Sample records for atomic line list

  1. A bibliography of atomic line identification lists

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Snijders, M. A. J.

    1974-01-01

    A bibliography of atomic-line-identification lists is presented to supplement the material contained in the Ultraviolet and Revised Multiplet Tables and in the finding list by Kelly and Palumbo (1973). The list covers the wavelength range from 911 A to 8205 A.

  2. Electron Stark Broadening Database for Atomic N, O, and C Lines

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.

    2012-01-01

    A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.

  3. Line Identification of Atomic and Ionic Spectra of Holmium in the Near-UV. Part I. Spectrum of Ho I

    NASA Astrophysics Data System (ADS)

    Al-Labady, N.; Özdalgiç, B.; Er, A.; Güzelçimen, F.; Öztürk, I. K.; Kröger, S.; Kruzins, A.; Tamanis, M.; Ferber, R.; Başar, Gö.

    2017-02-01

    The Fourier Transform spectra of a Holmium hollow cathode discharge lamp have been investigated in the UV spectral range from 25,000 up to 31,530 cm-1 (317 to 400 nm). Two Ho spectra have been measured with neon and argon as buffer gases. Based on the intensity ratios from these two spectra, a distinction was made between atomic and ionic lines (ionic lines are discussed in an accompanying paper). Using the known Ho I energy levels, 71 lines could be classified as transitions of atomic Ho, 34 of which have not been published previously. Another 32 lines, which could not be classified, are listed in the literature and assigned as atomic Ho. An additional 370 spectral lines have been assigned to atomic Ho based on the signal-to-noise ratio in the two spectra measured under different discharge conditions, namely with buffer gases argon and neon, respectively. These 370 lines have not been previously listed in the literature.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Labady, N.; Özdalgiç, B.; Er, A.

    The Fourier Transform spectra of a Holmium hollow cathode discharge lamp have been investigated in the UV spectral range from 25,000 up to 31,530 cm{sup −1} (317 to 400 nm). Two Ho spectra have been measured with neon and argon as buffer gases. Based on the intensity ratios from these two spectra, a distinction was made between atomic and ionic lines (ionic lines are discussed in an accompanying paper). Using the known Ho i energy levels, 71 lines could be classified as transitions of atomic Ho, 34 of which have not been published previously. Another 32 lines, which could notmore » be classified, are listed in the literature and assigned as atomic Ho. An additional 370 spectral lines have been assigned to atomic Ho based on the signal-to-noise ratio in the two spectra measured under different discharge conditions, namely with buffer gases argon and neon, respectively. These 370 lines have not been previously listed in the literature.« less

  5. THE SDSS-III APOGEE SPECTRAL LINE LIST FOR H-BAND SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetrone, M.; Bizyaev, D.; Chojnowski, D.

    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists containsmore » 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.« less

  6. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  7. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  8. Atomic and ionic spectrum lines below 2000A: hydrogen through argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, R.L.

    1982-10-01

    A critical tabulation of observed spectral lines below 2000 angstroms has been prepared from the published literature up to July 1978. It is intended principally as an aid to those physicists and astronomers who deal with the spectra of highly stripped atoms. This report includes the first 18 elements, from hydrogen (including deuterium) through argon. The tabulation is divided into two main sections: the spectrum lines by spectrum, and a finding list. The entries for each element give the ionization species, ground state term, and ionization potential, as well as the best values of vacuum wavelength, intensity, and classification. Amore » list of the pertinent references is appended at the end.« less

  9. 15 Years of Chandra Observations of Capella

    NASA Astrophysics Data System (ADS)

    Kashyap, Vinay

    2014-11-01

    Capella is the strongest coronal line source accessible to Chandra. It has been cumulatively observed with gratings for over 1.2 Ms. The accumulated spectrum represents astrophysical ground truth for atomic physics calculations that is unprecedented in quality. We analyze co-added spectra to generate a comprehensive list of detectable lines and their locations, spanning two orders of magnitude in photon energy. We compare the locations of identifiable lines with locations from atomic databases ATOMDB and Chianti and characterize the uncertainties in the databases. The full line lists and comparisons will be made available at the Dataverse at http://dx.doi.org/10.7910/DVN/27084 This work is supported by Chandra grant AR0-11001X and NASA Contract NAS8-03060 to the Chandra X-Ray Center.

  10. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  11. The Belgian repository of fundamental atomic data and stellar spectra (BRASS). I. Cross-matching atomic databases of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E.

    2018-04-01

    Context. Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the Universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. Aims: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. In a second step synthetic spectra will be compared against extremely high-quality observed spectra, for a large number of BAFGK spectral type stars, in order to critically evaluate the atomic data of a large number of important stellar lines. Methods: Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a new non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. Results: We report on the number of cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that 2% of our line list and Vienna atomic line database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different retrieved literature log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transition pairs are available to download at http://brass.sdf.org

  12. Submillimeter, millimeter, and microwave spectral line catalogue, revision 3

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Poynter, R. L.; Cohen, E. A.

    1992-01-01

    A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.

  13. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.

    1996-01-01

    The main accomplishment was the merging of all the atomic line data into one wavelength-sorted list that is simple to use. We have combined all the atomic files from a CDROM into 534,910 line files GFALL.DAT and GFELEN.DAT. These are the data we use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEK.REF. There are no references after 1988, and for light elements there are no references after 1979. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have supplied a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the splittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than 50V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLHYP.DAT has 754,946 lines including hyperfine Sc I, V I, Mn I, and Co I.

  14. VizieR Online Data Catalog: Infrared Arcturus Atlas (Hinkle+ 1995)

    NASA Astrophysics Data System (ADS)

    Hinkle, K.; Wallace, L.; Livingston, W.

    1996-01-01

    The atlas is contained in 310 spectral files a list of line identifications, plus a file containing a list of the files and unobserved spectral regions. The spectral file names are in the form 'abnnnnn' where 'nnnnn' denotes the spectral region, e.g. file 'ab4300' contains spectra for the 4300-4325 cm-1 range. The atomic and molecular line identifications are in files 'appendix.a' and 'appendix.b', and repeated with a uniform format in file 'lines'. The file 'appendix.c' is a book-keeping device used to correlate the plot plages and spectral files with frequency. See the author-supplied description in 'readme.dat' for more information. (311 data files).

  15. An abundance study of IC 418 using high-resolution, signal-to-noise emission spectra

    NASA Astrophysics Data System (ADS)

    Sharpee, Brian David

    2003-11-01

    An on-going problem in astrophysics involves the large and varying disagreement between abundances measurements made in planetary nebulae (PNe), determined from the strengths of emission lines arising from the same source ion, but excited by differing mechanisms (recombination and collisional excitation) in planetary nebulae (PNe). We investigate the extent of this problem in IC 418, a PN chosen for its great surface brightness and perceived visually uncomplicated geometry, through the use of high resolution (R ≈ 30000 = 10 km sec-1 at 6500Å) echelle emission spectroscopy in the optical regime (3500 9850Å). These observations allow us to construct the most detailed list of atomic emission lines ever compiled for IC 418, and among the most detailed from among all PNe. Ionic abundances are calculated from the fluxes of numerous weak (1 × 10-5 Hβ) atomic emission lines from the ions of C,N,O, and Ne, using the most recent and accurate atomic transition information presently available. The high resolution of these spectra provides well-defined line profiles, which, coupled with the perceived simplicity of the object's expansion velocity distribution, allows us to better determine where in the nebula lines are formed, and where the ions that produce them are concentrated. Evidence for “non-conventional” line excitation mechanisms, such as continuum fluorescence from the ground state or enhanced dielectronic recombination, is sought in the profile morphologies and relative line strengths. Non-conventional excitation processes may influence the strengths of lines enough to significantly alter abundances calculated from them. Our calculations show that recombination line-derived abundances exceed those derived from collisionally excited lines, for those ions for which we observed lines of both types: O+, O+2, and Ne +2 by real and varying amounts. We find that both continuum fluorescence and dielectronic recombination excites numerous lines in IC 418, but that there is no evidence in our data that either process is responsible for the observed overabundances in all recombination lines as opposed to their collisionally excited counterparts. The calculated levels of temperature fluctuations in the zones in which these ion reside are dubious, and significantly exceed model predicted values. In summary, no satisfactory, single universally applicable answer to the abundance discrepancy problem shown to exist by us in IC 418, is revealed by our observations. We developed several new techniques to analyze these data. Of particular interest is EMILI (Emission Line Identifier), a public-domain program that utilizes a comprehensive atomic transition list and a set of simple tests and criteria, to quickly provide its user with a list of rank ordered IDs for unidentified emission lines found in deep, high resolution spectra. Presented here are the results of applying EMILI to the identification of weak emission lines in the spectra of IC 418 and other PNe.

  16. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.; Oliversen, Ronald (Technical Monitor)

    2003-01-01

    For planetary and telluric atmosphere projects the solar irradiance spectrum is required as the input at the top of the atmosphere. It has never been observed. People ask me to compute it. I can compute it theoretically using both known and predicted lines and get agreement averaged over a nanometer but there is no way to predict the resolved spectrum when only half the lines are known. In other stars the situation is worse because the signal-to-noise and resolution of the observations are worse. Logically one has to know a priori what is in the spectrum in order to interpret it; there is not enough information in the observed spectrum itself (qualifiers are given). Basically we need a list of all the energy levels of all atoms and molecules that matter. From that list can be generated all the lines. With the energy levels and line positions known, one can measure gf values, lifetimes, damping, or one can determine a theoretical or semiempirical Hamiltonian whose eigenvalues and eigenvectors produce a good match to the observed data, and that can then be used to generate additional radiative and collisional data for atoms or molecules.

  17. Interactive spectral analyzer and comparator (ISAAC)

    NASA Astrophysics Data System (ADS)

    Latković, O.; Cséki, A.; Vince, I.

    2003-10-01

    We are developing an application for graphical comparison of observed and synthetic spectra (ISAAC). Synthetic spectrum calculation is performed by SPECTRUM, Stellar Spectral Synthesis Program by Richard O. Gray that we use with his kind permission. This program computes line profiles under LTE conditions in the given wavelength interval using a stellar (solar) atmosphere model, a spectral line data list (wavelength, energy levels, oscillator strengths, and damping constants), a file containing data for atoms and molecules, as well as a data file for hydrogen line profiles calculation. ISAAC offers a simple interface for viewing and changing any atomic parameter SPECTRUM uses for line profile calculation, enabling quick comparison of the new synthetic line profile with the observed one. In this way parameters like relative abundances, oscillator strengths and van der Waals damping constants can be improved, achieving a better agreement with the observed spectrum.

  18. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  19. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1984-01-01

    This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.

  20. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1981-01-01

    A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.

  1. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC

    NASA Astrophysics Data System (ADS)

    Endres, Christian P.; Schlemmer, Stephan; Schilke, Peter; Stutzki, Jürgen; Müller, Holger S. P.

    2016-09-01

    The Cologne Database for Molecular Spectroscopy, CDMS, was founded 1998 to provide in its catalog section line lists of mostly molecular species which are or may be observed in various astronomical sources (usually) by radio astronomical means. The line lists contain transition frequencies with qualified accuracies, intensities, quantum numbers, as well as further auxiliary information. They have been generated from critically evaluated experimental line lists, mostly from laboratory experiments, employing established Hamiltonian models. Separate entries exist for different isotopic species and usually also for different vibrational states. As of December 2015, the number of entries is 792. They are available online as ascii tables with additional files documenting information on the entries. The Virtual Atomic and Molecular Data Centre, VAMDC, was founded more than 5 years ago as a common platform for atomic and molecular data. This platform facilitates exchange not only between spectroscopic databases related to astrophysics or astrochemistry, but also with collisional and kinetic databases. A dedicated infrastructure was developed to provide a common data format in the various databases enabling queries to a large variety of databases on atomic and molecular data at once. For CDMS, the incorporation in VAMDC was combined with several modifications on the generation of CDMS catalog entries. Here we introduce related changes to the data structure and the data content in the CDMS. The new data scheme allows us to incorporate all previous data entries but in addition allows us also to include entries based on new theoretical descriptions. Moreover, the CDMS entries have been transferred into a mySQL database format. These developments within the VAMDC framework have in part been driven by the needs of the astronomical community to be able to deal efficiently with large data sets obtained with the Herschel Space Telescope or, more recently, with the Atacama Large Millimeter Array.

  2. Comparing Ultraviolet Spectra against Calculations: Year 2 Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2004-01-01

    The five-year goal of this effort is to calculate high fidelity mid-W spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this second year, the comparison of our calculations against observed high-resolution mid- W spectra was extended to stars as metal-rich as the Sun, and to hotter and cooler stars, further improving the list of atomic line parameters used in the calculations. We also published the application of our calculations based on the earlier list of line parameters to the observed mid-UV and optical spectra of a mildly metal-poor globular cluster in the nearby Andromeda galaxy, Messier 3 1.

  3. Comment on "Atomic structure calculations and identification of EUV and SXR spectral lines in Sr XXX" by A. Goyal, I. Khatri, S. Aggarwal, A.K. Singh, M. Mohan [J Quant Spectrosc Radiat Transf 2015;161:157

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.

    2015-11-01

    Recently, Goyal et al. [1] reported energies and lifetimes (τ) for the lowest 113 levels of the 2s22p5, 2s2p6, 2s22p43ℓ, 2s2p53ℓ and 2p63ℓ configurations of F-like Sr XXX. For the calculations they adopted the multi-configuration Dirac-Fock (MCDF) and the flexible atomic code (FAC). Additionally, they also listed radiative rates (A- values), oscillator strengths (f- values) and line strengths (S- values) for four types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2), but only from the ground to the higher excited levels. However, there are two clear anomalies in their reported data. Firstly, the f-values listed from FAC in their Tables 3-6 are larger than from MCDF by a factor of two, for all transitions. This is because they have blindly listed the output from FAC without realising that, unlike MCDF, FAC lists ωf where ω is the statistical weight, and happens to be exactly 2 in the present case. Secondly, their lifetime for level 2 (2s22p51/2 o 2P) is incorrect. This is because the dominant contributing transition for this level is 1-2 M1 for which A=3.25×106 s-1, listed (correctly) in their Table 5, and this leads to τ=3.08×10-7 s, and not 1.54×10-7 s, as listed in their Table 1.

  4. Molecular Line Lists for Scandium and Titanium Hydride Using the DUO Program

    NASA Astrophysics Data System (ADS)

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-06-01

    Transition-metal-containing (TMC) molecules often have very complex electronic spectra because of their large number of low-lying, interacting electronic states, of the large multi-reference character of the electronic states and of the large magnitude of spin-orbit and relativistic effects. As a result, fully ab initio calculations of line positions and intensities of TMC molecules have an accuracy which is considerably worse than the one usually achievable for molecules made up by main-group atoms only. In this presentation we report on new theoretical line lists for scandium hydride ScH and titanium hydride TiH. Scandium and titanium are the lightest transition metal atoms and by virtue of their small number of valence electrons are amenable to high-level electronic-structure treatments and serve as ideal benchmark systems. We report for both systems energy curves, dipole curves and various coupling curves (including spin-orbit) characterising their electronic spectra up to about 20 000 cm-1. Curves were obtained using Internally-Contracted Multi Reference Configuration Interaction (IC-MRCI) as implemented in the quantum chemistry package MOLPRO. The curves where used for the solution of the coupled-surface ro-vibronic problem using the in-house program DUO. DUO is a newly-developed, general program for the spectroscopy of diatomic molecules and its main functionality will be described. The resulting line lists for ScH and TiH are made available as part of the Exomol project. L. Lodi, S. N. Yurchenko and J. Tennyson, Mol. Phys. (Handy special issue) in press. S. N. Yurchenko, L. Lodi, J. Tennyson and A. V. Stolyarov, Computer Phys. Comms., to be submitted.

  5. Recent Developments in the NIST Atomic Databases

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander

    2011-05-01

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much more extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.

  6. Recent Developments in the NIST Atomic Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramida, Alexander

    New versions of the NIST Atomic Spectra Database (ASD, v. 4.0) and three bibliographic databases (Atomic Energy Levels and Spectra, v. 2.0, Atomic Transition Probabilities, v. 9.0, and Atomic Line Broadening and Shapes, v. 3.0) have recently been released. In this contribution I will describe the main changes in the way users get the data through the Web. The contents of ASD have been significantly extended. In particular, the data on highly ionized tungsten (W III-LXXIV) have been added from a recently published NIST compilation. The tables for Fe I and Fe II have been replaced with newer, much moremore » extensive lists (10000 lines for Fe I). The other updated or new spectra include H, D, T, He I-II, Li I-III, Be I-IV, B I-V, C I-II, N I-II, O I-II, Na I-X, K I-XIX, and Hg I. The new version of ASD now incorporates data on isotopes of several elements. I will describe some of the issues the NIST ASD Team faces when updating the data.« less

  7. The present development of time service in Brazil, with the application of the TV line-10 method for coordination and synchronization of atomic clocks

    NASA Technical Reports Server (NTRS)

    Silva, P. M.; Silva, I. M.

    1974-01-01

    Various methods presently used for the dissemination of time at several levels of precision are described along with future projects in the field. Different aspects of time coordination are reviewed and a list of future laboratories participating in a National Time Scale will be presented. A Brazilian Atomic Time Scale will be obtained from as many of these laboratories as possible. The problem of intercomparison between the Brazilian National Time Scale and the International one will be presented and probable solutions will be discussed. Needs related to the TV Line-10 method will be explained and comments will be made on the legal aspects of time dissemination throughout the country.

  8. Abundance analysis of neodymium in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Abdelkawy, Ali G. A.; Shaltout, Abdelrazek M. K.; Beheary, M. M.; Bakry, A.

    2017-10-01

    Based on non-local thermodynamical equilibrium (NLTE) calculations, the solar neodymium (Nd) content was found based on a model atom of singly ionized neodymium (Nd II) containing 153 energy levels and 42 line transitions plus the ground state of Nd III. Here, we re-derive the solar Nd abundance using the model of the solar photosphere of Holweger & Müller.We succeed in selecting a good sample line list, relying on 20 Nd II solar lines together with the most accurate transition probabilities measured experimentally and available observational data. With damping parameters obtained from the literature, we find a mean NLTE solar photospheric Nd abundance of log ɛNd(1D) = 1.43 ± 0.16, which is in excellent agreement with the meteoritic value (log ɛNd = 1.45 ± 0.02). For a set of selected Nd II lines, the NLTE abundance correction is found to be +0.01 dex compared with the standard LTE effect. The influence of collisional interactions with electrons and neutral hydrogen atoms is investigated in detail.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, U.; Space Science Division, Naval Research Laboratory, Washington, DC 20375-5320; Doschek, G.A.

    We list observed parity-forbidden and spin-forbidden lines in the 500-1600 A range emitted by solar coronal plasmas and derive improved energy levels from their wavelengths. The lines, emitted by astrophysical abundant elements, belong to transitions within the ground configurations of the type ns{sup 2} np {sup k}, for n = 2, 3 and k = 0-5, and between the lowest term of the first excited configuration 2s2p {sup k+1} and the 2s{sup 2}2p {sup k} ground configurations for k = 0, 1, 2. For each line we give the newly measured wavelength, and the measured or predicted wavelength from themore » NIST Atomic Spectra Database (ASD) (which except for a few cases includes the previously reported compilation of Kaufman and Sugar [J. Phys. Chem. Ref. Data 15 (1986) 321]), and the values of the transition probability taken from the ASD and CHIANTI database. The list contains measured wavelengths of 136 lines of which over 100 were not available for the Kaufman and Sugar compilation. In addition we provide energy levels that were derived from the reported lines.« less

  10. GrayStarServer: Server-side Spectrum Synthesis with a Browser-based Client-side User Interface

    NASA Astrophysics Data System (ADS)

    Short, C. Ian

    2016-10-01

    We present GrayStarServer (GSS), a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds. The addition of spectrum synthesis annotated with line identifications extends the functionality and pedagogical applicability of GSS beyond that of its predecessor, GrayStar3 (GS3). The spectrum synthesis is based on a line list acquired from the NIST atomic spectra database, and the GSS post-processing and user interface client allows the user to inspect the plain text ASCII version of the line list, as well as to apply macroscopic broadening. Unlike GS3, GSS carries out the physical modeling on the server side in Java, and communicates with the JavaScript and HTML client via an asynchronous HTTP request. We also describe other improvements beyond GS3 such as a more physical treatment of background opacity and atmospheric physics, the comparison of key results with those of the Phoenix code, and the use of the HTML < {canvas}> element for higher quality plotting and rendering of results. We also present LineListServer, a Java code for converting custom ASCII line lists in NIST format to the byte data type file format required by GSS so that users can prepare their own custom line lists. We propose a standard for marking up and packaging model atmosphere and spectrum synthesis output for data transmission and storage that will facilitate a web-based approach to stellar atmospheric modeling and spectrum synthesis. We describe some pedagogical demonstrations and exercises enabled by easily accessible, on-demand, responsive spectrum synthesis. GSS may serve as a research support tool by providing quick spectroscopic reconnaissance. GSS may be found at www.ap.smu.ca/~ishort/OpenStars/GrayStarServer/grayStarServer.html, and source tarballs for local installations of both GSS and LineListServer may be found at www.ap.smu.ca/~ishort/OpenStars/.

  11. Accurate line intensities of methane from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nikitin, Andrei V.; Rey, Michael; Tyuterev, Vladimir G.

    2017-10-01

    In this work, we report first-principle theoretical predictions of methane spectral line intensities that are competitive with (and complementary to) the best laboratory measurements. A detailed comparison with the most accurate data shows that discrepancies in integrated polyad intensities are in the range of 0.4%-2.3%. This corresponds to estimations of the best available accuracy in laboratory Fourier Transform spectra measurements for this quantity. For relatively isolated strong lines the individual intensity deviations are in the same range. A comparison with the most precise laser measurements of the multiplet intensities in the 2ν3 band gives an agreement within the experimental error margins (about 1%). This is achieved for the first time for five-atomic molecules. In the Supplementary Material we provide the lists of theoretical intensities at 269 K for over 5000 strongest transitions in the range below 6166 cm-1. The advantage of the described method is that this offers a possibility to generate fully assigned exhaustive line lists at various temperature conditions. Extensive calculations up to 12,000 cm-1 including high-T predictions will be made freely available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the absorption cross-sections and radiance.

  12. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er, A.; Güzelçimen, F.; Başar, Gö.

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the firstmore » time.« less

  13. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.; Bell, Barbara

    1996-01-01

    This line list is a replacement for the Kurucz-Peytremann line list. We have combined all the atomic files from CDROM 18 into 534910 line files GFALL.DAT and GFELEM.DAT. These are the data we actually use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEN.REF. There are no references after 1988. For light elements there are no references after 1979. We have the literature into the 1990's but have not had manpower or funding to update everything. Our current plan is to make a new semiempirical calculation for each species and at that time to include all the data from the literature. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have not yet included data for isotopic splitting. We supply a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the oplittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than S0V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLKYP.DAT has 754946 lines including hyperfine Sc(I), V(I), Mn(I), and Co(I). A bibliography for last year (1994-1995) is also attached.

  14. Solar Coronal Lines in the Visible and Infrared: A Rough Guide

    NASA Astrophysics Data System (ADS)

    Del Zanna, Giulio; DeLuca, Edward E.

    2018-01-01

    We review the coronal visible and infrared lines, collecting previous observations and comparing, whenever available, observed radiances to those predicted by various models: the quiet Sun (QS), a moderately active Sun, and an active region as observed near the limb, around 1.1 R ⊙. We also model the off-limb radiances for the QS case. We used the most up-to-date atomic data in CHIANTI version 8. The comparison is satisfactory, in that all of the strong visible lines now have a firm identification. We revise several previous identifications and suggest some new ones. We also list the large number of observed lines for which we do not currently have atomic data, and therefore still await firm identifications. We also show that a significant number of coronal lines should be observable in the near-infrared region of the spectrum by the upcoming Daniel K. Inouye Solar Telescope (DKIST) and the AIR-Spec instrument, which observed the corona during the 2017 August 21 solar eclipse. We also briefly discuss the many potential spectroscopic diagnostics available to the visible and infrared, with particular emphasis on measurements of electron densities and chemical abundances. We briefly point out some of the potential diagnostics that could be available with the future infrared instrumentation that is being built for DKIST and planned for the Coronal Solar Magnetism Observatory. Finally, we highlight the need for further improvements in the atomic data.

  15. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10(-11).

    PubMed

    Okubo, Sho; Nakayama, Hirotaka; Iwakuni, Kana; Inaba, Hajime; Sasada, Hiroyuki

    2011-11-21

    We determine the absolute frequencies of 56 rotation-vibration transitions of the ν(3) band of CH(4) from 88.2 to 90.5 THz with a typical uncertainty of 2 kHz corresponding to a relative uncertainty of 2.2 × 10(-11) over an average time of a few hundred seconds. Saturated absorption lines are observed using a difference-frequency-generation source and a cavity-enhanced absorption cell, and the transition frequencies are measured with a fiber-laser-based optical frequency comb referenced to a rubidium atomic clock linked to the international atomic time. The determined value of the P(7) F(2)((2)) line is consistent with the International Committee for Weights and Measures recommendation within the uncertainty. © 2011 Optical Society of America

  16. Line Identifications and Preliminary Synthesis of High-resolution Infrared Spectra of CP and Herbig Ae Stars

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Castelli, F.; Hubrig, S.; Wolff, B.; Elkin, V.

    2012-01-01

    We report on surveys of infrared spectra of chemically peculiar and Herbig Ae stars based on CRIRES (Kaufl, et al. SPIE, 5492, 1218 2004). We discuss the magnetic CP stars Gamma Equ and HD 154708, and multiple-phase observations of the Herbig Ae star HD 101412. The Be star HR 4537 and HgMn HR 6620 were also examined. The primary emphasis of the present work is on line identifications primarily in four regions, 1065-1091, 1084-1109,1550-1587, and 2276-2313nm (with order gaps). Observations were reduced with recipes available from the ESO CRIRES data reduction pipeline. Wavelength calibration is determined from daytime ThAr arc lamp exposures. Generally speaking, this is not rich in atomic lines. The strongest features are the Paschen line P6 (1093.81nm), and He I (108.30nm). The latter shows phase variations indicative of a more complex magnetic field than that of a pure dipole. No individual molecular lines were found in these early stars, though CO emission from circumstellar material is likely present in HR 4537 and HD 101412. We used atomic line lists from Kurucz's site (kurucz.harvard.edu) and VALD (http://vald.astro.univie.ac.at/ cf. Kupka et al. 1999, A&AS, 138, 119), supplemented by Outred (J. Phys. Chem. Ref. Data 7, 1, 1978). The following spectra were identified in Gamma Equ: C I, Si I, Ca I, Mg I, II, Cr I, Fe I, Sr II, and Ce III (1584.75nm). The Ap star spectra show broad Zeeman patterns compatible with published models and field strengths. Synthetic calculations used SYNTHE and SYNTHMAG (Piskunov N. E., 1999, in Astrophys. Space Sci. Library Vol. 243, Solar polarization. Kluwer, p 515). The γ Equ model is from Heiter et al. (2002, A&A, 392, 619). and the line list from VALD.

  17. Measuring diffuse interstellar bands with cool stars. Improved line lists to model background stellar spectra

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Lallement, R.

    2017-03-01

    Context. Diffuse stellar bands (DIBs) are ubiquitous in stellar spectra. Traditionally, they have been studied through their extraction from hot (early-type) stars because of their smooth continuum. In an era in which there are several ongoing or planned massive Galactic surveys using multi-object spectrographs, cool (late-type) stars constitute an appealing set of targets. However, from the technical point of view, the extraction of DIBs in their spectra is more challenging because of the complexity of the continuum. Aims: In this contribution we provide the community with an improved set of stellar lines in the spectral regions associated with the strong DIBs at λ6196.0, λ6269.8, λ6283.8, and λ6379.3. These lines allow for the creation of better stellar synthetic spectra, reproducing the background emission and a more accurate extraction of the magnitudes associated with a given DIB (e.g., equivalent width, radial velocity). Methods: The Sun and Arcturus were used as representative examples of dwarf and giant stars, respectively. A high quality spectrum for each of them was modeled using TURBOSPECTRUM and the Vienna Atomic Line Database (VALD) stellar line list. The oscillator strength log (gf) and wavelength of specific lines were modified to create synthetic spectra in which the residuals in both the Sun and Arcturus were minimized. Results: The TURBOSPECTRUM synthetic spectra, based on improved line lists, reproduce the observed spectra for the Sun and Arcturus in the mentioned spectral ranges with greater accuracy. Residuals between the synthetic and observed spectra are always ≲10%, which is much better than residuals with previously existing options. We tested the new line lists with some characteristic spectra from a variety of stars, including both giant and dwarf stars, and under different degrees of extinction. As occurred with the Sun and Arcturus, residuals in the fits used to extract the DIB information are smaller when using synthetic spectra made with the updated line lists. Tables with the updated parameters are provided to the community. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 66.D-0457(A), 079.C-0131(A), and 383.C-0170(A).

  18. Investigation of the lithium 670.7 nm wavelength range in the solar spectrum

    NASA Astrophysics Data System (ADS)

    Caffau, Elisabetta; Mott, Alessandro; Harutyunyan, Gohar; Malherbe, Jean-Marie; Steffen, Matthias

    2016-07-01

    Lithium is a key chemical element, with a chemical evolution that is different from that of most other elements. It is also very fragile, as it is destroyed by nuclear reactions with protons at temperatures higher than about 2.5 million K. According to standard Big Bang nucleosynthesis, only the isotope 7Li is produced in significant amounts, while the primordial abundance of the lighter isotope 6Li is negligible. Lithium is not produced by nucleosynthesis in normal stars, except in peculiar phases of stellar evolution (e.g. in AGB stars and Novae). Lithium may also be formed as a result of flares in the atmospheres of young, active stars. To investigate the history of Li production and depletion in the Galaxy, it is necessary to analyse stars of all ages, including those at solar metallicity. In this case, the spectroscopic determination of the Li abundance is complicated by the presence of other spectral lines overlapping with the Li doublet at 670.7 nm. The correct identification and knowledge of the atomic parameters of these blend lines is critical, especially if the 6LI/7Li isotopic ratio is to be derived. In this investigation, we consider several line lists of the blending components available in the literature and use them to compute synthetic spectra, performing the line formation computations both for the classical 1D Holweger-Mueller model and a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The synthetic spectra are then compared to the solar spectrum observed at different limb angles. This allows us to check the quality of existing line lists, to find potentially misidentified blend lines, and to construct an optimized line list for solar-type stars.

  19. Lithium abundance and 6Li/7Li ratio in the active giant HD 123351. I. A comparative analysis of 3D and 1D NLTE line-profile fits

    NASA Astrophysics Data System (ADS)

    Mott, A.; Steffen, M.; Caffau, E.; Spada, F.; Strassmeier, K. G.

    2017-08-01

    Context. Current three-dimensional (3D) hydrodynamical model atmospheres together with detailed spectrum synthesis, accounting for departures from local thermodynamic equilibrium (LTE), permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity red giant branch (RGB) stars, not to mention its production in magnetically active targets like HD 123351. Aims: A detailed spectroscopic investigation of the lithium resonance doublet in HD 123351 in terms of both abundance and isotopic ratio is presented. From fits of the observed spectrum, taken at the Canada-France-Hawaii telescope, with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin. Methods: We derive the lithium abundance A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R = 120 000, S/N = 400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). The fitting procedure is repeated with different assumptions and wavelength ranges to obtain a reasonable estimate of the involved uncertainties. Results: We find A(Li) = 1.69 ± 0.11 dex and 6Li/7Li = 8.0 ± 4.4% in 3D-NLTE, using the line list of Meléndez et al. (2012, A&A, 543, A29), updated with new atomic data for V I, which results in the best fit of the lithium line profile of HD 123351. Two other line lists lead to similar results but with inferior fit qualities. Conclusions: Our 2σ detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool evolved star is not expected in the framework of standard stellar evolution theory, non-standard, external lithium production mechanisms, possibly related to stellar activity or a recent accretion of rocky material, need to be invoked to explain the detection of 6Li in HD 123351.

  20. Hot DA white dwarf model atmosphere calculations: including improved Ni PI cross-sections

    NASA Astrophysics Data System (ADS)

    Preval, S. P.; Barstow, M. A.; Badnell, N. R.; Hubeny, I.; Holberg, J. B.

    2017-02-01

    To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages need to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni IV-VI bound-bound and bound-free atomic data on model atmosphere calculations. Models including photoionization cross-section (PICS) calculated with AUTOSTRUCTURE show significant flux attenuation of up to ˜80 per cent shortward of 180 Å in the extreme ultraviolet (EUV) region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of these atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including AUTOSTRUCTURE PICS were found to change the abundances of N and O by as much as ˜22 per cent compared to models using hydrogenic PICS, but heavier species were relatively unaffected. Models including AUTOSTRUCTURE PICS caused the abundances of N/O IV and V to diverge. This is because the increased opacity in the AUTOSTRUCTURE PICS model causes these charge states to form higher in the atmosphere, more so for N/O V. Models using an extended line list caused significant changes to the Ni IV-V abundances. While both PICS and an extended line list cause changes in both synthetic spectra and measured abundances, the biggest changes are caused by using AUTOSTRUCTURE PICS for Ni.

  1. Lithium in the active sub-giant HD123351. A quantitative analysis with 3D and 1D model atmospheres using different observed spectra

    NASA Astrophysics Data System (ADS)

    Mott, A.; Steffen, M.; Caffau, E.; Strassmeier, K. G.

    Current 3D hydrodynamical model atmosphere simulations together with non-LTE spectrum synthesis calculations permit to determine reliable atomic and in particular isotopic chemical abundances. Although this approach is computationally time demanding, it became feasible in studying lithium in stellar spectra. In the literature not much is known about the presence of the more fragile {6Li} isotope in evolved metal-rich objects. In this case the analysis is complicated by the lack of a suitable list of atomic and molecular lines in the spectral region of the lithium resonance line at 670.8 nm. Here we present a spectroscopic comparative analysis of the Li doublet region of HD 123351, an active sub-giant star of solar metallicity. We fit the Li profile in three observed spectra characterized by different qualities: two very-high resolution spectra (Gecko@CFHT, R=120 000, SNR=400 and PEPSI@LBT, R=150 000, SNR=663) and a high-resolution SOPHIE@OHP spectrum (R=40 000, SNR=300). We adopt a set of model atmospheres, both 3D and 1D, having different stellar parameters (T_{eff} and log g). The 3D models are taken from the CIFIST grid of COBOLD model atmospheres and departures from LTE are considered for the lithium components. For the blends other than the lithium in this wavelength region we adopt the linelist of \\citet{melendez12}. We find consistent results for all three observations and an overall good fit with the selected list of atomic and molecular lines, indicating a high {6Li} content. The presence of {6Li} is not expected in cool stellar atmospheres. Its detection is of crucial importance for understanding mixing processes in stars and external lithium production mechanisms, possibly related to stellar activity or planetray accretion of {6Li}-rich material.

  2. Transition Probabilities for Hydrogen-Like Atoms

    NASA Astrophysics Data System (ADS)

    Jitrik, Oliverio; Bunge, Carlos F.

    2004-12-01

    E1, M1, E2, M2, E3, and M3 transition probabilities for hydrogen-like atoms are calculated with point-nucleus Dirac eigenfunctions for Z=1-118 and up to large quantum numbers l=25 and n=26, increasing existing data more than a thousandfold. A critical evaluation of the accuracy shows a higher reliability with respect to previous works. Tables for hydrogen containing a subset of the results are given explicitly, listing the states involved in each transition, wavelength, term energies, statistical weights, transition probabilities, oscillator strengths, and line strengths. The complete results, including 1 863 574 distinct transition probabilities, lifetimes, and branching fractions are available at http://www.fisica.unam.mx/research/tables/spectra/1el

  3. Constant size descriptors for accurate machine learning models of molecular properties

    NASA Astrophysics Data System (ADS)

    Collins, Christopher R.; Gordon, Geoffrey J.; von Lilienfeld, O. Anatole; Yaron, David J.

    2018-06-01

    Two different classes of molecular representations for use in machine learning of thermodynamic and electronic properties are studied. The representations are evaluated by monitoring the performance of linear and kernel ridge regression models on well-studied data sets of small organic molecules. One class of representations studied here counts the occurrence of bonding patterns in the molecule. These require only the connectivity of atoms in the molecule as may be obtained from a line diagram or a SMILES string. The second class utilizes the three-dimensional structure of the molecule. These include the Coulomb matrix and Bag of Bonds, which list the inter-atomic distances present in the molecule, and Encoded Bonds, which encode such lists into a feature vector whose length is independent of molecular size. Encoded Bonds' features introduced here have the advantage of leading to models that may be trained on smaller molecules and then used successfully on larger molecules. A wide range of feature sets are constructed by selecting, at each rank, either a graph or geometry-based feature. Here, rank refers to the number of atoms involved in the feature, e.g., atom counts are rank 1, while Encoded Bonds are rank 2. For atomization energies in the QM7 data set, the best graph-based feature set gives a mean absolute error of 3.4 kcal/mol. Inclusion of 3D geometry substantially enhances the performance, with Encoded Bonds giving 2.4 kcal/mol, when used alone, and 1.19 kcal/mol, when combined with graph features.

  4. A DETAILED FAR-ULTRAVIOLET SPECTRAL ATLAS OF MAIN-SEQUENCE B STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.

    2010-02-01

    We have constructed a detailed spectral atlas covering the wavelength region 930-1225 A for 10 sharp-lined B0-B9 stars near the main sequence. Most of the spectra we assembled are from the archives of the Far Ultraviolet Spectroscopic Explorer satellite, but for nine stars, wavelength coverage above 1188 A was taken from high-resolution International Ultraviolet Explorer or echelle Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra. To represent the tenth star at type B0.2 V, we used the Copernicus atlas of {tau} Sco. We made extensive line identifications in the region 949-1225 A of all atomic features having published oscillator strengths atmore » types B0, B2, and B8. These are provided as a supplementary data product-hence the term detailed atlas. Our list of found features totals 2288, 1612, and 2469 lines, respectively. We were able to identify 92%, 98%, and 98% of these features with known atomic transitions with varying degrees of certainty in these spectra. The remaining lines do not have published oscillator strengths. Photospheric lines account for 94%, 87%, and 91%, respectively, of all our identifications, with the remainder being due to interstellar (usually molecular H{sub 2}) lines. We also discuss the numbers of lines with respect to the distributions of various ions for these three most studied spectral subtypes. A table is also given of 162 least blended lines that can be used as possible diagnostics of physical conditions in B star atmospheres.« less

  5. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  6. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    2005-01-01

    I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed and forbidden line lists, both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expand to all ions of the first thirty elements to treat far UV and X-ray spectra, and for envelope opacities. I also include triatomic molecules provided by other researchers. I have also made CDs with Partridge and Schwenke's water data for work on UV stars. The line data also serve as input to my model atmosphere and synthesis programs that generate energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the lines identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observers. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my Web site and represent a unique resource for many NASA programs. I am now in full production of new line lists for atoms. I am computing all ions of all elements from H to Zn and the first 5 ions of all the heavier elements, about 800 ions. For each ion I treat as many as 61 even and 61 odd configurations, computing all energy levels and eigenvectors. The Hamiltonian is determined from a scaled-Hartree-Fock starting guess by least squares fitting the observed energy levels. The average energy of each configuration is used in computing scaled-Thomas-Fermi-Dirac wavefunctions for each configuration which in turn are used to compute allowed and forbidden transition integrals. These are multiplied into the LS allowed and forbidden transition arrays. The transition arrays are transformed to the observed coupling to yield the allowed and forbidden line lists. Results are put on the web as they are finished. Provided I get funding,there will be more than 500 million lines. I will then compare ion by ion, to all the laboratory and computed data in the literature and make up a working line list for spectrum synthesis and opacity calculations with the best available data. As the laboratory spectrum analyses are improved, I will redo the calculations with the new energy levels. My original plan when I started the new calculations was to run through all the atoms using my old Cray programs from the 1980's that were limited to 1100 x 1100 arrays in the Hamiltonian for each J. Then I would go back and rerun the more complicated cases with 3000 x 3000 arrays so that I could include many more configurations and more configuration interactions. At present I am limited to 61 even and 61 odd configurations and I try to include everything up through n = 9. The current program runs on Alpha workstations. I decided to test the big program on Fe I and Fe II to see whether there was any great difference in the low configurations compared to those from the Cray program. Besides increasing the number of E1 lines by a factor of 6 to 7.7 million, there was an unexpected result: the electric quadrupole transitions were 10 times stronger than before because the transition integrals are weighted by r(exp 2) ---they become very large for high n, and because there are numerous configuration interactions that mix the low and high configurations. As a check I was able to reproduce Carstang's (1962) lower results by running his three configurations with my program. Since my model atom is still only a subset of a real Fe II ion, the true quadrupole A values are probably larger than mine. The magnetic dipole lines are affected by the mixing but the overall scale does not change. Because of this scovery I decided that there was no point in computing the small array cases. I have been running with as many configurations as I can and with thousands of parameters in the Hamiltonian. The computer runs take much longer to set up and produce than I had expected. I have concentrated on redoing the low iron group spectra, especially to get data for supernova modelers. I have done only Ca I -- Zn I, Ca II -- Zn II, CU I -- Cu XXIX, Zn I - Zn XXX, for practice at high stages of ionization, C I, C II, S I, and CL I and Ag I for people who were working on the laboratory spectra. Check my web site kurucz.harvard.edu for current additions. My latest calculations have been for carbon I and sulphur I, and silicon I is under way using the same elaborate approach as for C I, which took many months to do. These line lists greatly increase the number of lines in the ultraviolet, in the visible, and especially in the infrared. They will increase the opacity in A, F, and G stars. They will account for many unidentified lines in the sun.

