Phase Anthropogenic VOCs to the Remote Troposphere During the NASA ATom Mission
NASA Astrophysics Data System (ADS)
Hornbrook, R. S.; Apel, E. C.; Hills, A. J.; Asher, E. C. C.; Emmons, L. K.; Blake, D. R.; Blake, N. J.; Simpson, I. J.; Barletta, B.; Meinardi, S.; Montzka, S. A.; Moore, F. L.; Miller, B. R.; Sweeney, C.; McKain, K.; Wofsy, S. C.; Daube, B. C.; Commane, R.; Bui, T. V.; Hanisco, T. F.; Wolfe, G. M.; St Clair, J. M.; Ryerson, T. B.; Thompson, C. R.; Peischl, J.; Ray, E. A.
2017-12-01
The NASA Atmospheric Tomography (ATom) project aims to study the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere. During the first two deployments, ATom-1 and ATom-2, which took place August 2016 and February 2017, respectively, a suite of trace gas measurement instruments were deployed on the NASA DC-8 which profiled the atmosphere between 0.2 and 13 km from near-pole to near-pole around the globe, sampling in the most remote regions of the atmosphere over the Arctic, Pacific, Southern, and Atlantic Oceans. Volatile organic compounds (VOCs) with a range of lifetimes from days to decades quantified using the Trace Organic Gas Analyzer (TOGA), Whole Air Sampler (WAS) and Programmable Flask Packages (PFPs) demonstrate a significant impact on the remote atmosphere from urban and industrial sources. Comparisons between the transport and fate of pollutants during Northern Hemisphere summer and winter will be presented. Observations of the distributions of anthropogenic VOCs will be compared with simulations using the Community Atmosphere Model with chemistry (CAM-chem).
Air-stable flexible organic light-emitting diodes enabled by atomic layer deposition.
Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu
2015-01-16
Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10(-4) g m(-2) day(-1)] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10,000 h.
Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition
NASA Astrophysics Data System (ADS)
Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu
2015-01-01
Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10-4 g m-2 day-1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h.
Atomically Flat Surfaces Developed for Improved Semiconductor Devices
NASA Technical Reports Server (NTRS)
Powell, J. Anthony
2001-01-01
New wide bandgap semiconductor materials are being developed to meet the diverse high temperature, -power, and -frequency demands of the aerospace industry. Two of the most promising emerging materials are silicon carbide (SiC) for high-temperature and high power applications and gallium nitride (GaN) for high-frequency and optical (blue-light-emitting diodes and lasers) applications. This past year Glenn scientists implemented a NASA-patented crystal growth process for producing arrays of device-size mesas whose tops are atomically flat (i.e., step-free). It is expected that these mesas can be used for fabricating SiC and GaN devices with major improvements in performance and lifetime. The promising new SiC and GaN devices are fabricated in thin-crystal films (known as epi films) that are grown on commercial single-crystal SiC wafers. At this time, no commercial GaN wafers exist. Crystal defects, known as screw defects and micropipes, that are present in the commercial SiC wafers propagate into the epi films and degrade the performance and lifetime of subsequently fabricated devices. The new technology isolates the screw defects in a small percentage of small device-size mesas on the surface of commercial SiC wafers. This enables atomically flat surfaces to be grown on the remaining defect-free mesas. We believe that the atomically flat mesas can also be used to grow GaN epi films with a much lower defect density than in the GaN epi films currently being grown. Much improved devices are expected from these improved low-defect epi films. Surface-sensitive SiC devices such as Schottky diodes and field effect transistors should benefit from atomically flat substrates. Also, we believe that the atomically flat SiC surface will be an ideal surface on which to fabricate nanoscale sensors and devices. The process for achieving atomically flat surfaces is illustrated. The surface steps present on the "as-received" commercial SiC wafer is also illustrated. because of the small tilt angle between the crystal "basal" plane and the polished wafer surface. These steps are used in normal SiC epi film growth in a process known as stepflow growth to produce material for device fabrication. In the new process, the first step is to etch an array of mesas on the SiC wafer top surface. Then, epi film growth is carried out in the step flow fashion until all steps have grown themselves out of existence on each defect-free mesa. If the size of the mesas is sufficiently small (about 0.1 by 0.1 mm), then only a small percentage of the mesas will contain an undesired screw defect. Mesas with screw defects supply steps during the growth process, allowing a rough surface with unwanted hillocks to form on the mesa. The improvement in SiC epi surface morphology achievable with the new technology is shown. An atomic force microscope image of a typical SiC commercial epilayer surface is also shown. A similar image of an SiC atomically flat epi surface grown in a Glenn laboratory is given. With the current screw defect density of commercial wafers (about 5000 defects/cm2), the yield of atomically free 0.1 by 0.l mm mesas is expected to be about 90 percent. This is large enough for many types of electronic and optical devices. The implementation of this new technology was recently published in Applied Physics Letters. This work was initially carried out in-house under a Director's Discretionary Fund project and is currently being further developed under the Information Technology Base Program.
Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.
1972-06-20
Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)
Light-water breeder reactor (LWBR Development Program)
Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.
1972-06-20
Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)
High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants
NASA Technical Reports Server (NTRS)
Bergeron, Bryan; Skyler, David; Roberts, Kyle; Stevens, Amy
2013-01-01
The synthesis and characterization of six new ionic liquids, with fluoroether moeties on the imidazolium ring, each with vapor pressures shown to be <10(exp -7 Torr at 25 C, have been demonstrated. Thermal stability of the ionic liquids up to 250 C was demonstrated. The ionic liquids had no measurable influence upon viscosity upon addition to perfluoropolyether (PFPE) base fluids. They also had no measureable influence upon corrosion on steel substrates upon addition to base fluids. In general, 13 to 34% lower COFs (coefficients of friction), and 30 to 80% higher OK load of base fluids upon addition of the ionic liquids was shown. The compound consists of a 1,3-disubstituted imidazolium cation. The substituents comprise perfluoroether groups. A bis(trifluoromethanesulfonyl) imide anion counterbalances the charge. The fluorinated groups are intended to enhance dispersion of the ionic liquid in the PFPE base fluid. The presence of weak Van der Waals forces associated with fluorine atoms will limit interaction of the substituents on adjacent ions. The longer interionic distances will reduce the heat of melting and viscosity, and will increase dispersion capabilities.
Lifetime exposure to arsenic in residential drinking water in Central Europe.
Hough, Rupert Lloyd; Fletcher, Tony; Leonardi, Giovanni Sebastiano; Goessler, Walter; Gnagnarella, Patrizia; Clemens, Felicity; Gurzau, Eugen; Koppova, Kvetoslava; Rudnai, Peter; Kumar, Rajiv; Vahter, Marie
2010-06-01
Methods and results are presented for an arsenic exposure assessment integral to an epidemiological case-control study of arsenic and cancer-the European Commission funded ASHRAM (Arsenic Health Risk Assessment and Molecular Epidemiology) study carried out in some counties of Hungary, Romania and Slovakia. The exposure history of each participant (N = 1,392) was constructed by taking into account how much water they consumed (as water, in drinks and in food), sources of drinking water in their various residences over their lifetime, and the concentrations of arsenic in their various water supplies measured by Hydride Generation-Atomic Absorption Spectrometry (HG-AAS). Concentrations of arsenic in previous water supplies were either derived from contemporary analyses of the same source, or from routine historical data from measurements performed by the authorities in each country. Using this approach, 80% of the recorded lifetime residential history was matched to an arsenic concentration. Seven indices of current, life time, and peak exposure were calculated. The exposure indices were all log-normally distributed and the mean and median lifetime average concentrations were in Hungary 14.7 and 13.3 microg l(-1), Romania 3.8 and 0.7 microg l(-1) and in Slovakia 1.9 and 0.8 microg l(-1), respectively. Overall 25% of the population had average concentrations over 10 microg l(-1) and 8% with exposure over 50 microg l(-1). Careful assessment of arsenic in drinking water supplies (both current and previous) enabled the majority of study participants' cumulative lifetime of potential exposure to arsenic in residential water to be characterised.
Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.
Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A
2017-01-06
The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.
Venus' night side ionosphere - Its origin and maintenance
NASA Technical Reports Server (NTRS)
Butler, D. M.; Chamberlain, J. W.
1976-01-01
A substantial nightside ionosphere has been observed on Venus by both Mariner 5 and Mariner 10. Major dayside ionic species such as O2(+) and other molecular ions have chemical lifetimes much shorter than the 244.3-day rotation period of the planet. Rapid transport of ions from the dayside to the nightside to the extent required seems most unlikely. Consequently, possibilities are investigated for local production of ions on the nightside itself. Constraints imposed by chemical lifetimes require atomic ions with low ionization potentials. It is suggested that metallic ions of meteoric origin are the positive charge carriers, and the plausibility of this mechanism is demonstrated. Other possibilities are examined and shown to be less likely. Meteor ablation on Venus, the aeronomy of metallic species, and the role of negative ions near the electron peaks of the atmosphere are discussed.
NASA Astrophysics Data System (ADS)
Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu
2013-06-01
Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.
Probing Sub-atomistic Free-Volume Imperfections in Dry-Milled Nanoarsenicals with PAL Spectroscopy.
Shpotyuk, Oleh; Ingram, Adam; Bujňáková, Zdenka; Baláž, Peter; Shpotyuk, Yaroslav
2016-12-01
Structural transformations caused by coarse-grained powdering and fine-grained mechanochemical milling in a dry mode were probed in high-temperature modification of tetra-arsenic tetra-sulfide known as β-As4S4. In respect to X-ray diffraction analysis, the characteristic sizes of β-As4S4 crystallites in these coarse- and fine-grained powdered pellets were 90 and 40 nm, respectively. Positron annihilation lifetime spectroscopy was employed to characterize transformations occurred in free-volume structure of these nanoarsenicals. Experimentally measured positron lifetime spectra were parameterized in respect to three- or two-term fitting procedures and respectively compared with those accumulated for single crystalline realgar α-As4S4 polymorph. The effect of coarse-grained powdering was found to result in generation of large amount of positron and positronium Ps trapping sites inside arsenicals in addition to existing ones. In fine-grained powdered β-As4S4 pellets, the positron trapping sites with characteristic free volumes close to bi- and tri-atomic vacancies were evidently dominated. These defects were supposed to originate from grain boundary regions and interfacial free volumes near aggregated β-As4S4 crystallites. Thus, the cumulative production of different positron traps with lifetimes close to defect-related lifetimes in realgar α-As4S4 polymorph was detected in fine-grained milled samples.
Probing Molecular Ions With Laser-Cooled Atomic Ions
2017-10-11
Sept. 23, 2015 Precision Chemical Dynamics and Quantum Control of Ultracold Molecular Ion Reactions , Cold Molecular Ions at the Quantum limit (COMIQ...ken.brown@chemistry.gatech.edu This work solved an old mystery about the lifetime of Ca+ due to reactions with background gases in laser-cooling experiments...Relative to other alkaline earths, Ca+ had a much slower reaction rate. We discovered the reason is that the Doppler cooling laser is near
Data acquisition software for DIRAC experiment
NASA Astrophysics Data System (ADS)
Olshevsky, V.; Trusov, S.
2001-08-01
The structure and basic processes of data acquisition software of the DIRAC experiment for the measurement of π +π - atom lifetime are described. The experiment is running on the PS accelerator of CERN. The developed software allows one to accept, record and distribute up to 3 Mbytes of data to consumers in one accelerator supercycle of 14.4 s duration. The described system is successfully in use in the experiment since its startup in 1998.
2012-07-02
from complex user interactions due to the use of liquid lasing medium with finite lifetime. Solid state lasers such as titanium sapphire (Ti:Sapphire...transitions for laser -induced fluorescence of an accelerated atomic iodine singly charged ion (I+). While the second spectrum of iodine has been analyzed...diagnostics tools, such as laser -induced fluorescence (LIF), to examine the plasma acceleration within an electro-static plasma propulsion thruster. While
NASA Astrophysics Data System (ADS)
Bellanger, Véronique; Courcelle, Arnaud; Petit, Alain
2004-09-01
A program to compute the two-step excitation of sodium atoms ( 3S→3P→4D) using the density-matrix formalism is presented. The BEACON program calculates population evolution and the number of photons emitted by fluorescence from the 3P, 4D, 4P, 4S levels. Program summaryTitle of program: BEACON Catalogue identifier:ADSX Program Summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Operating systems under which the program has been tested: Win; Unix Programming language used: FORTRAN 77 Memory required to execute with typical data: 1 Mw Number of bits in a word: 32 Number of processors used: 1 (a parallel version of this code is also available and can be obtained on request) Number of lines in distributed program, including test data, etc.: 29 287 Number of bytes in distributed program, including test data, etc.: 830 331 Distribution format: tar.gz CPC Program Library subprograms used: none Nature of physical problem: Resolution of the Bloch equations in the case of the two-step laser excitation of sodium atoms. Method of solution: The program BEACON calculates the evolution of level population versus time using the density-matrix formalism. The number of photons emitted from the 3P, 4D and 4P levels is calculated using the branching ratios and the level lifetimes. Restriction on the complexity of the problem: Since the backscatter emission is calculated after the excitation process, excitation with laser pulse duration longer than the 4D level lifetime cannot be rigorously treated. Particularly, cw laser excitation cannot be calculated with this code. Typical running time:12 h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falcinelli, Stefano, E-mail: stefano.falcinelli@unipg.it; Vecchiocattivi, Franco; Bartocci, Alessio
2015-10-28
A combined analysis of both new (energy spectra of emitted electrons) and previously published (ionization cross sections) experimental data, measured under the same conditions and concerning electronically excited lighter noble gas –NH{sub 3} collisional autoionization processes, is carried out. Such an analysis, performed by exploiting a formulation of the full potential energy surface both in the real and imaginary parts, provides direct information on energetics, structure, and lifetime of the intermediate collision complex over all the configuration space. The marked anisotropy in the attraction of the real part, driving the approach of reagents, and the selective role of the imaginarymore » component, associated to the charge transfer coupling between entrance and exit channels, suggests that reactive events occur almost exclusively in the molecular hemisphere containing the nitrogen lone pair. Crucial details on the stereo-dynamics of elementary collisional autoionization processes are then obtained, in which the open shell nature of the disclosed ionic core of metastable atom plays a crucial role. The same analysis also suggests that the strength of the attraction and the anisotropy of the interaction increases regularly along the series Ne{sup *}({sup 3}P), He{sup *}({sup 3}S), He{sup *}({sup 1}S)–NH{sub 3}. These findings can be ascribed to the strong rise of the metastable atom electronic polarizability (deformability) along the series. The obtained results can stimulate state of the art ab initio calculations focused on specific features of the transition state (energetics, structure, lifetime, etc.) which can be crucial for a further improvement of the adopted treatment and to better understand the nature of the leading interaction components which are the same responsible for the formation of the intermolecular halogen and hydrogen bond.« less
Levashov, V A
2014-09-28
We report on a further investigation of a new method that can be used to address vibrational dynamics and propagation of stress waves in liquids. The method is based on the decomposition of the macroscopic Green-Kubo stress correlation function into the atomic level stress correlation functions. This decomposition, as was demonstrated previously for a model liquid studied in molecular dynamics simulations, reveals the presence of stress waves propagating over large distances and a structure that resembles the pair density function. In this paper, by performing the Fourier transforms of the atomic level stress correlation functions, we elucidate how the lifetimes of the stress waves and the ranges of their propagation depend on their frequency, wavevector, and temperature. These results relate frequency and wavevector dependence of the generalized viscosity to the character of propagation of the shear stress waves. In particular, the results suggest that an increase in the value of the frequency dependent viscosity at low frequencies with decrease of temperature is related to the increase in the ranges of propagation of the stress waves of the corresponding low frequencies. We found that the ranges of propagation of the shear stress waves of frequencies less than half of the Einstein frequency extend well beyond the nearest neighbor shell even above the melting temperature. The results also show that the crossover from quasilocalized to propagating behavior occurs at frequencies usually associated with the Boson peak.
On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets
NASA Astrophysics Data System (ADS)
Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.
2018-05-01
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices
Kang, Byoung-Ho; Lee, Jae-Sung; Lee, Sang-Won; Kim, Sae-Wan; Lee, Jun-Woo; Gopalan, Sai-Anand; Park, Ji-Sub; Kwon, Dae-Hyuk; Bae, Jin-Hyuk; Kim, Hak-Rin; Kang, Shin-Won
2016-01-01
We demonstrate the first-ever surface modification of green CdSe/ZnS quantum dots (QDs) using bromide anions (Br-) in cetyl trimethylammonium bromide (CTAB). The Br- ions reduced the interparticle spacing between the QDs and induced an effective charge balance in QD light-emitting devices (QLEDs). The fabricated QLEDs exhibited efficient charge injection because of the reduced emission quenching effect and their enhanced thin film morphology. As a result, they exhibited a maximum luminance of 71,000 cd/m2 and an external current efficiency of 6.4 cd/A, both significantly better than those of their counterparts with oleic acid surface ligands. In addition, the lifetime of the Br- treated QD based QLEDs is significantly improved due to ionic passivation at the QDs surface. PMID:27686147
NASA Astrophysics Data System (ADS)
Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.
2014-02-01
The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.
The Bichromatic Optical Force on the Atomic Life- time Scale
NASA Astrophysics Data System (ADS)
Corder, Christopher; Arnold, Brian; Metcalf, Harold
2013-05-01
Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, A.; Fessenden, R.W.
1989-07-27
The triplet state of acenaphthylene has been examined by nanosecond laser flash photolysis using sensitization and heavy atom perturbation techniques. Although acenaphthylene does not form any observable triplet upon direct flash excitation, a transient with microsecond lifetime ({lambda}{sub max} = 315 nm) is observable when a solution of the sample is excited by sensitizers (benzophenone, thioxanthone, benzil). This transient is ascribed to the triplet of acenaphthylene on the basis of its quenching behavior toward oxygen, ferrocene, azulene, and {beta}-carotene. Quantitative data concerning the triplet-triplet absorption and quenching constants are presented. The triplet energy is estimated to lie between 46 andmore » 47 kcal/mol. The triplet can also be produced by direct excitation in solvents containing heavy atoms (ethyl bromide, ethyl iodide). The triplet yield is found to increase with an increase of the amount of the heavy atom containing solvent. No saturation limit is obtained. These facts together with the effect of heavy atoms on the T{sub 1} {yields} S{sub 0} process allow the differing behavior of ethyl bromide and ethyl iodide on the photodimerization process of acenaphthylene to be explained. Triplet-state parameters (extinction coefficient and triplet yield) have been estimated in these solvents by the energy-transfer technique and actinometry.« less
Kotsopoulos, Nikolaos; Connolly, Mark P; Sobanski, Esther; Postma, Maarten J
2013-03-01
To estimate the long-term fiscal consequences of attention deficit hyperactivity disorder (ADHD) on the German government and social insurance system based on differences in educational attainment and the resulting differences in lifetime earnings compared with non-ADHD cohorts. Differences in educational attainment between ADHD and non-ADHD cohorts were linked to education-specific earnings data. Direct and indirect tax rates and social insurance contributions were linked to differences in lifetime, education-specific earnings to derive lost tax revenue in Germany associated with ADHD. For ADHD and non-ADHD cohorts we derived the age-specific discounted net taxes paid by deducting lifetime transfers from lifetime gross taxes paid. The lifetime net tax revenue for a non-ADHD individual was approximately EUR 80,000 higher compared to an untreated ADHD individual. The fiscal burden of untreated ADHD, based on a cohort of n=31,844 born in 2010, was estimated at EUR 2.5 billion in net tax revenue losses compared with an equally-sized non-ADHD cohort. ADHD interventions providing a small improvement in educational attainment resulted in fiscal benefits from increases in lifetime tax gains. ADHD results in long-term financial loss due to lower education attainment and lifetime reduced earnings and resulting lifetime taxes and social contributions paid. Investments in ADHD interventions allowing more children to achieve their educational potential may offer fiscal benefits generating a positive rate of return.
