RADinfo Glossary of Radiation Terms
... electrical charge typically found within an atom's nucleus. nucleus: The central part of an atom that contains ... the number of protons and neutrons in the nucleus. picocurie: One one-trillionth (1/1,000,000, ...
Atomic Poetry: Using Poetry To Teach Rutherford's Discovery of the Nucleus.
ERIC Educational Resources Information Center
Abisdris, Gil; Casuga, Adele
2001-01-01
Points out how Rutherford's discovery of the nucleus changed ideas about the structure of the atom and influenced poetry. Uses Robert Frost's poems "Version" and "The Secret Sits" to teach a physical science class about atomic theory. (YDS)
The Confined Hydrogen Atom with a Moving Nucleus
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2010-01-01
We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Rong; Wu, Yongquan, E-mail: yqwu@shu.edu.cn; Xiao, Junjiang
We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clustersmore » and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.« less
Effect of energy transfer from atomic electron shell to an α particle emitted by decaying nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igashov, S. Yu., E-mail: igashov@theor.mephi.ru; Tchuvil’sky, Yu. M.
2016-12-15
The process of energy transfer from the electron shell of an atom to an α particle propagating through the shell is formulated mathematically. Using the decay of the {sup 226}Ra nucleus as an example, it is demonstrated that this phenomenon increases the α-decay intensity in contrast with other known effects of similar type. Moreover, the α decay of the nucleus is more strongly affected by the energy transfer than by all other effects taken together.
Vacuum low-temperature superconductivity is the essence of superconductivity - Atomic New Theory
NASA Astrophysics Data System (ADS)
Yongquan, Han
2010-10-01
The universe when the temperature closest to the Big Bang the temperature should be nuclear. Because, after the big bang, instant formation of atoms, nuclei and electrons between the absolute vacuum, the nucleus can not emit energy. (Radioactive elements, except in fact, radiation Yuan Su limited power emitted) which causes atomic nuclei and external temperature difference are so enormous that a large temperature difference reasons, all external particles became closer to the nucleus, affect the motion of electrons. When the conductor conductivity and thus affect the conductivity, the formation of resistance. Assumption that no particles affect the motion of electrons (except outside the nucleus) to form a potential difference will not change after the vector form, is now talking about the phenomenon of superconductivity, and then to introduce general, the gap between atoms in molecules or between small, valence electron number of high temperature superconducting conductors. This theory of atomic nuclei, but also explain the atomic and hydrogen bombs can remain after an explosion Why can release enormous energy reasons. Can also explain the ``super flow'' phenomenon. natural world. Tel 13241375685
Lamb shift of electronic states in neutral muonic helium, an electron-muon-nucleus system
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.; Amusia, Miron
2015-03-01
Neutral muonic helium is an exotic atomic system consisting of an electron, a muon, and a nucleus. Being a three-body system, it possesses a clear hierarchy. This allows us to consider it as a hydrogenlike atom with a compound nucleus, which is, in turn, another hydrogenlike system. There are a number of corrections to the Bohr energy levels, all of which can be treated as contributions of generic hydrogenlike theory. While the form of those contributions is the same for all hydrogenlike atoms, their relative numerical importance differs from atom to atom. Here, the leading contribution to the (electronic) Lamb shift in neutral muonic helium is found in a closed analytic form together with the most important corrections. We believe that the Lamb shift in neutral muonic hydrogen is measurable, at least through a measurement of the (electronic) 1 s -2 s transition. We present a theoretical prediction for the 1 s -2 s transitions with an uncertainty of 3 ppm (9 GHz ), as well as for the 2 s -2 p Lamb shift with an uncertainty of 1.3 GHz .
... matter is made up of tiny particles called atoms. At the center of every atom is a nucleus, which holds two types of ... which is a nuclear reactor that can smash atoms to release proton, neutron, and helium ion beams. ...
The Stark Effect on the Wave Function of Tritium in Relativistic Condition
NASA Astrophysics Data System (ADS)
Supriadi, B.; Prastowo, S. H. B.; Bahri, S.; Ridlo, Z. R.; Prihandono, T.
2018-03-01
Tritium Atom is one of the isotopes of Hydrogen that has two Neutrons in the nucleus and an electron that surrounds the nucleus. The Stark Effect is an effect of a shift or polarization of the atomic spectrum caused by the external electrostatic field. The interaction between the electrons and the external electric field can be reviewed using an approximation method of perturbation theory. The perturbation theory used is a time Independent non-degenerate perturbation and reviewed to second order to obtain correction of Tritium Atomic wave function. The condition that used in the system is a relativistic condition by reviewing the movement of electrons within the Atom. The effects of relativity also affect the correction of the wave function of Atom Tritium in the ground state. Tritium is radioactive material that is still relatively safe, and one of the applications of Tritium Atom is on the battery of betavoltaics (Nano Tritium Battery).
Atomic Energy Basics, Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…
The Pt site reactivity of the molecular graphs of Au6Pt isomers
NASA Astrophysics Data System (ADS)
Xu, Tianlv; Jenkins, Samantha; Xiao, Chen-Xia; Maza, Julio R.; Kirk, Steven R.
2013-12-01
Within the framework of the theory of atoms in molecules (QTAIM), in an exploratory study we propose a new measure of site reactivity equivalent to the atomic coordination number based purely on the electronic structure. It was found that the number of ring critical points (NNRCPs) positioned on the boundary of the atomic basin of the dopant (Pt) nucleus correlated very well with the relative zero point energy (ZPE) corrected energies. A weaker condition (i.e. than the number of associated bond paths) for the association of the dopant Pt nucleus with the Au6Pt molecular graph is found for NNRCP = 0.
Observation of CO2 in Comet C/2012 K5 LINEAR
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Chanover, Nancy
2012-12-01
The study of cometary composition is important to understanding the formation and evolution of our solar system. Comets have undergone very little thermal evolution in their lifetimes, which results in their near pristine composition. The nucleus of a comet is very rarely detected directly. Instead, we observe the coma that surrounds the nucleus. Physical and chemical processes in the coma affect its composition, and therefore coma composition is not a direct representation of nuclear composition. An important trend is the observed variation of coma composition with heliocentric distance, most likely influenced by the volatility of the main surface ices, H2O, CO2, and CO. Infrared studies of these molecules are complicated by telluric features, so often daughter molecules of these species such as OH are observed instead. A potentially effective tracer for these primary ices is atomic oxygen in the coma. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comet C/2012 K5 LINEAR. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and observations of H2O at Keck. These near simultaneous observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of these primary volatiles and aid our understanding of the variation in coma composition as a function of heliocentric distance, and therefore the composition of the nucleus and how our solar system was formed.
Atomic Particle Detection, Understanding the Atom Series.
ERIC Educational Resources Information Center
Hellman, Hal
This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…
Neutron and weak-charge distributions of the 48Ca nucleus
Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; ...
2015-11-02
What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less
Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.
ERIC Educational Resources Information Center
Inner London Education Authority (England).
This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…
The Atom in a Molecule: Implications for Molecular Structure and Properties
2016-05-23
unlimited. PA Clearance #16075.” Atomic- Product Representations of Molecules Employ “van der Waals” products of atomic states to represent molecules...representation the electrons “stay home” with each nucleus. Atomic fragment operators are well-defined over product representations. Expectation values of...release; distribution unlimited. PA Clearance #16075.” Hamiltonian Matrix in the Atomic- Product Basis Technical Questions Addressed: J. Chem. Phys
Building Atoms Shell by Shell.
ERIC Educational Resources Information Center
Sussman, Beverly
1993-01-01
Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
Scattering and stopping of hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.
On the Lamb shift in neutral muonic helium
NASA Astrophysics Data System (ADS)
Amusia, Miron; Karshenboim, Savely; Ivanov, Vladimir
2015-05-01
The neutral muonic helium is an exotic atomic system consisting of an electron, muon and a nucleus. We consider it as a hydrogen-like atom with a compound nucleus that is also hydrogen-like system. There are a number of corrections to the Bohr energy levels, which all can be treated as contributions of generic hydrogen-like theory. While the form of those contributions is the same for all hydrogen-like atoms, their relative numerical importance differs from an atom to an atom. Here, the leading contribution to the electronic Lamb shift in the neutral muonic helium is found in a close analytic form together with the most important corrections. We believe that the Lamb shift in the neutral muonic hydrogen is measurable, at least through a measurement of the electronic 1 s - 2 s transition. We present a theoretical prediction for the 1 s - 2 s transitions with the uncertainty of 2 ppm (4 GHz), as well as for the 2 s - 2 p Lamb shift with the uncertainty of 0.6 GHz.
Statistical Analysis For Nucleus/Nucleus Collisions
NASA Technical Reports Server (NTRS)
Mcguire, Stephen C.
1989-01-01
Report describes use of several statistical techniques to charactertize angular distributions of secondary particles emitted in collisions of atomic nuclei in energy range of 24 to 61 GeV per nucleon. Purpose of statistical analysis to determine correlations between intensities of emitted particles and angles comfirming existence of quark/gluon plasma.
NOVA SCIENCE UNIT 15, FUNDAMENTAL PARTICLES 4.
ERIC Educational Resources Information Center
1964
THE PRINCIPLES OF ATOMIC STRUCTURE WHICH ARE STRESSED ARE THAT ATOMS ARE MADE UP OF A NUCLEUS WITH A POSITIVE CHARGE, SURROUNDED BY ELECTRONS WITH A NEGATIVE CHARGE, AND THAT THERE IS NO CHANGE IN THE ATOM WHEN THE POSITIVE AND NEGATIVE CHARGES ARE EQUAL. EXPERIMENTS ILLUSTRATE THAT CURRENT ELECTRICITY IS ACTUALLY ELECTRONS IN MOTION, THAT THERE…
In situ mechanical characterization of the cell nucleus by atomic force microscopy.
Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu
2014-04-22
The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.; Welsh, Staszek
2014-06-01
Atoms whose nuclei have an exotic number of nucleons can have a `core nucleus' surrounded by a `halo' formed by a nucleon orbiting the core nucleus. For example, due to the two halo neutrons orbiting the core nucleus of 11Li, its nucleus has a cross section that is roughly the same size as that of 208Pb. Halo nucleic atoms have been studied extensively both in theory and in experiments, however halo nucleic molecules have not been studied in either. We first show, using HeH^+, BeH, and MgH as examples, that with measurements of any two isotopologues of a molecule, we can determine crucial properties of a third isotopologue well within spectroscopic accuracy. We then use the extremely precise empirical information available for the low-lying states of 6,6Li_2, 6,7Li_2 and 7,7Li_2 to predict potentials and various properties of the halo nucleic molecule 11,11Li_2, along with isotopologues containing 3Li, 4Li, 5Li, 8Li, 9Li, 10Li, and 12Li. We believe that our predictions of the ro-vibrational energies are reliable for experiments for the first detection of a halo nucleic molecule. R. J. Le Roy, N. S. Dattani, J. A. Coxon, A. J. Ross, P. Crozet, C. Linton, J. Chem. Phys. 131, 204309 (2009). N. S. Dattani, R. J. Le Roy, J. Mol. Spec. 268, 199-210 (2011). M. Semczuk, X. Li, W. Gunton, M. Haw, N. S. Dattani, J. Witz, A. Mills, D. J. Jones, K. W. Madison, Phys. Rev. A 87, 052505 (2013) W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, Phys. Rev. A 88, 062510 (2013)
The threshold laws for electron-atom and positron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1983-01-01
The Coulomb-dipole theory is employed to derive a threshold law for the lowest energy needed for the separation of three particles from one another. The study focuses on an electron impinging on a neutral atom, and the dipole is formed between an inner electron and the nucleus. The analytical dependence of the transition matrix element on energy is reduced to lowest order to obtain the threshold law, with the inner electron providing a shield for the nucleus. Experimental results using the LAMPF accelerator to produce a high energy beam of H- ions, which are then exposed to an optical laser beam to detach the negative H- ion, are discussed. The threshold level is found to be confined to the region defined by the upper bound of the inverse square of the Coulomb-dipole region. Difficulties in exact experimental confirmation of the threshold are considered.
Threshold law for electron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.
Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.
ERIC Educational Resources Information Center
Ley-Koo, E.; And Others
1980-01-01
Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…
Measurements of Reaction Cross Sections for 9-11C
NASA Astrophysics Data System (ADS)
Nishizuka, Kenji; Takechi, Maya; Ohtsubo, Takashi; Nishimura, Daiki; Fukuda, Mitsunori; Aoki, Kazuya; Abe, Keijiro; Ikeda, Ayaka; Izumikawa, Takuji; Oikawa, Hiroyuki; Ohnishi, Kosuke; Ohno, Junichi; Ohmika, Shunichiro; Kato, Ikuma; Kanke, Yuki; Kanbe, Shunsuke; Kanda, Naoto; Kikuchi, Haruka; Kitagawa, Atsushi; Sato, Shinji; Sayama, Umito; Shimaya, Jiro; Sugihara, Takanobu; Suzuki, Shinji; Suzuki, Takeshi; Takahashi, Hiroki; Taguchi, Yoshisada; Takei, Yuki; Takeuchi, Yuki; Takenouchi, Arashi; Takemoto, Takanori; Tadano, Natsuki; Tanaka, Masaomi; Tanaka, Yutaro; Chikaato, Kazuya; Du, Hang; Nagai, Takumi; Nagumo, Junya; Fukuda, Shigekazu; Hori, Kensyu; Honma, Akira; Machida, Masahiro; Matsunaga, Satoshi; Mizukami, Atsushi; Mihara, Mototsugu; Miyata, Eri; Murooka, Daiki; Yagi, Shoichi; Yamaoka, Shintaro; Yamaguchi, Takayuki; Yokoyama, Kouhei
In order to probe the differences of matter and charge radii of atomic nucleus in the proton-rich C isotopes, measurements of reaction cross sections (σR) for 9-11C on proton targets in the energy range from 50 to 120A MeV were performed at HIMAC facility, NIRS. Owing to the large differences between proton-proton and proton-neutron scattering cross sections at this intermediate energy region, σR data for atomic nuclei on proton targets are expected to have the sensitivity to the differences between proton and neutron distributions in the nucleus. Present preliminary data are compared with the Glauber calculation, which suggest the larger enhancements of proton distributions in 9C and 10C compared to 11C.
Systematics of ground state multiplets of atomic nuclei in the delta-interaction approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imasheva, L. T.; Ishkhanov, B. S.; Stepanov, M. E., E-mail: stepanov@depni.sinp.msu.ru
2015-12-15
Pairing forces between nucleons in an atomic nucleus strongly influence its structure. One of the manifestations of pair interaction is the ground state multiplet (GSM) formation in the spectrum of low-lying excited states of even–even nuclei. The value of GSM splitting is determined by the value of pair interaction of nucleons; for each isotope, it can be estimated on the basis of experimental nuclear masses. The quality of this estimate is characterized by the degree of reproduction of GSM levels in the nucleus. The GSM systematics in even–even nuclei with a pair of identical nucleons in addition to the filledmore » nuclear core is considered on the basis of delta interaction.« less
Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L
2013-11-29
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.
Criticality of the electron-nucleus cusp condition to local effective potential-energy theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016
2003-01-01
Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less
Inelastic Scattering of a Photon by a Hydrogen-Like Atom
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2017-05-01
Inelastic scattering of a photon by a bound electron of a hydrogen-like atom is considered. An expression for the cross section of this process, which can take place both without and with a change in the energy of the photon due to atomic transitions, is obtained. Within the framework of the standard technique of Feynman diagrams with a free electron propagator, general expressions for the amplitude and cross section of the process have been obtained. Arguments in favor of the validity of using this representation of the propagator in the calculation of the amplitude in the field of a nucleus are presented. As an accompanying result, an expression for the density matrix of an electron in the field of a nucleus is found in the leading approximation in the small "atomic" expansion parameter ( Zα) << 1, α = e 2 / ћc. It is shown that in a real situation at temperatures T << m e of the equilibrium radiation field this process can be neglected in comparison with spontaneous emission of radiation by a hydrogen-like atom despite the lower power of the parameter (Zα) in its amplitude. As far as is known, this quite important question, framed in such a way, has not been discussed in the literature.
NASA Astrophysics Data System (ADS)
Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu
2016-05-01
We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.
Nagaoka's atomic model and hyperfine interactions.
Inamura, Takashi T
2016-01-01
The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.
NASA Astrophysics Data System (ADS)
Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.
2017-10-01
The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.
Visualization of Radioisotope Detectability Over Time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, Brady
A radioactive isotope is an atom that has an unstable nucleus. The isotope can undergo radioactive decay, the process in which excessive nuclear energy is emitted from the nucleus in many different forms, such as gamma radiation, alpha particles, or beta particles. The important thing to note is that these emissions act as a signature for the isotope. Each radioisotope has a particular emission spectrum, emitting radiation at different energies and at different rates.
Structure of LiPs ground and excited states
NASA Astrophysics Data System (ADS)
Bressanini, Dario
2018-01-01
The lithium atom in its ground state can bind positronium (Ps) forming LiPs, an electronically stable system. In this study we use the fixed node diffusion Monte Carlo method to perform a detailed investigation of the internal structure of LiPs, establishing to what extent it could be described by smaller interacting subsystems. To study the internal structure of positronic systems we propose a way to analyze the particle distribution functions: We first order the particle-nucleus distances, from the closest to the farthest. We then bin the ordered distances obtaining, for LiPs, five distribution functions that we call sorted distribution functions. We used them to show that Ps is a quite well-defined entity inside LiPs: The positron is forming positronium not only when it is far away from the nucleus, but also when it is in the same region of space occupied by the 2 s electrons. Hence, it is not correct to describe LiPs as positronium "orbiting" around a lithium atom, as sometimes has been done, since the positron penetrates the electronic distribution and can be found close to the nucleus.
Combination of large and small basis sets in electronic structure calculations on large systems
NASA Astrophysics Data System (ADS)
Røeggen, Inge; Gao, Bin
2018-04-01
Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.
The Particle Adventure | What is fundamental? | Fundamental
fundamental The atom Is the atom fundamental? Is the nucleus fundamental? Are protons and neutrons fundamental decay What is the Mechanism giving mass to fundamental particles? What is the Mechanism giving mass to fundamental particles? Part 2 How Does the Higgs Boson get its Mass? Finding the Mass of the Higgs Boson
Nuclear Stability and Nucleon-Nucleon Interactions in Introductory and General Chemistry Textbooks
ERIC Educational Resources Information Center
Millevolte, Anthony
2010-01-01
The nucleus is a highly dense and highly charged substructure of atoms. In the nuclei of all atoms beyond hydrogen, multiple protons are in close proximity to each other in spite of strong electrostatic repulsions between them. The attractive internucleon strong force is described and its origin explained by using a simple quark model for the…
And so Ad Infinitum: The Search for Quark and Lepton Substructure
ERIC Educational Resources Information Center
Lincoln, Don
2018-01-01
The saga of the search for the ultimate constituents of matter has long been one of finding a seemingly fundamental structure that, in turn, was found to be made of even smaller building blocks. Matter is made of molecules. Molecules are in turn made of atoms, which are themselves made of electrons and atomic nuclei. The nucleus consists of…
Autschbach, Jochen
2009-09-14
A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.
Self-consistent assessment of Englert-Schwinger model on atomic properties
NASA Astrophysics Data System (ADS)
Lehtomäki, Jouko; Lopez-Acevedo, Olga
2017-12-01
Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-1/5 vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.
Self-consistent assessment of Englert-Schwinger model on atomic properties.
Lehtomäki, Jouko; Lopez-Acevedo, Olga
2017-12-21
Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.
Analysis about the force of electrons revolve around the nucleus
NASA Astrophysics Data System (ADS)
Yongquan, Han
1, Let's compare the difference of two algorithms: the electrostatic force between protons and electrons, F1 = ke2 / r2, r is the radius of the electron around the nucleus movement - within 10-10 meters; Electronic movement speed is close to the light- about 107 meters per second, the size of the centripetal force F2 = v2m/r. F1 should be approximately equal to F2,calculate the ratio of F1 and F2, F2 / F1 = (v2m/r) (ke2 / r2) / = (107 * 107 * 0.91 * 10-30 / r)/(9 * 109 * 1.6* 10-19*1.6*10-19 / r2) = 4 x 103.The calculation shows that not only the electrostatic force and other force. 2, The radius of the electron orbiting around the nucleus named r, F = Ke2 / r2 = 9 x 109 x #¨1.6 x 10 -19) 2 / r2 = v2m/r, r = 2.5 x 10-14 meters, namely that the radius of hydrogen atom is about 2.5 x 10- 14 meters, that is different with the observed result (10-10 meters).Electrons revolve around the nucleus may faster than 107 m/s, can almost reach 108 meters per second, if the electronic moves by 108 meters per second, hydrogen atom radius is approximately 2. 5 x 10 -16 meters, has converged in the interior of the nucleus, it is not possible. Use density to instead of electricity, can solve this problem. Author: hanyongquan TEL: 15611860790
NASA Astrophysics Data System (ADS)
Reines, Frederick; Cowan, Clyde L.
EACH new discovery of natural science broadens our knowledge and deepens our understanding of the physical universe; but at times these advances raise new and even more fundamental questions than those which they answer. Such was the case with the discovery and investigation of the radioactive process termed `beta decay'. In this process an atomic nucleus spontaneously emits either a negative or positive electron, and in so doing it becomes a different element with the same mass number but with a nuclear charge different from that of the parent element, by one electronic charge. As might be expected, intensive investigation of this interesting alchemy of Nature has shed much light on problems concerning the atomic nucleus. A new question arose at the beginning, however, when it was found that accompanying beta decay there was an unaccountable loss of energy from the decaying nucleus1, and that one could do nothing to the apparatus in which the decay occurred to trap this lost energy2. One possible explanation was that the conservation laws (upon which the entire structure of modern science is built) were not valid when applied to regions of subatomic dimensions. Another novel explanation, but one which would maintain the integrity of the conservation laws, was a proposal by Wolfgang Pauli in 1933 which hypothesized a new and fundamental particle3 to account for the loss of energy from the nucleus. This particle would be emitted by the nucleus simultaneously with the electron, would carry with it no electric charge but, would carry the missing energy and momentum—escaping from the laboratory equipment without detection…
Isomer depletion as experimental evidence of nuclear excitation by electron capture
NASA Astrophysics Data System (ADS)
Chiara, C. J.; Carroll, J. J.; Carpenter, M. P.; Greene, J. P.; Hartley, D. J.; Janssens, R. V. F.; Lane, G. J.; Marsh, J. C.; Matters, D. A.; Polasik, M.; Rzadkiewicz, J.; Seweryniak, D.; Zhu, S.; Bottoni, S.; Hayes, A. B.; Karamian, S. A.
2018-02-01
The atomic nucleus and its electrons are often thought of as independent systems that are held together in the atom by their mutual attraction. Their interaction, however, leads to other important effects, such as providing an additional decay mode for excited nuclear states, whereby the nucleus releases energy by ejecting an atomic electron instead of by emitting a γ-ray. This ‘internal conversion’ has been known for about a hundred years and can be used to study nuclei and their interaction with their electrons. In the inverse process—nuclear excitation by electron capture (NEEC)—a free electron is captured into an atomic vacancy and can excite the nucleus to a higher-energy state, provided that the kinetic energy of the free electron plus the magnitude of its binding energy once captured matches the nuclear energy difference between the two states. NEEC was predicted in 1976 and has not hitherto been observed. Here we report evidence of NEEC in molybdenum-93 and determine the probability and cross-section for the process in a beam-based experimental scenario. Our results provide a standard for the assessment of theoretical models relevant to NEEC, which predict cross-sections that span many orders of magnitude. The greatest practical effect of the NEEC process may be on the survival of nuclei in stellar environments, in which it could excite isomers (that is, long-lived nuclear states) to shorter-lived states. Such excitations may reduce the abundance of the isotope after its production. This is an example of ‘isomer depletion’, which has been investigated previously through other reactions, but is used here to obtain evidence for NEEC.
NASA Astrophysics Data System (ADS)
Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.
2018-04-01
We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.
Semiclassical approach to atomic decoherence by gravitational waves
NASA Astrophysics Data System (ADS)
Quiñones, D. A.; Varcoe, B. T. H.
2018-01-01
A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.
Nagaoka’s atomic model and hyperfine interactions
INAMURA, Takashi T.
2016-01-01
The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182
ERIC Educational Resources Information Center
Tsang, Chin Fu
1975-01-01
Discusses the possibility of creating elements with an atomic number of around 114. Describes the underlying physics responsible for the limited extent of the periodic table and enumerates problems that must be overcome in creating a superheavy nucleus. (GS)
Aiming Optimum Space Radiation Protection using Regolith.
NASA Astrophysics Data System (ADS)
Masuda, Daisuke; Nagamatsu, Aiko; Indo, Hiroko; Iwashita, Yoichiro; Suzuki, Hiromi; Shimazu, Toru; Yano, Sachiko; Tanigaki, Fumiaki; Ishioka, Noriaki; Mukai, Chiaki; Majima, Hideyuki J.
Radiation protection of space radiation is very important factor in manned space activity on the moon. At the construction of lunar base, low cost radiation shielding would be achieved using regolith that exists on the surface of the moon. We studied radiation shielding ability of regolith as answer the question, how much of depth would be necessary to achieve minimum radiation protection. We estimated the shielding ability of regolith against each atomic number of space radiation particles. Using stopping power data of ICRU REPORT49 and 73, we simulated the approximate expression (function of the energy of the atomic nucleus as x and the atomic number as Z) of the stopping power for the space proton particle (nucleus of H) against silicon dioxide (SiO2), aluminum oxide (Al2O3), and iron (Fe), which are the main components of regolith. Based on the expression, we applied the manipulation to the other particles of space radiation to up to argon particle (Ar). These simulated expressions complied well the data of ICRU REPORT49 and 73 except alpha particle (nucleus of He). The simulation values of stop-ping power of ten elements from potassium to nickel those we had no data in ICRU REPORT were further simulated. Using the obtained expressions, the relationship between the radiation absorbed dose and depth of a silicon dioxide was obtained. The space radiation relative dose with every depth in the moon could be estimated by this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko, A. G., E-mail: alitvin@jinr.ru; Litvinenko, E. I.
2015-03-15
We have studied the mechanisms influencing production of cumulative pions and protons in the fragmentation of the incident deuterons into cumulative pions and protons emitted at zero angle. We argue that the peripheral dependence on the atomic mass of the target nucleus, which was obtained in the experiments for medium and heavy nuclei, can be explained by scattering on target nucleons without introducing additional parameters.
Volterra integral equation-factorisation method and nucleus-nucleus elastic scattering
NASA Astrophysics Data System (ADS)
Laha, U.; Majumder, M.; Bhoi, J.
2018-04-01
An approximate solution for the nuclear Hulthén plus atomic Hulthén potentials is constructed by solving the associated Volterra integral equation by series substitution method. Within the framework of supersymmetry-inspired factorisation method, this solution is exploited to construct higher partial wave interactions. The merit of our approach is examined by computing elastic scattering phases of the α {-}α system by the judicious use of phase function method. Reasonable agreements in phase shifts are obtained with standard data.
Muonic alchemy: Transmuting elements with the inclusion of negative muons
NASA Astrophysics Data System (ADS)
Moncada, Félix; Cruz, Daniel; Reyes, Andrés
2012-06-01
In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.; Medina, Honorio; Urdaneta, H.; Barboza, J.