  7. Astronomical Applications of New Line Lists for CN, C_2 and Their Isotopologues

    NASA Astrophysics Data System (ADS)

    Bernath, Peter F.; Sneden, Chris; Brooke, James S. A.; Ram, Ram

    2014-06-01

    For cool stellar and substellar objects, atomic lines weaken, and detailed elemental and isotopic abundances are often derived from molecular absorption features. We have embarked on a project to provide molecular line lists by combining experimental observations for line positions with ab initio calculations for line strengths. So far we have results for MgH (A-X and B-X transitions), C2 (Swan system), CP (A-X transition), NH (vibration-rotation bands) and OH (Meinel system). This talk will briefly describe the new line lists for the Swan system (d3Π-a3Π) of C2 and 12C13C, and the red (A2Π-X2Σ+) and violet (B2Σ+-X2Σ+) systems of CN, 13CN and C15N. Applications to the spectra of carbon-enhanced metal-poor stars, the K-giant Arcturus, the metal-rich open cluster NGC 6791, the Sun and comets will be presented. E. GharibNezhad, A. Shayesteh and P. F. Bernath, Mon. Notices R. Astro. Soc. 432, 2043-2047 (2013) . H. Hinkle, L. Wallace, R. S. Ram, P. F. Bernath, C. Sneden and S. Lucatello, Astrophys. J. Suppl. 207, 26 (7pp) (2013) J. S. A. Brooke, P. F. Bernath, T. W. Schmidt and G. B. Bacskay, J. Quant. Spectrosc. Rad. Trans. 124, 11-20 (2013) R. S. Ram, J. S. A. Brooke, P. F. Bernath, C. Sneden and S. Lucatello, Astrophys. J. Suppl. 211, 5 (7pp) (2014) J. S. A. Brooke, R. S. Ram, C. M. Western, G. Li, D. W. Schwenke and P. F. Bernath, Astrophys. J. Suppl. 210, 23 (15pp) (2014) R. S. Ram, J. S. A. Brooke, C.M. Western and P. F. Bernath, J. Quant. Spectrosc. Rad. Transfer (in press) J. S. A. Brooke et al., this meeting, P301

  8. The calculated rovibronic spectrum of scandium hydride, ScH

    NASA Astrophysics Data System (ADS)

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-07-01

    The electronic structure of six low-lying electronic states of scandium hydride, X 1Σ+, a 3Δ, b 3Π, A 1Δ, c 3Σ+ and B 1Π, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular rovibronic transitions for 45ScH.

  9. INTRIGOSS: A new Library of High Resolution Synthetic Spectra

    NASA Astrophysics Data System (ADS)

    Franchini, Mariagrazia; Morossi, Carlo; Di Marcancantonio, Paolo; Chavez, Miguel; GES-Builders

    2018-01-01

    INTRIGOSS (INaf Trieste Grid Of Synthetic Spectra) is a new High Resolution (HiRes) synthetic spectral library designed for studying F, G, and K stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSP) and surface Flux SPectra (FSP), in the 4800-5400 Å wavelength range, were computed by means of the SPECTRUM code. The synthetic spectra are computed with an atomic and bi-atomic molecular line list including "bona fide" Predicted Lines (PLs) built by tuning loggf to reproduce very high SNR Solar spectrum and the UVES-U580 spectra of five cool giants extracted from the Gaia-ESO survey (GES). The astrophysical gf-values were then assessed by using more than 2000 stars with homogenous and accurate atmosphere parameters and detailed chemical composition from GES. The validity and greater accuracy of INTRIGOSS NSPs and FSPs with respect to other available spectral libraries is discussed. INTRIGOSS will be available on the web and will be a valuable tool for both stellar atmospheric parameters and stellar population studies.

  10. The selective and efficient laser ion source and trap project LIST for on-line production of exotic nuclides

    NASA Astrophysics Data System (ADS)

    Wendt, Klaus; Gottwald, Tina; Hanstorp, Dag; Mattolat, Christoph; Raeder, Sebastian; Rothe, Sebastian; Schwellnus, Fabio; Havener, Charles; Lassen, Jens; Liu, Yuan

    2010-02-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.

  11. A Bibliography of Basic Books on Atomic Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This booklet lists selected commercially published books for the general public on atomic energy and closely related subjects. Books for young readers have school grade annotations.This booklet contains an author index, a title index, and a list of publishers’ addresses.

  12. 1978 bibliography of atomic and molecular processes. [Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  13. 1979 bibliography of atomic and molecular processes. [Bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  14. Infrared diffuse interstellar bands

    NASA Astrophysics Data System (ADS)

    Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.

    2017-05-01

    We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.

  15. ExoMol line lists - XXII. The rotation-vibration spectrum of silane up to 1200 K

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yachmenev, A.; Thiel, W.; Tennyson, J.; Yurchenko, S. N.

    2017-11-01

    A variationally computed 28SiH4 rotation-vibration line list applicable for temperatures up to T = 1200 K is presented. The line list, called OY2T, considers transitions with rotational excitation up to J = 42 in the wavenumber range 0-5000 cm-1 (wavelengths λ > 2 μm). Just under 62.7 billion transitions have been calculated between 6.1 million energy levels. Rovibrational calculations have utilized a new `spectroscopic' potential energy surface determined by empirical refinement to 1452 experimentally derived energy levels up to J = 6, and a previously reported ab initio dipole moment surface. The temperature-dependent partition function of silane, the OY2T line list format, and the temperature dependence of the OY2T line list are discussed. Comparisons with the PNNL spectral library and other experimental sources indicate that the OY2T line list is robust and able to accurately reproduce weaker intensity features. The full line list is available from the ExoMol data base and the CDS data base.

  16. ExoMol molecular line lists - XXVI: spectra of SH and NS

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-04-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X 2Π ground state for 32SH, 33SH, 34SH and 32SD, and 14N32S, 14N33S, 14N34S, 14N36S and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X 2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2 300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms fitting error of 0.002 cm-1. Each NS calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS database. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  17. ExoMol line lists - XXIX. The rotation-vibration spectrum of methyl chloride up to 1200 K

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yachmenev, A.; Thiel, W.; Fateev, A.; Tennyson, J.; Yurchenko, S. N.

    2018-06-01

    Comprehensive rotation-vibration line lists are presented for the two main isotopologues of methyl chloride, 12CH335Cl and 12CH337Cl. The line lists, OYT-35 and OYT-37, are suitable for temperatures up to T = 1200 K and consider transitions with rotational excitation up to J = 85 in the wavenumber range 0-6400 cm-1 (wavelengths λ > 1.56 μm). Over 166 billion transitions between 10.2 million energy levels have been calculated variationally for each line list using a new empirically refined potential energy surface, determined by refining to 739 experimentally derived energy levels up to J = 5, and an established ab initio dipole moment surface. The OYT line lists show excellent agreement with newly measured high-temperature infrared absorption cross-sections, reproducing both strong and weak intensity features across the spectrum. The line lists are available from the ExoMol database and the CDS database.

  18. LIME: Semiautomated line measurement and identification from stellar spectra

    NASA Astrophysics Data System (ADS)

    Sahin, T.

    2017-09-01

    We present LIME (Line Measurements from ECHELLE Spectra), an IDL-based code, as a powerful tool for semiautomated stellar line measurement and identification. Interactively selected line positions (i.e. wavelengths) are compared with a master line list of the user's selections. Each unknown line that the user interactively chooses is displayed with potential identifications provided by the code in the vicinity of the selected line. The best identification is evaluated on the basis of several criteria (e.g., atomic/molecular line information, wavelength displacement, and theoretical equivalent width for solar atmospheric values). We examined the identifications by LIME in the spectra of post-red supergiant star HD 179821 over a range of signal-to-noise values and wavelength ranges. We found that the results obtained by LIME show virtually complete agreement with the manual identifications for which the conventional and also tedious approach is to use a revised multiplet table as an initial guide and perform a systematic search that makes use of the lower excitation potential and gf-values. Comparison to previous identifications for HD 179821 in the literature revealed not only lines that were unmeasurable and/or blended but also misidentifications. While a manual identification process takes a relatively longer time to be accomplished by an experienced spectroscopist, LIME can provide a rapid extraction of line information in a few hours with moderate user interaction.

  19. ExoMol line lists XXIV: a new hot line list for silicon monohydride, SiH

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Sinden, Frances; Lodi, Lorenzo; Hill, Christian; Gorman, Maire N.; Tennyson, Jonathan

    2018-02-01

    SiH has long been observed in the spectrum of our Sun and other cool stars. Computed line lists for the main isotopologues of silicon monohydride, 28SiH, 29SiH, 30SiH and 28SiD are presented. These line lists consider rotation-vibration transitions within the ground X 2Π electronic state as well as transitions to the low-lying A 2Δ and a 4Σ- states. Ab initio potential energy (PECs) and dipole moment curves along with spin-orbit and electronic angular momentum couplings between them are calculated using the multireference configuration interaction level of theory with the MOLPRO package. The PEC for the ground X 2Π state is refined to available experimental data with a typical accuracy of around 0.01 cm-1 or better. The 28SiH line list includes 11 785 rovibronic states and 1724 841 transitions with associated Einstein-A coefficients for angular momentum J up to 82.5 and covering wavenumbers up to 31 340 cm-1 (λ < 0.319 μm). Spectra are simulated using the new line list and comparisons made with various experimental spectra. These line lists are applicable up to temperatures of 5000 K, making them relevant to astrophysical objects such as exoplanetary atmospheres and cool stars and opening up the possibility of detection in the interstellar medium. These line lists, called SiGHTLY, are available at the ExoMol (www.exomol.com) and CDS data base websites.

  20. ExoMol line list - XXI. Nitric Oxide (NO)

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Yurchenko, Sergei N.; Bernath, Peter; Müller, Holger S. P.; McConkey, Stephanie; Tennyson, Jonathan

    2017-09-01

    Line lists for the X 2Π electronic ground state for the parent isotopologue of nitric oxide (14N16O) and five other major isotopologues (14N17O, 14N18O, 15N16O, 15N17O and 15N18O) are presented. The line lists are constructed using empirical energy levels (and line positions) and high-level ab initio intensities. The energy levels were obtained using a combination of two approaches, from an effective Hamiltonian and from solving the rovibronic Schrödinger equation variationally. The effective Hamiltonian model was obtained through a fit to the experimental line positions of NO available in the literature for all six isotopologues using the programs spfit and spcat. The variational model was built through a least squares fit of the ab initio potential and spin-orbit curves to the experimentally derived energies and experimental line positions of the main isotopologue only using the duo program. The ab initio potential energy, spin-orbit and dipole moment curves (PEC, SOC and DMC) are computed using high-level ab initio methods and the marvel method is used to obtain energies of NO from experimental transition frequencies. The line lists are constructed for each isotopologue based on the use of the most accurate energy levels and the ab initio DMC. Each line list covers a wavenumber range from 0 to 40 000 cm-1 with approximately 22 000 rovibronic states and 2.3-2.6 million transitions extending to Jmax = 184.5 and vmax = 51. Partition functions are also calculated up to a temperature of 5000 K. The calculated absorption line intensities at 296 K using these line lists show excellent agreement with those included in the HITRAN and HITEMP data bases. The computed NO line lists are the most comprehensive to date, covering a wider wavenumber and temperature range compared to both the HITRAN and HITEMP data bases. These line lists are also more accurate than those used in HITEMP. The full line lists are available from the CDS http://cdsarc.u-strasbg.fr and ExoMol www.exomol.com data bases; data will also be available from CDMS http://www.cdms.de.

  1. Physico-chemical study of some areas of fundamental significance to biophysics. Annual report, 1975--1976. [Chemistry Dept. , Louisiana State University, Baton Rouge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlynn, S.P.

    1976-05-15

    Lists of titles published, symposia attended, laboratory guests, departing personnel, and equipment purchased are presented in the first part of this report. It is to be emphasized that completed work already published is mentioned only by title. Reports are provided for research recently completed or in progress in the following areas: Rydberg spectroscopy, intermediate-coupling model for linear molecules, atomic correlation lines, electronic structure of dicarbonyl compounds, absorption and emission characteristics of highly polar aromatics, valence-bond description of metal--anion interaction, and matrix elements of mono-excited Slater determinants constructed from axial spin-orbitals. (RWR)

  2. Constructing a logical, regular axis topology from an irregular topology

    DOEpatents

    Faraj, Daniel A.

    2014-07-22

    Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.

  3. Constructing a logical, regular axis topology from an irregular topology

    DOEpatents

    Faraj, Daniel A.

    2014-07-01

    Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.

  4. Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China.

    PubMed

    Lau, Eric H Y; Zheng, Jiandong; Tsang, Tim K; Liao, Qiaohong; Lewis, Bryan; Brownstein, John S; Sanders, Sharon; Wong, Jessica Y; Mekaru, Sumiko R; Rivers, Caitlin; Wu, Peng; Jiang, Hui; Li, Yu; Yu, Jianxing; Zhang, Qian; Chang, Zhaorui; Liu, Fengfeng; Peng, Zhibin; Leung, Gabriel M; Feng, Luzhao; Cowling, Benjamin J; Yu, Hongjie

    2014-05-28

    Appropriate public health responses to infectious disease threats should be based on best-available evidence, which requires timely reliable data for appropriate analysis. During the early stages of epidemics, analysis of 'line lists' with detailed information on laboratory-confirmed cases can provide important insights into the epidemiology of a specific disease. The objective of the present study was to investigate the extent to which reliable epidemiologic inferences could be made from publicly-available epidemiologic data of human infection with influenza A(H7N9) virus. We collated and compared six different line lists of laboratory-confirmed human cases of influenza A(H7N9) virus infection in the 2013 outbreak in China, including the official line list constructed by the Chinese Center for Disease Control and Prevention plus five other line lists by HealthMap, Virginia Tech, Bloomberg News, the University of Hong Kong and FluTrackers, based on publicly-available information. We characterized clinical severity and transmissibility of the outbreak, using line lists available at specific dates to estimate epidemiologic parameters, to replicate real-time inferences on the hospitalization fatality risk, and the impact of live poultry market closure. Demographic information was mostly complete (less than 10% missing for all variables) in different line lists, but there were more missing data on dates of hospitalization, discharge and health status (more than 10% missing for each variable). The estimated onset to hospitalization distributions were similar (median ranged from 4.6 to 5.6 days) for all line lists. Hospital fatality risk was consistently around 20% in the early phase of the epidemic for all line lists and approached the final estimate of 35% afterwards for the official line list only. Most of the line lists estimated >90% reduction in incidence rates after live poultry market closures in Shanghai, Nanjing and Hangzhou. We demonstrated that analysis of publicly-available data on H7N9 permitted reliable assessment of transmissibility and geographical dispersion, while assessment of clinical severity was less straightforward. Our results highlight the potential value in constructing a minimum dataset with standardized format and definition, and regular updates of patient status. Such an approach could be particularly useful for diseases that spread across multiple countries.

  5. Parallel Artificial Intelligence Search Techniques for Real Time Applications.

    DTIC Science & Technology

    1987-12-01

    list) (cond ((atom e) e) ((setq a-list (match ’((> v)) e nil)) (inf-to-pre (match-value ’v a-list))) ((setq a-list (match ’((+ 1) (restrict ? oneplus ...defun oneplus (x) 2 (equal x ’) :,- ""find the value of a key into an association list. 7,. :" (defun match-value (key a-list) : : (cadr (assoc key a

  6. Kinetic Energy Distribution of D(2p) Atoms From Analysis of the D Lyman-a Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, Marco; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The absolute cross sections of the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coeffiecients are given for the energy dependence of the measured slow atom cross section.

  7. ExoMol molecular line lists - XXIII. Spectra of PO and PS

    NASA Astrophysics Data System (ADS)

    Prajapat, Laxmi; Jagoda, Pawel; Lodi, Lorenzo; Gorman, Maire N.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-12-01

    Comprehensive line lists for phosphorus monoxide (31P16O) and phosphorus monosulphide (31P32S) in their X 2Π electronic ground state are presented. The line lists are based on new ab initio potential energy (PEC), spin-orbit (SOC) and dipole moment (DMC) curves computed using the MRCI+Q-r method with aug-cc-pwCV5Z and aug-cc-pV5Z basis sets. The nuclear motion equations (i.e. the rovibronic Schrödinger equations for each molecule) are solved using the program DUO. The PECs and SOCs are refined in least-squares fits to available experimental data. Partition functions, Q(T), are computed up to T = 5000 K, the range of validity of the line lists. These line lists are the most comprehensive available for either molecule. The characteristically sharp peak of the Q-branches from the spin-orbit split components gives useful diagnostics for both PO and PS in spectra at infrared wavelengths. These line lists should prove useful for analysing observations and setting up models of environments such as brown dwarfs, low-mass stars, O-rich circumstellar regions and potentially for exoplanetary retrievals. Since PS is yet to be detected in space, the role of the two lowest excited electronic states (a 4Π and B 2Π) are also considered. An approximate line list for the PS X-B electronic transition, which predicts a number of sharp vibrational bands in the near ultraviolet, is also presented. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  8. Atoms in carbon cages as a source of interstellar diffuse lines

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R.

    1990-01-01

    A model to describe the resonance absorption lines of various atoms trapped in closed carbon cages is presented. These systems may be responsible for some of the as yet unexplained diffuse interstellar bands. Model potentials for possible atom-C60 systems are obtained and used to calculate the resonance lines. The trapped atoms considered are O, N, Si, Mg, Al, Na, and S, and in all cases the resonance lines are shifted toward the red as compared to the isolated atoms. The calculated wavelengths are compared to the range of wavelengths observed for the diffuse interstellar bands, and good agreement is found for Mg and Si resonance lines. Other lines may be caused by other than resonance transitions or by trapped molecules. The oscillator strengths and the abundances are evaluated and compared with observation. Mechanisms to explain the observed band width of the lines and the existence of certain correlated pairs of lines are discussed.

  9. ExoMol molecular line lists XIX: high-accuracy computed hot line lists for H218O and H217O

    NASA Astrophysics Data System (ADS)

    Polyansky, Oleg L.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan; Yurchenko, Sergei N.; Ovsyannikov, Roman I.; Zobov, Nikolai F.

    2017-04-01

    Hot line lists for two isotopologues of water, H218O and H217O, are presented. The calculations employ newly constructed potential energy surfaces (PES), which take advantage of a novel method for using the large set of experimental energy levels for H216O to give high-quality predictions for H218O and H217O. This procedure greatly extends the energy range for which a PES can be accurately determined, allowing an accurate prediction of higher lying energy levels than are currently known from direct laboratory measurements. This PES is combined with a high-accuracy, ab initio dipole moment surface of water in the computation of all energy levels, transition frequencies and associated Einstein A coefficients for states with rotational excitation up to J = 50 and energies up to 30 000 cm-1. The resulting HotWat78 line lists complement the well-used BT2 H216O line list. Full line lists are made available online as Supporting Information and at www.exomol.com.

  10. ExoMol molecular line lists - XXVI: spectra of SH and NS

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Bond, Wesley; Gorman, Maire N.; Lodi, Lorenzo; McKemmish, Laura K.; Nunn, William; Shah, Rohan; Tennyson, Jonathan

    2018-07-01

    Line lists for the sulphur-containing molecules SH (the mercapto radical) and NS are computed as part of the ExoMol project. These line lists consider transitions within the X2Π ground state for 32SH, 33SH, 34SH,36SH and, 32SD, and 14N32S, 14N33S, 14N34S, 14N36S, and 15N32S. Ab initio potential energy (PEC) and spin-orbit coupling (SOC) curves are computed and then improved by fitting to experimentally observed transitions. Fully ab initio dipole moment curves (DMCs) computed at high level of theory are used to produce the final line lists. For SH, our fit gives a root-mean-square (rms) error of 0.03 cm-1 between the observed (vmax = 4, Jmax = 34.5) and calculated transitions wavenumbers; this is extrapolated such that all X2Π rotational-vibrational-electronic (rovibronic) bound states are considered. For 32SH the resulting line list contains about 81 000 transitions and 2300 rovibronic states, considering levels up to vmax = 14 and Jmax = 60.5. For NS the refinement used a combination of experimentally determined frequencies and energy levels and led to an rms-fitting error of 0.002 cm-1. Each NS-calculated line list includes around 2.8 million transitions and 31 000 rovibronic states with a vibrational range up to v = 53 and rotational range up to J = 235.5, which covers up to 23 000 cm-1. Both line lists should be complete for temperatures up to 5000 K. Example spectra simulated using this line list are shown and comparisons made to the existing data in the CDMS data base. The line lists are available from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) data bases.

  11. Bibliography of atomic and molecular processes. Volume 1, 1978-1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C.F.; Crandall, D.H.; Farmer, B.J.

    1982-10-01

    This annotated bibliography lists 10,676 works on atomic and molecular processes reported in publications dated 1978-1981. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the county of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactantsmore » within each subcategory.« less

  12. Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China

    PubMed Central

    2014-01-01

    Background Appropriate public health responses to infectious disease threats should be based on best-available evidence, which requires timely reliable data for appropriate analysis. During the early stages of epidemics, analysis of ‘line lists’ with detailed information on laboratory-confirmed cases can provide important insights into the epidemiology of a specific disease. The objective of the present study was to investigate the extent to which reliable epidemiologic inferences could be made from publicly-available epidemiologic data of human infection with influenza A(H7N9) virus. Methods We collated and compared six different line lists of laboratory-confirmed human cases of influenza A(H7N9) virus infection in the 2013 outbreak in China, including the official line list constructed by the Chinese Center for Disease Control and Prevention plus five other line lists by HealthMap, Virginia Tech, Bloomberg News, the University of Hong Kong and FluTrackers, based on publicly-available information. We characterized clinical severity and transmissibility of the outbreak, using line lists available at specific dates to estimate epidemiologic parameters, to replicate real-time inferences on the hospitalization fatality risk, and the impact of live poultry market closure. Results Demographic information was mostly complete (less than 10% missing for all variables) in different line lists, but there were more missing data on dates of hospitalization, discharge and health status (more than 10% missing for each variable). The estimated onset to hospitalization distributions were similar (median ranged from 4.6 to 5.6 days) for all line lists. Hospital fatality risk was consistently around 20% in the early phase of the epidemic for all line lists and approached the final estimate of 35% afterwards for the official line list only. Most of the line lists estimated >90% reduction in incidence rates after live poultry market closures in Shanghai, Nanjing and Hangzhou. Conclusions We demonstrated that analysis of publicly-available data on H7N9 permitted reliable assessment of transmissibility and geographical dispersion, while assessment of clinical severity was less straightforward. Our results highlight the potential value in constructing a minimum dataset with standardized format and definition, and regular updates of patient status. Such an approach could be particularly useful for diseases that spread across multiple countries. PMID:24885692

  13. Spontaneous emission and atomic line shift in causal perturbation theory

    NASA Astrophysics Data System (ADS)

    Marzlin, Karl-Peter; Fitzgerald, Bryce

    2018-04-01

    We derive a spontaneous emission rate and line shift for two-level atoms coupled to the radiation field using causal perturbation theory. In this approach, employing the theory of distribution splitting prevents the occurrence of divergent integrals. Our method confirms the result for an atomic decay rate but suggests that the cutoff frequency for the atomic line shift is determined by the atomic mass, rather than the Bohr radius or electron mass.

  14. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  15. IUE short-wavelength high-dispersion line list for the symbiotic nova RR Telescopii

    NASA Technical Reports Server (NTRS)

    Aufdenberg, Jason P.

    1993-01-01

    An 820 minute and other long-exposure archival SWP IUE high-dispersion spectra of symbiotic star RR Tel have been combined to form a composite spectrum. In most of these spectra many lines are saturated, but weaker features appear above the continuum. Their wavelengths were measured from the composite spectrum and compared with the line list from a thorough study of RR Tel by Penston et al. (1983). Among the revised line list are 22 new line identifications from ions C III, O I, N I, Mg VI, Si I, S I, S IV, Fe II, and Ni II. N I exists inside RR Tel's H II region and is pumped by the hot component's continuum. The fluxes for all the lines in each of the spectra are presented. All of the observed ions show a secular flux decrease between 1978 and 1988. A list of SWP high-dispersion camera artifacts is also presented. The list was generated by comparing RR Tel spectra to a long-exposure sky flat.

  16. CO2 and SO2 IR Line Lists for Venus/Mars and Exo-Planet Atmosphere Studies

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwenke, D.; Sergey, T. A.; Lee, T. J.

    2012-12-01

    Atmospheric studies of both solar system planets and extra-solar planets need accurate spectra data input and analysis from planetary missions and astronomical observations. Accurate Infra-Red (IR) line lists of critical species are necessary to determine the physical conditions and compositions of atmospheres. Here we demonstrate an example of how theoretical chemistry can help in this regard. By combining the state-of-the-art ab initio theory, quantum exact rovibrational CI approach, and selected reliable high resolution experimental data, we have successfully generated the most complete and reliable IR line lists for Carbon Dioxide and Sulfur Dioxide (and their isotopologues) with accuracies of 0.01-0.02 cm-1, or ~10 MHz for microwave spectra. Agreement for observed intensities is around 90%. Our approach not only automatically fills in all the missing bands (especially those weaker, difficult bands) below the highest experiment energies, but also safely extrapolates beyond those with still reliable predictions. The reliability and accuracy of our IR line lists have been verified by the most recent experiments. The CO2 line list actually extends to 30,000 cm-1 and J>180. It works for early planets with temperature as high as 1000-2000K. The SO2 line list covers 0 - 14000 cm-1 and J>100. These line lists are expected to facilitate the atmospheric analysis and modeling of both planets (and moons) within our solar system and beyond to extra-solar planets. 32SO2 IR spectra comparison. (top) Ames-296K line list vs. recent experiment; (bottom) Ames-296K fills in the gaps of HITRAN2008 data. 12C16O2 IR Simulation at different temperatures using the latest Ames-296K IR linelist. (Unpublished work by R.S. Freedman, SETI/NASA Ames SST)

  17. H2 16O line list for the study of atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lavrentieva, N. N.; Voronin, B. A.; Fedorova, A. A.

    2015-01-01

    IR spectroscopy is an important method of remote measurement of H2 16O content in planetary atmospheres with initial spectroscopic information from the HITRAN, GEISA, etc., databases adapted for studies in the Earth's atmosphere. Unlike the Earth, the atmospheres of Mars and Venus mainly consist of carbon dioxide with a CO2 content of about 95%. In this paper, the line list of H2 16O is obtained on the basis of the BT2 line list (R.J. Barber, J. Tennyson, G.J. Harris, et al., Mon. Not. R. Astron. Soc. 368, 1087 (2006)). The BT2 line list containing information on the centers, intensities, and quantum identification of lines is supplemented with the line contour parameters: the self-broadening and carbon dioxide broadening coefficients and the temperature dependence coefficient at 296 K in the range of 0.001-30000 cm-1. Transitions with intensity values 10-30, 10-32, and 10-35 cm/molecule, the total number of which is 323310, 753529, and 2011072, respectively, were chosen from the BT2 line list.

  18. ExoMol line lists XXV: a hot line list for silicon sulphide, SiS

    NASA Astrophysics Data System (ADS)

    Upadhyay, Apoorva; Conway, Eamon K.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2018-06-01

    SiS has long been observed in the circumstellar medium of the carbon-rich star IRC+10216 CW Leo. Comprehensive and accurate rotation-vibrational line lists and partition functions are computed for 12 isotopologues of silicon sulphide (28Si32S, 28Si34S, 29Si32S, 28Si33S, 30Si32S, 29Si34S, 30Si34S, 28Si36S, 29Si33S, 29Si36S, 30Si33S, and 30Si36S) in its ground (X 1Σ+) electronic state. The calculations employ an existing spectroscopically accurate potential energy curve (PEC) derived from experimental measurements and a newly computed ab initio dipole moment curve (DMC). The 28Si32S line list includes 10 104 states and 91 715 transitions. These line lists are available from the ExoMol website (www.exomol.com) and the CDS data base.

  19. ExoMol line lists XXVIII: The rovibronic spectrum of AlH

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Williams, Henry; Leyland, Paul C.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-06-01

    A new line list for AlH is produced. The WYLLoT line list spans two electronic states X 1Σ+ and A 1Π. A diabatic model is used to model the shallow potential energy curve of the A 1Π state, which has a strong pre-dissociative character with only two bound vibrational states. Both potential energy curves are empirical and were obtained by fitting to experimentally derived energies of the X 1Σ+ and A 1Π electronic states using the diatomic nuclear motion codes DPOTFIT and DUO. High temperature line lists plus partition functions and lifetimes for three isotopologues 27AlH, 27AlD and 26AlH were generated using ab initio dipole moments. The line lists cover both the X-X and A-X systems and are made available in electronic form at the CDS and ExoMol databases.

  20. The FTS atomic spectrum tool (FAST) for rapid analysis of line spectra

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.

    2013-07-01

    The FTS Atomic Spectrum Tool (FAST) is an interactive graphical program designed to simplify the analysis of atomic emission line spectra obtained from Fourier transform spectrometers. Calculated, predicted and/or known experimental line parameters are loaded alongside experimentally observed spectral line profiles for easy comparison between new experimental data and existing results. Many such line profiles, which could span numerous spectra, may be viewed simultaneously to help the user detect problems from line blending or self-absorption. Once the user has determined that their experimental line profile fits are good, a key feature of FAST is the ability to calculate atomic branching fractions, transition probabilities, and oscillator strengths-and their uncertainties-which is not provided by existing analysis packages. Program SummaryProgram title: FAST: The FTS Atomic Spectrum Tool Catalogue identifier: AEOW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 293058 No. of bytes in distributed program, including test data, etc.: 13809509 Distribution format: tar.gz Programming language: C++. Computer: Intel x86-based systems. Operating system: Linux/Unix/Windows. RAM: 8 MB minimum. About 50-200 MB for a typical analysis. Classification: 2.2, 2.3, 21.2. Nature of problem: Visualisation of atomic line spectra including the comparison of theoretical line parameters with experimental atomic line profiles. Accurate intensity calibration of experimental spectra, and the determination of observed relative line intensities that are needed for calculating atomic branching fractions and oscillator strengths. Solution method: FAST is centred around a graphical interface, where a user may view sets of experimental line profiles and compare them to calculated data (such as from the Kurucz database [1]), predicted line parameters, and/or previously known experimental results. With additional information on the spectral response of the spectrometer, obtained from a calibrated standard light source, FT spectra may be intensity calibrated. In turn, this permits the user to calculate atomic branching fractions and oscillator strengths, and their respective uncertainties. Running time: Open ended. Defined by the user. References: [1] R.L. Kurucz (2007). URL http://kurucz.harvard.edu/atoms/.

  1. An improved ultraviolet spectral line list for the symbiotic star RR Telescopii

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feibelman, W. A.

    1993-01-01

    We have remeasured wavelengths and intensities of International Ultraviolet Explorer (IUE) spectra of the symbiotic star, RR Tel. The main work is centered on the long 820 minute exposure high-resolution spectrum obtained on 1983 June 18. The list is intended to serve as a source of improved intensities and wavelengths for the ultraviolet spectrum of this star. A complete line list with intensities based on this exposure has not been published previously. The strongest spectral lines are saturated in the 820 minute exposure, and intensities for these lines are mostly obtained from a 20 minute exposure obtained on the same day. A few intensities are obtained from other exposures if neither the 820 nor the 20 minute exposure is satisfactory. There are 111 lines in our list between 1168 and 1980 A. Some of the very weakest lines may not be real. These are indicated by question marks. We also discuss some of the plasma diagnostics available using spectral lines of O v and O iv.

  2. Books on Atomic Energy for Adults and Children, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet in the "Understanding the Atom" series includes annotated bibliographies for children (grade level indicated) and adults. Over 100 basic books on atomic energy and closely related subjects are alphabetized by title and an author index. A list of publisher addresses are included. A brief introduction to library usage is given. The…

  3. Consensus Assignments for Water Vapor Lines Not Assigned on the HITRAN Database: 13,200 to 16,500/cm

    NASA Technical Reports Server (NTRS)

    Giver, Lawerence P.; Chackerian, Charles, Jr.; Freedman, Richard S.; Varanasi, Prasad; Gore, Warren (Technical Monitor)

    2000-01-01

    There are nearly 800 water Vapor-lines in the 13,200-16,500/cm region that do not have rovibrational assignments in the HITRAN database. The positions and intensities in the database were determined by Mandin et al., but assignments could not be determined at that time. Polyansky, et al. have now assigned over 600 of the unassigned lines in the 11,200-16,500/cm region. Schwenke has also given rovibrational assignments to many of these unassigned lines throughout the visible and near-infrared. Both articles changed the assignments of some HITRAN lines. Carleer et al. extend assignments to some weaker lines measured by them on new spectra with excellent signal/noise. However, some lines measured by Mandin et al. were omitted by Carleer, et al. because of blends due to lower spectral resolution. The rovibrational assignments of Polyansky et al. completely agree with those in Schwenke's article for only about 200 lines. However, Schwenke's ab initio line list is available on his internet site (http://ccf.arc.nasa.gov/-dschwenke). A detailed comparison of the Polyansky et al.line list, the Carleer et al.line list, and Schwenke's ab initio line list shows a larger number of agreements. In many cases the disagreement is only about the vibrational and/or rotational upper level, while there is agreement on the lower state assignment and energy level, "E", which is of primary importance for atmospheric applications. We will present a line list of "consensus" assignments in the 13,200-16,500/cm region for consideration of inclusion on the HITRAN and GEISA databases. This will substantially reduce the number of unassigned lines on the databases in this spectral region.

  4. Ames-2016 line lists for 13 isotopologues of CO2: Updates, consistency, and remaining issues

    NASA Astrophysics Data System (ADS)

    Huang (黄新川), Xinchuan; Schwenke, David W.; Freedman, Richard S.; Lee, Timothy J.

    2017-12-01

    A new 626-based Ames-2 PES refinement and Ames-2016 line lists for 13 CO2 isotopologues are reported. A consistent σRMS = ±0.02 cm-1 is established for hundreds of isotopologue band origins using the Ames-2 PES. Ames-2016 line lists are computed at 296 K, 1000 K and 4000 K using the Ames-2 PES and the same DMS-N2 dipole surface used previously, with J up to 150, E‧ up to 24,000 cm-1 or 18,000 cm-1 and appropriate intensity cutoffs. The lists are compared to the CDSD-296, CDSD-4000 databases, UCL line lists, and a few recent highly accurate CO2 intensity measurements. Both agreements and discrepancies are discussed. Compared to the old Ames CO2 lists, the Ames-2016 line lists have line position deviations reduced by 50% or more, which consequently leads to more reliable intensities. The line shape parameters in the Ames-2016 line lists are predicted using the newly assigned conventional vibrational polyad quantum numbers for rovibrational levels below 12,000 cm-1 so the quality of the line shape parameters is similar to that of CDSD or HITRAN. This study further proves that a semi-empirically refined PES (Ames-1 and Ames-2) coupled with a high quality ab initio DMS (DMS-N2 and UCL) may generate IR predictions with consistent accuracy and is thus helpful in the analysis of laboratory spectra and simulations of various isotopologues. The Ames-2016 lists based on DMS-N2 have reached the ∼1% intensity prediction accuracy level for the recent 626 30013-00001 and 20013-00001 bands, but further quantification and improvements require sub-percent or sub-half-percent accurate experimental intensities. The inter-isotopologue consistency of the intensity prediction accuracies should have reached better than 1-3% for regular bands not affected by resonances. Since the Effective Dipole Models (EDM) in CDSD and HITRAN have 1-20% or even larger uncertainties, we show that the Ames lists can provide better alternative IR data for many hard-to-determine isotopologue bands. Comparison at 4000 K suggests that the Ames-4000 K 12C16O2 line list is reliable and consistent within the current cutoffs of J ≤ 150 and E‧ ≤ 24,000 cm-1, but intensity contributions involving higher energy levels should not be omitted and future computations need to be converged up to at least 32,000 cm-1 or higher. The remaining issues are discussed regarding the source of energy level discrepancies, intensity underestimations by ∼50% for some weak bands, etc. and also future work.

  5. On-line atomic data access

    NASA Astrophysics Data System (ADS)

    Schultz, David R.; Nash, Jeffrey K.

    1996-07-01

    The need for atomic data is one which continues to expand in a wide variety of applications including fusion energy, astrophysics, laser-produced plasma research, and plasma processing. Modern computer database and communications technology enables this data to be placed on-line and obtained by users over the INTERNET. Presented here is a summary of the observations and conclusions regarding such on-line atomic data access derived from a forum held at the Tenth APS Topical Conference on Atomic Processes in Plasmas.

  6. List of gene variants developed for cancer cells from nine tissue types

    Cancer.gov

    NCI scientists have developed a comprehensive list of genetic variants for each of the types of cells that comprise what is known as the NCI-60 cell line collection. This new list adds depth to the most frequently studied human tumor cell lines in cancer

  7. A Bibliography of Basic Books on Atomic Energy, A World of the Atom Series Booklet.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    This booklet in the "World of the Atom" Series replaces the earlier Books on Atomic Energy for Adults and Children. It includes annotated bibliographies for children (grade level indicated) and adults. Over 60 books are classed as elementary and over 70 as advanced. These are alphabetized by title and also indexed by author. A list of…

  8. A Bibliography of Basic Books on Atomic Energy. Update.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC. Office of Information Services.

    This booklet, part of the United States Atomic Energy Commission's series of information booklets, lists selected commerically published books for the general public on atomic energy and closely related subjects. It includes annotated bibliographies for children (grade level indicated) and adults. The books are arranged by subject, alphabetized by…

  9. ExoMol molecular line lists - XXVII: spectra of C2H4

    NASA Astrophysics Data System (ADS)

    Mant, Barry P.; Yachmenev, Andrey; Yurchenko, Jonathan Tennyson Sergei N.

    2018-05-01

    A new line list for ethylene, 12C21H4 is presented. The line list is based on high level ab initiopotential energy and dipole moment surfaces. The potential energy surface is refined by fitting to experimental energies. The line list covers the range up to 7000 cm-1(1.43 μm) with all ro-vibrational transitions (50 billion) with the lower state below 5000 cm-1included and thus should be applicable for temperatures up to 700 K. A technique for computing molecular opacities from vibrational band intensities is proposed and used to provide temperature dependent cross sections of ethylene for shorter wavelength and higher temperatures. When combined with realistic band profiles (such as the proposed three-band model), the vibrational intensity technique offers a cheap but reasonably accurate alternative to the full ro-vibrational calculations at high temperatures and should be reliable for representing molecular opacities. The C2H4 line list, which is called MaYTY, is rmade available in electronic form from the CDS (http://cdsarc.u-strasbg.fr) and ExoMol (www.exomol.com) databases.

  10. A line parameter list for the nu2 and nu4 bands of /C-12/H4 and /C-13/H4, extended to J-prime = 25 and its application to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Robiette, A. G.

    1980-01-01

    Line parameters (transition frequencies, line strengths, line widths, ground state energies and quantum identifications) for the nu2 and nu4 bands of (C-12)H4 and (C-13)H4 have been calculated for J-prime equal to or less than 25 using the simultaneous coupled fitting procedure of Gray and Robiette. Molecular constants for the nu2 band of (C-13)H4 were estimated from isotopic shifts from (C-12)H4 values. Agreement with laboratory spectra, where available, is always well within 1 kayser over the entire spectral range covered by the list. The most serious problem in comparison with laboratory data is the omission of lines belonging to 'hot' bands in this spectral region. This list is valuable in remote sensing problems for sorting out lines of trace species from weak methane lines and for determining the atmospheric opacity in relatively transparent spectral regions. Applications of the parameter list are demonstrated for remote sounding of the Jovian atmosphere.

  11. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, I.; Simon, M. N.; Edwards, S.

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within themore » circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.« less

  12. Laboratory technology and cosmochemistry

    PubMed Central

    Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.

    2011-01-01

    Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689

  13. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  14. Ames S-32 O-16 O-18 Line List for High-Resolution Experimental IR Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2016-01-01

    By comparing to the most recent experimental data and spectra of the SO2 628 ?1/?3 bands (see Ulenikov et al., JQSRT 168 (2016) 29-39), this study illustrates the reliability and accuracy of the Ames-296K SO2 line list, which is accurate enough to facilitate such high-resolution spectroscopic analysis. The SO2 628 IR line list is computed on a recently improved potential energy surface (PES) refinement, denoted Ames-Pre2, and the published purely ab initio CCSD(T)/aug-cc-pVQZ dipole moment surface. Progress has been made in both energy level convergence and rovibrational quantum number assignments agreeing with laboratory analysis models. The accuracy of the computed 628 energy levels and line list is similar to what has been achieved and reported for SO2 626 and 646, i.e. 0.01-0.03 cm(exp -1) for bands up to 5500 cm(exp -1). During the comparison, we found some discrepancies in addition to overall good agreements. The three-IR-list based feature-by-feature analysis in a 0.25 cm(exp -1) spectral window clearly demonstrates the power of the current Ames line lists with new assignments, correction of some errors, and intensity contributions from varied sources including other isotopologues. We are inclined to attribute part of detected discrepancies to an incomplete experimental analysis and missing intensity in the model. With complete line position, intensity, and rovibrational quantum numbers determined at 296 K, spectroscopic analysis is significantly facilitated especially for a spectral range exhibiting such an unusually high density of lines. The computed 628 rovibrational levels and line list are accurate enough to provide alternatives for the missing bands or suspicious assignments, as well as helpful to identify these isotopologues in various celestial environments. The next step will be to revisit the SO2 828 and 646 spectral analyses.