Li, Bing; Kawakita, Yukinobu; Liu, Yucheng; Wang, Mingchao; Matsuura, Masato; Shibata, Kaoru; Ohira-Kawamura, Seiko; Yamada, Takeshi; Lin, Shangchao; Nakajima, Kenji; Liu, Shengzhong (Frank)
2017-01-01
Perovskite CH3NH3PbI3 exhibits outstanding photovoltaic performances, but the understanding of the atomic motions remains inadequate even though they take a fundamental role in transport properties. Here, we present a complete atomic dynamic picture consisting of molecular jumping rotational modes and phonons, which is established by carrying out high-resolution time-of-flight quasi-elastic and inelastic neutron scattering measurements in a wide energy window ranging from 0.0036 to 54 meV on a large single crystal sample, respectively. The ultrafast orientational disorder of molecular dipoles, activated at ∼165 K, acts as an additional scattering source for optical phonons as well as for charge carriers. It is revealed that acoustic phonons dominate the thermal transport, rather than optical phonons due to sub-picosecond lifetimes. These microscopic insights provide a solid standing point, on which perovskite solar cells can be understood more accurately and their performances are perhaps further optimized. PMID:28665407
Wang, Jun-Gang; Fossey, John S; Li, Meng; Xie, Tao; Long, Yi-Tao
2016-03-01
Direct electrodeposition of mercury onto gold nanorods on an ITO substrate, without reducing agents, is reported. The growth of single gold amalgam nanoalloy particles and subsequent stripping was monitored in real-time monitoring by plasmonic effects and single-nanoparticle dark-field spectroelectrochemistry techniques. Time-dependent scattering spectral information conferred insight into the growth and stripping mechanism of a single nanoalloy particle. Four critical stages were observed: First, rapid deposition of Hg atoms onto Au nanorods; second, slow diffusion of Hg atoms into Au nanorods; third, prompt stripping of Hg atoms from Au nanorods; fourth, moderate diffusion from the inner core of Au nanorods. Under high Hg(2+) concentrations, homogeneous spherical gold amalgam nanoalloys were obtained. These results demonstrate that the morphology and composition of individual gold amalgam nanoalloys can be precisely regulated electrochemically. Moreover, gold amalgam nanoalloys with intriguing optical properties, such as modulated plasmonic lifetimes and quality factor Q, could be obtained. This may offer opportunities to extend applications in photovoltaic energy conversion and chemical sensing.
NASA Astrophysics Data System (ADS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.
1992-11-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.
1992-01-01
Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.
NASA Astrophysics Data System (ADS)
Majee, Subimal; Fátima Cerqueira, Maria; Tondelier, Denis; Geffroy, Bernard; Bonnassieux, Yvan; Alpuim, Pedro; Bourée, Jean Eric
2014-01-01
The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 × 10-4 g/(m2·day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.
NASA Astrophysics Data System (ADS)
Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin
2018-07-01
The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.
NASA Astrophysics Data System (ADS)
Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe
2012-10-01
Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.
A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation.
Fu, Guoqing; Sonkusale, Sameer R
2018-06-01
Luminescence plays an important role in many scientific and industrial applications. This paper proposes a novel complementary metal-oxide-semiconductor (CMOS) sensor chip that can realize both luminescence intensity and lifetime sensing. To enable high sensitivity, we propose parasitic insensitive multicycle charge modulation scheme for low-light lifetime extraction benefiting from simplicity, accuracy, and compatibility with deeply scaled CMOS process. The designed in-pixel capacitive transimpedance amplifier (CTIA) based structure is able to capture the weak luminescence-induced voltage signal by accumulating photon-generated charges in 25 discrete gated 10-ms time windows and 10-μs pulsewidth. A pinned photodiode on chip with 1.04 pA dark current is utilized for luminescence detection. The proposed CTIA-based circuitry can achieve 2.1-mV/(nW/cm 2 ) responsivity and 4.38-nW/cm 2 resolution at 630 nm wavelength for intensity measurement and 45-ns resolution for lifetime measurement. The sensor chip is employed for measuring time constants and luminescence lifetimes of an InGaN-based white light-emitting diode at different wavelengths. In addition, we demonstrate accurate measurement of the lifetime of an oxygen sensitive chromophore with sensitivity to oxygen concentration of 7.5%/ppm and 6%/ppm in both intensity and lifetime domain. This CMOS-enabled oxygen sensor was then employed to test water quality from different sources (tap water, lakes, and rivers).
NASA Technical Reports Server (NTRS)
Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.
2013-01-01
Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.
Marking cabbage looper (Lepidoptera: Noctuidae) with cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, J.I.; Van Steenwyk, R.A.
1984-04-01
Cabbage loopers (CL), Trichoplusia ni (Huebner), adults reared on artificial diet containing 1 x 10/sup -2/ M and 1 x 10/sup -3/ M CsCl were marked with cesium (Cs) which could be detected by atomic absorption spectrophotometry. The cesium marks from the 10/sup -2/ M CsCl diet were sufficient to last the expected lifetime of the insects. CL reared on diet containing 1 x 10/sup -1/ M CsCl did not survive. Unmarked females mated to males reared on artificial diet containing 1 x 10/sup -2/ M and 1 x 10/sup -3/ M CsCl were marked. CL reared on cotton plantsmore » sprayed with Cs solutions of 1000, 5000, and 10,000 ..mu..g/ml were marked sufficiently to last the expected lifetime of the insect. CL adults exposed for 72 h to cotton plants sprayed with Cs solutions of 1000, 5000, and 10,000 ..mu..g/ml were marked sufficiently to last the expected lifetime of the insect. CL adults reared from field cotton plants sprayed with CsCl solutions at rates of 1.24, 2.47, and 4.94 kg of CsCl per ha were marked. 12 references, 1 figure, 5 tables.« less
Near Infrared Emission from Defects in Few-Layer Phosphorene
NASA Astrophysics Data System (ADS)
Aghaeimeibodi, Shahriar; Kim, Je-Hyung; Waks, Edo
Atomically thin films of black phosphorus have recently received significant attention as low dimensional optical materials with a direct exciton emission whose wavelength is tunable by controlling the number of layers. In addition to this excitonic emission, recent work has revealed emission from defect states and reported new methods to manipulate them. Monolayer phosphorene exhibits emission from localized defect states at wavelengths near 920 nm. Increasing the number of layers should shift defect emission to longer wavelengths, enabling the material to span a broader spectral range. But defect emission from few-layer phosphorene has not yet been reported. Here, we demonstrate a new class of near infrared defects in few layer phosphorene. Photoluminescence measurement shows a bright emission around 1240 nm with a sublinear growth of emission intensity with linear increase of excitation intensity, confirming the defect nature of this emission. From time-resolved lifetime measurements we determine an emission lifetime of 1.2 ns, in contrast to exciton and trion lifetimes from few layer phosphorene previously reported to be in the range of a few hundred picoseconds. This work highlights the potential of bright defects of phosphorene for near infrared optoelectronic applications.
Characterisation of irradiation-induced defects in ZnO single crystals
NASA Astrophysics Data System (ADS)
Prochazka, I.; Cizek, J.; Lukac, F.; Melikhova, O.; Valenta, J.; Havranek, V.; Anwand, W.; Skuratov, V. A.; Strukova, T. S.
2016-01-01
Positron annihilation spectroscopy (PAS) combined with optical methods was employed for characterisation of defects in the hydrothermally grown ZnO single crystals irradiated by 167 MeV Xe26+ ions to fluences ranged from 3×1012 to 1×1014 cm-2. The positron lifetime (LT), Doppler broadening as well as slow-positron implantation spectroscopy (SPIS) techniques were involved. The ab-initio theoretical calculations were utilised for interpretation of LT results. The optical transmission and photoluminescence measurements were conducted, too. The virgin ZnO crystal exhibited a single component LT spectrum with a lifetime of 182 ps which is attributed to saturated positron trapping in Zn vacancies associated with hydrogen atoms unintentionally introduced into the crystal during the crystal growth. The Xe ion irradiated ZnO crystals have shown an additional component with a longer lifetime of ≈ 360 ps which comes from irradiation-induced larger defects equivalent in size to clusters of ≈10 to 12 vacancies. The concentrations of these clusters were estimated on the basis of combined LT and SPIS data. The PAS data were correlated with irradiation induced changes seen in the optical spectroscopy experiments.
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
Diffusion studies with synchrotron Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Jackson, J. M.
2011-12-01
Knowledge of diffusion properties is critical for understanding many physical and chemical processes in planetary interiors. For example, diffusion behavior provides constraints on chemical exchange and viscosity. Nuclear resonances open the window for observing diffusion properties under the extreme conditions that exist deep inside the Earth. Synchrotron Mössbauer spectroscopy (viz. nuclear forward scattering) makes use of synchrotron radiation coherently scattered in the forward direction after nuclear resonant excitation. The decay of the forward-scattered radiation is faster when atoms move on the time scale of the excited-state lifetime because of a loss of coherence. Such diffusion-activated processes lead to accelerated decay and line broadening in the measured signal. In the case of the Mössbauer active isotope 57Fe, the nuclear resonance at 14.4 keV has a natural lifetime of 141 ns. Therefore, one can observe diffusion events ranging from approximately one-sixth to 100 times the natural lifetime of 57Fe, which corresponds to diffusion coefficients of 10-16 and 10-13 m2/s, respectively and a two to three order of magnitude range of suitability. In this contribution, we will describe such measurements that access the microscopic details of the diffusion process for iron-bearing phases.
Investigation of a combined platinum and electron lifetime control treatment for silicon
NASA Astrophysics Data System (ADS)
Jia, Yunpeng; Cui, Zhihang; Yang, Fei; Zhao, Bao; Zou, Shikai; Liang, Yongsheng
2017-02-01
In silicon, the effect of Combined Lifetime Treatment (CLT) involving platinum diffusion and subsequent electron irradiation is different from the separate treatments of platinum diffusion and electron irradiation, even the treatment of electron irradiation followed by platinum diffusion. In this paper, we investigated the experimental behavior of different kinds of lifetime treated samples. We found that the reverse leakage current (Irr) increases with the increasing platinum diffusion temperature or electron irradiation dose in the separate treatments. Conversely, Irr of the CLT samples decreased with rising platinum diffusion temperature at the same dose of subsequent electron irradiation. By deep-level transient spectroscopy (DLTS), a new energy level E7 (Ec -0.376 eV) was found in our CLT samples. The new level E7 suppresses the dominance of the deeper level E8 (Ec -0.476 eV), which is caused by electron irradiation directly and results in Irr's increase. The formation of the level E7 comes from the complex defect-combined effect between platinum atoms and silicon vacancies, and it affects device's characteristics finally. These research will be helpful to the development of platinum-diffused devices used in intense electron irradiation environments.
Nanostructured Fe-Cr Alloys for Advanced Nuclear Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scattergood, Ronald O.
2016-04-26
We have completed research on the grain-size stabilization of model nanostructured Fe14Cr base alloys at high temperatures by the addition of non-equilibrium solutes. Fe14Cr base alloys are representative for nuclear reactor applications. The neutron flux in a nuclear reactor will generate He atoms that coalesce to form He bubbles. These can lead to premature failure of the reactor components, limiting their lifetime and increasing the cost and capacity for power generation. In order to mitigate such failures, Fe14Cr base alloys have been processed to contain very small nano-size oxide particles (less than 10 nm in size) that trap He atomsmore » and reduce bubble formation. Theoretical and experimental results indicate that the grain boundaries can also be very effective traps for He atoms and bubble formation. An optimum grain size will be less than 100 nm, ie., nanocrystalline alloys must be used. Powder metallurgy methods based on high-energy ball milling can produce Fe-Cr base nanocrystalline alloys that are suitable for nuclear energy applications. The problem with nanocrystalline alloys is that excess grain-boundary energy will cause grains to grow at higher temperatures and their propensity for He trapping will be lost. The nano-size oxide particles in current generation nuclear alloys provide some grain size stabilization by reducing grain-boundary mobility (Zener pinning – a kinetic effect). However the current mitigation strategy minimizing bubble formation is based primarily on He trapping by nano-size oxide particles. An alternate approach to nanoscale grain size stabilization has been proposed. This is based on the addition of small amounts of atoms that are large compared to the base alloy. At higher temperatures these will diffuse to the grain boundaries and will produce an equilibrium state for the grain size at higher temperatures (thermodynamic stabilization – an equilibrium effect). This would be preferred compared to a kinetic effect, which is not based on an equilibrium state. The PI and coworkers have developed thermodynamic-based models that can be used to select appropriate solute additions to Fe14Cr base alloys to achieve a contribution to grain-size stabilization and He bubble mitigation by the thermodynamic effect. All such models require approximations and the proposed research was aimed at alloy selection, processing and detailed atomic-level microstructure evaluations to establish the efficacy of the thermodynamic effect. The outcome of this research shows that appropriate alloy additions can produce a contribution from the thermodynamic stabilization effect. Furthermore, due to the oxygen typically present in nominally high purity elemental powders used for powder metallurgy processing, the optimum results obtained appeared as a synergistic combination of nano-size oxide particle pinning kinetic effect and the grain-boundary segregation thermodynamic effect.« less
1981-10-07
new instrument (cf. Fig. 1) is simply a four - quadrant ring-diode multi- 5 plier (Fig. 2). The reference frequency (RF) and local oscillator (LO) inputs...movement, and scan speed of the corner-cube. Other Components. A rotating-sector chopper modulates the laser pulse train at a frequency of approximately 50...the cross-correlation experiment. In this application, the detection bandpass is simply displaced from DC to the chopper frequency; problems arising
Ti:sapphire - A theoretical assessment for its spectroscopy
NASA Astrophysics Data System (ADS)
Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.
2017-03-01
This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.
Baranyai, Zsolt; Gianolio, Eliana; Ramalingam, Kondareddiar; Swenson, Rolf; Ranganathan, Ramachandran; Brücher, E; Aime, Silvio
2007-01-01
The binding interaction of metal chelates to biological macromolecules, though driven by properly devoted recognition synthons, may cause dramatic changes in some property associated with the coordination cage such as the thermodynamic stability or the exchange rate of the metal coordinated water. Such changes are due to electrostatic and H-bonding interactions involving atoms of the coordination cage and atoms of the biological molecule at the binding site. To mimic this type of H-bonding interactions, lanthanide(III) complexes with a DTPA-monophosphonate ligand bearing a propylamino moiety (H6NP-DTPA) were synthesized. Their thermodynamic stabilities and the exchange lifetime of the coordinated water molecule (for the Gd-complex) were compared with those of the analog complexes with DTPA and the parent DTPA-monophosphonate derivative (H6P-DTPA). It was found that the intramolecular H-bond between the epsilon-amino group and the phosphonate moiety in NP-DTPA complexes causes displacements of electric charges in their coordination cage that are markedly pH dependent. In turn, this affects the characteristic properties of the coordination cage. In particular it results in a marked elongation of the exchange lifetime of the coordinated water molecule. (c) 2007 John Wiley & Sons, Ltd.
Energy levels, radiative rates, and lifetimes for transitions in W LVIII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Kanti M., E-mail: K.Aggarwal@qub.ac.uk; Keenan, Francis P.
2014-11-15
Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{supmore » 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.« less
Laser ablated hard coating for microtools
McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.
1998-05-05
Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.
Maintenance of contamination sensitive surfaces on board long-term space vehicles
NASA Technical Reports Server (NTRS)
Phillips, A.; Maag, C.
1984-01-01
In the current age, highly sensitive instruments are being flown on spacecraft, and questions of contamination have become important. The present investigation is concerned with the available approaches which can provide long-term protection for contamination sensitive surfaces. Aspects and sources of spacecraft contamination are examined, taking into account materials outgassing, particulates, propulsion system interaction, overboard venting, man-made and cosmic debris, and atomic oxygen/ambient atmosphere interaction. Suitable protection approaches provided by current technology are discussed, giving attention to aperture covers, a possibility for a retractable cover design, gaseous purges, options for prolonging the lifetime of the thermal control system, and plume shields. Some new possibilities considered are related to an early warning system for excessive amounts of contamination, a molecular/wake shield, and the use of atomic oxygen.
Vacancy-hydrogen complexes in ammonothermal GaN
NASA Astrophysics Data System (ADS)
Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.
2014-10-01
We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.
Transmission degradation and preservation for tapered optical fibers in rubidium vapor.
Lai, Meimei; Franson, James D; Pittman, Todd B
2013-04-20
The use of subwavelength diameter tapered optical fibers (TOFs) in warm rubidium vapor has recently been identified as a promising system for realizing ultralow-power nonlinear optical effects. However, at the relatively high atomic densities needed for many of these experiments, rubidium atoms accumulating on the TOF surface can cause a significant loss of overall transmission through the fiber. Here we report direct measurements of the time scale associated with this transmission degradation for various rubidium density conditions. Transmission is affected almost immediately after the introduction of rubidium vapor into the system, and declines rapidly as the density is increased. More significantly, we show how a heating element designed to raise the TOF temperature can be used to reduce this transmission loss and dramatically extend the effective TOF transmission lifetime.
Scalable loading of a two-dimensional trapped-ion array
Bruzewicz, Colin D.; McConnell, Robert; Chiaverini, John; Sage, Jeremy M.
2016-01-01
Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux. PMID:27677357
NASA Astrophysics Data System (ADS)
Akulov, Yuii A.; Mamyrin, Boris A.
2003-11-01
Experimental data on the variation of tritium nucleus beta decay constant caused by the interaction of the resulting beta-electron with orbital electrons and shell vacancies are reviewed for free atomic tritium and molecular tritium and used to obtain the half-life of atomic tritium (T1/2)a=(12.264±0.018) y, the half-life of the free triton (T1/2)t=(12.238±0.020) y, the axial-vector-to-vector weak-interaction coupling constant ratio (GA/GV)t=-1.2646 ± 0.0035 for beta decay of the triton, and an independent estimate of the free neutron lifetime τn= (890.3 ± 3.9stat ± 1.4syst) s.
Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...
2010-01-01
Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less
NASA Astrophysics Data System (ADS)
Shantarovich, V. P.; Suzuki, T.; Ito, Y.; Kondo, K.; Gustov, V. W.; Melikhov, I. V.; Berdonosov, S. S.; Ivanov, L. N.; Yu, R. S.
2007-02-01
Positron annihilation lifetime spectroscopy (PALS) was used for calculation of number density and effective sizes of free volume holes (inter-crystallite spaces) in polycrystal CaSO 4, CaCO 3 (vaterit) and Ca 10(PO 4) 6(OH) 2 (apatite). The effect of substitution of two-valence Ca(II) for three-valence Eu(III) on annihilation characteristics of apatite, studied together with the data on thermo-stimulated luminescence (TSL) and low-temperature sorption of gas (N 2), helped to elucidate mechanism of positronium atom (Ps) localization in the free volume holes and perform corresponding calculations. It came out that PALS is more sensitive to inter-crystallite sites (10 16 cm -3) in polycrystallites than to the free volume holes in polymer glasses (10 19 cm -3). This is due to higher mobility of the precursor of localized Ps in crystallites.
Functionalization of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)
2009-01-01
Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.
Atomic lifetime measurements of Ne-like Fe ions in a magnetic field
Trabert, E.; Beiersdorfer, P.; Crespo Lopez-Urrutia, J. R.
2017-04-18
Among the lowest excited levels in Ne-like ions, that is, of configuration 2p 53s, there is a J = 0 level that in a field-free environment decays by a magnetic dipole (M1) transition to the lower J = 1 level of the same configuration only. In the presence of a magnetic field, this level can also decay to the ground configuration J = 0 level. In the course of the first measurement of the 2p 53s J = 0 level lifetime and the M1 transition rate the magnetically induced transition (MIT) appeared as a complication that was then turned intomore » a tool. The technical details of the measurement in an electron beam ion trap have been described elsewhere. As a result, we illuminate the physics aspects of the two transition rate measurements and show how the results compare to computations.« less
Tropospheric photooxidation of CF3CH2CHO and CF3(CH2)2CHO initiated by Cl atoms and OH radicals
NASA Astrophysics Data System (ADS)
Antiñolo, M.; Jiménez, E.; Notario, A.; Martínez, E.; Albaladejo, J.
2009-11-01
The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263-371 K) and pressure (50-215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work as a detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10-11 cm3 molecule-1 s-1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kOH(CF3CH2CHO) = (0.259±0.050); kOH(CF3(CH2)2CHO) = (1.28±0.24). A slightly negative temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence in the studied ranged. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) =(4.4±1.0) × 10-11 exp{-(316±68)/T} cm3 molecule-1 s-1, kCl(CF3(CH2)2CHO) = (2.9±0.7) × 10-10 exp{-625±80)/T} cm3 molecule-1 s-1, kOH(CF3CH2CHO) = (7.8±2.2) × 10-12 exp{-(314±90)/T} cm3 molecule-1 s-1. The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)xCHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.
Tropospheric photooxidation of CF3CH2CHO and CF3(CH2)2CHO initiated by Cl atoms and OH radicals
NASA Astrophysics Data System (ADS)
Antiñolo, M.; Jiménez, E.; Notario, A.; Martínez, E.; Albaladejo, J.
2010-02-01
The absolute rate coefficients for the tropospheric reactions of chlorine (Cl) atoms and hydroxyl (OH) radicals with CF3CH2CHO and CF3(CH2)2CHO were measured as a function of temperature (263-371 K) and pressure (50-215 Torr of He) by pulsed UV laser photolysis techniques. Vacuum UV resonance fluorescence was employed to detect and monitor the time evolution of Cl atoms. Laser induced fluorescence was used in this work for the detection of OH radicals as a function of reaction time. No pressure dependence of the bimolecular rate coefficients, kCl and kOH, was found at all temperatures. At room temperature kCl and kOH were (in 10-11 cm3 molecule-1 s-1): kCl(CF3CH2CHO) = (1.55±0.53); kCl(CF3(CH2)2CHO) = (3.39±1.38); kCl(CF3CH2CHO) = (0.259±0.050); kCl(CF3(CH2)2CHO) = (1.28±0.24). A slightly positive temperature dependence of kCl was observed for CF3CH2CHO and CF3(CH2)2CHO, and kOH(CF3CH2CHO). In contrast, kOH(CF3(CH2)2CHO) did not exhibit a temperature dependence over the range investigated. Arrhenius expressions for these reactions were: kCl(CF3CH2CHO) = (4.4±1.0)×10-11 exp{-(316±68)/T} cm3 molecule-1 s-1 kCl(CF3(CH2)2CHO) = (2.9±0.7)×10-10 exp{-(625±80)/T} cm3 molecule-1 s-1 kOH(CF3CH2CHO) = (7.8±2.2)×10-12 exp{-(314±90)/T} cm3 molecule-1 s-1 The atmospheric impact of the homogeneous removal by OH radicals and Cl atoms of these fluorinated aldehydes is discussed in terms of the global atmospheric lifetimes, taking into account different degradation pathways. The calculated lifetimes show that atmospheric oxidation of CF3(CH2)x CHO are globally dominated by OH radicals, however reactions initiated by Cl atoms can act as a source of free radicals at dawn in the troposphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfaltzgraff, Robert L
2006-10-22
This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administrationâs âAtoms for Peaceâ concept, the current and future rolemore » of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.« less
Localizing gravitational wave sources with single-baseline atom interferometers
Graham, Peter W.; Jung, Sunghoon
2018-01-31
Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. Here in this paper, we show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization.more » The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.« less
Localizing gravitational wave sources with single-baseline atom interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Peter W.; Jung, Sunghoon
Localizing sources on the sky is crucial for realizing the full potential of gravitational waves for astronomy, astrophysics, and cosmology. Here in this paper, we show that the midfrequency band, roughly 0.03 to 10 Hz, has significant potential for angular localization. The angular location is measured through the changing Doppler shift as the detector orbits the Sun. This band maximizes the effect since these are the highest frequencies in which sources live for several months. Atom interferometer detectors can observe in the midfrequency band, and even with just a single baseline they can exploit this effect for sensitive angular localization.more » The single-baseline orbits around the Earth and the Sun, causing it to reorient and change position significantly during the lifetime of the source, and making it similar to having multiple baselines/detectors. For example, atomic detectors could predict the location of upcoming black hole or neutron star merger events with sufficient accuracy to allow optical and other electromagnetic telescopes to observe these events simultaneously. Thus, midband atomic detectors are complementary to other gravitational wave detectors and will help complete the observation of a broad range of the gravitational spectrum.« less
Atomic structure calculations and identification of EUV and SXR spectral lines in Sr XXX
NASA Astrophysics Data System (ADS)
Goyal, Arun; Khatri, Indu; Aggarwal, Sunny; Singh, A. K.; Mohan, Man
2015-08-01
We report an extensive theoretical study of atomic data for Sr XXX in a wide range with L-shell electron excitations to the M-shell. We have calculated energy levels, wave-function compositions and lifetimes for lowest 113 fine structure levels and wavelengths of an extreme Ultraviolet (EUV) and soft X-ray (SXR) transitions. We have employed multi-configuration Dirac Fock method (MCDF) approach within the framework of Dirac-Coulomb Hamiltonian including quantum electrodynamics (QED) and Breit corrections. We have also presented the radiative data for electric and magnetic dipole (E1, M1) and quadrupole (E2, M2) transitions from the ground state. We have made comparisons with available energy levels compiled by NIST and achieve good agreement. But due to inadequate data in the literature, analogous relativistic distorted wave calculations have also been performed using flexible atomic code (FAC) to assess the reliability and accuracy of our results. Additionally, we have provided new atomic data for Sr XXX which is not published elsewhere in the literature and we believe that our results may be beneficial in fusion plasma research and astrophysical investigations and applications.
Spin-orbit-coupled fermions in an optical lattice clock
NASA Astrophysics Data System (ADS)
Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.
2017-02-01
Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
DeRosa, Christopher A; Seaman, Scott A; Mathew, Alexander S; Gorick, Catherine M; Fan, Ziyi; Demas, James N; Peirce, Shayn M; Fraser, Cassandra L
2016-11-23
Difluoroboron β-diketonate poly(lactic acid) materials exhibit both fluorescence (F) and oxygen sensitive room-temperature phosphorescence (RTP). Introduction of halide heavy atoms (Br and I) is an effective strategy to control the oxygen sensitivity in these materials. A series of naphthyl-phenyl (nbm) dye derivatives with hydrogen, bromide and iodide substituents were prepared for comparison. As nanoparticles, the hydrogen derivative was hypersensitive to oxygen (0-0.3%), while the bromide analogue was suited for hypoxia detection (0-3% O 2 ). The iodo derivative, BF 2 nbm(I)PLA, showed excellent F to RTP peak separation and an 0-100% oxygen sensitivity range unprecedented for metal-free RTP emitting materials. Due to the dual emission and unconventionally long RTP lifetimes of these O 2 sensing materials, a portable, cost-effective camera was used to quantify oxygen levels via lifetime and red/green/blue (RGB) ratiometry. The hypersensitive H dye was well matched to lifetime detection, simultaneous lifetime and ratiometric imaging was possible for the bromide analogue, whereas the iodide material, with intense RTP emission and a shorter lifetime, was suited for RGB ratiometry. To demonstrate the prospects of this camera/material design combination for bioimaging, iodide boron dye-PLA nanoparticles were applied to a murine wound model to detect oxygen levels. Surprisingly, wound oxygen imaging was achieved without covering (i.e. without isolating from ambient conditions, air). Additionally, would healing was monitored via wound size reduction and associated oxygen recovery, from hypoxic to normoxic. These single-component materials provide a simple tunable platform for biological oxygen sensing that can be deployed to spatially resolve oxygen in a variety of environments.
Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal
2016-05-01
In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vettumperumal, R.; Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in; Santoshkumar, B.
Highlights: • Comparison of group-I elements doped ZnO nanoparticles and thin films. • Calculation of electron–phonon coupling and phonon lifetime from Raman spectroscopy. • Estimation of interband states from Urbach energy. - Abstract: Group-I (Li, Na, K & Cs) elements doped ZnO nanoparticles (NPs) and thin films were prepared using sol–gel method. XRD data and TEM images confirm the absence of any other secondary phase different from wurtzite type ZnO. Spherical shapes of grains are observed from the surfaces of doped ZnO films by atomic force microscope images (AFM) and presences of dopants are confirmed from energy dispersive X-ray spectra.more » The Raman active E{sub 2} (high), E{sub 2} (low), E{sub 1} and A{sub 1} (LO) modes are observed from both ZnO NPs and thin films. First-order longitudinal optical (LO) phonon is found to have contributions from direct band transition and localized excitons. Electron–phonon coupling, phonon lifetime and deformation energy of ZnO are calculated based on the effect of dopants with respect to the multiple Raman LO phonon scattering. Presence of localized interbands states in doped ZnO NPs and thin films are found from the Urbach energy calculations.« less
Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide
NASA Astrophysics Data System (ADS)
Peterson, George Glenn
Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebohle, L., E-mail: l.rebohle@hzdr.de; Braun, M.; Wutzler, R.
2014-06-23
We report on the bright green electroluminescence (EL) with power efficiencies up to 0.15% of SiO{sub 2}-Tb{sub 2}O{sub 3}-mixed layers fabricated by atomic layer deposition and partly co-doped with Al{sub 2}O{sub 3}. The electrical, EL, and breakdown behavior is investigated as a function of the Tb and the Al concentration. Special attention has been paid to the beneficial role of Al{sub 2}O{sub 3} co-doping which improves important device parameters. In detail, it increases the maximum EL power efficiency and EL decay time, it nearly doubles the fraction of excitable Tb{sup 3+} ions, it shifts the region of high EL powermore » efficiencies to higher injection currents, and it reduces the EL quenching over the device lifetime by an approximate factor of two. It is assumed that the presence of Al{sub 2}O{sub 3} interferes the formation of Tb clusters and related defects. Therefore, the system SiO{sub 2}-Tb{sub 2}O{sub 3}-Al{sub 2}O{sub 3} represents a promising alternative for integrated, Si-based light emitters.« less
DLTPulseGenerator: A library for the simulation of lifetime spectra based on detector-output pulses
NASA Astrophysics Data System (ADS)
Petschke, Danny; Staab, Torsten E. M.
2018-01-01
The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time difference i.e. the lifetime. To verify the functionality, simulation results were compared to experimentally obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin.
Zhang, Xisheng; Jin, Zhiwen; Zhang, Jingru; Bai, Dongliang; Bian, Hui; Wang, Kang; Sun, Jie; Wang, Qian; Liu, Shengzhong Frank
2018-02-28
All-inorganic CsPbBr 3 perovskite solar cells display outstanding stability toward moisture, light soaking, and thermal stressing, demonstrating great potential in tandem solar cells and toward commercialization. Unfortunately, it is still challenging to prepare high-performance CsPbBr 3 films at moderate temperatures. Herein, a uniform, compact CsPbBr 3 film was fabricated using its quantum dot (QD)-based ink precursor. The film was then treated using thiocyanate ethyl acetate (EA) solution in all-ambient conditions to produce a superior CsPbBr 3 -CsPb 2 Br 5 composite film with a larger grain size and minimal defects. The achievement was attributed to the surface dissolution and recrystallization of the existing SCN - and EA. More specifically, the SCN - ions were first absorbed on the Pb atoms, leading to the dissolution and stripping of Cs + and Br - ions from the CsPbBr 3 QDs. On the other hand, the EA solution enhances the diffusion dynamics of surface atoms and the surfactant species. It is found that a small amount of CsPb 2 Br 5 in the composite film gives the best surface passivation, while the Br-rich surface decreases Br vacancies (V Br ) for a prolonged carrier lifetime. As a result, the fabricated device gives a higher solar cell efficiency of 6.81% with an outstanding long-term stability.
NASA Astrophysics Data System (ADS)
Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.
2011-07-01
Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.
PENTrack - a versatile Monte Carlo tool for ultracold neutron sources and experiments
NASA Astrophysics Data System (ADS)
Picker, Ruediger; Chahal, Sanmeet; Christopher, Nicolas; Losekamm, Martin; Marcellin, James; Paul, Stephan; Schreyer, Wolfgang; Yapa, Pramodh
2016-09-01
Ultracold neutrons have energies in the hundred nano eV region. They can be stored in traps for hundreds of seconds. This makes them the ideal tool to study the neutron itself. Measurements of neutron decay correlations, lifetime or electric dipole moment are ideally suited for ultracold neutrons, as well as experiments probing the neutron's gravitational levels in the earth's field. We have developed a Monte Carlo simulation tool that can serve to design and optimize these experiments, and possibly correct results: PENTrack is a C++ based simulation code that tracks neutrons, protons and electrons or atoms, as well as their spins, in gravitational and electromagnetic fields. In addition wall interactions of neutrons due to strong interaction are modeled with a Fermi-potential formalism and take surface roughness into account. The presentation will introduce the physics behind the simulation and provide examples of its application.
Nonlinear dynamics of trions under strong optical excitation in monolayer MoSe2.
Ye, Jialiang; Yan, Tengfei; Niu, Binghui; Li, Ying; Zhang, Xinhui
2018-02-05
By employing ultrafast transient reflection measurements based on two-color pump-probe spectroscopy, the population and valley polarization dynamics of trions in monolayer MoSe 2 were investigated at relatively high excitation densities under near-resonant excitation. Both the nonlinear dynamic photobleaching of the trion resonance and the redshift of the exciton resonance were found to be responsible for the excitation-energy- and density-dependent transient reflection change as a result of many-body interactions. Furthermore, from the polarization-resolved measurements, it was revealed that the initial fast population and polarization decay process upon strong photoexcitation observed for trions was determined by trion formation, transient phase-space filling and the short valley lifetime of excitons. The results provide a basic understanding of the nonlinear dynamics of population and valley depolarization of trions, as well as exciton-trion correlation in atomically thin MoSe 2 and other transition metal dichalcogenide materials.
NASA Astrophysics Data System (ADS)
Krsjak, Vladimir; Dai, Yong
2015-10-01
This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.
Exciton characteristics in graphene epoxide.
Zhu, Xi; Su, Haibin
2014-02-25
Exciton characteristics in graphene epoxide (GE) are investigated by density functional theory with quasi-particle corrections and many-body interactions. The nature of the exciton is influenced by epoxide content and detailed geometric configurations. Two kinds of excitons are identified in GE: Frenkel-like exciton originated from the sp(2) carbon cluster and charge-transfer exciton formed by localized states involving both oxygen and carbon atoms. The unusual blue shift associated with the Frenkel-like exciton leaking is highlighted. One scaling relationship is proposed to address the power-law dependence of Frenkel-like exciton binding strength on its size. The charge-transfer exciton appears in GE samples with the high oxygen coverage. Particularly, the exciton in GE structures exhibits long lifetime by analyzing both radiative and nonradiative decay processes. This study sheds light on the potential applications of GE-based structures with attractive high quantum yield in light emission and optoelectronic technology.
Predissociation and collisional depopulation of the Cs/sub 2/(E) state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Z.; Huennekens, J.
1984-11-15
We report here an experimental study of depopulation mechanisms of the Cs/sub 2/(E) state. By combining ratios of atomic to molecular fluorescence with E state lifetimes obtained by the phase shift technique, all studied as a function of Cs density, we were able to obtain absolute values for predissociation, radiative, and collisional depopulation rates as well as the total quenching rates for the Cs/sub 2/(E) state. The results are discussed in relation to those of other experiments.
Localized basis sets for unbound electrons in nanoelectronics.
Soriano, D; Jacob, D; Palacios, J J
2008-02-21
It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
Electron ionization of metastable nitrogen and oxygen atoms in relation to the auroral emissions
NASA Astrophysics Data System (ADS)
Pandya, Siddharth; Joshipura, K. N.