2000-04-01
Nan-imaging of Entamoeba histolytica was carried out by using Atomic Force Microscope (AFM). The structure of the nucleus, endoplasm and ectoplasm were studied separately. The diameter of the nucleus in living E. histolytica was found to be of the order of 10 micrometers which is slightly higher than the earlier reported value. The presence of karysome was detected in the nucleus. Well-organized patterns of chromatoid bodies located within the endoplasm, were detected and their repetitive patterns were examined. The organized structure was also extended within the ectoplasm. The dimensions and form of the organization suggest that chromatic bodies are constituted with ribosomes ordered in the form of folded sheet. Such structures were found to be absent in non-living E. histolytica. AFM images were also captured just in the act when ameba was extending its pseudopods. Alteration in the ultrastructure caused during the process of extension was viewed. Well marked canals of width 694.05 nm. And height 211.05 nm are clearly perceptible towards the direction of the pseudopods. 3D images are presented to appreciate the height variation, which can not be achieved by conventional well-established techniques such as electron microscopy.
Lamb shift and fine structure at n =2 in a hydrogenlike muonic atom with the nuclear spin I =0
NASA Astrophysics Data System (ADS)
Korzinin, Evgeny Yu.; Shelyuto, Valery A.; Ivanov, Vladimir G.; Karshenboim, Savely G.
2018-01-01
The paper is devoted to the Lamb shift and fine structure in a hydrogenlike muonic atom with a spinless nucleus up to the order α5m with all the recoil corrections included. Enhanced contributions of a higher order are also considered. We present the results on the pure QED contribution and on the finite-nuclear-size contribution, proportional to RN2, with the higher-order corrections included. We also consider the consistency of the pure QED theory and the evaluation of the nuclear-structure effects. Most of the QED theory is the same as the theory for the case of the nuclear spin 1/2. Additional nuclear-spin-dependent terms are considered in detail. The issue of the difference for the theories with a spinor nucleus and a scalar one is discussed for the recoil contributions in the order (Zα ) 4m ,α (Zα ) 4m , and (Zα ) 5m . The numerical results are presented for the muonic atoms with two lightest scalar nuclei, helium-4 and beryllium-10. We compare the theory of those muonic atoms with theory for the muonic hydrogen. Some higher-order finite-nuclear-size corrections for the Lamb shift in muonic hydrogen are revisited.
Insights into the nature of cometary organic matter from terrestrial analogues
NASA Astrophysics Data System (ADS)
Court, Richard W.; Sephton, Mark A.
2012-04-01
The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ analyses and sample return of cometary materials.
The generator coordinate Dirac-Fock method for open-shell atomic systems
NASA Astrophysics Data System (ADS)
Malli, Gulzari L.; Ishikawa, Yasuyuki
1998-11-01
Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.
Assurance Against Radiation Effects on Electronics
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2004-01-01
Contents include the following: The Space Radiation Environment. The Effects on Electronics. The Environment in Action. NASA Approaches to Commercial Electronics: the mission mix, flight projects, and proactive research. Final Thoughts: atomic interactions, direct ionization, interaction with nucleus.
Michael, J Robert; Koritsanszky, Tibor
2017-05-28
The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.
Development of a new method for measurement of neutron detector efficiency up to 20 MeV
Kornilov, N. V.; Grimes, S. M.; Massey, T. N.; ...
2014-09-03
A new approach to neutron detector efficiency has been taken. A neutron detector has been calibrated with a 252Cf source at low energy. The calibration can be extended to energies above 8 MeV based on the 252Cf results. The techniques uses the fact that the cross section for a symmetric reaction with nucleus of atomic number A yielding a final nucleus with atomic number (2A-1) and a neutron A + A → (2A – 1) + n. This reaction must be symmetric about 90° in the center-of-mass system. Furthermore, the laboratory energies for the neutrons at the paired energies differmore » substantially. Thus, an efficiency known at one of the two angles can be used to determine the efficiency to higher energies or, for a negative Q, to lower neutron energies.« less
Field enhancement of electronic conductance at ferroelectric domain walls
Vasudevan, Rama K.; Cao, Ye; Laanait, Nouamane; ...
2017-11-06
Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO 3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of themore » atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.« less
NASA Astrophysics Data System (ADS)
Michael, J. Robert; Koritsanszky, Tibor
2017-05-01
The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.
Orbital electron capture by the nucleus
NASA Technical Reports Server (NTRS)
Bambynek, W.; Behrens, H.; Chen, M. H.; Crasemann, B.; Fitzpatrick, M. L.; Ledingham, K. W. D.; Genz, H.; Mutterer, M.; Intemann, R. L.
1976-01-01
The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases.
Tritium is a hydrogen atom that has two neutrons in the nucleus and one proton. It is radioactive and behaves like other forms of hydrogen in the environment. Tritium is produced naturally in the upper atmosphere and as a byproduct of nuclear fission.
Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy
NASA Astrophysics Data System (ADS)
Krause, Marina; te Riet, Joost; Wolf, Katarina
2013-12-01
The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.
Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon
NASA Astrophysics Data System (ADS)
Morello, Andrea
The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Zhang, Lei
2014-01-10
In this manuscript, we quantitatively calculated the thermodynamic properties of critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics (CSDD) method. It is found that Cr concentration distribution in the critical nuclei strongly depend on the overall Cr concentration as well as temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated bymore » the phase field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.« less
NASA Astrophysics Data System (ADS)
Freedman, Stuart
2011-10-01
Everybody knows that nuclear physics is the study the kind of matter found inside the atomic nucleus whether they it is at the center of atoms or the core of neutron stars. Nevertheless, nuclear physicists have made important discoveries about the neutrino. Figuring out where the neutrinos go in nuclear physics has challenged nuclear scientists, policy makers and those responsible for funding the enterprise. I will consider these and other challenges and how insightful scientific management has contributed the feast of wonderful discoveries about the neutrino.
Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants
Hayano, Ryugo S.
2010-01-01
Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy
2009-12-15
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.
Big Bang Day: 5 Particles - 1. The Electron
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.
NASA Technical Reports Server (NTRS)
Almlof, Jan; Taylor, Peter R.
1990-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.
Biosynthesis of vitamin B12: concerning the origin of the methine protons of the corrin nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, A.I.; Kajiwara, M.; Santander, P.J.
1987-10-01
13C NMR spectroscopy has been used to locate six deuterium atoms incorporated biosynthetically on the periphery of the corrin nucleus of vitamin B12 (cyanocobalamin) derived from cells of Propionibacterium shermanii grown in a medium containing 50% /sup 2/H/sub 2/O and /sup 13/C-enriched delta-aminolevulinic acid. The implications of these results for the mechanism of vitamin B12 biosynthesis are discussed, and it is concluded that the same oxidation level of the intermediates is maintained throughout the biosynthetic pathway, from delta-aminolevulinic acid to corrin.
Surface physicochemical properties and decay of the low-lying isomer in the 229Th nucleus
NASA Astrophysics Data System (ADS)
Borisyuk, P. V.; Kurel'chuk, U. N.; Vasil'ev, O. S.; Troyan, V. I.; Lebedinskii, Yu Yu; Tkalya, E. V.
2018-05-01
The effect of the 229Th nucleus proximity to the CsI surface on the decay probability of its anomalously low lying isomeric level is studied. Results of experimental and theoretical studies show that the CsI surface does not produce chemical bonding with Th and does not noticeably change its valence shells. Hence, it is an optimal substrate for measuring the probability of the 229Th isomer state decay via internal electron conversion. The half-life of the 229Thm isomer in the thorium atom is calculated for neutral chemical environment.
Intermediate-energy nuclear chemistry workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.; Giesler, G.C.; Liu, L.C.
1981-05-01
This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.
Reshetnikov, V N; Lapteva, O K; Sosnovskaia, T F; Roshchenko, M V
1996-01-01
The changes in chromatin and DNA of seedling and callus tissues of cereals grown in the Chernobyl NPP zones with contamination levels of 15, 40 and 60 Ci/km2 were studied. Test samples produced by germinating and culturing seed cells of grown in contaminated areas were notable for the content of soluble polydesoxiribonucleotides, amount of DNA damages, DNA distribution over separate compartments of cell nucleus as compared to the control. Analogy between radiation-induced changes in chromatine and processes occurring in cell nucleus senescence was observed.
A New Accelerator-Based Mass Spectrometry.
ERIC Educational Resources Information Center
Gove, H. E.
1983-01-01
Tandem electrostatic accelerators produce beams of positive ions which are used to penetrate atomic nuclei in a target, inducing nuclear reactions whose study elucidates varied properties of the nucleus. Uses of the system, which acts like a mass spectrometer, are discussed. These include radiocarbon dating measurements. (JN)
A Study of the Momentum Distributions of the Final State Hadrons in Neutrino - Nucleus Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swider, Gregory M.
1980-12-01
In an experiment using the Fermilab 15-foot Bubble Chamber/Two-Plane EMI with a 47 percent (atomic) neon-in-hydrogen fill exposed to the quadrupole-triplet neutrino beam, we have identified some 9600 neutrino charged-current events....
NASA Technical Reports Server (NTRS)
Southworth, R. B.; Mccrosky, R. E.
1970-01-01
An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned.
NASA Astrophysics Data System (ADS)
Dasyra, K. M.; Bostrom, A. C.; Combes, F.; Vlahakis, N.
2015-12-01
We analyzed near-infrared data of the nearby galaxy IC5063 taken with the Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that has a radio jet nearly aligned with the major axis of a gas disk in its center. The data reveal multiple signatures of molecular and atomic gas that has been kinematically distorted by the passage of the jet plasma or cocoon within an area of ˜1 kpc2. Concrete evidence that the interaction of the jet with the gas causes the gas to accelerate comes from the detection of outflows in four different regions along the jet trail: near the two radio lobes, between the radio emission tip and the optical narrow-line-region cone, and at a region with diffuse 17.8 GHz emission midway between the nucleus and the north radio lobe. The outflow in the latter region is biconical, centered 240 pc away from the nucleus, and oriented perpendicularly to the jet trail. The diffuse emission that is observed as a result of the gas entrainment or scattering unfolds around the trail and away from the nucleus with increasing velocity. It overall extends for ≳700 pc parallel and perpendicular to the trail. Near the outflow starting points, the gas has a velocity excess of 600-1200 km s-1 with respect to ordered motions, as seen in [Fe ii], {Pa}α , or {{{H}}}2 lines. High {{{H}}}2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the diffuse outflow.
Signatures of the atomic nucleus in laser-assisted single ionization of one-electron atoms
NASA Astrophysics Data System (ADS)
Ajana, Imane; Khalil, Driss; Makhoute, Abdelkader
2018-03-01
The dynamics of the electron-impact single ionization of hydrogenic targets in the presence of a laser field (e, 2e) has been studied for different residual ion charges Z = 1, 2, 3 and 4. The state of fast electron in the laser field is described by the Volkov state, while the dressed state of the ejected slow electron and atomic target is treated perturbatively to the first-order perturbation theory. We calculate the triple differential cross section in the Ehrhardt asymmetric coplanar geometry. We have compared and analyzed the triple differential cross sections from one-electron atoms by varying the charge state of the residual ion, and evaluating the interplay between the laser influence and the role of scattering from the residual ion.
Atomic and Ionic Radii of Elements 1-96.
Rahm, Martin; Hoffmann, Roald; Ashcroft, N W
2016-10-04
Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Volume Field Model about Strong Interaction and Weak Interaction
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2016-03-01
For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Zou, Wenli; Cremer, Dieter
2013-07-01
A new algorithm for the two-component Normalized Elimination of the Small Component (2cNESC) method is presented and tested in the calculation of spin-orbit (SO) splittings for a series of heavy atoms and their molecules. The 2cNESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac SO splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000), 10.1103/PhysRevB.62.7809]. The use of the screened nucleus potential for the two-electron SO interaction leads to accurate spinor energy splittings, for which the deviations from the accurate Dirac Fock-Coulomb values are on the average far below the deviations observed for other effective one-electron SO operators. For hydrogen halides HX (X = F, Cl, Br, I, At, and Uus) and mercury dihalides HgX2 (X = F, Cl, Br, I) trends in spinor energies and SO splittings as obtained with the 2cNESC method are analyzed and discussed on the basis of coupling schemes and the electronegativity of X.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Taylor, Peter R.
1989-01-01
A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.
Big Bang Day: 5 Particles - 1. The Electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born.more » Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.« less
NASA Astrophysics Data System (ADS)
Eskandari, M. R.; Gheisari, R.; Kashian, S.
2006-02-01
This paper provides a theoretical complement to the experimental measurement of the population of excited dμ(2s) and dμ(1s) atoms in a deuterium. The population of these atoms plays an important role in a muon catalyzed fusion cycle. Symmetric and non-symmetric muonic molecular ions have been predicted to form in excited states in collisions between excited muonic atoms and hydrogen molecules. One example is the ddμ*, which is a muonic deuterium-deuterium symmetric ion in excited state and is initially produced in the interaction of dμ(2s) atoms with deuterium nuclei. Our calculations interpret the experimental findings in terms of the so-called side-path model. This model essentially deals with the interaction mentioned above in which the ddμ* ion undergoes Coulomb de-excitation where the excitation energy is shared between a dμ(1s) atom and one deuterium. The structure of ddμ* is studied here using the numerical, variational method and the given wavefunctions. Few resonance energies for ddμ* molecular states are calculated below the 2s threshold. For more precise assessment of the reliability of the given wavefunctions, the nucleus sizes and Coulomb decay rates for the zeroth, first and second vibrational meta-stable states of the mentioned ion are also calculated. The obtained results are close to those previously reported. The advantage of the given method over previous methods is that the used wavefunction has only two terms, which simplifies the calculations with the same results as those from the complicated coupled rearrangement channel method with a Gaussian basis set. These energies are the base data required for size, formation and decay rate calculations of the ddμ* ion.
NASA Technical Reports Server (NTRS)
Deprince, J.; Fritzsche, S.; Kallman, T. R.; Palmeri, P.; Quinet, P.
2017-01-01
The influence of plasma environment on the atomic parameters associated with the K-vacancy states has been investigated theoretically for several iron ions. To do this, a time-averaged Debye-Huckel potential for both the electron-nucleus and electron-electron interactions has been considered in the framework of relativistic multiconfiguration Dirac-Fock computations. More particularly, the plasma screening effects on ionization potentials, K-thresholds, transition energies, and radiative rates have been estimated in the astrophysical context of accretion disks around black holes. In the present paper, we describe the behavior of those atomic parameters for Ne-, Na-, Ar-, and K-like iron ions.
NASA Astrophysics Data System (ADS)
Whitaker, Andrew
2012-08-01
Any reader who expects David Kaiser's new book about quantum-information theory to be an orthodox treatise will be disabused by the book's front cover, which depicts a naked man standing on his head, his modesty retained by a bright yellow, strategically superimposed image of a nucleus in a Bohr-type atom.
Measurement of the helicity of W bosons in top quark decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, David Jerome
2000-01-01
This thesis describes a measurement o f the decay properties of the top quark. The six quarks are fundamental building blocks matter in the universe. The most common quarks, named up and down, combine to form the protons and neutrons which exist at the nucleus of all atoms.
Nuclear Chemistry, Science (Experimental): 5316.62.
ERIC Educational Resources Information Center
Williams, Russell R.
This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…
Quantum Tunneling Model of a P-N Junction in Silvaco
2008-09-01
electrical characteristics of materials on a large scale. According to Niels Bohr, atoms are comprised of three subatomic particles: a negative...nucleus at a specific energy level known as an orbit or shell. The three subatomic particles are held together by the electrostatic force between the
MRI Experiments for Introductory Physics
ERIC Educational Resources Information Center
Taghizadeh, Sanaz; Lincoln, James
2018-01-01
The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…
Predictions of nuclear charge radii
NASA Astrophysics Data System (ADS)
Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.
2016-12-01
The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.
Measurements of hadron mean free path for the particle-producing collisions in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
It is not obvious a priority that the cross-section for a process in hadron collisions with free nucleons is the same as that for the process in hadron collisions with nucleons inside a target nucleus. The question arises: what is the cross-section for a process in a hadron collision with nucleon on inside the atomic nucleus. The answer to it must be found in experiments. The mean free path for particle-producing collisions of pions in nuclear matter is determined experimentally using pion-xenon nucleus collisions at 3.5 GeV/c momentum. Relation between the mean free path in question lambda sub in nucleons fm squared and the cross-section in units of fm squared/nucleon for collisions of the hadron with free nucleon is: lambda sub i = k/cross section sub i, where k = 3.00 plus or minus 0.26.
Doughnut shape atom traps with arbitrary inclination
NASA Astrophysics Data System (ADS)
Masegosa, R. R. Y.; Moya-Cessa, H.; Chavez-Cerda, S.
2006-02-01
Since the invention of magneto-optical trap (MOT), there have been several experimental and theoretical studies of the density distribution in these devices. To the best of our knowledge, only horizontal orbital traps have been observed, perpendicular to the coil axis. In this work we report the observation of distributions of trapped atoms in pure circular orbits without a nucleus whose orbital plane is tilted up to 90 degrees with respect to the horizontal plane. We have used a stabilized time phase optical array in our experiments and conventional equipment used for MOT.
Atomic photoionization in a strong magnetic field
NASA Astrophysics Data System (ADS)
Greene, C. H.
1983-10-01
The photoionization of hydrogen atoms in a strong magnetic field is formulated as a multichannel problem by representing the asymptotic electron-wave function in cylindrical coordinates. Departures from cylindrical symmetry close to the nucleus are incorporated by an R-matrix treatment at short range, which then merges with standard quantum-defect procedures. The R-matrix calculation utilizes the eigenchannel approach, recast in noniterative form. At the field strength treated here, B = 4.7 x 10 to the 9th G, the photoionization cross section displays narrow 'autoionizing' resonances near the excited Landau thresholds.
Physics in Screening Environments
NASA Astrophysics Data System (ADS)
Certik, Ondrej
In the current study, we investigated atoms in screening environments like plasmas. It is common practice to extract physical data, such as temperature and electron densities, from plasma experiments. We present results that address inherent computational difficulties that arise when the screening approach is extended to include the interaction between the atomic electrons. We show that there may arise an ambiguity in the interpretation of physical properties, such as temperature and charge density, from experimental data due to the opposing effects of electron-nucleus screening and electron-electron screening. The focus of the work, however, is on the resolution of inherent computational challenges that appear in the computation of two-particle matrix elements. Those enter already at the Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show second-order Green's function results and many body perturbation theory results of second order. A self-contained derivation of all necessary equations has been included. The accuracy of the implementation of the method is established by comparing standard unscreened results for various atoms and molecules against literature for Hartree-Fock as well as Green's function and many body perturbation theory. The main results of the thesis are presented in the chapter called Screened Results, where the behavior of several atomic systems depending on electron-electron and electron-nucleus Debye screening was studied. The computer code that we have developed has been made available for anybody to use. Finally, we present and discuss results obtained for screened interactions. We also examine thoroughly the computational details of the calculations and particular implementations of the method.
Project Physics Reader 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
As a supplement to Project Physics Unit 6, a collection of articles is presented in this reader for student browsing. Five excerpts are concerned with the nuclear energy revolution, the 20th birthday and possible consequences of the atomic age, a scientist's view of science, and relations between mathematics and physics. Six book passages are…
ERIC Educational Resources Information Center
ten Hoor, Marten J.
2017-01-01
Contrary to current IUPAC recommendations, the chemical element X should be defined as the nucleus of the X atom. Consequently, different isotopes with their different nuclei belong to different elements, each one with its own physical and chemical properties. This view leads to the conclusion that we no longer have a periodic table of the…
NASA Astrophysics Data System (ADS)
Sharma, Prashant
2017-12-01
The probable role of the sudden nuclear charge change and nuclear recoil in the shaking processes during the neutron- or heavy-ion-induced nuclear reactions and weakly interacting massive particle-nucleus scattering has been investigated in the present work. Using hydrogenic wavefunctions, general analytical expressions of survival, shakeup/shakedown, and shakeoff probability have been derived for various subshells of hydrogen-like atomic systems. These expressions are employed to calculate the shaking, shakeup/shakedown, and shakeoff probabilities in some important cases of interest in the nuclear astrophysics and the dark matter search experiments. The results underline that the shaking processes are one of the probable channels of electronic transitions during the weakly interacting massive particle-nucleus scattering, which can be used to probe the dark matter in the sub-GeV regime. Further, it is found that the shaking processes initiating due to nuclear charge change and nuclear recoil during the nuclear reactions may influence the electronic configuration of the participating atomic systems and thus may affect the nuclear reaction measurements at astrophysically relevant energies.
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi
2008-04-21
Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less
Atomic electron energies including relativistic effects and quantum electrodynamic corrections
NASA Technical Reports Server (NTRS)
Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.
1977-01-01
Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.
Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion
Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth
2000-01-17
We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.
Dark Matter Detection Using Helium Evaporation and Field Ionization
NASA Astrophysics Data System (ADS)
Maris, Humphrey J.; Seidel, George M.; Stein, Derek
2017-11-01
We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .
Dark Matter Detection Using Helium Evaporation and Field Ionization.
Maris, Humphrey J; Seidel, George M; Stein, Derek
2017-11-03
We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV/c^{2}.
Foam model of planetary formation
NASA Astrophysics Data System (ADS)
Andreev, Y.; Potashko, O.
The Analysis of 2637 terrestrial minerals shows presence of characteristic element and isotope structure for each ore irrespective of its site. The model of processes geo-nuclear syntheses elements is offered due to avalanche merge of nucleus which simply explains these laws. Main assumption: nucleus, atoms, connections, ores and minerals were formed in volume of the modern Earth at an early stage of its evolution from uniform proto-substance. Substantive provisions of the model: 1)The most part of nucleus of atoms of all chemical elements of the Earth's crust were formed on the mechanism of avalanche chain merge practically in one stage (in geological scales) in a course of correlated(in scales of a planet) process with allocation of a plenty of heat. 2) Atoms of chemical elements were generated during cooling a planet with preservation of a relative spatial arrangement of nucleus. 3) Chemical compounds have arisen at cooling a surface of a planet and were accompanied by reorganizations (hashing) macro- and geo-scale. 4) Mineral formations are consequence of correlated behaviour of chemical compounds on microscopic scales during phase transition from gaseous or liquid to a firm condition. 5) Synthesis of chemical elements in deep layers of the Earth occurs till now. "Foaming'' instead of "Big Bang" The physical space is continual gas-fluid environment consist of super fluid foam. The continuity, keeping and uniqueness of proto-substance are postulated. Scenario: primary singularity-> droplets(proto-galaxies) droplets(proto-stars)-> droplets(proto-planets)-> droplets(proto- satellites)-> droplets. Proto-planet substance->proton+electron as 1st generation disintegration result of primary foam. Nuclei or nucleonic crystals are the 2nd generation in result of cascade merge of protons into conglomerates. The theory has applied to the analysis of samples of native copper deposit from Rafalovka's ore deposit in Ukraine. The abundance of elements by use of the roentgen fluorescent microanalysis has been made. Changes of a parity of elements are described by nuclear synthesis reactions: 16O+47Ti, 23Na+40Ca, 24Mg+39K, 31P+32S-> 63Cu; 16O+49Ti, 23Na+42Ca, 26Mg+39K, 31P+34S-> 65Cu Dramatical change of isotope parities of 56Fe and 57Fe in the sites of space carried on 3 millimetres. The content of 57Fe is greater then 56Fe in Cu granule.
Generalized charge-screening in relativistic Thomas–Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less
Precision Measurement of the β Asymmetry in Spin-Polarized
NASA Astrophysics Data System (ADS)
Fenker, B.; Gorelov, A.; Melconian, D.; Behr, J. A.; Anholm, M.; Ashery, D.; Behling, R. S.; Cohen, I.; Craiciu, I.; Gwinner, G.; McNeil, J.; Mehlman, M.; Olchanski, K.; Shidling, P. D.; Smale, S.; Warner, C. L.
2018-02-01
Using Triumf's neutral atom trap, Trinat, for nuclear β decay, we have measured the β asymmetry with respect to the initial nuclear spin in
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.
Yuan, Jianmin
2002-10-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.
DOE R&D Accomplishments Database
Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.
1974-07-15
In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.
Neutrino Photoproduction on the Electron of a Hydrogen-Like Atom
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2017-10-01
The process of interaction of a photon with the bound electron of a hydrogen-like atom with creation of a neutrino pair γ +{(Ze)}^{\\ast \\ast}\\to \\overline{νν}+{(Ze)}^{\\ast } is considered here for the first time. This process can take place with and without a change in the energy of the pair relative to the energy of the "initial" photon due to atomic transitions. It is shown that in the case when the system of atoms is located in an equilibrium radiation field with temperature T << m e this process can be neglected in comparison with spontaneous emission of the hydrogen-like atom {(Ze)}^{\\ast}\\to (Ze)+ν\\overline{ν} , despite the smaller power of the expansion parameter ( Zα) < < 1, α = e 2/ ℏc ≈ 1/137 in the expressions for the cross sections and probabilities. Calculations have been performed for the first time using the density matrix, introduced in the previous paper, of the electron in the field of the nucleus in the leading approximation in (Zα).
Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.
Roberts, B M; Flambaum, V V; Gribakin, G F
2016-01-15
Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.
How do we know what is ‘inside the atom’?—Simulating scattering experiments in the classroom
NASA Astrophysics Data System (ADS)
Cunningham, E. S.
2017-07-01
The idea of the indivisible atom, held since the time of the ancient Greeks, was smashed just over 100 years ago. Ernest Rutherford and his team of scientists in the UK used scattering experiments to discover that atoms have a very dense and extremely small central nucleus that contains more than 99.9% of the mass of an atom and is ten thousand times smaller than an atom. Then just over 50 years ago three physicists in America: Jerome Friedman, Henry Kendall and Richard Taylor carried out scattering experiments in California, that revealed the internal structure of nucleons—later called quarks. This workshop, developed by the Public Engagement team at the Science and Technology Facilities Council, takes secondary school students through these historic discoveries and the present day scattering experiments still changing the world of science.
The role of spin–rotation coupling in the non-exponential decay of hydrogen-like heavy ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, Gaetano, E-mail: lambiase@sa.infn.it; INFN, Sezione di Napoli; International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare
2013-05-15
Recent experiments carried out at the storage ring of GSI in Darmstadt reveal an unexpected oscillation in the orbital electron capture and subsequent decay of hydrogen-like {sup 140}Pr{sup 58+}, {sup 142}Pm{sup 60+} and {sup 122}I{sup 52+}. The modulations have periods of 7.069(8) s, 7.10(22) s and 6.1 s respectively in the laboratory frame and are superimposed on the expected exponential decays. In this paper we propose a semiclassical model in which the observed modulations arise from the coupling of rotation to the spins of electron and nucleus. We show that the modulations are connected to quantum beats and to themore » effect of the Thomas precession on the spins of bound electron and nucleus, the magnetic moment precessions of electron and nucleus and their cyclotron frequencies. We also show that the spin–spin coupling of electron and nucleus, though dominant relative to the magnetic moment coupling of electron and nucleus with the storage ring magnetic field, does not contribute to the modulation because these terms average out during the time of flight of the ions, or cancel out. The model also predicts that the anomaly cannot be observed if the motion of the ions is rectilinear, or if the ions are stopped in a target (decay of neutral atoms in solid environments). It also supports the notion that no modulation occurs for the β{sup +}-decay branch. -- Highlights: ► Spin precession of the spin of nucleus and electron in storage ring. ► Coupling of rotation to the spin of electron and nucleus. ► Modulation in the decay probability of the heavy ions induced by quantum beats. ► Comparison with experimental data.« less
Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.
Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi
2013-09-01
An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
DOE R&D Accomplishments Database
Nambu, Y.
1967-01-01
The main ingredients of the method of infinite multiplets consist of: 1) the use of wave functions with an infinite number of components for describing an infinite tower of discrete states of an isolated system (such as an atom, a nucleus, or a hadron), 2) the use of group theory, instead of dynamical considerations, in determining the properties of the wave functions.
Radiation and Its Health Effects. AIO Red Paper #19.