  15. Efficient Maintenance and Update of Nonbonded Lists in Macromolecular Simulations.

    PubMed

    Chowdhury, Rezaul; Beglov, Dmitri; Moghadasi, Mohammad; Paschalidis, Ioannis Ch; Vakili, Pirooz; Vajda, Sandor; Bajaj, Chandrajit; Kozakov, Dima

    2014-10-14

    Molecular mechanics and dynamics simulations use distance based cutoff approximations for faster computation of pairwise van der Waals and electrostatic energy terms. These approximations traditionally use a precalculated and periodically updated list of interacting atom pairs, known as the "nonbonded neighborhood lists" or nblists, in order to reduce the overhead of finding atom pairs that are within distance cutoff. The size of nblists grows linearly with the number of atoms in the system and superlinearly with the distance cutoff, and as a result, they require significant amount of memory for large molecular systems. The high space usage leads to poor cache performance, which slows computation for large distance cutoffs. Also, the high cost of updates means that one cannot afford to keep the data structure always synchronized with the configuration of the molecules when efficiency is at stake. We propose a dynamic octree data structure for implicit maintenance of nblists using space linear in the number of atoms but independent of the distance cutoff. The list can be updated very efficiently as the coordinates of atoms change during the simulation. Unlike explicit nblists, a single octree works for all distance cutoffs. In addition, octree is a cache-friendly data structure, and hence, it is less prone to cache miss slowdowns on modern memory hierarchies than nblists. Octrees use almost 2 orders of magnitude less memory, which is crucial for simulation of large systems, and while they are comparable in performance to nblists when the distance cutoff is small, they outperform nblists for larger systems and large cutoffs. Our tests show that octree implementation is approximately 1.5 times faster in practical use case scenarios as compared to nblists.

  16. A Rutherford Scattering Simulation with Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Calle, Carlos I.; Wright, Lavonia F.

    1989-01-01

    Lists a program for a simulation of Rutherford's gold foil experiment in BASIC for both Apple II and IBM compatible computers. Compares Rutherford's model of the atom with Thompson's plum pudding model of the atom. (MVL)

  17. Theoretical hot methane line lists up to T = 2000 K for astrophysical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rey, M.; Tyuterev, Vl. G.; Nikitin, A. V., E-mail: michael.rey@univ-reims.fr

    2014-07-01

    The paper describes the construction of complete sets of hot methane lines based on accurate ab initio potential and dipole moment surfaces and extensive first-principle calculations. Four line lists spanning the [0-5000] cm{sup –1} infrared region were built at T = 500, 1000, 1500, and 2000 K. For each of these four temperatures, we have constructed two versions of line lists: a version for high-resolution applications containing strong and medium lines and a full version appropriate for low-resolution opacity calculations. A comparison with available empirical databases is discussed in detail for both cold and hot bands giving a very goodmore » agreement for line positions, typically <0.1-0.5 cm{sup –1} and ∼5% for intensities of strong lines. Together with numerical tests using various basis sets, this confirms the computational convergence of our results for the most important lines, which is the major issue for theoretical spectra predictions. We showed that transitions with lower state energies up to 14,000 cm{sup –1} could give significant contributions to the methane opacity and have to be systematically taken into account. Our list at 2000 K calculated up to J = 50 contains 11.5 billion transitions for I > 10{sup –29} cm mol{sup –1}. These new lists are expected to be quantitatively accurate with respect to the precision of available and currently planned observations of astrophysical objects with improved spectral resolution.« less

  18. Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.

    2004-05-01

    We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.

  19. Small Molecules-Big Data.

    PubMed

    Császár, Attila G; Furtenbacher, Tibor; Árendás, Péter

    2016-11-17

    Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to "weakest links" of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational-Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling efforts in chemistry, physics, and engineering.

  20. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. III. Theory for the multilevel atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. We discuss the case of lines formed by scattering, which comprises both coherent and incoherent scattering. Both processes contribute to form the line profiles in the so-called second solar spectrum, which is the spectrum of the linear polarization of such lines observed close to the solar limb. However, most of the lines cannot be simply modeled with a two-level or two-term atom model, and we present a generalized formalism for this purpose. Aims: The aim is to obtain a formalism that is able to describe scattering in line centers (resonant scattering or incoherent scattering) and in far wings (Rayleigh/Raman scattering or coherent scattering) for a multilevel and multiline atom. Methods: The method is designed to overcome the Markov approximation, which is often performed in the atom-photon interaction description. The method was already presented in the two first papers of this series, but the final equations of those papers were for a two-level atom. Results: We present here the final equations generalized for the multilevel and multiline atom. We describe the main steps of the theoretical development, and, in particular, how we performed the series development to overcome the Markov approximation. Conclusions: The statistical equilibrium equations for the atomic density matrix and the radiative transfer equation coefficients are obtained with line profiles. The Doppler redistribution is also taken into account because we show that the statistical equilibrium equations must be solved for each atomic velocity class.

  1. Treatment of atomic and molecular line blanketing by opacity sampling

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Krupp, B. M.

    1976-01-01

    A sampling technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is subjected to several tests. In this opacity sampling (OS) technique, the global opacity is sampled at only a selected set of frequencies, and at each of these frequencies the total monochromatic opacity is obtained by summing the contribution of every relevant atomic and molecular line. In accord with previous results, we find that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 100 frequency points are adequate for many purposes. The effects of atomic and molecular lines are separately studied. A test model computed using the OS method agrees very well with a model having identical atmospheric parameters, but computed with the giant line (opacity distribution function) method.

  2. Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans

    NASA Technical Reports Server (NTRS)

    Lawrence, G. M.; Stone, E. J.; Kley, D.

    1976-01-01

    A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.

  3. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  4. Atom probe field ion microscopy and related topics: A bibliography 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  5. Index to the Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This index was prepared for the set of 51 booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school students and their teachers. In addition to the index, a complete list of the series is provided in which the booklets are grouped into the categories of physics, chemistry, biology, nuclear…

  6. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  7. Numerical list of U.S. Geological Survey trace elements reports to September 15, 1952

    USGS Publications Warehouse

    Wallace, Jane H.; Blatcher, Virginia K.

    1952-01-01

    This report lists in numerical order U.S. Geological Survey Trace Elements Investigations and Memorandum Reports and supersedes a similar report issued in January 1952 (TEI-202). This report contains lists not only of reports that have been transmitted to the U.S. Atomic Energy Commission, that is, those reports followed by a date, but also those reports for which tentative titles were available prior to the date of completion of this list, September 14, 1952. The reports that are in preparation and subject to change in title are indicated by an asterisk. The classifications that are shown for some of the reports issued prior to 1947 are uncertain; classifications shown are based on the best information available at the time that this report was prepared. To keep the numerical lists up to date, periodic supplements will be issued. The supplementary pages will be prepared so that they can be substituted for the pages in the present report. The Geological Survey does not have additional copies for permanent distribution of most of the reports listed, but copies of many of the completed reports can be loaned to organizations or individuals who are cooperating with the Atomic Energy Commission.

  8. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  9. Numerical list of U.S. Geological Survey Trace Elements Reports to April 30, 1953

    USGS Publications Warehouse

    Blatcher, Virginia K.; Wallace, Jane H.

    1953-01-01

    This report contains 1) a list in numerical order of U.S. Geological Survey Trace Elements Investigations and Memorandum Reports, and 2) an author index for these reports. It supercedes TEI-30, issued in November 1952. This report contains lists not only of reports that have been transmitted to the U.S Atomic Energy Commission, that is, those reports followed by a date, but also those reports for which tentative titles were available prior to the date of completion of this list, April 30, 1953. The reports that are in preparation and subject to change in title are indicated by an asterisk. The classifications that are shown for some of the reports issued prior to 1947 are uncertain: classifications shown are based on the best information available at the time that this report was prepared. The Geological Survey does not have additional copies for permanent distribution of most of the reports listed, but copies of many of the completed reports can be loaned to organizations or individuals who are cooperating with the Atomic Energy Commission.

  10. Treatment of atomic and molecular line blanketing by opacity sampling. [atmospheric optics - stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Krupp, B. M.

    1975-01-01

    An opacity sampling (OS) technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is presented. Tests were conducted and results show that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 500 frequency points is often adequate. The effects of atomic and molecular lines are separately studied. A test model computed by using the OS method agrees very well with a model having identical atmospheric parameters computed by the giant line (opacity distribution function) method.

  11. The AME2016 atomic mass evaluation (II). Tables, graphs and references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng; Audi, G.; Kondev, F. G.

    This paper is the second part of the new evaluation of atomic masses, Ame2016. Using least-squares adjustments to all evaluated and accepted experimental data, described in Part I, we derive tables with numerical values and graphs to replace those given in Ame2012. The first table lists the recommended atomic mass values and their uncertainties. It is followed by a table of the influences of data on primary nuclides, a table of various reaction and decay energies, and finally, a series of graphs of separation and decay energies. The last section of this paper lists all references of the input datamore » used in the Ame2016 and the Nubase2016 evaluations (first paper in this issue). Amdc: http://amdc.impcas.ac.cn/« less

  12. A near infrared line list for NH3: Analysis of a Kitt Peak spectrum after 35 years

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Béguier, Serge; Campargue, Alain

    2016-07-01

    A Fourier Transform (FT) absorption spectrum of room temperature NH3 in the region 7400-8640 cm-1 is analysed using a variational line list and ground state energies determined using the MARVEL procedure. The spectrum was measured by Dr. Catherine de Bergh in 1980 and is available from the Kitt Peak data center. The centers and intensities of 8468 ammonia lines were retrieved using a multiline fitting procedure. 2474 lines are assigned to 21 bands providing 1692 experimental energies in the range 7500-9200 cm-1. The spectrum was assigned by the joint use of the BYTe variational line list and combination differences. The assignments and experimental energies presented in this work are the first for ammonia in the region 7400-8640 cm-1, considerably extending the range of known vibrational-excited states.

  13. 41 CFR 109-1.100-51 - Definitions and acronyms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear-related material, equipment, and related technology as described in the International Atomic..., material, or technology as described in the Nuclear Suppliers Group Trigger List and Dual-Use List, or equipment, material or technology used in the research, design, development, testing, or production of...

  14. 41 CFR 109-1.100-51 - Definitions and acronyms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nuclear-related material, equipment, and related technology as described in the International Atomic..., material, or technology as described in the Nuclear Suppliers Group Trigger List and Dual-Use List, or equipment, material or technology used in the research, design, development, testing, or production of...

  15. 41 CFR 109-1.100-51 - Definitions and acronyms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear-related material, equipment, and related technology as described in the International Atomic..., material, or technology as described in the Nuclear Suppliers Group Trigger List and Dual-Use List, or equipment, material or technology used in the research, design, development, testing, or production of...

  16. TheoReTS - An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Rey, Michaël; Nikitin, Andrei V.; Babikov, Yurii L.; Tyuterev, Vladimir G.

    2016-09-01

    Knowledge of intensities of rovibrational transitions of various molecules and theirs isotopic species in wide spectral and temperature ranges is essential for the modeling of optical properties of planetary atmospheres, brown dwarfs and for other astrophysical applications. TheoReTS ("Theoretical Reims-Tomsk Spectral data") is an Internet accessible information system devoted to ab initio based rotationally resolved spectra predictions for some relevant molecular species. All data were generated from potential energy and dipole moment surfaces computed via high-level electronic structure calculations using variational methods for vibration-rotation energy levels and transitions. When available, empirical corrections to band centers were applied, all line intensities remaining purely ab initio. The current TheoReTS implementation contains information on four-to-six atomic molecules, including phosphine, methane, ethylene, silane, methyl-fluoride, and their isotopic species 13CH4 , 12CH3D , 12CH2D2 , 12CD4 , 13C2H4, … . Predicted hot methane line lists up to T = 2000 K are included. The information system provides the associated software for spectra simulation including absorption coefficient, absorption and emission cross-sections, transmittance and radiance. The simulations allow Lorentz, Gauss and Voight line shapes. Rectangular, triangular, Lorentzian, Gaussian, sinc and sinc squared apparatus function can be used with user-defined specifications for broadening parameters and spectral resolution. All information is organized as a relational database with the user-friendly graphical interface according to Model-View-Controller architectural tools. The full-featured web application is written on PHP using Yii framework and C++ software modules. In case of very large high-temperature line lists, a data compression is implemented for fast interactive spectra simulations of a quasi-continual absorption due to big line density. Applications for the TheoReTS may include: education/training in molecular absorption/emission, radiative and non-LTE processes, spectroscopic applications, opacity calculations for planetary and astrophysical applications. The system is freely accessible via internet on the two mirror sites: in Reims, France

  17. An Empirical Spectroscopic Database for Acetylene in the Regions of 5850-9415 CM^{-1}

    NASA Astrophysics Data System (ADS)

    Campargue, Alain; Lyulin, Oleg

    2017-06-01

    Six studies have been recently devoted to a systematic analysis of the high-resolution near infrared absorption spectrum of acetylene recorded by Cavity Ring Down spectroscopy (CRDS) in Grenoble and by Fourier-transform spectroscopy (FTS) in Brussels and Hefei. On the basis of these works, in the present contribution, we construct an empirical database for acetylene in the 5850 - 9415 \\wn region excluding the 6341-7000 \\wn interval corresponding to the very strong νb{1}+ νb{3} manifold. The database gathers and extends information included in our CRDS and FTS studies. In particular, the intensities of about 1700 lines measured by CRDS in the 7244-7920 \\wn are reported for the first time together with those of several bands of ^{12}C^{13}CH_{2} present in natural isotopic abundance in the acetylene sample. The Herman-Wallis coefficients of most of the bands are derived from a fit of the measured intensity values. A recommended line list is provided with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities calculated using the derived Herman-Wallis coefficients. This approach allows completing the experimental list by adding missing lines and improving poorly determined positions and intensities. As a result the constructed line list includes a total of 10973 lines belonging to 146 bands of ^{12}C_{2}H_{2} and 29 bands of ^{12}C^{13}CH_{2}. For comparison the HITRAN2012 database in the same region includes 869 lines of 14 bands, all belonging to ^{12}C_{2}H_{2}. Our weakest lines have an intensity on the order of 10^{-29} cm/molecule,about three orders of magnitude smaller than the HITRAN intensity cut off. Line profile parameters are added to the line list which is provided in HITRAN format. The comparison to the HITRAN2012 line list or to results obtained using the global effective operator approach is discussed in terms of completeness and accuracy.

  18. New accurate theoretical line lists of 12CH4 and 13CH4 in the 0-13400 cm-1 range: Application to the modeling of methane absorption in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Rey, Michaël; Nikitin, Andrei V.; Bézard, Bruno; Rannou, Pascal; Coustenis, Athena; Tyuterev, Vladimir G.

    2018-03-01

    The spectrum of methane is very important for the analysis and modeling of Titan's atmosphere but its insufficient knowledge in the near infrared, with the absence of reliable absorption coefficients, is an important limitation. In order to help the astronomer community for analyzing high-quality spectra, we report in the present work the first accurate theoretical methane line lists (T = 50-350 K) of 12CH4 and 13CH4 up to 13400 cm-1 ( > 0.75 μm). These lists are built from extensive variational calculations using our recent ab initio potential and dipole moment surfaces and will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru). Validation of these lists is presented throughout the present paper. For the sample of lines where upper energies were available from published analyses of experimental laboratory 12CH4 spectra, small empirical corrections in positions were introduced that could be useful for future high-resolution applications. We finally apply the TheoRetS line list to model Titan spectra as observed by VIMS and by DISR, respectively onboard Cassini and Huygens. These data are used to check that the TheoReTS line lists are able to model observations. We also make comparisons with other experimental or theoretical line lists. It appears that TheoRetS gives very reliable results better than ExoMol and even than HITRAN2012, except around 1.6 μm where it gives very similar results. We conclude that TheoReTS is suitable to be used for the modeling of planetary radiative transfer and photometry. A re-analysis of spectra recorded by the DISR instrument during the descent of the Huygens probe suggests that the CH4 mixing ratio decreases with altitude in Titan's stratosphere, reaching a value of ∼10-2 above the 110 km altitude.

  19. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  20. Bibliography of Nuclear Education Resources.

    ERIC Educational Resources Information Center

    Alexander, Susan, Ed.

    Provided in this bibliography is a listing of nuclear education books and resource materials. Entries (most of which are annotated) are presented under these headings: action; arms control and negotiations; arms race; the arts; atomic energy; atomic testing; bibliographies; civil defense; conference proceedings; conflict solving; conversion;…

  1. CHANDRA Observations of the Corona of AU Mic (dM1e)

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Brown, A.; Osten, R. A.

    2002-05-01

    The dM1e flare star AU Mic (HD 197481, Gl 803) is the most luminous flare star in X-rays within 10 pc of the Sun. We observed the star in November 2000 for 60 ks using Chandra's High Energy Transmission Grating Spectrometer and ACIS-S detector. Since the X-ray flux was remarkably constant during this interval with only one small flare, the results we present refer to the quiescent state of the stellar corona. We have analyzed the Chandra spectra using the approach described by Osten et al (2002) for the analysis of similar observations of the active binary σ 2 CrB. We used CIAO2.0 "threads" and custom IDL procedures applied to the reprocessed Level 2 file. For the spectral line identification and atomic parameters, we used the APEC v1.10 line list. We derive the coronal emission measure distribution and abundances from the emission lines and continuum in the Chandra data set and the emission lines observed by EUVE during similar quiescent periods. The coronal model is compared with the fluxes of Fe XXI 1354A observed by STIS and Fe XVIII 975A observed by FUSE and with the lower temperature emission measure distribution obtained by Pagano et al (2000) from quiescent STIS observations. We acknowledge support by NASA through grant H-04630D to NIST and the University of Colorado.

  2. Comprehensive analysis of NMR data using advanced line shape fitting.

    PubMed

    Niklasson, Markus; Otten, Renee; Ahlner, Alexandra; Andresen, Cecilia; Schlagnitweit, Judith; Petzold, Katja; Lundström, Patrik

    2017-10-01

    NMR spectroscopy is uniquely suited for atomic resolution studies of biomolecules such as proteins, nucleic acids and metabolites, since detailed information on structure and dynamics are encoded in positions and line shapes of peaks in NMR spectra. Unfortunately, accurate determination of these parameters is often complicated and time consuming, in part due to the need for different software at the various analysis steps and for validating the results. Here, we present an integrated, cross-platform and open-source software that is significantly more versatile than the typical line shape fitting application. The software is a completely redesigned version of PINT ( https://pint-nmr.github.io/PINT/ ). It features a graphical user interface and includes functionality for peak picking, editing of peak lists and line shape fitting. In addition, the obtained peak intensities can be used directly to extract, for instance, relaxation rates, heteronuclear NOE values and exchange parameters. In contrast to most available software the entire process from spectral visualization to preparation of publication-ready figures is done solely using PINT and often within minutes, thereby, increasing productivity for users of all experience levels. Unique to the software are also the outstanding tools for evaluating the quality of the fitting results and extensive, but easy-to-use, customization of the fitting protocol and graphical output. In this communication, we describe the features of the new version of PINT and benchmark its performance.

  3. Self-interference of split HOLZ line (SIS-HOLZ) for z-dependent atomic displacement measurement: Theoretical discussion.

    PubMed

    Norouzpour, Mana; Rakhsha, Ramtin; Herring, Rodney

    2017-06-01

    A characteristic of the majority of semiconductors is the presence of lattice strain varying with the nanometer scale. Strain originates from the lattice mismatch between layers of different composition deposited during epitaxial growth. Strain can increase the mobility of the charge carriers by the band gap reduction. So, measuring atomic displacement inside crystals is an important field of interest in semiconductor industry. Among all available transmission electron microscopy techniques offering nano-scale resolution measurements, convergent beam electron diffraction (CBED) patterns show the highest sensitivity to the atomic displacement. Higher Order Laue Zone (HOLZ) lines split by small non-uniform variations of lattice constant allowing to measure the atomic displacement through the crystal. However, it could only reveal the atomic displacement in two dimensions, i.e., within the x-y plane of the thin film of TEM specimen. The z-axis atomic displacement which is along the path of the electron beam has been missing. This information can be obtained by recovering the phase information across the split HOLZ line using the self-interference of the split HOLZ line (SIS-HOLZ). In this work, we report the analytical approach used to attain the phase profile across the split HOLZ line. The phase profile is studied for three different atomic displacement fields in the Si substrate at 80nm away from its interface with Si/Si 0.8 Ge 0.2 superlattices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Do McKinnon lists provide reliable data in bird species frequency? A comparison with transect-based data

    NASA Astrophysics Data System (ADS)

    Cento, Michele; Scrocca, Roberto; Coppola, Michele; Rossi, Maurizio; Di Giuseppe, Riccardo; Battisti, Corrado; Luiselli, Luca; Amori, Giovanni

    2018-05-01

    Although occurrence-based listing methods could provide reliable lists of species composition for a site, the effective reliability of this method to provide more detailed information about species frequency (and abundance) has been rarely tested. In this paper, we compared the species frequencies obtained for the same set of species-rich sites (wetlands of central Italy) from two different methods: McKinnon lists and line transects. In all sites we observed: (i) rapid cumulating curves of line transect abundance frequencies toward the asymptote represented by the maximum value in McKinnon occurrence frequency; (ii) a large amount of species having a low frequency with line transect method showing a high range of variation in frequency obtained by McKinnon lists; (iii) a set of species having a subdominant (>0.02-<0.05) and dominant species (>0.05) frequency with line transect showed all the highest value in McKinnon frequency. McKinnon lists provides only a coarse-grained proxy of species frequency of individuals distinguishing only between common species (having the highest values of McKinnon frequency) and rare species (all the other species). Although McKinnon lists have some points of strength, this method does not discriminate the frequencies inside the subset of common species (sub-dominant and dominant species). Therefore, we suggest a cautionary approach when McKinnon frequencies should be used to obtain complex univariate metrics of diversity.

  5. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  6. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  7. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  8. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  9. 10 CFR 110.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... commodities on the Commerce Control List that are subject to the nuclear non-proliferation export licensing... group of nations concluded under section 123 of the Atomic Energy Act. Atomic Energy Act means the... surrounding environment. Dual-use means equipment and materials that may be used in nuclear or non-nuclear...

  10. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  11. Observability of atomic line features in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Wunner, G.; Ruder, H.; Herold, H.; Truemper, J.

    1981-01-01

    The physical properties of atoms in superstrong magnetic fields, characteristic of neutron stars, and the possibility of detecting magnetically strongly shifted atomic lines in the spectra of magnetized X-ray pulsars are discussed. It is suggested that it is recommendable to look for magnetically strongly shifted Fe 26 Lyman lines in rotating neutron stars of not too high luminosity using spectrometers working in the energy range 10 - 20 keV, with sensitivities to minus 4 power photons per sq cm and second, and resolution E/delta E approx. 10-100.

  12. 76 FR 72387 - Order Relating to Xun Wang

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... subject to the Regulations, to Pakistan, through China, for use in the Chasma 2 nuclear power plant that was under construction in Islamabad, Pakistan, and was a subordinate entity under the ownership and control of the Pakistan Atomic Energy Commission (``PAEC''), an entity that is listed on the Entity List...

  13. Curved-line search algorithm for ab initio atomic structure relaxation

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang

    2017-09-01

    Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.

  14. Smooth Scaling of Valence Electronic Properties in Fullerenes: From One Carbon Atom, to C60, to Graphene

    DTIC Science & Technology

    2012-09-18

    Smooth scaling of valence electronic properties in fullerenes: from one carbon atom , to C60, to graphene Greyson R. Lewis,1 William E. Bunting,1...pacitance scaling lines of the fullerenes. Lastly, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for...icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom , through C60, to graphene. I

  15. Collisional-radiative nonequilibrium in partially ionized atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.; Soon, W. H.

    1989-01-01

    A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.

  16. Modeling of atomic systems for atomic clocks and quantum information

    NASA Astrophysics Data System (ADS)

    Arora, Bindiya

    This dissertation reports the modeling of atomic systems for atomic clocks and quantum information. This work is motivated by the prospects of optical frequency standards with trapped ions and the quantum computation proposals with neutral atoms in optical lattices. Extensive calculations of the electric-dipole matrix elements in monovalent atoms are conducted using the relativistic all-order method. This approach is a linearized version of the coupled-cluster method, which sums infinite sets of many-body perturbation theory terms. All allowed transitions between the lowest ns, np1/2, np 3/2 states and a large number of excited states of alkali-metal atoms are evaluated using the all-order method. For Ca+ ion, additional allowed transitions between nd5/2, np 3/2, nf5/2, nf 7/2 states and a large number of excited states are evaluated. We combine D1 lines measurements by Miller et al. [18] with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4pj - 3d j' transitions in K and for the 5pj - 4dj' transitions in Rb to high precision. The resulting electric-dipole matrix elements are used for the high-precision calculation of frequency-dependent polarizabilities of ground state of alkali atoms. Our values of static polarizabilities are found to be in excellent agreement with available experiments. Calculations were done for the wavelength in the range 300--1600 nm, with particular attention to wavelengths of common infrared lasers. We parameterize our results so that they can be extended accurately to arbitrary wavelengths above 800 nm. Our data can be used to predict the oscillation frequencies of optically-trapped atoms, and particularly the ratios of frequencies of different species held in the same trap. We identify wavelengths at which two different alkali atoms have the same oscillation frequency. We present results of all-order calculations of static and frequency-dependent polarizabilities of excited np1/2 and np3/2 state in Na, K, Rb, and Cs atoms and evaluate the uncertainties of these values. Both scalar and tensor part of the p state polarizability were calculated. This made the calculations complicated owing to the contributions from p--d transitions. The static polarizability values are found to be in excellent agreement with previous experimental and theoretical results. We used our calculations to identify the "magic" wavelengths at which the ac polarizabilities of the alkali-metal atoms in the ground state are equal to the ac polarizabilities in the excited npj states facilitating state-insensitive cooling and trapping. We list the results for the np 1/2 and np3/2 states separately. Depending on the mj sub levels, the total polarizability of the np3/2 state was calculated either as the sum or as the difference of scalar and tensor contributions. We pointed out the complications involved in the magic wavelength calculations for the mj = +/-3/2 sub levels. We also study the magic wavelengths for transitions between particular np3/2 F'M' and nsFM hyperfine sub levels. We have proposed a scheme for state-insensitive trapping of neutral atoms by using two-color light at convenient wavelengths. In this scheme, we predict the values of trap and control wavelengths for which the 5s and 5p3/2 levels in Rb atom have same ac Stark shifts in the presence of two laser fields. We also list the trap and control wavelength combinations where one of the laser wavelengths is double the other. The results were listed at same and different trap and control laser intensities. This scheme allows to select convenient and easily available laser wavelength for experiments where it is essential to precisely localize and control neutral atoms with minimum decoherence. Motivated by the prospect of an optical frequency standard based on 43Ca+, we calculate the blackbody radiation (BBR) shift of the 4s1/2-3d5/2 clock transition of an optical frequency standard based on 43Ca+. We describe the study of the Rydberg-Rydberg interactions for quantum gates with neutral atoms and decoherence mechanisms in the Rydberg gate scheme. We have also studied the properties and decoherence processes of the Rydberg states as they are needed for the understanding of possible achievable gate fidelity. (Abstract shortened by UMI.)

  17. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Kurucz, Robert L.

    2004-01-01

    I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed forbidden line lists both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expend to all ions of the first thirty elements to treat far UV end X-ray spectra, and for envelope opacities. I also include triatomic molecules providing by other researchers. I have made CDs with Partridge and Schwanke's water data for work on M stars.The luna data also serve as input to my model atmosphere and synthesis programs that generated energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the line identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observer. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my web site and represent a unique resource for many NASA programs.

  18. Clinically relevant transmitted drug resistance to first line antiretroviral drugs and implications for recommendations.

    PubMed

    Monge, Susana; Guillot, Vicente; Alvarez, Marta; Chueca, Natalia; Stella, Natalia; Peña, Alejandro; Delgado, Rafael; Córdoba, Juan; Aguilera, Antonio; Vidal, Carmen; García, Federico

    2014-01-01

    The aim was to analyse trends in clinically relevant resistance to first-line antiretroviral drugs in Spain, applying the Stanford algorithm, and to compare these results with reported Transmitted Drug Resistance (TDR) defined by the 2009 update of the WHO SDRM list. We analysed 2781 sequences from ARV naive patients of the CoRIS cohort (Spain) between 2007-2011. Using the Stanford algorithm "Low-level resistance", "Intermediate resistance" and "High-level resistance" categories were considered as "Resistant". 70% of the TDR found using the WHO list were relevant for first-line treatment according to the Stanford algorithm. A total of 188 patients showed clinically relevant resistance to first-line ARVs [6.8% (95%Confidence Interval: 5.8-7.7)], and 221 harbored TDR using the WHO list [7.9% (6.9-9.0)]. Differences were due to a lower prevalence in clinically relevant resistance for NRTIs [2.3% (1.8-2.9) vs. 3.6% (2.9-4.3) by the WHO list] and PIs [0.8% (0.4-1.1) vs. 1.7% (1.2-2.2)], while it was higher for NNRTIs [4.6% (3.8-5.3) vs. 3.7% (3.0-4.7)]. While TDR remained stable throughout the study period, clinically relevant resistance to first line drugs showed a significant trend to a decline (p = 0.02). Prevalence of clinically relevant resistance to first line ARVs in Spain is decreasing, and lower than the one expected looking at TDR using the WHO list. Resistance to first-line PIs falls below 1%, so the recommendation of screening for TDR in the protease gene should be questioned in our setting. Cost-effectiveness studies need to be carried out to inform evidence-based recommendations.

  19. Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process

    NASA Astrophysics Data System (ADS)

    Zielinska, S.; Pellerin, S.; Dzierzega, K.; Valensi, F.; Musiol, K.; Briand, F.

    2010-11-01

    The particular character of the welding arc working in pure argon, whose emission spectrum consists of many spectral lines strongly broadened by the Stark effect, has allowed measurement, sometimes for the first time, of the Stark parameters of 15 Mn I and 10 Fe I atomic spectral lines, and determination of the dependence on temperature of normalized Stark broadening in Ne = 1023 m-3 of the 542.4 nm atomic iron line. These results show that special properties of the MIG plasma may be useful in this domain because composition of the wire-electrode may be easily adapted to the needs of an experiment.

  20. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  1. Infrared CO line for the X 1 Sigma(+) state

    NASA Technical Reports Server (NTRS)

    Goorvitch, D.

    1994-01-01

    A complete line list with improved accuracy for all the rotation-vibration transitions of the fundamental, first, and second overtone bands up to v = 20 and J = 149 of the gradual state X 1 Sigma(+) of the seven CO isotopes -- (12)C(16)O, (13)C(16)O, (12)C(17)O, (12)C(18)O, (13)C(18)O, (14)C(16)O, and (13)c(17)O -- is made available to the astronomical community. A line list of the pure rotational transitions up to v = 5 and J = 60 is also made available for these seven isotopes. This line list contains the transition frequency, the lower state energy, the Einstein A-value, the g f-value, the transition strength at 3000 K or 1000 K for the pure rotational transitions, the expectation value of the effective dipole moment operator, and the quantum numbers of each transition. Individual partition functions are reported in the temperature range of 500 to 10,000 K. This line list is available as four text files from the author using an anonymous file transfer protocol (ftp) transfer and in computer-readable form in the AAS CD-ROM Series, Vol. 3.

  2. Narrow Line Cooling of 88Sr Atoms in the Magneto-optical Trap for Precision Frequency Standard

    NASA Astrophysics Data System (ADS)

    Strelkin, S. A.; Galyshev, A. A.; Berdasov, O. I.; Gribov, A. Yu.; Sutyrin, D. V.; Khabarova, K. Yu.; Kolachevsky, N. N.; Slyusarev, S. N.

    We report on our progress toward the realization of a Strontium optical lattice clock, which is under development at VNIIFTRI as a part of GLONASS program. We've prepared the narrow line width laser system for secondary cooling of 88Sr atoms which allows us to reach atom cloud temperature below 3 μK after second cooling stage.

  3. A calibration line list for 807-1167 cm -1 from high resolution Fourier spectroscopy of the 14NH3 nu sub 2 band

    NASA Technical Reports Server (NTRS)

    Hillman, J. J.; Jennings, D. E.; Brault, J. W.

    1982-01-01

    A calibration list of 295 lines observed over the 800 to 1170 cm to the -1 power region is presented. This list is intended for use as a calibration reference for calibrating diode laser spectra. The transition frequencies were calibrated against the well established laser frequencies of CO2. The estimated uncertainty in the corrected frequencies is + or - 1x.0001 cm to the -1 power.

  4. Ultraviolet continuum absorption /less than about 1000 A/ above the quiet sun transition region

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feldman, U.

    1982-01-01

    Lyman continuum absorption shortward of 912 A in the quiet sun solar transition region is investigated by combining spectra obtained from the Apollo Telescope Mount experiments on Skylab. The most recent atomic data are used to compute line intensities for lines that fall on both sides of the Lyman limit. Lines of O III, O IV, O V, and S IV are considered. The computed intensity ratios of most lines from O IV, O V, and S IV agree with the experimental ratios to within a factor of 2. However, the discrepancies show no apparent wavelength dependence. From this fact, it is concluded that at least part of the discrepancy between theory and observation for lines of these ions can be accounted for by uncertainties in instrumental calibration and atomic data. However, difficulties remain in reconciling observation and theory, particularly for lines of O III, and one line of S IV. The other recent results of Schmahl and Orrall (1979) are also discussed in terms of newer atomic data.

  5. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    NASA Technical Reports Server (NTRS)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  6. Polarization of submillimetre lines from interstellar medium

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  7. Final Technical Report for Award DESC0011912, "Trimodal Tapping Mode Atomic Force Microscopy: Simultaneous 4D Mapping of Conservative and Dissipative Probe-Sample Interactions of Energy-Relevant Materials”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solares, Santiago D.

    The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.

  8. CORRIGENDUM: KochenÂ-Specker vectors

    NASA Astrophysics Data System (ADS)

    Pavicic, M.; Merlet, J.-P.; McKay, B.; Megill, N. D.

    2005-04-01

    Some reference citations in the text of this paper are incorrect and should be amended as listed below. The reference list is correct as published. Page 1579, line 5: [23, 34, 38, 39] should read [23, 34, 35, 36] Page 1579, line 9: [40] should read [37] Page 1580, line 8: [31, 33, 35] should read [31, 33, 38] Page 1580, line 14: [36] should read [39] Page 1580, line 36: [36] should read [39] Page 1580, line 38: [37] should read [40] Page 1580, line 42: [38] should read [35] Page 1581, line 3 of caption: [33, 35] should read [33, 38] Page 1583, line 12: [41] should read [42] Page 1587, line 9: [39] should read [36] Page 1587, line 11: [39] should read [36] Page 1587, line 18: [38, 39] should read [35, 36] Page 1587, line 37: [39] should read [36] Page 1589, line 18: [39, 46, 47] should read [36, 46, 47] Page 1590, line 2: [39] should read [36] age 1590, line 3: [39] should read [36

  9. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  10. Mg I as a probe of the solar chromosphere - The atomic model

    NASA Technical Reports Server (NTRS)

    Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf

    1988-01-01

    This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.

  11. The role of atomic lines in radiation heating of the experimental space vehicle Fire-II

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2015-10-01

    The results of calculating the convective and radiation heating of the Fire-II experimental space vehicle allowing for atomic lines of atoms and ions using the NERAT-ASTEROID computer platform are presented. This computer platform is intended to solve the complete set of equations of radiation gas dynamics of viscous, heat-conductive, and physically and chemically nonequilibrium gas, as well as radiation transfer. The spectral optical properties of high temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The calculation of the transfer of selective thermal radiation is performed using a line-by-line method using specially generated computational grids over the radiation wavelengths, which make it possible to attain a noticeable economy of computational resources.

  12. Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pehlivan, A.; Nilsson, H.; Hartman, H.

    2015-10-01

    Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.

  13. Combined Film Catalog, 1972, United States Atomic Energy Commission.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Washington, DC.

    A comprehensive listing of all current United States Atomic Energy Commission (USAEC) films, this catalog describes 232 films in two major film collections. Part One: Education-Information contains 17 subject categories and two series and describes 134 films with indicated understanding levels on each film for use by schools. The categories…

  14. RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotopemore » as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.« less

  15. Population kinetics on K alpha lines of partially ionized Cl atoms.

    PubMed

    Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki

    2002-07-01

    A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.

  16. IDEN2-A program for visual identification of spectral lines and energy levels in optical spectra of atoms and simple molecules

    NASA Astrophysics Data System (ADS)

    Azarov, V. I.; Kramida, A.; Vokhmentsev, M. Ya.

    2018-04-01

    The article describes a Java program that can be used in a user-friendly way to visually identify spectral lines observed in complex spectra with theoretically predicted transitions between atomic or molecular energy levels. The program arranges various information about spectral lines and energy levels in such a way that line identification and determination of positions of experimentally observed energy levels become much easier tasks that can be solved fast and efficiently.

  17. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    PubMed

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [ P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [ P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. This first study providing "tri-omics" analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression.

  18. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine

    PubMed Central

    O’Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O’Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-01-01

    AIM To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. METHODS Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward’s clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. RESULTS Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. CONCLUSION This first study providing “tri-omics” analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression. PMID:29151691

  19. Using Games To Teach Chemistry: An Annotated Bibliography

    NASA Astrophysics Data System (ADS)

    Russell, Jeanne V.

    1999-04-01

    A list of published or marketed games based on a chemistry motif is presented. Each game is listed according to its level, subject matter, and title. A bibliographic notation and a short description are given for each game. For Introductory/High School/General Chemistry, 45 games are listed under the subjects General Knowledge; Elements & Atomic Structure (not Symbols); Nomenclature, Formulas, & Equation Writing; Chemical Reactions: Solutions & Solubilities; and Other Subjects. Seventeen games are listed under Organic Chemistry and 4 games under Other Chemistry Games. Computer games designed for outdated computers (PDP-11, TRS-80, and Apple II) are not included.

  20. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    NASA Technical Reports Server (NTRS)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  1. Ophthalmologic survey of atomic bomb survivors in Japan, 1949. Atomic bomb radiation cataract case report with histopathologic study. Medical examination of Hiroshima patients with radiation cataracts (in Japanese and English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cogan, D.G.; Martin, S.F.; Kimura, S.J.

    1959-01-01

    This document contains 3 reports dealing with the delayed effects of radiation on the eyes of survivors of the atomic explosions in Hiroshima and Nagasaki. In the first study, 1000 persons who were listed as having been in the open and within two kilometers of the hypocenter at the time of the explosion were selected at random from the census files of the Atomic Bomb Casualty Commission for study. In addition, 231 others, comprising the total available number of surviving persons listed at present in the census files as having been within one kilometer of the hypocenter, were examined, asmore » were several hundred others who were contacted through newspaper publicity, referrals from local ophthalmologists, or through hearsay. The survey resulted in bringing in persons having, or having had, a variety of ocular conditions. Those connected with the atomic bomb included the following diagnoses; multiple injuries of eyes and eyelids; keratoconjunctivitis from ultraviolet and ionizing radiations; thermal burn of the cornea and of the retina; retinitis proliferans; and radiation cataracts. The cataracts were the only delayed manifestations of ocular injury from the atomic bomb. The second paper is a case report of a histopathologic study of atomic bomb radiation cataract. The third paper presents the results of medical examinations of survivors having radiation induced cataracts. 32 references, 8 figures. (DMC)« less

  2. Forbidden line emission from highly ionized atoms in tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Bhatia, A. K.

    1982-01-01

    Considerable interest in the observation of forbidden spectral lines from highly ionized atoms in tokamak plasmas is related to the significance of such observations for plasma diagnostic applications. Atomic data for the elements Ti Cr, Mn, Fe, Ni, and Kr have been published by Feldman et al. (1980) and Bhatia et al. (1980). The present investigation is concerned with collisional excitation rate coefficients and radiative decay rates, which are interpolated for ions of elements between calcium, and krypton and for levels of the 2s2 2pk, 2s 2p(k+1), and 2p(k+2) configurations, and for the O I, N I, C I, B I, and Be I isoelectronic sequences. The provided interpolated atomic data can be employed to calculate level populations and relative line intensities for ions of the considered sequences, taking into account levels of the stated configurations. Important plasma diagnostic information provided by the forbidden lines includes the ion temperature

  3. Shock-tube studies of atomic silicon emission in the spectral range 180 to 300 nm. [environment simulation for Jupiter probes

    NASA Technical Reports Server (NTRS)

    Prakash, S. G.; Park, C.