Atomic and molecular excited metastable states (EMS) are exotic systems due to their special properties like long radiative life-time, large size (average radius) and large polarizability along with relatively smaller first ionization energy compared to their respective ground states (GS). The present work includes our theoretical calculations on electron impact ionization of metastable atomic states N( (2) P), N( (2) D) of nitrogen and O( (1) S), O( (1) D) of oxygen. The targets of our present interest, are found to be present in our Earth's ionosphere and they play an important role in auroral emissions observed in Earth’s auroral regions [1] as also in the emissions observed from cometary coma [2, 3] and airglow emissions. In particular, atomic oxygen in EMS can radiate, the visible O( (1) D -> (3) P) doublet 6300 - 6364 Å red doublet, the O( (1) S -> (1) D) 5577 Å green line, and the ultraviolet O( (1) S -> (3) P) 2972 Å line. For metastable atomic nitrogen one observes the similar emissions, in different wavelengths, from (2) D and (2) P states. At the Earth's auroral altitudes, from where these emissions take place in the ionosphere, energetic electrons are also present. In particular, if the metastable N as well as O atoms are ionized by the impact of electrons then these species are no longer available for emissions. This is a possible loss mechanism, and hence it is necessary to analyze the importance of electron ionization of the EMS of atomic O and N, by calculating the relevant cross sections. In the present paper we investigate electron ionization of the said metastable species by calculating relevant total cross sections. Our quantum mechanical calculations are based on projected approximate ionization contribution in the total inelastic cross sections [4]. Detailed results and discussion along with the significance of these calculations will be presented during the COSPAR-2014. References [1] A.Bhardwaj, and G. R. Gladstone, Rev. Geophys., 38(3), 295-353 (2000) [2] A.Bhardwaj, and S. A. Haider, Adv. Space Res., 29(5), 745-750 (2002) [3] A. Bhardwaj and S. Raghuram, ApJ, 748:13 (2012) [4] S. H. Pandya et al.,Int. J. Mass Spectrom. 323-324, 28-33 (2012)
Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José
2015-04-01
As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed mechanism for ring-retaining product channels is proposed to justify the observed reaction products. The global tropospheric lifetimes estimated from the reported OH- and Cl-rate coefficients show that the main removal path for the investigated methylcyclohexanes is the reaction with OH radicals. But in marine environments, after sunrise, Cl reactions become more important in the tropospheric degradation. Thus, the estimated lifetimes range from 16 to 24 h for the reactions of the OH radical (calculated with [OH] = 10(6) atoms cm(-3)) and around 7-8 h in the reactions with Cl atoms in marine environments (calculated with [Cl] = 1.3 × 10(5) atoms cm(-3)). The reaction of Cl atoms and OH radicals and methylcylohexanes can proceed by H abstraction from the different positions.
Prather, Michael J.; Hsu, Juno; DeLuca, Nicole M.; ...
2015-06-05
The lifetime of nitrous oxide, the third‐most‐important human‐emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross‐section data for ozone and molecular oxygen plus kinetics for O(1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly‐to‐biennial variations in lifetime and tropical abundance are well matched by four independent chemistry‐transport models driven by reanalysis meteorological fields for the period of observation (2005–2010), butmore » all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry‐climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human‐natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackillop, William J., E-mail: william.mackillop@krcc.on.ca; Kong, Weidong; Brundage, Michael
Purpose: Estimates of the appropriate rate of use of radiation therapy (RT) are required for planning and monitoring access to RT. Our objective was to compare estimates of the appropriate rate of use of RT derived from mathematical models, with the rate observed in a population of patients with optimal access to RT. Methods and Materials: The rate of use of RT within 1 year of diagnosis (RT{sub 1Y}) was measured in the 134,541 cases diagnosed in Ontario between November 2009 and October 2011. The lifetime rate of use of RT (RT{sub LIFETIME}) was estimated by the multicohort utilization tablemore » method. Poisson regression was used to evaluate potential barriers to access to RT and to identify a benchmark subpopulation with unimpeded access to RT. Rates of use of RT were measured in the benchmark subpopulation and compared with published evidence-based estimates of the appropriate rates. Results: The benchmark rate for RT{sub 1Y}, observed under conditions of optimal access, was 33.6% (95% confidence interval [CI], 33.0%-34.1%), and the benchmark for RT{sub LIFETIME} was 41.5% (95% CI, 41.2%-42.0%). Benchmarks for RT{sub LIFETIME} for 4 of 5 selected sites and for all cancers combined were significantly lower than the corresponding evidence-based estimates. Australian and Canadian evidence-based estimates of RT{sub LIFETIME} for 5 selected sites differed widely. RT{sub LIFETIME} in the overall population of Ontario was just 7.9% short of the benchmark but 20.9% short of the Australian evidence-based estimate of the appropriate rate. Conclusions: Evidence-based estimates of the appropriate lifetime rate of use of RT may overestimate the need for RT in Ontario.« less
Díaz-de-Mera, Yolanda; Aranda, Alfonso; Bravo, Iván; Rodríguez, Diana; Rodríguez, Ana; Moreno, Elena
2008-10-01
The adverse environmental impacts of chlorinated hydrocarbons on the Earth's ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C-F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF(3)CF(2)CF(2)OCH(3)) (1) and its isomer CF(3)CF(2)CF(2)CH(2)OH (2). Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube-mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266-333 and 298-353 K for reactions of HFE-7000 and CF(3)CF(2)CF(2)CH(2)OH, respectively. The measured room temperature rate constants were k(Cl+CF(3)CF(2)CF(2)OCH(3)) = (1.24 +/- 0.28) x 10(-13) cm(3) molecule(-1) s(-1)and k(Cl+CF(3)CF(2)CF(2)CH(2)OH) = (8.35 +/- 1.63) x 10(-13) cm(3) molecule(-1) s(-1) (errors are 2sigma + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k (1)(266-333 K) = (6.1 +/- 3.8) x 10(-13)exp[-(445 +/- 186)/T] cm(3) molecule(-1) s(-1) and k (2)(298-353 K) = (1.9 +/- 0.7) x 10(-12)exp[-(244 +/- 125)/T] cm(3) molecule(-1) s(-1) (errors are 2sigma). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.95 +/- 0.38 and 0.97 +/- 0.16 (errors are 2sigma) were obtained for CF(3)CF(2)CF(2)OCH(3) and CF(3)CF(2)CF(2)CH(2)OH, respectively. The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into account the error limits. Comparing the obtained results at room temperature, k (1) and k (2), HFE-7000 is significantly less reactive than its isomer C(3)F(7)CH(2)OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and alcohols, the kinetic rate constant may be considered as not dependent on the number of -CF(2)- in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties for a given application by changing the number of -CF(2)- without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C(3)H(7)CH(2)OH, respectively. The studied CFCs' substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the marine boundary layer, tau (Cl) values as low as 2.5 and 0.4 years for HFE-7000 and C(3)H(7)CH(2)OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes under such conditions may constitute a relevant sink. In the case of CF(3)CF(2)CF(2)OCH(3), significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would result in underestimations of lifetimes and GWPs. The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge of the atmospheric behavior and the structure-reactivity relationship discussed in this work may also contribute to the development of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution is still required.
NASA Astrophysics Data System (ADS)
Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.
2015-12-01
The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components τ1 and τ2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.
Risks of a lifetime in construction. Part II: Chronic occupational diseases.
Ringen, Knut; Dement, John; Welch, Laura; Dong, Xiuwen Sue; Bingham, Eula; Quinn, Patricia S
2014-11-01
We developed working-life estimates of risk for dust-related occupational lung disease, COPD, and hearing loss based on the experience of the Building Trades National Medical Screening Program in order to (1) demonstrate the value of estimates of lifetime risk, and (2) make lifetime risk estimates for common conditions among construction workers. Estimates of lifetime risk were performed based on 12,742 radiographic evaluations, 12,679 spirometry tests, and 11,793 audiograms. Over a 45-year working life, 16% of construction workers developed COPD, 11% developed parenchymal radiological abnormality, and 73.8% developed hearing loss. The risk for occupationally related disease over a lifetime in a construction trade was 2-6 times greater than the risk in non-construction workers. When compared with estimates from annualized cross-sectional data, lifetime risk estimates are highly useful for risk expression, and should help to inform stakeholders in the construction industry as well as policy-makers about magnitudes of risk. © 2014 Wiley Periodicals, Inc.
Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging
2007-03-01
spectral and lifetime characterization of NADH may be used to reveal metabolic changes in vivo and has potential to be used as an early diagnostic...combined spectral lifetime imaging modality will help for 5 characterization of breast cancer cells from cell culture based models to a relevant in... spectral and lifetime system and integrated into a multiphoton fluorescence excitation microscopy system 7 • Calibrated and characterized this
Measuring and modeling the lifetime of nitrous oxide including its variability
NASA Astrophysics Data System (ADS)
Prather, Michael J.; Hsu, Juno; DeLuca, Nicole M.; Jackman, Charles H.; Oman, Luke D.; Douglass, Anne R.; Fleming, Eric L.; Strahan, Susan E.; Steenrod, Stephen D.; Søvde, O. Amund; Isaksen, Ivar S. A.; Froidevaux, Lucien; Funke, Bernd
2015-06-01
The lifetime of nitrous oxide, the third-most-important human-emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross-section data for ozone and molecular oxygen plus kinetics for O(1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly-to-biennial variations in lifetime and tropical abundance are well matched by four independent chemistry-transport models driven by reanalysis meteorological fields for the period of observation (2005-2010), but all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry-climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human-natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.
Measuring and modeling the lifetime of nitrous oxide including its variability
Prather, Michael J.; Hsu, Juno; DeLuca, Nicole M.; ...
2015-05-14
The lifetime of nitrous oxide, the third-most-important human-emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross-section data for ozone and molecular oxygen plus kinetics for O( 1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly-to-biennial variations in lifetime and tropical abundance are well matched by four independent chemistry-transport models driven by reanalysis meteorological fields for the periodmore » of observation (2005–2010), but all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry-climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N 2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human-natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.« less
Hang, Chao; Huang, Guoxiang; Deng, L
2006-03-01
We investigate the influence of high-order dispersion and nonlinearity on the propagation of ultraslow optical solitons in a lifetime broadened four-state atomic system under a Raman excitation. Using a standard method of multiple-scales we derive a generalized nonlinear Schrödinger equation and show that for realistic physical parameters and at the pulse duration of 10(-6)s, the effects of third-order linear dispersion, nonlinear dispersion, and delay in nonlinear refractive index can be significant and may not be considered as perturbations. We provide exact soliton solutions for the generalized nonlinear Schrödinger equation and demonstrate that optical solitons obtained may still have ultraslow propagating velocity. Numerical simulations on the stability and interaction of these ultraslow optical solitons in the presence of linear and differential absorptions are also presented.
Applications of beam-foil spectroscopy to atomic collisions in solids
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1976-01-01
Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.
Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.
2016-01-01
We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.
Laser ablated hard coating for microtools
McLean, W. II; Balooch, M.; Siekhaus, W.J.
1998-05-05
Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.
Analysis of spectra of 3s-3p and 3p-3d transitions of highly-charged copper ions
NASA Astrophysics Data System (ADS)
Su, M. G.; Min, Q.; He, S. Q.; Wu, L.; Sun, R.; Ding, X. B.; Sun, D. X.
2017-08-01
Beam-foil excited spectra in the range of 160-360 Å from highly charged copper ions were identified with the aid of the National Institute of Standards and Technology Atomic Spectra Database and theoretical calculations with Cowan and Flexible Atomic Code (FAC) calculations. Spectra arising from 3s-3p and 3p-3d transitions of Cu13+-Cu22+ ions were considered. The ion fraction at an ion beam energy of 110 MeV was estimated from the equilibrium charge distribution of the fast ion beams after passing through the solid. The corresponding simulated spectra were in good agreement with the experimental result. Our Cowan and FAC calculation results should be useful for further spectral identification and lifetime measurements of highly charged copper ions.
Energy levels and radiative rates for Ne-like ions from Cu to Ga
NASA Astrophysics Data System (ADS)
Singh, Narendra; Aggarwal, Sunny
2017-11-01
Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z=29{-}31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac-Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics.
Positron lifetime setup based on DRS4 evaluation board
NASA Astrophysics Data System (ADS)
Petriska, M.; Sojak, S.; Slugeň, V.
2014-04-01
A digital positron lifetime setup based on DRS4 evaluation board designed at the Paul Scherrer Institute has been constructed and tested in the Positron annihilation laboratory Slovak University of Technology Bratislava. The high bandwidth, low power consumption and short readout time make DRS4 chip attractive for positron annihilation lifetime (PALS) setup, replacing traditional ADCs and TDCs. A software for PALS setup online and offline pulse analysis was developed with Qt,Qwt and ALGLIB libraries.
Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies
NASA Astrophysics Data System (ADS)
Hoffmann, L.; Hoppe, C. M.; Müller, R.; Dutton, G. S.; Gille, J. C.; Griessbach, S.; Jones, A.; Meyer, C. I.; Spang, R.; Volk, C. M.; Walker, K. A.
2014-06-01
Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their global loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer-tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 yr for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 111(96-132) yr for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 112(97-133) yr for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 112(96-135) yr for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.47±0.04 and the CFC-12 lifetime estimate is 112(102-123) yr. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43-67) yr and 102(88-122) yr, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95-129) yr, based on a ten-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.
Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies
NASA Astrophysics Data System (ADS)
Hoffmann, L.; Hoppe, C. M.; Müller, R.; Dutton, G. S.; Gille, J. C.; Griessbach, S.; Jones, A.; Meyer, C. I.; Spang, R.; Volk, C. M.; Walker, K. A.
2014-11-01
Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer-tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 years for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47±0.08 and a CFC-12 lifetime of 112(96-133) years for ACE-FTS, a ratio of 0.46±0.07 and a lifetime of 113(97-134) years for HIRDLS, and a ratio of 0.46±0.08 and a lifetime of 114(98-136) years for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46±0.04 and the CFC-12 lifetime estimate is 113(103-124) years. These results agree with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43-67) years and 102(88-122) years, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled model we found a CFC-11/CFC-12 lifetime ratio of 0.48±0.07 and a CFC-12 lifetime of 110(95-129) years, based on a 10-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers.
Hulkko, A P; Murray, G K; Moilanen, J; Haapea, M; Rannikko, I; Jones, P B; Barnett, J H; Huhtaniska, S; Isohanni, M K; Koponen, H; Jääskeläinen, E; Miettunen, J
2017-09-01
Higher lifetime antipsychotic exposure has been associated with poorer cognition in schizophrenia. The cognitive effects of adjunctive psychiatric medications and lifetime trends of antipsychotic use remain largely unclear. We aimed to study how lifetime and current benzodiazepine and antidepressant medications, lifetime trends of antipsychotic use and antipsychotic polypharmacy are associated with cognitive performance in midlife schizophrenia. Sixty participants with DSM-IV schizophrenia from the Northern Finland Birth Cohort 1966 were examined at 43years of age with an extensive cognitive test battery. Cumulative lifetime and current use of psychiatric medications were collected from medical records and interviews. The associations between medication and principal component analysis-based cognitive composite score were analysed using linear regression. Lifetime cumulative DDD years of benzodiazepine and antidepressant medications were not significantly associated with global cognition. Being without antipsychotic medication (for minimum 11months) before the cognitive examination was associated with better cognitive performance (P=0.007) and higher lifetime cumulative DDD years of antipsychotics with poorer cognition (P=0.020), when adjusted for gender, onset age and lifetime hospital treatment days. Other lifetime trends of antipsychotic use, such as a long antipsychotic-free period earlier in the treatment history, and antipsychotic polypharmacy, were not significantly associated with cognition. Based on these naturalistic data, low exposure to adjunctive benzodiazepine and antidepressant medications does not seem to affect cognition nor explain the possible negative effects of high dose long-term antipsychotic medication on cognition in schizophrenia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bashkin, S
1965-05-21
The new spectroscopy is in its infancy, and many fascinating aspects are yet to be studied. The properties of thin films may be studied by means of the excitation they induce in a given kind of beam. The production of ions with but a single electron offers a means of carefully mapping the nuclear charge distribution without the complications introduced by the normal complement of electrons. The study of high-purity, multiply ionized particles should make for better temperature determinations in hot plasmas. Possibly the data on lifetimes and modes of decay of excited energy levels may assist in the quantitative assignment of element abundances in the stars. One can even attempt to use the glowing beams as sources for absorption spectroscopy. The method seems to permit study of every stage of excitation for every stage of ionization for every element in the periodic table. Practical problems may interfere with so complete a study, but a major extension of our knowledge of atomic structure seems to be at hand.
Amino, T.; Arakawa, K.; Mori, H.
2016-01-01
The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352
Effects of strong laser fields on hadronic helium atoms
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Jiang, Tsin-Fu
2015-12-01
The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
Empirical membrane lifetime model for heavy duty fuel cell systems
NASA Astrophysics Data System (ADS)
Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik
2016-12-01
Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.
Li, Hui-Ying; Liu, Yun-Fei; Duan, Yu; Yang, Yong-Qiang; Lu, Yi-Nan
2015-01-01
Preparation of dense alumina (Al2O3) thin film through atomic layer deposition (ALD) provides a pathway to achieve the encapsulation of organic light emitting devices (OLED). Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day) under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED. PMID:28787960
Jia, Endong; Zhou, Chunlan; Wang, Wenjing
2015-01-01
Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state (D it) of Al2O3/Si. Finally, Al diffusion P(+) emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk
We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less
Positron annihilation study on ZnO-based scintillating glasses
NASA Astrophysics Data System (ADS)
Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong
2009-04-01
Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.
Trapping behavior of Shockley-Read-Hall recombination centers in silicon solar cells
NASA Astrophysics Data System (ADS)
Gogolin, R.; Harder, N. P.
2013-08-01
We investigate the correlation between increased apparent carrier lifetime in photoconductance-based lifetime measurements and actually reduced recombination lifetime as measured by photoluminescence measurements. These findings are further reconfirmed by I-V curve measurements of solar cells. In particular, we show experimental results for lifetime samples and solar cells with and without hydrogen passivation. In the samples and solar cells without hydrogen passivation, we find both a stronger trapping behavior and a lower recombination lifetime. Our model provides a consistent description of the observation of both, the increased apparent lifetime from carrier trapping and the decreasing recombination lifetime. In our model, both are caused by a single physical mechanism; i.e., by Recombination-Active-Trap (RAT) states. Upon fitting the experimental lifetime data, we find that the RAT-defect parameters for the hydrogen-passivated and non-hydrogen-passivated lifetime samples and solar cells are identical except for the defect concentration: hydrogen-passivation reduced the defect density by 50% in both, the lifetime samples and solar cells. We conclude that trapping should be considered as an indication for hidden, yet potentially strongly increased, low injection recombination activity.
Voltage-controlled quantum light from an atomically thin semiconductor
NASA Astrophysics Data System (ADS)
Chakraborty, Chitraleema; Kinnischtzke, Laura; Goodfellow, Kenneth M.; Beams, Ryan; Vamivakas, A. Nick
2015-06-01
Although semiconductor defects can often be detrimental to device performance, they are also responsible for the breadth of functionality exhibited by modern optoelectronic devices. Artificially engineered defects (so-called quantum dots) or naturally occurring defects in solids are currently being investigated for applications ranging from quantum information science and optoelectronics to high-resolution metrology. In parallel, the quantum confinement exhibited by atomically thin materials (semi-metals, semiconductors and insulators) has ushered in an era of flatland optoelectronics whose full potential is still being articulated. In this Letter we demonstrate the possibility of leveraging the atomically thin semiconductor tungsten diselenide (WSe2) as a host for quantum dot-like defects. We report that this previously unexplored solid-state quantum emitter in WSe2 generates single photons with emission properties that can be controlled via the application of external d.c. electric and magnetic fields. These new optically active quantum dots exhibit excited-state lifetimes on the order of 1 ns and remarkably large excitonic g-factors of 10. It is anticipated that WSe2 quantum dots will provide a novel platform for integrated solid-state quantum photonics and quantum information processing, as well as a rich condensed-matter physics playground with which to explore the coupling of quantum dots and atomically thin semiconductors.