ERIC Educational Resources Information Center
Duda, Terrie
Radiation has been a serious concern to individuals for over 100 years. A process by which an atomic nucleus emits particles to reach a more stable energy state, radiation harms living cells (usually by inhalation and absorption into the lungs) by causing abnormal cell function and structure. Man is constantly exposed to background radiation, both…
ERIC Educational Resources Information Center
Short, Duncan
2017-01-01
Activation energies form an energy barrier to a chemical reaction taking place. Simple collision theory, i.e. that particles need to collide to react, would suggest that activation energy is the energy needed to overcome a coulombic barrier provided by the negatively charged electrons contained within energy shells surrounding an atomic nucleus.…
NASA Astrophysics Data System (ADS)
Ramos, Andira; Moore, Kaitlin; Raithel, Georg
2015-05-01
Recent significant disagreement with the previously established size of the proton demonstrates a need to reconsider the current value of the Rydberg constant, the effects of the nuclear charge distribution and QED in hydrogen-like atoms. An experiment is in progress to obtain a measurement of the Rydberg constant by studying circular Rydberg atoms, which exhibit very small QED shifts and electron wavefunctions which do not overlap with the nucleus. Cold Rydberg atoms are trapped using a ponderomotive potential. To drive the transitions, a novel type of spectroscopy is used which utilizes an optical-lattice field that is intensity-modulated at the frequencies of atomic transitions. The method is free of typical spectroscopic selection rules and has been shown to drive transitions up to fifth order. Combined with optical Rydberg-atom trapping, the method enables the measurement of narrow, sub-THz transitions between long-lived circular Rydberg levels. Energy shifts affecting this precision measurement will also be discussed. This work is suported by NSF, NIST and NASA grants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr
Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, whichmore » incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.« less
Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej; Co, Nguyen Truong
2015-04-14
Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleusmore » size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in slowing down fibril elongation in vivo.« less
Structural Basis of Actin Filament Nucleation by Tandem W Domains
Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng
2013-01-01
SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244
Shielding materials for highly penetrating space radiations
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.; Orwoll, Robert A.
1995-01-01
Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers are most effective in reducing the energy of neutrons. Once neutrons are reduced to very low energies, the probability for undergoing a reaction with a nucleus (the cross section) becomes very high. The product of such a reaction is often radioactive and can involve the release of a significant amount of energy. Thus, it is important to provide protection from low energy neutrons during a long duration space flight. Among the light elements, lithium and boron each have an isotope with a large thermal neutron capture cross section, Li-6 and B-10. However, B-10 is more abundant in the naturally-occurring element than Li-6, has a thermal neutron capture cross section four times that of Li-6, and produces the stable products, He-4 and Li-7 in the interaction while Li-6 produces radioactive tritium (H-3). Thus, boron is the best light-weight material for thermal neutron absorption in spacecraft. The work on this project was focused in two areas: computer design where existing computer codes were used, and in some cases modified, to calculate the propagation and interactions of high energy charged particles through various media, and materials development where boron was incorporated into high performance materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunge, C.F.; Barrientos, J.A.; Bunge, A.V.
1993-01-01
Roothaan-Hartree-Fock orbitals expressed in a Slater-type basis are reported for the ground states of He through Xe. Energy accuracy ranges between 8 and 10 significant figures, reducing by between 21 and 2,770 times the energy errors of the previous such compilation (E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables 14, 177, 1974). For each atom, the total energy, kinetic energy, potential energy, virial ratio, electron density at the nucleus, and the Kato cusp are given together with radial expectation values [l angle]r[sup n][r angle] with n from [minus]3 to 2 for each orbital, orbital energies, and orbitalmore » expansion coefficients. 29 refs., 1 tab.« less
Hubble View of a Galaxy Resembling an Atomic Nucleus
2017-12-08
The spiral galaxy NGC 7252 has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, and was informally dubbed the "Atoms for Peace" galaxy. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disk that is rotating in a direction opposite to the rest of the galaxy. This disk resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10,000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process. Image credit: NASA & ESA, Acknowledgements: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
High order harmonic generation in rare gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, Kimberly Susan
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10 13-10 14 W/cm 2) is focused into a dense (~10 17 particles/cm 3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as wellmore » as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.« less
NASA Astrophysics Data System (ADS)
Wada, Keiichi; Schartmann, Marc; Meijerink, Rowin
2016-09-01
The structures and dynamics of molecular, atomic, and ionized gases are studied around a low-luminosity active galactic nucleus (AGN) with a small (2× {10}6{M}⊙ ) black hole using three-dimensional (3D) radiation-hydrodynamic simulations. We studied, for the first time, the non-equilibrium chemistry for the X-ray-dominated region in the “radiation-driven fountain” with supernova feedback. A double hollow cone structure is naturally formed without postulating a thick “torus” around a central source. The cone is occupied with an inhomogeneous, diffuse ionized gas and surrounded by a geometrically thick (h/r≳ 1) atomic gas. Dense molecular gases are distributed near the equatorial plane, and energy feedback from supernovae enhances their scale height. Molecular hydrogen exists in a hot phase (>1000 K) as well as in a cold (\\lt 100 {{K}}), dense (\\gt {10}3 {{cm}}-3) phase. The velocity dispersion of H2 in the vertical direction is comparable to the rotational velocity, which is consistent with near-infrared observations of nearby Seyfert galaxies. Using 3D radiation transfer calculations for the dust emission, we find polar emission in the mid-infrared band (12 μm), which is associated with bipolar outflows, as suggested in recent interferometric observations of nearby AGNs. If the viewing angle for the nucleus is larger than 75°, the spectral energy distribution is consistent with that of the Circinus galaxy. The multi-phase interstellar medium observed in optical/infrared and X-ray observations is also discussed.
Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires
NASA Astrophysics Data System (ADS)
Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.
2018-05-01
In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berthet, M.
1963-01-01
The energy levels and their displacement DELTA E with respect to that of a meson placed in a coulomb potential are determined and compared with the experimental values. This comparison permits the selection of values for the parameters introduced by the hypothesis of the optical model. The absorption in the nucleus is studied using the hamiltonian of the nucleon- pi meson interaction and not th optical model. The results are compared with experimen values. As an introduction, the exact form of the interac tion of mesons with nuclei is defined by adopting the opti model. (J.S.R.)
Three-Dimensional Nuclear Chart--Understanding Nuclear Physics and Nucleosynthesis in Stars
ERIC Educational Resources Information Center
Koura, Hiroyuki
2014-01-01
Three-dimensional (3D) nuclear charts were created using toy blocks, which represent the atomic masses per nucleon number and the total half-lives for each nucleus in the entire region of the nuclear mass. The bulk properties of the nuclei can be easily understood by using these charts. Subsequently, these charts were used in outreach activities…
Learning Nuclear Science with Marbles
ERIC Educational Resources Information Center
Constan, Zach
2010-01-01
Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…
NASA Astrophysics Data System (ADS)
Xie, Y.; Sohn, S.; Schroers, J.; Cha, J. J.
2017-11-01
Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.
Proton-proton correlations observed in two-proton radioactivity of 94Ag.
Mukha, Ivan; Roeckl, Ernst; Batist, Leonid; Blazhev, Andrey; Döring, Joachim; Grawe, Hubert; Grigorenko, Leonid; Huyse, Mark; Janas, Zenon; Kirchner, Reinhard; La Commara, Marco; Mazzocchi, Chiara; Tabor, Sam L; Van Duppen, Piet
2006-01-19
The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyublik, A. Ya., E-mail: dzyublik@ukr.net
We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.
Early stage aggregation of a coarse-grained model of polyglutamine
NASA Astrophysics Data System (ADS)
Haaga, Jason; Gunton, J. D.; Buckles, C. Nadia; Rickman, J. M.
2018-01-01
In this paper, we study the early stages of aggregation of a model of polyglutamine (polyQ) for different repeat lengths (number of glutamine amino acid groups in the chain). In particular, we use the Large-scale Atomic/Molecular Massively Parallel Simulator to study a generic coarse-grained model proposed by Bereau and Deserno. We focus on the primary nucleation mechanism involved and find that our results for the initial self-assembly process are consistent with the two-dimensional classical nucleation theory of Kashchiev and Auer. More specifically, we find that with decreasing supersaturation, the oligomer fibril (protofibril) transforms from a one-dimensional β sheet to two-, three-, and higher layer β sheets as the critical nucleus size increases. We also show that the results are consistent with several predictions of their theory, including the dependence of the critical nucleus size on the supersaturation. Our results for the time dependence of the mass aggregation are in reasonable agreement with an approximate analytical solution of the filament theory by Knowles and collaborators that corresponds to an additional secondary nucleation arising from filament fragmentation. Finally, we study the dependence of the critical nucleus size on the repeat length of polyQ. We find that for the larger length polyglutamine chain that we study, the critical nucleus is a monomer, in agreement with experiment and in contrast to the case for the smaller chain, for which the smallest critical nucleus size is four.
Early Onset of Ground State Deformation in Neutron Deficient Polonium Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocolios, T. E.; Van de Walle, J.; ISOLDE, CERN, CH-1211 Geneva 23
2011-02-04
In-source resonant ionization laser spectroscopy of the even-A polonium isotopes {sup 192-210,216,218}Po has been performed using the 6p{sup 3}7s {sup 5}S{sub 2} to 6p{sup 3}7p {sup 5}P{sub 2} ({lambda}=843.38 nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in {sup 200-210}Po with a previous data set allows us to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, whichmore » is only partly reproduced by beyond mean field calculations.« less
Production of Antihydrogen-Atoms in Relativistic Collosions
NASA Astrophysics Data System (ADS)
Oelert, Walter
1997-04-01
Results of the first experimental observation of antihydrogen atoms will be presented. Once available, antihydrogen will be well suited to investigations of fundamental CPT violation studies under different forces. The investigations of the PS210 collaboration at LEAR tewir, however, concentrated on the production and detection of this simplest atomic bound state of antimatter only. The production of antihydrogen is predominantly based on the e^+e^- pair creation via the two-photon mechanism in an antiproton - nucleus interaction, as suggested by C.T. Munger et al. temung. (See also Ref. tebaur). A Xe cluster target was used for the production of neutral antihydrogen atoms which were identified by a unique sequence of annihilation characteristics. The antihydrogen signature was observed for eleven atoms, including possibly two background events. The measured yield has the right order of magnitude compared to the theoretical production predictions. Thoughts about future possible directions of antimatter research will be scetched. 99 wir G. Baur et al., Phys. Lett. B368 (1996) 251 mung C.T. Munger, S.J. Brodsky, I. Schmidt, Phys. Rev. D 49 (1994) 3228 baur G. Baur, Phys. Lett. B 311 (1993) 343 thebibliography
Bound and resonance states of positronic copper atoms
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Umair, Muhammad; Kino, Yasushi
2017-10-01
We report a theoretical calculation for the bound and S-wave resonance states of the positronic copper atom (e+Cu). A positron is a positively charged particle; therefore, a positronic atom has an attractive correlation between the positron and electron. A Gaussian expansion method is adopted to directly describe this correlation as well as the strong repulsive interaction with the nucleus. The correlation between the positron and electron is much more important than that between electrons in an analogous system of Cu-, although the formation of a positronium (Ps) in e+Cu is not expressed in the ground state structure explicitly. Resonance states are calculated with a complex scaling method and identified above the first excited state of the copper atom. Resonance states below Ps (n = 2) + Cu+ classified to a dipole series show agreement with a simple analytical law. Comparison of the resonance energies and widths of e+Cu with those of e+K, of which the potential energy of the host atom resembles that of e+Cu, reveals that the positions of the resonance for the e+Cu dipole series deviate equally from those of e+K.
Elastic scattering of X-rays and gamma rays by 2S electrons in ions and neutral atoms
NASA Astrophysics Data System (ADS)
Costescu, A.; Spânulescu, S.; Stoica, C.
2012-08-01
The nonrelativistic limit of Rayleigh scattering amplitude on 2s electrons of neutral and partially ionized atoms is obtained by making use of the Green Function method. The result takes into consideration the retardation, relativistic kinematics and screening effects. The spurious singularities introduced by the retardation in a nonrelativistic approach are cancelled by the relativistic kinematics. For neutral and partially ionized atoms, a screening model is considered with an effective charge obtained by fitting the Hartree-Fock charge distribution with pure Coulombian wave functions corresponding to a central potential of a nucleus with Zeff as the atomic number. The total cross section of the photoeffect on the 2s electrons is also calculated from the imaginary part of the forward scattering amplitude by means of the optical theorem. The numerical results obtained are in a good agreement (10%) with the ones obtained by Kissell for the Rayleigh amplitude and by Scofield for the Photoeffect total cross section on the 2s electrons, for atoms with atomic number 18 ≤ Z ≤ 92 and photon energies ω≤αZm. (α=1/137,... is the fine structure constant, m is the electron mass).
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
"Rutherford's Experiment" on Alpha Particles Scattering: The Experiment That Never Was
ERIC Educational Resources Information Center
Leone, M.; Robotti, N.; Verna, G.
2018-01-01
The so-called "Rutherford's experiment," as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial…
FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, C. J.
The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..
NASA Astrophysics Data System (ADS)
Lackenby, B. G. C.; Flambaum, V. V.
2018-07-01
We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.
An Effective-Hamiltonian Approach to CH5+, Using Ideas from Atomic Spectroscopy
NASA Astrophysics Data System (ADS)
Hougen, Jon T.
2016-06-01
In this talk we present the first steps in the design of an effective Hamiltonian for the vibration-rotation energy levels of CH5+. Such a Hamiltonian would allow calculation of energy level patterns anywhere along the path travelled by a hypothetical CH5+ (or CD5+) molecule as it passes through various coupling cases, and might thus provide some hints for assigning the observed high-resolution spectra. The steps discussed here, which have not yet addressed computational problems, focus on mapping the vibration-rotation problem in CH5+ onto the five-electron problem in the boron atom, using ideas and mathematical machinery from Condon and Shortley's book on atomic spectroscopy. The mapping ideas are divided into: (i) a mapping of particles, (ii) a mapping of coordinates (i.e., mathematical degrees of freedom), and (iii) a mapping of quantum mechanical interaction terms. The various coupling cases along the path correspond conceptually to: (i) the analog of a free-rotor limit, where the H atoms see the central C atom but do not see each other, (ii) the low-barrier and high-barrier tunneling regimes, and (iii) the rigid-molecule limit, where the H atoms remain locked in some fixed molecular geometry. Since the mappings considered here often involve significant changes in mathematics, a number of interesting qualitative changes occur in the basic ideas when passing from B to CH5+, particularly in discussions of: (i) antisymmetrization and symmetrization ideas, (ii) n,l,ml,ms or n,l,j,mj quantum numbers, and (iii) Russell-Saunders computations and energy level patterns. Some of the mappings from B to CH5+ to be discussed are as follows. Particles: the atomic nucleus is replaced by the C atom, the electrons are replaced by protons, and the empty space between particles is replaced by an "electron soup." Coordinates: the radial coordinates of the electrons map onto the five local C-H stretching modes, the angular coordinates of the electrons map onto three rotational degrees of freedom and seven bending vibrational degrees of freedom. The half-integral electron spins map onto half-integral proton spins or onto integral deuterium spins (for CD5+). Interactions: the Coulomb attraction between nucleus and electrons maps onto a Morse-oscillator C-H stretching potential, spin-orbit interaction maps onto proton-spin-overall-rotation interaction, and Coulomb repulsion between electrons maps onto some kind of proton repulsion that leads to the equilibrium geometry.
Minguez Gabina, Pablo; Roeske, John C; Mínguez, Ricardo; Gomez de Iturriaga, Alfonso; Rodeño, Emilia
2018-06-20
We performed Monte Carlo simulations in order to determine by means of microdosimetry calculations the average number of hits to the cell nucleus required to reach a tumour control probability (TCP) of 0.9, 〈n<sub>0.9</sub> 〉, for the source geometry of a nucleus embedded in a homogeneous distribution of <sup>223</sup>Ra atoms. From the results obtained and following the MIRD methodology, we determined the values of lesion absorbed doses needed to reach a TCP of 0.9, D<sub>0.9</sub>, for different values of mass density, cell radiosensitivity, nucleus radius and lesion volume. The greatest variation of those absorbed doses occurred with cell radiosensitivity and no dependence was found on mass density. The source geometry used was chosen because we aimed to compare the values of D<sub>0.9</sub> with the lesion absorbed doses obtained from image-based macrodosimetry in treatments of metastatic castration-resistant prostate cancer with <sup>223</sup>Ra which were obtained assuming a homogeneous distribution of <sup>223</sup>Ra atoms within the lesion. In a comparison with a study including 29 lesions, results showed that even for the case of the most radiosensitive cells simulated, 45% of the lesions treated following a schedule of two cycles of 110 kBq/kg body mass would receive absorbed doses below the values of D<sub>0.9</sub> determined in this study. © 2018 Institute of Physics and Engineering in Medicine.
Bhattacharjee, Rituparna; Roy, Ram Kinkar
2014-10-28
In the present study, trends of electronic contribution to molecular electrostatic potential [Vel(r¯)(r=0)], Fukui potential [v(+)f|(r=0) and v(-)f|(r=0)] and hardness potential derivatives [Δ(+)h(k) and Δ(-)h(k)] for isolated atoms as well as atoms in molecules are investigated. The generated numerical values of these three reactivity descriptors in these two electronically different situations are critically analyzed through the relevant formalism. Values of Vel(r¯) (when r → 0, i.e., on the nucleus) are higher for atoms in molecules than that of isolated atoms. In contrast, higher values of v(+)|(r=0) and v(-)|(r=0) are observed for isolated atoms compared to the values for atoms in a molecule. However, no such regular trend is observed for the Δ(+)h(k) and Δ(-)h(k) values, which is attributed to the uncertainty in the Fukui function values of atoms in molecules. The sum of Fukui potential and the sum of hardness potential derivatives in molecules are also critically analyzed, which shows the efficacy of orbital relaxation effects in quantifying the values of these parameters. The chemical consequence of the observed trends of these descriptors in interpreting electron delocalization, electronic relaxation and non-negativity of atomic Fukui function indices is also touched upon. Several commonly used molecules containing carbon as well as heteroatoms are chosen to make the investigation more insightful.
Transition Probabilities for Hydrogen-Like Atoms
NASA Astrophysics Data System (ADS)
Jitrik, Oliverio; Bunge, Carlos F.
2004-12-01
E1, M1, E2, M2, E3, and M3 transition probabilities for hydrogen-like atoms are calculated with point-nucleus Dirac eigenfunctions for Z=1-118 and up to large quantum numbers l=25 and n=26, increasing existing data more than a thousandfold. A critical evaluation of the accuracy shows a higher reliability with respect to previous works. Tables for hydrogen containing a subset of the results are given explicitly, listing the states involved in each transition, wavelength, term energies, statistical weights, transition probabilities, oscillator strengths, and line strengths. The complete results, including 1 863 574 distinct transition probabilities, lifetimes, and branching fractions are available at http://www.fisica.unam.mx/research/tables/spectra/1el
Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom
NASA Technical Reports Server (NTRS)
White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David
2015-01-01
This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.
Cheng, Li-Ping; Wang, Zhi; Wu, Qiao-Yu; Su, Hai-Feng; Peng, Tao; Luo, Geng-Geng; Li, Yan-An; Sun, Di; Zheng, Lan-Sun
2018-03-07
A discrete 78-nucleus silver-sulfur nanocluster with a sulfate-centered multishell structure was isolated and characterized. Its crystal structure revealed 18 and 60 Ag atoms in the inner and outer shell, respectively. The inner shell of 18-nuclearity Ag atoms is a very rare convex polyhedron featuring an elongated triangular orthobicupola. The incorporation of a sulfate anion and multishell arrangement in the nanocluster led to a dramatic decrease in the band gap (E g = 1.40 eV). Our study showed that simple anions can also induce the formation of high-nuclearity silver clusters with excellent optical properties.
Relativistic Corrections to the Energy of the Electron in a Hydrogenlike Atom
NASA Astrophysics Data System (ADS)
Skobelev, V. V.
2017-11-01
Using the previously found solution of the Dirac equation for an electron in the field of the nucleus ( Ze), expressed in terms of the eigenfunction of the spin projection operator Σ3, in the expansion in the small parameter ( Zα), α = e 2/ ħc ≈ 1/137, relativistic and spin-orbit corrections to the energy of the electron in a hydrogenlike atom are calculated, where the latter, in our view, are represented in an easier to visualize form in comparison with previously known classical results. This work may be of methodological interest in the sense of some modification of the corresponding sections of the traditional course on quantum mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, B.S.; Seshadri, T.P.; Sakore, T.D.
1979-01-01
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3'-5') guanosine (iodoCpG). The acridine orange-iodoCpG crystals are monoclinic, space group P2/sub 1/, with unit cell dimensions a = 14.36 A, b = 19.64 A, c = 20.67 A, ..beta.. = 102.5. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A, b = 22.23 A, c = 18.42 A, ..beta.. = 123.3. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least squares. Acridine orange forms an intercalative structure with iodoCpG but the acridinemore » nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus. Base-pairs above and below the drug are separated by about 6.8 A and are twisted about 10/sup 0/. Proflavine demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino- groups on proflavine with phosphate oxygen atoms on the dinucleotide. Base-pairs above and below the intercalative proflavine molecule are twisted about 36/sup 0/. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed. We propose a proflavine-DNA and an acridine orange-DNA binding model. We will describe these models in detail in this paper.« less
Shannon entropies and Fisher information of K-shell electrons of neutral atoms
NASA Astrophysics Data System (ADS)
Sekh, Golam Ali; Saha, Aparna; Talukdar, Benoy
2018-02-01
We represent the two K-shell electrons of neutral atoms by Hylleraas-type wave function which fulfils the exact behavior at the electron-electron and electron-nucleus coalescence points and, derive a simple method to construct expressions for single-particle position- and momentum-space charge densities, ρ (r) and γ (p) respectively. We make use of the results for ρ (r) and γ (p) to critically examine the effect of correlation on bare (uncorrelated) values of Shannon information entropies (S) and of Fisher information (F) for the K-shell electrons of atoms from helium to neon. Due to inter-electronic repulsion the values of the uncorrelated Shannon position-space entropies are augmented while those of the momentum-space entropies are reduced. The corresponding Fisher information are found to exhibit opposite behavior in respect of this. Attempts are made to provide some plausible explanation for the observed response of S and F to electronic correlation.
NASA Astrophysics Data System (ADS)
Heibron, John
2011-04-01
Rutherford's nuclear model originally was a theory of scattering that represented both the incoming alpha particles and their targets as point charges. The assumption that the apha particle, which Rutherford knew to be a doubly ionized helium atom, was a bare nucleus, and the associated assumption that the electronic structure of the atom played no significant role in large-angle scattering, had immediate and profound consequences well beyond the special problem for which Rutherford introduced them. The group around him in Manchester in 1911/12, which included Niels Bohr, Charles Darwin, Georg von Hevesy, and Henry Moseley, worked out some of these consequences. Their elucidation of radioactivity, isotopy, atomic number, and quantization marked an epoch in microphysics. Rutherford's nuclear model was exemplary not only for its fertility and picturability, but also for its radical simplicity. The lecturer will not undertake to answer the baffling question why such simple models work.
Electron quantum dynamics in atom-ion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.
2016-04-07
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less
NASA Astrophysics Data System (ADS)
Pati, Ranjit
We have investigated, using the Hartree-Fock Roothaan variational procedure, the electronic structures and associated nuclear quadrupole interactions (NQI) for the molecular solids, RDX (C3H6N6O6),/ /beta- HMX(C4H8N8O8), Cocaine (C17H21NO4), Cocaine Hydrochloride (C17H21NO4HCl) and Heroin (C21H23NO5) and for the (111) surface of silicon with adsorbed radioactive 111In atom and negative cadmium ion containing the excited nucleus 111Cd/* resulting from electron capture by lllIn. Our investigations indicate that for the ring 14N NQI parameters in RDX and β-HMX there is very good agreement between theory and experiment. For the peripheral 14N nuclei in NO2 groups, while the calculated electronic structures do explain the much weaker quadrupole coupling constants for these nuclei relative to the ring 14N nuclei, there are significant differences between theory and experiment. The influence of intermolecular interactions between adjacent molecules in the solid is invoked as a possible source for these differences. For the controlled substances, Cocaine and Heroin, again very good agreement is obtained between theory and experiment. For Cocaine Hydrochloride theory is able to explain the much smaller observed 14N nuclear quadrupole resonance frequency as compared to pure Cocaine. However there are significant differences between theory and experiment for the 14N and 35Cl quadrupole resonance frequencies. The influence of intermolecular interactions is one of the factors suggested to explain the difference. For the silicon (111) surface, the observed 111Cd/* NQI parameters, with the cadmium nucleus assumed to be located at the same site as the 111In nucleus from which it is generated, can be successfully explained by theory with the indium atom located at the two distinct sites available with the DAS model for the 7 x 7 reconstructed (111) surface. Some quantitative differences still remain, one of the main factor suggested for their explanation being a need for a thorough analysis of relaxation effects in the positions of silicon atoms associated with the presence of the indium atom. Applications of the Hartree-Fock Cluster theory to other related systems is suggested to subject the DAS model to additional tests at the microscopic level as in the system studied in the present thesis. (Abstract shortened by UMI.)
Acoustic vibration effects in classical nucleation theory
NASA Astrophysics Data System (ADS)
Baird, James K.; Su, C.-H.
2018-04-01
Acoustic vibration is often used to improve the yield of crystals and nanoparticles growing from solutions and melts. As there is still a debate on how acoustic vibration actually works, we have examined the possibility that acoustic pressure can affect the rate of nucleation. Our method is based on an expansion of the free energy of the nucleus in powers of the acoustic pressure. With the assumption that the period of the sound wave is short as compared to the time scale for nucleation, we replace the powers of the acoustic pressure by their time averages, retaining the average of the square of the acoustic pressure as the leading term. By assuming a nucleus having spherical shape, we use the Young-Laplace equation to relate the pressure inside the nucleus to the ambient pressure. Without making further approximations not already standard in classical nucleation theory, we find that the proximate effect of acoustic pressure is to reduce both the size of the critical nucleus as well as the work required to form it from monomers. As the work serves as the activation energy, the ultimate effect of acoustic pressure is to increase the rate of nucleation. If we assume that the atomic structure of the nucleus is the same as that of an ordinary solid, however, we find the compressibility is too small for acoustic vibration effects to be noticeable. If on the other hand, we assume that the structure is similar to that of a loosely bound colloidal particle, then the effects of acoustic vibration become potentially observable.
George Gamow: Scientific Amateur and Polymath
NASA Astrophysics Data System (ADS)
Harper, Eamon
George Gamow (1904-1968) was among the first of the many brilliant scientists who forsook Europe for the United States in the early 1930s. Although most were fleeing the fascist imperium of Hitler and Mussolini, Gamow was one of a few who managed to escape the burgeoning despotism of Stalin in the Soviet Union. His early application of quantum mechanics to the atomic nucleus and his subsequent insight into the role played by the physics of the atom and its nucleus in stars, galaxies, and the universe identifies him as a scientist of unusual genius. Gamow displayed a boisterous, infectious - almost Rutherfordian - interest in all aspects of pure science. His interests were broad and his industry prodigious. His scientific output covered areas as diverse as nuclear physics, astrophysics, cosmology, biological genetics, and the fascinating question of the relationship of the large-scale structure and development of the universe to the properties of elementary particles and fields. He also was an immensely imaginative and prolific author of popular expositions on scientific subjects. One who is as well-known for his authorship of the Mr. Tompkins series of science popularizations as for his contributions to the development of the physical consequences of the big-bang theory of the expanding universe and the prediction of the cosmic background radiation must be unique in the scientific pantheon.