    1978-01-01

    Emission spectroscopy of shock-heated atomic silicon was performed in the spectral range 180 to 300 nm, in an environment simulating the ablation layer expected around a Jovian entry probe with a silica heat shield. From the spectra obtained at temperatures from 6000 to 10,000 K and electron number densities from 1 quadrillion to 100 quadrillion per cu cm, the Lorentzian line-widths were determined. The results showed that silicon lines are broadened significantly by both electrons (Stark broadening) and hydrogen atoms (Van der Waals broadening), and the combined line-widths are much larger than previously assumed. From the data, the Stark and the Van der Waals line-widths were determined for 34 silicon lines. Radiative transport through a typical shock layer was computed using the new line-width data. The computations showed that silicon emission in the hot region is large, but it is mostly absorbed in the colder region adjacent to the wall.

  4. The Multi-Intelligence Tools Suite - Supporting Research and Development in Information and Knowledge Exploitation

    DTIC Science & Technology

    2011-06-01

    to build a membership fact. The atom definition also defines the precise order of the pieces. Each argument has a label (D) and a type ( E ). The...list of ato argument). Figure 2 shows the inference rule editor. B. Name E . Rule Premises F. Rule Conclusions Figure 2. Inference rule editor One...created using this specific rule. one premise in the rule premises list ( E ), which represents a list of fact conditions that need to be found in the fact

  5. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new database intended to assist interpretation of soft x-ray astronomical spectra, such as from the Chandra X-ray Observatory. These data will be available soon on the World Wide Web [7].

  6. History of the recommended atomic-weight values from 1882 to 1997: A comparision of differences from current values to the estimated uncertainties of earlier values.

    USGS Publications Warehouse

    Coplen, T.B.; Peiser, H.S.

    1998-01-01

    International commissions and national committees for atomic weights (mean relative atomic masses) have recommended regularly updated, best values for these atomic weights as applicable to terrestrial sources of the chemical elements. Presented here is a historically complete listing starting with the values in F. W. Clarke's 1882 recalculation, followed by the recommended values in the annual reports of the American Chemical Society's Atomic Weights Commission. From 1903, an International Commission published such reports and its values (scaled to an atomic weight of 16 for oxygen) are here used in preference to those of national committees of Britain, Germany, Spain, Switzerland, and the U.S.A. We have, however, made scaling adjustments from Ar(16O) to Ar(12C) where not negligible. From 1920, this International Commission constituted itself under the International Union of Pure and Applied Chemistry (IUPAC). Since then, IUPAC has published reports (mostly biennially) listing the recommended atomic weights, which are reproduced here. Since 1979, these values have been called the "standard atomic weights" and, since 1969, all values have been published, with their estimated uncertainties. Few of the earlier values were published with uncertainties. Nevertheless, we assessed such uncertainties on the basis of our understanding of the likely contemporary judgement of the values' reliability. While neglecting remaining uncertainties of 1997 values, we derive "differences" and a retrospective index of reliability of atomic-weight values in relation to assessments of uncertainties at the time of their publication. A striking improvement in reliability appears to have been achieved since the commissions have imposed upon themselves the rule of recording estimated uncertainties from all recognized sources of error.

  7. Model atmospheres for M (sub)dwarf stars. 1: The base model grid

    NASA Technical Reports Server (NTRS)

    Allard, France; Hauschildt, Peter H.

    1995-01-01

    We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.

  8. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  9. Clinically Relevant Transmitted Drug Resistance to First Line Antiretroviral Drugs and Implications for Recommendations

    PubMed Central

    Monge, Susana; Guillot, Vicente; Alvarez, Marta; Chueca, Natalia; Stella, Natalia; Peña, Alejandro; Delgado, Rafael; Córdoba, Juan; Aguilera, Antonio; Vidal, Carmen; García, Federico; CoRIS

    2014-01-01

    Background The aim was to analyse trends in clinically relevant resistance to first-line antiretroviral drugs in Spain, applying the Stanford algorithm, and to compare these results with reported Transmitted Drug Resistance (TDR) defined by the 2009 update of the WHO SDRM list. Methods We analysed 2781 sequences from ARV naive patients of the CoRIS cohort (Spain) between 2007–2011. Using the Stanford algorithm “Low-level resistance”, “Intermediate resistance” and “High-level resistance” categories were considered as “Resistant”. Results 70% of the TDR found using the WHO list were relevant for first-line treatment according to the Stanford algorithm. A total of 188 patients showed clinically relevant resistance to first-line ARVs [6.8% (95%Confidence Interval: 5.8–7.7)], and 221 harbored TDR using the WHO list [7.9% (6.9–9.0)]. Differences were due to a lower prevalence in clinically relevant resistance for NRTIs [2.3% (1.8–2.9) vs. 3.6% (2.9–4.3) by the WHO list] and PIs [0.8% (0.4–1.1) vs. 1.7% (1.2–2.2)], while it was higher for NNRTIs [4.6% (3.8–5.3) vs. 3.7% (3.0–4.7)]. While TDR remained stable throughout the study period, clinically relevant resistance to first line drugs showed a significant trend to a decline (p = 0.02). Conclusions Prevalence of clinically relevant resistance to first line ARVs in Spain is decreasing, and lower than the one expected looking at TDR using the WHO list. Resistance to first-line PIs falls below 1%, so the recommendation of screening for TDR in the protease gene should be questioned in our setting. Cost-effectiveness studies need to be carried out to inform evidence-based recommendations. PMID:24637804

  10. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the hypothetical giant narrowing of radiative atomic and nuclear lines in a Bose—Einstein condensate

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2009-06-01

    The possibility of existence of ultranarrow atomic and nuclear radiative lines in a 'megaatom' of a Bose—Einstein condensate in a quantum trap is estimated. This phenomenon is caused by the elimination of the inhomogeneous broadening due to suppression of the random motion of atoms in the condensate resulting from the establishment of the higher-order quantum coherence in it.

  12. Identification of O-rich structures on platinum(111)-supported ultrathin iron oxide films

    DOE PAGES

    Merte, Lindsay R.; Bai, Yunhai; Zeuthen, Helene; ...

    2016-01-06

    Using high-resolution scanning tunneling microscopy (STM) we have studied the oxidation of ultrathin FeO films grown on Pt(111). At the initial stage of the FeO film oxidation by atomic oxygen exposure, we identified three distinct types of line defects, all of which form boundaries between FeO domains of opposite orientation. Two types of line defects appearing bright ( type-i) and dark ( type-ii) in the STM images at typical scanning parameters are “metallic”, whereas the third line defect exhibits nonmetallic behavior ( type-iii). Atomic-scale structure models of these line defects are proposed, with type-i defects exhibiting 4-fold coordinated Fe atoms,more » type-ii exhibiting 2-fold coordinated O atoms, and type-iii exhibiting tetrahedrally-coordinated Fe atoms. In addition, FeO 2 trilayer islands are formed upon oxidation, which appear at FCC-type domains of the moiré structure. At high scanning bias, distinct protrusions on the trilayer islands are observed over surface O ions, which are assigned to H adatoms. The experimental data are supported by density functional theory (DFT) calculations, in which bare and hydroxylated FeO 2 trilayer islands are compared. Finally, we compare the formation of O-rich features on continuous FeO films using atomic oxygen with the oxidation of Pt(111)-supported FeO islands accomplished by O 2 exposure.« less

  13. 1984 Bibliography of atomic and molecular processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  14. 1982 bibliography of atomic and molecular processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  15. Exotic objects of atomic physics

    NASA Astrophysics Data System (ADS)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  16. Controlled dipole-dipole interactions between K Rydberg atoms in a laser-chopped effusive beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutteruf, M. R.; Jones, R. R.

    2010-12-15

    We explore pulsed-field control of resonant dipole-dipole interactions between K Rydberg atoms. A laser-based atomic beam chopper is used to reduce the relative velocities of Rydberg atoms excited from an effusive thermal source. Resonant energy transfer (RET) between pairs of atoms is controlled via Stark tuning of the relevant Rydberg energy levels. Resonance line shapes in the electric field dependence of the RET probability are used to determine the effective temperature of the sample. We demonstrate that the relative atom velocities can be reduced to the point where the duration of the electric-field tuning pulses, and not the motion ofmore » neighboring atoms, defines the interaction time for each pair within the ensemble. Coherent, transform-limited broadening of the resonance line shape is observed as the tuning pulse duration is reduced below the natural time scale for collisions.« less

  17. Nuclear chemistry. Annual report, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.

    1975-07-01

    The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

  18. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  19. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  20. Emission- and fluorescence-spectroscopic investigation of a glow discharge plasma: absolute number density of radiative and nonradiative atoms in the negative glow.

    PubMed

    Takubo, Y; Sato, T; Asaoka, N; Kusaka, K; Akiyama, T; Muroo, K; Yamamoto, M

    2008-01-01

    The excited-state atom densities in the negative glow of a direct-current glow discharge are derived from the spectral-line intensity of radiative atoms and the resonance-fluorescence photon flux of nonradiative atoms. The discharge is operated in a helium-argon gas mixture (molar fraction ratio 91:9; total gas pressure 5 Torr) at a dc current of 0.7-1.2 mA. The observations are made in the region of the maximum luminance in the cathode region, where high-energy electrons accelerated in the cathode fall are injected into the negative glow. The emission intensities of the He I, He II, Ar I, and Ar II spectral lines are measured with a calibrated tungsten ribbon lamp as an absolute spectral-radiance standard. Fluorescence photons scattered by helium and argon atoms in the metastable state and argon atoms in the resonance state are detected by the laser-induced fluorescence (LIF) method with the Rayleigh scattering of nitrogen molecules as an absolute standard of scattering cross section. The laser absorption method is incorporated to confirm the result of the LIF measurement. Excitation energies of the measured spectral lines range from 11.6 (Ar I) to 75.6 eV (He II), where the excitation energy is measured from the ground state of the neutral atom on the assumption that, in the plasma of this study, both the neutral and the ionic lines are excited by electron impact in a single-step process from the ground state of the corresponding neutral atoms. Experimental evidence is shown for the validity of this assumption.

  1. Spectroscopic investigations of microwave generated plasmas

    NASA Technical Reports Server (NTRS)

    Hawley, Martin C.; Haraburda, Scott S.; Dinkel, Duane W.

    1991-01-01

    The study deals with the plasma behavior as applied to spacecraft propulsion from the perspective of obtaining better design and modeling capabilities. The general theory of spectroscopy is reviewed, and existing methods for converting emission-line intensities into such quantities as temperatures and densities are outlined. Attention is focused on the single-atomic-line and two-line radiance ratio methods, atomic Boltzmann plot, and species concentration. Electronic temperatures for a helium plasma are determined as a function of pressure and a gas-flow rate using these methods, and the concentrations of ions and electrons are predicted from the Saha-Eggert equations using the sets of temperatures obtained as a function of the gas-flow rate. It is observed that the atomic Boltzmann method produces more reliable results for the electronic temperature, while the results obtained from the single-line method reflect the electron temperatures accurately.

  2. Atomic Data and Spectral Line Intensities for Be-like Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand; Landi, E.

    2008-01-01

    Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.

  3. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms.

    PubMed

    Berglund, Andrew J; Hanssen, James L; McClelland, Jabez J

    2008-03-21

    Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin polarized with temperatures reaching below 2 muK. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.

  4. Valley filters, accumulators, and switches induced in graphene quantum dots by lines of adsorbed hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Azari, Mohammadhadi; Kirczenow, George

    2018-06-01

    We present electronic structure and quantum transport calculations that predict conducting channels induced in graphene quantum dots by lines of adsorbed hydrogen atoms to function as highly efficient, experimentally realizable valley filters, accumulators, and switches. The underlying physics is an interesting property of graphene Dirac point resonances (DPRs) that is revealed here, namely, that an electric current passing through a DPR-mediated conducting channel in a given direction is carried by electrons of only one of the two graphene valleys. Our predictions apply to lines of hydrogen atoms adsorbed on graphene quantum dots that are either free standing or supported on a hexagonal boron nitride substrate.

  5. An empirical spectroscopic database for acetylene in the regions of 5850-6341 cm-1 and 7000-9415 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Campargue, A.

    2017-12-01

    Six studies have been recently devoted to a systematic analysis of the high-resolution near infrared absorption spectrum of acetylene recorded by Cavity Ring Down spectroscopy (CRDS) in Grenoble and by Fourier-transform spectroscopy (FTS) in Brussels and Hefei. On the basis of these works, in the present contribution, we construct an empirical database for acetylene in the 5850-9415 cm-1 region excluding the 6341-7000 cm-1 interval corresponding to the very strong ν1+ν3 manifold. Our database gathers and extends information included in our CRDS and FTS studies. In particular, the intensities of about 1700 lines measured by CRDS in the 7244-7920 cm-1 region are reported for the first time together with those of several bands of 12C13CH2 present in natural isotopic abundance in the acetylene sample. The Herman-Wallis coefficients of most of the bands are derived from a fit of the measured intensity values. A recommended line list is provided with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities calculated using the derived Herman-Wallis coefficients. This approach allows completing the experimental list by adding missing lines and improving poorly determined positions and intensities. As a result the constructed line list includes a total of 11113 transitions belonging to 150 bands of 12C2H2 and 29 bands of 12C13CH2. For comparison the HITRAN database in the same region includes 869 transitions of 14 bands, all belonging to 12C2H2. Our weakest lines have an intensity on the order of 10-29 cm/molecule, about three orders of magnitude smaller than the HITRAN intensity cut off. Line profile parameters are added to the line list which is provided in HITRAN format. The comparison of the acetylene database to the HITRAN2012 line list or to results obtained using the global effective operator approach is discussed in terms of completeness and accuracy.

  6. Advanced On-The-Job Training System: User’s Handbook (Sections 10-11). Volume 3

    DTIC Science & Technology

    1990-05-01

    leWd 4. idsodity a ne bety position Quit This Plan Select Option: Z (i)d4L.-tti irman Ifrom List, ()nter Specific S, (q)uit ? I 10-2.-4 0 The AOTS...Print SUperviaima List q. Rit This Plans Select Option: S 10-44 STEP 6: SELECT THE SUPERVISION LIST OPTION. Enter 5 and press 3RETU 30 D RA FT AOTS...training is accomplished by the trainee completing an on-line CAI lesson , while for other tasks, knowledge training is accomplished off line by the trainee

  7. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  8. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    ERIC Educational Resources Information Center

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  9. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  10. New Line Lists for planetological applications: HC3N and C4H2

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Benilan, Y.; Fayt, A.

    2009-04-01

    The Composite Infrared Spectrometer (CIRS) on-board Cassini, after four years of operation in Saturnian orbit with over thirty close fly-bys of Titan, has obtained spectra in the far and mid-infrared with a spectral resolution of 0.5 cm-1. Mismatch between observed spectra and model spectra obtained from the available line lists has led us to study the bending bands of HC3N and C4H2, the longest carbon chains observed on Titan. Our experimental study for HC3N (Jolly et al. 2007, J.Mol.Spec) has shown that band intensities had to be revised and that including hot bands with lower level as high as 1300 cm-1 was necessary to model our experimental spectra at 0.5 cm-1 resolution. A new extended line list could be obtained by fitting high resolution data with the help of a global analysis. This line list was made available to the astronomers of the CIRS team and will be included in the next version of the GEISA data base. Thanks to the precision of the new spectroscopic data, 13C isotopologues of HC3N have been detected and quantified for the first time in the atmosphere of Titan (Jennings et al. 2008, ApJL). Search for the 15N isotopologues of HC3N will also be presented. The proportion of hot bands is even more important for C4H2 than for HC3N and a new extended line list was absolutely necessary to improve the CIRS spectral analysis. We will present a new line list and show comparison between synthetic spectra and experimental spectra of C4H2 obtained between 193 and 296 K at 0.1 and 0.5 cm-1 resolution. Comparison of model spectra to CIRS observations of C4H2 at 220 and 630 cm-1 will also be presented. Detections of hot bands and isotopes in cold environments such as Titan will be emphasized.

  11. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  12. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  13. Highly accurate potential energy surface, dipole moment surface, rovibrational energy levels, and infrared line list for {sup 32}S{sup 16}O{sub 2} up to 8000 cm{sup −1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xinchuan, E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov; Schwenke, David W., E-mail: David.W.Schwenke@nasa.gov; Lee, Timothy J., E-mail: Xinchuan.Huang-1@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov

    2014-03-21

    A purely ab initio potential energy surface (PES) was refined with selected {sup 32}S{sup 16}O{sub 2} HITRAN data. Compared to HITRAN, the root-mean-squares error (σ{sub RMS}) for all J = 0–80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm{sup −1}. Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296 K and covers up to 8000 cm{sup −1}. Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85%–90%. Our predictions for {sup 34}S{sup 16}O{sub 2} band origins,more » higher energy {sup 32}S{sup 16}O{sub 2} band origins and missing {sup 32}S{sup 16}O{sub 2} IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict {sup 32/34}S{sup 16}O{sub 2} band origins below 5500 cm{sup −1} with 0.01–0.03 cm{sup −1} uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The K{sub a}-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO{sub 2} IR spectral experimental analysis, as well as elimination of SO{sub 2} lines in high-resolution astronomical observations.« less

  14. The spectrum of the variable planetary nebula IC 4997

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.

    1994-01-01

    The compact, dusty, presumably young planetary nebula (PN) IC 4997 has been studied extensively since the variability of the lambda 4363/lambda 4340 ratio was established in 1956. Since 1938, other nebular lines have shown changes. IC 4997 is also unique because of the great density range revealed by its spectrum which goes in excitation from Mg I to (Ar IV). We present a detailed listing of spectral lines from 360 to 1005 nm. The diagnostic diagram shows that the spectrum can be interpreted only in terms of strata with a huge density gamut. Essential spectral features can be reproduced approximately by a model consisting of a geometrically thin shell of density around 10(exp 7) atoms cm(exp -3), surrounded by a much larger shell with a density of about 10(exp 4) atoms cm(exp -3). The actual, certainly more complex structure can be evaluated only when high resolution spatial imaging is at hand. The usual method of getting abundances from N(ion)/N(H(+)) and ionization correction factors (ICFs) cannot be applied here. It is argued that a reasonable theoretical model that represents the spectrum provides a valid initial approximation to nebular abundances. We propose that the chemical composition of IC 4997 does not differ greatly from that of the Sun. The finally adopted model suggests that the ejection of the material destined to form the inner shell occurred between 1900 and 1960, but observational evidence of such an ejection event is lacking. Perhaps the shell was accelerated. A need for further study is emphasized, especially the role of dust which appears to contribute 2% of the total mass. More attention to this object is recommended. An accurate measurement of its distance is especially desirable.

  15. AtomDB: Expanding an Accessible and Accurate Atomic Database for X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    Since its inception in 2001, the AtomDB has become the standard repository of accurate and accessible atomic data for the X-ray astrophysics community, including laboratory astrophysicists, observers, and modelers. Modern calculations of collisional excitation rates now exist - and are in AtomDB - for all abundant ions in a hot plasma. AtomDB has expanded beyond providing just a collisional model, and now also contains photoionization data from XSTAR as well as a charge exchange model, amongst others. However, building and maintaining an accurate and complete database that can fully exploit the diagnostic potential of high-resolution X-ray spectra requires further work. The Hitomi results, sadly limited as they were, demonstrated the urgent need for the best possible wavelength and rate data, not merely for the strongest lines but for the diagnostic features that may have 1% or less of the flux of the strong lines. In particular, incorporation of weak but powerfully diagnostic satellite lines will be crucial to understanding the spectra expected from upcoming deep observations with Chandra and XMM-Newton, as well as the XARM and Athena satellites. Beyond incorporating this new data, a number of groups, both experimental and theoretical, have begun to produce data with errors and/or sensitivity estimates. We plan to use this to create statistically meaningful spectral errors on collisional plasmas, providing practical uncertainties together with model spectra. We propose to continue to (1) engage the X-ray astrophysics community regarding their issues and needs, notably by a critical comparison with other related databases and tools, (2) enhance AtomDB to incorporate a large number of satellite lines as well as updated wavelengths with error estimates, (3) continue to update the AtomDB with the latest calculations and laboratory measurements, in particular velocity-dependent charge exchange rates, and (4) enhance existing tools, and create new ones as needed to increase the functionality of, and access to, AtomDB.

  16. Atomic weights of the elements 1999

    USGS Publications Warehouse

    Coplen, T.B.

    2001-01-01

    The biennial review of atomic-weight, Ar(E), determinations and other cognate data have resulted in changes for the standard atomic weights of the following elements: Presented are updated tables of the standard atomic weights and their uncertainties estimated by combining experimental uncertainties and terrestrial variabilities. In addition, this report again contains an updated table of relative atomic-mass values and half-lives of selected radioisotopes. Changes in the evaluated isotopic abundance values from those published in 1997 are so minor that an updated list will not be published for the year 1999. Many elements have a different isotopic composition in some nonterrestrial materials. Some recent data on parent nuclides that might affect isotopic abundances or atomic-weight values are included in this report for the information of the interested scientific community.

  17. ExoMol line lists - VII. The rotation-vibration spectrum of phosphine up to 1500 K

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Al-Refaie, Ahmed F.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2015-01-01

    A comprehensive hot line list is calculated for 31PH3 in its ground electronic state. This line list, called SAlTY, contains almost 16.8 billion transitions between 7.5 million energy levels and it is suitable for simulating spectra up to temperatures of 1500 K. It covers wavelengths longer than 1 μm and includes all transitions to upper states with energies below hc × 18 000 cm-1 and rotational excitation up to J = 46. The line list is computed by variational solution of the Schrödinger equation for the rotation-vibration motion employing the nuclear-motion program TROVE. A previously reported ab initio dipole moment surface is used as well as an updated `spectroscopic' potential energy surface, obtained by refining an existing ab initio surface through least-squares fitting to the experimentally derived energies. Detailed comparisons with other available sources of phosphine transitions confirms SAlTY's accuracy and illustrates the incompleteness of previous experimental and theoretical compilations for temperatures above 300 K. Atmospheric models are expected to severely underestimate the abundance of phosphine in disequilibrium environments, and it is predicted that phosphine will be detectable in the upper troposphere of many substellar objects. This list is suitable for modelling atmospheres of many astrophysical environments, namely carbon stars, Y dwarfs, T dwarfs, hot Jupiters and Solar system gas giant planets. It is available in full from the Strasbourg data centre, CDS, and at www.exomol.com.

  18. An experimental water line list at 1950 K in the 6250-6670 cm-1 region

    NASA Astrophysics Data System (ADS)

    Rutkowski, Lucile; Foltynowicz, Aleksandra; Schmidt, Florian M.; Johansson, Alexandra C.; Khodabakhsh, Amir; Kyuberis, Aleksandra A.; Zobov, Nikolai F.; Polyansky, Oleg L.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2018-01-01

    An absorption spectrum of H216O at 1950 K is recorded in a premixed methane/air flat flame using a cavity-enhanced optical frequency comb-based Fourier transform spectrometer. 2417 absorption lines are identified in the 6250-6670 cm-1 region with an accuracy of about 0.01 cm-1. Absolute line intensities are retrieved using temperature and concentration values obtained by tunable diode laser absorption spectroscopy. Line assignments are made using a combination of empirically known energy levels and predictions from the new POKAZATEL variational line list. 2030 of the observed lines are assigned to 2937 transitions, once blends are taken into account. 126 new energy levels of H216O are identified. The assigned transitions belong to 136 bands and span rotational states up to J = 27 .

  19. Sonoluminescence and acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Choi, Pak-Kon

    2017-07-01

    Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.

  20. Atomic calculations for the Fe XX X-ray lines

    NASA Technical Reports Server (NTRS)

    Mason, H. E.; Bhatia, A. K.

    1983-01-01

    The atomic data presented here and in Bhatia and Mason (1980) allow the calculation of theoretical intensity ratios for all the EUV, UV, and X-ray lines from Fe XX. Tabulations are presently given for the transitions between levels in the 2s2 2p3, 2s2 2p2 3s, and 2s2 2p2 3d configurations of Fe(19+), and electron collision strengths are calculated by means of the 'distorted wave' approximation. In addition to the theoretical X-ray line intensity ratios, new spectral line identifications from a solar flare are presented.

  1. VizieR Online Data Catalog: CH4 and hot methane continuum hybrid line list (Yurchenko+, 2017)

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Amundsen, D. S.; Tennyson, J.; Waldmann, I. P.

    2017-07-01

    The states file ch4_e50.dat contains a list of rovibrational states. Each state is labelled with: nine normal mode vibrational quantum numbers and the vibrational symmetry; three rotational quantum numbers including the total angular momentum J and rotational symmetry; the total symmetry quantum number Gamma and the running number in the same (J,Gamma) block. In addition there are nine local mode vibrational numbers and the largest coefficient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 120 separate files, each containing all the transitions in a 100cm-1 frequency range. These transition files t_*.dat contain the strong methane lines lines consisting of three columns: the reference number in the energy file of the upper state, that of the lower state, the Einstein A coefficient of the transition and the transition wavenumber. These entries are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the t-00500.dat file contains all the transitions in the frequency range 500-600cm-1. 19 histograms xYYYYK.dat files contain CH4_ super-lines representing the continuum computed at the temperature T=YYYYK using R=1000000 (7090081 super-lines each) covering the wavenumber range from 10 to 12000cm-1. The energy file, the transitions files and the histograms files are bzipped, and need to be extracted before use. The pressure broadening parameters used in the calculations are listed in broad.dat. A programme ExoCross to generate synthetic spectra from these line lists can be obtained at www.exomol.com. (4 data files).

  2. Temperature measurement of burning aluminum powder based on the double line method of atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Tang, Huijuan; Hao, Xiaojian; Hu, Xiaotao

    2018-01-01

    In the case of conventional contact temperature measurement, there is a delay phenomenon and high temperature resistant materials limitation. By using the faster response speed and theoretically no upper limit of the non-contact temperature method, the measurement system based on the principle of double line atomic emission spectroscopy temperature measurement is put forward, the structure and theory of temperature measuring device are introduced. According to the atomic spectrum database (ASD), Aluminum(Al) I 690.6 nm and Al I 708.5 nm are selected as the two lines in the temperature measurement. The intensity ratio of the two emission lines was measured by a spectrometer to obtain the temperature of Al burning in pure oxygen, and the result compared to the temperature measured by the thermocouple. It turns out that the temperature correlation between the two methods is good, and it proves the feasibility of the method.

  3. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  4. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  5. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  6. ExoCross: Spectra from molecular line lists

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Al-Refaie, Ahmed; Tennyson, Jonathan

    2018-03-01

    ExoCross generates spectra and thermodynamic properties from molecular line lists in ExoMol, HITRAN, or several other formats. The code is parallelized and also shows a high degree of vectorization; it works with line profiles such as Doppler, Lorentzian and Voigt and supports several broadening schemes. ExoCross is also capable of working with the recently proposed method of super-lines. It supports calculations of lifetimes, cooling functions, specific heats and other properties. ExoCross converts between different formats, such as HITRAN, ExoMol and Phoenix, and simulates non-LTE spectra using a simple two-temperature approach. Different electronic, vibronic or vibrational bands can be simulated separately using an efficient filtering scheme based on the quantum numbers.

  7. Deviation from Normal Boltzmann Distribution of High-lying Energy Levels of Iron Atom Excited by Okamoto-cavity Microwave-induced Plasmas Using Pure Nitrogen and Nitrogen-Oxygen Gases.

    PubMed

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen-oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen molecule.

  8. Electrical-power-system data base for consumables analysis. Volume 1: Electrical equipment list, activity blocks, and time lines

    NASA Technical Reports Server (NTRS)

    Pipher, M. D.; Green, P. A.; Wolfgram, D. F.

    1975-01-01

    A standardized data base is described which consists of a space shuttle electrical equipment list, activity blocks defining electrical equipment utilization, and activity-block time lines for specific mission analyses. Information is presented to facilitate utilization of the data base, to provide the basis for the electrical equipment utilization to enable interpretation of analyses based on the data contained herein.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, J. L.; Britton, R. E.; Abrecht, D. G.

    The acquisition of time-stamped list (TLIST) data provides additional information useful to gamma-spectrometry analysis. A novel technique is described that uses non-linear least-squares fitting and the Levenberg-Marquardt algorithm to simultaneously determine parent-daughter atoms from time sequence measurements of only the daughter radionuclide. This has been demonstrated for the radioactive decay of short-lived radon progeny (214Pb/214Bi, 212Pb/212Bi) described using the Bateman first-order differential equation. The calculated atoms are in excellent agreement with measured atoms, with a difference of 1.3 – 4.8% for parent atoms and 2.4% - 10.4% for daughter atoms. Measurements are also reported with reduced uncertainty. The technique hasmore » potential to redefine gamma-spectrometry analysis.« less

  10. 75 FR 38168 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2011 Light Duty Truck Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...The National Highway Traffic Safety Administration (NHTSA) published a document in the Federal Register of June 21, 2010, announcing NHTSA's determination that there were no new model year (MY) 2011 light-duty truck lines subject to the requirements of the Federal motor vehicle theft prevention standard. The final rule also identified those vehicle lines that had been granted an exemption from the parts- marking requirements for the 2011 model year and those vehicle lines the agency removed because certain vehicle lines had been discontinued more than 5 years ago. This document corrects certain information published in the SUPPLEMENTARY INFORMATION section and Appendix A-I listing of the final rule. All previous information associated with the published notice remains the same.

  11. Two-species five-beam magneto-optical trap for erbium and dysprosium

    NASA Astrophysics Data System (ADS)

    Ilzhöfer, P.; Durastante, G.; Patscheider, A.; Trautmann, A.; Mark, M. J.; Ferlaino, F.

    2018-02-01

    We report on the first realization of a two-species magneto-optical trap (MOT) for the highly magnetic erbium and dysprosium atoms. The MOT operates on an intercombination line for the respective species. Owing to the narrow-line character of such a cooling transition and the action of gravity, we demonstrate a trap geometry employing only five beams in the orthogonal configuration. We observe that the mixture is cooled and trapped very efficiently, with up to 5 ×108 Er atoms and 109 Dy atoms at temperatures of about 10 μ K . Our results offer an ideal starting condition for the creation of a dipolar quantum mixture of highly magnetic atoms.

  12. Experimental and theoretical studies of metal vapor atoms

    NASA Astrophysics Data System (ADS)

    Whitfield, Scott B.; Wehlitz, Ralf; Martins, Michael

    2004-05-01

    Employing electron spectrometry in conjunction with tuneable synchrotron radiation, we will present a detailed examination of the photoionization dynamics of selected metal vapor atoms. In particular, this paper will focus on the relative partial cross sections of the atomic Li K-shell main and satellite (ionization with excitation) photoelectron lines in the region of the strong 1 snℓ n'ℓ' autoionizing transitions, the atomic Sc 3 d, 4 s main and satellite photoelectron lines in the region of the 3 p→3 d giant resonance, and also the atomic Fe 3 d, 4 s main and satellite photoelectron lines in the same resonance region. Our experimental data for Sc and Fe will be compared to our state-of-the-art calculations based on the superposition of configuration method developed by Cowan (The Theory of Atomic Structure and Spectra. University of California Berkeley Press, Berkeley and Los Angeles, 1981). Our partial cross section measurements for Li and Sc will be complemented with measurements of the angular distribution parameter, β. In addition, our Li data will also be compared with recent R-matrix calculations (Phys. Rev. 57 (1998) 1045). In the case of Fe, we will also address the term dependent behavior of the partial cross sections on resonance. These results will highlight what can be achieved with today's technology and point the way towards future endeavors in the study of the photoionization dynamics of open-shell metal vapor atoms.

  13. The CO2 absorption continuum by high pressure CRDS in the 1.74 μm window

    NASA Astrophysics Data System (ADS)

    Mondelain, D.; Campargue, A.; Čermák, P.; Gamache, R. R.; Kassi, S.; Tashkun, S. A.; Tran, H.

    2017-12-01

    The very weak absorption continuum of CO2 is studied by Cavity Ring Down Spectroscopy in three 20 cm-1 wide spectral intervals near the centre of the 1.74 μm window (5693-5795 cm-1). For each spectral interval, a set of room temperature spectra is recorded at pressures between 0 and 10 bar thanks to a high pressure CRDS spectrometer. The absorption continuum is retrieved after subtraction of the contributions due to Rayleigh scattering and to local lines of CO2 and water (present as an impurity in the sample) from the measured extinction. Due to some deficiencies of the CO2 HITRAN2012 line list, a composite line list had to be built on the basis of the Ames calculated line list with line positions adjusted according to the Carbon Dioxide Spectroscopic Databank and self-broadening and pressure shift coefficients calculated with the Complex Robert Bonamy method. The local line contribution of the CO2 monomer is calculated using this list and a Voigt profile truncated at ±25 cm-1 from the line centre. Line mixing effects were taken into account through the use of the impact and Energy Corrected Sudden approximations. The density dependence of the retrieved continuum absorption was found to be purely quadratic in the low frequency interval below 5710 cm-1 but a small significant linear contribution was required to reproduce the observations above this value. This linear increase is tentatively attributed to the foreign-continuum of water vapor present in CO2 sample with a relative concentration of some tens ppm. The retrieved binary coefficient is observed to vary smoothly with the wavenumber with a minimum value of 6×10-10 cm-1 amagat-2. By gathering the present data with the results reported in Kassi et al. J Quant Spectrosc Radiat Transf 2015;167:97, a recommended set of binary coefficients is provided for the 5700-5950 cm-1 region.

  14. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    NASA Astrophysics Data System (ADS)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  15. LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Elizabeth J.; Berg, John M.; Le, Loan A.

    2012-06-18

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV andmore » NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assigned to a transition without further investigation. Several peaks have multiple assignments due to limited resolution of the spectrometer used (20,000, {lambda}/{Delta}{lambda}) and without the availability, at this point in time, of pure PuO{sub 2}, AmO{sub 2}, and NpO{sub 2} to confirm the identity of the peaks. A different spectrometer was used in the plutonium facility to collect the mixed actinide fuel pellet data (Echelle 3000) than the DUO{sub 2}, ThO{sub 2} and uranium ore previously reported [6-8] (Echelle 4000) which accounts for the slight shift in the observed wavelength of the uranium emission lines.« less

  16. Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cashman, Frances H.; Kulkarni, Varsha P.; Kisielius, Romas

    2017-05-01

    Measurements of element abundances in galaxies from astrophysical spectroscopy depend sensitively on the atomic data used. With the goal of making the latest atomic data accessible to the community, we present a compilation of selected atomic data for resonant absorption lines at wavelengths longward of 911.753 Å (the H i Lyman limit), for key heavy elements (heavier than atomic number 5) of astrophysical interest. In particular, we focus on the transitions of those ions that have been observed in the Milky Way interstellar medium (ISM), the circumgalactic medium (CGM) of the Milky Way and/or other galaxies, and the intergalactic mediummore » (IGM). We provide wavelengths, oscillator strengths, associated accuracy grades, and references to the oscillator strength determinations. We also attempt to compare and assess the recent oscillator strength determinations. For about 22% of the lines that have updated oscillator strength values, the differences between the former values and the updated ones are ≳0.1 dex. Our compilation will be a useful resource for absorption line studies of the ISM, as well as studies of the CGM and IGM traced by sight lines to quasars and gamma-ray bursts. Studies (including those enabled by future generations of extremely large telescopes) of absorption by galaxies against the light of background galaxies will also benefit from our compilation.« less

  17. [Microsecond Pulsed Hollow Cathode Lamp as Enhanced Excitation Source of Hydride Generation Atomic Fluorescence Spectrometry].

    PubMed

    Zhang, Shuo

    2015-09-01

    The spectral, electrical and atomic fluorescence characteristics of As, Se, Sb and Pb hollow cathode lamps (HCLs) powered by a laboratory-built high current microsecond pulse (HCMP) power supply were studied, and the feasibility of using HCMP-HCLs as the excitation source of hydride generation atomic fluorescence spectrometry (HG-AFS) was evaluated. Under the HCMP power supply mode, the As, Se, Sb, Pb HCLs can maintain stable glow discharge at frequency of 100~1000 Hz, pulse width of 4.0~20 μs and pulse current up to 4.0 A. Relationship between the intensity of characteristic emission lines and HCMP power supply parameters, such as pulse current, power supply voltage, pulse width and frequency, was studied in detail. Compared with the conventional pulsed (CP) HCLs used in commercial AFS instruments, HCMP-HCLs have a narrower pulse width and much stronger pulse current. Under the optimized HCMP power supply parameters, the intensity of atomic emission lines of As, Se, Sb HCLs had sharp enhancement and that indicated their capacity of being a novel HG-AFS excitation source. However, the attenuation of atomic lines and enhancement of ionic lines negated such feasibility of HCMP-Pb HCL. Then the HG-AFS analytical capability of using the HCMP-As/Se/Sb HCLs excitation source was established and results showed that the HCMP-HCL is a promising excitation source for HG-AFS.

  18. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  19. Non-LTE effects in Al I lines

    NASA Astrophysics Data System (ADS)

    Menzhevitski, V. S.; Shimansky, V. V.; Shimanskaya, N. N.

    2012-07-01

    We present the theoretical analysis of the Al I line formation in the spectra of late-type stars ignoring the assumption of local thermodynamic equilibrium (LTE). The calculations were based on the 39-level aluminum atom model for one-dimensional hydrostatic stellar atmosphere models with the parameters: T eff from 4000 to 9000 K, log g = 0.0-4.5, and metallicity [ A] = 0.0;-1.0;-2.0;-3.0;-4.0. The aluminum atom model and the method of calculations were tested by the study of line profiles in the solar spectrum. We refined the oscillator strengths and Van-der-Vaals broadening constants C 6 of the investigated transitions. We conclude that the Al I atom is in the overionization state: the 3 p level is underpopulated in the line formation region. This leads to the line weakening, as compared with the LTE results. The overionization effect becomes more pronounced with increasing temperature and decreasing metallicity. We show that the use of various atomic data (ionization cross-sections) for the low levels of Al I does not change the behavior of non-LTE deviations, whereas the value of these deviations varies essentially. For nine selected Al I lines we calculated the grids of theoretical non-LTE corrections (Δ X NLTE = log ɛ NLTE - log ɛ LTE) to the Al abundances determinedwith the LTE assumption. The non-LTE corrections are positive and significant for the stars with temperatures T eff > 6000 K. These corrections weakly depend on log g, and increase with declining stellar metallicity.

  20. 76 FR 50188 - Notice of Proposed Methodology for the Delaware River and Bay Integrated List Water Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Integrated List Water Quality Assessment AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY... Integrated List Water Quality Assessment is available for review and comment. DATES: Comments must be... should have the phrase ``Water Quality Assessment 2012'' in the subject line and should include the name...

  1. Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots

    NASA Astrophysics Data System (ADS)

    Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando

    2015-12-01

    We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.

  2. Active Faraday optical frequency standard.

    PubMed

    Zhuang, Wei; Chen, Jingbiao

    2014-11-01

    We propose the mechanism of an active Faraday optical clock, and experimentally demonstrate an active Faraday optical frequency standard based on narrow bandwidth Faraday atomic filter by the method of velocity-selective optical pumping of cesium vapor. The center frequency of the active Faraday optical frequency standard is determined by the cesium 6 (2)S(1/2) F=4 to 6 (2)P(3/2) F'=4 and 5 crossover transition line. The optical heterodyne beat between two similar independent setups shows that the frequency linewidth reaches 281(23) Hz, which is 1.9×10(4) times smaller than the natural linewidth of the cesium 852-nm transition line. The maximum emitted light power reaches 75 μW. The active Faraday optical frequency standard reported here has advantages of narrow linewidth and reduced cavity pulling, which can readily be extended to other atomic transition lines of alkali and alkaline-earth metal atoms trapped in optical lattices at magic wavelengths, making it useful for new generation of optical atomic clocks.

  3. 44 CFR 402.2 - Restricted commodities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Office of International Trade, Department of Commerce, (b) articles on the list of arms, ammunition and..., including fissionable materials, controlled for export under the Atomic Energy Act of 1946. The restrictions...

  4. 44 CFR 402.2 - Restricted commodities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Office of International Trade, Department of Commerce, (b) articles on the list of arms, ammunition and..., including fissionable materials, controlled for export under the Atomic Energy Act of 1946. The restrictions...

  5. A Si I atomic model for NLTE spectropolarimetric diagnostics of the 10 827 Å line

    NASA Astrophysics Data System (ADS)

    Shchukina, N. G.; Sukhorukov, A. V.; Trujillo Bueno, J.