Spontaneous Decay and Two-Qubit Entanglement in Ion-Doped Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Bondarev, Igor; Noginova, Natalia
2008-03-01
We study theoretically surface electromagnetic phenomena, such as spontaneous decay and entanglement of two-level atoms (qubits) close to a carbon nanotube surface[1]. The research is motivated by the progress in growth of cm-long single-walled nanotubes[2], single atom encapsulation into nanotubes[3], and the need for nanomaterials with long quantum coherence lifetimes for advanced applications in modern optoelectronics. We demonstrate the strong coupling of atomic qubits to nanotube surface virtual photon modes, which, via the virtual photon exchange, results in the two-qubit entanglement of the two spatially separated atoms (ions) encapsulated into small-diameter metallic nanotubes. We discuss how to employ Eu^3+ ions to test our predictions as they are known to be excellent probes to study optical effects in spatially confined systems[4,5], owing to the dominant ^5D0-->^7F2 electric dipole transition that essentially creates a two-level (qubit) system. [1] I.V.Bondarev, J. Electron. Mat. 36, 1579 (2007). [2] L.X.Zheng, et al., Nature Mat. 3, 673 (2004). [3] G.-H.Jeong, et al., Phys. Rev. B. 68, 075410 (2003). [4] S.V.Gaponenko, et al., J. Lightwave Technol. 17, 2128 (1999). [5]N.Noginova, et al., J. Appl. Phys., in print.
Outer satellite atmospheres: Their nature and planetary interactions
NASA Technical Reports Server (NTRS)
Smyth, W. H.; Combi, M. R.
1984-01-01
Significant insights regarding the nature and interactions of Io and the planetary magnetosphere were gained through modeling studies of the spatial morphology and brightness of the Io sodium cloud. East-west intensity asymmetries in Region A are consistent with an east-west electric field and the offset of the magnetic and planetary-spin axes. East-west orbital asymmetries and the absolute brightness of Region B suggest a low-velocity (3 km/sec) satellite source of 1 to 2 x 10(26) sodium atoms/sec. The time-varying spatial structure of the sodium directional features in near Region C provides direct evidence for a magnetospheric-wind-driven escape mechanism with a high-velocity (20 km/sec) source of 1 x 10(26) atoms/sec and a flux distribution enhanced at the equator relative to the poles. A model for the Io potassium cloud is presented and analysis of data suggests a low velocity source rate of 5 x 10(24) atoms/sec. To understand the role of Titan and non-Titan sources for H atoms in the Saturn system, the lifetime of hydrogen in the planetary magnetosphere was incorporated into the earlier Titan torus model of Smyth (1981) and its expected impact discussed. A particle trajectory model for cometary hydrogen is presented and applied to the Lyman-alpha distribution of Comet Kohoutek (1973XII).
Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian
2014-01-01
The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O2 reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures. PMID:24771981
Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M
2014-01-01
In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.
Physically based DC lifetime model for lead zirconate titanate films
NASA Astrophysics Data System (ADS)
Garten, Lauren M.; Hagiwara, Manabu; Ko, Song Won; Trolier-McKinstry, Susan
2017-09-01
Accurate lifetime predictions for Pb(Zr0.52Ti0.48)O3 thin films are critical for a number of applications, but current reliability models are not consistent with the resistance degradation mechanisms in lead zirconate titanate. In this work, the reliability and lifetime of chemical solution deposited (CSD) and sputtered Pb(Zr0.52Ti0.48)O3 thin films are characterized using highly accelerated lifetime testing (HALT) and leakage current-voltage (I-V) measurements. Temperature dependent HALT results and impedance spectroscopy show activation energies of approximately 1.2 eV for the CSD films and 0.6 eV for the sputtered films. The voltage dependent HALT results are consistent with previous reports, but do not clearly indicate what causes device failure. To understand more about the underlying physical mechanisms leading to degradation, the I-V data are fit to known conduction mechanisms, with Schottky emission having the best-fit and realistic extracted material parameters. Using the Schottky emission equation as a base, a unique model is developed to predict the lifetime under highly accelerated testing conditions based on the physical mechanisms of degradation.
Dynamic Control of Light Emission Faster than the Lifetime Limit Using VO2 Phase-Change
2015-10-22
ARTICLE Received 1 Jun 2015 | Accepted 14 Sep 2015 | Published 22 Oct 2015 Dynamic control of light emission faster than the lifetime limit using VO2...excited state lifetime . This proof-of-concept demonstration shows how integration with phase-change materials can transform wide- spread phosphorescent...faster than their radiative lifetime . The concept is based on the dynamic manipulation of light through tailoring the local density of optical states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucks, R.R.; Netzel, T.L.; Fujita, I.
1982-05-27
A series of covalently linked dimers and trimers of chlorophyllide derivatives was investigated by time-resolved absorption and fluorescence spectroscopy (3 to 10/sup 4/ ps). For these compounds, the free energy difference between the singlet excited state of the electron donor and the anticipated cation-anion photoproduct (..delta..G/sub ET/) is estimated to range from +200 to -400 MeV. For the dimers studied, the singlet-excited-state lifetimes range from 1 to 7 ns and depend inversely on the solvent's static dielectric constant. Since no decrease in lifetime or fluorescence quantum yield was found as ..delta..G/sub ET/ became more negative, this effect is unlikely tomore » be due to slow electron transfer. It may be a result of fluctuating intramolecular association of the nonpolar macrocycles in solvents with a high dielectric constant. We also studied two trimers, each having the same chlorophyllide a dimer as the electron donor, but with pyropheophorbide a or pheophorbide a as the electron acceptor (the latter is 90 MeV easier to reduce than the former). For the trimer with pheophorbide a as the acceptor, there is evidence for a new path of radiationless decay which may involve an electron-transfer product. However, the rate of formation of this product is slow (less than or equal to 10/sup 10/ s/sup -1/), and its yield is low (less than or equal to 50%). Taken together, these results suggest that chlorophyll-based, donor-acceptor pairs connected by flexible chains longer than five atoms are not likely to duplicate the highly efficient excited-singlet-state electron-transfer reactions characteristic of the primary photochemistry of photosynthetic organisms.« less
Yong-Ki Kim — His Life and Recent Work
NASA Astrophysics Data System (ADS)
Stone, Philip M.
2007-08-01
Dr. Kim made internationally recognized contributions in many areas of atomic physics research and applications, and was still very active when he was killed in an automobile accident. He joined NIST in 1983 after 17 years at the Argonne National Laboratory following his Ph.D. work at the University of Chicago. Much of his early work at Argonne and especially at NIST was the elucidation and detailed analysis of the structure of highly charged ions. He developed a sophisticated, fully relativistic atomic structure theory that accurately predicts atomic energy levels, transition wavelengths, lifetimes, and transition probabilities for a large number of ions. This information has been vital to model the properties of the hot interior of fusion research plasmas, where atomic ions must be described with relativistic atomic structure calculations. In recent years, Dr. Kim worked on the precise calculation of ionization and excitation cross sections of numerous atoms, ions, and molecules that are important in fusion research and in plasma processing for manufacturing semiconductor chips. Dr. Kim greatly advanced the state-of-the-art of calculations for these cross sections through development and implementation of highly innovative methods, including his Binary-Encounter-Bethe (BEB) theory and a scaled plane wave Born (scaled PWB) theory. His methods, using closed quantum mechanical formulas and no adjustable parameters, avoid tedious large-scale computations with main-frame computers. His calculations closely reproduce the results of benchmark experiments as well as large-scale calculations requiring hours of computer time. This recent work on BEB and scaled PWB is reviewed and examples of its capabilities are shown.
The estimated lifetime probability of acquiring human papillomavirus in the United States.
Chesson, Harrell W; Dunne, Eileen F; Hariri, Susan; Markowitz, Lauri E
2014-11-01
Estimates of the lifetime probability of acquiring human papillomavirus (HPV) can help to quantify HPV incidence, illustrate how common HPV infection is, and highlight the importance of HPV vaccination. We developed a simple model, based primarily on the distribution of lifetime numbers of sex partners across the population and the per-partnership probability of acquiring HPV, to estimate the lifetime probability of acquiring HPV in the United States in the time frame before HPV vaccine availability. We estimated the average lifetime probability of acquiring HPV among those with at least 1 opposite sex partner to be 84.6% (range, 53.6%-95.0%) for women and 91.3% (range, 69.5%-97.7%) for men. Under base case assumptions, more than 80% of women and men acquire HPV by age 45 years. Our results are consistent with estimates in the existing literature suggesting a high lifetime probability of HPV acquisition and are supported by cohort studies showing high cumulative HPV incidence over a relatively short period, such as 3 to 5 years.
Walsh, L; Zhang, W; Shore, R E; Auvinen, A; Laurier, D; Wakeford, R; Jacob, P; Gent, N; Anspaugh, L R; Schüz, J; Kesminiene, A; van Deventer, E; Tritscher, A; del Rosarion Pérez, M
2014-11-01
We present here a methodology for health risk assessment adopted by the World Health Organization that provides a framework for estimating risks from the Fukushima nuclear accident after the March 11, 2011 Japanese major earthquake and tsunami. Substantial attention has been given to the possible health risks associated with human exposure to radiation from damaged reactors at the Fukushima Daiichi nuclear power station. Cumulative doses were estimated and applied for each post-accident year of life, based on a reference level of exposure during the first year after the earthquake. A lifetime cumulative dose of twice the first year dose was estimated for the primary radionuclide contaminants ((134)Cs and (137)Cs) and are based on Chernobyl data, relative abundances of cesium isotopes, and cleanup efforts. Risks for particularly radiosensitive cancer sites (leukemia, thyroid and breast cancer), as well as the combined risk for all solid cancers were considered. The male and female cumulative risks of cancer incidence attributed to radiation doses from the accident, for those exposed at various ages, were estimated in terms of the lifetime attributable risk (LAR). Calculations of LAR were based on recent Japanese population statistics for cancer incidence and current radiation risk models from the Life Span Study of Japanese A-bomb survivors. Cancer risks over an initial period of 15 years after first exposure were also considered. LAR results were also given as a percentage of the lifetime baseline risk (i.e., the cancer risk in the absence of radiation exposure from the accident). The LAR results were based on either a reference first year dose (10 mGy) or a reference lifetime dose (20 mGy) so that risk assessment may be applied for relocated and non-relocated members of the public, as well as for adult male emergency workers. The results show that the major contribution to LAR from the reference lifetime dose comes from the first year dose. For a dose of 10 mGy in the first year and continuing exposure, the lifetime radiation-related cancer risks based on lifetime dose (which are highest for children under 5 years of age at initial exposure), are small, and much smaller than the lifetime baseline cancer risks. For example, after initial exposure at age 1 year, the lifetime excess radiation risk and baseline risk of all solid cancers in females were estimated to be 0.7 · 10(-2) and 29.0 · 10(-2), respectively. The 15 year risks based on the lifetime reference dose are very small. However, for initial exposure in childhood, the 15 year risks based on the lifetime reference dose are up to 33 and 88% as large as the 15 year baseline risks for leukemia and thyroid cancer, respectively. The results may be scaled to particular dose estimates after consideration of caveats. One caveat is related to the lack of epidemiological evidence defining risks at low doses, because the predicted risks come from cancer risk models fitted to a wide dose range (0-4 Gy), which assume that the solid cancer and leukemia lifetime risks for doses less than about 0.5 Gy and 0.2 Gy, respectively, are proportional to organ/tissue doses: this is unlikely to seriously underestimate risks, but may overestimate risks. This WHO-HRA framework may be used to update the risk estimates, when new population health statistics data, dosimetry information and radiation risk models become available.
Chen, Jin; Venugopal, Vivek; Intes, Xavier
2011-01-01
Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610
Origins of extreme broadening mechanisms in near-edge x-ray spectra of nitrogen compounds
NASA Astrophysics Data System (ADS)
Vinson, John; Jach, Terrence; Elam, W. T.; Denlinger, J. D.
2014-11-01
We demonstrate the observation of many-body lifetime effects in valence-band x-ray emission. A comparison of the N K α emission of crystalline ammonium nitrate to molecular-orbital calculations revealed an unexpected, extreme broadening of the NO σ recombination—so extensively as to virtually disappear. GW calculations establish that this disappearance is due to a large imaginary component of the self-energy associated with the NO σ orbitals. Building upon density-functional theory, we have calculated radiative transitions from the nitrogen 1 s level of ammonium nitrate and ammonium chloride using a Bethe-Salpeter method to include electron-hole interactions. The absorption and emission spectra of both crystals evince large, orbital-dependent sensitivity to molecular dynamics. We demonstrate that many-body effects as well as thermal and zero-point motion are vital for understanding observed spectra. A computational approach using average atomic positions and uniform broadening to account for lifetime and phonon effects is unsatisfactory.
Level energies, lifetimes and radiative rates in the 4p44d configurations of bromine-like ions
NASA Astrophysics Data System (ADS)
Singh, A. K.; Aggarwal, Sunny; Mohan, Man
2013-09-01
Energy levels, lifetimes and wavefunction compositions have been computed for all levels of odd parity 4s24p5 ground configuration as well as 4s4p6 and 4s24p44d even parity excited configurations in Br-like Sr IV, Y V, Zr VI, Nb VII and Mo VIII. Transition probabilities, oscillator strengths and line strengths for the electric dipole (E1) transition from the 4s24p5 configuration have been obtained using the multiconfiguration Dirac-Fock approach. Correlations within the n = 4 complex, Breit and quantum electrodynamics effects have been included. We make a detailed comparison of our results with those of other numerical methods and experiments to assess the quality of our results. Good agreement is observed between our results and those obtained using different approaches confirm the quality of our results. Further, we have also predicted new atomic data that were not available so far and are yet to be observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika
2016-05-23
The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1988-01-01
The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.
Study of phonons in irradiated epitaxial thin films of UO2
NASA Astrophysics Data System (ADS)
Rennie, S.; Lawrence Bright, E.; Darnbrough, J. E.; Paolasini, L.; Bosak, A.; Smith, A. D.; Mason, N.; Lander, G. H.; Springell, R.
2018-06-01
We report experiments to determine the effect of radiation damage on the phonon spectra of the most common nuclear fuel, UO2. We irradiated thin (˜300 nm) epitaxial films of UO2 with 2.1 MeV He2 + ions to 0.15 displacements per atom and a lattice swelling of Δ a /a ˜0.6 % and then used grazing-incidence inelastic x-ray scattering to measure the phonon spectrum. We succeeded in observing the acoustic modes, both transverse and longitudinal, across the Brillouin zone. The phonon energies, in both the pristine and irradiated samples, are unchanged from those observed in bulk material. On the other hand, the phonon linewidths (inversely proportional to the phonon lifetimes) show a significant broadening when comparing the pristine and irradiated samples. This effect is shown to increase with phonon energy across the Brillouin zone. The decreases in the phonon lifetimes of the acoustic modes are roughly consistent with a 50% reduction in the thermal conductivity.
Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry
NASA Astrophysics Data System (ADS)
Samedov, Victor V.
2018-01-01
Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.
Miura, Tomoaki; Fujiwara, Dai; Akiyama, Kimio; Horikoshi, Takafumi; Suzuki, Shuichi; Kozaki, Masatoshi; Okada, Keiji; Ikoma, Tadaaki
2017-02-02
Dynamics of the photogenerated charge-separated (CS) state is studied for a newly synthesized molecular triad, in which the donor (D) dimethoxytriphenylamine, 1,3-bis(2-pyridylimino)isoindolate platinum (BPIPt), and the acceptor (A) naphthaldiimide are linked with a triethynylbenzene unit (BPIPt-DA). Photoexcitation of BPIPt gives rise to generation of a long-lived (∼4 μs) CS state BPIPt-D + A - , of which the lifetime is considerably increased by an applied magnetic field of 270 mT. The positive magnetic field effect (MFE) is in contrast to the negative MFE for the reference DA molecule, which indicates successful switching of the initial spin state of the CS state from singlet to triplet. Simulations of the MFE and time-resolved electron paramagnetic resonance show that spin-selective charge recombination and spin relaxation are unaffected by attachment of BPIPt. The minimum impact of heavy atom substitution on the electronic and magnetic properties has been realized by the small electronic coupling mediated by the rigid meta-triethynylbenzene.
Risk-based indicators of Canadians' exposures to environmental carcinogens.
Setton, Eleanor; Hystad, Perry; Poplawski, Karla; Cheasley, Roslyn; Cervantes-Larios, Alejandro; Keller, C Peter; Demers, Paul A
2013-02-12
Tools for estimating population exposures to environmental carcinogens are required to support evidence-based policies to reduce chronic exposures and associated cancers. Our objective was to develop indicators of population exposure to selected environmental carcinogens that can be easily updated over time, and allow comparisons and prioritization between different carcinogens and exposure pathways. We employed a risk assessment-based approach to produce screening-level estimates of lifetime excess cancer risk for selected substances listed as known carcinogens by the International Agency for Research on Cancer. Estimates of lifetime average daily intake were calculated using population characteristics combined with concentrations (circa 2006) in outdoor air, indoor air, dust, drinking water, and food and beverages from existing monitoring databases or comprehensive literature reviews. Intake estimates were then multiplied by cancer potency factors from Health Canada, the United States Environmental Protection Agency, and the California Office of Environmental Health Hazard Assessment to estimate lifetime excess cancer risks associated with each substance and exposure pathway. Lifetime excess cancer risks in excess of 1 per million people are identified as potential priorities for further attention. Based on data representing average conditions circa 2006, a total of 18 carcinogen-exposure pathways had potential lifetime excess cancer risks greater than 1 per million, based on varying data quality. Carcinogens with moderate to high data quality and lifetime excess cancer risk greater than 1 per million included benzene, 1,3-butadiene and radon in outdoor air; benzene and radon in indoor air; and arsenic and hexavalent chromium in drinking water. Important data gaps were identified for asbestos, hexavalent chromium and diesel exhaust in outdoor and indoor air, while little data were available to assess risk for substances in dust, food and beverages. The ability to track changes in potential population exposures to environmental carcinogens over time, as well as to compare between different substances and exposure pathways, is necessary to support comprehensive, evidence-based prevention policy. We used estimates of lifetime excess cancer risk as indicators that, although based on a number of simplifying assumptions, help to identify important data gaps and prioritize more detailed data collection and exposure assessment needs.
Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms
NASA Astrophysics Data System (ADS)
Long, Xueping; Jayich, Andrew; Campbell, Wesley
2017-04-01
Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.
NASA Astrophysics Data System (ADS)
Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.
2016-08-01
In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.