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
Clustering on Magnesium Surfaces – Formation and Diffusion Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Haijian; Huang, Hanchen; Wang, Jian
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and {more » $$\\bar{1}$$011} . In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a {$$\\bar{1}$$011} , clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface {$$\\bar{1}$$011} is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich–Schwoebel barriers converge as the step height is three atomic layers or thicker. FInally, adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, J. C.; Flambaum, V. V.; Kava, E. M.
2011-10-15
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper, we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark-mass variation, in a number of isotopes ofmore » experimental interest including {sup 201,199}Hg and {sup 87,85}Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.« less
Momentum sharing in imbalanced Fermi systems
NASA Astrophysics Data System (ADS)
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16
2014-10-01
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
NASA Astrophysics Data System (ADS)
Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.
2008-01-01
The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.
Mass spectra of heavy ions near comet Halley
NASA Astrophysics Data System (ADS)
Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Lin, R. P.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Cotin, F.; Cros, A.; Mendis, D. A.
1986-05-01
The heavy-ion analyser aboard the Giotto spacecraft, detected the first cometary ions at a distance of ≡1.05x106km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.
Mass spectra of heavy ions near comet Halley
NASA Technical Reports Server (NTRS)
Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.
1986-01-01
The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.
Zhang, Honghai -Hai; Bonnesen, Peter V.; Hong, Kunlun
2015-07-13
There is a facile method for introducing one or more deuterium atoms onto an aromatic nucleus via Br/D exchange with high functional group tolerance and high incorporation efficiency is disclosed. Deuterium-labeled aryl chlorides and aryl borates which could be used as substrates in cross-coupling reactions to construct more complicated deuterium-labeled compounds can also be synthesized by this method.
Hoshino, Tsutomu
2011-09-01
Violacein is a natural violet pigment produced by several gram-negative bacteria, including Chromobacterium violaceum, Janthinobacterium lividum, and Pseudoalteromonas tunicata D2, among others. This pigment has potential medical applications as antibacterial, anti-trypanocidal, anti-ulcerogenic, and anticancer drugs. The structure of violacein consists of three units: a 5-hydroxyindole, an oxindole, and a 2-pyrrolidone. The biosynthetic origins of hydrogen, nitrogen, and carbon in the pyrrolidone nucleus were established by feeding experiments using various stable isotopically labeled tryptophans (Trps). Pro-S hydrogen of CH(2) at the 3-position of Trp is retained during biosynthesis. The nitrogen atom is exclusively from the α-amino group, and the skeletal carbon atoms originate from the side chains of the two Trp molecules. All three oxygen atoms in the violacein core are derived from molecular oxygen. The most interesting biosynthetic mechanism is the 1,2-shift of the indole nucleus on the left side of the violacein scaffold. The alternative Trp molecule is directly incorporated into the right side of the violacein core. This indole shift has been observed only in violacein biosynthesis, despite the large number of natural products having been isolated. There were remarkable advances in biosynthetic studies in 2006-2008. During the 3 years, most of the intermediates and the complete pathway were established. Two independent processes are involved: the enzymatic process catalyzed by the five proteins VioABCDE or the alternative nonenzymatic oxidative decarboxylation reactions. The X-ray crystallographic structure of VioE that mediates the indole rearrangement reaction was recently identified, and the mechanism of the indole shift is discussed here.
Hard QCD processes in the nuclear medium
NASA Astrophysics Data System (ADS)
Freese, Adam
The environment inside the atomic nucleus is one of the most fascinating arenas for the study of quantum chromodynamics (QCD). The strongly-interacting nature of the nuclear medium a?ects the nature of both QCD processes and the quark-gluon structure of hadrons, allowing several unique aspects of the strong nuclear force to be investigated in reactions involving nuclear targets. The research presented in this dissertation explores two aspects of nuclear QCD: firstly, the partonic structure of the nucleus itself; and secondly, the use of the nucleus as a micro-laboratory in which QCD processes can be studied. The partonic structure of the nucleus is calculated in this work by deriving and utilizing a convolution formula. The hadronic structure of the nucleus and the quark-gluon structure of its constituent nucleons are taken together to determine the nuclear partonic structure. Light cone descriptions of short range correlations, in terms of both hadronic and partonic structure, are derived and taken into account. Medium modifications of the bound nucleons are accounted for using the color screening model, and QCD evolution is used to connect nuclear partonic structure at vastly di?erent energy scales. The formalism developed for calculating nuclear partonic structure is applied to inclusive dijet production from proton-nucleus collisions at LHC kinematics, and novel predictions are calculated and presented for the dijet cross section. The nucleus is investigated as a micro-laboratory in vector meson photoproduction reactions. In particular, the deuteron is studied in the break-up reaction gammad → Vpn, for both the φ(1020) and J/v vector mesons. The generalized eikonal approximation is utilized, allowing unambiguous separation of the impulse approximation and final state interactions (FSIs). Two peaks or valleys are seen in the angular distribution of the reaction cross section, each of which is due to an FSI between either the proton and neutron, or the produced vector meson and the spectator nucleon. The presence and size of the latter FSI valley/peak contains information about the meson-nucleon interaction, and it is shown that several models of this interaction can be distinguished by measuring the angular distribution for the deuteron breakup reaction.
Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM
NASA Astrophysics Data System (ADS)
Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.
2018-03-01
In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.
Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential
NASA Astrophysics Data System (ADS)
Hrtánková, Jaroslava; Mareš, Jiří
2018-01-01
An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.
The tightly bound nuclei in the liquid drop model
NASA Astrophysics Data System (ADS)
Sree Harsha, N. R.
2018-05-01
In this paper, we shall maximise the binding energy per nucleon function in the semi-empirical mass formula of the liquid drop model of the atomic nuclei to analytically prove that the mean binding energy per nucleon curve has local extrema at A ≈ 58.6960, Z ≈ 26.3908 and at A ≈ 62.0178, Z ≈ 27.7506. The Lagrange method of multipliers is used to arrive at these results, while we have let the values of A and Z take continuous fractional values. The shell model that shows why 62Ni is the most tightly bound nucleus is outlined. A brief account on stellar nucleosynthesis is presented to show why 56Fe is more abundant than 62Ni and 58Fe. We believe that the analytical proof presented in this paper can be a useful tool to the instructors to introduce the nucleus with the highest mean binding energy per nucleon.
NASA Astrophysics Data System (ADS)
Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.
2007-04-01
We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.
NASA Technical Reports Server (NTRS)
1998-01-01
These are two images of the inner coma of Comet Hyakutake made on April 3 and 4, 1996, using the NASA Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2). The first one, shown in red, was taken through a narrow-band red filter that shows only sunlight scattered by dust particles in the inner coma of the comet. The second one, shown in blue was taken with an ultraviolet 'Woods' filter image that shows the distribution of scattered ultraviolet radiation from hydrogen atoms in the inner coma. The coma is the head or dusty-gas atmosphere of a comet. The square field of view is 14,000 km on a side and the sun is toward the upper right corner of the image. Hydrogen atoms represent the most abundant gas in the whole coma of the comet. They are produced when solar ultraviolet light breaks up molecules of water, the major constituent of the nucleus of the comet. These images were taken as part of an observing program to study water photochemistry in comets. Measurements of hydrogen (H) and hydroxyl (OH) in the coma (or atmosphere) of Comet Hyakutake were also made using the Goddard High Resolution Spectrograph (GHRS) and the Faint Object Spectrograph (FOS). A self-consistent analysis of all the data shows that the water production rate of the comet was between 7 and 8 tons per second on the April 3 and 4. A theoretical model was used in the analysis which accounts for the detailed physics and chemistry of the photochemical destruction of the water, the production of the H and OH, and their expansion in the coma (or atmosphere) of the comet. The model matched the velocity measurements of hydrogen atoms made using the high spectral resolution capabilities of the GHRS instrument. The importance of such a detailed model is that is permits the accurate calculation of the production rate of water from observations of H and OH.
The inner yellow region near the center of the red dust image is dominated by the contribution from the dust which shows sunward directed spiral jets toward the upper right, and the thin straight particle trail pointing toward the lower left. The trail was a permanent feature of the comet around the time of its close approach to the Earth in late March and early April. Also barely visible just beyond the lower left end of the trail are two of the many condensations which were seen to travel slowly down the tail are believed to be clumps of material released from the nucleus.The inner white region of the blue image appears to show that the hydrogen atoms like the dust might be preferentially ejected toward the sunward or day side of the nucleus. However, this is not true. The asymmetric ultraviolet radiation pattern is produced by a roughly spherical distribution of hydrogen atoms because they are so efficient at scattering the incoming solar ultraviolet light. The atoms on the sunward side actually shadow the atoms on the tailward or night side of the coma. The same detailed model analysis of the coma which explains the expansion of the hydrogen atoms in the coma also explains the appearance of the image.The team was lead by Michael Combi, The University of Michigan, and included Michael Brown, California Institute of Technology, Paul Feldman, Johns Hopkins University, H. Uwe Keller of the Max Planck Institute, Lindau, Robert Meier of the Naval Research Laboratory, and William Smyth of Atmospheric and Environmental Research, Inc.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/These are two images of the inner coma of Comet Hyakutake
NASA Technical Reports Server (NTRS)
2002-01-01
These are two images of the inner coma of Comet Hyakutake made on April 3 and 4, 1996, using the NASA Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2). The first one, shown in red, was taken through a narrow-band red filter that shows only sunlight scattered by dust particles in the inner coma of the comet. The second one, shown in blue was taken with an ultraviolet 'Woods' filter image that shows the distribution of scattered ultraviolet radiation from hydrogen atoms in the inner coma. The coma is the head or dusty-gas atmosphere of a comet. The square field of view is 14,000 km on a side and the sun is toward the upper right corner of the image. Hydrogen atoms represent the most abundant gas in the whole coma of the comet. They are produced when solar ultraviolet light breaks up molecules of water, the major constitutent of the nucleus of the comet. These images were taken as part of an observing program to study water photochemistry in comets. Measurements of hydrogen (H) and hydroxyl (OH) in the coma (or atmosphere) of Comet Hyakutake were also made using the Goddard High Resolution Spectrograph (GHRS) and the Faint Object Spectrograph (FOS). A self-consistent analysis of all the data shows that the water production rate of the comet was between 7 and 8 tons per second on the April 3 and 4. A theoretical model was used in the analysis which accounts for the detailed physics and chemistry of the photochemical destruction of the water, the production of the H and OH, and their expansion in the coma (or atmosphere) of the comet. The model matched the velocity measurements of hydrogen atoms made using the high spectral resolution capabilities of the GHRS instrument. The importance of such a detailed model is that is permits the accurate calculation of the production rate of water from observations of H and OH. The inner yellow region near the center of the red dust image is dominated by the contribution from the dust which shows sunward directed spiral jets toward the upper right, and the thin straight particle trail pointing toward the lower left. The trail was a permanent feature of the comet around the time of its close approach to the earth in late March and early April. Also barely visible just beyond the lower left end of the trail are two of the many condensations which were seen to travel slowly down the tail are are believed to be clumps of material released from the nucleus. The inner white region of the blue image appears to show that the hydrogen atoms like the dust might be preferentially ejected toward the sunward or day side of the nucleus. However, this is not true. The asymmetric ultraviolet radiation pattern is produced by a roughly spherical distribution of hydrogen atoms because they are so efficient at scattering the incoming solar ultraviolet light. The atoms on the sunward side actually shadow the atoms on the tailward or night side of the coma. The same detailed model analysis of the coma which explains the expansion of the hydrogen atoms in the coma also explains the appearance of the image. The team was lead by Michael Combi, The University of Michigan, and included Michael Brown, California Institute of Technology, Paul Feldman, Johns Hopkins University, H. Uwe Keller of the Max Planck Institute, Lindau, Robert Meier of the Naval Research Laboratory, and William Smyth of Atmospheric and Environmental Research, Inc. Credit: M.R. Combi (The University of Michigan)
A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com
Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Gary A.; Sage, Leslie J.; Young, Lisa M., E-mail: gwelch@ap.smu.c, E-mail: lsage@astro.umd.ed, E-mail: lyoung@physics.nmt.ed
We report new observations of atomic and molecular gas in a volume-limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low-luminosity E and S0 galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not truemore » for atomic gas. We speculate that both the active galactic nucleus feedback and merger paradigms might offer explanations for differences in detection rates, and might also point toward an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally, we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early-type galaxies. Atomic gas comprises a greater fraction of the cool interstellar medium in more gas-rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.« less
NASA Astrophysics Data System (ADS)
Cancio, Antonio C.; Redd, Jeremy J.
2017-03-01
The scaling of neutral atoms to large Z, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of integrated energies, insights can also be gained from energy densities. We visualise the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models for the kinetic energy to describe these features, with some success, but the effects of quantum oscillations in the inner shells of atoms make a complete parametrisation difficult. We discuss implications for improved orbital-free description of molecular properties.
Momentum sharing in imbalanced Fermi systems
Hen, O.; Sargsian, M.; Weinstein, L. B.; ...
2014-10-16
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less
Nuclear physics. Momentum sharing in imbalanced Fermi systems.
Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-10-31
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.
Science & Technology Review November 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinn, D J
2007-10-16
This month's issue has the following articles: (1) Simulating the Electromagnetic World--Commentary by Steven R. Patterson; (2) A Code to Model Electromagnetic Phenomena--EMSolve, a Livermore supercomputer code that simulates electromagnetic fields, is helping advance a wide range of research efforts; (3) Characterizing Virulent Pathogens--Livermore researchers are developing multiplexed assays for rapid detection of pathogens; (4) Imaging at the Atomic Level--A powerful new electron microscope at the Laboratory is resolving materials at the atomic level for the first time; (5) Scientists without Borders--Livermore scientists lend their expertise on peaceful nuclear applications to their counterparts in other countries; and (6) Probing Deepmore » into the Nucleus--Edward Teller's contributions to the fast-growing fields of nuclear and particle physics were part of a physics golden age.« less
NASA Astrophysics Data System (ADS)
Akulov, Yuii A.; Mamyrin, Boris A.
2003-11-01
Experimental data on the variation of tritium nucleus beta decay constant caused by the interaction of the resulting beta-electron with orbital electrons and shell vacancies are reviewed for free atomic tritium and molecular tritium and used to obtain the half-life of atomic tritium (T1/2)a=(12.264±0.018) y, the half-life of the free triton (T1/2)t=(12.238±0.020) y, the axial-vector-to-vector weak-interaction coupling constant ratio (GA/GV)t=-1.2646 ± 0.0035 for beta decay of the triton, and an independent estimate of the free neutron lifetime τn= (890.3 ± 3.9stat ± 1.4syst) s.
Cluster formation in nuclear reactions from mean-field inhomogeneities
NASA Astrophysics Data System (ADS)
Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo
2018-05-01
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few practical examples will be illustrated. This paper resumes the extended analysis of fluctuations in nuclear matter of ref. [2] and briefly reviews applications to heavy-ion collisions.
Collery, Philippe; Bastian, Gérard; Santoni, François; Mohsen, Ahmed; Wei, Ming; Collery, Thomas; Tomas, Alain; Desmaele, Didier; D'Angelo, Jean
2014-04-01
We proposed a new water-soluble rhenium diseleno-ether compound (with one atom of Re and two atoms of Se) and investigated the uptake of Re into the nucleus of malignant cells in culture exposed to the compound for 48 h and its efflux from the nucleus after a post-exposure period of 48 h, as DNA is the main target of Re. We also studied the distribution of both Re and Se in the main organs after an oral administration of 10 or 40 mg/kg Re diseleno-ether to mice for four weeks, five days-a-week. Re and Se concentrations were assayed by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis was performed using the Wilcoxon signed-rank test, comparing two related groups. We observed that Re was well incorporated into the nucleus of malignant cells in the most sensitive cells MCF-7, derived from human breast cancer, and that there was no efflux of Re. In contrast, in MCF-7 resistant cells (MCF-7 Mdr and MCF-7 R), A549 and HeLa cells, there was significant efflux of Re from the nucleus after the wash-out period. In mice, an important and dose-dependent uptake of both Re and Se was observed in the liver, with lower concentrations in kidneys. The lowest concentrations were observed in blood, lung, spleen and bones. There was a significant increase of Re concentrations in the blood, liver and kidney in mice treated with Re diseleno-ether at the dose of 40 mg/kg/24 h versus those treated at the dose of 10 mg/kg/24 h. There was a significant increase of Se concentrations in all tissues with the dose of Re diseleno-ether of 10 mg/kg/24 h versus controls, and a significant increase in the liver in mice treated with dose of Re diseleno-ether of 40 mg/kg/24h versus those treated with 10 mg/kg/24 h. We are the first to demonstrate that a compound combining Re and Se in a single molecule, is able to deliver Re and Se to the organism via an oral route, for cancer treatment.
A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach
NASA Astrophysics Data System (ADS)
Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.
2014-06-01
Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.
Towards a Unified Description of the Electroweak Nuclear Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benhar, Omar; Lovato, Alessandro
2015-06-01
We briefly review the growing efforts to set up a unified framework for the description of neutrino interactions with atomic nuclei and nuclear matter, applicable in the broad kinematical region corresponding to neutrino energies ranging between few MeV and few GeV. The emerging picture suggests that the formalism of nuclear many-body theory (NMBT) can be exploited to obtain the neutrino-nucleus cross-sections needed for both the interpretation of oscillation signals and simulations of neutrino transport in compact stars
Can the waiting-point nucleus 78Ni be studied at an on-line mass-separator?
NASA Astrophysics Data System (ADS)
Wöhr, A.; Andreyev, A.; Bijnens, N.; Breitenbach, J.; Franchoo, S.; Huyse, M.; Kudryavtsev, Y. A.; Piechaczek, A.; Raabe, R. R.; Reusen, I.; Vermeeren, L.; Van Duppen, P.
1997-02-01
Short-lived nickel isotopes have been studied using a chemically selective Ion Guide Laser Ion Source (IGLIS) based on resonance ionisation of atoms at the Leuven Isotope Separator On-Line (LISOL) separator. The decay properties of different Ni isotopes have been studied using β-γ-coincidences. Experimental production rates of proton induced fission of 238U are obtained for 69,71Ni. These numbers are in a strong disagreement with Silberg-Tsao calculations.
ORBITING CLUSTERS IN ATOMIC NUCLEI
Pauling, Linus
1969-01-01
As an alternative to their description as vibrational levels, the low excited states of even-even nuclei can be described as rotational states of a helion, dineutron, diproton, or other cluster about the rest of the nucleus, leading to reasonable values of the average distance between centers of the clusters. Some states involve rotational excitation of two or more helions or other clusters. The nature of the rotating clusters is determined by the relation of the neutron and proton numbers to the magic numbers. PMID:16591799
NEUTRON ENERGY LEVELS IN A DIFFUSE POTENTIAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, A.; Sil, N.C.
1960-06-01
The energy eigenvalues of neutrons within the nucleus for a spherically symmetrical potential V(r) = --V/sub 0/STAl + exp{(r-- R)/a}!/sup -1/ are investigated by following a new method of Lanczos for solving the differential equation. The s- and p-state energy levels are calculated for atomic mass 200 with the values of parameters adopted by Feshbach et al. in their calculation of the neutron strength function with a similar potential. The results of the calculation agree closely with those of Malenka. (auth)
Structure-activity relationships of selected phenazines against Mycobacterium leprae in vitro.
Franzblau, S G; O'Sullivan, J F
1988-01-01
Structure-activity relationships of phenazines against Mycobacterium leprae were investigated by using an in vitro radiorespirometric assay. In general, activity in ascending order was observed in compounds containing no chlorine atoms, a monochlorinated phenazine nucleus, and chlorines in the para positions of both the anilino and phenyl rings. The most active compounds contained a 2,2,6,6-tetramethylpiperidine substitution at the imino nitrogen. Most of these chlorinated phenazines were considerably more active in vitro than clofazimine (B663). PMID:3056241
NASA Astrophysics Data System (ADS)
Popinako, Anna V.; Antonov, Mikhail Yu.; Bezsudnova, Ekaterina Yu.; Prokopiev, Georgiy A.; Popov, Vladimir O.
2017-11-01
The study of structural adaptations of proteins from polyextremophilic organisms using computational molecular dynamics method is appealing because the obtained knowledge can be applied to construction of synthetic proteins with high activity and stability in polyextreme media which is useful for many industrial applications. To investigate molecular adaptations to high temperature, we have focused on a superthermostable short-chain dehydrogenase TsAdh319 from the Thermococcus sibiricus polyextremophilic archaeon and its closest structural homologues. Molecular dynamics method is widely used for molecular structure refinement, investigation of biological macromolecules motion, and, consequently, for interpreting the results of certain biophysical experiments. We performed molecular dynamics simulations of the proteins at different temperatures. Comparison of root mean square fluctuations (RMSF) of the atoms in thermophilic alcohol dehydrogenases (ADHs) at 300 K and 358 K revealed the existence of stable residues at 358 K. These residues surround the active site and form a "nucleus of rigidity" in thermophilic ADHs. The results of our studies suggest that the existence of the "nucleus of rigidity" is crucial for the stability of TsAdh319. Absence of the "nucleus of rigidity" in non-thermally stable proteins causes fluctuations throughout the protein, especially on the surface, triggering the process of denaturation at high temperatures.
Thomas-Fermi model electron density with correct boundary conditions: Application to atoms and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.H.
1999-01-01
The author proposes an electron density in atoms and ions, which has the Thomas-Fermi-Dirac form in the intermediate region of r, satisfies the Kato condition for small r, and has the correct asymptotic behavior at large values of r, where r is the distance from the nucleus. He also analyzes the perturbation in the density produced by multipolar fields. He uses these densities in the Poisson equation to deduce average values of r{sup m}, multipolar polarizabilities, and dispersion coefficients of atoms and ions. The predictions are in good agreement with experimental and other theoretical values, generally within about 20%. Hemore » tabulates here the coefficient A in the asymptotic density; radial expectation values (r{sup m}) for m = 2, 4, 6; multipolar polarizabilities {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}; expectation values {l_angle}r{sup 0}{r_angle} and {l_angle}r{sup 2}{r_angle} of the asymptotic electron density; and the van der Waals coefficient C{sub 6} for atoms and ions with 2 {le} Z {le} 92. Many of the results, particularly the multipolar polarizabilities and the higher order dispersion coefficients, are the only ones available in the literature. The variation of these properties also provides interesting insight into the shell structure of atoms and ions. Overall, the Thomas-Fermi-Dirac model with the correct boundary conditions provides a good global description of atoms and ions.« less
Lyman-alpha observations of Comet West /1975n/
NASA Technical Reports Server (NTRS)
Opal, C. B.; Carruthers, G. R.
1977-01-01
The rate of hydrogen production of Comet West is studied through rocket observation of solar Lyman-alpha radiation resonantly scattered by the escaping hydrogen atoms. Two sets of Lyman-alpha exposure sequences are used to obtain computer-smoothed brightness contour (isophote) maps covering a density range of 100:1. A simple radial outflow model is applied to the contour maps to determine the rate of hydrogen production (3.2 by 10 to the 30th power atoms/sec.) Discrepancies between the observed shape of the outer isophotes and predicted models may be explained by optical depth effects, or by the presence of small pieces of the comet's nucleus distributed along the orbit. Hydrogen, carbon, and oxygen production for Comet West and Comet Kohoutek are compared; differences may be accounted for by variations in the composition or evolution of the two comets.
And So Ad Infinitum: The Search for Quark and Lepton Substructure
Lincoln, Don
2018-04-01
The Victorian era mathematician, Augustus de Morgan wrote, “Great fleas have little fleas upon their backs to bite ‘em, And little fleas have lesser fleas, and so ad infinitum.” This parody of Jonathan Swift’s 1733 poem On Poetry: A Rhapsody arose from a literary history, but it is rather easy to see a metaphor for nature in these words. The saga of the search for the ultimate constituents of matter has long been one of finding a seemingly fundamental structure that, in turn, was found to be made of even smaller building blocks. Matter is made of molecules. Molecules aremore » in turn made of atoms, which are themselves made of electrons and atomic nuclei. Furthermore, the nucleus consists of protons and neutrons, and these nucleons are composed of quarks.« less
And So Ad Infinitum: The Search for Quark and Lepton Substructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
The Victorian era mathematician, Augustus de Morgan wrote, “Great fleas have little fleas upon their backs to bite ‘em, And little fleas have lesser fleas, and so ad infinitum.” This parody of Jonathan Swift’s 1733 poem On Poetry: A Rhapsody arose from a literary history, but it is rather easy to see a metaphor for nature in these words. The saga of the search for the ultimate constituents of matter has long been one of finding a seemingly fundamental structure that, in turn, was found to be made of even smaller building blocks. Matter is made of molecules. Molecules aremore » in turn made of atoms, which are themselves made of electrons and atomic nuclei. Furthermore, the nucleus consists of protons and neutrons, and these nucleons are composed of quarks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenboonruang, Kiadtisak
In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R n, of a heavy nucleus and the proton radius, R p, to be in the order of several percent. To accurately obtain the difference, R n-R p, which is essentially a neutron skin, the Jefferson Lab Lead ( 208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scatteringmore » angle of 5° . Since Z 0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of R n with respect to R p. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 10 7 helicity-window quadruplets. The measured parity-violating electroweak asymmetry A PV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R n-R p = 0.33 +0.16 -0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.« less
First-principles molecular dynamics study of water dissociation on the γ-U(1 0 0) surface
NASA Astrophysics Data System (ADS)
Yang, Yu; Zhang, Ping
2015-05-01
Based on first-principles molecular dynamics simulations at finite temperatures, we systematically study the adsorption and dissociation of water molecules on the γ-U(1 0 0) surface. We predict that water molecules spontaneously dissociate upon approaching the native γ-U(1 0 0) surface. The dissociation results from electronic interactions between surface uranium 6d states and 1b2, 3a1, and 1b1 molecular orbitals of water. With segregated Nb atoms existing on the surface, adsorbing water molecules also dissociate spontaneously because Nb 3d electronic states can also interact with the molecular orbitals similarly. After dissociation, the isolated hydrogen atoms are found to diffuse fast on both the γ-U surface and that with a surface substitutional Nb atom, which is very similar to the ‘Hot-Atom’ dissociation of oxygen molecules on the Al(1 1 1) surface. From a series of consecutive molecular dynamics simulations, we further reveal that on both the γ-U surface and that with a surface substitutional Nb atom, one surface U atom will be pulled out to form the U-O-U structure after dissociative adsorption of 0.44 ML water molecules. This result indicates that oxide nucleus can form at low coverage of water adsorption on the two surfaces.
Is Einstein the Father of the Atomic Bomb
NASA Astrophysics Data System (ADS)
Lustig, Harry
2009-05-01
Soon after the American atomic bombs were dropped on Hiroshima and Nagasaki, the notion took hold in the popular mind that Albert Einstein was ``the father of the bomb.'' The claim of paternity rests on the belief that E=mc2 is what makes the release of enormous amounts of energy in the fission process possible and that the atomic bomb could not have been built without it. This is a misapprehension. Most physicists have known that all along. Nevertheless in his reaction to the opera Dr. Atomic, a prominent physicist claimed that Einstein's discovery that matter can be transformed into energy ``is precisely what made the bomb possible.'' In fact what makes the fission reaction and one of its applications,the atomic bomb, possible is the smaller binding energies of fission products compared to the binding energies of the nuclei that undergo fission.The binding energies of nuclei are a well understood consequence of the numbers and arrangements of protons and neutrons in the nucleus and of quantum-mechanical effects. The realization that composite systems have binding energies predates relativity. In the 19th century they were ascribed to potential and other forms of energy that reside in the system. With Einstein they became rest mass energy. While E=mc2 is not the cause of fission, measuring the masses of the participants in the reaction does permit an easy calculation of the kinetic energy that is released.
Imaging electronic motions by ultrafast electron diffraction
NASA Astrophysics Data System (ADS)
Shao, Hua-Chieh; Starace, Anthony F.