    2017-07-01

    Aims: The Si I 10 827 Å line is commonly used for spectropolarimetric diagnostics of the solar atmosphere. First, we aim at quantifying the sensitivity of the Stokes profiles of this line to non-local thermodynamic equilibrium (NLTE) effects. Second, we aim at facilitating NLTE diagnostics of the Si I 10 827 Å line. To this end, we propose the use of a relatively simple silicon model atom, which allows a fast and accurate computation of Stokes profiles. The NLTE Stokes profiles calculated using this simple model atom are very similar to those obtained via the use of a very comprehensive silicon model atom. Methods: We investigate the impact of the NLTE effects on the Si I 10 827 Å line by means of multilevel radiative transfer calculations in a three-dimensional (3D) model atmosphere taken from a state-of-the-art magneto-convection simulation with small-scale dynamo action. We calculate the emergent Stokes profiles for this line at the solar disk center and for every vertical column of the 3D snapshot model, neglecting the effects of horizontal radiative transfer. Results: We find significant departures from LTE in the Si I 10 827 Å line, not only in the intensity but also in the linearly and circularly polarized profiles. At wavelengths around 0.1 Å, where most of the Stokes Q, U, and V peaks of the Si I 10 827 Å line occur, the differences between the NLTE and LTE profiles are comparable with the Stokes amplitudes themselves. The deviations from LTE increase with increasing Stokes Q, U, and V signals. Concerning the Stokes V profiles, the NLTE effects correlate with the magnetic field strength in the layers where such circular polarization signals are formed. Conclusions: The NLTE effects should be taken into account when diagnosing the emergent Stokes I profiles as well as the Stokes Q, U, and V profiles of the Si I 10 827 Å line. The sixteen-level silicon model atom proposed here, with six radiative bound-bound transitions, is suitable to account for the physics of formation of the Si I 10 827 Å line and for modeling and inverting its Stokes profiles without assuming LTE.

  6. ExoMol molecular line lists - XIII. The spectrum of CaO

    NASA Astrophysics Data System (ADS)

    Yurchenko, Sergei N.; Blissett, Audra; Asari, Usama; Vasilios, Marcus; Hill, Christian; Tennyson, Jonathan

    2016-03-01

    An accurate line list for calcium oxide is presented covering transitions between all bound ro-vibronic levels from the five lowest electronic states X 1Σ+, A' 1Π, A 1Σ+, a 3Π, and b 3Σ+. The ro-vibronic energies and corresponding wavefunctions were obtained by solving the fully coupled Schrödinger equation. Ab initio potential energy, spin-orbit, and electronic angular momentum curves were refined by fitting to the experimental frequencies and experimentally derived energies available in the literature. Using our refined model we could (1) reassign the vibronic states for a large portion of the experimentally derived energies (van Groenendael A., Tudorie M., Focsa C., Pinchemel B., Bernath P. F., 2005, J. Mol. Spectrosc., 234, 255), (2) extended this list of energies to J = 61-118 and (3) suggest a new description of the resonances from the A 1Σ+-X 1Σ+ system. We used high level ab initio electric dipole moments reported previously (Khalil H., Brites V., Le Quere F., Leonard C., 2011, Chem. Phys., 386, 50) to compute the Einstein A coefficients. Our work is the first fully coupled description of this system. Our line list is the most complete catalogue of spectroscopic transitions available for 40Ca16O and is applicable for temperatures up to at least 5000 K. CaO has yet to be observed astronomically but its transitions are characterized by being particularly strong which should facilitate its detection. The CaO line list is made available in an electronic form as supplementary data to this article and at www.exomol.com.

  7. TIMED/GUVI Observations of Aurora, Ionosphere, Thermosphere and Solar EUV Variations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Schaefer, R. K.

    2017-12-01

    The FUV (100-200 nm) emissions from the ionosphere and thermosphere carry rich information of the density and composition of the IT system, aurora and solar EUV flux. The key emissions include atomic hydrogen line (121.6nm), atomic oxygen lines (e.g. 130.4, 135.6, 164.1 nm), atomic nitrogen lines (e.g. 120.0, 149.3, 174.3 nm), molecular nitrogen bands (LBH and VK bands) and nitric oxide ɛ bands. TIMED/GUVI data cover the nearly full FUV range and generate many space weather products (ionosphere, thermosphere, aurora and solar EUV) that extend the products from other missions (such as NASA GOLD and ICON) and help to solve some of MIT (Magnetosphere-Ionosphere-Thermosphere) science problems and serve as validation data sources for models.

  8. Nongrayness Effects in Wolf-Rayet Wind Momentum Deposition

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2004-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes and optically thick winds. A simple analytic approach that helps to understand the most critical processes is the effecively gray approximation, but this has not been generalized to more realistic nongray opacities. We have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive to the line strengths as well as the wavelength distribution of lines. We determine these statistical parameters for several real line lists, exploring the effects of temperature and density changes on the efficiency of momentum driving relative to gray opacity. We wish to acknowledge NSF grant AST-0098155.

  9. An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio E.

    2017-11-01

    Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-line mark, handling them has become computationally prohibitive, due to both the required processing power and memory. Here I present a temperature-dependent algorithm to separate strong from weak line transitions, reformatting the large majority of the weaker lines into a cross-section data file, and retaining the detailed line-by-line information of the fewer strong lines. For any given molecule over the 0.3-30 μm range, this algorithm reduces the number of lines to a few million, enabling faster radiative-transfer computations without a significant loss of information. The final compression rate depends on how densely populated the spectrum is. I validate this algorithm by comparing Exomol’s HCN extinction-coefficient spectra between the complete (65 million line transitions) and compressed (7.7 million) line lists. Over the 0.6-33 μm range, the average difference between extinction-coefficient values is less than 1%. A Python/C implementation of this algorithm is open-source and available at https://github.com/pcubillos/repack. So far, this code handles the Exomol and HITRAN line-transition format.

  10. Comment on “Atomic mass compilation 2012” by B. Pfeiffer, K. Venkataramaniah, U. Czok, C. Scheidenberger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audi, G., E-mail: amdc.audi@gmail.com; Blaum, K.; Block, M.

    In order to avoid errors and confusion that may arise from the recent publication of a paper entitled “Atomic Mass Compilation 2012”, we explain the important difference between a compilation and an evaluation; the former is a necessary but insufficient condition for the latter. The simple list of averaged mass values offered by the “Atomic Mass Compilation” uses none of the numerous links and correlations present in the large body of input data that are carefully maintained within the “Atomic Mass Evaluation”. As such, the mere compilation can only produce results of inferior accuracy. Illustrative examples are given.

  11. Role of initial coherence in the generation of harmonics and sidebands from a strongly driven two-level atom

    NASA Astrophysics Data System (ADS)

    Gauthey, F. I.; Keitel, C. H.; Knight, P. L.; Maquet, A.

    1995-07-01

    We investigate the coherent and incoherent contributions of the scattering spectrum of strongly driven two-level atoms as a function of the initial preparation of the atomic system. The initial ``phasing'' of the coherent superposition of the excited and ground states is shown to influence strongly the generation of both harmonics and hyper-Raman lines. In particular, we point out conditions under which harmonic generation can be inhibited at the expense of the hyper-Raman lines. Our numerical findings are supported by approximate analytical evaluation in the dressed state picture.

  12. Spectroscopic Data for an Astronomy Data Base

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, Peter L.

    1997-01-01

    When we began this work, very few of the atomic and molecular data used by astronomers in the analysis of astronomical spectra were available in on-line searchable databases. Our principal goal was to: make the most useful of the atomic data files of R.L. Kurucuz (1995a,b) available on the WWW; and also to make the atomic data of R.L. Kelly for ultraviolet lines (i.e., essentially the same as the data in Kelly (1979) and Kelly (1987)) similarly available. In addition, we proposed to improve access to parameters for simple molecules of interest to astronomers.

  13. VizieR Online Data Catalog: Methyl isocyanate in Orion (Cernicharo+, 2016)

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Kisiel, Z.; Tercero, B.; Kolesnikova, L.; Medvedev, I. R.; Lopez, A.; Fortman, S.; Winnewisser, M.; de Lucia, F. C.; Alonso, J. L.; Guillemin, J.-C.

    2016-02-01

    Final results of the analysis of the laboratory rotational spectrum of CH3NCO for use in astrophysical applications. 300K line list for the reported CH3NCO rotational transitions in the standard of the SPCAT program (including intensities and lower state energies). This line list is also given in Table A.6 in the standard format of the JPL catalog (Pickett et al., 1998, J. Quant. Spectr. Rad. Transf., 60, 883). (1 data file).

  14. Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.

    1995-01-01

    Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.

  15. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster.

    PubMed

    Boyarsky, A; Ruchayskiy, O; Iakubovskyi, D; Franse, J

    2014-12-19

    We report a weak line at 3.52±0.02  keV in x-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster observed by the metal-oxide-silicon (MOS) and p-n (PN) CCD cameras of the XMM-Newton telescope. This line is not known as an atomic line in the spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stronger for Perseus than for M31; is absent in the spectrum of a deep "blank sky" data set. Although for each object it is hard to exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with the behavior of a dark matter decay line. Future (non-)detections of this line in multiple objects may help to reveal its nature.

  16. Airborne astronomy with a 150 micrometer - 500 micrometer heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1991-01-01

    This report summarizes work done under NASA Grant NAG2-254 awarded to the University of California. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory (KAO), and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved; the spectrometer is now in routine use aboard the KAO. Detections of particular note have been the 370 micrometers line of neutral atomic carbon, the 158 micrometers transition of ionized carbon, many of the high-J rotational lines of 12CO and 13CO between J=9-8 and J=22-21, the 119 micron ground-state rotational line of OH, and the 219 micron ground-state rotational line of H2D(+). All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.

  17. Investigation of the collision line broadening problem as applicable to the NASA Optical Plume Anomaly Detection (OPAD) system, phase 1

    NASA Astrophysics Data System (ADS)

    Dean, Timothy C.; Ventrice, Carl A.

    1995-05-01

    As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.

  18. Task Lists for Business, Marketing and Management Occupations, 1988: Cluster Matrices for Business, Marketing and Management Occupations. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Fonseca, Linda Lafferty

    Developed in Illinois, this document contains three components. The first component consists of employability task lists for the business, marketing, and management occupations of first-line supervisors and manager/supervisors; file clerks; traffic, shipping, and receiving clerks; records management analysts; adjustment clerks; and customer…

  19. 49 CFR 545.7 - Reporting requirements for vehicles listed in § 541.3(b)(2).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.7 Reporting requirements for vehicles listed in § 541.3(b)(2). (a) General reporting requirements. Within 60 days after the... 49 Transportation 6 2010-10-01 2010-10-01 false Reporting requirements for vehicles listed in Â...

  20. 49 CFR 545.6 - Reporting requirements for vehicles listed in § 541.3(a)(1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VEHICLE THEFT PREVENTION STANDARD PHASE-IN AND SMALL-VOLUME LINE REPORTING REQUIREMENTS § 545.6 Reporting requirements for vehicles listed in § 541.3(a)(1). (a) General reporting requirements. Within 60 days after the... 49 Transportation 6 2010-10-01 2010-10-01 false Reporting requirements for vehicles listed in Â...

  1. THE FORMATION OF IRIS DIAGNOSTICS. VII. THE FORMATION OF THE O i 135.56 NM LINE IN THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hsiao-Hsuan; Carlsson, Mats, E-mail: h.h.lin@astro.uio.no, E-mail: mats.carlsson@astro.uio.no

    The O i 135.56 nm line is covered by NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission which studies how the solar atmosphere is energized. We study here the formation and diagnostic potential of this line by means of non-local thermodynamic equilibrium modeling employing both 1D semi-empirical and 3D radiation magnetohydrodynamic models. We study the basic formation mechanisms and derive a quintessential model atom that incorporates essential atomic physics for the formation of the O i 135.56 nm line. This atomic model has 16 levels and describes recombination cascades through highly excited levels by effective recombination rates. The ionizationmore » balance O i/O ii is set by the hydrogen ionization balance through charge exchange reactions. The emission in the O i 135.56 nm line is dominated by a recombination cascade and the line is optically thin. The Doppler shift of the maximum emission correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.0–1.5 Mm height. The total intensity of the line emission is correlated with the square of the electron density. Since the O i 135.56 nm line is optically thin, the width of the emission line is a very good diagnostic of non-thermal velocities. We conclude that the O i 135.56 nm line is an excellent probe of the middle chromosphere, and compliments other powerful chromospheric diagnostics of IRIS such as the Mg ii h and k lines and the C ii lines around 133.5 nm.« less

  2. Bias and uncertainty in the absorption emission measurement of atomic sodium density in the SSME exit plane

    NASA Technical Reports Server (NTRS)

    Bauman, Leslie E.

    1990-01-01

    The measurement of atomic sodium concentration in the TTB 019 firing of April 1990 is significant in that it represents the first measurement of density at the exit plane of the space shuttle main engine. The knowledge of the sodium density, combined with the certainty that the exit plane of the plume is optically thin at the sodium D-line wavelengths, provides essential information for evaluation of diagnostic techniques using sodium atoms, such as resonant Doppler velocimetry for temperature, pressure, and velocity through high resolution fluorescent lineshape analysis. The technique used for the sodium atom line transmission (SALT) measurements is that of resonant absorption emission using a hollow cathode lamp as the reference source. Through the use of two-dimensional kinetic (TDK) predictions of temperature and density for the flight engine case and radiative transfer calculations, this line-of-sight spectrally integrated transmission indicates a sodium atom concentration, i.e., mole fraction, of 0.91e-10. The subject of this paper is the assumptions and measurement uncertainties tied into the calculation. Because of the narrow shape of the source emission, the uncertainties in the absorption profile could introduce considerable bias in the measurement. The following were investigated: (1) the inclusion of hyperfine splitting of the D-lines in the calculation; (2) the use of the flight engine predictions of plume temperature and density versus those for the large throat engine; (3) the assumption of a Gaussian, i.e., Doppler, distribution for the source radiance with a temperature of 400 K; (4) the use of atomic collisional shift and width values for the work by Jongerius; and (5) a Doppler shift for a 7 degree outward velocity vector at the plume edge. Also included in the study was the bias introduced by an uncertainty in the measurement of the D1/D2 line ratio in the source.

  3. The quiet sun

    NASA Technical Reports Server (NTRS)

    Gibson, E. G.

    1973-01-01

    An up-to-date textbook of solar physics is presented. The solar structure and processes, and the interior are described along with the photosphere, the chromosphere, and the corona. The strongest Fraunhofer lines, visible coronal lines, and coronal UV, XUV, and X-ray lines are listed.

  4. Raman Scattered He II 4332 and Photoionization Model in the Symbiotic Star V1016 Cygni

    NASA Astrophysics Data System (ADS)

    Lee, H.-W.; Heo, J.-E.; Lee, B.-C.

    2014-08-01

    Symbiotic stars are wide binary systems of a white dwarf and a mass losing giant. They exhibit unique Raman scattered features as a result of inelastic scattering of far UV line photons by atomic hydrogen. Co-existence of a far UV He II emission region and a thick H I region in symbiotic stars is necessary for the formation of Raman-scattered features blueward of hydrogen Balmer emission lines. Being a single electron atom, He II has the same atomic structure as the hydrogen atom and hence emits far UV emission lines that are slightly blueward of hydrogen Lyman lines. These far UV He II emission lines can be Raman scattered to appear blueward of hydrogen Balmer lines. In particular, the symbiotic star V1016 Cyg is found to exhibit Raman scattered He II 4332 feature in the BOES high resolution spectrum. Our profile fitting of Raman scattered He II 4332 is consistent with the mass loss geometry proposed by Jung & Lee (2004). We use the photoionization code ‘ CLOUDY' to estimate the far UV He II emission lines and make comparisons with the observed Raman scattered He II 4332 blueward of Hγ in the high resolution echelle V1016 Cyg. The emission nebula is assumed to be of uniform density of 108 cm-3 that is illuminated by a black body characterized by its temperature and total luminosity. With our comparisons we conclude that the Raman scattered He II features are consistent with the existence of a photoionized nebula by a hot black body source with temperature 7-8× 104 K with a luminosity 1038erg s-1.

  5. Collisional transfer of population and orientation in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Bai, J.; Beser, B.; Ahmed, E. H.; Lyyra, A. M.; Huennekens, J.

    2011-05-01

    Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb2 molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)1Σ+(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 31Π ← 2(A)1Σ+spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.

  6. Collisional transfer of population and orientation in NaK.

    PubMed

    Wolfe, C M; Ashman, S; Bai, J; Beser, B; Ahmed, E H; Lyyra, A M; Huennekens, J

    2011-05-07

    Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb(2) molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)(1)Σ(+)(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 3(1)Π ← 2(A)(1)Σ(+)spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.

  7. SPECTROSOCPIC STUDIES OF IONIZATION IN A HOLLOW-CATHODE DISCHARGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, K.B.

    1961-08-01

    The influence of carrier gas, carrier gas pressure, cathode geometry, and discharge current on the ionization of metal atoms in a hollow-cathode discharge was studied in some detail. Most of these studies were raade with an iron hollowcathode discharge. A measure of ionization was obtained from the intensity ratio of a line of the second to a line of the first spectrum. In general, this ratio was found to increase with carrier gas pressure and discharge current. This ratio also increased with increasing cathode bcre diameter but decreased with increasing bcre length. This ratio for iron was greatly affected bymore » the use of different inert carrier gases. Of the five common inert gases used, xenon produced the largest value for this ratio and argon produced the smallest. The results of these studies indicated this may be a new method for distinguishing between lines emitted by the neutral atom and lines of the singly ionized atom. (auth)« less

  8. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool

    PubMed Central

    2013-01-01

    Background System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Results Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Conclusions Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr. PMID:23586463

  9. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.

    PubMed

    Chen, Edward Y; Tan, Christopher M; Kou, Yan; Duan, Qiaonan; Wang, Zichen; Meirelles, Gabriela Vaz; Clark, Neil R; Ma'ayan, Avi

    2013-04-15

    System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr.

  10. Observation of a barium xenon exciplex within a large argon cluster.

    PubMed

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  11. Galactic Observations of Terahertz C+ (GOT C+): First Results: Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-05-01

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM called "dark gas” in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace this gas. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  12. The centre is not in the middle: evidence from line and word bisection.

    PubMed

    Arduino, Lisa S; Previtali, Paola; Girelli, Luisa

    2010-06-01

    English and German readers have been shown to mark a position to the left of the true centre as the subjective midpoint in word bisection. This effect resembles a well-known phenomenon observed with the bisection of solid lines (pseudoneglect), although this behavioural similarity does not imply a common origin. The purpose of the present study was twofold: on the one hand, to investigate the perceptual and lexical features that influence the bisection of Italian orthographic strings and, on the other hand, to investigate whether identical or partially independent processing mediate bisection of line and orthographic stimuli. Five experiments were carried out to explore to what extent stimulus type (lines, words, pseudowords, consonant strings, symbols), stimulus length (from 3 to 13 characters), list context (pure and mixed), and written word frequency (high and low) affected the bisection performance. The results showed that list context modulated the processing similarities across different materials and that word frequency failed to influence the magnitude of the bisection bias. More critically, across all five experiments, the results showed different effects for solid lines versus orthographic material. Lines were always bisected to the left, independent of length and list context. By contrast, a crossover effect emerged with orthographic material; for long stimuli (above five letters) the bias was consistently to the left, while short stimuli showed a consistent rightward bias. The results indicate that manual bisection involved partly different cognitive mechanisms during word and line perception and that this may depend on the characteristics of the stimuli (words/discrete vs. lines/continuous). Copyright Elsevier Ltd. All rights reserved.

  13. Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Tonoyan, A.; Keaveney, J.; Hughes, I. G.; Adams, C. S.; Sarkisyan, D.

    2018-03-01

    The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ-. Different intensities (probabilities) of transitions for the σ+ and σ- excitations are detected in magnetic field B 0 ≈ A hfs /μB ≈ 165 G ( A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at B ≫ B 0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ-. Each group is the mirror image of the other group with respect to the frequency of the 42 S 1/2-42 P 1/2 transition, which additionally proves the occurrence of the complete Paschen-Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D 1 lines of 87Rb and 23Na.

  14. Spectral Line Shapes. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoppi, M.; Ulivi, L.

    1997-02-01

    These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple{minus}free and ultra{minus}fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction{minus}induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energymore » Science and Technology database.(AIP)« less

  15. How to Deter and Coerce Iran into Giving Up Its Nuclear Weapons Program

    DTIC Science & Technology

    2011-12-01

    ix LIST OF ACRONYMS AND ABBREVIATIONS AEOI Atomic Energy Organization of Iran CBI Central Bank of Iran EU European Union GCC Gulf...Atomic Energy Organization of Iran ( AEOI ) indicate a strong belief in the policy-makers’ minds that this deterrence lens has considerable merit. This...Presidents and Cabinet, the AEOI , the IRGC, the Supreme National Security Council, and the Majles. The Supreme Leader controls the IRGC, and the

  16. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  17. Energy transfer by radiation in non-grey atomic gases in isothermal and non-isothermal slabs

    NASA Technical Reports Server (NTRS)

    Poon, P. T. Y.

    1975-01-01

    A multiband model for the absorption coefficient of atomic hydrogen-helium plasmas is constructed which includes continuum and line contributions. Emission from 28 stronger lines of 106 that have been screened is considered, of which 21 are from hydrogen and 7 belong to helium, with reabsorption due to line-line, line-continuum overlap accurately accounted for. The model is utilized in the computation of intensities and fluxes from shock-heated slabs of 85% H2-15% He mixtures for slab thicknesses from 1 to 30 cm, temperature from 10,000 to 20,000 K, and for different densities. In conjunction with the multiband model, simple numerical schemes have been devised which provide a quick and comprehensive way of computing radiative energy transfer in nonisothermal and nongrey gases.

  18. Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure

    NASA Astrophysics Data System (ADS)

    Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus

    2018-01-01

    A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.

  19. Factor Composition and Attribute Functioning in Memory.

    DTIC Science & Technology

    1978-04-01

    in the recall of the same list in the two conditions. Several lines of thought led to the expectat ion that recall would be... of the number of lists learned. Clearly, recall increased directly as the number of lists learned increased . Even with only 18 subjects in each group...simultaneous learning was responsible. The proper control, it could be argued , would be the

  20. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  1. 10 CFR Appendix A to Part 110 - Illustrative List of Nuclear Reactor Equipment Under NRC Export Licensing Authority

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Nuclear Reactor Equipment Under NRC... List of Nuclear Reactor Equipment Under NRC Export Licensing Authority Note—A nuclear reactor basically... nuclear reactor and capable of withstanding the operating pressure of the primary coolant. (2) On-line (e...

  2. Coherent forward broadening in cold atom clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, F.

    2016-02-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Furthermore, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single-photon wave-function model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms at the back of the cloud are more excited than the atoms at the front. These calculations are conducted at the low densities relevant to recent experiments.

  3. Neutral atomic absorption lines and far-UV extinction: Possible implications for depletions and grain parameters

    NASA Technical Reports Server (NTRS)

    Welty, Daniel E.

    1990-01-01

    Researchers examine nine lines of sight within the Galaxy and one in the Large Magellanic Cloud (LMC) for which data on both neutral atomic absorption lines (Snow 1984; White 1986; Welty, Hobbs, and York 1989) and far UV extinction (Bless and Savage 1972; Jenkins, Savage, and Spitzer 1986) are available, in order to test the assumption that variations in gamma/alpha will cancel in taking ratios of the ionization balance equation, and to try to determine to what extent that assumption has affected the aforementioned studies of depletions and grain properties.

  4. Absorption cross sections of some atmospheric molecules for resonantly scattered O I 1304-A radiation

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1976-01-01

    Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.

  5. The contribution of dissociative processes to the production of atomic lines in hydrogen plasmas

    NASA Technical Reports Server (NTRS)

    Kunc, J. A.

    1985-01-01

    The contribution of molecular dissociative processes to the production of atomic lines is considered for a steady-state hydrogen plasma. If the contribution of dissociative processes is dominant, a substantial simplification in plasma diagnostics can be achieved. Numerical calculations have been performed for the production of Balmer alpha, beta, and gamma lines in hydrogen plasmas with medium and large degrees of ionization (x greater than about 0.0001) and for electron temperatures of 5000-45,000 K and electron densities of 10 to the 10th to 10 to the 16th/cu cm.

  6. K-distribution models for gas mixtures in hypersonic nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Bansal, Ankit

    Calculation of nonequilibrium radiation field in plasmas around a spacecraft entering into an atmosphere at hypersonic velocities is a very complicated and computationally expensive task. The objective of this Dissertation is to collect state-of-the art spectroscopic data for the evaluation of spectral absorption and emission coefficients of atomic and molecular gases, develop efficient and accurate spectral models and databases, and study the effect of radiation on wall heat loads and flowfield around the spacecraft. The most accurate simulation of radiative transport in the shock layer requires calculating the gas properties at a large number of wavelengths and solving the Radiative Transfer Equation (RTE) in a line-by-line (LBL) fashion, which is prohibitively expensive for coupled simulations. A number of k-distribution based spectral models are developed for atomic lines, continuum and molecular bands that allow efficient evaluation of radiative properties and heat loads in hypersonic shock layer plasma. Molecular radiation poses very different challenges than atomic radiation. A molecular spectrum is governed by simultaneous electronic, vibrational and rotational transitions, making the spectrum very strongly dependent on wavelength. In contrast to an atomic spectrum, where line wings play a major role in heat transfer, most of the heat transfer in molecular spectra occurs near line centers. As the first step, k-distribution models are developed separately for atomic and molecular species, taking advantage of the fact that in the Earth's atmosphere the radiative field is dominated by atomic species (N and O) and in Titan's and Mars' atmospheres molecular bands of CN and CO are dominant. There are a number of practical applications where both atomic and molecular species are present, for example, the vacuum-ultra-violet spectrum during Earth's reentry conditions is marked by emission from atomic bound-bound lines and continuum and simultaneous absorption by strong bands of N2. For such cases, a new model is developed for the treatment of gas mixtures containing atomic lines, continuum and molecular bands. Full-spectrum k-distribution (FSK) method provides very accurate results compared to those obtained from the exact line-by-line method. For cases involving more extreme gradients in species concentrations and temperature, full-spectrum k-distribution model is relatively less accurate, and the method is refined by dividing the spectrum into a number of groups or scales, leading to the development of multi-scale models. The detailed methodology of splitting the gas mixture into scales is presented. To utilize the full potential of the k-distribution methods, pre-calculated values of k-distributions are stored in databases, which can later be interpolated at local flow conditions. Accurate and compact part-spectrum k-distribution databases are developed for atomic species and molecular bands. These databases allow users to calculate desired full-spectrum k-distributions through look-up and interpolation. Application of the new spectral models and databases to shock layer plasma radiation is demonstrated by solving the radiative transfer equation along typical one-dimensional flowfields in Earth's, Titan's and Mars' atmospheres. The k-distribution methods are vastly more efficient than the line-by-line method. The efficiency of the method is compared with the line-by-line method by measuring computational times for a number of test problems, showing typical reduction in computational time by a factor of more than 500 for property evaluation and a factor of about 32,000 for the solution of the RTE. A large percentage of radiative energy emitted in the shock-layer is likely to escape the region, resulting in cooling of the shock layer. This may change the flow parameters in the flowfield and, in turn, can affect radiative as well as convective heat loads. A new flow solver is constructed to simulate coupled hypersonic flow-radiation over a reentry vehicle. The flow solver employs a number of existing schemes and tools available in OpenFOAM; along with a number of additional features for high temperature, compressible and chemically reacting flows, and k-distribution models for radiative calculations. The radiative transport is solved with the one-dimensional tangent slab and P1 solvers, and also with the two-dimensional P1 solver. The new solver is applied to simulate flow around an entry vehicle in Martian atmosphere. Results for uncoupled and coupled flow-radiation simulations are presented, highlighting the effects of radiative cooling on flowfield and wall fluxes.

  7. Photoexcitation and photoionization of the argon atom and the hydrogen bromide molecule

    NASA Astrophysics Data System (ADS)

    Feng, Ximao

    2005-11-01

    Interaction between synchrotron radiation with inner-shell electrons is a fundamental method to study the structure and dynamics of atoms and molecules. This thesis, under the guidance of Dr. Nora Berrah, concentrates on the study of the interaction between soft x-ray photons with Ar atoms and HBr molecules with time-of-flight (TOF) electron spectrometers and two-dimensional photoelectron spectroscopy (2DPES). Both of the experiments were performed on the Atomic, Molecular and Optical Physics undulator beamline at the Advanced Light Source at Lawrence Berkeley National Laboratory. The argon study focused on photoelectron recapture when the 2p electrons are ionized just above the thresholds of the two 2p-13/2,1/2 components. From our 2DPES maps, we obtained an experimental recapture curve at the 2p-11/2 threshold as a function of photon energy. The curve is derived by extracting all the reemission photoelectrons from a specific recaptured intermediate excited state and subtracting the contributions from the 2p -1nl resonances and the recapture at the 2p-13/2 threshold. The experimentally obtained curve is in good agreement with both our semi-classical calculation result and the calculation performed with quantum-mechanics by Tulkki et al. [Phys. Rev. A 41, 181 (1990)]. The HBr molecule study aimed mainly at measuring the atomic decay channel from the 3d-15/2,3/2s* resonances. At these resonances, the repulsive characteristics of the antibonding orbital cause the molecules to dissociate, resulting in both atomic Auger decay and molecular Auger decay. We separate the two resonances and find that the peak positions are at 70.89 and 71.92 eV, respectively. Some atomic lines are assigned based on their kinetic energy positions. We find that the profiles of the atomic Auger lines on the photon energy scale are not symmetric. The atomic line pair, produced from one of the two resonances and decaying to the same final Br+ state, have approximately the same angular distribution parameters, beta. The intrinsic anisotropy parameters, alpha2, of the atomic lines, derived from the beta values, are determined and are found to be similar to those of the equivalent Auger lines in krypton. The alignment parameters A 20 for the two resonances 3d-15/2,3/2s* are found to be -0.64(5) (2D5/2) and -0.60(5) (2D3/2), respectively, which are in good agreement with the theoretical value of -0.74 predicted for the 2D 5/2 resonance [Kabanchnik et al., J. Phys. B 31, 4791 (1998)].

  8. Precision spectroscopy of the 2S-4P transition in atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas

    2017-04-01

    Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.

  9. Solution of the comoving-frame equation of transfer in spherically symmetric flows. V - Multilevel atoms. [in early star atmospheres

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Kunasz, P. B.

    1978-01-01

    The coupled radiative transfer and statistical equilibrium equations for multilevel ionic structures in the atmospheres of early-type stars are solved. Both lines and continua are treated consistently; the treatment is applicable throughout a transonic wind, and allows for the presence of background continuum sources and sinks in the transfer. An equivalent-two-level-atoms approach provides the solution for the equations. Calculations for simplified He (+)-like model atoms in parameterized isothermal wind models indicate that subordinate line profiles are sensitive to the assumed mass-loss rate, and to the assumed structure of the velocity law in the atmospheres.

  10. Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan

    2017-12-01

    A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.

  11. The red and green lines of atomic oxygen in the nightglow of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1990-01-01

    O(1D) and O(1S), the excited states that give rise to the atomic oxygen red and green lines, are produced in the Venus nightglow in dissociative recombination of O2(+). The emissions should also be excited by precipitation of soft electrons, the suggested source of the 'auroral' emission features of atomic oxygen at 1304 and 1356 A, which have been reported from observations of the Pioneer Venus Orbiter Ultraviolet Spectrometer. No emisison at 6300 or 5577 A was detected, however, by the visible spectrophotometers on the Soviet spacecraft Veneras 9 and 10; upper limits have been placed on the intensities of these features. The constraints placed on models for the auroral production mechanism by the Venera upper limits by modeling the intensities of the red and green lines in the nightglow are evaluated, combining a model for the vibrational distribution of O2(+) on the nightside of Venus with rate coefficients recently computed by Guberman for production of O(1S) and O(1D) in dissociative recombination of O2(+) from different vibrational levels. The integrated overhead intensities are 1 - 2 R for the green line and about 46 R for the red line.

  12. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates.

    PubMed

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Park, Jewook; Li, An-Ping; Zhang, X-G

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a "rubber band" model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data.

  13. Spectrum of hot methane in astronomical objects using a comprehensive computed line list

    PubMed Central

    Yurchenko, Sergei N.; Tennyson, Jonathan; Bailey, Jeremy; Hollis, Morgan D. J.; Tinetti, Giovanna

    2014-01-01

    Hot methane spectra are important in environments ranging from flames to the atmospheres of cool stars and exoplanets. A new spectroscopic line list, 10to10, for 12CH4 containing almost 10 billion transitions is presented. This comprehensive line list covers a broad spectroscopic range and is applicable for temperatures up to 1,500 K. Previous methane data are incomplete, leading to underestimated opacities at short wavelengths and elevated temperatures. Use of 10to10 in models of the bright T4.5 brown dwarf 2MASS 0559-14 leads to significantly better agreement with observations and in studies of the hot Jupiter exoplanet HD 189733b leads to up to a 20-fold increase in methane abundance. It is demonstrated that proper inclusion of the huge increase in hot transitions which are important at elevated temperatures is crucial for accurate characterizations of atmospheres of brown dwarfs and exoplanets, especially when observed in the near-infrared. PMID:24979770

  14. Spectrum of hot methane in astronomical objects using a comprehensive computed line list.

    PubMed

    Yurchenko, Sergei N; Tennyson, Jonathan; Bailey, Jeremy; Hollis, Morgan D J; Tinetti, Giovanna

    2014-07-01

    Hot methane spectra are important in environments ranging from flames to the atmospheres of cool stars and exoplanets. A new spectroscopic line list, 10to10, for (12)CH4 containing almost 10 billion transitions is presented. This comprehensive line list covers a broad spectroscopic range and is applicable for temperatures up to 1,500 K. Previous methane data are incomplete, leading to underestimated opacities at short wavelengths and elevated temperatures. Use of 10to10 in models of the bright T4.5 brown dwarf 2MASS 0559-14 leads to significantly better agreement with observations and in studies of the hot Jupiter exoplanet HD 189733b leads to up to a 20-fold increase in methane abundance. It is demonstrated that proper inclusion of the huge increase in hot transitions which are important at elevated temperatures is crucial for accurate characterizations of atmospheres of brown dwarfs and exoplanets, especially when observed in the near-infrared.

  15. Random sampling technique for ultra-fast computations of molecular opacities for exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Min, M.

    2017-10-01

    Context. Opacities of molecules in exoplanet atmospheres rely on increasingly detailed line-lists for these molecules. The line lists available today contain for many species up to several billions of lines. Computation of the spectral line profile created by pressure and temperature broadening, the Voigt profile, of all of these lines is becoming a computational challenge. Aims: We aim to create a method to compute the Voigt profile in a way that automatically focusses the computation time into the strongest lines, while still maintaining the continuum contribution of the high number of weaker lines. Methods: Here, we outline a statistical line sampling technique that samples the Voigt profile quickly and with high accuracy. The number of samples is adjusted to the strength of the line and the local spectral line density. This automatically provides high accuracy line shapes for strong lines or lines that are spectrally isolated. The line sampling technique automatically preserves the integrated line opacity for all lines, thereby also providing the continuum opacity created by the large number of weak lines at very low computational cost. Results: The line sampling technique is tested for accuracy when computing line spectra and correlated-k tables. Extremely fast computations ( 3.5 × 105 lines per second per core on a standard current day desktop computer) with high accuracy (≤1% almost everywhere) are obtained. A detailed recipe on how to perform the computations is given.

  16. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.

    PubMed

    Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-07-01

    We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.

  17. Index of flood maps prepared by the U.S. Geological Survey through 1973

    USGS Publications Warehouse

    Carrigan, Philip Hadley

    1974-01-01

    A listing is presented of flood maps prepared by the U.S. Geological Survey through 1973. Maps are listed by State and county and the list provides information on the type of flooding depicted and the reliability of the delineation.The list was prepared from a computer file, and an available program allows retrieval of data by land-line location, State and county, and Standard Metropolitan Statistical Area (SMSA). The file will be continuously updated.

  18. Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy

    DTIC Science & Technology

    2011-02-01

    thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic emission lines in the spectrum of aluminum...candidate thermometric species must produce several strong emission lines in the spectrum that originate from different upper energy levels in order to...allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric impurity for the current work since Ba

  19. Quantum Computation and Simulation Using Neutral Fermionic Atoms

    DTIC Science & Technology

    2014-06-06

    labeled n = 1) Efimov trimer crosses the three-atom scattering threshold. Working in the context of nuclear physics in the early 1970’s, Vitaly Efimov...permit the observation of anti-ferromagnetic ordering in the Hubbard model. (a) Papers published in peer-reviewed journals ( N /A for none) Enter List of...Physics, (06 2011): 0. doi: TOTAL: 7 Number of Papers published in peer-reviewed journals: (b) Papers published in non-peer-reviewed journals ( N /A for

  20. Studying Atomic Physics Using the Nighttime Atmosphere as a Laboratory

    NASA Technical Reports Server (NTRS)

    Sharpee, B. D.; Slanger, T. G.; Huestis, D. L.; Cosby, P. C.

    2006-01-01

    A summary of our recent work using terrestrial nightglow spectra, obtained from astronomical instrumentation, to directly measure, or evaluate theoretical values for fundamental parameters of astrophysically important atomic lines.

  1. Dipole-dipole resonance line shapes in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Richards, B. G.; Jones, R. R.

    2016-04-01

    We have explored the dipole-dipole mediated, resonant energy transfer reaction, 32 p3 /2+32 p3 /2→32 s +33 s , in an ensemble of cold 85Rb Rydberg atoms. Stark tuning is employed to measure the population transfer probability as a function of the total electronic energy difference between the initial and final atom-pair states over a range of Rydberg densities, 2 ×108≤ρ ≤3 ×109 cm-3. The observed line shapes provide information on the role of beyond nearest-neighbor interactions, the range of Rydberg atom separations, and the electric field inhomogeneity in the sample. The widths of the resonance line shapes increase approximately linearly with the Rydberg density and are only a factor of 2 larger than expected for two-body, nearest-neighbor interactions alone. These results are in agreement with the prediction [B. Sun and F. Robicheaux, Phys. Rev. A 78, 040701(R) (2008), 10.1103/PhysRevA.78.040701] that beyond nearest-neighbor exchange interactions should not influence the population transfer process to the degree once thought. At low densities, Gaussian rather than Lorentzian line shapes are observed due to electric field inhomogeneities, allowing us to set an upper limit for the field variation across the Rydberg sample. At higher densities, non-Lorentzian, cusplike line shapes characterized by sharp central peaks and broad wings reflect the random distribution of interatomic distances within the magneto-optical trap (MOT). These line shapes are well reproduced by an analytic expression derived from a nearest-neighbor interaction model and may serve as a useful fingerprint for characterizing the position correlation function for atoms within the MOT.

  2. Galactic Observations of Terahertz C+ (GOT C+): Inner Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Yorke, Harold; Langer, William; Velusamy, T.; Pineda, J. L.; Goldsmith, P. F.; Li, D.

    To understand the lifecycle of the interstellar gas and star formation we need detailed information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon [CII] 1.9 THz fine structure line is an important tracer of the atomic gas in the diffuse regions and the interface regions of atomic gas to molecular clouds. Furthermore, C+ is a major ISM coolant and among the Galaxy's strongest far-IR emission lines, and thus controls the thermal conditions throughout large parts of the Galaxy. Until now our knowledge of interstellar gas has been limited to the diffuse atomic phase traced by HI and to the dense molecular H2 phase traced by CO. However, we are missing an important phase of the ISM, called "dark gas" in which there is no or little, HI, and mostly molecular hydrogen but with insufficient shielding of UV to allow CO to form. C+ emission and absorption lines at 1.9 THz have the potential to trace such cloud transitions and evolution. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling [CII] 1.9 THz line emission throughout the Galactic disk. We discuss the broader perspective of this survey and the first results of GOT C+ obtained during the Science Demonstration Phase (SDP) and Priority Science Phase (PSP) of HIFI, which focus on approximately 100 lines of sight in the inner galaxy. These observations are being carried out with the Herschel Space Observatory, which is an ESA cornerstone mission, with contributions from NASA. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. JLP is a Caltech-JPL Postdoctoral Associate.

  3. Listing of awardee names: Active awards as of October 5, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-05

    This is a listing of awarded active contracts for all US DOE facilities and projects. The information contained in the list includes the awardee name and division responsible for the work, BIN, completion date, a one line description of the work, the vendor ID, city, state, congressional district, the value of the contract and the amount of funds expended to date.

  4. Recommended acetylene line list in the 20-240 cm-1 and 400-630 cm-1 regions: New measurements and global modeling

    NASA Astrophysics Data System (ADS)

    Jacquemart, David; Lyulin, Oleg; Perevalov, Valery I.

    2017-12-01

    A new recommended 12C2H2 line list for the 13-248 cm-1 and 390-634 cm-1 regions is presented. It is based on the results of the global modeling of the line positions and intensities performed in Tomsk within the framework of the method of effective operators. To validate the Tomsk calculations new measurements of both line positions and intensities were performed using acetylene spectra recorded between 25 and 680 cm-1 with the AILES-A beamline of SOLEIL synchrotron. Line positions and intensities of 627 transitions belonging to 9 bands have been measured for the first time in this region. Using the results of these new measurements and the published results of the measurements in the 13-248 cm-1 and 390-634 cm-1 regions performed with the same facilities new fittings of the line intensities for the ΔP=0 and ΔP=1 series of transitions have been performed. Here P=5v1+3v2+5v3+v4+v5 is a polyad number, where v1, v2, v3, v4, and v5 are the principal quantum numbers of the acetylene harmonic oscillators. These new sets of the effective dipole moment parameters were used to generate the line list which contains the line positions and intensities of 39 and 29 bands, respectively for the ΔP=0 and ΔP=1 series of transitions. None of these bands is present in the HITRAN 2012 [8] and GEISA 2015 [9] databases. This paper presents the first part of a global work on the validation of Tomsk calculations.