Luminescent and lasing characteristics of heavily doped Yb{sup 3+}:KY(WO{sub 4}){sub 2} crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisel', V E; Troshin, A E; Shcherbitskii, V G
The luminescence decay times are measured taking into account reabsorption for KY(WO{sub 4}){sub 2}:Yb(KYW:Yb) crystals with atomic concentrations of active ions from 0.2% to 30%. The radiative lifetime of Yb{sup 3+} ions was measured to be 233 {mu}s. The cw output power of 1.46 and 1.62 W was achieved with the slope efficiency 52% and 47% for Yb:KYW lasers with the atomic concentration of Yb{sup 3+} ions equal to 10% and 30%, respectively. Using a semiconductor mirror with a saturable absorber (SESAM) in the passive mode-locking regime, pulses of duration 194 and 180 fs were obtained at wavelengths of 1042more » and 1039 nm for crystals with Yb{sup 3+} concentrations equal to 10% and 30%, respectively, the average output power being 0.63 and 0.75 W. (lasers and amplifiers)« less
Superfluid state of atomic 6Li in a magnetic trap
NASA Astrophysics Data System (ADS)
Houbiers, M.; Ferwerda, R.; Stoof, H. T. C.; McAlexander, W. I.; Sackett, C. A.; Hulet, R. G.
1997-12-01
We report on a study of the superfluid state of spin-polarized atomic 6Li confined in a magnetic trap. Density profiles of this degenerate Fermi gas and the spatial distribution of the BCS order parameter are calculated in the local-density approximation. The critical temperature is determined as a function of the number of particles in the trap. Furthermore, we consider the mechanical stability of an interacting two-component Fermi gas, in the case of both attractive and repulsive interatomic interactions. For spin-polarized 6Li we also calculate the decay rate of the gas and show that within the mechanically stable regime of phase space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of the system might signal the presence of the superfluid state.
Efficient production of long-lived ultracold Sr2 molecules
NASA Astrophysics Data System (ADS)
Ciamei, Alessio; Bayerle, Alex; Chen, Chun-Chia; Pasquiou, Benjamin; Schreck, Florian
2017-07-01
We associate Sr atom pairs on sites of a Mott insulator optically and coherently into weakly bound ground-state molecules, achieving an efficiency above 80%. This efficiency is 2.5 times higher than in our previous work [S. Stellmer, B. Pasquiou, R. Grimm, and F. Schreck, Phys. Rev. Lett. 109, 115302 (2012), 10.1103/PhysRevLett.109.115302] and obtained through two improvements. First, the lifetime of the molecules is increased beyond one minute by using an optical lattice wavelength that is further detuned from molecular transitions. Second, we compensate undesired dynamic light shifts that occur during the stimulated Raman adiabatic passage (STIRAP) used for molecule association. We also characterize and model STIRAP, providing insights into its limitations. Our work shows that significant molecule association efficiencies can be achieved even for atomic species or mixtures that lack Feshbach resonances suitable for magnetoassociation.
Casimir-Polder shifts on quantum levitation states
NASA Astrophysics Data System (ADS)
Crépin, P.-P.; Dufour, G.; Guérout, R.; Lambrecht, A.; Reynaud, S.
2017-03-01
An ultracold atom above a horizontal mirror experiences quantum reflection from the attractive Casimir-Polder interaction, which holds it against gravity and leads to quantum levitation states. We analyze this system by using a Liouville transformation of the Schrödinger equation and a Langer coordinate adapted to problems with a classical turning point. Reflection on the Casimir-Polder attractive well is replaced by reflection on a repulsive wall, and the problem is then viewed as an ultracold atom trapped inside a cavity with gravity and Casimir-Polder potentials acting, respectively, as top and bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies of the cavity resonances and propose an approximate treatment which is precise enough to discuss spectroscopy experiments aimed at tests of the weak-equivalence principle on antihydrogen. We also discuss the lifetimes by calculating complex energies associated with cavity resonances.
Atomic-deficient nanostructurization in water-sorption alumomagnesium spinel ceramics MgAl2O4
NASA Astrophysics Data System (ADS)
Ingram, A.
2018-02-01
Atomic-deficient nanostructurization in alumomagnesium MgAl2O4 ceramics sintered at 1100-1400 °C caused by water sorption are studied employing positron annihilation lifetime spectroscopy. Detected PAL spectra are reconstructed from unconstrained x4-term decomposition, and further transformed to x3-term form to be applicable for analysis with x3-x2-CDA (coupling decomposition algorithm). It is proved that water-immersion processes reduce positronium (Ps) decaying in large-size holes of ceramics (1.70-1.84 nm in radius) at the expense of enhanced trapping in tiny ( 0.2 nm in radius) Ps-traps. The water sorption is shown to be more pronounced in structurally imperfect ceramics sintered at T s = 1100-1200 °C due to irreversible transformations between constituting phases, while reversible physical-sorption processes are dominated in structurally uniform ceramics composed of main spinel phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J. E.; Wood, M. P.; Den Hartog, E. A.
2015-01-01
New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poormore » star HD 84937, yielding log ε(V) = 3.956 ± 0.004 (σ = 0.037) based on 93 V I lines and log ε(V) = 1.89 ± 0.03 (σ = 0.07) based on nine V I lines, respectively, using the Holweger-Müller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.« less
Marshall Engineering Thermosphere Model, Version MET-2007
NASA Technical Reports Server (NTRS)
Suggs, R. J.; Suggs, R. M.
2017-01-01
The region of the Earth's atmosphere between about 90 and 500 km altitude is known as the thermosphere, while the region above about 500 km is known as the exosphere. For space vehicle operations, the neutral atmosphere in these regions is significant. Even at its low density, it produces torques and drags on vehicles and affects orbital lifetimes. The thermosphere density above 100 km altitude also modulates the flux of trapped radiation and orbital debris. Atomic oxygen at orbital altitudes is important because it can erode and chemically change exposed vehicle surfaces.
Experimental observation of boron nitride chains.
Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V
2014-12-23
We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.
Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul
2008-10-15
Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.
CONFERENCES AND SYMPOSIA: Microscopics of fluctuations of the energy of atoms in solids
NASA Astrophysics Data System (ADS)
Slutsker, A. I.; Mihailin, A. I.; Slutsker, I. A.
1994-04-01
Internal atomic-molecular vibrational dynamics of solids gives rise to short-lived localised states of atoms with a much higher energy or amplitude of vibrations, i.e., it gives rise to fluctuations. These fluctuations play the dominant role in a variety of physical processes, which include diffusion, evaporation, plastic deformation, highly elastic deformation of polymers, fracture, chemical reactions, electronic transi-tions, biological functions, and many others. The essentials of the fluctuation origin of these processes are given in the classical papers of Ya I Frenkel'. The microscopics of fluctuations of the energy of atoms has begun to develop successfully. The present paper provides a brief historical introduction, which is followed by the first results (obtained by computer simulation) that can account for the detailed characteristics of fluctuations: the lifetime of a fluctuation state of atoms, the size of a fluctuation region, and migration of fluctuations. Special attention is given to the mechanism of formation of energy fluctuations. Investigations of fluctuation dynamics in condensed media, regarded as a new and to some extent independent part of the physics of liquids and solids, have been given a decisive start by the fundamental work of Yakov Il'ich Frenkel'. He began his investigations back in the twenties and continued them with outstanding success throughout his life. The study reported below represents the attempt by the present authors to continue the development of the fruitful ideas of Yakov Il'ich.
Feeks, James A; Hunter, Jennifer J
2017-05-01
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Scenario for Hollow Cathode End-Of-Life
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.
2000-01-01
Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.
Bremer, Daniel; Leben, Ruth; Mothes, Ronja; Radbruch, Helena; Niesner, Raluca
2017-04-03
Fluorescence-lifetime imaging microscopy (FLIM) is a technique to generate images, in which the contrast is obtained by the excited-state lifetime of fluorescent molecules instead of their intensity and emission spectrum. The ubiquitous coenzymes NADH and NADPH, hereafter NAD(P)H, in cells show a short fluorescence lifetime ≈400 psec in the free-state and a longer fluorescence lifetime when bound to enzymes. The fluorescence lifetime of NAD(P)H in this state depends on the binding-site on the specific enzyme. In the case of NADPH bound to members of the NADPH oxidases family we measured a fluorescence lifetime of 3650 psec as compared to enzymes typically active in cells, in which case fluorescence lifetimes of ∼2000 psec are measured. Here we present a robust protocol based on NAD(P)H fluorescence lifetime imaging in isolated cells to distinguish between normally active enzymes and NADPH oxidases, mainly responsible for oxidative stress. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Lifetime Earnings Estimates for Men and Women in the United States: 1979.
ERIC Educational Resources Information Center
Burkhead, Dan L.
1983-01-01
This report presents estimates of expected lifetime earnings based on data collected in the March Current Population Survey by age, sex, and educational attainment for 1978, 1979, and 1980. The text describes the data tables and charts, methodology, and limitations of the data. The eight figures and five detailed tables present lifetime earning…
Moisture determination in composite materials using positron lifetime techniques
NASA Technical Reports Server (NTRS)
Singh, J. J.; Holt, W. R.; Mock, W., Jr.
1980-01-01
A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.
Optical Diagnostics of Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Majewski, Mark Steven
The high temperature properties of ceramic materials make them suitable for the extreme environments of gas combustion powered turbines. They are instrumental in providing thermal insulation for the metallic turbine components from the combustion products. Also, the addition of specific rare earth elements to ceramics creates materials with temperature diagnostic applications. Laser based methods have been applied to these ceramic coatings to predict their remaining thermal insulation service life and to explore their high temperature diagnostic capabilities. A method for cleaning thermal barrier coatings (TBCs) contaminated during engine operation has been developed using laser ablation. Surface contamination on the turbine blades hinders nondestructive remaining life prediction using photo luminescence piezospectroscopy (PLPS). Real time monitoring of the removed material is employed to prevent damage to the underlying coating. This method relies on laser induced breakdown spectroscopy (LIBS) to compute the cross correlation coefficient between the spectral emissions of a sample TBC that is contaminated and a reference clean TBC. It is possible to remove targeted contaminants and cease ablation when the top surface of the TBC has been reached. In collaboration with this work, Kelley's thesis [1] presents microscopy images and PLPS measurements indicating the integrity of the TBC has been maintained during the removal of surface contaminants. Thermographic phosphors (TGP) have optical emission properties when excited by a laser that are temperature dependent. These spectral and temporal properties have been investigated and utilized for temperature measurement schemes by many previous researchers. The compounds presented in this dissertation consist of various rare earth (Lanthanide) elements doped into a host crystal lattice. As the temperature of the lattice changes, both the time scale for vibrational quenching and the distribution of energy among atomic energy levels changes. A fully characterized TGP by laser induced fluorescence will exhibit repeatable radiative lifetimes varying with temperature due to vibrational quenching. Specific TGPs also exhibit temperature dependent spectra due to emission from different energy levels. These spectral trends appear at lower temperatures than the initiation of lifetime dependence, as described in this dissertation. The TGPs were synthesized in-house, by collaborators, or industrial sources. The concentrations of the dopants have been varied, and co-doping was investigated as well. This study has allowed for spectral and temporal characterization of these compounds, combined temperature sensing from 200 °C to 1600 °C. In addition to the diagnostic capabilities of TGPs, several related topics are discussed. An instrumentation method using double offset boxcar integration to determine the lifetime in realtime is presented. Since the Lanthanide elements have the same basic electronic structure their lifetime trends with temperature are similar. This allows for a nondimensionalization scheme to be applied to the data sets. The efficacy of this scheme is apparent as the data sets collapse into a single curve. Additionally, a mathematical model of the radiative decay lifetime is proposed that uses the phonon distribution of the host ceramic. 'Ibis model accurately predicts the lifetime values of Y2O 3 host compounds. With fitted parameters it is able to capture the lifetime trends of YAG and YVO4 host compounds.
The Role of Iron In Sporadic E Layers
NASA Astrophysics Data System (ADS)
Vondrak, T.; Woodcock, K. R. I.; Plane, J. M. C.
Sporadic E layers in the lower thermosphere are mostly composed of metallic ions, of which Fe+ is the most abundant. Because dielectric recombination (Fe+ + elec- tron) is very slow, the lifetime of Fe+ above about 100 km is at least several days. However, below this height molecular ions such as FeO+, FeO2+ and FeN2+ form in- creasingly rapidly through reactions with O3, O2 and N2, respectively. These undergo rapid dissociative recombination with electrons, causing Fe+ to be neutralised increas- ingly rapidly as a sporadic E layer descends. Indeed, this is the most likely mechanism for the formation of the sporadic neutral Fe layers that are observed by lidar. However, atomic O plays a very important role in reducing these molecular ions back to Fe+, competing with dissociative recombination and thus slowing the rate at which Fe+ is neutralised and a sporadic E layer dissipates. This paper will discuss a laboratory and modelling study of the reactions of FeO+, FeO2+ and FeN2+ with atomic O. These reactions were studied (for the first time) in a fast flow tube, using the pulsed laser ablation of a rotating iron rod as the source of Fe+ ions in the upstream section of the tube. Reactants were then added to produce molecular ions, and atomic O further downstream through a movable injector. Fe+ and the molecular ions were detected at the downstream end of the tube using a two-stage quadrupole mass spectrometer. The spectroscopy of the FeO+ ion, observed by laser induced fluorescence, will also be discussed as a candidate for future ground-based lidar studies of the ion chemistry of the lower thermosphere.
Kinetic model of the bichromatic dark trap for atoms
NASA Astrophysics Data System (ADS)
Krasnov, I. V.
2017-08-01
A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.
NASA Astrophysics Data System (ADS)
Lagarto, João. L.; Phipps, Jennifer E.; Unger, Jakob; Faller, Leta M.; Gorpas, Dimitris; Ma, Dinglong M.; Bec, Julien; Moore, Michael G.; Bewley, Arnaud F.; Yankelevich, Diego R.; Sorger, Jonathan M.; Farwell, Gregory D.; Marcu, Laura
2017-02-01
Autofluorescence lifetime spectroscopy is a promising non-invasive label-free tool for characterization of biological tissues and shows potential to report structural and biochemical alterations in tissue owing to pathological transformations. In particular, when combined with fiber-optic based instruments, autofluorescence lifetime measurements can enhance intraoperative diagnosis and provide guidance in surgical procedures. We investigate the potential of a fiber-optic based multi-spectral time-resolved fluorescence spectroscopy instrument to characterize the autofluorescence fingerprint associated with histologic, morphologic and metabolic changes in tissue that can provide real-time contrast between healthy and tumor regions in vivo and guide clinicians during resection of diseased areas during transoral robotic surgery. To provide immediate feedback to the surgeons, we employ tracking of an aiming beam that co-registers our point measurements with the robot camera images and allows visualization of the surgical area augmented with autofluorescence lifetime data in the surgeon's console in real-time. For each patient, autofluorescence lifetime measurements were acquired from normal, diseased and surgically altered tissue, both in vivo (pre- and post-resection) and ex vivo. Initial results indicate tumor and normal regions can be distinguished based on changes in lifetime parameters measured in vivo, when the tumor is located superficially. In particular, results show that autofluorescence lifetime of tumor is shorter than that of normal tissue (p < 0.05, n = 3). If clinical diagnostic efficacy is demonstrated throughout this on-going study, we believe that this method has the potential to become a valuable tool for real-time intraoperative diagnosis and guidance during transoral robot assisted cancer removal interventions.
NASA Astrophysics Data System (ADS)
van der Weijden, H.; Benschop, T.; van de Groep, W.; Willems, D.
2011-06-01
Thales Cryogenics (TCBV) has an extensive background in delivering long-life cryogenic coolers for military, civil and space programs. During the last years many technical improvements have increased the lifetime of coolers resulting in significantly higher MTTF's. Lifetime endurance tests are used to validate these performance increases. An update will be given on lifetime test of a selection of TCBV's coolers. MTTF figures indicate the statistical average lifetimes for a large population of coolers. However, for the user of IR camera's and spectrometers a detailed view on the performance of an individual cooler and the possible impact of its performance degradation during its lifetime is very important. Thales Cryogenics is developing Cooler Diagnostic Software (CDS), which can be implemented in the firmware of its DSP based cooler drive electronics. With this implemented software the monitoring of the main cooler parameters during the lifetime in the equipment will be possible, including the prediction of the expected cooler performance availability. Based on this software it will be possible to analyze the status of the cooler inside the equipment and, supported by the lifetime knowledge at Thales Cryogenics, make essential choices on the maintenance of equipment and the replacement of coolers. In the paper, we will give an overview of potential situations in which such a predictive algorithm can be used. We will present the required interaction with future users to make an optimal interaction and interpretation of the generated data possible.
Kim, Ghiseok; Kim, Geon Hee; Ahn, Chi-Kook; Yoo, Yoonkyu; Cho, Byoung-Kwan
2013-01-01
An infrared lifetime thermal imaging technique for the measurement of lettuce seed viability was evaluated. Thermal emission signals from mid-infrared images of healthy seeds and seeds aged for 24, 48, and 72 h were obtained and reconstructed using regression analysis. The emission signals were fitted with a two-term exponential model that had two amplitudes and two time variables as lifetime parameters. The lifetime thermal decay parameters were significantly different for seeds with different aging times. Single-seed viability was visualized using thermal lifetime images constructed from the calculated lifetime parameter values. The time-dependent thermal signal decay characteristics, along with the decay amplitude and delay time images, can be used to distinguish aged lettuce seeds from normal seeds. PMID:23529120
NASA Technical Reports Server (NTRS)
Buttery, Michael
2010-01-01
We present the findings of the test program performed by The European Space Tribology Laboratory (ESTL) to evaluate the performance (friction and lifetime) of a number of space lubricants under vacuum using a Spiral Orbit Tribometer (SOT). Focus was given to a comparison of various popular space oils, a comparison study between the old and new MAPLUB grease formulations, and the performance of commonly used solid lubricants under various conditions. Tests demonstrated that the lifetimes of hydrocarbon NYE oils 2001 & 2001A outperformed those of the perfluroropolyalkylether (PFPE) oils Fomblin Z25 & Z60, though these pairs displayed similar behavior. This relationship was also generally seen for greases; with the lifetimes of the multiple alkylated cyclopentane (MAC)-based greases being extended in comparison to the PFPE-based greases. Testing on greases also demonstrated similar performance between the old (-a) and new (-b) formulations when considering PFPE-based MAPLUB greases, and indeed for all tested PFPE-based non-MAPLUB greases, but significantly shorter lifetimes for the new formulations when considering MAC-based MAPLUB greases. MAPLUB MAC greases containing molybdenum disulphide (MoS2) thickener were also found to display reduced lifetimes. For solid lubricants, lead displayed significantly extended lifetimes over MoS2, speculated to be caused by redistribution of lead from the ball onto all contact surfaces during the test. Friction coefficients were seen to be some 2.5x higher for lead than for MoS2 under similar conditions, a result that corresponds well with conventional bearing tests. The work described was performed under contract for the European Space Agency as part of the Tribology Applications Program, with all funding for testing and apparatus provided by European Space Agency (ESA).
Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-07-19
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).
NASA Astrophysics Data System (ADS)
Nasution, T. I.; Balyan, M.; Nainggolan, I.
2018-02-01
A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.
Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-01-01
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951
Filter replacement lifetime prediction
Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.
2017-10-25
Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lea, C.S.; Selvin, S.; Buffler, P.A.
This pilot study uses a unique method to calculate cumulative lifetime exposure to, ultraviolet radiation-b to determine if this refined method would indicate differences in lifetime cumulative UVB exposure between age and sex matched controls. Forty-four age and sex matched cases and controls demonstrated no significant difference in mean cumulative lifetime UVB exposure based on the duration and location of residence. This pilot study suggests that further analysis of the dataset should be conducted to determine if the cumulative lifetime exposure hypothesis is of primary importance regarding the association between UVB exposure and development of cutaneous malignant melanoma.
NASA Astrophysics Data System (ADS)
Yankovsky, Valentine; Martyshenko, Kseniia; Manuilova, Rada
2015-04-01
The problem of creating the new methods of remote sensing of altitude profile of the [O(3P)] and [O3] in the daytime is actual for the mesosphere and lower thermosphere range. Currently there is no reliable method for remote sensing of altitude profile of the [O(3P)], but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO2 molecules and also one of basic quencher of excited components in MLT region. The airglow emission in 1.27 µm IR Atm(0 - 0) band from [O2(a1Δg, v=0)] has been used as a proxy for [O3] in MLT for over a decade. However, lifetime of O2(a1Δg, v=0) is more than 1 hour, therefore this method is not suitable for detecting of relatively rapid [O3] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The aim of this study is revealing of proxies for retrievals of [O(3P)] and [O3]. In the framework of developed model of electronic vibrational kinetics of excited products of O3 and O2 photolysis in MLT of the Earth (model YM-2011) [1] we consider the photolysis of O2 in the Schumann-Runge continuum and Lyaman-A H atom and of O3 in Hartley band and for excited products of photolysis ( O2(a1Δg, v=0 - 5), O2(b1Σ+g, v=0, 1, 2) and excited oxygen atom O(1D)) we took into account more than 60 aeronomical reactions of photoexcitation and deexcitation by energy transfer between the excited levels and of quenching of the levels in collisions with O(3P) O2, N2, O(3P), O3, CO2. We tested 5 excited components, namely, O2(b1Σ+g, v=0, 1, 2), O2(a1Δg, v=0 - 5) and O(1D) as the O(3P) and O3 proxies. The total system of kinetic equations for 10 components has been solved and altitude profiles of concentrations of O(1D), O2(b1Σ+g, v=0, 1, 2), and O2(a1Δg, v=0 - 5) have been calculated. To compare characteristics of assumed proxies we used sensitivity analysis of the proxy concentrations altitude profiles to variations of [O3] and [O(3P)] and have calculated the altitude profiles of: 1) photochemical lifetimes of excited states; 2) volume emission rates (VER) of these excited components; 3) the relative uncertainties values of [O(3P)] and [O3] retrieved from intensities of emissions formed by the corresponding radiative transitions. Based on this complex analysis we concluded that the optimal proxy for [O(3P)] retrieval are O2(b1Σ+g, v=0) and/or O2(b1Σ+g, v=2) at 90-150 km, and for [O3] retrieval are O2(b1Σ+g, v=1) and/or O2(a1Δg, v=0) at 40-97 km. It should be noted, that lifetimes of O2(b1Σ+g, v=0, 1, 2) are not more than 10 s in MLT, what gave the opportunity to register the short-period [O(3P)] and [O3] variations 1. Yankovsky V. A., Manuilova R. O., Babaev A. S., Feofilov A. G., Kutepov A. A. 2011. Model of electronic-vibrational kinetics of the O3 and O2 photolysis products in the middle atmosphere: applications to water vapor retrievals from SABER/TIMED 6.3 µm radiance measurements. International Journal of Remote Sensing, V. 33, N. 12, P. 3065-3078.
Feeks, James A.; Hunter, Jennifer J.
2017-01-01
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina. PMID:28663886
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Safronova, M. S.
2014-05-01
Excitation energies of the [Xe]nd (n =5-9), [Xe]ns (n =6-10), [Xe]np (n =6-9), [Xe]nf (n =4-8), and [Xe]ng (n =5-8) states in La iii, where [Xe] = 1s22s22p63s23p63d104s24p64d105s25p6, are evaluated. Electric dipole matrix elements for the allowed transitions between the low-lying [Xe]nd, [Xe]ns, [Xe]np, [Xe]nf, and [Xe]ng states in the La iii ion are calculated using the high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric dipole matrix elements, oscillator strengths, transition rates, and lifetimes. Scalar and tensor polarizabilities of the states listed above are evaluated. The uncertainties of the recommended values are estimated. Electric quadrupole and magnetic dipole matrix elements are calculated to determine lifetimes of the 5d5/2 and 6s metastable levels. The ground-state E1, E2, and E3 static polarizabilities are calculated. This work provides recommended values critically evaluated for their accuracy for a number of La iii atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong Lingmin; Feng Zhechuan; Wu Zhengyun
Four types of self-assembled InAs/GaAs quantum dots (QDs) were grown by molecular beam epitaxy and studied via temperature-dependent and time-resolved photoluminescence (PL) spectroscopy measurements. A thin InGaAs stain reducing layer (SRL) is adopted which extends the emission wavelength to 1.3 mum and the influence of strain on QDs is investigated. The SRL releases the strain between the wetting layer and QDs, and enlarges the size of QDs, as shown by atomic force microscopy measurements. As the thickness of InAs layer decreases to 1.7 ML, the QDs with the SRL are chained to strings and the density of QDs increases significantly,more » which leads to an abnormal redshift of 1.3 mum PL peak at room temperature. PL peaks of InAs QDs with the SRL show redshift compared with the QDs directly deposited on GaAs matrix. The dependences of PL lifetime on the QD size, density and temperature (T) are systematically studied. It is observed that the PL lifetime of QDs is insensitive to T below 50 K. Beyond 50 K, increases and then drops at higher temperature, with a peak at T{sub C}, which was determined by the SRL and the thickness of InAs. We have also observed an obvious PL spectral redshift of the QDs with 1.7 ML InAs coverage on SRL at low T as the measuring time delays. The PL lifetime of QDs with the SRL is smaller than that of QDs without the SRL. The QDs with different densities have different PL lifetime dependence on the QDs size. These observations can be explained by the competition between the carrier redistribution and thermal emission.« less
US/UK second level panel discussions on the health and value of: Ageing and lifetime predictions (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Richard G
2011-01-18
Many healthy physics, engineering, and materials exchanges are being accomplished in ageing and lifetime prediction that directly supports US and UK Stockpile Management Programs. Lifetime assessment studies of silicon foams under compression - Joint AWE/LANLlLLNL study of compression set in stress cushions completed. Provides phenomenological prediction out to 50 years. Polymer volatile out-gassing studies - New exchange on the out-gassing of Ethylene Vinyl Acetate (EVA) using isotopic {sup 13}C labeling studies to interrogate mechanistic processes. Infra-red (IR) gas cell analytical capabilities developed by AWE will be used to monitor polymer out-gassing profiles. Pu Strength ageing Experiments and Constitutive Modeling -more » In recently compared modeling strategies for ageing effects on Pu yield strength at high strain rates, a US/UK consensus was reached on the general principle that the ageing effect is additive and not multiplicative. The fundamental mechanisms for age-strengthening in Pu remains unknown. Pu Surface and Interface Reactions - (1) US/UK secondment resulted in developing a metal-metal oxide model for radiation damaged studies consistent with a Modified Embedded Atom Method (MEAM) potential; and (2) Joint US/UK collaboration to study the role of impurities in hydride initiation. Detonator Ageing (wide range of activities) - (1) Long-term ageing study with field trials at Pantex incorporating materials from LANL, LLNL, SNL and AWE; (2) Characterization of PETN growth to detonation process; (3) Detonator performance modeling; and (4) Performance fault tree analysis. Benefits are a unified approach to lifetime prediction that Includes: materials characterization and the development of ageing models through improved understanding of the relationship between materials properties, ageing properties and detonator performance.« less
What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries
Sasieni, P D; Shelton, J; Ormiston-Smith, N; Thomson, C S; Silcocks, P B
2011-01-01
Background: The ‘lifetime risk' of cancer is generally estimated by combining current incidence rates with current all-cause mortality (‘current probability' method) rather than by describing the experience of a birth cohort. As individuals may get more than one type of cancer, what is generally estimated is the average (mean) number of cancers over a lifetime. This is not the same as the probability of getting cancer. Methods: We describe a method for estimating lifetime risk that corrects for the inclusion of multiple primary cancers in the incidence rates routinely published by cancer registries. The new method applies cancer incidence rates to the estimated probability of being alive without a previous cancer. The new method is illustrated using data from the Scottish Cancer Registry and is compared with ‘gold-standard' estimates that use (unpublished) data on first primaries. Results: The effect of this correction is to make the estimated ‘lifetime risk' smaller. The new estimates are extremely similar to those obtained using incidence based on first primaries. The usual ‘current probability' method considerably overestimates the lifetime risk of all cancers combined, although the correction for any single cancer site is minimal. Conclusion: Estimation of the lifetime risk of cancer should either be based on first primaries or should use the new method. PMID:21772332
Development of a lifetime merit-based selection index for US dairy grazing systems
USDA-ARS?s Scientific Manuscript database
Pasture-based dairy producers in the US face costs, revenues and management challenges that differ from those associated with conventional dairy production systems. Three Grazing Merit indexes (GM$1, GM$2, and GM$3), parallel to the US Lifetime Net Merit (NM$) index, were constructed using economic ...
Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina
2017-02-16
Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.
NASA Astrophysics Data System (ADS)
Coskun, Ulas C.; Lam, Sandra; Sun, Yuansheng; Liao, Shih-Chu Jeff; George, Steven C.; Barbieri, Beniamino
2017-02-01
Phosphorescence probes can have significantly long lifetimes, on the order of micro- to milli-seconds or longer. In addition, environmental changes can affect the lifetimes of these phosphorescence probes. Thus, Phosphorescence Lifetime Imaging Microscopy (PLIM) is a very useful tool to localize the phosphorescence probes based on their lifetimes to study the variance in the lifetimes due to the micro environmental changes. Since the probes respond to the biologically relevant parameters like oxygen concentration, they can be used to study various biologically relevant processes like cellular metabolism, protein interaction etc. In this case, we study the effects of oxygen on Oxyphor G4 with PLIM. Since The Oxyphor G4 can be quenched by O2, it is a good example of such a probe and has a lifetime around 250us. Here we present the digital frequency domain PLIM technique and study the lifetime of the Oxyphor G4 as a function of the O2 concentration. The lifetime data are successfully presented in a phasor plot for various O2 concentrations and are consistent with the time domain data. Overall, we can analyze the oxygen consumption of varying cells using this technique.
Stochastic Analysis of Orbital Lifetimes of Spacecraft
NASA Technical Reports Server (NTRS)
Sasamoto, Washito; Goodliff, Kandyce; Cornelius, David
2008-01-01
A document discusses (1) a Monte-Carlo-based methodology for probabilistic prediction and analysis of orbital lifetimes of spacecraft and (2) Orbital Lifetime Monte Carlo (OLMC)--a Fortran computer program, consisting of a previously developed long-term orbit-propagator integrated with a Monte Carlo engine. OLMC enables modeling of variances of key physical parameters that affect orbital lifetimes through the use of probability distributions. These parameters include altitude, speed, and flight-path angle at insertion into orbit; solar flux; and launch delays. The products of OLMC are predicted lifetimes (durations above specified minimum altitudes) for the number of user-specified cases. Histograms generated from such predictions can be used to determine the probabilities that spacecraft will satisfy lifetime requirements. The document discusses uncertainties that affect modeling of orbital lifetimes. Issues of repeatability, smoothness of distributions, and code run time are considered for the purpose of establishing values of code-specific parameters and number of Monte Carlo runs. Results from test cases are interpreted as demonstrating that solar-flux predictions are primary sources of variations in predicted lifetimes. Therefore, it is concluded, multiple sets of predictions should be utilized to fully characterize the lifetime range of a spacecraft.
Effects of lithium insertion on thermal conductivity of silicon nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wen; Institute of High Performance Computing, A*STAR, Singapore, Singapore 138632; Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg
2015-04-27
Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reductionmore » in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.« less
Effects of Mass Fluctuation on Thermal Transport Properties in Bulk Bi2Te3
NASA Astrophysics Data System (ADS)
Huang, Ben; Zhai, Pengcheng; Yang, Xuqiu; Li, Guodong
2017-05-01
In this paper, we applied large-scale molecular dynamics and lattice dynamics to study the influence of mass fluctuation on thermal transport properties in bulk Bi2Te3, namely thermal conductivity ( K), phonon density of state (PDOS), group velocity ( v g), and mean free path ( l). The results show that total atomic mass change can affect the relevant vibrational frequency on the micro level and heat transfer rate in the macro statistic, hence leading to the strength variation of the anharmonic phonon processes (Umklapp scattering) in the defect-free Bi2Te3 bulk. Moreover, it is interesting to find that the anharmonicity of Bi2Te3 can be also influenced by atomic differences of the structure such as the mass distribution in the primitive cell. Considering the asymmetry of the crystal structure and interatomic forces, it can be concluded by phonon frequency, lifetime, and velocity calculation that acoustic-optical phonon scattering shows the structure-sensitivity to the mass distribution and complicates the heat transfer mechanism, hence resulting in the low lattice thermal conductivity of Bi2Te3. This study is helpful for designing the material with tailored thermal conductivity via atomic substitution.
NASA Astrophysics Data System (ADS)
De Lucia, Frank C.; Gottfried, Jennifer L.
2013-10-01
A series of organic polymers and the military explosive cyclotrimethylenetrinitramine (RDX) were studied using the light emission from a femtosecond laser-induced plasma under an argon atmosphere. The relationship between the molecular structure and plasma emission was established by using the percentages of the atomic species (C, H, N, O) and bond types (C-C, C═C, C-N, and C≡N) in combination with the atomic/molecular emission intensities and decay rates. In contrast to previous studies of organic explosives in which C2 was primarily formed by recombination, for the organic materials in this study the percentage of C-C (and C═C) bonds was strongly correlated to the molecular C2 emission. Time-resolved emission spectra were collected to determine the lifetimes of the atomic and molecular species in the plasma. Observed differences in decay rates were attributed to the differences in both the molecular structure of the organic polymers or RDX and the chemical reactions that occur within the plasma. These differences could potentially be exploited to improve the discrimination of explosive residues on organic substrates with laser-induced breakdown spectroscopy.
Boosting the Light: X-ray Physics in Confinement
Rhisberger, Ralf [HASYLAB/ DESY
2017-12-09
Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.
Demonstration of Protection of a Superconducting Qubit from Energy Decay
NASA Astrophysics Data System (ADS)
Lin, Yen-Hsiang; Nguyen, Long B.; Grabon, Nicholas; San Miguel, Jonathan; Pankratova, Natalia; Manucharyan, Vladimir E.
2018-04-01
Long-lived transitions occur naturally in atomic systems due to the abundance of selection rules inhibiting spontaneous emission. By contrast, transitions of superconducting artificial atoms typically have large dipoles, and hence their lifetimes are determined by the dissipative environment of a macroscopic electrical circuit. We designed a multilevel fluxonium artificial atom such that the qubit's transition dipole can be exponentially suppressed by flux tuning, while it continues to dispersively interact with a cavity mode by virtual transitions to the noncomputational states. Remarkably, energy decay time T1 grew by 2 orders of magnitude, proportionally to the inverse square of the transition dipole, and exceeded the benchmark value of T1>2 ms (quality factor Q1>4 ×107) without showing signs of saturation. The dephasing time was limited by the first-order coupling to flux noise to about 4 μ s . Our circuit validated the general principle of hardware-level protection against bit-flip errors and can be upgraded to the 0 -π circuit [P. Brooks, A. Kitaev, and J. Preskill, Phys. Rev. A 87, 052306 (2013), 10.1103/PhysRevA.87.052306], adding protection against dephasing and certain gate errors.
Self-consistent theory of atomic Fermi gases with a Feshbach resonance at the superfluid transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiaji; Hu Hui
2005-12-15
A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and 'bare' Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T{sub c} increases monotonically at all widths as the effective interaction between atoms becomes moremore » attractive. Furthermore, a residue factor Z{sub m} of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T{sub c}. Our many-body calculations of Z{sub m} agree qualitatively well with recent measurments of the gas of {sup 6}Li atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.« less
Effects of lithium insertion on thermal conductivity of silicon nanowires
NASA Astrophysics Data System (ADS)
Xu, Wen; Zhang, Gang; Li, Baowen
2015-04-01
Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.
Mass loss of shuttle space suit orthofabric under simulated ionospheric atomic oxygen bombardment
NASA Technical Reports Server (NTRS)
Miller, W. L.
1985-01-01
Many polymeric materials used for thermal protection and insulation on spacecraft degrade significantly under prolonged bombardment by ionospheric atomic oxygen. The covering fabric of the multilayered shuttle space suit is composed of a loose weave of GORE-TEX fibers, Nomex and Kevlar-29, which are all polymeric materials. The complete evaluation of suit fabric degradation from ionospheric atomic oxygen is of importance in reevaluating suit lifetime and inspection procedures. The mass loss and visible physical changes of each test sample was determined. Kapton control samples and data from previous asher and flight tests were used to scale the results to reflect ionospheric conditions at about 220 km altitude. It is predicted that the orthofabric loses mass in the ionosphere at a rate of about 66% of the original orthofabric mass/yr. The outer layer of the two-layer orthofabric test samples shows few easily visible signs of degradation, even when observed at 440X. It is concluded that the orthofabric could suffer significant loss of performance after much less than a year of total exposure time, while the degradation might be undetectable in post flight visual examinations of space suits.
Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K
2013-02-01
Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
An adaptable dual species effusive source and Zeeman slower design demonstrated with Rb and Li
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, William, E-mail: william.bowden@physics.ox.ac.uk; Gunton, Will; Semczuk, Mariusz
2016-04-15
We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of {sup 6}Li and {sup 85}Rb and achieve magneto-optical trap (MOT) loading rates equivalent to that reported in prior work on dual species (Rb+Li) Zeeman slowers operating at the same oven temperatures. Key design choices, including thermally separating the effusive sources and using a segmented coil design to enable computer control of the magnetic field profile, ensure that the apparatus can be easilymore » modified to slow other atomic species. By performing the final slowing using the quadrupole magnetic field of the MOT, we are able to shorten our Zeeman slower length making for a more compact system without compromising performance. We outline the construction and analyze the emission properties of our effusive sources. We also verify the performance of the source and slower, and we observe sequential loading rates of 12 × 10{sup 8} atoms/s for a Rb oven temperature of 140 °C and 1.1 × 10{sup 8} atoms/s for a Li reservoir at 460 °C, corresponding to reservoir lifetimes for continuous operation of 10 and 4 years, respectively.« less
In vivo fluorescence lifetime optical projection tomography
McGinty, James; Taylor, Harriet B.; Chen, Lingling; Bugeon, Laurence; Lamb, Jonathan R.; Dallman, Margaret J.; French, Paul M. W.