2017-08-01
Recently ultrafast electron diffraction and microscopy have reached unprecedented temporal resolution, and transient structures with atomic precision have been observed in various reactions. It is anticipated that these extraordinary advances will soon allow direct observation of electronic motions during chemical reactions. We therefore performed a series of theoretical investigations and simulations to investigate the imaging of electronic motions in atoms and molecules by ultrafast electron diffraction. Three prototypical electronic motions were considered for hydrogen atoms. For the case of a breathing mode, the electron density expands and contracts periodically, and we show that the time-resolved scattering intensities reflect such changes of the charge radius. For the case of a wiggling mode, the electron oscillates from one side of the nucleus to the other, and we show that the diffraction images exhibit asymmetric angular distributions. The last case is a hybrid mode that involves both breathing and wiggling motions. Owing to the demonstrated ability of ultrafast electrons to image these motions, we have proposed to image a coherent population transfer in lithium atoms using currently available femtosecond electron pulses. A frequency-swept laser pulse adiabatically drives the valence electron of a lithium atom from the 2s to 2p orbitals, and a time-delayed electron pulse maps such motion. Our simulations show that the diffraction images reflect this motion both in the scattering intensities and the angular distributions.
NASA Astrophysics Data System (ADS)
Prastowo, S. H. B.; Supriadi, B.; Bahri, S.; Ridlo, Z. R.
2018-04-01
This research discussed about the correction of Stark Effect on Tritium atoms in the first excited state with relativistic conditions. The approach used to solve this Stark Effect correction was the perturbation theory which was from time independent degenerate perturbation theory to second-order correction. The Stark Effect on the excited state made the spectrum energy polarization of Tritium which was included in the isotope of hydrogen with an electron moving around the nucleus with high velocity. Hence, the relativistic correction affected the spectrum energy shift. Tritium was a radioactive material having half-time 12,3 years and relatively safe. The Tritium application was a material for the manufacture of nuclear battery. The most effective external electric field that should give to Tritium was 108 V/mith the total correction energy that was 0,97398557 × 10-21 Joule. Therefore, its effect reduced the binding energy between electron and nucleus, and increased the power of Tritium Betavoltaics Battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kish, Edward R.; Desai, Tushar V.; Greer, Douglas R.
The authors have examined the nucleation of diindenoperylene (DIP) on SiO{sub 2} employing primarily atomic force microscopy and focusing on the effect of incident kinetic energy employing both thermal and supersonic sources. For all incident kinetic energies examined (E{sub i} = 0.09–11.3 eV), the nucleation of DIP is homogeneous and the dependence of the maximum island density on the growth rate is described by a power law. A critical nucleus of approximately two molecules is implicated by our data. A re-examination of the nucleation of pentacene on SiO{sub 2} gives the same major result that the maximum island density is determined by themore » growth rate, and it is independent of the incident kinetic energy. These observations are readily understood by factoring in the size of the critical nucleus in each case, and the island density, which indicates that diffusive transport of molecules to the growing islands dominate the dynamics of growth in the submonolayer regime.« less
Szyrwiel, Łukasz; Shimura, Mari; Shirataki, Junko; Matsuyama, Satoshi; Matsunaga, Akihiro; Setner, Bartosz; Szczukowski, Łukasz; Szewczuk, Zbigniew; Yamauchi, Kazuto; Malinka, Wiesław; Chavatte, Laurent; Łobinski, Ryszard
2015-07-01
A TAT47-57 peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni(2+) ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni(2+) delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni(2+).
Alpha decay properties of the semi-magic nucleus 219Np
NASA Astrophysics Data System (ADS)
Yang, H. B.; Ma, L.; Zhang, Z. Y.; Yang, C. L.; Gan, Z. G.; Zhang, M. M.; Huang, M. H.; Yu, L.; Jiang, J.; Tian, Y. L.; Wang, Y. S.; Wang, J. G.; Liu, Z.; Liu, M. L.; Duan, L. M.; Zhou, S. G.; Ren, Z. Z.; Zhou, X. H.; Xu, H. S.; Xiao, G. Q.
2018-02-01
The semi-magic nucleus 219Np was produced in the fusion reaction 187Re(36Ar, 4n)219Np at the gas-filled recoil separator SHANS (Spectrometer for Heavy Atoms and Nuclear Structure). A fast electronics system based on waveform digitizers was used in the data acquisition and the sampled pulses were processed by digital algorithms. The reaction products were identified using spatial and time correlations between the implants and subsequent α decays. According to the observed α-decay chain, an energy of Eα = 9039 (40) keV and a half-life of T1/2 =0.15-0.07 + 0.72 ms were determined for 219Np. The deduced proton binding energy of 219Np fits well into the systematics, which gives another evidence of that there is no sub-shell closure at Z = 92. The influence of the N = 126 shell closure on the stability of Np isotopes is discussed within the framework of α-decay reduced widths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2008-12-12
The local energy defined by H{psi}/{psi} must be equal to the exact energy E at any coordinate of an atom or molecule, as long as the {psi} under consideration is exact. The discrepancy from E of this quantity is a stringent test of the accuracy of the calculated wave function. The H-square error for a normalized {psi}, defined by {sigma}{sup 2}{identical_to}<{psi}|(H-E){sup 2}|{psi}>, is also a severe test of the accuracy. Using these quantities, we have examined the accuracy of our wave function of a helium atom calculated using the free complement method that was developed to solve the Schroedinger equation.more » Together with the variational upper bound, the lower bound of the exact energy calculated using a modified Temple's formula ensured the definitely correct value of the helium fixed-nucleus ground state energy to be -2.903 724 377 034 119 598 311 159 245 194 4 a.u., which is correct to 32 digits.« less
The Atomic Mass Evaluation (AME2012): Status and Perspectives
NASA Astrophysics Data System (ADS)
Kondev, F. G.; Audi, G.; Wang, M.; Xu, X.; Wapstra, A. H.; MacCormick, M.; Pfeiffer, B.
2013-10-01
The atomic mass is a fundamental property of the nucleus that has wide applications in natural sciences and technology. The new evaluated mass table, AME2012, has been recently published as a collaborative effort between scientists from China, Europe and USA, under the leadership of G. Audi. It represents a significant update of the previous AME2003 evaluation by considering a large number of precise experimental results obtained at existing Penning Trap and Storage Ring facilities, thus expending the region of experimentally known masses towards exotic neutron- and proton-rich nuclei. Since the presence of isomers plays an important role in determining the masses of many nuclei, a complementary database, NUBASE2012, that contains the isomer-level properties for all nuclei was also developed. This presentation will briefly review recent achievements of the collaboration, present on-going activities, and reflect on ideas for future developments and challenges in the field of evaluation of atomic masses. The work at ANL was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Effects of strong laser fields on hadronic helium atoms
NASA Astrophysics Data System (ADS)
Lee, Han-Chieh; Jiang, Tsin-Fu
2015-12-01
The metastable hadronic helium atoms in microseconds lifetime are available in laboratory, and two-photon spectroscopy was reported recently. This exotic helium atom has an electron in the ground state and a negative hadron rotating around the helium nucleus. We theoretically study the excitation on hadronic helium by femtosecond pulse and elucidate the influence of moleculelike structure and rotation behavior on the photoelectron spectra and high-order harmonic generation. Because of the moleculelike structure, the electronic ground state consists of several angular orbitals. These angular orbitals can enhance photoelectron spectra at high energies, and also influence the harmonic generation spectra considerably. In particular, the harmonic spectra can occur at even harmonic orders because of the transition between these angular orbitals and continuum states. On the other side, the rotation behavior of hadron can induce a frequency shift in the harmonic spectra. The magnitude of the frequency shift depends on the orbiting speed of the hadron, which is considerable because the rotation period is in a few femtoseconds, a time scale that is comparable to that of infrared laser and is feasible in current laser experiments.
Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.
Porras, I
2008-04-07
The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. (10)B is being used to induce reactions (n, alpha), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of (33)S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of (33)S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotondo, M.; Rueda, Jorge A.; Xue, S.-S.
The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy (E{sub e}{sup F}){sub max}, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic Thomas-Fermi-Dirac exchange term are alsomore » evaluated and shown to be generally small and negligible in the relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment is then extrapolated to compressed nuclear matter cores of stellar dimensions with A{approx_equal}(m{sub Planck}/m{sub n}){sup 3}{approx}10{sup 57} or M{sub core}{approx}M{sub {circle_dot}}. A new family of equilibrium configurations exists for selected values of the electron Fermi energy varying in the range 0
MAVEN Ultraviolet Image of Comet Siding Spring’s Hydrogen Coma
2017-12-08
NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft obtained this ultraviolet image of hydrogen surrounding comet Siding Spring on Friday, Oct. 17, two days before the comet’s closest approach to Mars. The Imaging Ultraviolet Spectrograph (IUVS) instrument imaged the comet at a distance of 5.3 million miles (8.5 million kilometers). The image shows sunlight that has been scattered by atomic hydrogen, and is shown as blue in this false-color representation. Comets are surrounded by a huge cloud of atomic hydrogen because water (H2O) vaporizes from the icy nucleus, and solar ultraviolet light breaks it apart into hydrogen and oxygen. Hydrogen atoms scatter solar ultraviolet light, and it was this light that was imaged by the IUVS. Two observations were combined to create this image, after removing the foreground signal that results from sunlight being scattered from hydrogen surrounding Mars. The bulk of the scattered sunlight shows a cloud that was about a half degree across on the “sky” background, comparable in size to Earth’s moon as seen from Earth. Hydrogen was detected to as far as 93,000 miles (150,000 kilometers) away from the comet’s nucleus. The distance is comparable to the distance of the comet from Mars at its closest approach. Gas from the comet is likely to have hit Mars, and would have done so at a speed of 125,000 mph (56 kilometers/second. This gas may have disturbed the Mars atmosphere. Credit: Laboratory for Atmospheric and Space Physics, University of Colorado; NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Cloud Quantum Computing of an Atomic Nucleus
NASA Astrophysics Data System (ADS)
Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.
2018-05-01
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Cloud Quantum Computing of an Atomic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
The nuclear electric quadrupole moment of copper.
Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade
2014-06-21
The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.
‘Rutherford’s experiment’ on alpha particles scattering: the experiment that never was
NASA Astrophysics Data System (ADS)
Leone, M.; Robotti, N.; Verna, G.
2018-05-01
The so-called Rutherford’s experiment, as it is outlined in many physics textbooks, is a case in point of the flaws around the history at the educational level of one of the decisive event of modern physics: the discovery that the atom has a nucleus. This paper shows that this alleged experiment is a very approximate and very partial synthesis of a series of different particle scattering experiments, starting with that carried out by Rutherford in 1906 and ending with Geiger and Marsden’s 1913 experiments.
Cloud Quantum Computing of an Atomic Nucleus.
Dumitrescu, E F; McCaskey, A J; Hagen, G; Jansen, G R; Morris, T D; Papenbrock, T; Pooser, R C; Dean, D J; Lougovski, P
2018-05-25
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Mohamed, Hany M; Fouda, Ahmed M; Khattab, Essam S A E H; Agrody, Ahmed M El-; Afifi, Tarek H
2017-05-01
A series of 1H-benzo[f]chromene-2-carbonitriles was synthesized and evaluated for their cytotoxic activities against MCF-7, HCT-116, and HepG-2 cancer cells. The SAR studies reported that the substitution in the phenyl ring at 1-position of 1H-benzo[f]chromene nucleus with the specific group, H atom, or methoxy group at 9-position increases the ability of the molecule against the different cell lines.
2008-01-01
The steric effect and repulsive forces from the lone-pair electrons on the fluorine atoms of 5 shield the carbon nucleus, rendering it resistant to... Electrophilic addition of Cl2 to alkene 2 gives 2% of rearranged product (Table 3, run 5). Intermediate 5 (Scheme 1, X ) Y ) Cl; Z ) Br) is 22.1 kcal...71 and 190. Chambers, R. D. Fluorine in Organic Chemistry; Wiley: New York, 1973; p 98. (4) (a) Heine, H. W.; Siegfried, W. J. Am. Chem. Soc. 1954
Cloud Quantum Computing of an Atomic Nucleus
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute; ...
2018-05-23
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Quantum Analogies in the Interaction between Acoustic Waves and Bubble Clouds
NASA Astrophysics Data System (ADS)
Parrales, Miguel A.; Rodriguez-Rodriguez, Javier
2014-11-01
Analogies between quantum mechanical and acoustical propagation phenomena have a great interest in academic research due to their ability to shed light on some complex quantum effects, which are impossible to visualize directly in the macroscopic world. In this talk, we describe a number of these analogies concerning the acoustic behavior of bubble clouds. Firstly, we show that the structure of the collective oscillation modes of a spherical bubble cloud resembles that of the atomic orbitals of a hydrogen atom. Secondly, we present an analogy between some perturbation methods used in quantum-electrodynamics and the computation of the acoustic response of the randomly distributed bubble cloud by considering the contribution to the total scattered pressure of the multiple scattering paths that take place inside the clouds. As an application of this analogy, we obtain the scattering cross-section of a diluted cloud, which remarkably mimics the quantum scattering of an neutron wave when passing through an atomic nucleus. Finally, we numerically reproduce the behavior of an electron in a covalent bond between two hydrogen atoms by simulating the acoustic wave propagation through two neighboring spherical bubble assemblages. Funded by the Spanish Ministry of Economy and Competitiveness through Grants DPI2011-28356-C03-01 and DPI2011-28356-C03-02.
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
Kwolek, Emma J.; Lei, Huaping; Lii-Rosales, Ann; ...
2016-06-13
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. As a result, this island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
NASA Astrophysics Data System (ADS)
Stefańska, Patrycja
2017-01-01
In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ M 1 →E 2) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 ⩽ Z ⩽ 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of χ M 1 →E 2 for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the calculations is α-1 = 137.035999139, and was taken from CODATA 2014.
Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwolek, Emma J.; Lii-Rosales, Ann; Department of Chemistry, Iowa State University, Ames, Iowa 50011
2016-12-07
We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison withmore » the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.« less
The Discovery of the Point-Like Structure of Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Richard E
2000-09-28
The organizers of this workshop have invited me here to reminisce. The assigned subject is the proton and how it lost its identity as an elementary particle. In its youth, the proton was very much neglected. It was overweight and introverted, and all the attention went to its lighter and more gregarious companion, the electron. The electron was noticed first and was accepted as a constituent of all matter almost immediately. As a result, the chemical ''elements'' lost their elementary status. With Rutherford's discovery of the nuclear atom it became clear that there was something rather small inside the hydrogenmore » atom with nearly 2000 times the mass of the electron, and equal but opposite charge. That something was called the ''positive electron'' or ''H-particle'' until 1930 or so. The Standard Model in those days had only two elementary particles with mass (whether light quanta might also be a particle was a subject of debate) and the only known forces were electromagnetic and gravitational. In the early days it was assumed that there were some extra positive electrons (each paired with a negative electron) inside nuclei other than hydrogen, to account for the observation that the atomic weight is equal to or greater than twice the atomic number. In 1914, Rutherford's group at Manchester turned its attention to alpha-particle scattering experiments on light nuclei. The group was intrigued by a calculation predicting that forward-scattered H-particles would have a much greater range than the incoming alpha particles. An experiment, the very first on the proton, verified the prediction experimentally and Marsden and Lantsberry concluded that the Coulomb field of the H particle could account for their results (at distances of closest approach that approximated 10{sup -13} cms.) World War I stopped most of the research in Rutherford's laboratory when many of the young scientists left to serve in the armed forces. Rutherford himself continued to do some research in parallel with his war work and in his spare time he discovered the first nuclear reaction on a nitrogen target along with anomalies in the scattering of alpha particles from hydrogen. Much improved measurements on hydrogen came after the war when Chadwick and Bieler, (now with Rutherford at the Cavendish) redid the earlier experiments, finding that there were too many H particles at large angles when the distance of closest approach was less than 3.5 x 10{sup -13} cms. In their 1921 paper, Chadwick and Bieler stated that there must be ''forces of very great intensity'' acting at small distances. Great significance was attached to the fact that such distances are about the same as the classical electron radius. Compare the modest activity on the proton with the intense effort (both experimental and theoretical) on electrons after the war. Progress was swift and by 1929, the basics needed for understanding the atom were in place, although the nucleus was still not understood at all. Only the charge, mass and spin (but not the magnetic moment) of the proton were known. In 1920 Rutherford had suggested that combinations of positive and negative electrons in the nucleus formed a neutral entity where the ''ordinary properties of the electrons are suppressed''. By the end of the decade there was growing recognition of the problems inherent in assuming the presence of electrons in the nucleus though it still seemed obvious that they had to be in there somewhere.« less
Comet Sugano-Saigusa-Fujikawa (1983V) - A small, puzzling comet
NASA Astrophysics Data System (ADS)
Hanner, M. S.; Newburn, R. L.; Spinrad, H.; Veeder, G. J.
1987-10-01
Spectroscopic and infrared observations of comet Sugano-Saigusa-Fujikawa (1983 V) were obtained during its close approach to the Earth on 11 - 14 June 1983. The [O I] production rates of 1.8±0.9×1026atoms/s observed on 12.3 June and 7±3.5×1026atoms/s on 13.4 June lead to derived water-production rates of 3×1027mol/s on 12 June and 1.1×1028mol/s on 13 June. The abundances of the minor species NH2, CN, C2, and C3 are unusually low relative to [O I]. The upper limit to the average nuclear radius from the infrared and visual photometry on 12 - 13 June (assuming that the entire signal came from the nucleus) is ≡370 m. The dust/gas mass ratio was <0.01 on June 12 and <0.005 on June 13.
NASA Astrophysics Data System (ADS)
Yildiz, A. K.; Celik, F. A.
2017-04-01
The solidification process of Platinum-Rhodium alloy from liquid phase to solid state is investigated at the nano-scale by using Molecular Dynamics Simulation (MDS) for different atomic concentration ratios of Pt. The critical nucleus radius, the bond order parameter, interfacial free energies and total energy based on nucleation theory of the alloy are examined with respect to the temperature changes. The heat of fusion from high temperatures to low temperatures during solidification of the alloy system is determined from molecular dynamics simulation. The structural development is determined from the radial distribution function. It is observed from the results that the melting point of the alloy system decreases with increasing concentration of Pt and that variation of Pt ratio in the alloy shows a remarkable effect on solidification to understand the cooling process of thermal effects.
Muhonen, J T; Laucht, A; Simmons, S; Dehollain, J P; Kalra, R; Hudson, F E; Freer, S; Itoh, K M; Jamieson, D N; McCallum, J C; Dzurak, A S; Morello, A
2015-04-22
Building upon the demonstration of coherent control and single-shot readout of the electron and nuclear spins of individual (31)P atoms in silicon, we present here a systematic experimental estimate of quantum gate fidelities using randomized benchmarking of 1-qubit gates in the Clifford group. We apply this analysis to the electron and the ionized (31)P nucleus of a single P donor in isotopically purified (28)Si. We find average gate fidelities of 99.95% for the electron and 99.99% for the nuclear spin. These values are above certain error correction thresholds and demonstrate the potential of donor-based quantum computing in silicon. By studying the influence of the shape and power of the control pulses, we find evidence that the present limitation to the gate fidelity is mostly related to the external hardware and not the intrinsic behaviour of the qubit.
Asymptotic Energies and QED Shifts for Rydberg States of Helium
NASA Technical Reports Server (NTRS)
Drake, G.W.F.
2007-01-01
This paper reviews progress that has been made in obtaining essentially exact solutions to the nonrelativistic three-body problem for helium by a combination of variational and asymptotic expansion methods. The calculation of relativistic and quantum electrodynamic corrections by perturbation theory is discussed, and in particular, methods for the accurate calculation of the Bethe logarithm part of the electron self energy are presented. As an example, the results are applied to the calculation of isotope shifts for the short-lived 'halo' nucleus He-6 relative to He-4 in order to determine the nuclear charge radius of He-6 from high precision spectroscopic measurements carried out at the Argonne National Laboratory. The results demonstrate that the high precision that is now available from atomic theory is creating new opportunities to create novel measurement tools, and helium, along with hydrogen, can be regarded as a fundamental atomic system whose spectrum is well understood for all practical purposes.
First neutral atomic hydrogen images of quasar host galaxies.
NASA Astrophysics Data System (ADS)
Lim, J.; Ho, P. T. P.
1999-12-01
Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Here the authors image quasar host galaxies in the redshifted 21-cm line emission of neutral atomic hydrogen (H I) gas, which in nearby galaxies has proven to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighbouring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearences, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations provide a better understanding of the likely stage of their interaction.
NuSTEC1 White Paper: Status and challenges of neutrino-nucleus scattering
NASA Astrophysics Data System (ADS)
Alvarez-Ruso, L.; Sajjad Athar, M.; Barbaro, M. B.; Cherdack, D.; Christy, M. E.; Coloma, P.; Donnelly, T. W.; Dytman, S.; de Gouvêa, A.; Hill, R. J.; Huber, P.; Jachowicz, N.; Katori, T.; Kronfeld, A. S.; Mahn, K.; Martini, M.; Morfín, J. G.; Nieves, J.; Perdue, G. N.; Petti, R.; Richards, D. G.; Sánchez, F.; Sato, T.; Sobczyk, J. T.; Zeller, G. P.
2018-05-01
The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez-Ruso, L.; et al.
The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments requires a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Papermore » we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.« less
Fingerprints of single nuclear spin energy levels using STM - ENDOR
NASA Astrophysics Data System (ADS)
Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch
2018-04-01
We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.
Fingerprints of single nuclear spin energy levels using STM - ENDOR.
Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch
2018-04-01
We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Goli, Mohammad; Shahbazian, Shant
2014-04-14
This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.
NASA Astrophysics Data System (ADS)
Pfau, Tilman
2017-04-01
Modern quantum scattering theory was developed in the context of Rydberg spectroscopy in 1934 by Enrico Fermi. He showed that for slow electrons the scattering from polarizable atoms via a 1/r4 potential is purely s-wave and can be described by a Fermi pseudopotential and a scattering length. To study this interaction Rydberg electrons are well suited as they are slow and trapped by the charged nucleus. In a high pressure discharge Amaldi and Segre, observed a line shift proportional to the scattering length. At ultracold temperatures one can ask the opposite question: What does a Rydberg electron do to the neutral atom sitting in the electronic orbit? We found that one, two or many ground state atoms can be trapped in the mean-field potential created by the Rydberg electron, leading to so called ultra-long range Rydberg molecules. I will explain this novel molecular binding mechanism and the properties of these exotic molecules. At higher Rydberg states the spatial extent of the Rydberg electron orbit is increasing. For principal quantum numbers n in the range of 100-200 up to several ten thousand ultracold ground state atoms can be located inside one Rydberg atom, When we excite a single Rydberg electron in a Bose-Einstein Condensate, the orbital size of which becomes comparable to the size of the BEC we observe the coupling between the electron and phonons in the BEC.
Ferreira, Carlos R.; Gahl, William A.
2017-01-01
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism. PMID:29354481
NASA Astrophysics Data System (ADS)
Jolos, R. V.; Kartavenko, V. G.; Kolganova, E. A.
2018-03-01
Nucleon pair correlations in atomic nuclei are analyzed within a nuclear microscopic model with residual isovector pairing forces. These are formulated in the boson representation of fermion operators whereby the collective mode of pair excitations can be isolated without restricting the size of the one-particle basis. This method allows one to analyze the fluctuations in the nonsuperfluid phase of nuclear matter, its phase transition to the superfluid phase, and strong pair correlations. The performance of the method is exemplified by numerical results for the nuclei in the vicinity of the doubly magic 56Ni nucleus.
Spectroscopic Investigations of Fragment Species in the Coma
NASA Technical Reports Server (NTRS)
Feldman, Paul D.; Cochran, Anita L.; Combi, Michael R.
2004-01-01
The content of the gaseous coma of a comet is dominated by fragment species produced by photolysis of the parent molecules issuing directly from the icy nucleus of the comet. Spectroscopy of these species provides complementary information on the physical state of the coma to that obtained from observations of the parent species. Extraction of physical parameters requires detailed molecular and atomic data together with reliable high-resolution spectra and absolute fluxes of the primary source of excitation, the Sun. The large database of observations, dating back more than a century, provides a means to assess the chemical and evolutionary diversity of comets.
NASA Astrophysics Data System (ADS)
Wang, Yan; Cui, Haixin; Sun, Changjiao; Du, Wei; Cui, Jinhui; Zhao, Xiang
2013-03-01
We evaluated the performance of green fluorescent magnetic Fe3O4 nanoparticles (NPs) as gene carrier and location in pig kidney cells. When the mass ratio of NPs to green fluorescent protein plasmid DNA reached 1:16 or above, DNA molecules can be combined completely with NPs, which indicates that the NPs have good ability to bind negative DNA. Atomic force microscopy (AFM) experiments were carried out to investigate the binding mechanism between NPs and DNA. AFM images show that individual DNA strands come off of larger pieces of netlike agglomerations and several spherical nanoparticles are attached to each individual DNA strand and interact with each other. The pig kidney cells were labelled with membrane-specific red fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate and nucleus-specific blue fluorescent dye 4',6-diamidino-2-phenylindole dihydrochloride. We found that green fluorescent nanoparticles can past the cell membrane and spread throughout the interior of the cell. The NPs seem to locate more frequently in the cytoplasm than in the nucleus.
Influence of Li₂Sb Additions on Microstructure and Mechanical Properties of Al-20Mg₂Si Alloy.
Yu, Hong-Chen; Wang, Hui-Yuan; Chen, Lei; Zha, Min; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan
2016-03-29
It is found that Li₂Sb compound can act as the nucleus of primary Mg₂Si during solidification, by which the particle size of primary Mg₂Si decreased from ~300 to ~15-25 μm. Owing to the synergistic effect of the Li₂Sb nucleus and adsorption-poisoning of Li atoms, the effect of complex modification of Li-Sb on primary Mg₂Si was better than that of single modification of Li or Sb. When Li-Sb content increased from 0 to 0.2 and further to 0.5 wt.%, coarse dendrite changed to defective truncated octahedron and finally to perfect truncated octahedral shape. With the addition of Li and Sb, ultimate compression strength (UCS) of Al-20Mg₂Si alloys increased from ~283 to ~341 MPa and the yield strength (YS) at 0.2% offset increased from ~112 to ~179 MPa while almost no change was seen in the uniform elongation. Our study offers a simple method to control the morphology and size of primary Mg₂Si, which will inspire developing new Al-Mg-Si alloys with improved mechanical properties.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Cahn, Sidney; Altuntas, Emine; Ammon, Jeffrey; Demille, David
2015-10-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from the exchange of the Z0 boson between electrons and the nucleus and from the interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The anapole moment grows as A2/3 of the nucleus,while the Z0 coupling is independent of A. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. Using a Stark-interference technique, we measure the NSD-PV interaction matrix element. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We also discuss improvements on investigations of systematics due to non-reversing stray E-fields, Enr together with B-field inhomogeneities, and short-term prospects for measuring the nuclear anapole moment of 137Ba. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Comparative cytotoxicity of gold-doxorubicin and InP-doxorubicin conjugates.