  5. 15 CFR Supplement No. 1 to Part 745 - Schedules of Chemicals

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., except for those listed in Schedule 1, containing a phosphorus atom to which is bonded one methyl, ethyl.... Precursors: (5) Phosphorus oxychloride 10025-87-3 (6) Phosphorus trichloride 7719-12-2 (7) Phosphorus...

  6. 15 CFR Supplement No. 1 to Part 745 - Schedules of Chemicals

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., except for those listed in Schedule 1, containing a phosphorus atom to which is bonded one methyl, ethyl.... Precursors: (5) Phosphorus oxychloride 10025-87-3 (6) Phosphorus trichloride 7719-12-2 (7) Phosphorus...

  7. Reading Suggestions on 1945 for Classroom Instruction

    ERIC Educational Resources Information Center

    Critchfield, James W.

    1970-01-01

    Readings are organized for teachers by these topics: World War II; The Atomic Bomb; The Cold War; American Political Personalities; and, General Events in the United States. A 7-item list is presented for high school students. (DB)

  8. CORRIGENDUM: Atoms riding Rayleigh waves Atoms riding Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Benedek, G.; Echenique, P. M.; Toennies, J. P.; Traeger, F.

    2010-09-01

    In the original paper the affiliation list is incorrect. The correct address list is as follows: G Benedek1, 5, P M Echenique1, 2, J P Toennies3 and F Traeger4 1 Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018 Donostia—San Sebastián, Spain 2 Departamento de Física de Materiales and CFM (CSIC-UPV/EHU), Universidad del País Vasco/Euskal Herriko Unibertsitatea, E-20018 San Sebastián/Donostia, Spain 3 Max Planck-Institut für Dynamik und Selbstorganisation, Bunsenstraße 10 D-37073 Göttingen, Germany 4 Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstraße 150, 44801 Bochum, Germany 5 Permanent address: Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy

  9. To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin

    2012-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .

  10. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  11. Index of refraction engineering in five-level dressed interacting ground states atoms.

    PubMed

    Sagona-Stophel, Steven A; Weatherall, James Owen; Search, Christopher P

    2011-08-15

    We present a five-level atomic system in which the index of refraction of a probe laser can be enhanced or reduced below unity with vanishing absorption in the region between pairs of absorption and gain lines formed by dressing of the atoms with a control laser and rf/microwave fields. By weak incoherent pumping of the population into a single metastable state, one can create several narrow amplifying resonances. At frequencies between these gain lines and additional absorption lines, there exist regions of vanishing absorption but resonantly enhanced index of refraction. In Rb vapors with density N in units of cm(-3), we predict an index of refraction up to n≈√(1+1.2×10(-14)N) for the D1 line, which is more than an order of magnitude larger than other proposals for index of refraction enhancement. Furthermore, the index can be readily reduced below 1 by simply changing the sign of the probe or rf field detunings. This enhancement is robust with respect to homogeneous and inhomogeneous broadening. © 2011 Optical Society of America

  12. Diffraction peak profiles of surface relaxed spherical nanocrystals

    NASA Astrophysics Data System (ADS)

    Perez-Demydenko, C.; Scardi, P.

    2017-09-01

    A model is proposed for surface relaxation of spherical nanocrystals. Besides reproducing the primary effect of changing the average unit cell parameter, the model accounts for the inhomogeneous atomic displacement caused by surface relaxation and its effect on the diffraction line profiles. Based on three parameters with clear physical meanings - extension of the sub-coordination effect, maximum radial displacement due to sub-coordination, and effective hydrostatic pressure - the model also considers elastic anisotropy and provides parametric expressions of the diffraction line profiles directly applicable in data analysis. The model was tested on spherical nanocrystals of several fcc metals, matching atomic positions with those provided by Molecular Dynamics (MD) simulations based on embedded atom potentials. Agreement was also verified between powder diffraction patterns generated by the Debye scattering equation, using atomic positions from MD and the proposed model.

  13. Coherent Forward Broadening in Cold Atom Clouds

    NASA Astrophysics Data System (ADS)

    Sutherland, R. T.; Robicheaux, Francis

    2016-05-01

    It is shown that homogeneous line-broadening in a diffuse cold atom cloud is proportional to the resonant optical depth of the cloud. Further, it is demonstrated how the strong directionality of the coherent interactions causes the cloud's spectra to depend strongly on its shape, even when the cloud is held at constant densities. These two numerical observations can be predicted analytically by extending the single photon wavefunction model. Lastly, elongating a cloud along the line of laser propagation causes the excitation probability distribution to deviate from the exponential decay predicted by the Beer-Lambert law to the extent where the atoms in the back of the cloud are more excited than the atoms in the front. These calculations are conducted at low densities relevant to recent experiments. This work was supported by the National Science Foundation under Grant No. 1404419-PHY.

  14. 47 CFR 63.500 - Contents of applications to dismantle or remove a trunk line.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) COMMON CARRIER SERVICES (CONTINUED) EXTENSION OF LINES, NEW LINES, AND DISCONTINUANCE, REDUCTION, OUTAGE... which authorization is desired; (e) Proposed new tariff listing, if any, and difference, if any, between... service area affected including population and general character of business of the community; (g) Name of...

  15. 29 CFR 1604.3 - Separate lines of progression and seniority systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES ON DISCRIMINATION BECAUSE OF SEX § 1604.3 Separate lines of progression and seniority systems. (a... lines of progression or separate seniority lists based on sex where this would adversely affect any employee unless sex is a bona fide occupational qualification for that job. Accordingly, employment...

  16. New laboratory atomic data for neutral, singly and doubly ionised iron group elements for astrophysics applications

    NASA Astrophysics Data System (ADS)

    Pickering, Juliet C.; Nave, Gillian; Liggins, Florence; Clear, Christian; Ruffoni, Matthew; Sansonetti, Craig

    2015-08-01

    We present new laboratory spectroscopic measurements to produce atomic data for astrophysically important species: neutral, singly and doubly ionised iron group elements.We use high resolution Fourier Transform Spectrometry (FTS) (resolving power up to 2x106 at 200nm) to measure atomic spectra, giving accurate line wavelengths (to a few parts in 108), atomic energy levels, hyperfine structure splitting and log gfs (accurate to a few %) (Ruffoni et al this meeting). These data are vital for astrophysical spectral analyses for: line identification, spectrum synthesis, elemental abundance determinations [eg 1], and disentangling of blends etc. It is not possible to theoretically calculate these atomic data to the accuracy needed for modern astrophysics applications.At Imperial College we have a unique visible-VUV FT spectrometer with short wavelength cut-off of 135nm. We supplement FTS data at shorter wavelengths with spectra recorded on the NIST 10.7m grating spectrograph (with phosphor image or photographic plates) and at longer wavelengths in the IR we use the NIST IR FT spectrometer.An elemental spectrum may contain thousands of spectral lines from the IR to VUV. We use these wavelengths to correct known atomic energy levels, and search for new atomic levels. The result is a classified linelist and accurate atomic energy levels.We present progress on iron group element atomic energy levels and wavelengths for V I and V II [2,3], Co III [4], Cr I, Mn I and Mn II, and Ni II.This work is supported by STFC(UK), The Leverhulme Trust, The Royal Society and NASA.References[1] Bergemann M, Pickering JC & Gehren T,“NLTE analysis of Co I/Co II lines in spectra of cool stars with new laboratory hyperfine splitting constants",MNRAS 401(2) 1334 (2010)[2] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V II”, ApJS 207,13 (2013)[3] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V I",ApJS 192,11 (2011)[4] Smillie DG, Pickering JC, Nave G & Smith PL,“The Spectrum and Term Analysis of Co III Measured using Fourier Transform and Grating Spectroscopy”,ApJS submitted

  17. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  18. Computer-based mechanical design of overhead lines

    NASA Astrophysics Data System (ADS)

    Rusinaru, D.; Bratu, C.; Dinu, R. C.; Manescu, L. G.

    2016-02-01

    Beside the performance, the safety level according to the actual standards is a compulsory condition for distribution grids’ operation. Some of the measures leading to improvement of the overhead lines reliability ask for installations’ modernization. The constraints imposed to the new lines components refer to the technical aspects as thermal stress or voltage drop, and look for economic efficiency, too. The mechanical sizing of the overhead lines is after all an optimization problem. More precisely, the task in designing of the overhead line profile is to size poles, cross-arms and stays and locate poles along a line route so that the total costs of the line's structure to be minimized and the technical and safety constraints to be fulfilled.The authors present in this paper an application for the Computer-Based Mechanical Design of the Overhead Lines and the features of the corresponding Visual Basic program, adjusted to the distribution lines. The constraints of the optimization problem are adjusted to the existing weather and loading conditions of Romania. The outputs of the software application for mechanical design of overhead lines are: the list of components chosen for the line: poles, cross-arms, stays; the list of conductor tension and forces for each pole, cross-arm and stay for different weather conditions; the line profile drawings.The main features of the mechanical overhead lines design software are interactivity, local optimization function and high-level user-interface

  19. Infrared Spectra of the 1-Chloromethyl-1-methylallyl and 1-Chloromethyl-2-methylallyl Radicals Isolated in Solid para-Hydrogen.

    PubMed

    Amicangelo, Jay C; Lee, Yuan-Pern

    2017-11-22

    The reaction of chlorine atoms (Cl) with isoprene (2-methyl-1,3-butadiene, C 5 H 8 ) in solid para-hydrogen (p-H 2 ) matrices at 3.2 K was studied using infrared (IR) spectroscopy. Mixtures of C 5 H 8 and Cl 2 were codeposited in p-H 2 at 3.2 K, followed by irradiation with ultraviolet light at 365 nm to induce the photodissociation of Cl 2 and the subsequent reaction of the Cl atoms with C 5 H 8 . Upon 365 nm photolysis, a multitude of new lines appeared in the IR spectrum, and, based on the secondary photolysis behavior, it was determined that the majority of the new lines belong to two distinct chemical species, designated as set A (intense lines at 1237.9, 807.8, and 605.6/608.2 cm -1 , and several other weaker lines) and set B (intense lines at 942.4, 1257.7, 796.7/798.5, 667.9, and 569.7 cm -1 , and several other weaker lines). Quantum-chemical calculations were performed at the B3PW91/6-311++G(2d,2p) level for ·C 5 H 7 and the four possible isomers of the ·C 5 H 8 Cl radicals, produced from the addition of the Cl atom to the four distinct sites of carbon atoms in C 5 H 8 , to determine the relative energetics and predict IR spectra for each radical. The newly observed lines of sets A and B are assigned to the 1-chloromethyl-2-methylallyl radical (addition to carbon 4) and the 1-chloromethyl-1-methylallyl radical (addition to carbon 1) according to comparison with predicted IR spectra of possible products. The 1-chloromethyl-2-methylallyl radical and 1-chloromethyl-1-methylallyl radicals were predicted to be the most stable, with the latter ∼8 kJ mol -1 lower in energy than the former. The ratio of the 1-chloromethyl-1-methylallyl to the 1-chloromethyl-2-methylallyl radicals is estimated to be (1.2 ± 0.5):1.0, indicating that the two radicals are produced in approximately equal amounts. The exclusive production of the radicals involving the addition of the Cl atom to the two terminal carbons of isoprene is analogous to what was previously observed for the reaction of Cl atoms with trans-1,3-butadiene in solid p-H 2 .

  20. Scintillation Counters

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  1. Room temperature linelists for CO2 asymmetric isotopologues with ab initio computed intensities

    NASA Astrophysics Data System (ADS)

    Zak, Emil J.; Tennyson, Jonathan; Polyansky, Oleg L.; Lodi, Lorenzo; Zobov, Nikolay F.; Tashkun, Sergei A.; Perevalov, Valery I.

    2017-12-01

    The present paper reports room temperature line lists for six asymmetric isotopologues of carbon dioxide: 16O12C18O (628), 16O12C17O (627), 16O13C18O (638),16O13C17O (637), 17O12C18O (728) and 17O13C18O (738), covering the range 0-8000 cm-1. Variational rotation-vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). A theoretical procedure for quantifying sensitivity of line intensities to minor distortions of the PES/DMS renders our theoretical model as critically evaluated. Several recent high quality measurements and theoretical approaches are discussed to provide a benchmark of our results against the most accurate available data. Indeed, the thesis of transferability of accuracy among different isotopologues with the use of mass-independent PES is supported by several examples. Thereby, we conclude that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian, constructed from the latest experiments. This study completes the list of relevant isotopologues of carbon dioxide; these line lists are available to remote sensing studies and inclusion in databases.

  2. Quantum Spin Dynamics with Pairwise-Tunable, Long-Range Interactions

    DTIC Science & Technology

    2016-08-05

    rection of the arrows. Dashed (dotted) lines mark the NNN hopping terms (coefficients ±t2). NNNN long -range hopping along curved lines are included to...Quantum spin dynamics with pairwise-tunable, long -range interactions C.-L. Hunga,b,1,2, Alejandro González-Tudelac,1,2, J. Ignacio Ciracc, and H. J...atoms) that interact by way of a variety of processes, such as atomic collisions. Such pro- cesses typically lead to short -range, nearest-neighbor

  3. Emission line shapes produced by dissociative excitation of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Wells, W. C.

    1980-01-01

    The spectral line shapes of the radiation emitted from O atoms produced by the dissociative excitation of O2, CO, CO2 and NO are investigated. Doppler line shapes are derived from time-of-flight spectra of O (5S0) atoms decaying by the emission of 1356-A radiation after being produced in electron impact experiments at incident electron energies from 25 to 300 eV. It is shown that the effective line width of the radiation is large compared with the Doppler absorption widths of ambient O atoms in both photoelectron and auroral excitation, and thus the dissociatively excited component of the O I 1304-A airglow will behave as though it were optically thin, exhibiting pronounced limb brightening effects and a scale height characteristic of the initial, local source function. It is found that the average kinetic energy of the dissociation fragments inferred from O I (5S) time-of-flight spectra is in good agreement with that of O I (3S) atoms in the electron impact dissociation of CO2, although not for O2. Finally, it is suggested that although electron impact dissociation of CO and CO2 contributes to the 1304-A emission in the upper atmosphere of Venus, it cannot be the dominant source of this radiation since the absolute cross sections for the reaction are too small.

  4. Atomic oxygen in the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Lin, Florence J.; Chance, Kelly V.; Traub, Wesley A.

    1987-01-01

    The 63-micron line due to thermospheric atomic oxygen O(P-3), using a far-infrared spectrometer on a balloon platform at 37 km altitude over Palestine, TX, on June 20, 1983. From measurements of the equivalent width of this line at two elevation angles, a weak angular dependence is found: the equivalent width increases by a factor of 1.5 + or - 0.3 as the angle decreases from +30 deg to +1 deg. Since the optical depth of the O(P-3) line is large, the measured line intensity cannot be directly converted to a column abundance. Instead, the measurements are interpreted in terms of radiative transfer through a 16-layer atmosphere extending to 200 km. A model atmosphere for summer at 30 deg N, with an exospheric temperature of 1300 K, including an assumed daytime atomic oxygen abundance profile constructed from recent chemical and dynamical models and a water vapor abundance profile constructed from recent experimental and model results is used. For this assumed O(P-3) vertical profile shape a multiplicative scaling factor of 0.8, with an altitude-dependent uncertainty is determined. In the best-determined layer the uncertainty in the multiplier is + or - 0.2 at 119 km. The model-dependent peak atomic oxygen density is 3.6 (+ or - 1.9) x 10 to the 11th/cu cm at an altitude of about 101 km.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drakakis, E.; Karabourniotis, D.

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousandmore » degrees difference was obtained between atomic and electron temperatures at the maximum current phase.« less

  6. Frequency-Comb Based Double-Quantum Two-Dimensional Spectrum Identifies Collective Hyperfine Resonances in Atomic Vapor Induced by Dipole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Lomsadze, Bachana; Cundiff, Steven T.

    2018-06-01

    Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.

  7. Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megha, A.; Sampoorna, M.; Nagendra, K. N.

    2017-06-01

    The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions usingmore » the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.« less

  8. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  9. 22 CFR 121.1 - General. The United States Munitions List.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... standard conditions (as measured in the form of an inhibited single strand) of 6.89 Mpa (68.9 bar) pressure... of 99% or more; (6) Metal fuels in particle form whether spherical, atomized, spheroidal, flaked or...

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents laboratory procedures, classroom materials/activities, and demonstrations, including: vapor pressure of liquid mixtures and Raoult's law; preparation/analysis of transition metal complexes of ethylammonium chloride; atomic structure display using a ZX81 (includes complete program listing); "pop-up" models of molecules and ions;…

  11. Fast and accurate grid representations for atom-based docking with partner flexibility.

    PubMed

    de Vries, Sjoerd J; Zacharias, Martin

    2017-06-30

    Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  13. The metal-rich abundance pattern - spectroscopic properties and abundances for 107 main-sequence stars

    NASA Astrophysics Data System (ADS)

    Ivanyuk, O. M.; Jenkins, J. S.; Pavlenko, Ya. V.; Jones, H. R. A.; Pinfield, D. J.

    2017-07-01

    We report results from the high-resolution spectral analysis of the 107 metal-rich (mostly [Fe/H] ≥ 7.67 dex) target stars from the Calan-Hertfordshire Extrasolar Planet Search programme observed with HARPS. Using our procedure of finding the best fit to the absorption line profiles in the observed spectra, we measure the abundances of Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn, and then compare them with known results from different authors. Most of our abundances agree with these works at the level of ±0.05 dex or better for the stars we have in common. However, we do find systematic differences that make direct inferences difficult. Our analysis suggests that the selection of line lists and atomic line data along with the adopted continuum level influence these differences the most. At the same time, we confirm the positive trends of abundances versus metallicity for Na, Mn, Ni and, to a lesser degree, Al. A slight negative trend is observed for Ca, whereas Si and Cr tend to follow iron. Our analysis allows us to determine the positively skewed normal distribution of projected rotational velocities with a maximum peaking at 3 km s-1. Finally, we obtained a Gaussian distribution of microturbulent velocities that has a maximum at 1.2 km s-1 and a full width at half-maximum Δv1/2 = 0.35 km s-1, indicating that metal-rich dwarfs and subgiants in our sample have a very restricted range in microturbulent velocity.

  14. Narrowband diode laser pump module for pumping alkali vapors.

    PubMed

    Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J

    2018-04-16

    We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.

  15. Detection of boron, cobalt, and other weak interstellar lines toward Zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Sheffer, Y.; Lambert, D. L.; Gilliland, R. L.

    1993-01-01

    Numerous weak lines from interstellar atomic species toward Zeta Ophiuchi were observed with the Goddard High-Resolution Spectrograph. Of particular note are the first interstellar detection of cobalt and the detection of boron in this sight line. These measurements provide estimates for the amount of depletion for the two elements. Boron, a volatile, and cobalt, a refractory element, display the depletion pattern found by Savage et al. (1992). The abundance of phosphorus in the H II region associated with the star was obtained from a detection of P III. Additional weak lines from S I, C I, Ni II, and Cu II were detected for the first time; these lines provide the basis for refinements in oscillator strength and column density. Analysis of the neutral sulfur data indicates that the atomic gas is more widely distributed than the molecular material in the main component.

  16. Mg line formation in late-type stellar atmospheres. I. The model atom

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.; Lind, K.; Belyaev, A. K.; Spielfiedel, A.; Guitou, M.; Feautrier, N.

    2015-07-01

    Context. Magnesium is an element of significant astrophysical importance, often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from local thermodynamic equilibrium (LTE). The importance of Mg , together with the unique range of spectral features in late-type stars probing different parts of the atom, as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. Previous non-LTE modelling of spectral line formation has, however, been subject to uncertainties due to lack of accurate data for inelastic collisions with electrons and hydrogen atoms. Aims: In this paper we build and test a Mg model atom for spectral line formation in late-type stars with new or recent inelastic collision data and no associated free parameters. We aim to reduce these uncertainties and thereby improve the accuracy of Mg non-LTE modelling in late-type stars. Methods: For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Hydrogen collision data, including charge transfer processes, were taken from recent calculations by some of us. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. This model was then employed in the context of standard non-LTE modelling in 1D (including average 3D) model atmospheres in a small set of stellar atmosphere models. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. Results: The modelled spectra agree well with observed spectra from benchmark stars, showing much better agreement with line profile shapes than with LTE modelling. The line-to-line scatter in the derived abundances shows some improvements compared to LTE (where the cores of strong lines must often be ignored), particularly when coupled with averaged 3D models. The observed Mg emission features at 7 and 12 μm in the spectra of the Sun and Arcturus, which are sensitive to the collision data, are reasonably well reproduced. Charge transfer with H is generally important as a thermalising mechanism in dwarfs, but less so in giants. Excitation due to collisions with H is found to be quite important in both giants and dwarfs. The R-matrix calculations for electron collisions also lead to significant differences compared to when approximate formulas are employed. The modelling predicts non-LTE abundance corrections ΔA(Mg )NLTE-LTE in dwarfs, both solar metallicity and metal-poor, to be very small (of order 0.01 dex), even smaller than found in previous studies. In giants, corrections vary greatly between lines, but can be as large as 0.4 dex. Conclusions: Our results emphasise the need for accurate data of Mg collisions with both electrons and H atoms for precise non-LTE predictions of stellar spectra, but demonstrate that such data can be calculated and that ab initio non-LTE modelling without resort to free parameters is possible. In contrast to Li and Na, where only the introduction of charge transfer processes has led to differences with respect to earlier non-LTE modelling, the more complex case of Mg finds changes due to improvements in the data for collisional excitation by electrons and hydrogen atoms, as well as due to the charge transfer processes. Grids of departure coefficients and abundance corrections for a range of stellar parameters are planned for a forthcoming paper.

  17. Postprocessing Algorithm for Driving Conventional Scanning Tunneling Microscope at Fast Scan Rates

    PubMed Central

    Zhang, Hao; Li, Xianqi; Park, Jewook; Li, An-Ping

    2017-01-01

    We present an image postprocessing framework for Scanning Tunneling Microscope (STM) to reduce the strong spurious oscillations and scan line noise at fast scan rates and preserve the features, allowing an order of magnitude increase in the scan rate without upgrading the hardware. The proposed method consists of two steps for large scale images and four steps for atomic scale images. For large scale images, we first apply for each line an image registration method to align the forward and backward scans of the same line. In the second step we apply a “rubber band” model which is solved by a novel Constrained Adaptive and Iterative Filtering Algorithm (CIAFA). The numerical results on measurement from copper(111) surface indicate the processed images are comparable in accuracy to data obtained with a slow scan rate, but are free of the scan drift error commonly seen in slow scan data. For atomic scale images, an additional first step to remove line-by-line strong background fluctuations and a fourth step of replacing the postprocessed image by its ranking map as the final atomic resolution image are required. The resulting image restores the lattice image that is nearly undetectable in the original fast scan data. PMID:29362664

  18. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    PubMed

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avrett, E.; Tian, H.; Landi, E.

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equationsmore » for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.« less

  20. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyanto, Hery; Pardede, Marincan; Hedwig, Rinda

    2016-08-15

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by themore » fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.« less

  1. 40 CFR 600.502 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... into Mexico. (b) Cost of production of a car line shall mean the aggregate of the products of: (1) The average U.S. dealer wholesale price for such car line as computed from each official dealer price list effective during the course of a model year, and (2) The number of automobiles within the car line produced...

  2. 40 CFR 600.502 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... into Mexico. (b) Cost of production of a car line shall mean the aggregate of the products of: (1) The average U.S. dealer wholesale price for such car line as computed from each official dealer price list effective during the course of a model year, and (2) The number of automobiles within the car line produced...

  3. 40 CFR 600.502 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... into Mexico. (b) Cost of production of a car line shall mean the aggregate of the products of: (1) The average U.S. dealer wholesale price for such car line as computed from each official dealer price list effective during the course of a model year, and (2) The number of automobiles within the car line produced...

  4. 40 CFR 600.502-81 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Cost of production of a car line shall mean the aggregate of the products of: (i) The average U.S. dealer wholesale price for such car line as computed from each official dealer price list effective during the course of a model year, and (ii) The number of automobiles within the car line produced during...

  5. Collective atomic scattering and motional effects in a dense coherent medium

    PubMed Central

    Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.

    2016-01-01

    We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles. PMID:26984643

  6. Hα line shape in front of the limiter in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group

    1999-11-01

    The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.

  7. 37 CFR 1.96 - Submission of computer program listings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Apple Macintosh; (ii) Operating System Compatibility: MS-DOS, MS-Windows, Unix, or Macintosh; (iii) Line... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Submission of computer... Models, Exhibits, Specimens § 1.96 Submission of computer program listings. (a) General. Descriptions of...

  8. 37 CFR 1.96 - Submission of computer program listings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Apple Macintosh; (ii) Operating System Compatibility: MS-DOS, MS-Windows, Unix, or Macintosh; (iii) Line... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Submission of computer... Models, Exhibits, Specimens § 1.96 Submission of computer program listings. (a) General. Descriptions of...

  9. 37 CFR 1.96 - Submission of computer program listings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Apple Macintosh; (ii) Operating System Compatibility: MS-DOS, MS-Windows, Unix, or Macintosh; (iii) Line... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Submission of computer... Models, Exhibits, Specimens § 1.96 Submission of computer program listings. (a) General. Descriptions of...

  10. 37 CFR 1.96 - Submission of computer program listings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Apple Macintosh; (ii) Operating System Compatibility: MS-DOS, MS-Windows, Unix, or Macintosh; (iii) Line... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Submission of computer... Models, Exhibits, Specimens § 1.96 Submission of computer program listings. (a) General. Descriptions of...

  11. 37 CFR 1.96 - Submission of computer program listings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Apple Macintosh; (ii) Operating System Compatibility: MS-DOS, MS-Windows, Unix, or Macintosh; (iii) Line... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Submission of computer... Models, Exhibits, Specimens § 1.96 Submission of computer program listings. (a) General. Descriptions of...

  12. Transition probabilities of Br II

    NASA Technical Reports Server (NTRS)

    Bengtson, R. D.; Miller, M. H.

    1976-01-01

    Absolute transition probabilities of the three most prominent visible Br II lines are measured in emission. Results compare well with Coulomb approximations and with line strengths extrapolated from trends in homologous atoms.

  13. Locality-Conscious Lock-Free Linked Lists

    NASA Astrophysics Data System (ADS)

    Braginsky, Anastasia; Petrank, Erez

    We extend state-of-the-art lock-free linked lists by building linked lists with special care for locality of traversals. These linked lists are built of sequences of entries that reside on consecutive chunks of memory. When traversing such lists, subsequent entries typically reside on the same chunk and are thus close to each other, e.g., in same cache line or on the same virtual memory page. Such cache-conscious implementations of linked lists are frequently used in practice, but making them lock-free requires care. The basic component of this construction is a chunk of entries in the list that maintains a minimum and a maximum number of entries. This basic chunk component is an interesting tool on its own and may be used to build other lock-free data structures as well.

  14. SEMIANNUAL REPORT ON MEDICAL RESEARCH TO THE ATOMIC ENERGY COMMISSION, SEPTEMBER 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, L.O. ed.

    1962-10-31

    Separate abstracts were prepared on the 12 sections of this report. Abstracts covering 4 sections have previously appeared in NSA. A list is included of staff publications during the period covered by this report. (C.H.)

  15. NSSDC data listing

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard; King, Joseph H.

    1994-01-01

    This document identifies, in a highly summarized way, all the data held at the National Space Science Data Center (NSSDC). These data cover astrophysics and astronomy, solar and space physics, planetary and lunar, and Earth science disciplines. They are primarily but not exclusively from past and on-going NASA spaceflight missions. We first identify all the data electronically available through NSSDC's principal on-line (magnetic disk-based) and near-line (robotics jukebox-based) systems and then those data available on CD-ROM's. Finally, we identify all NSSDC-held data, the majority of which are still off line on magnetic tape, film, etc., but include the electronically accessible and CD-ROM-resident data of earlier sections. These comprehensive identifications are in the form of two listings, one for the majority of NSSDC-held data sets resulting from individual instruments flown on individual spacecraft and the other for the remainder of NSSDC-held data sets that do not adhere to this spacecraft/experiment/data set hierarchy. The latter listing is presented in two parts, one for the numerous source catalogs of the NSSDC-operated Astronomical Data Center and the other for the remainder.

  16. Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.

    1992-01-01

    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.

  17. Transition rate diagrams - A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-02-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar-H2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given.

  18. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a sampling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less effected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  19. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop-size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a smapling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less affected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  20. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    NASA Astrophysics Data System (ADS)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection heavy metal pollution, Fe, in soil sample.

  1. Handbook of Basic Atomic Spectroscopic Data

    National Institute of Standards and Technology Data Gateway

    SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access)   This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.

  2. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less

  3. 78 FR 56132 - Human Reliability Program: Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ....'' In addition, the definition of ``Manager'' in the current rule does not reflect recent changes within...'' authorities, but are not listed in the definition of ``Manager.'' DOE has decided to substitute the following definition of ``Manager'' for the current listing in Sec. 712.3: ``Manager means the senior Federal line...

  4. 49 CFR 375.103 - What are the definitions of terms used in this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY... household goods transportation service. This includes written or electronic database listings of your name, address, and telephone number in an on-line database. This excludes listings of your name, address, and...

  5. 49 CFR 375.103 - What are the definitions of terms used in this part?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY... household goods transportation service. This includes written or electronic database listings of your name, address, and telephone number in an on-line database. This excludes listings of your name, address, and...

  6. Studies for the Loss of Atomic and Molecular Species from Io

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    1998-01-01

    Continued effort is reported to improve the emission rates of various emission lines for atomic oxygen and sulfur. Atomic hydrogen has been included as a new species in the neutral cloud model. The pertinent lifetime processes for hydrogen in the plasma torus and the relevant excitation processes for H Lyman-alpha emission in Io's atmosphere are discussed.

  7. Water line positions in the 782-840 nm region

    NASA Astrophysics Data System (ADS)

    Hu, S.-M.; Chen, B.; Tan, Y.; Wang, J.; Cheng, C.-F.; Liu, A.-W.

    2015-10-01

    A set of water transitions in the 782-840 nm region, including 38 H216O lines, 12 HD16O lines, and 30 D216O lines, were recorded with a cavity ring-down spectrometer calibrated using precise atomic lines. Absolute frequencies of the lines were determined with an accuracy of about 5 MHz. Systematic shifts were found in the line positions given in the HITRAN database and the upper energy levels given in recent MARVEL studies.

  8. Alternating absorption features during attosecond-pulse propagation in a laser-controlled gaseous medium

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.

    2013-11-01

    Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.

  9. Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe

    NASA Astrophysics Data System (ADS)

    Gao, ZHAO; Wanying, ZHU; Huihui, WANG; Qiang, CHEN; Chang, TAN; Jiting, OUYANG

    2018-07-01

    In this work we used a passive measurement method based on a high-impedance electrostatic probe and an optical emission spectroscope (OES) to investigate the characteristics of the double layer (DL) in an argon helicon plasma. The DL can be confirmed by a rapid change in the plasma potential along the axis. The axial potential variation of the passive measurement shows that the DL forms near a region of strong magnetic field gradient when the plasma is operated in wave-coupled mode, and the DL strength increases at higher powers in this experiment. The emission intensity of the argon atom line, which is strongly dependent on the metastable atom concentration, shows a similar spatial distribution to the plasma potential along the axis. The emission intensity of the argon atom line and the argon ion line in the DL suggests the existence of an energetic electron population upstream of the DL. The electron density upstream is much higher than that downstream, which is mainly caused by these energetic electrons.

  10. Evaluation of on-line pyrolysis coupled to isotope ratio mass spectrometry for the determination of position-specific (13)C isotope composition of short chain n-alkanes (C6-C12).

    PubMed

    Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro

    2016-06-01

    We measured (13)C intramolecular isotopic composition of commercially available short-chain hydrocarbons (n-C6-n-C12) using (13)C-NMR. Results show that the main variation is between the terminal and the sub-terminal C-atom positions. Site-preference (difference in δ(13)C values between terminal and sub-terminal C-atom positions) among all the samples varies between -12.2‰ and +8.4‰. Comparison of these results with those obtained using on-line pyrolysis coupled with GC-C-IRMS show that the thermal cracking of hydrocarbons occurs with a good isotopic fidelity between terminal and sub-terminal C-atom positions of the starting material and the related pyrolysis products (methane and ethylene). On-line pyrolysis coupled with GC-C-IRMS can thus be used for tracing hydrocarbons biogeochemical processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    PubMed

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  12. Resonance-to-intercombination-line ratios of neonlike ions in the relativistic regime

    DOE PAGES

    Panchenko, D.; Beiersdorfer, P.; Hell, N.; ...

    2017-06-05

    We report measurements of the intensity ratio of the 1s 22s 22pmore » $$5\\atop{1/2}$$3d 3/2→1s 22s 22p 6 resonance line to the 1s 22s 22p$$5\\atop{3/2}$$3d 5/2→1s 22s 22p 6 intercombination line in neonlike Kr 26+ and Mo 32+. The measurements were performed at the EBIT-I electron beam ion trap facility at the Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The measured ratio for Mo 32+ is in four times closer agreement with theoretical predictions than earlier measurements of ions with lower atomic number. Our measurement thus suggests a narrowing of the disagreement with atomic number, which had not been observed in the previously existing data. This implies that the disagreement with theory may be localized to ions within a range of atomic numbers in which intermediate coupling dominates.« less

  13. Resonance-to-intercombination-line ratios of neonlike ions in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchenko, D.; Beiersdorfer, P.; Hell, N.

    We report measurements of the intensity ratio of the 1s 22s 22pmore » $$5\\atop{1/2}$$3d 3/2→1s 22s 22p 6 resonance line to the 1s 22s 22p$$5\\atop{3/2}$$3d 5/2→1s 22s 22p 6 intercombination line in neonlike Kr 26+ and Mo 32+. The measurements were performed at the EBIT-I electron beam ion trap facility at the Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The measured ratio for Mo 32+ is in four times closer agreement with theoretical predictions than earlier measurements of ions with lower atomic number. Our measurement thus suggests a narrowing of the disagreement with atomic number, which had not been observed in the previously existing data. This implies that the disagreement with theory may be localized to ions within a range of atomic numbers in which intermediate coupling dominates.« less

  14. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  15. Atomic Decay Data for Modeling K Lines of Iron Peak and Light Odd-Z Elements*

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Garcia, J.; Witthoeft, M. C.; Kallman, T. R.

    2012-01-01

    Complete data sets of level energies, transition wavelengths, A-values, radiative and Auger widths and fluorescence yields for K-vacancy levels of the F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn isonuclear sequences have been computed by a Hartree-Fock method that includes relativistic corrections as implemented in Cowan's atomic structure computer suite. The atomic parameters for more than 3 million fine-structure K lines have been determined. Ions with electron number N greater than 9 are treated for the first time, and detailed comparisons with available measurements and theoretical data for ions with N less than or equal to 9 are carried out in order to estimate reliable accuracy ratings.

  16. Method to estimate the electron temperature and neutral density in a plasma from spectroscopic measurements using argon atom and ion collisional-radiative models.

    PubMed

    Sciamma, Ella M; Bengtson, Roger D; Rowan, W L; Keesee, Amy; Lee, Charles A; Berisford, Dan; Lee, Kevin; Gentle, K W

    2008-10-01

    We present a method to infer the electron temperature in argon plasmas using a collisional-radiative model for argon ions and measurements of electron density to interpret absolutely calibrated spectroscopic measurements of argon ion (Ar II) line intensities. The neutral density, and hence the degree of ionization of this plasma, can then be estimated using argon atom (Ar I) line intensities and a collisional-radiative model for argon atoms. This method has been tested for plasmas generated on two different devices at the University of Texas at Austin: the helicon experiment and the helimak experiment. We present results that show good correlation with other measurements in the plasma.

  17. Typographic coding in lists and bibliographies.

    PubMed

    Spencer, H; Reynolds, L; Coe, B

    1974-09-01

    A comparison was made of the effectiveness of ten systems of typographical/spatial coding suitable for use in the presentation of highly structured information such as bibliographic material. With one exception, which requires a bold typeface, the systems tested are all suitable for the preparation of copy on a standard typewriter or an upper and lowercase line printer. Sections of alphabetical author index were typed in each of the ten styles and subjects were asked to look up lists of entries in each style. The most effective system on balance was a two-unit left extension of the first line of each entry.

  18. Doppler effects on 3-D non-LTE radiation transport and emission spectra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, J. L.; Davis, J.; DasGupta, A.

    2010-10-01

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission andmore » absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.« less

  19. Predicting Atomic Decay Rates Using an Informational-Entropic Approach

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Jiang, Nan

    2018-06-01

    We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.

  20. Predicting Atomic Decay Rates Using an Informational-Entropic Approach

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Jiang, Nan

    2018-02-01

    We show that a newly proposed Shannon-like entropic measure of shape complexity applicable to spatially-localized or periodic mathematical functions known as configurational entropy (CE) can be used as a predictor of spontaneous decay rates for one-electron atoms. The CE is constructed from the Fourier transform of the atomic probability density. For the hydrogen atom with degenerate states labeled with the principal quantum number n, we obtain a scaling law relating the n-averaged decay rates to the respective CE. The scaling law allows us to predict the n-averaged decay rate without relying on the traditional computation of dipole matrix elements. We tested the predictive power of our approach up to n = 20, obtaining an accuracy better than 3.7% within our numerical precision, as compared to spontaneous decay tables listed in the literature.

  1. High Resolution Frequency Measurements of Far-Infrared Laser Lines

    DTIC Science & Technology

    2010-04-01

    1 High Resolution Frequency Measurements of Far-Infrared Laser Lines Elizabeth J. Ehasz, Thomas M. Goyette, Robert H. Giles and William E. Nixon...Abstract—The frequency of four previously reported far- infrared laser lines have been measured to an accuracy of 100 kHz. These laser lines were measured ... frequencies measured here and the listed frequencies for these laser lines ranged from 59 MHz to 3.9 GHz. Index Terms—FIR Laser, Gas Laser, Molecular

  2. Stark broadening parameters and transition probabilities of persistent lines of Tl II

    NASA Astrophysics Data System (ADS)

    de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.

    2018-05-01

    The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.

  3. 75 FR 42436 - Houston Pipe Line Company LP-Bammel Storage, Docket No. PR10-51-000, et. al.; Notice of Baseline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Houston Pipe Line Company LP--Bammel Storage, Docket No. PR10-51- 000, et. al.; Notice of Baseline Filings July 14, 2010. Houston Pipe Line..., 2010, respectively the applicants listed above submitted their baseline filing of its Statement of...

  4. 76 FR 80305 - Amendment to the International Traffic in Arms Regulations: Revision of U.S. Munitions List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... the Atomic Energy Act of 1954, as amended, and the Nuclear Non- Proliferation Act of 1978, as amended... the Nuclear Non-Proliferation Act of 1978, as amended. Dated: December 16, 2011. Ellen O. Tauscher...

  5. Fallout from Nuclear Tests.

    ERIC Educational Resources Information Center

    Comar, C. L.

    This booklet, in the series "Understanding the Atom," summarizes the important findings on radioactive fallout for which there is substantial scientific agreement, indicates the areas of disagreement, and lists some answered questions. Sources of fallout, its local and worldwide effects (including movement in the atmosphers), the…

  6. The effect of two gases forming supercritical fluids (Xe and CO 2) on the spectral characteristics and analytical capabilities of microwave induced plasmas

    NASA Astrophysics Data System (ADS)

    Montes-Bayón, M.; Camuña-Aguilar, F.; Pereiro, R.; Sánchez-Uria, J. E.; Sanz-Medel, A.

    1996-06-01

    A comparative study of the effect of CO 2 and Xe added along with the plasma gas to He and Ar microwave induced plasmas (MIPs), simulating possible conditions to be used when a MIP is employed as specific detector for supercritical fluid chromatography (SFC), has been carried out. The proportions of CO 2 and Xe to the plasma gas investigated are comparable to the typical percentages used for SFC-MIP couplings. The study has been performed with two different MIP systems: an atmospheric pressure discharge held in a Beenakker cavity TM 010 and a reduced pressure surfatron-MIP. The influence of CO 2 and Xe addition on the spectrochemical properties of the discharge has been studied by using the atomic emission of mercury and some typical non-metals (chlorine, carbon and sulfur) at different wavelengths (atomic and ionic lines). Results showed that ion line emission intensities are always reduced more significantly than atom line emissions by both dopant gases on study, whatever the pressure. In general terms, however, the effect of adding Xe is less severe, both for atom and ion lines, than that of CO 2; in most cases the detection limits (DLs) observed are better for Xe than for CO 2 as dopant gas. In fact, the DLs obtained for the selected lines of mercury measured were practically unaltered by the addition of 0.2% Xe to atmospheric pressure Ar or He MIPs. CO 2 addition (0.2%) produced about 1.5 times worsening of the observed DLs for mercury. For non-metal analyses better DLs were also obtained, in general terms, with Xe than with CO 2 as dopant gas.

  7. Homogenization of Doppler broadening in spin-noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  8. Statistical Equilibrium of Copper in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Shi, J. R.; Gehren, T.; Zeng, J. L.; Mashonkina, L.; Zhao, G.