2011-01-01
We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions. PMID:21559145
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier
2017-07-01
Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.
Visualizing an ultra-weak protein-protein interaction in phosphorylation signaling.
Xing, Qiong; Huang, Peng; Yang, Ju; Sun, Jian-Qiang; Gong, Zhou; Dong, Xu; Guo, Da-Chuan; Chen, Shao-Min; Yang, Yu-Hong; Wang, Yan; Yang, Ming-Hui; Yi, Ming; Ding, Yi-Ming; Liu, Mai-Li; Zhang, Wei-Ping; Tang, Chun
2014-10-20
Proteins interact with each other to fulfill their functions. The importance of weak protein-protein interactions has been increasingly recognized. However, owing to technical difficulties, ultra-weak interactions remain to be characterized. Phosphorylation can take place via a K(D)≈25 mM interaction between two bacterial enzymes. Using paramagnetic NMR spectroscopy and with the introduction of a novel Gd(III)-based probe, we determined the structure of the resulting complex to atomic resolution. The structure accounts for the mechanism of phosphoryl transfer between the two enzymes and demonstrates the physical basis for their ultra-weak interaction. Further, molecular dynamics (MD) simulations suggest that the complex has a lifetime in the micro- to millisecond regimen. Hence such interaction is termed a fleeting interaction. From mathematical modeling, we propose that an ultra-weak fleeting interaction enables rapid flux of phosphoryl signal, providing a high effective protein concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Matteo, E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, Gaudenzio; Zanoni, Enrico
2015-10-15
This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N{sub 2} atmosphere, the samples exhibit: (i) an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii) a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS);more » (iii) a diffusion of acceptor (Mg) atoms to the quantum well region; (iv) a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i))« less
NASA Astrophysics Data System (ADS)
Wu, Xufei; Liu, Zeyu; Luo, Tengfei
2018-02-01
In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.
NASA Astrophysics Data System (ADS)
Chakraborty, Himadri; Wise, Jacob; de, Ruma; Javani, Mohammad; Manson, Steve; Madjet, Mohamed
2014-05-01
Considering the photoionization of Ar@C60 , we predict resonant femtosecond decays of both Ar and C60 vacancies through the continua of atom-fullerene hybrid final states. The resulting resonances emerge from the interference between simultaneous autoionizing and intercoulombic decay (ICD) processes. For Ar 3s --> np excitations, these resonances are far stronger than the Ar-to-C60 resonant ICDs, while for C60 excitations they are strikingly larger than the corresponding Auger features. The results indicate the power of hybridization to enhance decay rates, and modify lifetimes and line profiles. These decays are also likely to exist generally in the ionization of molecules, nano-dimers and -polymers, and fullerene onions that support hybridized electrons as well. A jellium based time-dependent local density approximation (TDLDA), with the Leeuwen and Baerends exchange-correlation functional to produce accurate asymptotic behavior, is employed to calculate the dynamical response of the system to the photon field.
Stiffness nanotomography of human epithelial cancer cells
NASA Astrophysics Data System (ADS)
Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert
2012-02-01
The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.
Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes
NASA Astrophysics Data System (ADS)
Meneghini, Matteo; Zhu, Dandan; Humphreys, Colin J.; Berti, Marina; Gasparotto, Andrea; Cesca, Tiziana; Vinattieri, Anna; Bogani, Franco; Meneghesso, Gaudenzio; Zanoni, Enrico
2015-10-01
This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N2 atmosphere, the samples exhibit: (i) an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii) a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS); (iii) a diffusion of acceptor (Mg) atoms to the quantum well region; (iv) a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i)).
Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire
NASA Astrophysics Data System (ADS)
Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.
2018-05-01
Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.
Lifetime prevalence of injuries in incoming division I collegiate football players.
Sarac, Nikolas; Haynes, William; Pedroza, Angela; Kaeding, Christopher; Borchers, James
2017-11-01
The purpose of this study is to determine the lifetime prevalence of past injuries in incoming first year football players in a Division 1 college football team. Pre-participation questionnaires from 605 first-year football players over 20 years (1996-2015) were examined to determine the prevalence of concussions, stingers, fractures, and musculoskeletal surgeries sustained before playing at the collegiate level. Players were grouped by position: wide receiver and defensive back (WR/DB), offensive and defensive linemen (OL/DL), all other positions (OP), and unknown (UKN). Prevalence of injuries by year and position was compared using Pearson's χ 2 Test (p < 0.05). The reported lifetime prevalence is as follows: concussion (21%), stinger (23%), musculoskeletal surgery (23%), and fracture (44%). There were no significant differences in lifetime prevalence of concussions (p = 0.49), stingers (p = 0.31), fractures (p = 0.60), or musculoskeletal surgeries (p = 0.97) based on position. There were also no significant differences in the lifetime prevalence of concussions (p = 0.14), musculoskeletal surgeries (p = 0.50), or fractures (p = 0.59) based on year. However, there was a significant difference in the lifetime prevalence of stingers based on year (p < 0.001). There was an expectation to observe an increase in injury prevalence by entering year, but this was not seen. A decrease in stingers was actually observed, but there was no significant difference among any other injury recorded. These results do not support the perception that football injuries are on the rise. Under reporting is a significant concern as players may fear disqualification or that they are evaluated by the coaching staff based on their medical history. More research is needed to confirm lifetime injury prevalence and evaluate differences over time among football players.
Stringer, S; Minică, C C; Verweij, K J H; Mbarek, H; Bernard, M; Derringer, J; van Eijk, K R; Isen, J D; Loukola, A; Maciejewski, D F; Mihailov, E; van der Most, P J; Sánchez-Mora, C; Roos, L; Sherva, R; Walters, R; Ware, J J; Abdellaoui, A; Bigdeli, T B; Branje, S J T; Brown, S A; Bruinenberg, M; Casas, M; Esko, T; Garcia-Martinez, I; Gordon, S D; Harris, J M; Hartman, C A; Henders, A K; Heath, A C; Hickie, I B; Hickman, M; Hopfer, C J; Hottenga, J J; Huizink, A C; Irons, D E; Kahn, R S; Korhonen, T; Kranzler, H R; Krauter, K; van Lier, P A C; Lubke, G H; Madden, P A F; Mägi, R; McGue, M K; Medland, S E; Meeus, W H J; Miller, M B; Montgomery, G W; Nivard, M G; Nolte, I M; Oldehinkel, A J; Pausova, Z; Qaiser, B; Quaye, L; Ramos-Quiroga, J A; Richarte, V; Rose, R J; Shin, J; Stallings, M C; Stiby, A I; Wall, T L; Wright, M J; Koot, H M; Paus, T; Hewitt, J K; Ribasés, M; Kaprio, J; Boks, M P; Snieder, H; Spector, T; Munafò, M R; Metspalu, A; Gelernter, J; Boomsma, D I; Iacono, W G; Martin, N G; Gillespie, N A; Derks, E M; Vink, J M
2016-01-01
Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40–48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32 330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13–20% (P<0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 × 10−8) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use. PMID:27023175
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shcheslavskiy, V. I.; Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod 603005; Neubauer, A.
We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.
2012-01-01
Background Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection. Methods Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes. Results The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance. Conclusions The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measure. PMID:22244509
Briët, Olivier J T; Hardy, Diggory; Smith, Thomas A
2012-01-13
Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection. Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes. The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance. The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measure.
Chen, Jing
2017-04-01
This study calculates and compares the lifetime lung cancer risks associated with indoor radon exposure based on well-known risk models in the literature; two risk models are from joint studies among miners and the other three models were developed from pooling studies on residential radon exposure from China, Europe and North America respectively. The aim of this article is to make clear that the various models are mathematical descriptions of epidemiologically observed real risks in different environmental settings. The risk from exposure to indoor radon is real and it is normal that variations could exist among different risk models even when they were applied to the same dataset. The results show that lifetime risk estimates vary significantly between the various risk models considered here: the model based on the European residential data provides the lowest risk estimates, while models based on the European miners and Chinese residential pooling with complete dosimetry give the highest values. The lifetime risk estimates based on the EPA/BEIR-VI model lie within this range and agree reasonably well with the averages of risk estimates from the five risk models considered in this study. © Crown copyright 2016.
Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M
2014-03-05
Herein, we first address the question posed in the title by establishing the tautomerization trajectory via the double proton transfer of the adenine·guanine (A·G) DNA base mispair formed by the canonical tautomers of the A and G bases into the A*·G* DNA base mispair, involving mutagenic tautomers, with the use of the quantum-mechanical calculations and quantum theory of atoms in molecules (QTAIM). It was detected that the A·G ↔ A*·G* tautomerization proceeds through the asynchronous concerted mechanism. It was revealed that the A·G base mispair is stabilized by the N6H···O6 (5.68) and N1H···N1 (6.51) hydrogen bonds (H-bonds) and the N2H···HC2 dihydrogen bond (DH-bond) (0.68 kcal·mol(-1) ), whereas the A*·G* base mispair-by the O6H···N6 (10.88), N1H···N1 (7.01) and C2H···N2 H-bonds (0.42 kcal·mol(-1) ). The N2H···HC2 DH-bond smoothly and without bifurcation transforms into the C2H···N2 H-bond at the IRC = -10.07 Bohr in the course of the A·G ↔ A*·G* tautomerization. Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···O6 H-bond is anticooperative to the two others-N1H···N1 and N2H···HC2 in the A·G base mispair, while the latters are significantly cooperative, mutually strengthening each other. In opposite, all three O6H···N6, N1H···N1, and C2H···N2 H-bonds are cooperative in the A*·G* base mispair. All in all, we established the dynamical instability of the А*·G* base mispair with a short lifetime (4.83·10(-14) s), enabling it not to be deemed feasible source of the A* and G* mutagenic tautomers of the DNA bases. The small lifetime of the А*·G* base mispair is predetermined by the negative value of the Gibbs free energy for the A*·G* → A·G transition. Moreover, all of the six low-frequency intermolecular vibrations cannot develop during this lifetime that additionally confirms the aforementioned results. Thus, the A*·G* base mispair cannot be considered as a source of the mutagenic tautomers of the DNA bases, as the A·G base mispair dissociates during DNA replication exceptionally into the A and G monomers in the canonical tautomeric form. Copyright © 2013 Wiley Periodicals, Inc.
Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Hoppe, Charlotte; Müller, Rolf; Dutton, Geoffrey S.; Gille, John C.; Griessbach, Sabine; Jones, Ashley; Meyer, Catrin I.; Spang, Reinhold; Volk, C. Michael; Walker, Kaley A.
2015-04-01
Chlorofluorocarbons (CFCs) play a key role in stratospheric ozone loss and are strong infrared absorbers that contribute to global warming. The stratospheric lifetimes of CFCs are a measure of their stratospheric loss rates that are needed to determine global warming and ozone depletion potentials. We applied the tracer-tracer correlation approach to zonal mean climatologies from satellite measurements and model data to assess the lifetimes of CFCl3 (CFC-11) and CF2Cl2 (CFC-12). We present new estimates of the CFC-11/CFC-12 lifetime ratio and the absolute lifetime of CFC-12, based on a reference lifetime of 52 yr for CFC-11. We analyzed climatologies from three satellite missions, the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), the HIgh Resolution Dynamics Limb Sounder (HIRDLS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). We found a CFC-11/CFC-12 lifetime ratio of 0.47 ± 0.08 and a CFC-12 lifetime of 112(96 - 133) yr for ACE-FTS, a ratio of 0.46 ± 0.07 and a lifetime of 113(97 - 134) yr for HIRDLS, and a ratio of 0.46 ± 0.08 and a lifetime of 114(98 - 136) yr for MIPAS. The error-weighted, combined CFC-11/CFC-12 lifetime ratio is 0.46 ± 0.04 and the CFC-12 lifetime estimate is 113(103 - 124) yr. These results are in excellent agreement with the recent Stratosphere-troposphere Processes And their Role in Climate (SPARC) reassessment, which recommends lifetimes of 52(43 - 67) yr for CFC-11 and 102(88 - 122) yr for CFC-12, respectively. Having smaller uncertainties than the results from other recent studies, our estimates can help to better constrain CFC-11 and CFC-12 lifetime recommendations in future scientific studies and assessments. Furthermore, the satellite observations were used to validate first simulation results from a new coupled model system, which integrates a Lagrangian chemistry transport model into a climate model. For the coupled EMAC/CLaMS model we found a CFC-11/CFC-12 lifetime ratio of 0.48 ± 0.07 and a CFC-12 lifetime of 110(95 - 129) yr, based on a ten-year perpetual run. Closely reproducing the satellite observations, the new model system will likely become a useful tool to assess the impact of advective transport, mixing, and photochemistry as well as climatological variability on the stratospheric lifetimes of long-lived tracers. Reference: Hoffmann, L., Hoppe, C. M., Müller, R., Dutton, G. S., Gille, J. C., Griessbach, S., Jones, A., Meyer, C. I., Spang, R., Volk, C. M., and Walker, K. A.: Stratospheric lifetime ratio of CFC-11 and CFC-12 from satellite and model climatologies, Atmos. Chem. Phys., 14, 12479-12497, doi:10.5194/acp-14-12479-2014, 2014.
Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays
Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.
2012-01-01
We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606
Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Akao, Yoshinori; Higashikawa, Yoshiyasu
2017-10-01
The time-resolved luminescence spectra and the lifetimes of eighteen black writing inks were measured to differentiate pen ink on altered documents. The spectra and lifetimes depended on the samples. About half of the samples only exhibited short-lived luminescence components on the nanosecond time scale. On the other hand, the other samples exhibited short- and long-lived components on the microsecond time scale. The samples could be classified into fifteen groups based on the luminescence spectra and dynamics. Therefore, luminescence lifetime can be used for the differentiation of writing inks, and luminescence lifetime imaging can be applied for the examination of altered documents. Copyright © 2017 Elsevier B.V. All rights reserved.
AYUSH: A Technique for Extending Lifetime of SRAM-NVM Hybrid Caches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S
2014-01-01
Recently, researchers have explored way-based hybrid SRAM-NVM (non-volatile memory) last level caches (LLCs) to bring the best of SRAM and NVM together. However, the limited write endurance of NVMs restricts the lifetime of these hybrid caches. We present AYUSH, a technique to enhance the lifetime of hybrid caches, which works by using data-migration to preferentially use SRAM for storing frequently-reused data. Microarchitectural simulations confirm that AYUSH achieves larger improvement in lifetime than a previous technique and also maintains performance and energy efficiency. For single, dual and quad-core workloads, the average increase in cache lifetime with AYUSH is 6.90X, 24.06X andmore » 47.62X, respectively.« less
V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions
NASA Astrophysics Data System (ADS)
Mewe, R.
1999-07-01
This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Salim, Shelly; Moh, Sangman
2016-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications
NASA Astrophysics Data System (ADS)
Pehlivan, A.; Nilsson, H.; Hartman, H.
2015-10-01
Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.
Bullock, R. Morris; Kimmich, Barbara F. M.; Fagan, Paul J.; Hauptman, Elisabeth
2003-09-02
The present invention is a process for the catalytic hydrogenation of ketones and aldehydes to alcohols at low temperatures and pressures using organometallic molybdenum and tungsten complexes and the catalyst used in the process. The reactants include a functional group which is selected from groups represented by the formulas R*(C.dbd.O)R' and R*(C.dbd.O)H, wherein R* and R' are selected from hydrogen or any alkyl or aryl group. The process includes reacting the organic compound in the presence of hydrogen and a catalyst to form a reaction mixture. The catalyst is prepared by reacting Ph.sub.3 C.sup.+ A.sup.- with a metal hydride. A.sup.- represents an anion and can be BF.sub.4.sup.-, PF.sub.6.sup.-, CF.sub.3 SO.sub.3.sup.- or Bar'.sub.4.sup.-, wherein Ar'=3,5-bis(trifluoromethyl)phenyl. The metal hydride is represented by the formula: HM(CO).sub.2 [.eta..sup.5 :.eta..sup.1 --C.sub.5 H.sub.4 (XH.sub.2).sub.n PR.sub.2 ] wherein M represents a molybdenum (Mo) atom or a tungsten (W) atom; X is a carbon atom, a silicon atom or a combination of carbon (C) and silicon (Si) atoms; n is any positive integer; R represents two hydrocarbon groups selected from H, an aryl group and an alkyl group, wherein both R groups can be the same or different. The metal hydride is reacted with Ph.sub.3 C.sup.+ A.sup.- either before reacting with the organic compound or in the reaction mixture.
High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors
NASA Astrophysics Data System (ADS)
Siegmund, O.; Ertley, C.; Vallerga, J.; Craven, C.; Popecki, M.; O'Mahony, A.; Minot, M.
The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event rates of >5 MHz and event timing accuracy of ~100ps. We will discuss how we are applying these detector system developments for devices in formats of 18mm and 25mm circular, and 50mm and 20cm square. The performance characteristics will be demonstrated along with lifetest data taken over the last year. Implications for ground based instruments to study transient and variable astronomical objects, as well as implementation in satellite instruments for earth atmospheric, planetary and solar observations will be discussed.
Fuels irradiation testing for the SP-100 program
NASA Technical Reports Server (NTRS)
Makenas, Bruce J.; Hales, Janell W.; Ward, Alva L.
1991-01-01
An SP-100 fuel pin irradiation testing program is well on the way to providing data for performance correlations and demonstrating the lifetime and safety of the fuel system of the compact lithium-cooled reactor. Key SP-100 fuel performance issues addressed are the need for low fuel swelling and low fission gas release to minimize cladding strain, and the need for barrier integrity to prevent fuel/cladding chemical interaction. This paper provides a description of the irradiation test program that addresses these key issues and summarizes recent results of posttest examinations including data obtained at 6 atom percent goal burnup.
NASA Technical Reports Server (NTRS)
Evleth, E. M.
1971-01-01
Theoretical and experimental work on generating radicals by removal of a hydrogen atom from pyrrole, imidazole, indole, and carbazole is reported. Photophysical studies on indolizine and related aza-derivatives show that materials having large S2-S1 energy gaps might exhibit upper state fluorescence. Photodecomposition quantum yields of a series of sterically hindered p-aminobenzene diazonium cations in water were found structurally and wavelength dependent and unquenched in aqueous sodium bromide solutions. Photodecomposition of diazonium materials did not produce a metastable species with a longer lifetime than 1 msec.
Liquid metal ion source and alloy
Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.
1988-10-04
A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.