Zhang, Xuan; Chibli, Hicham; Kong, Dekun; Nadeau, Jay
2012-07-11
Direct comparisons of different types of nanoparticles for drug delivery have seldom been performed. In this study we compare the physical properties and cellular activity of doxorubicin (Dox) conjugates to gold nanoparticles (Au) and InP quantum dots of comparable diameter. Although the Au particles alone are non-toxic and InP is moderately toxic, Au-Dox is more effective than InP-Dox against the Dox-resistant B16 melanoma cell line. Light exposure does not augment the efficacy of InP-Dox, suggesting that conjugates are breaking down. Electron and confocal microscopy and atomic absorption spectroscopy reveal that over 60% of the Au-Dox conjugates reach the cell nucleus. In contrast, InP-Dox enters cell nuclei to a very limited extent, although liberated Dox from the conjugates does eventually reach the nucleus. These observations are attributed to faster Dox release from Au conjugates under endosomal conditions, greater aggregation of InP-Dox with cytoplasmic proteins, and adherence of InP to membranes. These findings have important implications for design of active drug-nanoparticle conjugates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp; Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393; Hatano, Yasuyo
We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. Inmore » fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .« less
A review of electron-nucleus bremsstrahlung cross sections between 1 and 10 MeV
NASA Astrophysics Data System (ADS)
Mangiarotti, A.; Martins, M. N.
2017-12-01
More than 80 years have passed since the first calculations of electron-nucleus bremsstrahlung cross sections were published by Sommerfeld, for non-relativistic electrons, and, independently, by Sauter, Bethe and Heitler, and Racah, for relativistic electrons. The Bethe-Heitler expression, that is based on the first Born approximation and includes the screening of the Coulomb field of the nucleus by the atomic electrons, has proven to work well at moderately high energies where the Landau-Pomeranchuk-Migdal effect is negligible. We review the current theoretical and experimental status with a highlight on electrons with kinetic energies between 1 and 10 MeV. The choice is motivated by the peculiar difficulties present in this energy region, where it is necessary to treat simultaneously the interaction with the Coulomb field beyond the first Born approximation and the effect of screening. A fully numerical approach within the S-matrix formalism has proven to be extremely difficult above a few MeV, because the number of partial waves needed for an accurate evaluation is prohibitively large. Here we focus on analytic results, including the more complex ones employing the Furry-Sommerfeld-Maue wave functions and taking into account the next-to-leading order, and discuss the advantages and limitations in light of the best available data. The influence of multiple scattering in the target is investigated under the actual experimental conditions. A comparison with the widely used cross section tabulations by Seltzer and Berger is also presented.
Insulated InP (100) semiconductor by nano nucleus generation in pure water
NASA Astrophysics Data System (ADS)
Ghorab, Farzaneh; Es'haghi, Zarrin
2018-01-01
Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation
NASA Astrophysics Data System (ADS)
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.
Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less
Coherent Patterns in Nuclei and in Financial Markets
NASA Astrophysics Data System (ADS)
DroŻdŻ, S.; Kwapień, J.; Speth, J.
2010-07-01
In the area of traditional physics the atomic nucleus belongs to the most complex systems. It involves essentially all elements that characterize complexity including the most distinctive one whose essence is a permanent coexistence of coherent patterns and of randomness. From a more interdisciplinary perspective, these are the financial markets that represent an extreme complexity. Here, based on the matrix formalism, we set some parallels between several characteristics of complexity in the above two systems. We, in particular, refer to the concept—historically originating from nuclear physics considerations—of the random matrix theory and demonstrate its utility in quantifying characteristics of the coexistence of chaos and collectivity also for the financial markets. In this later case we show examples that illustrate mapping of the matrix formulation into the concepts originating from the graph theory. Finally, attention is drawn to some novel aspects of the financial coherence which opens room for speculation if analogous effects can be detected in the atomic nuclei or in other strongly interacting Fermi systems.
The nuclear lion: What every citizen should know about nuclear power and nuclear war
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagger, J.
1991-01-01
The stupendous energy in the atomic nucleus can be used to advance human welfare, and it has been so used ever since we learned how to release it. Nuclear medicine has revolutionized medical diagnosis and treatment, notably in dealing with cancer. Nuclear reactors have provided us with valuable radioactive atoms (radioisotopes) for use in research and industry, and they have given us cheap, clean power, which can drive a ship around the world on a tiny charge of fuel. On the other hand, we have unleashed the awesome power of nuclear weapons, and we must now face the almost incomprehensiblemore » devastation that awaits the world as it contemplates nuclear war. An all-out nuclear war would end modern civilization, and might well end humankind, to say nothing of countless other species of plants and animals. It would be, without question the greatest disaster of the last million years of the history of the Earth.« less
NASA Astrophysics Data System (ADS)
Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.; Pimpinelli, A.; Einstein, T. L.
2011-01-01
In an accompanying article we showed that surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN) to Cu adatom and the diffusion barrier (Ed) of the impurity atom on Cu(0 0 1). Based on these two energy parameters, ENN and Ed, we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ⩽ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.
King, Andrew W; Baskerville, Adam L; Cox, Hazel
2018-03-13
An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).
Taking the Ethics of Einstein into the 21st Century
NASA Astrophysics Data System (ADS)
Neuenschwander, Dwight E.
2004-10-01
We are an inquisitive species. Our curiosity about the structure of matter led to the discovery of the nucleus. In the cultural and political environment of the times, how short were the steps from the innocence of discovery to the atomic bombings of Hiroshima and Nagasaki, and the Cold War that followed! If you had been a graduate student in 1942, invited to help build these nuclear weapons, what would you have done? If the choice of how to end World War II had been yours to make instead of President Truman's-invade Japan, or use the new atomic bomb-what would you have decided? The deeper issues did not go away in 1945. They continue to haunt all scientists today, from hydrogen bombs to general manipulation to environmental sustainability. How do intellectual questions about nature lead to potentially horrific applications of knowledge? What are our ethical responsibilities as physicists? What ethical principles should guide scientific research and its applications?
NASA Astrophysics Data System (ADS)
Allen, Rob
2016-09-01
Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.
Unexpectedly large charge radii of neutron-rich calcium isotopes
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; ...
2016-02-08
Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and the material is able to absorb more than that the photon source could provide, at this point. These resulting effects might be of immense materials engineering applications.
Observations of CO2 in Comets C/2012 S1 ISON and C/2012 K1 PANSTARRS
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Lisse, Carey; Chanover, Nancy
2013-10-01
Comets have undergone very little thermal evolution in their lifetimes, resulting in a primitive composition. This primitive composition makes observations of comets very important tools for understanding the origin of the Solar System. The ices H2O, CO2, and CO are the primary ices present in cometary nuclei, and constraining their abundances has tremendous implications for the formation and evolutionary history of comets. Of these ices, H2O and CO can be observed from the ground, while CO2 cannot. A potentially effective tracer for CO2 in comets that is accessible from the ground is atomic oxygen. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comets C/2012 S1 ISON and C/2012 K1 PANSTARRS. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and McDonald Observatory and observations of H2O and CO at Keck and IRTF. These observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of CO2. In addition, ISON is the target of an extensive observing campaign led by NASA, and the proposed Spitzer observations fill a vital niche as the only observatory that can observe CO2 during both the near-perihelion time frame and significantly (months) after perihelion. Understanding the evolution of the CO2 abundance over the apparition is a key piece to understanding how the volatile compostion of the comet changes over the apparition.
One Part Nuclear, One Part Solid State: Fifty Years of Mössbauer Spectroscopy
NASA Astrophysics Data System (ADS)
Westfall, Catherine
2004-05-01
Starting in 1955 Rudolf Mössbauer conducted experiments that would demonstrate in the next three years that an atomic nucleus in a crystal does not recoil when it emits a gamma ray and provides the entire emitted energy to the gamma ray. The resonance spectroscopy made possible by this discovery led to fifty years of scientific explorations in a wide variety of fields including nuclear and solid state physics, chemistry, and geology. At the current time, Mössbauer spectroscopy is a vital part of science programs, both in many laboratories and at world-class light sources, such as Argonnes Advanced Photon Source. This paper will focus on the history of multidisciplinary Mössbauer research at Argonne National Laboratory and particularly on the interaction between nuclear and condensed matter physicists. This was necessary because of the ultra-high energy resolution of the Mössbauer resonance with its ability to resolve hyperfine interactions between the nuclear moments (nuclear charge distribution, the nuclear magnetic moment, and nuclear quadrupole moment) and corresponding solid state properties (electron charge distribution at the nucleus, magnetic field at the nucleus, and electric field gradient at the nucleus.) Understanding and exploiting Mössbauer spectroscopy therefore required work at the intersection of nuclear and solid state physics and the skills and knowledge of both specialties. The paper will start with the discovery and confirmation of the Mössbauer effect. Then it will outline early important experiments, such as the use of Mössbauer spectroscopy to confirm Einsteins general theory of relativity, and give an overview of the rapid expansion of this research tool, first with the use of Fe57 and later with the use of other isotopes. In particular the paper will focus on Argonnes cutting-edge Mössbauer work on transuranics. This work built on the resources and expertise first developed at the laboratory during WWII and brought together not only nuclear and condensed matter physicists, but also chemists, material scientists, and others.
Collision for Li++He System. I. Potential Curves and Non-Adiabatic Coupling Matrix Elements
NASA Astrophysics Data System (ADS)
Yoshida, Junichi; O-Ohata, Kiyosi
1984-02-01
The potential curves and the non-adiabatic coupling matrix elements for the Li++He collision system were computed. The SCF molecular orbitals were constructed with the CGTO atomic bases centered on each nucleus and the center of mass of two nuclei. The SCF and CI calculations were done at various internuclear distances in the range of 0.1˜25.0 a.u. The potential energies and the wavefunctions were calculated with good approximation over whole internuclear distance. The non-adiabatic coupling matrix elements were calculated with the tentative method in which the ETF are approximately taken into account.
Left right asymmetry of nuclear shadowing in charged current DIS
NASA Astrophysics Data System (ADS)
Fiore, R.; Zoller, V. R.
2006-01-01
We study the shadowing effect in highly asymmetric diffractive interactions of left- and right-handed W-bosons with atomic nuclei. The target nucleus is found to be quite transparent for the charmed-strange Fock component of the light-cone W+ in the helicity state λ = + 1 and rather opaque for the csbar dipole with λ = - 1. The shadowing correction to the structure function ΔxF3 = x F3νN - x F3νbarN extracted from νFe and νbar Fe data is shown to make up about 20% in the kinematical range of CCFR/NuTeV.
Microstructure in Worn Surface of Hadfield Steel Crossing
NASA Astrophysics Data System (ADS)
Zhang, F. C.; Lv, B.; Wang, T. S.; Zheng, C. L.; Li, M.; Zhang, M.
In this paper a failed Hadfield (high manganese austenite) steel crossing used in railway system was studied. The microstructure in the worn surfaces of the crossing was investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy and Mössbauer spectroscopy. The results indicated that a nanocrystallization layer formed on the surface of the crossing served. The formation mechanism of the nanocrystalline is the discontinuous dynamic recrystallization. The energy for the recrystallization nucleus formation originates from the interactions between the twins, the dislocations, as well as twin and dislocation. High-density vacancies promoted the recrystallization process including the dislocation climb and the atom diffusion.
Nuclear Fusion Rate Study of a Muonic Molecule via Nuclear Threshold Resonances
NASA Astrophysics Data System (ADS)
Faghihi, F.; Eskandari, M. R.
This work follows our previous calculations of the ground state binding energy, size, and the effective nuclear charge of the muonic T3 molecule, using the Born-Oppenheimer adiabatic approximation. In our past articles, we showed that the system possesses two minimum positions, the first one at the muonic distance and the second at the atomic distance. Also, the symmetric planner vibrational model assumed between the two minima and the approximated potential were calculated. Following from the previous studies, we now calculate the fusion rate of the T3 muonic molecule according to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions.
Energy-range relations for hadrons in nuclear matter
NASA Technical Reports Server (NTRS)
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
2010-03-01
STS134-S-001 (March 2010) --- The design of the STS-134 crew patch highlights research on the International Space Station (ISS) focusing on the fundamental physics of the universe. On this mission, the crew of space shuttle Endeavour will install the Alpha Magnetic Spectrometer-2 (AMS) experiment -- a cosmic particle detector that utilizes the first-ever superconducting magnet to be flown in space. By studying sub-atomic particles in the background cosmic radiation, and searching for anti-matter and dark-matter, it will help scientists better understand the evolution and properties of our universe. The shape of the patch is inspired by the international atomic symbol, and represents the atom with orbiting electrons around the nucleus. The burst near the center refers to the big-bang theory and the origin of the universe. The shuttle Endeavour and ISS fly together into the sunrise over the limb of Earth, representing the dawn of a new age, understanding the nature of the universe. The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced.
`The Wildest Speculation of All': Lemaître and the Primeval-Atom Universe
NASA Astrophysics Data System (ADS)
Kragh, Helge
Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître's daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître's genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.
Radula-Janik, Klaudia; Kupka, Teobald
2015-02-01
The (3)He nuclear magnetic shieldings were calculated for free helium atom and He-pyrrole, He-indole, and He-carbazole complexes. Several levels of theory, including Hartree-Fock (HF), Second-order Møller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated (3)He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. (3)He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indole, and carbazole were tested. It was observed that (3)He NMR parameters of single helium atom, calculated at various levels of theory (HF, MP2, and DFT) are sensitive to the presence of heteroatomic rings. The helium atom was insensitive to the studied molecules at distances above 5 Å. Our results, obtained with BHandHLYP method, predicted fairly accurately the He-pyrrole plane separation of 3.15 Å (close to 3.24 Å, calculated by MP2) and yielded a sizable (3)He NMR chemical shift (about -1.5 ppm). The changes of calculated nucleus-independent chemical shifts (NICS) with the distance above the rings showed a very similar pattern to helium-3 NMR chemical shift. The ring currents above the five-membered rings were seen by helium magnetic probe to about 5 Å above the ring planes verified by the calculated NICS index. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Koohi, M.; Soleimani Amiri, S.; Shariati, M.
2017-01-01
Density functional theory (DFT) calculations are applied to compare and contrast silicon atom substitution doped C20-nSin heterofullerene analogous with n = 1-10, at B3LYP/AUG-cc-pVTZ. Vibrational frequency analysis confirms that all studied systems are true minima. Isolating the dopants is an applicable strategy for obtaining highly doped stable heterofullerenes, since it avoids weak silicon―silicon single bonds. Comparing and contrasting the optimized geometries shows that except C11Si9 and C10Si10 species (with deformed cages of segregated analogous), all eight fullerenic cages are the complete isolated-pentagon analogous. Hence, the dopants must be completely isolated from each other by means of strong Cdbnd C double bonds. Isolable or extractable fullerene isomers must be not only thermodynamically but also stable against electronic excitations. We then predicted that these isomers must have not only relatively large heats of atomization per carbon as a criterion of thermodynamic stability but also relatively large HOMO-LUMO energy separation against electronic excitations. The calculated the highest binding energy (6.52 eV/atom), heat of atomization per carbon (3193.2 kcal mol-1), band gap (2.86 eV) and nucleus independent chemical shift at the cage center (-50.00 ppm) for C18Si2 reveals it as the most stable heterofullerene. It has Ci symmetry and contains two silicon atoms in equatorial. High charge transfer on the surfaces of our scrutinized heterofullerenes provokes further investigations on their possible application for hydrogen storage. We hope that the present study will stimulate new experiments.
Neutron-antineutron oscillations in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dover, C.B.; Gal, A.; Richard, J.M.
1983-03-01
We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less
Metal complexes of quinolone antibiotics and their applications: an update.
Uivarosi, Valentina
2013-09-11
Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.
X-ray microimaging of cisplatin distribution in ovarian cancer cells
NASA Astrophysics Data System (ADS)
Kiyozuka, Yasuhiko; Takemoto, Kuniko; Yamamoto, Akitsugu; Guttmann, Peter; Tsubura, Airo; Kihara, Hiroshi
2000-05-01
X-ray microscopy has the possibility to be in use for elemental analysis of tissue and cells especially under physiological conditions with high lateral resolution. In X-ray microimaging cisdiamminedichloroplatinum II (cisplatin: CDDP), an anticancer agent, which has a platinum atom at its functional center gives sufficient contrast against organic material at sub-cellular level. We analyzed the enhance effect and intracellular distribution of CDDP in human ovarian cancer cells with the transmission X-ray microscope at BESSY, Berlin. Two human ovarian cancer cell lines (MN-1 and EC) were treated with 1 and 10 μg/ml of CDDP for 4 hours and compared with untreated cells X-ray images of CDDP-treated samples show clearly labeled nucleoli, periphery of the nucleus and mitochondria, in a concentration-dependent manner. CDDP binds to DNA molecules via the formation of intra- or-inter-strand cross-links. Higher contrasts at the periphery of nucleus and nucleoli suggest the distribution of tightly packed heterochromatin. In addition, results show the possibility that CDDP binds to mitochondrial DNA. Biological function of cisplatin is not only the inhibition of DNA replication but is suggested to disturb mitochondrial function and RNA synthesis in the nucleolus.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Altuntas, Emine; Cahn, Sidney; Demille, David; Kozlov, Mikhail
2016-05-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138 Ba19 F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137 Ba19 F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Altuntas, Emine; Cahn, Sidney; Demille, David
2016-09-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A2/3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20 . We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137Ba19F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Altuntas, Emine; Ammon, Jeffrey; Cahn, Sidney; Demille, David; Kozlov, Mikhail; Paolino, Richard
2015-05-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. Using a Stark-interference technique we measure the NSD-PV interaction matrix element. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We also discuss investigations of systematics due to non-reversing stray E-fields, Enr together with B-field inhomogeneities, and short-term prospects for measuring the nuclear anapole moment of 137Ba. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi
2017-07-18
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.
HISTORY OF THE ORIGIN OF THE CHEMICAL ELEMENTS AND THEIR DISCOVERIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLDEN,N.E.
What do we mean by a chemical element? A chemical element is matter, all of whose atoms are alike in having the same positive charge on the nucleus and the same number of extra-nuclear electrons. As we shall see in the following elemental review, the origin of the chemical elements show a wide diversity with some of these elements having an origin in antiquity, other elements having been discovered within the past few hundred years and still others have been synthesized within the past fifty years via nuclear reactions on heavy elements since these other elements are unstable and radioactivemore » and do not exist in nature.« less
NASA Astrophysics Data System (ADS)
Royer, Guy; Zhang, Hongfei
The α decay potential barriers are determined in the cluster-like shape path within a generalized liquid drop model including the proximity effects between the α particle and the daughter nucleus and adjusted to reproduce the experimental Qα. The α emission half-lives are determined within the WKB penetration probability. Calculations using previously proposed formulae depending only on the mass and charge of the alpha emitter and Qα are also compared with new experimental alpha-decay half-lives. The agreement allows to provide predictions for the α decay half-lives of other still unknown superheavy nuclei using the Qα determined from the 2003 atomic mass evaluation of Audi, Wapstra and Thibault.
MRI experiments for introductory physics
NASA Astrophysics Data System (ADS)
Taghizadeh, Sanaz; Lincoln, James
2018-04-01
The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly relevant application of modern physics, especially with so many of our students planning to pursue a career in medicine. This article provides an overview of the physics of MRI and gives advice on how physics teachers can introduce this topic. Also included are some demonstration activities and a discussion of a desktop MRI apparatus that may be used by students in the lab or as a demo.
The role of probability arguments in the history of science.
Weinert, Friedel
2010-03-01
The paper examines Wesley Salmon's claim that the primary role of plausibility arguments in the history of science is to impose constraints on the prior probability of hypotheses (in the language of Bayesian confirmation theory). A detailed look at Copernicanism and Darwinism and, more briefly, Rutherford's discovery of the atomic nucleus reveals a further and arguably more important role of plausibility arguments. It resides in the consideration of likelihoods, which state how likely a given hypothesis makes a given piece of evidence. In each case the likelihoods raise the probability of one of the competing hypotheses and diminish the credibility of its rival, and this may happen either on the basis of 'old' or 'new' evidence.
The argon nuclear quadrupole moments
NASA Astrophysics Data System (ADS)
Sundholm, Dage; Pyykkö, Pekka
2018-07-01
New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.
Nuclear physics (of the cell, not the atom).
Pederson, Thoru; Marko, John F
2014-11-05
The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists. © 2014 Pederson and Marko. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, Paul D.; A’Hearn, Michael F.; Feaga, Lori M.
ALICE is a far-ultraviolet imaging spectrograph on board Rosetta that, among multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/Churyumov–Gerasimenko. The initial observations, made following orbit insertion in 2014 August, showed emissions of atomic hydrogen and oxygen spatially localized close to the nucleus and attributed to photoelectron impact dissociation of H{sub 2}O vapor. Weaker emissions from atomic carbon were subsequently detected and also attributed to electron impact dissociation, of CO{sub 2}, the relative H i and C i line intensities reflecting the variation of CO{sub 2} to H{sub 2}Omore » column abundance along the line of sight through the coma. Beginning in 2015 mid-April, Alice sporadically observed a number of outbursts above the sunward limb characterized by sudden increases in the atomic emissions, particularly the semi-forbidden O i λ 1356 multiplet, over a period of 10–30 minutes, without a corresponding enhancement in long-wavelength solar reflected light characteristic of dust production. A large increase in the brightness ratio O i λ 1356/O i λ 1304 suggests O{sub 2} as the principal source of the additional gas. These outbursts do not correlate with any of the visible images of outbursts taken with either OSIRIS or the navigation camera. Beginning in 2015 June the nature of the Alice spectrum changed considerably with CO Fourth Positive band emission observed continuously, varying with pointing but otherwise fairly constant in time. However, CO does not appear to be a major driver of any of the observed outbursts.« less
NASA Astrophysics Data System (ADS)
Riley, M. A.; Simpson, J.; Paul, E. S.
2016-12-01
In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.
Understanding homogeneous nucleation in solidification of aluminum by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Mahata, Avik; Asle Zaeem, Mohsen; Baskes, Michael I.
2018-02-01
Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, and solid-state grain growth regimes. The main crystalline phase was identified as face-centered cubic, but a hexagonal close-packed (hcp) and an amorphous solid phase were also detected. The hcp phase was created due to the formation of stacking faults during solidification of Al melt. By slowing down the cooling rate, the volume fraction of hcp and amorphous phases decreased. After the box was completely solid, grain growth was simulated and the grain growth exponent was determined for different annealing temperatures.
NASA Astrophysics Data System (ADS)
Zhang, J. Y.; Xie, Y. P.; Guo, H. B.; Chen, Y. G.
2018-05-01
Aluminum nitride (AlN) has a polar crystal structure that is susceptible to electric dipolar interactions. The inversion domains in AlN, similar to those in GaN and other wurtzite-structure materials, decrease the energy associated with the electric dipolar interactions at the expense of inversion-domain boundaries, whose interface energy has not been quantified. We study the atomic structures of six different inversion-domain boundaries in AlN, and compare their interface energies from density functional theory calculations. The low-energy interfaces have atomic structures with similar bonding geometry as those in the bulk phase, while the high-energy interfaces contain N-N wrong bonds. We calculate the formation energy of an inversion domain using the interface energy and dipoles' electric-field energy, and find that the distribution of the inversion domains is an important parameter for the microstructures of AlN films. Using this thermodynamic model, it is possible to control the polarity and microstructure of AlN films by tuning the distribution of an inversion-domain nucleus and by selecting the low-energy synthesis methods.
NASA Astrophysics Data System (ADS)
Nishi, T.; Itahashi, K.; Berg, G. P. A.; Fujioka, H.; Fukuda, N.; Fukunishi, N.; Geissel, H.; Hayano, R. S.; Hirenzaki, S.; Ichikawa, K.; Ikeno, N.; Inabe, N.; Itoh, S.; Iwasaki, M.; Kameda, D.; Kawase, S.; Kubo, T.; Kusaka, K.; Matsubara, H.; Michimasa, S.; Miki, K.; Mishima, G.; Miya, H.; Nagahiro, H.; Nakamura, M.; Noji, S.; Okochi, K.; Ota, S.; Sakamoto, N.; Suzuki, K.; Takeda, H.; Tanaka, Y. K.; Todoroki, K.; Tsukada, K.; Uesaka, T.; Watanabe, Y. N.; Weick, H.; Yamakami, H.; Yoshida, K.; piAF Collaboration
2018-04-01
We observed the atomic 1 s and 2 p states of π- bound to 121Sn nuclei as distinct peak structures in the missing mass spectra of the 122Sn(d ,3He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2 p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1 s state.
Low Energy Nuclear Structure Modeling: Can It Be Improved?
NASA Astrophysics Data System (ADS)
Stone, Jirina R.
Since the discovery of the atomic nucleus in 1911 generations of physicists have devoted enormous effort to understand low energy nuclear structure. Properties of nuclei in their ground state, including mass, binding energy and shape, provide vital input to many areas of sub-atomic physics as well as astrophysics and cosmology. Low energy excited states are equally important for understanding nuclear dynamics. Yet, no consensus exists as to what is the best path to a theory which would not only consistently reproduce a wide variety of experimental data but also have enough predictive power to yield credible predictions in areas where data are still missing. In this contribution some of the main obstacles preventing building such a theory are discussed. These include modification of the free nucleon-nucleon force in the nuclear environment and effects of the sub-nucleon (quark) structure of the nucleon. Selected classes of nuclear models, mean-field, shell and ab-initio models are briefly outlined. Finally, suggestions are made for, at least partial, progress that can be achieved with the quark-meson coupling model, as reported in recent publication [1].
Towards laser spectroscopy of the proton-halo candidate boron-8
NASA Astrophysics Data System (ADS)
Maaß, Bernhard; Müller, Peter; Nörtershäuser, Wilfried; Clark, Jason; Gorges, Christian; Kaufmann, Simon; König, Kristian; Krämer, Jörg; Levand, Anthony; Orford, Rodney; Sánchez, Rodolfo; Savard, Guy; Sommer, Felix
2017-11-01
We propose to determine the nuclear charge radius of 8B by high-resolution laser spectroscopy. 8B (t 1/2 = 770 ms) is perhaps the best candidate of a nucleus exhibiting an extended proton wave-function or "one-proton-halo" in a more descriptive picture. Laser spectroscopic measurements of the isotope shift will be used to probe the change in nuclear charge radius along the three boron isotopes 8B, 10B and 11B. The change in nuclear charge radius directly correlates with the extent of the proton wave function. In-flight production and preparation of sufficient yields of 8B ions at low energies is provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory (ANL) in Chicago, IL, USA. Subsequently, the ions will be guided through a charge exchange cell for neutralization and the fluorescence signal of the atoms which interact with the resonant laser light will be detected. The charge radius can then be extracted from the measured isotope shift by employing highly accurate atomic theory calculations of this five-electron system which are carried out presently.
The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenke, Bjoern
2014-12-18
The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with eachmore » other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.« less
Fraunhofer and refractive scattering of heavy ions in strong laser fields
NASA Astrophysics Data System (ADS)
Mişicu, Şerban; Carstoiu, Florin
2018-05-01
Until recently the potential scattering of a charged particle in a laser field received attention exclusively in atomic physics. The differential cross-section of laser-assisted electron-atom collisions for n emitted or absorbed photons is provided by a simple law which casts the result as a product between the field-free value and the square of the Bessel function of order n with its argument containing the effect of the laser in a non-perturbative way. From the experimental standpoint, laser-assisted electron-atom collisions are important because they allow the observation of multiphoton effects even at moderate laser intensities. The aim of this study is to calculate the nucleus-nucleus differential cross section in the field of a strong laser with wavelengths in the optical domain such that the low-frequency approximation is fulfilled. We investigate the dependence of the n-photon differential cross-section on the intensity, photon energy and shape of the pulse for a projectile/target combination at a fixed collision energy which exhibits a superposition of Fraunhofer and refractive behavior. We also discuss the role of the laser perturbation on the near and farside decomposition in the angular distribution, an issue never discussed before in the literature. We apply a standard optical model approach to explain the experimental differential cross-section of the elastic scattering of 4He on 58Ni at a laboratory energy E = 139 MeV and resolve the corresponding farside/nearside (F/N) decomposition in the field-free case. We give an example of reaction in which Fraunhofer diffraction and refractive rainbow hump effects are easily recognized in the elastic angular distribution. Next, we apply the Kroll-Watson theorem, in order to determine the n -photon contributions to the cross-section for continuous-wave (cw) and modulated pulses. In the elastic scattering of heavy ions in a radiation field of low intensity, the amplitude drops by orders of magnitude with respect to the unperturbed case once the exchange of photons is initiated. For intensities approaching I=10^{17} W/cm2 multiphoton effects become important. In the case of short laser pulses we conclude that the strength of n-photon contribution increases with the pulse duration.