    2014-02-01

    Non-local thermodynamic equilibrium (NLTE) line formation for neutral copper in the one-dimensional solar atmospheres is presented for the atomic model, including 96 terms of Cu I and the ground state of Cu II. The accurate oscillator strengths for all the line transitions in model atom and photoionization cross sections were calculated using the R-matrix method in the Russell-Saunders coupling scheme. The main NLTE mechanism for Cu I is the ultraviolet overionization. We find that NLTE leads to systematically depleted total absorption in the Cu I lines and, accordingly, positive abundance corrections. Inelastic collisions with neutral hydrogen atoms produce minor effects on the statistical equilibrium of Cu I in the solar atmosphere. For the solar Cu I lines, the departures from LTE are found to be small, the mean NLTE abundance correction of ~0.01 dex. It was found that the six low-excitation lines, with excitation energy of the lower level E exc <= 1.64 eV, give a 0.14 dex lower mean solar abundance compared to that from the six E exc > 3.7 eV lines, when applying experimental gf-values of Kock & Richter. Without the two strong resonance transitions, the solar mean NLTE abundance from 10 lines of Cu I is log ɛ⊙(Cu) = 4.19 ± 0.10, which is consistent within the error bars with the meteoritic value 4.25 ± 0.05 of Lodders et al. The discrepancy between E exc = 1.39-1.64 eV and E exc > 3.7 eV lines can be removed when the calculated gf-values are adopted and a mean solar abundance of log ɛ⊙(Cu) = 4.24 ± 0.08 is derived.

  9. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    NASA Astrophysics Data System (ADS)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  10. An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters

    PubMed Central

    Mazzoni, Michela; Rusconi, Marianna; Valsecchi, Sara; Martins, Claudia P. B.; Polesello, Stefano

    2015-01-01

    An UHPLC-MS/MS multiresidue method based on an on-line solid phase extraction (SPE) procedure was developed for the simultaneous determination of 9 perfluorinated carboxylates (from 4 to 12 carbon atoms) and 3 perfluorinated sulphonates (from 4 to 8 carbon atoms). This work proposes using an on-line solid phase extraction before chromatographic separation and analysis to replace traditional methods of off-line SPE before direct injection to LC-MS/MS. Manual sample preparation was reduced to sample centrifugation and acidification, thus eliminating several procedural errors and significantly reducing time-consuming and costs. Ionization suppression between target perfluorinated analytes and their coeluting SIL-IS were detected for homologues with a number of carbon atoms less than 9, but the quantitation was not affected. Total matrix effect corrected by SIL-IS, inclusive of extraction efficacy, and of ionization efficiency, ranged between −34 and +39%. The percentage of recoveries, between 76 and 134%, calculated in different matrices (tap water and rivers impacted by different pollutions) was generally satisfactory. LODs and LOQs of this on-line SPE method, which also incorporate recovery losses, ranged from 0.2 to 5.0 ng/L and from 1 to 20 ng/L, respectively. Validated on-line SPE-LC/MS/MS method has been applied in a wide survey for the determination of perfluoroalkyl acids in Italian surface and ground waters. PMID:25834752

  11. Estimation of 557.7 nm Emission Altitude using Co-located Lidars and Photometers over Arecibo

    NASA Astrophysics Data System (ADS)

    Franco, E.; Raizada, S.; Lautenbach, J.; Brum, C. G. M.

    2017-12-01

    Airglow at 557.7 nm (green line emission) is generated through the Barth mechanism in the E-region altitude and is sometimes associated with red line (630.0 nm) originating at F-region altitudes. Photons at 557.7 nm are produced through the quenching of excited atomic oxygen atoms, O(1S), while 630.0 nm results through the de-excitation of O(1D) atoms. Even though, the contribution of the green line from F-region is negligible and the significant component comes from the mesosphere, this uncertainty gives rise to a question related to its precise altitude. Previous studies have shown that perturbations generated by atmospheric gravity Waves (GWs) alter the airglow intensity and can be used for studying dynamics of the region where it originates. The uncertainty in the emission altitude of green line can be resolved by using co-located lidars, which provide altitude resolved metal densities. At Arecibo, the resonance lidars tuned to Na and K resonance wavelengths at 589 nm and 770 nm can be used in conjunction with simultaneous measurements from green line photometer to resolve this issue. Both photometer and lidars have narrow field of view as compared to airglow imagers, and hence provide an added advantage that these instruments sample same GW spectrum. Hence, correlation between density perturbations inferred from lidars and airglow intensity perturbations can shed light on the exact altitude of green line emission.

  12. Circular dichroism of magnetically induced transitions for D2 lines of alkali atoms

    NASA Astrophysics Data System (ADS)

    Tonoyan, A.; Sargsyan, A.; Klinger, E.; Hakhumyan, G.; Leroy, C.; Auzinsh, M.; Papoyan, A.; Sarkisyan, D.

    2018-03-01

    In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field \\textbf{B}\\parallel\\textbf{k} induces transitions between Δ F = +/-2 hyperfine levels of alkali atoms and in the range of ∼0.1{\\text{--}}3 \\text{kG} magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of σ+ than for σ- excitation for Δ F = +2 , whereas it is several hundreds of thousand times larger in the case of σ- than that for σ+ polarization for Δ F = -2 . This asymmetric behaviour results in circular dichroism. For experimental verification we employed half-wavelength-thick atomic vapor nanocells using a derivative of the selective reflection technique, which provides a sub-Doppler spectroscopic linewidth (∼50 \\text{MHz} ). The presented theoretical curves well describe the experimental results. This effect can find applications particularly in parity violation experiments.

  13. Excitation of atoms and ions in plasmas by ultra-short electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Astapenko, V. A.; Sakhno, S. V.; Svita, S. Yu; Lisitsa, V. S.

    2017-02-01

    The problem of atoms and ions diagnostics in rarefied and dense plasmas by ultrashort laser pulses (USP) is under consideration. The application of USP provides: 1) excitation from ground states due to their carrier frequency high enough, 2) penetration into optically dense media due to short pulses duration. The excitation from ground atomic states increases sharply populations of excited atomic states in contrast with standard laser induced fluorescence spectroscopy based on radiative transitions between excited atomic states. New broadening parameter in radiation absorption, namely inverse pulse duration time 1/τ appears in addition to standard line-shape width in the profile G(ω). The Lyman-beta absorption spectra for USP are calculated for Holtsmark static broadening mechanism. Excitation of highly charged H-like ions in hot plasmas is described by both Gaussian shapes for Doppler broadening and pulse spectrum resulting in analytical absorption line-shape. USP penetration into optically thick media and corresponding excitation probability are calculated. It is shown a great effect of USP duration on excitation probabilities in optically thick media. The typical situations for plasma diagnostics by USP are discussed in details.

  14. U.S. Geological Survey reports on the water resources of Florida, 1886-1980

    USGS Publications Warehouse

    Hoy, N.D.; Simmons, James D.; Claiborne, Maude

    1981-01-01

    The U.S. Geological Survey has released a listing of its reports on water resources in Florida for the period 1886-1980. Most of the reports contained in the listing were prepared by the U.S. Geological Survey in cooperation with numerous public agencies in Florida. The compilation has a full bibliographic list of reports, arranged alphabetically by senior author. In addition, the reports are indexed by geographic areas and by subject. Only two lines are used for each entry in the indexed portions, the complete reference being given only in the bibliographic list. (USGS)

  15. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    PubMed

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  16. Application and Analysis of the Isoelectronic Line Ratio Temperature Diagnostic in a Planar Ablating-Plasma Experiment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Johnston, Christopher O.

    2008-01-01

    By leveraging a new uncertainty markup technique, two risk analysis methods are used to compute the uncertainty of lunar-return shock layer radiation predicted by the High temperature Aerothermodynamic Radiation Algorithm (HARA). The effects of epistemic uncertainty, or uncertainty due to a lack of knowledge, is considered for the following modeling parameters: atomic line oscillator strengths, atomic line Stark broadening widths, atomic photoionization cross sections, negative ion photodetachment cross sections, molecular bands oscillator strengths, and electron impact excitation rates. First, a simplified shock layer problem consisting of two constant-property equilibrium layers is considered. The results of this simplified problem show that the atomic nitrogen oscillator strengths and Stark broadening widths in both the vacuum ultraviolet and infrared spectral regions, along with the negative ion continuum, are the dominant uncertainty contributors. Next, three variable property stagnation-line shock layer cases are analyzed: a typical lunar return case and two Fire II cases. For the near-equilibrium lunar return and Fire 1643-second cases, the resulting uncertainties are very similar to the simplified case. Conversely, the relatively nonequilibrium 1636-second case shows significantly larger influence from electron impact excitation rates of both atoms and molecules. For all cases, the total uncertainty in radiative heat flux to the wall due to epistemic uncertainty in modeling parameters is 30% as opposed to the erroneously-small uncertainty levels (plus or minus 6%) found when treating model parameter uncertainties as aleatory (due to chance) instead of epistemic (due to lack of knowledge).

  18. 120. COOLANT LINES TO SIS HEAT EXCHANGER No.1 IN AUXILIARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. COOLANT LINES TO SIS HEAT EXCHANGER No.1 IN AUXILIARY CHAMBER, NOVEMBER 1, 1976 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  19. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides instructions and a list of materials needed to demonstrate: (1) a model of the quantum mechanical atom; (2) principles involved in metal corrosion and in the prevention of this destructive process by electrochemical means; and (3) a Thermit reaction, modified to make it more dramatic and interesting for students. (SK)

  1. 77 FR 32903 - Federal Motor Vehicle Theft Prevention Standard; Final Listing of 2013 Light Duty Truck Lines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... Crosstrek, Toyota Prius and the Volkswagen Audi A4 Allroad (MPV). Subsequent to publishing the April 12.... Therefore, the agency is removing the Ford Five-Hundred (2007) and Volkswagen Audi Allroad vehicle lines...

  2. The effect of concurrent semantic categorization on delayed serial recall.

    PubMed

    Acheson, Daniel J; MacDonald, Maryellen C; Postle, Bradley R

    2011-01-01

    The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line-orientation judgments, engaging in semantic categorization judgments increased the proportion of item-ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture-judgment task manipulations. These results demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance.

  3. The Effect of Concurrent Semantic Categorization on Delayed Serial Recall

    PubMed Central

    Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.

    2010-01-01

    The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Subjects engaged in two picture judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line orientation judgments, engaging in semantic categorization judgments increased the proportion of item ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture judgment task manipulations. These results thus demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance. PMID:21058880

  4. Free Radical Metabolism of Methyleugenol and Related Compounds

    PubMed Central

    2015-01-01

    Methyleugenol, the methyl ether of eugenol, both of which are flavorant constituents of spices, has been listed by the National Toxicology Program’s Report on Carcinogens as reasonably anticipated to be a human carcinogen. This finding is based on the observation of increased incidence of malignant tumors at multiple tissue sites in experimental animals of different species. By contrast, eugenol is not listed. In this study, we show that both methyleugenol and eugenol readily undergo peroxidative metabolism in vitro to form free radicals with large hyperfine interactions of the methylene allylic hydrogen atoms. These large hyperfine splittings indicate large electron densities adjacent to those hydrogen atoms. Methyleugenol undergoes autoxidation such that the commercial product contains 10–30 mg/L hydroperoxide and is capable of activating peroxidases without the presence of added hydrogen peroxide. Additionally, the hydroperoxide is not a good substrate for catalase, which demonstrates that these antioxidant defenses will not be effective in protecting against methyleugenol exposure. PMID:24564854

  5. The extreme wings of atomic emission and absorption lines. [in low pressure gases

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Sando, K. M.

    1973-01-01

    Consideration of the extreme wings of atomic and molecular emission and absorption lines in low pressure gases. Classical and semiclassical results are compared with accurate quantal calculations of the self-broadening of Lyman-alpha in the hydrogen absorption spectrum that arises from quasimolecular transition. The results of classical, quantal, and semiclassical calculations of the absorption coefficient in the red wing are shown for temperatures of 500, 200, and 100 K. The semiclassical and quantal spectra agree well in shape at 500 K. Various other findings are discused.

  6. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  7. Experimental Line List of Water Vapor Absorption Lines in the Spectral Ranges 1850 - 2280 CM-1 and 2390-4000 CM-1

    NASA Astrophysics Data System (ADS)

    Loos, Joep; Birk, Manfred; Wagner, Georg

    2017-06-01

    A new experimental line parameter list of water vapor absorption lines in the spectral ranges 1850 - 2280 cm-1 and 2390 - 4000 cm-1 is presented. The line list is based on the analysis of several transmittance spectra measured using a Bruker IFS 125 HR high resolution Fourier transform spectrometer. A total of 54 measurements of pure water and water/air-mixtures at 296 K as well as water/air-mixtures at high and low temperatures were performed. A multispectrum fitting approach was used applying a quadratic speed-dependent hard collision line shape model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation in order to retrieve line positions, intensities, self- and air-broadening parameters, their speed-dependence, self- and air-shifts as well as line mixing and in some cases collisional narrowing parameters. Additionally, temperature dependence parameters for widths, shifts and in a few cases line mixing were retrieved. For every parameter an extensive error estimation calculation was performed identifying and specifying systematic error sources. The resulting parameters are compared to the databases HITRAN12 as well as experimental values. For intensities, a detailed comparison to results of recent ab initio calculations performed at University College London was done showing an agreement within 2 % for a majority of the data. However, for some bands there are systematic deviations attributed to ab initio calculation errors. .H. Ngo et al. JQSRT 129, 89-100 (2013) doi:10.1016/j.jqsrt.2013.05.034; JQSRT 134, 105 (2014) doi:10.1016/j.jqsrt.2013.10.016. H. Tran et al. JQSRT 129, 199-203 (2013) doi:10.1016/j.jqsrt.2013.06.015; JQSRT 134, 104 (2014) doi:10.1016/j.jqsrt.2013.10.015. L.S. Rothman et al. JQSRT 130, 4-50 (2013) doi:10.1016/j.jqsrt.2013.07.002. N. Jacquinet-Husson et al. JMS 112, 2395-2445 (2016) doi:10.1016/j.jms.2016.06.007.

  8. How Wolf-Rayet winds are driven by starlight and spectral lines

    NASA Astrophysics Data System (ADS)

    Onifer, Andrew Joseph, III

    Finding the cause of the enormous increase in the mass- loss rate of a Wolf-Rayet (W-R) star, as compared to its O star progenitor, has remained a challenge for many years. This thesis explores the hypothesis that line driving causes the large observed W-R mass-loss rates. Frequency redistribution can cause the photons to filter into gaps in the line spectrum, reducing the efficiency of line driving. Therefore, the role that frequency redistribution plays in lowering the predicted mass-loss rate is explored, both via simple two-domain idealizations of the line list and via a real W-R line list. A simple analytic theory, called the Statistical Sobolev Rosseland (SSR) theory, is developed that calculates the local efficiency of line driving in a completely redistributing wind. In the process a conceptual language is developed to explain the key issues in W-R wind line driving. The results are that with no redistribution, the reduction in radius, and corresponding increase in temperature, of an O star as it evolves into a W-R star causes roughly a six-fold increase in the mass-loss rate. However, with large amounts of redistribution, the efficiency of the wind drops greatly in the presence of spectral gaps. In the most extreme case of SSR, the mass- loss rate drops by a factor of up to an order of magnitude relative to the gray value. To avoid this it is necessary to fill the gaps in the spectrum, and the effect that ionization stratification has in filling the gaps globally over the wind is explored. It is found that with the current line list ionization changes can only fill the gaps sufficiently to cause about a factor of two increase over the SSR value. The conclusion is that in order for line driving to explain the mass-loss rates of W-R winds, more opacity needs to be discovered to fill the gaps, either locally, or globally over a realistic range of ionization strata.

  9. Infrared absorption of trans-1-chloromethylallyl and trans-1-methylallyl radicals produced in photochemical reactions of trans-1,3-butadiene and Cl2 in solid para-hydrogen.

    PubMed

    Bahou, Mohammed; Wu, Jen-Yu; Tanaka, Keiichi; Lee, Yuan-Pern

    2012-08-28

    The reactions of chlorine and hydrogen atoms with trans-1,3-butadiene in solid para-hydrogen (p-H(2)) were investigated with infrared (IR) absorption spectra. When a p-H(2) matrix containing Cl(2) and trans-1,3-butadiene was irradiated with ultraviolet light at 365 nm, intense lines at 650.3, 809.0, 962.2, 1240.6 cm(-1), and several weaker ones due to the trans-1-chloromethylallyl radical, ●(CH(2)CHCH)CH(2)Cl, appeared. Observed wavenumbers and relative intensities agree with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++g(2d, 2p) method. That the Cl atom adds primarily to the terminal carbon atom of trans-1,3-butadiene is in agreement with the path of minimum energy predicted theoretically, but in contrast to the reaction of Cl + propene in solid p-H(2) [J. Amicangelo and Y.-P. Lee, J. Phys. Chem. Lett. 1, 2956 (2010)] in which the addition of Cl to the central C atom is favored, likely through steric effects in a p-H(2) matrix. A second set of lines, intense at 781.6, 957.9, 1433.6, 2968.8, 3023.5, 3107.3 cm(-1), were observed when the UV-irradiated Cl(2)/trans-1,3-butadiene/p-H(2) matrix was further irradiated with IR light from a SiC source. These lines are assigned to the trans-1-methylallyl radical, ●(CH(2)CHCH)CH(3), produced from reaction of 1,3-butadiene with a H atom resulted from the reaction of Cl atoms with solid p-H(2) exposed to IR radiation.

  10. An ab initio variationally computed room-temperature line list for (32)S(16)O3.

    PubMed

    Underwood, Daniel S; Tennyson, Jonathan; Yurchenko, Sergei N

    2013-07-07

    Ab initio potential energy and dipole moment surfaces are computed for sulfur trioxide (SO3) at the CCSD(T)-F12b level of theory with appropriate triple-zeta basis sets. The analytical representations of these surfaces are used, with a slight correction, to compute pure rotational and rotation-vibration spectra of (32)S(16)O3 using the variational nuclear motion program TROVE. The calculations considered transitions in the region 0-4000 cm(-1) with rotational states up to J = 85. The resulting line list of 174,674,257 transitions is appropriate for modelling room temperature (32)S(16)O3 spectra. Good agreement is found with the observed infrared absorption spectra and the calculations are used to place the measured relative intensities on an absolute scale. A list of 10,878 experimental transitions is provided in a form suitable for inclusion in standard atmospheric and planetary spectroscopic databases.

  11. 76 FR 55166 - Actions Taken Pursuant to Executive Order 13382 Related to the Islamic Republic of Iran Shipping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... Order 13382 Related to the Islamic Republic of Iran Shipping Lines (IRISL) AGENCY: Office of Foreign... connection to the Islamic Republic of Iran Shipping Lines (IRISL) and is updating the entries on OFAC's list... as property of the Islamic Republic of Iran Shipping Lines (IRISL) and updated the entries on OFAC's...

  12. VizieR Online Data Catalog: CO, [CI] and [NII] lines from Herschel spectra (Kamenetzky+, 2016)

    NASA Astrophysics Data System (ADS)

    Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P. R.; Conley, A.

    2016-11-01

    We compiled a list of successful extragalactic Herschel/SPIRE FTS proposals (301 spectra) and searched the Herschel Science Archive (HSA) for the available data. Table 1 lists the basic galaxy information and observation IDs for all galaxies for which at least one FTS line measurement or upper limit is reported. The bandpass of the Herschel FTS starts around the CO J=4-3 line, but the majority of the molecular mass in galaxies is cool and populates the lower rotational levels. We complement the line fluxes derived from the FTS with the CO J=1-0, J=2-1, and J=3-2 lines available from ground-based observatories. Many of these galaxies have already been studied in the literature, particularly in large CO surveys. For some galaxies, we also performed single-dish measurements using the Arizona Radio Observatory (ARO). Measurements of the CO J=1-0 line were conducted with the 12m dish on Kitt Peak in 2015 May, and those of CO J=2-1 and J=3-2 were conducted with the Submillimeter Telescope (SMT) located on Mt. Graham from 2014 November to 2015 February. (4 data files).

  13. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    NASA Astrophysics Data System (ADS)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  14. A New Temperature Determination Using the Fe XVII Emission of Capella

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Gu, M. F.; Lepson, J.; Desai, P.

    2011-12-01

    Typically, the most reliable way to spectroscopically determine the electron temperature is to measure the strength of dielectronic recombination (DR) satellite lines relative to the associated resonance line, IDR/ Ir, as this ratio varies steeply with temperature and does not require assumptions associated with the calculations of ionization equilibria. We have applied this method to the Fe XVII lines, which are very bright in the spectrum of Capella observed with high resolution with Chandra's High Energy Transmission Grating Spectrometer. In particular, we have determined the intensity of the dielectronic satellite lines next to the Fe XVII 2p-3d resonance line, commonly denoted 3C. The atomic data needed to do this are supplied by the Flexible Atomic Code. The temperature, TDR, we have derived from this method is somewhat lower than TDEM, derived from the differential emission measure for Fe XVII. We show that the precision of this method is very high, and we discuss the its limitations.

  15. Analysis of time-resolved argon line spectra from OMEGA direct-drive implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florido, R.; Nagayama, T.; Mancini, R. C.

    2008-10-15

    We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 {mu}m in diameter, 27 {mu}m wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for diagnostic purposes. The argon K-shell line spectrum is primarily emitted at the collapse of the implosion and its analysis provides a spectroscopic diagnostic of the core implosion conditions. The observed spectra includes the He{alpha}, Ly{alpha}, He{beta}, He{gamma}, Ly{beta}, and Ly{gamma} line emissions and their associatedmore » He- and Li-like satellites thus covering a broad photon energy range from 3100 to 4200 eV with a spectral resolution power of approximately 500. The data analysis relies on detailed atomic and spectral models that take into account nonequilibrium collisional-radiative atomic kinetics, Stark-broadened line shapes, and radiation transport calculations.« less

  16. Vacuum-induced Autler-Townes splitting in a superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Peng, Z. H.; Ding, J. H.; Zhou, Y.; Ying, L. L.; Wang, Z.; Zhou, L.; Kuang, L. M.; Liu, Yu-xi; Astafiev, O. V.; Tsai, J. S.

    2018-06-01

    We experimentally study a vacuum-induced Autler-Townes doublet in a superconducting three-level artificial atom strongly coupled to a coplanar waveguide resonator and simultaneously to a transmission line. The Autler-Townes splitting is observed in the reflection spectrum from the three-level atom in a transition between the ground state and the second excited state when the transition between the two excited states is resonant with a resonator. By applying a driving field to the resonator, we observe a change in the regime of the Autler-Townes splitting from quantum (vacuum-induced) to classical (with many resonator photons). Furthermore, we show that the reflection of propagating microwaves in a transmission line could be controlled by different frequency microwave fields at the single-photon level in a resonator.

  17. Resonance and intercombination lines in Mg-like ions of atomic numbers Z = 13 – 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Juan A.; Trabert, Elmar

    2015-02-05

    While prominent lines of various Na-like ions have been measured with an accuracy of better than 100 ppm and corroborate equally accurate calculations, there have been remarkably large discrepancies between calculations for Mg-like ions of high atomic number. We present ab initio calculations using the multireference Moller-Plesset approach for Mg-like ions of atomic numbers Z = 13-92 and compare the results with other calculations of this isoelectronic sequence as well as with experimental data. Our results come very close to experiment (typically 100 ppm) over a wide range. Furthermore, data at high values of Z are sparse, which calls formore » further accurate measurements in this range where relativistic and QED effects are large.« less

  18. Method for constructing a lined underground cavity by underreaming, grouting, and boring through the grouting

    DOEpatents

    Johnson, W.H.

    1971-02-02

    A method is described for constructing a lined underground cavity. The process includes the steps of securing a casing in a borehole by grouting, underreaming the casing, filling the underreamed region with additional grouting, and then drilling through and underreaming the added grouting, thereby forming a room having a lining formed of the grouting. By using a structurally strong grouting that is impervious to water, the resulting room is waterproof and is suitable for on-site storage of an atomic device and its associated equipment prior to an underground atomic event. Such cavities also have other uses; for example, the cavities may be made very deep and used for storage of various fluids such as natural gas storage. (5 claims)

  19. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  20. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  1. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ruas, Alexandre; Matsumoto, Ayumu; Ohba, Hironori; Akaoka, Katsuaki; Wakaida, Ikuo

    2017-05-01

    In the context of the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) decommissioning process, laser-induced breakdown spectroscopy (LIBS) has many advantages. The purpose of the present work is to demonstrate the on-line monitoring capability of the LIBS coupled with the ultra-thin liquid jet sampling method. The study focuses on zirconium in aqueous solution, considering that it is a major element in the F1-NPP fuel debris that has been subject to only a few LIBS studies in the past. The methodology of data acquisition and processing are described. In particular, two regions of interest with many high intensity zirconium lines have been observed around 350 nm in the case of the ionic lines and 478 nm in the case of atomic lines. The best analytical conditions for zirconium are different depending on the analysis of ionic lines or atomic lines. A low LOD of about 4 mg L- 1 could be obtained, showing that LIBS coupled with the ultra-thin liquid jet sampling technique is a promising alternative for more complex solutions found in the F1-NPP, namely mixtures containing zirconium.

  2. Universal Representation of the H-like Spectral Line Shapes

    NASA Astrophysics Data System (ADS)

    Bureyeva, L.

    2009-05-01

    A universal approach for the calculation of Rydberg atom line shapes in plasmas is developed. It is based on analytical formulas for the intensity distribution in radiation transitions n→n' between highly excited atomic states with large values of principal quantum numbers n, n'≫1, with Δ n = n-n'≪n, and on the Frequency Fluctuation Model (FFM) to account of electron and ion thermal motion effects. The theory allows to describe a transition from the static to the impact broadening domains for every hydrogen spectral line. A new approach to extremely fast line shape calculations with account of charged particle dynamic effect was proposed. The approach is based on the close analogy between the static-impact broadening transition in the spectral line shape theory and the Doppler-Lorentz broadening in the Dicke narrowing effect theory. The precision of the new approach was tested by the comparison of hydrogen-alpha and beta line shapes calculations with the FFM results. The excellent agreement was discovered, the computer time decreased two orders of magnitudes as compared with the FFM.

  3. Copernicus studies of interstellar material in the Perseus II complex. III - The line of sight to Zeta Persei

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1977-01-01

    Ultraviolet spectrophotometric data obtained with Copernicus are used to analyze the distribution, composition, density, temperature, and kinematics of the interstellar material along the line of sight to Zeta Persei. The far-UV extinction curve for the star is evaluated along with the kinematics of the interstellar gas, observations of atomic and molecular hydrogen, curves of growth for neutral and ionized species, atomic abundances and depletions, ionization equilibria, and observations of CO and OH lines. The results show that there are apparently three clouds along the line of sight to Zeta Persei: a main cloud at approximately +13 km/s which contains most of the material and forms all the neutral and molecular lines as well as most of the ionic lines, a second component at +22 km/s which must contribute to the strong UV lines of most ions, and a third component at roughly +2 km/s which gives rise to a strong Si III line at 1206 A. It is also found that the UV extinction curve has a somewhat steep far-UV rise, indicating the presence of a substantial number of small grains, and that about 30% of the hydrogen nuclei over the entire line of sight are in molecular form.

  4. The research on the temperature measurement technology of aluminum atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaotao; Hao, Xiaojian; Tang, Huijuan; Sun, Yongkai

    2018-02-01

    Aimed to the testing requirement of the transient high temperature in the bore of barrel weapon, which has the problems of high temperature, high pressure, high overload and narrow adverse environment, the photoelectric pyrometer was researched based on the temperature measurement technology of double line of atomic emission spectrum and storage measurement technology, which used silicon photomultiplier. Al I 690.6nm and 708.5nm were selected as the temperature measurement element spectral lines, spectral line intensity was converted into a voltage value by silicon photomultiplier, the temperature was obtained through the ratio of two spectrum lines. The temperature is measured by the photoelectric thermometer and the infrared thermometer when heating aluminum by oxyhydrogen flame, and the relative error was 1.75%. Results show the temperature dependence of the two methods is better, and prove the feasibility of the method.

  5. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  6. The Teaching of Life-Line Ethics

    ERIC Educational Resources Information Center

    Bridger, James A.

    1977-01-01

    Outlines techniques used in teaching a course in "life-line" ethics, in which the events of conception, birth and death are related to ethical issues of abortion, suicide, euthanasia, etc. Several modes of actively involving students are described. Lists seven reference for information on bioethical issues. (CS)

  7. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  8. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  9. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE PAGES

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...

    2016-01-18

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  10. Atomic Data for the CHIANTI Database

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Landi, E.

    2012-01-01

    The CHIANTI spectral code consists of an atomic database and a suite of computer programs to calculate the optically thin spectrum of astrophysical objects and to carry out spectroscopic plasma diagnostics. The database includes atomic energy levels, wavelengths, radiative transition rates, collisional excitation, ionization and recombination rate coefficients, as well as data to calculate free-free, free-bound and two-photon continuum emission. In recent years, we have been pursuing a program to calculate atomic data for ions whose lines have been observed in astrophysical spectra but have been neglected in the literature, and to provide CHIANTI with all the data necessary to predict line intensities. There are two types of such ions: those for which calculations are available for low-energy configurations but not for high-energy configurations (i.e., C-like, N-like, O-like systems), and ions that have never or only seldom been studied. This poster will summarize the current status of this project and indicate the future activities .

  11. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  12. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    ScienceCinema

    None

    2017-12-09

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century, a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.

  13. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  14. Line Lists for LiF and LiCl in the X 1Σ+ Ground State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2018-03-01

    Vibration–rotation line lists for 6LiF, 7LiF, 6Li35Cl, 6Li37Cl, 7Li35Cl, and 7Li37Cl in the X 1Σ+ ground states have been prepared. The rovibrational energy levels have been calculated using potential energy surfaces determined by direct potential-fitting employing the rotational and rovibrational transition frequencies of all isotopologues, and required the inclusion of Born–Oppenheimer breakdown terms. Dipole moment functions calculated ab initio at the MRCI/aug-cc-pwCV5Z level have been used for line strength calculations. Partition functions for temperatures up to 5000 K have been calculated. LiF and LiCl are predicted to be present in the atmospheres of hot rocky exoplanets, brown dwarfs, and cool stars.

  15. The Nature of the Chemical Bond--1990.

    ERIC Educational Resources Information Center

    Ogilvie, J. F.

    1990-01-01

    Three aspects of quantum mechanics in modern chemistry are stressed: the fundamental structure of quantum mechanics as a basis of chemical applications, the relationship of quantum mechanics to atomic and molecular structure, and the consequent implications for chemical education. A list of 64 references is included. (CW)

  16. Have a Chemistry Field Day in Your Area.

    ERIC Educational Resources Information Center

    Mattson, Bruce M.; And Others

    1989-01-01

    Describes a full day of chemistry fun and competition for high school chemistry students. Notes teams have five students from each high school. Lists five competitive events for each team: titration, qualitative analysis, balancing equations, general chemistry quiz, and quantitative analysis with atomic absorption spectroscopy. (MVL)

  17. Using Games To Teach Chemistry: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Russell, Jeanne V.

    1999-01-01

    Lists 67 published or marketed chemistry games organized under the following categories: (1) general knowledge; (2) elements and atomic structure; (3) nomenclature, formulas, and equation writing; (4) chemical reactions; (5) solutions and solubilities; (6) organic chemistry, and (8) miscellaneous subjects. Includes a brief description of each…

  18. Guide to Government Loan Film (16mm). Second Edition.

    ERIC Educational Resources Information Center

    1972

    Government films are listed according to producing or distributing agency in this film guide. The films cover such areas as atomic energy, environmental pollution, mental health, career guidence, space achievements, sports, art, civil rights, aviation, drug problems, agriculture, labor, personnel management, and outdoor recreation. Listed…

  19. Accurate Wavelength Measurements and Modeling of Fe XV to Fe XIX Spectra Recorded in High-Density Plasmas between 13.5 and 17 Å

    NASA Astrophysics Data System (ADS)

    May, M. J.; Beiersdorfer, P.; Dunn, J.; Jordan, N.; Hansen, S. B.; Osterheld, A. L.; Faenov, A. Ya.; Pikuz, T. A.; Skobelev, I. Yu.; Flora, F.; Bollanti, S.; Di Lazzaro, P.; Murra, D.; Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A.; Francucci, M.; Martellucci, S.; Petrocelli, G.

    2005-06-01

    Iron spectra have been recorded from plasmas created at three different laser plasma facilities: the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from Fe XVI and Fe XV in the vicinity of the strong 2p-->3d transitions of Fe XVII. About 80 Δn>=1 lines of Fe XV (Mg-like) to Fe XIX (O-like) were recorded between 13.8 and 17.1 Å with a high spectral resolution (λ/Δλ~4000) about 30 of these lines are from Fe XVI and Fe XV. The laser-produced plasmas had electron temperatures between 100 and 500 eV and electron densities between 1020 and 1022 cm-3. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for Fe XV-XIX. HULLAC was used to calculate synthetic line intensities at Te=200 eV and ne=1021 cm-3 for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth ~200 μm) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However, some discrepancies between the modeling and the recorded spectra remain.

  20. The effects of simulated low Earth orbit environments on spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.; Stidham, Curtis R.; Stueber, Thomas J.; Booth, Roy E.

    1993-01-01

    Candidate Space Station Freedom radiator coatings including Z-93, YB-71, anodized aluminum and SiO(x) coated silvered Teflon have been characterized for optical properties degradation upon exposure to environments containing atomic oxygen, vacuum ultraviolet (VUV) radiation, and/or silicone contamination. YB-71 coating showed a blue-gray discoloration, which has not been observed in space, upon exposure in atomic oxygen facilities which also provide exaggerated VUV radiation. This is evidence that damage mechanisms occur in these ground laboratory facilities which are different from those which occur in space. Radiator coatings exposed to an electron cyclotron resonance (ECR) atomic oxygen source in the presence of silicone-containing samples showed severe darkening from the intense VUV radiation provided by the ECR and from silicone contamination. Samples exposed to atomic oxygen from the ECR source and to VUV lamps, simultaneously, with in situ reflectance measurement, showed that significantly greater degradation occurred when samples received line-of-site ECR beam exposure than when samples were exposed to atomic oxygen scattered off of quartz surfaces without line-of-site view of the ECR beam. For white paints, exposure to air following atomic oxygen/VUV exposure reversed the darkening due to VUV damage. This illustrates the importance of in situ reflectance measurement.

  1. Arcjet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Species

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas G.

    1997-01-01

    Flow property measurements that were recently acquired in the Ames Research Center Aerodynamic Heating Facility (AHF) arc jet using two-photon Laser-Induced Fluorescence (LIF) of atomic nitrogen and oxygen are reported. The measured properties, which include velocity, translational temperature, and species concentration, cover a wide range of facility operation for the 30 cm nozzle. During the tests, the arc jet pressure and input stream composition were maintained at fixed values and the arc current was varied to vary the flow enthalpy. As part of this ongoing effort, a measurement of the two-photon absorption coefficient for the 3p4D<-2p4S transition of atomic nitrogen was performed, and the measured value is used to convert the relative concentration measurements to absolute values. A flow reactor is used to provide a known temperature line shape profile to deconvolve the laser line width contribution to the translational temperature measurements. Results from the current experiments are compared with previous results obtained using NO-Beta line profiles at room temperature and the problem of multimode laser oscillation and its impact on the two-photon excitation line shape are discussed. One figure is attached, and this figure shows relative N atom concentration measurements as a function of the arc power. Other measurements have already been acquired and analyzed. This poster represents an application of laser-spectroscopic measurements in an important test facility. The arc jet flow facilities are heavily used in thermal protection material development and evaluation. All hypersonic flight and planetary atmospheric entry vehicles will use materials tested in these arc jet facilities.

  2. Effects of velocity-changing collisions on two-photon and stepwise-absorption spectroscopic line shapes

    NASA Astrophysics Data System (ADS)

    Liao, P. F.; Bjorkholm, J. E.; Berman, P. R.

    1980-06-01

    We report the results of an experimental study of the effects of velocity-changing collisions on two-photon and stepwise-absorption line shapes. Excitation spectra for the 3S12-->3P12-->4D12 transitions of sodium atoms undergoing collisions with foreign gas perturbers are obtained. These spectra are obtained with two cw dye lasers. One laser, the pump laser, is tuned 1.6 GHz below the 3S12-->3P12 transition frequency and excites a nonthermal longitudinal velocity distribution of excited 3P12 atoms in the vapor. Absorption of the second (probe) laser is used to monitor the steady-state excited-state distribution which is a result of collisions with rare gas atoms. The spectra are obtained for various pressures of He, Ne, and Kr gases and are fit to a theoretical model which utilizes either the phenomenological Keilson-Störer or the classical hardsphere collision kernel. The theoretical model includes the effects of collisionally aided excitation of the 3P12 state as well as effects due to fine-structure state-changing collisions. Although both kernels are found to predict line shapes which are in reasonable agreement with the experimental results, the hard-sphere kernel is found superior as it gives a better description of the effects of large-angle scattering for heavy perturbers. Neither kernel provides a fully adequate description over the entire line profile. The experimental data is used to extract effective hard-sphere collision cross sections for collisions between sodium 3P12 atoms and helium, neon, and krypton perturbers.

  3. Analysis of on-line clinical laboratory manuals and practical recommendations.

    PubMed

    Beckwith, Bruce; Schwartz, Robert; Pantanowitz, Liron

    2004-04-01

    On-line clinical laboratory manuals are a valuable resource for medical professionals. To our knowledge, no recommendations currently exist for their content or design. To analyze publicly accessible on-line clinical laboratory manuals and to propose guidelines for their content. We conducted an Internet search for clinical laboratory manuals written in English with individual test listings. Four individual test listings in each manual were evaluated for 16 data elements, including sample requirements, test methodology, units of measure, reference range, and critical values. Web sites were also evaluated for supplementary information and search functions. We identified 48 on-line laboratory manuals, including 24 academic or community hospital laboratories and 24 commercial or reference laboratories. All manuals had search engines and/or test indices. No single manual contained all 16 data elements evaluated. An average of 8.9 (56%) elements were present (range, 4-14). Basic sample requirements (specimen and volume needed) were the elements most commonly present (98% of manuals). The frequency of the remaining data elements varied from 10% to 90%. On-line clinical laboratory manuals originate from both hospital and commercial laboratories. While most manuals were user-friendly and contained adequate specimen-collection information, other important elements, such as reference ranges, were frequently absent. To ensure that clinical laboratory manuals are of maximal utility, we propose the following 13 data elements be included in individual test listings: test name, synonyms, test description, test methodology, sample requirements, volume requirements, collection guidelines, transport guidelines, units of measure, reference range, critical values, test availability, and date of latest revision.

  4. The effect of intermediate-scale motions on line formation. [sawtooth and sine motions in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Shine, R. A.

    1975-01-01

    The problem of LTE and non-LTE line formation in the presence of nonthermal velocity fields with geometric scales between the microscopic and macroscopic limits is investigated in the cases of periodic sinusoidal and sawtooth waves. For a fixed source function (the LTE case), it is shown that time-averaged line profiles progress smoothly from the microscopic to the macroscopic limits as the geometric scale of the motions increases, that the sinusoidal motions produce symmetric time-averaged profiles, and that the sawtooth motions cause a redshift. In several idealized non-LTE cases, it is found that intermediate-scale velocity fields can significantly increase the surface source functions and line-core intensities. Calculations are made for a two-level atom in an isothermal atmosphere for a range of velocity scales and non-LTE coupling parameters and also for a two-level atom and a four-level representation of Na I line formation in the Harvard-Smithsonian Reference Atmosphere (1971) solar model. It is found that intermediate-scale velocity fields in the solar atmosphere could explain the central intensities of the Na I D lines and other strong absorption lines without invoking previously suggested high electron densities.

  5. How Sommerfeld extended Bohr's model of the atom (1913-1916)

    NASA Astrophysics Data System (ADS)

    Eckert, Michael

    2014-04-01

    Sommerfeld's extension of Bohr's atomic model was motivated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decomposed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. Sommerfeld concluded from this observation that the quantization in Bohr's model had to be altered in order to allow for such decompositions. He outlined this idea in a lecture in winter 1914/15, but did not publish it. The First World War further delayed its elaboration. When Bohr published new results in autumn 1915, Sommerfeld finally developed his theory in a provisional form in two memoirs which he presented in December 1915 and January 1916 to the Bavarian Academy of Science. In July 1916 he published the refined version in the Annalen der Physik. The focus here is on the preliminary Academy memoirs whose rudimentary form is better suited for a historical approach to Sommerfeld's atomic theory than the finished Annalen-paper. This introductory essay reconstructs the historical context (mainly based on Sommerfeld's correspondence). It will become clear that the extension of Bohr's model did not emerge in a singular stroke of genius but resulted from an evolving process.

  6. SLAC-standard CAMAC branch terminator (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-04

    The drawings listed on the drawing list provide the data and specifications for constructing a Branch Terminator for the SLAC standard CAMAC units. This is a device for matching the cables and other branch lines in the system. This unit is designed for a certain group of SLAC CAMAC units which are referred to as SLAC-Standard CAMAC Units.

  7. DESIGN PRINCIPLES FOR AN ON-LINE INFORMATION RETRIEVAL SYSTEM. TECHNICAL REPORT.

    ERIC Educational Resources Information Center

    LOWE, THOMAS C.