Atoms and Molecules Interacting with Light
NASA Astrophysics Data System (ADS)
van der Straten, Peter; Metcalf, Harold
2016-02-01
Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.
A-dependence of phi meson production at HERA-B
NASA Astrophysics Data System (ADS)
Ispiryan, Mikayel
In the HERA-B experiment at DESY, Germany, 920 GeV protons collide with nuclei of the targets. In the collisions many hadrons are produced and detected by the spectrometer, allowing the study of various issues of hadron-hadron and hadron-nucleus interactions. In this thesis the production dependence of the φ meson on the atomic weight A of the nuclei has been studied for several materials, with the goal of obtaining experimental information on proton-nucleus (p-A) interactions. For this, runs and events have been selected according to special criteria. The φ meson's signature---its decay into two charged kaons---has been used to detect the fact of the production of a φ meson in the collision. The RICH detector, the tracking system, and selection algorithms have been used for identification of kaons. The main result, obtaining of which does not depend on the knowledge of integrated luminosity and does not depend heavily on the Monte Carlo simulation of the spectrometer, is the exponent Deltaalpha of the power law of the φ meson production cross-section in an inelastic interaction: sigma ∝ ADeltaalpha, which was measured to be 0.14 .. 0.19 for tungsten, titanium and rhenium, with Deltaalpha = 0.141 +/- 0.012(stat) +/- 0.022(sys) being the most exact number obtained from the analysis of ˜108 events on carbon and tungsten targets. As a by-product, the mass of the φ meson is obtained to be 1.01957 GeV, which did not show dependence on the type of the target nucleus within statistical error of approximately +/-80 keV. The results show a clear experimental indication of A-dependence for φ meson production in proton-nucleon inelastic interactions.
A Physiological Neural Network for Saccadic Eye Movement Control
1994-04-01
cerebellum, substantia nigra, nucleus reticularis tegmenti pontis, the thalamus, the deep layers of the superior colliculus and the oculomotor plant...and pause cells), the vestibular nucleus , abducens nucleus , oculomotor nucleus , cerebellum, substantia nigra, nucleus reticularis tegmenti pontis, the...vestibular nucleus , abducens nucleus , oculomotor nucleus , cerebellum, substantia nigra, nucleus reticularis tegmenti pontis (NRTP), the thalamus, the
Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A
2011-07-28
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics
Route of steroid-activated macromolecules through nuclear pores imaged with atomic force microscopy.
Oberleithner, H; Schäfer, C; Shahin, V; Albermann, L
2003-02-01
In eukaryotic cells, two concentric membranes, the nuclear envelope (NE), separate the nucleus from the cytoplasm. The NE is punctured by nuclear pore complexes (NPCs; molecular mass 120 MDa) that serve as regulated pathways for macromolecules entering and leaving the nuclear compartment. Transport across NPCs occurs through central channels. Such import and export of macromolecules through individual NPCs can be elicited in the Xenopus laevis oocyte by injecting the mineralocorticoid aldosterone and can be visualized with atomic force microscopy. The electrical NE resistance in intact cell nuclei can be measured in parallel. Resistance increases when macromolecules are engaged with the NPC. This article describe six observations made from these experiments and the conclusions that can be drawn from them. (i) A homogeneous population of macromolecules (approx. 100 kDa) attaches to the cytoplasmic face of the NPC 2 min after aldosterone injection. They are most likely to be aldosterone receptors. After a few minutes, they have disappeared. (ii) Large plugs (approx. molecular mass 1 MDa) appear in the central channels 20 min after hormone injection. They are most likely to be ribonucleoproteins exiting the nucleus. (iii) Electrical resistance measurements in isolated nuclei reveal transient electrical NE resistance peaks: an early (2 min) peak and a late (20 min) peak. Electrical peaks reflect macromolecule interaction with the NPC. (iv) Spironolactone blocks both the early and late peaks. This indicates that classic aldosterone receptors are involved in the pregenomic (early) and post-genomic (late) responses. (v) Actinomycin D and, independently, RNase A block the late electrical peak, confirming that plugs are genomic in nature. (vi) Intracellular calcium chelation blocks both early and late electrical peaks. Thus, the release of calcium from internal stores, which is known to be the first intracellular signal in response to aldosterone, is a prerequisite for the late genomic response.
1989-03-16
nucleus robustus archistriatalis 1 1 1 nucleus reticularis gigantocellularis 1 3 3 nucleus reticularis lateralis 1 3 3 nucleus ... reticularis pontis caudalis 1 1 3 nucleus reticularis parvocellularis 1 1 2 nucleus rotundus 1 1 1 nucleus tractus solitarii 1 3 3 nucleus semilunaris...Structure a-bungarotoxin mAb 35 inAb 270 nucleus accumbens 1 1 1 nucleus basalis 1 1 1 nucleus cerebelli intermedium 2 3 3
Discovery of 72Rb: A Nuclear Sandbank Beyond the Proton Drip Line
NASA Astrophysics Data System (ADS)
Suzuki, H.; Sinclair, L.; Söderström, P.-A.; Lorusso, G.; Davies, P.; Ferreira, L. S.; Maglione, E.; Wadsworth, R.; Wu, J.; Xu, Z. Y.; Nishimura, S.; Doornenbal, P.; Ahn, D. S.; Browne, F.; Fukuda, N.; Inabe, N.; Kubo, T.; Lubos, D.; Patel, Z.; Rice, S.; Shimizu, Y.; Takeda, H.; Baba, H.; Estrade, A.; Fang, Y.; Henderson, J.; Isobe, T.; Jenkins, D.; Kubono, S.; Li, Z.; Nishizuka, I.; Sakurai, H.; Schury, P.; Sumikama, T.; Watanabe, H.; Werner, V.
2017-11-01
In this Letter, the observation of two previously unknown isotopes is presented for the first time: 72Rb with 14 observed events and 77Zr with one observed event. From the nonobservation of the less proton-rich nucleus 73Rb, we derive an upper limit for the ground-state half-life of 81 ns, consistent with the previous upper limit of 30 ns. For 72Rb, we have measured a half-life of 103(22) ns. This observation of a relatively long-lived odd-odd nucleus, 72Rb, with a less exotic odd-even neighbor, 73Rb, being unbound shows the diffuseness of the proton drip line and the possibility of sandbanks to exist beyond it. The 72Rb half-life is consistent with a 5+→5 /2- proton decay with an energy of 800-900 keV, in agreement with the atomic mass evaluation proton-separation energy as well as results from the finite-range droplet model and shell model calculations using the GXPF1A interaction. However, we cannot explicitly exclude the possibility of a proton transition between 9+(72Rb)→9 /2+ (71Kr) isomeric states with a broken mirror symmetry. These results imply that 72Kr is a strong waiting point in x-ray burst r p -process scenarios.
Gene delivery by a steroid-peptide nucleic acid conjugate.
Rebuffat, Alexandre G; Nawrocki, Andrea R; Nielsen, Peter E; Bernasconi, Alessio G; Bernal-Mendez, Eloy; Frey, Brigitte M; Frey, Felix J
2002-09-01
We previously introduced a method called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the nuclear uptake of transfected DNA. Here, we describe a SMGD strategy with peptide nucleic acids (PNAs) that allowed linkage of a steroid molecule to a defined position in a plasmid without disturbing its gene expression. We synthesized and tested several bifunctional steroid derivatives [patent in process of nationalization] and finally selected the compound named DEX-bisPNA, a molecule consisting of a dexamethasone moiety linked to a PNA clamp (bisPNA) through a 30-atom chemical spacer. Dex-bisPNA binds to the glucocorticoid receptor (GR) as well as to reporter plasmids containing the corresponding PNA binding sites, translocates the GR from the cytoplasm into the nucleus, and increases the delivery of plasmid to the nucleus, resulting in enhanced GR-dependent expression of the reporter gene. The SMGD effect was more pronounced in growth-arrested cells than in proliferating cells. The specificity for the GR was shown by the reversion of the SMGD effect in the presence of dexamethasone as well as an enhanced expression in GR-positive cells but not in GR-negative cells. Thus, SMGD with PNA is a promising strategy for nonviral gene delivery into target tissues expressing specific steroid receptors.
Possible nucleus of the Bergman cluster in the Zn-Mg-Y alloy system
NASA Astrophysics Data System (ADS)
Nakayama, Kei; Nakagawa, Masaya; Koyama, Yasumasa
2018-01-01
To understand the formation of the Bergman cluster in the F-type icosahedral quasicrystal (IQ), crystallographic relations between the quasicrystal and the intermetallic-compound H and Zn23Y6 phases in the Zn-Mg-Y alloy system were investigated mainly by transmission electron microscopy. It was found that, although sample rotations of about 1° were required to obtain simple crystallographic relations, the orientation relationship was established among the cubic-Fm?m Zn23Y6 structure, the hexagonal-P63/mmc H structure and the F-type IQ; that is, [? 1 3]c // the five-fold axis in the IQ // N(2 ? 0)H, and [1 1 0]c // the two-fold axis in the IQ // N(0 5 ? 3)H, where N(h k m l)H means the normal direction of the (h k m l)H plane in the H structure. The correspondences between atomic positions in the Bergman cluster and in the Zn23Y6 structure and between those in the cluster and in the H structure were investigated on the basis of the established relationship. As a result, an assembly of six short-penetrated-decagonal columns was identified as an appropriate nucleus in the formation of the Bergman cluster from these two structures.
Elastic Network Model of a Nuclear Transport Complex
NASA Astrophysics Data System (ADS)
Ryan, Patrick; Liu, Wing K.; Lee, Dockjin; Seo, Sangjae; Kim, Young-Jin; Kim, Moon K.
2010-05-01
The structure of Kap95p was obtained from the Protein Data Bank (www.pdb.org) and analyzed RanGTP plays an important role in both nuclear protein import and export cycles. In the nucleus, RanGTP releases macromolecular cargoes from importins and conversely facilitates cargo binding to exportins. Although the crystal structure of the nuclear import complex formed by importin Kap95p and RanGTP was recently identified, its molecular mechanism still remains unclear. To understand the relationship between structure and function of a nuclear transport complex, a structure-based mechanical model of Kap95p:RanGTP complex is introduced. In this model, a protein structure is simply modeled as an elastic network in which a set of coarse-grained point masses are connected by linear springs representing biochemical interactions at atomic level. Harmonic normal mode analysis (NMA) and anharmonic elastic network interpolation (ENI) are performed to predict the modes of vibrations and a feasible pathway between locked and unlocked conformations of Kap95p, respectively. Simulation results imply that the binding of RanGTP to Kap95p induces the release of the cargo in the nucleus as well as prevents any new cargo from attaching to the Kap95p:RanGTP complex.
Burkatzki, M; Filippi, Claudia; Dolg, M
2008-10-28
We extend our recently published set of energy-consistent scalar-relativistic Hartree-Fock pseudopotentials by the 3d-transition metal elements, scandium through zinc. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The pseudopotentials and the accompanying basis sets (VnZ with n=T,Q) are given in standard Gaussian representation and their parameter sets are presented. Coupled cluster, configuration interaction, and QMC studies are carried out for the scandium and titanium atoms and their oxides, demonstrating the good performance of the pseudopotentials. Even though the choice of pseudopotential form is motivated by QMC, these pseudopotentials can also be employed in other quantum chemical approaches.
Litvinov, Yu A; Bosch, F; Geissel, H; Kurcewicz, J; Patyk, Z; Winckler, N; Batist, L; Beckert, K; Boutin, D; Brandau, C; Chen, L; Dimopoulou, C; Fabian, B; Faestermann, T; Fragner, A; Grigorenko, L; Haettner, E; Hess, S; Kienle, P; Knöbel, R; Kozhuharov, C; Litvinov, S A; Maier, L; Mazzocco, M; Montes, F; Münzenberg, G; Musumarra, A; Nociforo, C; Nolden, F; Pfützner, M; Plass, W R; Prochazka, A; Reda, R; Reuschl, R; Scheidenberger, C; Steck, M; Stöhlker, T; Torilov, S; Trassinelli, M; Sun, B; Weick, H; Winkler, M
2007-12-31
We report on the first measurement of the beta+ and orbital electron-capture decay rates of 140Pr nuclei with the simplest electron configurations: bare nuclei, hydrogenlike, and heliumlike ions. The measured electron-capture decay constant of hydrogenlike 140Pr58+ ions is about 50% larger than that of heliumlike 140Pr57+ ions. Moreover, 140Pr ions with one bound electron decay faster than neutral 140Pr0+ atoms with 59 electrons. To explain this peculiar observation one has to take into account the conservation of the total angular momentum, since only particular spin orientations of the nucleus and of the captured electron can contribute to the allowed decay.
Structural and biochemical insights into 7β-hydroxysteroid dehydrogenase stereoselectivity.
Savino, Simone; Ferrandi, Erica Elisa; Forneris, Federico; Rovida, Stefano; Riva, Sergio; Monti, Daniela; Mattevi, Andrea
2016-06-01
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo- and regio-selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active-site accessibility, the bases of the specificity for NADP(+) , and the general architecture of the steroid binding site. Comparison with 7α-hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C-terminal extension reshapes the substrate site of the β-selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859-865. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Finite-nuclear-size contribution to the g factor of a bound electron: Higher-order effects
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.
2018-02-01
A precision comparison of theory and experiments on the g factor of an electron bound in a hydrogenlike ion with a spinless nucleus requires a detailed account of finite-nuclear-size contributions. While the relativistic corrections to the leading finite-size contribution are known, the higher-order effects need an additional consideration. Two results are presented in the paper. One is on the anomalous-magnetic-moment correction to the finite-size effects and the other is due to higher-order effects in Z α m RN . We also present here a method to relate the contributions to the g factor of a bound electron in a hydrogenlike atom to its energy within a nonrelativistic approach.
Fission in the landscape of heaviest elements: Some recent examples
NASA Astrophysics Data System (ADS)
Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; Ackermann, D.; Andersson, L.-L.; Block, M.; Brand, H.; Even, J.; Forsberg, U.; Hartmann, W.; Herzberg, R.-D.; Heßberger, F. P.; Hoffmann, J.; Hübner, A.; Jäger, E.; Jeppsson, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kurz, N.; Lommel, B.; Maiti, M.; Minami, S.; Rudolph, D.; Runke, J.; Sarmiento, L. G.; Schädel, M.; Schausten, B.; Steiner, J.; Heidenreich, T. Torres De; Uusitalo, J.; Wiehl, N.; Yakusheva, V.
2016-12-01
The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10-19-1024 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10-5-103 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254-256Rf and 266Lr are presented and corresponding factors for retarding the fission process are discussed.
Using polarized muons as ultrasensitive spin labels in free radical chemistry
NASA Astrophysics Data System (ADS)
McKenzie, Iain; Roduner, Emil
2009-08-01
In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.
Measuring the Cosmic Particle Radiation from electrons to actinides - HNX/TIGERISS
NASA Astrophysics Data System (ADS)
Mitchell, John
2017-01-01
The Heavy Nuclei eXplorer (HNX) mission will measure the abundances of nuclei from Carbon (Z =6) to Curium (Z =96) in the cosmic radiation with the resolution to identify the atomic number of each detected nucleus. HNX will measure a significant number of actinides. HNX utilizes two high-precision instruments, the Extremely-heavy Cosmic-ray Composition Observer (ECCO) and the Cosmic-Ray Trans-Iron Galactic Element Recorder (CosmicTIGER), located in a SpaceX DragonLab capsule orbiting the Earth. This talk will discuss the motivating science, the HNX mission, the design and performance of the HNX instruments, and another new instrument, TIGERISS (Trans-Iron Galactic Element Recorder on the ISS), that will be proposed as an intermediate between SuperTIGER and HNX.
2015-12-07
Only rarely does an astronomical object have a political association. However, the spiral galaxy NGC 7252 acquired exactly that when it was given an unusual nickname. In December 1953, the US President Dwight D. Eisenhower gave a speech advocating the use of nuclear power for peaceful purposes. This “Atoms for Peace” speech was significant for the scientific community, as it brought nuclear research into the public domain, and NGC 7252, which has a superficial resemblance to an atomic nucleus surrounded by the loops of electronic orbits, was dubbed the Atoms for Peace galaxy in honour of this. These loops are well visible in a wider field of view image. This nickname is quite ironic, as the galaxy’s past was anything but peaceful. Its peculiar appearance is the result of a collision between two galaxies that took place about a billion years ago, which ripped both galaxies apart. The loop-like outer structures, likely made up of dust and stars flung outwards by the crash, but recalling orbiting electrons in an atom, are partly responsible for the galaxy’s nickname. This NASA/ESA Hubble Space Telescope image shows the inner parts of the galaxy, revealing a pinwheel-shaped disc that is rotating in a direction opposite to the rest of the galaxy. This disc resembles a spiral galaxy like our own galaxy, the Milky Way, but is only about 10 000 light-years across — about a tenth of the size of the Milky Way. It is believed that this whirling structure is a remnant of the galactic collision. It will most likely have vanished in a few billion years’ time, when NGC 7252 will have completed its merging process.
Barmak, Katayun; Liu, Jiaxing; Harlan, Liam; Xiao, Penghao; Duncan, Juliana; Henkelman, Graeme
2017-10-21
The enthalpy and activation energy for the transformation of the metastable form of tungsten, β-W, which has the topologically close-packed A15 structure (space group Pm3¯n), to equilibrium α-W, which is body-centered cubic (A2, space group Im3¯m), was measured using differential scanning calorimetry. The β-W films were 1 μm-thick and were prepared by sputter deposition in argon with a small amount of nitrogen. The transformation enthalpy was measured as -8.3 ± 0.4 kJ/mol (-86 ± 4 meV/atom) and the transformation activation energy as 2.2 ± 0.1 eV. The measured enthalpy was found to agree well with the difference in energies of α and β tungsten computed using density functional theory, which gave a value of -82 meV/atom for the transformation enthalpy. A calculated concerted transformation mechanism with a barrier of 0.4 eV/atom, in which all the atoms in an A15 unit cell transform into A2, was found to be inconsistent with the experimentally measured activation energy for any critical nucleus larger than two A2 unit cells. Larger calculations of eight A15 unit cells spontaneously relax to a mechanism in which part of the supercell first transforms from A15 to A2, creating a phase boundary, before the remaining A15 transforms into the A2 phase. Both calculations indicate that a nucleation and growth mechanism is favored over a concerted transformation. More consistent with the experimental activation energy was that of a calculated local transformation mechanism at the A15-A2 phase boundary, computed as 1.7 eV using molecular dynamics simulations. This calculated phase transformation mechanism involves collective rearrangements of W atoms in the disordered interface separating the A15 and A2 phases.
Electrostatic Levitation Technique for Investigations of Physical Properties of Liquid States
NASA Astrophysics Data System (ADS)
Okada, Junpei; Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi
Electrostatic levitator (ESL) levitates a charged sample in a high vacuum using computer con-trolled electrostatic fields [1]. It can levitate materials such as metals, semiconductors, and some insulators. Sample temperature can be varied over a wide range, and samples can be deeply undercooled. We have been engaged in the research and development of the electro-static levitation technique with the aim of performing levitation dissolution experiments in the International Space Station (ISS). Our device for the electrostatic levitation dissolution test has been developed for experiments on the ISS. To this end, the system is designed to be compact and portable so that it can be launched by rocket and used for experiments in the limited space on the ISS. Accordingly, the device can be installed not just on the ISS or our research laboratory, but also in various external sites. We devised a plan to install the electrostatic levitation system in a site other than the ISS to study atomic structure and electron structure of ultra-high-temperature liquids. We mounted our system on third generation synchrotron radiation facility "SPring-8" in Japan, to investigate the atomic and electron structures of high-temperature liquids. The SPring-8 is an experimental facility that allows use of the most powerful X-rays in the world. We conducted a variety of experiments on ultra-high-temperature liquids using SPring-8. The X-ray is ideal for exploring atomic structure and electron structure. Since the X-ray is an electromagnetic wave, it interacts with electrons. In addition, most electrons gather around the atomic nucleus. By close analysis of the scattered x-rays, we can determine its atomic structure and electron structure in detail. In this talk, we introduce an x-ray Compton scattering and x-ray Raman scattering measurements on liquid aluminum and silicon. [1] W. -K. Rhim, et al, Rev. Sci. Instrum. (1985) 56 307.
Distribution of methionine-enkephalin in the minipig brainstem.
Sánchez, Manuel Lisardo; Vecino, Elena; Coveñas, Rafael
2013-05-01
We have studied the distribution of immunoreactive cell bodies and axons are containing methionine-enkephalin in the minipig brainstem. Immunoreactive axons were widely distributed, whereas the distribution of perikarya was less widespread. A high or moderate density of axons containing methionine-enkephalin were found from rostral to caudal levels in the substantia nigra, nucleus interpeduncularis, nucleus reticularis tegmenti pontis, nucleus dorsalis raphae, nucleus centralis raphae, nuclei dorsalis and ventralis tegmenti of Gudden, locus ceruleus, nucleus sensorius principalis nervi trigemini, nucleus cuneatus externalis, nucleus tractus solitarius, nuclei vestibularis inferior and medialis, nucleus ambiguus, nucleus olivaris inferior and in the nucleus tractus spinalis nervi trigemini. Immunoreactive perikarya were observed in the nuclei centralis and dorsalis raphae, nucleus motorius nervi trigemini, nucleus centralis superior, nucleus nervi facialis, nuclei parabrachialis medialis and lateralis, nucleus ventralis raphae, nucleus reticularis lateralis and in the formatio reticularis. We have also described the presence of perikarya containing methionine-enkephalin in the nuclei nervi abducens, ruber, nervi oculomotorius and nervi trochlearis. These results suggest that in the minipig the pentapeptide may be involved in many physiological functions (for example, proprioceptive and nociceptive information; motor, respiratory and cardiovascular mechanisms). Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.
2013-03-25
In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons.more » As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.« less
Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal
2018-06-12
The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide chemical audience.
Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions
2001-08-01
25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The
Chemical Trends in Solid Alkali Pertechnetates.
Weaver, Jamie; Soderquist, Chuck Z; Washton, Nancy M; Lipton, Andrew S; Gassman, Paul L; Lukens, Wayne W; Kruger, Albert A; Wall, Nathalie A; McCloy, John S
2017-03-06
Insight into the solid-state chemistry of pure technetium-99 ( 99 Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99 Tc incorporation into and release from nuclear waste glasses. NaTcO 4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99 Tc nucleus relative to the aqueous TcO 4 - . At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO 4 is orthorhombic while that of RbTcO 4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.
Chemical Trends in Solid Alkali Pertechnetates
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; ...
2017-02-21
Insight into the solid-state chemistry of pure technetium-99 ( 99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorptionmore » spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses. NaTcO 4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99Tc nucleus relative to the aqueous TcO 4 –. At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO 4 is orthorhombic while that of RbTcO 4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.
Insight into the solid-state chemistry of pure technetium-99 ( 99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorptionmore » spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses. NaTcO 4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99Tc nucleus relative to the aqueous TcO 4 –. At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO 4 is orthorhombic while that of RbTcO 4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.« less
NASA Astrophysics Data System (ADS)
Lyashchenko, K. N.; Andreev, O. Yu; Voitkiv, A. B.
2018-03-01
We consider electron loss from a hydrogen-like highly charged ion (HCI) in relativistic collisions with hydrogen and helium in the range of impact velocities v min ≤ v ≤ v max (v min and v max correspond to the threshold energy ε th for electron loss in collisions with a free electron and to ≈5 ε th, respectively) where any reliable data for loss cross sections are absent. In this range, where the loss process is characterized by large momentum transfers, we express it in terms of electron loss in collisions with equivelocity protons and electrons and explore by performing a detailed comparative study of these subprocesses. Our results, in particular, show that: (i) compared to equivelocity electrons protons are more effective in inducing electron loss, (ii) the relative effectiveness of electron projectiles grows with increase in the atomic number of a HCI, (iii) collisions with protons and electrons lead to a qualitatively different population of the final-state-electron momentum space and even when the total loss cross sections in these collisions become already equal the spectra of the outgoing electrons still remain quite different in almost the entire volume of the final-state-electron momentum space, (iv) in collisions with hydrogen and helium the contributions to the loss process from the interactions with the nucleus and the electron(s) of the atom could be rather well separated in a substantial part of the final-state-electron momentum space.
Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates
NASA Astrophysics Data System (ADS)
Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan
2017-09-01
Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Shi, C.; Gebert, F.; Gorges, C.; Kaufmann, S.; Nörtershäuser, W.; Sahoo, B. K.; Surzhykov, A.; Yerokhin, V. A.; Berengut, J. C.; Wolf, F.; Heip, J. C.; Schmidt, P. O.
2017-01-01
We measured the isotope shift in the ^2{S}_{{1}/{2}} → ^2{P}_{{3}/{2}} (D2) transition in singly ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to compare the difference between the isotope shifts of this transition to the previously measured isotopic shifts of the ^2{S}_{{1}/{2}} → ^2{P}_{{1}/{2}} (D1) line. This so-called splitting isotope shift is extracted and exhibits a clear signature of field shift contributions. From the data, we were able to extract the small difference of the field shift coefficient and mass shifts between the two transitions with high accuracy. This J-dependence is of relativistic origin and can be used to benchmark atomic structure calculations. As a first step, we use several ab initio atomic structure calculation methods to provide more accurate values for the field shift constants and their ratio. Remarkably, the high-accuracy value for the ratio of the field shift constants extracted from the experimental data is larger than all available theoretical predictions.
Moncho, Salvador; Autschbach, Jochen
2010-01-12
A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.
Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions
NASA Astrophysics Data System (ADS)
Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.
Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.
Malucelli, Emil; Iotti, Stefano; Gianoncelli, Alessandra; Fratini, Michela; Merolle, Lucia; Notargiacomo, Andrea; Marraccini, Chiara; Sargenti, Azzurra; Cappadone, Concettina; Farruggia, Giovanna; Bukreeva, Inna; Lombardo, Marco; Trombini, Claudio; Maier, Jeanette A; Lagomarsino, Stefano
2014-05-20
We report a method that allows a complete quantitative characterization of whole single cells, assessing the total amount of carbon, nitrogen, oxygen, sodium, and magnesium and providing submicrometer maps of element molar concentration, cell density, mass, and volume. This approach allows quantifying elements down to 10(6) atoms/μm(3). This result was obtained by applying a multimodal fusion approach that combines synchrotron radiation microscopy techniques with off-line atomic force microscopy. The method proposed permits us to find the element concentration in addition to the mass fraction and provides a deeper and more complete knowledge of cell composition. We performed measurements on LoVo human colon cancer cells sensitive (LoVo-S) and resistant (LoVo-R) to doxorubicin. The comparison of LoVo-S and LoVo-R revealed different patterns in the maps of Mg concentration with higher values within the nucleus in LoVo-R and in the perinuclear region in LoVo-S cells. This feature was not so evident for the other elements, suggesting that Mg compartmentalization could be a significant trait of the drug-resistant cells.