    AREAS INVESTIGATED INCLUDE SLOW MEMORY DATA STORAGE, THE PROBLEM OF DECODING FROM AN INDEX TO A SLOW MEMORY ADDRESS, THE STRUCTURE OF DATA LISTS AND DATA LIST OPERATORS, COMMUNICATIONS BETWEEN THE HUMAN USER AND THE SYSTEM, PROCESSING OF RETRIEVAL REQUESTS, AND THE USER'S CONTROL OVER THE RETURN OF INFORMATION RETRIEVED. LINEAR, LINKED AND…

  8. Non-Lipschitz Approach to Quantum Mechnics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.

  9. Emission spectroscopy and laser-induced fluorescence measurements on the plume from a 1-kW arcjet operated on simulated ammonia

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Burtner, D.; Keefer, Dennis

    1993-01-01

    Spectroscopic and laser-induced fluorescence measurements were performed on the exhaust plume from a 1 kW NASA Lewis arcjet, operated on simulated ammonia. In particular, emissions were analyzed from the Balmer lines of atomic hydrogen and from one of the rotational bands of the NH radical. The laser-induced fluorescence measurements were performed on the Balmer-alpha line of atomic hydrogen. We find that exit plane temperatures are in the range 1500 to 3500 K and that the electron density upstream of the exit plane is on the order of 1.5 x 10(exp 14)/cu cm as determined by the Stark width of the Balmer-alpha line. Both emission spectroscopy and laser-induced fluorescence were used to measure the plume velocities of atomic hydrogen. Using either technique, velocities on the order of 4 km/sec were found at the exit plane and significant acceleration of the flow was observed in the first 2 mm beyond the exit plane. This result indicates that the design of the arcjet nozzle may not be optimum.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garton, W.R.S.; Connerade, J.

    In tribute to the great contributions of Charlotte Moore Sitterly in critical compilations of Atomic Energy Levels, we collate some of the results from a 15-year program of atomic absorption spectroscopy of neutral species. The work reviewed has been based mainly on the utilization of the 0.5- and 2.5-GeV synchrotrons in Bonn. Such results and interpretations illustrate that no atomic structure is of the simple kind formerly associated with line series. (This applies even to the hydrogen atom, as regards Zeeman spectra.) Conversely, series can often be found in traditionally complex spectra.

  11. The International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    NASA Technical Reports Server (NTRS)

    Sugar, J.; Leckrone, D.

    1993-01-01

    This was the fourth in a series of colloquia begun at the University of Lund, Sweden in 1983 and subsequently held in Toledo, Ohio and Amsterdam, The Netherlands. The purpose of these meetings is to provide an international forum for communication between major users of atomic spectroscopic data and the providers of these data. These data include atomic wavelengths, line shapes, energy levels, lifetimes, and oscillator strengths. Speakers were selected from a wide variety of disciplines including astrophysics, laboratory plasma research, spectrochemistry, and theoretical and experimental atomic physics.

  12. [Maintenance of Pure Lines and Hybridization.] Student Materials. V.A. III. [IV-A-1 through IV-A-2].

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Part of a series of eight student learning modules in vocational agriculture, this booklet deals with plant reproduction. Topics covered include the pure line theory and its history, pure line selection, the effect of inbreeding on vitality, the definition of and reasons for hybridization in plants, and techniques for producing hybirds; a list of…

  13. Shuttle Main Propulsion System LH2 Feed Line and Inducer Simulations

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Rothermel, Jeffry

    2002-01-01

    This viewgraph presentation includes simulations of the unsteady flow field in the LH2 feed line, flow line, flow liner, backing cavity and inducer of Shuttle engine #1. It also evaluates aerodynamic forcing functions which may contribute to the formation of the cracks observed on the flow liner slots. The presentation lists the numerical methods used, and profiles a benchmark test case.

  14. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated

  15. 75 FR 62331 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-14, DC-9-15, and DC-9-15F...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... switch and new in-line fuses for the pressure switch, as applicable; and change the wiring; on the left...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require installing new in-line fuses for the fuel level float switch and new in-line...

  16. Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests.

    PubMed

    Schirmer, Kristin; Tanneberger, Katrin; Kramer, Nynke I; Völker, Doris; Scholz, Stefan; Hafner, Christoph; Lee, Lucy E J; Bols, Niels C; Hermens, Joop L M

    2008-11-11

    This paper details the derivation of a list of 60 reference chemicals for the development of alternatives to animal testing in ecotoxicology with a particular focus on fish. The chemicals were selected as a prerequisite to gather mechanistic information on the performance of alternative testing systems, namely vertebrate cell lines and fish embryos, in comparison to the fish acute lethality test. To avoid the need for additional experiments with fish, the U.S. EPA fathead minnow database was consulted as reference for whole organism responses. This database was compared to the Halle Registry of Cytotoxicity and a collation of data by the German EPA (UBA) on acute toxicity data derived from zebrafish embryos. Chemicals that were present in the fathead minnow database and in at least one of the other two databases were subject to selection. Criteria included the coverage of a wide range of toxicity and physico-chemical parameters as well as the determination of outliers of the in vivo/in vitro correlations. While the reference list of chemicals now guides our research for improving cell line and fish embryo assays to make them widely applicable, the list could be of benefit to search for alternatives in ecotoxicology in general. One example would be the use of this list to validate structure-activity prediction models, which in turn would benefit from a continuous extension of this list with regard to physico-chemical and toxicological data.

  17. Predictions of new AB O3 perovskite compounds by combining machine learning and density functional theory

    NASA Astrophysics Data System (ADS)

    Balachandran, Prasanna V.; Emery, Antoine A.; Gubernatis, James E.; Lookman, Turab; Wolverton, Chris; Zunger, Alex

    2018-04-01

    We apply machine learning (ML) methods to a database of 390 experimentally reported A B O3 compounds to construct two statistical models that predict possible new perovskite materials and possible new cubic perovskites. The first ML model classified the 390 compounds into 254 perovskites and 136 that are not perovskites with a 90% average cross-validation (CV) accuracy; the second ML model further classified the perovskites into 22 known cubic perovskites and 232 known noncubic perovskites with a 94% average CV accuracy. We find that the most effective chemical descriptors affecting our classification include largely geometric constructs such as the A and B Shannon ionic radii, the tolerance and octahedral factors, the A -O and B -O bond length, and the A and B Villars' Mendeleev numbers. We then construct an additional list of 625 A B O3 compounds assembled from charge conserving combinations of A and B atoms absent from our list of known compounds. Then, using the two ML models constructed on the known compounds, we predict that 235 of the 625 exist in a perovskite structure with a confidence greater than 50% and among them that 20 exist in the cubic structure (albeit, the latter with only ˜50 % confidence). We find that the new perovskites are most likely to occur when the A and B atoms are a lanthanide or actinide, when the A atom is an alkali, alkali earth, or late transition metal atom, or when the B atom is a p -block atom. We also compare the ML findings with the density functional theory calculations and convex hull analyses in the Open Quantum Materials Database (OQMD), which predicts the T =0 K ground-state stability of all the A B O3 compounds. We find that OQMD predicts 186 of 254 of the perovskites in the experimental database to be thermodynamically stable within 100 meV/atom of the convex hull and predicts 87 of the 235 ML-predicted perovskite compounds to be thermodynamically stable within 100 meV/atom of the convex hull, including 6 of these to be in cubic structures. We suggest these 87 as the most promising candidates for future experimental synthesis of novel perovskites.

  18. A multi-channel tunable source for atomic sensors

    NASA Astrophysics Data System (ADS)

    Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil

    2015-09-01

    We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.

  19. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team

    2014-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.

  20. Nonradiative transport of atomic excitation in Na vapor

    NASA Astrophysics Data System (ADS)

    Zajonc, Arthur G.; Phelps, A. V.

    1981-05-01

    Measurements are reported which show the effect of nonradiative losses at a gas-window interface on the backscattered fluorescence intensity for Na vapor at frequencies in the vicinity of the resonance lines near 589 nm. The Na 3P12,32 states are excited with a low-intensity single-mode tunable dye laser at high Na densities and the frequency integral of the backscattered fluorescence intensity in the D1 and D2 lines is measured. As the laser is tuned through resonance, the loss of atomic excitation to the window appears as a sharp decrease in the frequency-integrated fluorescence intensity. For example, at 7×1020 atoms m-3 the fluorescence intensity decreases by a factor of 4 in a frequency interval of 4 GHz. Measured absolute fluorescence intensities versus laser frequency are compared with predictions made using the theory of Hummer and Kunasz which includes both radiative and nonradiative transport processes. The agreement between theory and experiment is remarkably good when one considers that the theory contains only one unknown coefficient, i.e., the reflection coefficient for excited atoms at the windows. In our case the excited atoms are assumed to be completely destroyed at the window.

  1. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  2. Physics Division progress report for period ending June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  3. Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1991-01-01

    Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelson, P.H.

    The bulk of the Division's effort concerned nuclear physics and accelerator development, but work in the areas of nuclear data, research applicable to the magnetic fusion project, atomic and molecular physics, and high-energy physics is also recounted. Lists of publications, technical talks, personnel, etc., are included. Individual reports with sufficient data are abstracted separately. (RWR)

  5. 76 FR 70896 - Polyethylene Glycol; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... a finite tolerance is not necessary to ensure that there is a reasonable certainty that no harm will... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...

  6. 76 FR 69662 - Methacrylic Polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... result of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is... part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...

  7. POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.

    2016-09-10

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarizedmore » line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.« less

  8. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  9. High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui

    2017-05-01

    This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.

  10. Stellar and laboratory XUV/EUV line ratios in Fe XVIII and Fe XIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traebert, E.; Beiersdorfer, P.; Clementson, J.

    2012-05-25

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines observed in the XUV and EUV ranges of the spectrum of the star Capella as observed by the Chandra spacecraft, even after correction for interstellar absorption. This excess becomes apparent in the comparison of the observations with simulations of stellar spectra obtained using collisional-radiative models that employ, for example, the Atomic Plasma Emission Code (APEC) or the Flexible Atomic Code (FAC). We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT).

  11. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures

    NASA Astrophysics Data System (ADS)

    Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.

    2014-10-01

    Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.

  12. Structural and electronic properties of double-walled boron nitride nanocones

    NASA Astrophysics Data System (ADS)

    Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.

    2018-01-01

    First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.

  13. Energy resolved actinometry for simultaneous measurement of atomic oxygen densities and local mean electron energies in radio-frequency driven plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greb, Arthur, E-mail: ag941@york.ac.uk; Niemi, Kari; O'Connell, Deborah

    2014-12-08

    A diagnostic method for the simultaneous determination of atomic oxygen densities and mean electron energies is demonstrated for an atmospheric pressure radio-frequency plasma jet. The proposed method is based on phase resolved optical emission measurements of the direct and dissociative electron-impact excitation dynamics of three distinct emission lines, namely, Ar 750.4 nm, O 777.4 nm, and O 844.6 nm. The energy dependence of these lines serves as basis for analysis by taking into account two line ratios. In this frame, the method is highly adaptable with regard to pressure and gas composition. Results are benchmarked against independent numerical simulations and two-photon absorption laser-inducedmore » fluorescence experiments.« less

  14. 78 FR 75306 - Endangered and Threatened Wildlife and Plants; Listing the Lesser Prairie-Chicken as a Threatened...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... invasive woody plants; wind energy development; petroleum production; and presence of roads and manmade vertical structures including towers, utility lines, fences, turbines, wells, and buildings. The Act does.... Disturbance Practices. Crop Production. Wind Power, Cell and Radio Towers, and Power Line Activities...

  15. Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ciocca, Marco

    1996-01-01

    The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.

  16. Line Lists for LiF and LiCl in the X^{1}Σ^{+} State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2017-06-01

    Alkali-containing molecules are expected to be present in the atmospheres of exoplanets such as rocky super-Earths as well as in cool dwarf stars. Line lists for LiF and LiCl in their X^{1}Σ^{+} ground states have been calculated using LeRoy's LEVEL program. The potential energy functions, including the effects of the breakdown of the Born-Oppenheimer approximation, are obtained by direct fitting the experimental infrared vibration-rotation and microwave pure rotation data with extended Morse oscillator potentials using LeRoy's dPotFit program. The transition dipole matrix elements and line intensities were obtained with LEVEL using a dipole moment function from a high level ab initio calculation. Phil. Trans. R. Soc. A 372, 20130087 (2014) Astrophys. J. 519, 793 (1999) J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017) J. Quant. Spectrosc. Radiat. Transfer 186, 179 (2017)

  17. Survey of emission-line galaxies: Universidad Complutense de Madrid list

    NASA Technical Reports Server (NTRS)

    Zamorano, J.; Rego, Gallego, J.; Gallego, J. G.; Vitores, A. G.RA, R.; Gonzalez-Riestra, R..; Rodriguez-Caderot, G.

    1994-01-01

    A low-dispersion objective-prism survey for low-redshift emission-line galaxies (ELGs) is being carried out by the University Complutense de Madrid with the Schmidt telescope at the German-Spanish Observatory of Calar Alto (Almeria, Spain). A 4 deg full aperture prism, which provides a dispersion of 1950 A/mm, and IIIaF emulsion combination has been used to search for ELGs selected by the presence of H-alpha emission in their spectra. Our survey has proved to be able to recover objects already found by similar surveys with different techniques and, what is more important, to discover new objects not previously cataloged. A compilation of descriptions and positions, along with finding charts when necessary, is presented for 160 extragalactic emission-line objects. This is the first list, which contains objects located in a region of the sky covering 270 sq deg in 10 fields near alpha = 0(sup h) and delta = 20 deg.

  18. Rapid Damage Assessment. Volume II. Development and Testing of Rapid Damage Assessment System.

    DTIC Science & Technology

    1981-02-01

    pixels/s Camera Line Rate 732.4 lines/s Pixels per Line 1728 video 314 blank 4 line number (binary) 2 run number (BCD) 2048 total Pixel Resolution 8 bits...sists of an LSI-ll microprocessor, a VDI -200 video display processor, an FD-2 dual floppy diskette subsystem, an FT-I function key-trackball module...COMPONENT LIST FOR IMAGE PROCESSOR SYSTEM IMAGE PROCESSOR SYSTEM VIEWS I VDI -200 Display Processor Racks, Table FD-2 Dual Floppy Diskette Subsystem FT-l

  19. Selections from JEN-MIN JIH-PAO, Peiping, on Geology, Exploration, Weather Forecasting, and Cartography.

    DTIC Science & Technology

    1961-03-06

    and area of cultivation land. Otherwise, we cannot keep an accurate account of land and Water, and in the straight - line planning there will be...of production. If we let the masses possess a production direction map and the straight - line planning method, and at the same time formulate them...supplies needed, we not only can use these as the basis for straight - line planning, but we also can list the results attained by straight - line planning

  20. Toward a List of Molecules as Potential Biosignature Gases for the Search for Life on Exoplanets and Applications to Terrestrial Biochemistry.

    PubMed

    Seager, S; Bains, W; Petkowski, J J

    2016-06-01

    Thousands of exoplanets are known to orbit nearby stars. Plans for the next generation of space-based and ground-based telescopes are fueling the anticipation that a precious few habitable planets can be identified in the coming decade. Even more highly anticipated is the chance to find signs of life on these habitable planets by way of biosignature gases. But which gases should we search for? Although a few biosignature gases are prominent in Earth's atmospheric spectrum (O2, CH4, N2O), others have been considered as being produced at or able to accumulate to higher levels on exo-Earths (e.g., dimethyl sulfide and CH3Cl). Life on Earth produces thousands of different gases (although most in very small quantities). Some might be produced and/or accumulate in an exo-Earth atmosphere to high levels, depending on the exo-Earth ecology and surface and atmospheric chemistry. To maximize our chances of recognizing biosignature gases, we promote the concept that all stable and potentially volatile molecules should initially be considered as viable biosignature gases. We present a new approach to the subject of biosignature gases by systematically constructing lists of volatile molecules in different categories. An exhaustive list up to six non-H atoms is presented, totaling about 14,000 molecules. About 2500 of these are CNOPSH compounds. An approach for extending the list to larger molecules is described. We further show that about one-fourth of CNOPSH molecules (again, up to N = 6 non-H atoms) are known to be produced by life on Earth. The list can be used to study classes of chemicals that might be potential biosignature gases, considering their accumulation and possible false positives on exoplanets with atmospheres and surface environments different from Earth's. The list can also be used for terrestrial biochemistry applications, some examples of which are provided. We provide an online community usage database to serve as a registry for volatile molecules including biogenic compounds. Astrobiology-Atmospheric gases-Biosignatures-Exoplanets. Astrobiology 16, 465-485.

  1. Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.

    2018-05-01

    Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.

  2. The Tübingen Model-Atom Database: A Revised Aluminum Model Atom and its Application for the Spectral Analysis of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Löbling, L.

    2017-03-01

    Aluminum (Al) nucleosynthesis takes place during the asymptotic-giant-branch (AGB) phase of stellar evolution. Al abundance determinations in hot white dwarf stars provide constraints to understand this process. Precise abundance measurements require advanced non-local thermodynamic stellar-atmosphere models and reliable atomic data. In the framework of the German Astrophysical Virtual Observatory (GAVO), the Tübingen Model-Atom Database (TMAD) contains ready-to- use model atoms for elements from hydrogen to barium. A revised, elaborated Al model atom has recently been added. We present preliminary stellar-atmosphere models and emergent Al line spectra for the hot white dwarfs G191-B2B and RE 0503-289.

  3. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  4. KPOT_wlanger_1: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2007-10-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  5. SDP_wlanger_3: State of the Diffuse ISM: Galactic Observations of the Terahertz CII Line (GOT CPlus)

    NASA Astrophysics Data System (ADS)

    Langer, W.

    2011-09-01

    Star formation activity throughout the Galactic disk depends on the thermal and dynamical state of the interstellar gas, which in turn depends on heating and cooling rates, modulated by the gravitational potential and shock and turbulent pressures. Molecular cloud formation, and thus the star formation, may be regulated by pressures in the interstellar medium (ISM). To understand these processes we need information about the properties of the diffuse atomic and diffuse molecular gas clouds, and Photon Dominated Regions (PDR). An important tracer of these regions is the CII line at 158 microns (1900.5 GHz). We propose a "pencil-beam" survey of CII with HIFI band 7b, based on deep integrations and systematic sparse sampling of the Galactic disk plus selected targets, totaling over 900 lines of sight. We will detect both emission and, against the bright inner Galaxy and selected continuum sources, absorption lines. These spectra will provide the astronomical community with a large rich statistical database of the diffuse cloud properties throughout the Galaxy for understanding the Milky Way ISM and, by extension, other galaxies. It will be extremely valuable for determining the properties of the atomic gas, the role of barometric pressure and turbulence in cloud evolution, and the properties of the interface between the atomic and molecular clouds. The CII line is one of the major ISM cooling lines and is present throughout the Galactic plane. It is the strongest far-IR emission line in the Galaxy, with a total luminosity about a 1000 times that of the CO J=1-0 line. Combined with other data, it can be used to determine density, pressure, and radiation environment in gas clouds, and PDRs, and their dynamics via velocity fields. HSO is the best opportunity over the next several years to probe the ISM in this tracer and will provide a template for large-scale surveys with dedicated small telescopes and future surveys of other important ISM tracers.

  6. 75 FR 70595 - Limited Service Domestic Voyage Load Lines for River Barges on Lake Michigan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... finalized by this final rule. III. Basis and Purpose The origin of this rulemaking dates back to a request... southwards rather than turn back into rough seas, and shifted the barges to a towline. During the night, the barges were observed taking on water and listing. By morning, one barge was listing heavily with only a...

  7. Holt-Winters Forecasting: A Study of Practical Applications for Healthcare Managers

    DTIC Science & Technology

    2006-05-25

    Winters Forecasting 5 List of Tables Table 1. Holt-Winters smoothing parameters and Mean Absolute Percentage Errors: Pseudoephedrine prescriptions Table 2...confidence intervals Holt-Winters Forecasting 6 List of Figures Figure 1. Line Plot of Pseudoephedrine Prescriptions forecast using smoothing parameters...The first represents monthly prescriptions of pseudoephedrine . Pseudoephedrine is a drug commonly prescribed to relieve nasal congestion and other

  8. Top 10 Threats to Computer Systems Include Professors and Students

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2009-01-01

    In this article, the author presents the top-10 list of campus computer-security risks he compiled based on several recent computing surveys and interviews with more than a dozen college-technology leaders. The list, ordered from least to most serious, is by no means scientific, but it gives a sense of where today's battle lines are--and why…

  9. --No Title--

    Science.gov Websites

    solid #666}.content-list-widget .header-box .title{color:#fff;font-size:1.35em;margin-bottom:0;padding -color:#0079C2;border-bottom:5px solid #00A4E4}.content-list-widget{line-height:1.7}ul.fa-blue-arrow ;background-color:rgba(0,0,0,.8);box-sizing:border-box;color:#fff;font-family:Roboto,'Helvetica Neue

  10. Automatic Registration of Scanned Satellite Imagery with a Digital Map Data Base.

    DTIC Science & Technology

    1980-11-01

    define the corresponding map window (mW)(procedure TRANSFORMWINDOW MAP A-- S4S Araofms Cpo iin et Serc Area deiatl compAr tal _______________ T...to a LIST-item). LIN: = ( ® code 2621431 ; ® pointer LA to the line list, © pointer PRI; pointer PR2), LIST: = ( Q pointer PL to a LIN-item; n pointer...items where PL -pointers are replaced by a code for the beginning (the number 262140 in our case) and end (the number 26241). Figure 3.2 illustra- tes a

  11. GOT C+: A Herschel Space Observatory Key Program to Study the Diffuse ISM

    NASA Astrophysics Data System (ADS)

    Langer, William; Velusamy, T.; Goldsmith, P. F.; Li, D.; Pineda, J.; Yorke, H.

    2010-01-01

    Star formation activity is regulated by pressures in the interstellar medium, which in turn depend on heating and cooling rates, modulated by the gravitational potential, and shock and turbulent pressures. To understand these processes we need information about the diffuse atomic and diffuse molecular gas cloud properties. The ionized carbon CII fine structure line at 1.9 THz is an important tracer of the atomic gas in the diffuse regions and the atomic to molecular cloud transformation. Furthermore, C+ is a major ISM coolant, the Galaxy's strongest emission line, with a total luminosity about a 1000 times that of CO J=1-0. Galactic Observations of the Terahertz C+ Line (GOT C+) is a Herschel Space Observatory Open Time Key Program to study the diffuse interstellar medium by sampling CII line emission throughout the Galactic disk. GOT C+ will obtain high spectral resolution CII using the Heterodyne Instrument for the Far Infrared (HIFI) instrument. It employees deep integrations, wide velocity coverage (350 km s-1) with 0.22 km s-1 resolution, and systematic sparse sampling of the Galactic disk together with observations of selected targets, of over 900 lines of sight. It will be a resource of the atomic gas properties, in the (a) Galactic disk, (b) Galaxy's central 300pc, (c) Galactic warp, (d) high latitude HI clouds, and (e) Photon Dominated Regions (PDRs). Along with HI, CO isotopes, and CI spectra, our C+ data will provide the astronomical community with a rich statistical database of diffuse cloud properties, for understanding the role of barometric pressure and turbulence in cloud evolution in the Galactic ISM and, by extension, other galaxies. The GOT C+ project will provide a template for future even larger-scale CII surveys. This research was conducted at the Jet Propulsion Laboratory, California Institute of Technology and is supported by a NASA grant.

  12. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.

  13. Studies of beta Coronae Borealis. II - Identification of the lanthanides

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Shore, S. N.; Tiernan, M. F.

    1973-01-01

    A table presented contains the identification of Ce III (Sugar 1965), Pr III (Sugar 1961), Nd III (Crosswhite 1972), Sm III (Crosswhite 1969), Ho II, and Yb II (Corliss and Tech 1972) lines. The tolerance for identifications was 0.04 A. Each of these ionic identifications is based primarily on only a few of the lines listed while the remaining lines which are normally blended add support.

  14. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2017-10-01

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.

  15. Fast, Accurate and Shift-Varying Line Projections for Iterative Reconstruction Using the GPU

    PubMed Central

    Pratx, Guillem; Chinn, Garry; Olcott, Peter D.; Levin, Craig S.

    2013-01-01

    List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections. We investigated the use of the programmable graphics processing unit (GPU) to accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets expectation-maximization for positron emission tomography (PET). We designed a reconstruction approach that incorporates resolution kernels, which model the spatially-varying physical processes associated with photon emission, transport and detection. Our development is particularly suitable for applications where the projection data is sparse, such as high-resolution, dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times faster than an equivalent CPU implementation while image quality and accuracy are virtually identical. This paper describes in details how the GPU can be used to accelerate the line projection operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying resolution kernels are used. A quantitative evaluation is included to validate the correctness of this new approach. PMID:19244015

  16. Temperature Measurements in the Solar Transition Region Using N III Line Intensity Ratios

    NASA Technical Reports Server (NTRS)

    Doron, R.; Doschek, G. A.; Laming, J. M.; Feldman, U.; Bhatia, A. K.

    2003-01-01

    UV emission from B-like N and O ions a rather rare opportunity for recording spectral lines in a narrow wavelength range that can potentially be used to derive temperatures relevant to the solar transition region. In these ions, the line intensity ratios of the type (2s2p(sup 2) - 2p(sup 3)) / (2s(sup 2)2p - 2s2p(sup 2)) are very sensitive to the electron temperature. Additionally, the lines involving the ratios fall within a range of only - 12 A; in N III the lines fall in the 980 - 992 A range and in O IV in the 780 - 791 A range. In this work, we explore the use of these atomic systems, primarily in N III, for temperature diagnostics of the transition region by analyzing UV spectra obtained by the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer flown on the Solar and Heliospheric Observatory (SOHO). The N III temperature-sensitive line ratios are measured in more than 60 observations. Most of the measured ratios correspond to temperatures in the range 5.7x10(exp 4) - 6.7x10(exp 4) K. This range is considerably lower than the calculated temperature of maximum abundance of N III, which is approx. 7.6x10(exp 4) K. Detailed analysis of the spectra further indicates that the measured ratios are probably somewhat overestimated due to resonant scattering effects in the 2s(sup 2)2p - 2s2p(sup 2) lines and small blends in the 2s2p(sup 2) - 2p3 lines. Actual lower ratios would only increase the disagreement between the ionization balance calculations and present temperature measurements based on a collisional excitation model. In the case of the O IV spectra, we determined that due to the close proximity in wavelength of the weak line (2s2p(sup 2)-2p3 transitions) to a strong Ne VIII line, sufficiently accurate ratio measurements cannot be obtained. Subject headings: atomic data --- atomic processes --- Sun: transition region --- Sun: U V radiation --- techniques: spectroscopic

  17. Publisher Correction: Whole genome sequencing in psychiatric disorders: the WGSPD consortium.

    PubMed

    Sanders, Stephan J; Neale, Benjamin M; Huang, Hailiang; Werling, Donna M; An, Joon-Yong; Dong, Shan; Abecasis, Goncalo; Arguello, P Alexander; Blangero, John; Boehnke, Michael; Daly, Mark J; Eggan, Kevin; Geschwind, Daniel H; Glahn, David C; Goldstein, David B; Gur, Raquel E; Handsaker, Robert E; McCarroll, Steven A; Ophoff, Roel A; Palotie, Aarno; Pato, Carlos N; Sabatti, Chiara; State, Matthew W; Willsey, A Jeremy; Hyman, Steven E; Addington, Anjene M; Lehner, Thomas; Freimer, Nelson B

    2018-03-16

    In the version of this article initially published, the consortium authorship and corresponding authors were not presented correctly. In the PDF and print versions, the Whole Genome Sequencing for Psychiatric Disorders (WGSPD) consortium was missing from the author list at the beginning of the paper, where it should have appeared as the seventh author; it was present in the author list at the end of the paper, but the footnote directing readers to the Supplementary Note for a list of members was missing. In the HTML version, the consortium was listed as the last author instead of as the seventh, and the line directing readers to the Supplementary Note for a list of members appeared at the end of the paper under Author Information but not in association with the consortium name itself. Also, this line stated that both member names and affiliations could be found in the Supplementary Note; in fact, only names are given. In all versions of the paper, the corresponding author symbols were attached to A. Jeremy Willsey, Steven E. Hyman, Anjene M. Addington and Thomas Lehner; they should have been attached, respectively, to Steven E. Hyman, Anjene M. Addington, Thomas Lehner and Nelson B. Freimer. As a result of this shift, the respective contact links in the HTML version did not lead to the indicated individuals. The errors have been corrected in the HTML and PDF versions of the article.

  18. X-ray line polarization spectroscopy of Li-like satellite line spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrill, Manolo Edgar; Abdallah, Joseph; Zhang, Honglin

    2008-01-01

    We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of plasma anisotropy due to anisotropy in the electron distribution function. We also discuss the utility and limitations of ur current theoretical approach and point out possible future improvements and directions.

  19. Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: Exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio

    2011-12-15

    Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap amore » large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.« less

  20. Spectroscopic data for an astronomy database

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, Peter L.

    1995-01-01

    Very few of the atomic and molecular data used in analyses of astronomical spectra are currently available in World Wide Web (WWW) databases that are searchable with hypertext browsers. We have begun to rectify this situation by making extensive atomic data files available with simple search procedures. We have also established links to other on-line atomic and molecular databases. All can be accessed from our database homepage with URL: http:// cfa-www.harvard.edu/ amp/ data/ amdata.html.

  1. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelly, E.M.

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less

  2. Atomic weights of the elements 1999

    USGS Publications Warehouse

    Coplen, T.B.

    2001-01-01

    The biennial review of atomic-weight, Ar(E), determinations and other cognate data have resulted in changes for the standard atomic weights of the following elements: from to nitrogen 14.006 74??0.000 07 14.0067??0.0002 sulfur 32.066??0.006 32.065??0.005 chlorine 35.4527??0.0009 35.453??0.002 germanium 72.61??0.02 72.64??0.01 xenon 131.29??0.02 131.293??0.006 erbium 167.26??0.03 167.259??0.003 uranium 238.0289??0.0001 238.028 91??0.000 03 Presented are updated tables of the standard atomic weights and their uncertainties estimated by combining experimental uncertainties and terrestrial variabilities. In addition, this report again contains an updated table of relative atomic mass values and half-lives of selected radioisotopes. Changes in the evaluated isotopic abundance values from those published in 1997 are so minor that an updated list will not be published for the year 1999. Many elements have a different isotopic composition in some nonterrestrial materials. Some recent data on parent nuclides that might affect isotopic abundances or atomic-weight values are included in this report for the information of the interested scientific community. ?? 2001 American Institute of Physics.

  3. Accurate wavelength measurements and modeling of FeXV to FeXIX spectra recorded in high density plasmas between 13.5 to 17 A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M; Beiersdorfer, P; Dunn, J

    Iron spectra have been recorded from plasmas created at three different laser plasma facilities, the Tor Vergata University laser in Rome (Italy), the Hercules laser at ENEA in Frascati (Italy), and the Compact Multipulse Terawatt (COMET) laser at LLNL in California (USA). The measurements provide a means of identifying dielectronic satellite lines from FeXVI and FeXV in the vicinity of the strong 2p {yields} 3d transitions of FeXVII. About 80 {Delta}n {ge} 1 lines of FeXV (Mg-like) to FeXIX (O-like) were recorded between 13.8 to 17.1 {angstrom} with a high spectral resolution ({lambda}/{Delta}{lambda} {approx} 4000), about thirty of these linesmore » are from FeXVI and FeXV. The laser produced plasmas had electron temperatures between 100 to 500 eV and electron densities between 10{sup 20} to 10{sup 22} cm{sup -3}. The Hebrew University Lawrence Livermore Atomic Code (HULLAC) was used to calculate the atomic structure and atomic rates for FeXV to FeXIX. HULLAC was used to calculate synthetic line intensities at T{sub e} = 200 eV and n{sub e} = 10{sup 21}cm{sup -3} for three different conditions to illustrate the role of opacity: optically thin plasmas with no excitation-autoionization/dielectronic recombination (EA/DR) contributions to the line intensities, optically thin plasmas that included EA/DR contributions to the line intensities, and optically thick plasmas (optical depth {approx} 200 {micro}m) that included EA/DR contributions to the line intensities. The optically thick simulation best reproduced the recorded spectrum from the Hercules laser. However some discrepancies between the modeling and the recorded spectra remain.« less

  4. Surveying the Maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    PubMed Central

    Braun, Bremen L.; Schott, David A.; Portwood, II, John L.; Schaeffer, Mary L.; Harper, Lisa C.; Gardiner, Jack M.; Cannon, Ethalinda K.; Andorf, Carson M.

    2017-01-01

    Abstract The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on behalf of the Maize Genetics Executive Committee in Summer 2015. The survey garnered 48 responses from maize researchers, of which more than half were self-identified as breeders. The survey showed that the maize researchers considered their top priorities for visualization as: (i) displaying single nucleotide polymorphisms in a given region for a given list of lines, (ii) showing haplotypes for a given list of lines and (iii) presenting pedigree relationships visually. The survey also asked which populations would be most useful to display. The following two populations were on top of the list: (i) 3000 publicly available maize inbred lines used in Romay et al. (Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol, 2013;14:R55) and (ii) maize lines with expired Plant Variety Protection Act (ex-PVP) certificates. Driven by this strong stakeholder input, MaizeGDB staff are currently working in four areas to improve its interface and web-based tools: (i) presenting immediate progenies of currently available stocks at the MaizeGDB Stock pages, (ii) displaying the most recent ex-PVP lines described in the Germplasm Resources Information Network (GRIN) on the MaizeGDB Stock pages, (iii) developing network views of pedigree relationships and (iv) visualizing genotypes from SNP-based diversity datasets. These survey results can help other biological databases to direct their efforts according to user preferences as they serve similar types of data sets for their communities. Database URL: https://www.maizegdb.org PMID:28605768

  5. Herschel GASPS spectral observations of T Tauri stars in Taurus. Unraveling far-infrared line emission from jets and discs

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.

    2017-07-01

    Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of shocks is needed. In comparison, the molecular emission is more compact and the line ratios are better explained with slow (Vshock < 40 km s-1) C-type shocks with high pre-shock densities (104-106 cm-3), with the exception of OH lines, that are better described by J-type shocks. Disc models alone fail to reproduce the observed molecular line fluxes, but a contribution to the line fluxes from UV-illuminated discs and/or outflow cavities is expected. Far-IR lines dominate disc cooling at early stages and weaken as the star+disc system evolves from Class I to Class III, with an increasing relative disc contribution to the line fluxes. Conclusions: Models which take into account jets, discs, and their mutual interaction are needed to disentangle the different components and study their evolution. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Radiation of partially ionized atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1990-01-01

    A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.

  7. The terrestrial gravitational wave environment from known sources

    NASA Technical Reports Server (NTRS)

    Webbink, Ronald F.

    1993-01-01

    The objective of this project was to produce a gravitational wave spectral line list of all known binary stars producing expected strain amplitudes at Earth in excess of h = 10 (exp -21), or gravitational wave fluxes in excess of F = 10 (exp -12) erg cm(exp -2) s(exp -1). These strain and flux limits lie above the anticipated detection thresholds for space-borne laser interferometers capable of detecting gravitational radiation in the 10 micron Hz to 1 Hz frequency range. The source list was intended to provide frequency (including each harmonic), amplitude and phase (for each polarization and harmonic), and celestial coordinates for each system, lacking only the orientation of the principal polarization axis with respect to the pole of the coordinate system, and the sign of the source phase and frequency (or, equivalently, of the sense of rotation of the strain tensor with time) from providing a complete source description. Such a spectral line list would lay essential groundwork for high-sensitivity, low-frequency searches for gravitational radiation.

  8. Editorial

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.; Raimond, J. M.

    2005-01-01

    This issue of EPJ D introduces a revised list of sections and subsections, designed in close collaboration with the whole editorial board. The aim of these modifications is to reflect more faithfully the wide diversity of activities covered by our journal. A new section is introduced. Entitled “Atomic and Molecular Collisions”, it covers a large range of activities, from atom/atom or atom/molecules collisions (including the very active field of ultra-cold collisions in laser-cooled atomic or molecular gases), to electron scattering and molecular reactivity. The creation of this section reflects the increased interest of the journal for molecular and collisional physics, already apparent in the recent extension of the editorial board competence in this direction. We very much hope that this community will react positively to this trend and become a major component of the journal's life. For the other sections, we have markedly revised the list of subheadings. We think it important to make it as detailed as possible, both to indicate that EPJ D aims at being a generalist journal for AMO physics and to help our authors to find easily the proper section for their submissions. There is of course no way to describe the whole field's activity in a few subheadings. They are all to be understood with the broadest meaning. This list is by no means an exclusive one. All theoretical or experimental papers connected to atomic, molecular, plasma, quantum or optical physics are welcome. This revised section list appears almost simultaneously with the new WEB portal to all EPJ journals (www.eurphysj.org), which will be online within a few weeks. It unites the material formerly presented on our publisher's WEB sites (EDP Sciences, SIF and Springer). All the journal contents are available there (and all WEB registrations are of course valid for this portal). We offer also a free access to the highlight papers (see our editorial, Eur. Phys. J. D 29, 3 (2004) and below), for at least a year. We hope that this offer will focus more attention on these papers, selected by the editorial board for their wide interest and quality. You will also find on this portal useful information for authors and a direct access to the electronic submission procedures. We look forward to receiving your suggestions for the continued improvement of this important part of the journal. We also think it is necessary to clearly describe, below, our editorial procedures (refereeing, appeals, ethical problems...). The fairness and celerity of the paper handling process are essential components in a journal's image. We hope that our readers and authors will be convinced by the arguments and statistics presented below that EPJ D is worthy of their trust. We are of course also open to suggestions to improve these procedures. As a final word, we would like to thank warmly those members of the editorial board whose term came to its end in 2004: P. Cahuzac, H. Haberland, G. Lampis, A. Politi, F. Romanelli, R. Weinkauf. They devoted considerable efforts for the continued improvement of the journal. We hope they will continue to help us with their advice and support the journal by their scientific production. May we conclude by offering you our best wishes for a happy and productive New World Year of Physics?

  9. Far ultraviolet excitation processes in comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Opal, C. B.; Meier, R. R.; Nicolas, K. R.

    1976-01-01

    Recent observations of atomic oxygen and carbon in the far ultraviolet spectrum of comet Kohoutek have demonstrated the existence of these atomic species in the cometary coma. However, in order to identify the source of their origin, it is necessary to relate the observed ultraviolet flux to the atomic production rate. Analyses of observed OI wavelength 1304 and CI wavelength 1657 A multiplets have been carried out using high resolution solar spectra. Also examined is the possibility of observing ultraviolet fluorescence from molecules such as CO and H2, as well as resonance scattering either from atomic ions for which there are strong corresponding solar lines (CII) or from atoms for which there is an accidental wavelength coincidence (SI).

  10. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy.more » The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.« less

  11. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    NASA Astrophysics Data System (ADS)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  12. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    PubMed

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  14. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    PubMed Central

    König, Thomas; Simon, Georg H; Heinke, Lars; Lichtenstein, Leonid

    2011-01-01

    Summary Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms. PMID:21977410

  15. Empirically constructed dynamic electric dipole polarizability function of magnesium and its applications

    NASA Astrophysics Data System (ADS)

    Babb, James F.

    2015-08-01

    The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.

  16. Coherent population trapping resonances at lower atomic levels of Doppler broadened optical lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şahin, E; Hamid, R; Çelik, M

    2014-11-30

    We have detected and analysed narrow high-contrast coherent population trapping (CPT) resonances, which are induced in absorption of a weak monochromatic probe light beam by counterpropagating two-frequency pump radiation in a cell with rarefied caesium vapour. The experimental investigations have been performed by the example of nonclosed three level Λ-systems formed by spectral components of the D{sub 2} line of caesium atoms. The applied method allows one to analyse features of the CPT phenomenon directly at a given low long-lived level of the selected Λ-system even in sufficiently complicated spectra of atomic gases with large Doppler broadening. We have establishedmore » that CPT resonances in transmission of the probe beam exhibit not only a higher contrast but also a much lesser width in comparison with well- known CPT resonances in transmission of the corresponding two-frequency pump radiation. The results obtained can be used in selective photophysics, photochemistry and ultra-high resolution atomic (molecular) spectroscopy. (laser applications and other topics in quantum electronics)« less

  17. 78 FR 41835 - Inflation Adjustments to the Price-Anderson Act Financial Protection Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... Price-Anderson Act Financial Protection Regulations AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The Atomic Energy Act of 1954, as amended (AEA), requires the U.S. Nuclear Regulatory...

  18. Project Physics Teacher Guide 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 5 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  19. 10 CFR 52.303 - Criminal penalties.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the sections listed in paragraph (b) of this section. (b) The regulations in part 52 that are not... 10 Energy 2 2012-01-01 2012-01-01 false Criminal penalties. 52.303 Section 52.303 Energy NUCLEAR... Enforcement § 52.303 Criminal penalties. (a) Section 223 of the Atomic Energy Act of 1954, as amended...

  20. 10 CFR 52.303 - Criminal penalties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the sections listed in paragraph (b) of this section. (b) The regulations in part 52 that are not... 10 Energy 2 2010-01-01 2010-01-01 false Criminal penalties. 52.303 Section 52.303 Energy NUCLEAR... Enforcement § 52.303 Criminal penalties. (a) Section 223 of the Atomic Energy Act of 1954, as amended...

Top