High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates
Watanabe-Nakayama, Takahiro; Ono, Kenjiro; Itami, Masahiro; Takahashi, Ryoichi; Teplow, David B.; Yamada, Masahito
2016-01-01
Aggregation of amyloidogenic proteins into insoluble amyloid fibrils is implicated in various neurodegenerative diseases. This process involves protein assembly into oligomeric intermediates and fibrils with highly polymorphic molecular structures. These structural differences may be responsible for different disease presentations. For this reason, elucidation of the structural features and assembly kinetics of amyloidogenic proteins has been an area of intense study. We report here the results of high-speed atomic force microscopy (HS-AFM) studies of fibril formation and elongation by the 42-residue form of the amyloid β-protein (Aβ1–42), a key pathogenetic agent of Alzheimer's disease. Our data demonstrate two different growth modes of Aβ1–42, one producing straight fibrils and the other producing spiral fibrils. Each mode depends on initial fibril nucleus structure, but switching from one growth mode to another was occasionally observed, suggesting that fibril end structure fluctuated between the two growth modes. This switching phenomenon was affected by buffer salt composition. Our findings indicate that polymorphism in fibril structure can occur after fibril nucleation and is affected by relatively modest changes in environmental conditions. PMID:27162352
Atomic force microscopy as an advanced tool in neuroscience
Jembrek, Maja Jazvinšćak; Šimić, Goran; Hof, Patrick R.; Šegota, Suzana
2015-01-01
This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions. PMID:28123795
Momentum loss in proton-nucleus and nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Khan, Ferdous; Townsend, Lawrence W.
1993-01-01
An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.
Cosmic X-rays Reveal Evidence For New Form Of Matter
NASA Astrophysics Data System (ADS)
2002-04-01
NASA's Chandra X-ray Observatory has found two stars -- one too small, one too cold -- that reveal cracks in our understanding of the structure of matter. These discoveries open a new window on nuclear physics, offering a link between the vast cosmos and its tiniest constituents. Chandra's observations of RX J1856.5-3754 and 3C58 suggest that the matter in these stars is even denser than nuclear matter found on Earth. This raises the possibility these stars are composed of pure quarks or contain crystals of sub-nuclear particles that normally have only a fleeting existence following high-energy collisions. By combining Chandra and Hubble Space Telescope data, astronomers found that RX J1856 radiates like a solid body with a temperature of 1.2 million degrees Fahrenheit (700,000 degrees Celsius) and has a diameter of about seven miles (11.3 kilometers). This size is too small to reconcile with standard models for neutron stars -- until now the most extreme form of matter known. "Taken at face value, the combined observational evidence points to a star composed not of neutrons, but of quarks in a form known as strange quark matter," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper on RX J1856 to appear in the June 20, 2002, issue of The Astrophysical Journal. "Quarks, thought to be the fundamental constituents of nuclear particles, have never been seen outside a nucleus in Earth-bound laboratories." Observations by Chandra of 3C58 also yielded startling results. A team composed of Patrick Slane and Steven Murray, also of CfA, and David Helfand of Columbia University, New York, failed to detect the expected X-radiation from the hot surface of 3C58, a neutron star believed to have been created in an explosion witnessed by Chinese and Japanese astronomers in A.D. 1181. The team concluded that the star has a temperature of less than one million degrees Celsius, which is far below the predicted value. 3C58 3C58 "Our observations of 3C58 offer the first compelling test of models for how neutron stars cool, and the standard theory fails," said Helfand. "It appears that neutron stars aren't pure neutrons after all -- new forms of matter are required." A teaspoonful of neutron-star material weighs a billion tons, as much as all the cars, trucks and buses on Earth. Its extraordinary density is equivalent to that of the nucleus of an atom with all the typical space between the atoms and their nuclei removed. An atom's nucleus is composed of positively charged protons and neutral neutrons, particles so small that 100 billion trillion of them would fit on the head of a pin. Protons and neutrons are composed of even smaller particles called quarks, the basic building blocks of matter. Enormous atom-smashers are designed to probe the forces between quarks and the structure of the nucleus by smashing high-energy beams of nuclei into each other and observing the violent aftermath for a fraction of a second. Drake cautioned that the observations of RXJ1856 could be interpreted as a more normal neutron star with a hot spot. Such a model is under consideration by Fred Walter of the State University of New York, Stony Brook, one of the discoverers of RXJ1856, which was originally found in 1996 by the German Roentgen satellite. However, such a model would be expected to pulse, and a team of scientists lead by Scott Ransom of McGill University in Montreal, Canada report in The Astrophysical Journal Letters, that the pulsed fraction of the X-radiation from RX J1856 is less than 5%. To explain the absence of pulsations, a very special orientation with respect to the Earth is required. "Regardless of how these mysteries are resolved, these precise observations are highly significant," said Michael Turner of the University of Chicago. "They demonstrate our ability to use the universe as a laboratory where we can study some of the most fundamental questions in physics." NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.
2014-01-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. PMID:24684609
Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W
2014-06-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Actomyosin Pulls to Advance the Nucleus in a Migrating Tissue Cell
Wu, Jun; Kent, Ian A.; Shekhar, Nandini; Chancellor, T.J.; Mendonca, Agnes; Dickinson, Richard B.; Lele, Tanmay P.
2014-01-01
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus. PMID:24411232
Vargas, C D; Volchan, E; Hokoç, J N; Pereira, A; Bernardes, R F; Rocha-Miranda, C E
1997-01-01
Immunocytochemical methods revealed the presence of GABA in cell bodies and terminals in the nucleus of the optic tract-dorsal terminal nucleus, the medial terminal nucleus, the lateral terminal nucleus and the interstitial nucleus of the superior fasciculus of the opossum (Didelphis marsupialis aurita). Moreover, after unilateral injections of rhodamine beads in the nucleus of the optic tract-dorsal terminal nucleus complex and processing for GABA, double-labelled cells were detected in the ipsilateral complex, up to 400 microns from the injected site, but not in the opposite. Analysis of the distributions of GABAergic and retrogradely-labelled cells throughout the contralateral nucleus of the optic tract-dorsal terminal nucleus showed that the highest density of GABAergic and rhodamine-labelled cells overlapped at the middle third of the complex. Previous electrophysiological data obtained in the opossum had suggested the existence, under certain conditions, of an inhibitory action between the nucleus of the optic tract-dorsal terminal nucleus of one side over the other. The absence of GABAergic commissural neurons may imply that this inhibition is mediated by an excitatory commissural pathway that activates GABAergic interneurons.
Nuclear field shift in natural environments
NASA Astrophysics Data System (ADS)
Moynier, Frédéric; Fujii, Toshiyuki; Brennecka, Gregory A.; Nielsen, Sune G.
2013-03-01
The nuclear field shift (NFS) is an isotope shift in atomic energy levels caused by a combination of differences in nuclear size and shape and electron densities at the nucleus. The effect of NFS in isotope fractionation was theoretically established by Bigeleisen in 1996 [Bigeleisen J. (1996) J. Am. Chem. Soc. 118:3676-3680] and has been analytically measured in laboratory chemical exchange reactions. More recently, some isotopic variations of heavy elements (Hg, Tl, U) measured in natural systems as well as isotopic anomalies measured for lower-mass elements in meteorites have been attributed to the NFS effect. These isotopic variations open up new and exciting fields of investigations in Earth sciences. In this paper, we review the different natural systems in which NFS has been proposed to be the origin of isotopic variations.
On the chemical reaction of matter with antimatter.
Lodi Rizzini, Evandro; Venturelli, Luca; Zurlo, Nicola
2007-06-04
A chemical reaction between the building block antiatomic nucleus, the antiproton (p or H- in chemical notation), and the hydrogen molecular ion (H2+) has been observed by the ATHENA collaboration at CERN. The charged pair interact via the long-range Coulomb force in the environment of a Penning trap which is purpose-built to observe antiproton interactions. The net result of the very low energy collision of the pair is the creation of an antiproton-proton bound state, known as protonium (Pn), together with the liberation of a hydrogen atom. The Pn is formed in a highly excited, metastable, state with a lifetime against annihilation of around 1 micros. Effects are observed related to the temperature of the H2+ prior to the interaction, and this is discussed herein.
Temperature dependence of the kinetic energy in the Zr40Be60 amorphous alloy
NASA Astrophysics Data System (ADS)
Syrykh, G. F.; Stolyarov, A. A.; Krzystyniak, M.; Romanelli, G.; Sadykov, R. A.
2017-05-01
The average kinetic energy < E(T)> of the atomic nucleus for each element of the amorphous alloy Zr40Be60 in the temperature range 10-300 K has been measured for the first time using VESUVIO spectrometer (ISIS). The experimental values of < E(T)> have been compared to the partial ZrBe spectra refined by a recursion method based on the data obtained with thermal neutron scattering. The satisfactory agreement has been reached with the calculations using partial spectra based on thermal neutron spectra obtained with recursion method. In addition, the experimental data have been compared to the Debye model. The measurements at different temperatures (10, 200, and 300 K) will provide an opportunity to evaluate the significance of anharmonicity in the dynamics of metallic glasses.
2008-02-28
were found to be open-ion (A or E), unsymmetrical (B or D), or symmetrical C depending on the halogen electrophile and on the position and number of...Rearranged products 4 (Structures A-E) 1 Z = Cl 2 Z = Br 3 Z = I XY = Cl2, Br2, BrCl ICl, IBr Scheme 1 Y on the fluorine atoms of 5 shield the carbon nucleus...and 3) WITH HALOGEN ELECTROPHILES IN METHYLENE CHLORIDE F F F Z XY CH2Cl2 CF2CFZ Y X CF2CFZ X Y CF2CFY X Z + + M aM Rearranged Run Alkene (Z
NASA Astrophysics Data System (ADS)
Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael
2014-11-01
At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.
Chaki, Mounira; Shekariesfahlan, Azam; Ageeva, Alexandra; Mengel, Alexander; von Toerne, Christine; Durner, Jörg; Lindermayr, Christian
2015-09-01
Nitric oxide (NO) is a significant signalling molecule involved in the regulation of many different physiological processes in plants. One of the most imperative regulatory modes of action of NO is protein S-nitrosylation--the covalent attachment of an NO group to the sulfur atom of cysteine residues. In this study, we focus on S-nitrosylation of Arabidopsis nuclear proteins after pathogen infection. After treatment of Arabidopsis suspension cell cultures with pathogens, nuclear proteins were extracted and treated with the S-nitrosylating agent S-nitrosoglutathione (GSNO). A biotin switch assay was performed and biotin-labelled proteins were purified by neutravidin affinity chromatography and identified by mass spectrometry. A total of 135 proteins were identified, whereas nuclear localization has been described for 122 proteins of them. 117 of these proteins contain at least one cysteine residue. Most of the S-nitrosylated candidates were involved in protein and RNA metabolism, stress response, and cell organization and division. Interestingly, two plant-specific histone deacetylases were identified suggesting that nitric oxide regulated epigenetic processes in plants. In sum, this work provides a new collection of targets for protein S-nitrosylation in Arabidopsis and gives insight into the regulatory function of NO in the nucleus during plant defense response. Moreover, our data extend the knowledge on the regulatory function of NO in events located in the nucleus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
FAIR - Cosmic Matter in the Laboratory
NASA Astrophysics Data System (ADS)
Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian
2015-06-01
To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].
Surprising connections: the diverse world of magnetic resonance
NASA Astrophysics Data System (ADS)
Callaghan, Paul
2004-10-01
When Rutherford discovered the atomic nucleus he could not possibly have imagined that it might be a window to understanding molecular biology, or how the brain works. And yet so it has come to pass. It is the through the magnetism of the nucleus that these insights, and so much more, are possible. The phenomenon of ``Nuclear Magnetic Resonance'' has proven an essential tool in physics, it has revolutionised chemistry and biochemistry, it has made astonishing contributions to medicine, and is now making an impact in geophysics, chemical engineering and food technology. It is even finding applications in new security technologies and in testing fundamental ideas concerning quantum computing. But the story of Magnetic Resonance is much more than the application of a well-established method to new areas of science. The technique itself continues to evolve. Magnetic Resonance has now garnered 6 Nobel prizes, two of them in the last two years. For a technique that has been around for nearly 60 years, it is really quite extraordinary that such accolades are still being given to new developments in the methodology. This talk will explain why the nuclear spin is so ubiquitous and interdisciplinary, and so rich in its fundamental physics. It will illustrate how unpredictable and surprising are the consequences of a major scientific discovery. For funding agencies determined to direct research activities towards predicted benefits, the conclusion drawn may provide a salutary lesson.
Electric Dipole Moment Measurements with Rare Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chupp, Timothy
The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over.more » These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic fields and detecting noble atoms' shapes using lasers will provide new techniques for these measurements and impact a broad range of applications including measurements of the neutron EDM. Harvesting rare isotopes at the future FRIB facility at Michigan State University will provide much stronger sources of the isotopes of radon and radium for future-generation experiments and also provide new isotopes for applications including medicine.« less
Nucleus structure and dust morphology: Post-Rosetta understanding and implications
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, A.; Bentley, Mark; Ciarletti, Valérie; Kofman, Woldek; Lasue, Jeremie; Mannel, Thurid; Herique, Alain
2017-10-01
The structure of cometary nuclei and the morphology of dust particles they eject have long been unknowns in cometary science. The combination of these two subjects, as revealed by the Rosetta mission at 67P/C-G, is currently providing an unprecedented insight about Solar System formation and early evolution.Rosetta has established that the bulk porosity of 67P/C-G nucleus is high, in the 70% to 85% range, both from the determination of its density and from permittivity measurements with CONSERT bistatic radar experiment [1-2]. CONSERT, through operations after Philae landing on 12-13 November 2014, has also allowed us to estimate that i) the porosity is likely to be higher inside the nucleus than on its subsurface, ii) a major component of the nucleus is refractory carbonaceous compounds, and iii) the small lobe is homogeneous at a scale of a few wavelengths (i.e., about 10 m), while heterogeneities in the 3-m range (similar to the rounded nodules noticed on walls of large pits) cannot be ruled out [2-4].Rosetta has also established, through its 26 months rendezvous with 67P/C-G, the aggregated structure of dust particles within a wide range of sizes in the inner cometary coma. The MIDAS atomic force microscope experiment has given us evidence (from 3D topographic images with nano- to micrometer resolution) for i) a hierarchical structure of aggregated dust particles, down to tens of nm-sized grains, ii) one extremely porous dust particle, with a fractal dimension of (1.7 ± 0.1) [5-6]. The accuracy of comparisons between cometary dust particles and interplanetary dust particles collected in the stratosphere (including CP-IDPs) could thus be improved.Such results should further refine the main processes (e.g., low velocity aggregation) that allowed the formation of comets in the early Solar System, and the implications of a possible late heavy bombardment on the interplanetary dust clouds and on telluric planets.References. 1. Pätzold et al. Nature 530 63 2016. 2. Kofman et al. Science 349 6247 2015. 3. Herique et al. MNRAS 462 S516 2016. 4. Ciarletti et al. A&A 583 A40 2015. 5. Bentley et al., Nature 537 73 2016. 6. Mannel et al., MNRAS 462 S304 2016.
Ebbesson, S O
1981-01-01
Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.
Functionalized active-nucleus complex sensor
Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth
2003-11-25
A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.
Rolland, Anne-Sophie; Karachi, Carine; Muriel, Marie-Paule; Hirsch, Etienne C; François, Chantal
2011-08-01
The locomotor area has recently emerged as a target for deep brain stimulation to lessen gait disturbances in advanced parkinsonian patients. An important step in choosing this target is to define anatomical limits of its 2 components, the pedunculopontine nucleus and the cuneiform nucleus, their connections with the basal ganglia, and their output descending pathway. Based on the hypothesis that pedunculopontine nucleus controls locomotion whereas cuneiform nucleus controls axial posture, we analyzed whether both nuclei receive inputs from the internal pallidum and substantia nigra using anterograde and retrograde tract tracing in monkeys. We also examined whether these nuclei convey descending projections to the reticulospinal pathway. Pallidal terminals were densely distributed and restricted to the pedunculopontine nucleus, whereas nigral terminals were diffusely observed in the whole extent of both the pedunculopontine nucleus and the cuneiform nucleus. Moreover, nigral terminals formed symmetric synapses with pedunculopontine nucleus and cuneiform nucleus dendrites. Retrograde tracing experiments confirmed these results because labeled cell bodies were observed in both the internal pallidum and substantia nigra after pedunculopontine nucleus injection, but only in the substantia nigra after cuneiform nucleus injection. Furthermore, anterograde tracing experiments revealed that the pedunculopontine nucleus and cuneiform nucleus project to large portions of the pontomedullary reticular formation. This is the first anatomical evidence that the internal pallidum and the substantia nigra control different parts of the brain stem and can modulate the descending reticulospinal pathway in primates. These findings support the functional hypothesis that the nigro-cuneiform nucleus pathway could control axial posture whereas the pallido-pedunculopontine nucleus pathway could modulate locomotion. Copyright © 2011 Movement Disorder Society.
NASA Astrophysics Data System (ADS)
Zhang, G. L.; Zhang, G. X.; Hu, S. P.; Zhang, H. Q.; Gomes, P. R. S.; Lubian, J.; Guo, C. L.; Wu, X. G.; Yang, J. C.; Zheng, Y.; Li, C. B.; He, C. Y.; Zhong, J.; Li, G. S.; Yao, Y. J.; Guo, M. F.; Sun, H. B.; Valiente-Dobòn, J. J.; Goasduff, A.; Siciliano, M.; Galtarosa, F.; Francesco, R.; Testov, D.; Mengoni, D.; Bazzacco, D.; John, P. R.; Qu, W. W.; Wang, F.; Zheng, L.; Yu, L.; Chen, Q. M.; Luo, P. W.; Li, H. W.; Wu, Y. H.; Zhou, W. K.; Zhu, B. J.; Li, E. T.; Hao, X.
2017-11-01
Investigation of the breakup and transfer effect of weakly bound nuclei on the fusion process has been an interesting research topic in the past several years. However, owing to the low intensities of the presently available radioactive ion beam (RIB), it is difficult to clearly explore the reaction mechanisms of nuclear systems with unstable nuclei. In comparison with RIB, the beam intensities of stable weakly bound nuclei such as 6,7Li and 9Be, which have significant breakup probability, are orders of magnitude higher. Precise fusion measurements have already been performed with those stable weakly bound nuclei, and the effect of breakup of those nuclei on the fusion process has been extensively studied. Those nuclei indicated large production cross sections for particles other than the α + x breakup. The particles are originated from non-capture breakup (NCBU), incomplete fusion (ICF) and transfer processes. However, the conclusion of reaction dynamics was not clear and has the contradiction. In our previous experiments we have performed 6Li+96Zr and 154Sm at HI-13 Tandem accelerator of China Institute of Atomic Energy (CIAE) by using HPGe array. It is shown that there is a small complete fusion (CF) suppression on medium-mass target nucleus 96Zr different from about 35% suppression on heavier target nucleus 154Sm at near-barrier energies. It seems that the CF suppression factor depends on the charge of target nuclei. We also observed one neutron transfer process. However, the experimental data are scarce for medium-mass target nuclei. In order to have a proper understanding of the influence of breakup and transfer of weakly bound projectiles on the fusion process, we performed the 6Li+89Y experiment with incident energies of 22 MeV and 34 MeV on Galileo array in cooperation with Si-ball EUCLIDES at Legnaro National Laboratory (LNL) in Italy. Using particle-particle and particle-γ coincidences, the different reaction mechanisms can be clearly explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espada, D.; Matsushita, S.; Sakamoto, K.
2010-09-01
We report on atomic gas (H I) and molecular gas (as traced by CO(2-1)) redshifted absorption features toward the nuclear regions of the closest powerful radio galaxy, Centaurus A (NGC 5128). Our H I observations using the Very Long Baseline Array allow us to discern with unprecedented sub-parsec resolution H I absorption profiles toward different positions along the 21 cm continuum jet in the inner 0.''3 (or 5.4 pc). In addition, our CO(2-1) data obtained with the Submillimeter Array probe the bulk of the absorbing molecular gas with little contamination by emission, which was not possible with previous CO single-dishmore » observations. We shed light on the physical properties of the gas in the line of sight with these data, emphasizing the still open debate about the nature of the gas that produces the broad absorption line ({approx}55 km s{sup -1}). First, the broad H I line is more prominent toward the central and brightest 21 cm continuum component than toward a region along the jet at a distance {approx}20 mas (or 0.4 pc) further from the nucleus. This indicates that the broad absorption line arises from gas located close to the nucleus, rather than from diffuse and more distant gas. Second, the different velocity components detected in the CO(2-1) absorption spectrum match well with other molecular lines, such as those of HCO{sup +}(1-0), except the broad absorption line that is detected in HCO{sup +}(1-0) (and most likely related to that of the H I). Dissociation of molecular hydrogen due to the active galactic nucleus seems to be efficient at distances r {approx}< 10 pc, which might contribute to the depth of the broad H I and molecular lines.« less
EXTREME-ULTRAVIOLET AND X-RAY OBSERVATIONS OF COMET LOVEJOY (C/2011 W3) IN THE LOWER CORONA
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCauley, Patrick I.; Saar, Steven H.; Raymond, John C.
2013-05-10
We present an analysis of extreme-ultraviolet and soft X-ray emission detected toward Comet Lovejoy (C/2011 W3) during its post-perihelion traverse of the solar corona on 2011 December 16. Observations were recorded by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory and the X-Ray Telescope (XRT) aboard Hinode. A single set of contemporaneous images is explored in detail, along with prefatory consideration for time evolution using only the 171 A data. For each of the eight passbands, we characterize the emission and derive outgassing rates where applicable. As material sublimates from the nucleus and is immersed in coronal plasma,more » it rapidly ionizes through charge states seldom seen in this environment. The AIA data show four stages of oxygen ionization (O III-O VI) along with C IV, while XRT likely captured emission from O VII, a line typical of the corona. With a nucleus of at least several hundred meters upon approach to a perihelion that brought the comet to within 0.2 R{sub Sun} of the photosphere, Lovejoy was the most significant sungrazer in recent history. Correspondingly high outgassing rates on the order of 10{sup 32.5} oxygen atoms per second are estimated. Assuming that the neutral oxygen comes from water, this translates to a mass-loss rate of {approx}9.5 Multiplication-Sign 10{sup 9} g s{sup -1}, and based only on the 171 A observations, we find a total mass loss of {approx}10{sup 13} g over the AIA egress. Additional and supporting analyses include a differential emission measure to characterize the coronal environment, consideration for the opening angle, and a comparison of the emission's leading edge with the expected position of the nucleus.« less
NASA Astrophysics Data System (ADS)
Konieczka, M.; Kortelainen, M.; Satuła, W.
2018-03-01
Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may either serve as a complement or even as an alternative to other theoretical approaches, including the conventional nuclear shell model.
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Jeffry Todd
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.« less
Synthesis reactions and radioactive properties of transactinoid elements
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.
1994-10-01
It is well known that the heaviest elements of the periodic table have been synthesized in the cold fusion of magic nuclei of Pb with Z less than 26 ions. Because of dynamic limitations for fusion under strong Coulomb interaction of nuclei, the cross-sections of cold fusion reactions diminish exponentially with growing compound nucleus atomic number. For element Z = 110 produced in the reaction Pb-208(Ni-62,n)(sub 271)110, the expected cross-section is 10(exp -36) sq cm. In still more asymmetric reactions, when isotopes of actinoid elements irradiated with relatively light ions (Z less than or equal 12) are used as the target material, the compound nuclei possess an excitation energy of approx. 50 MeV. At this energy the nuclear shell effects are strongly suppressed and, as a result, in the case of hot compound nuclei of transactinoid elements the fission barrier is practically absent. The transition of these nuclei into the ground state depends strongly on the dynamic properties of the system with respect to the fission degree of freedom. Experimental studies were going on in two directions: (1) determination of the fission time by measuring the prefission neutrons (of Cf-Fm nuclei) in a wide interval of excitation energies; (2) direct synthesis of known nuclides with Z = 102-105 in reactions with ions of Ne-22, Mg-26, Al-27 and P-31 when final nuclei are produced in the ground state after the evaporation of five or six neutrons from the excited compound nuclei (E(sub x) = 50-60 MeV). The dependence of the reaction cross-section (HI, 5-6n) on the atomic number of the compound nucleus in different target-ion combinations points to the possibility of synthesizing new elements in hot fusion reactions. The advantage of these reactions arises from the use of neutron-rich nuclei like Cm-248 and Cf-249 which allows us to synthesize nuclei close to the deformed shell N = 162, for which a considerable growth of stability against spontaneous fission is predicted. Experimental set-ups and methods of detecting rare events of formation and decay of transactinide nuclei are described.
Organization of inner ear endorgan projections in the goldfish, Carassius auratus.
McCormick, C A; Braford, M R
1994-01-01
Cytoarchitectural analysis of the octavolateralis area of the goldfish, Carassius auratus, reveals that as in other teleosts, five first-order octaval nuclei are present: the anterior octaval, magnocellular, descending, tangential, and posterior octaval nuclei. The descending nucleus appears to be anatomically specialized relative to that of the halecomorph Amia calva and many teleosts in that a large dorsomedial subpopulation of the nucleus lies medial to nucleus medialis, a first-order lateral line nucleus. In addition to this dorsomedial zone, the descending nucleus is made up of an intermediate and a ventral zone. Application of horseradish peroxidase (HRP) to individual inner ear endorgans reveals that the distribution of these afferents to the octaval nuclei is generally similar to that in another otophysan, Ictalurus punctatus [McCormick and Braford, 1993]. Nucleus magnocellularis receives a diffuse projection from all of the endorgans. The semicircular canals project heavily to the nucleus tangentialis, the entire ventral zone and portions of the intermediate zone of the descending nucleus, the ventral portion of the caudal anterior nucleus, and the bulk of the rostral anterior nucleus. The macula neglecta projects to the intermediate zone of the descending nucleus and to ventral locations within the dorsal half of the caudal anterior nucleus. The otolithic endorgans--the saccule, lagena, and utricle--project, in an overlapping manner, to the dorsal half of the caudal anterior nucleus and minimally to the rostral anterior nucleus. The inputs of the otolithic endorgans to the intermediate zone of the descending nucleus are more segregated, though a given region is sometimes supplied by more than one endorgan. The projections of the saccule tend to be concentrated more medially than those of the other two endorgans. The dorsomedial zone of the descending nucleus receives the majority of its primary input from the saccule, and a much smaller input from the lagena, over most of its rostrocaudal extent. At caudal-most levels of the dorsomedial zone, afferents from the three otolithic endorgans overlap.
NASA Astrophysics Data System (ADS)
Gharabaghi, Masumeh; Shahbazian, Shant
2017-04-01
The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.
An atom probe perspective on phase separation and precipitation in duplex stainless steels
NASA Astrophysics Data System (ADS)
Guo, Wei; Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel; Young, George A.; Poplawsky, Jonathan D.
2016-06-01
Three-dimensional chemical imaging of Fe-Cr alloys showing Fe-rich (α)/Cr-rich (α‧) phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe-Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100-10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni-Mn-Si-Cu-rich G-phase precipitates form at the α/α‧ interfaces in both alloys. For the 2101 alloy, Cu clusters act to form a nucleus, around which a Ni-Mn-Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core-shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby-Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30-36). ).
An atom probe perspective on phase separation and precipitation in duplex stainless steels
Garfinkel, David A.; Tucker, Julie D.; Haley, Daniel A.; ...
2016-05-16
Here, three-dimensional chemical imaging of Fe–Cr alloys showing Fe-rich (α)/Cr-rich (α') phase separation is reported using atom probe tomography techniques. The extent of phase separation, i.e., amplitude and wavelength, has been quantitatively assessed using the Langer-Bar-on-Miller, proximity histogram, and autocorrelation function methods for two separate Fe–Cr alloys, designated 2101 and 2205. Although the 2101 alloy possesses a larger wavelength and amplitude after annealing at 427 °C for 100–10 000 h, it exhibits a lower hardness than the 2205 alloy. In addition to this phase separation, ultra-fine Ni–Mn–Si–Cu-rich G-phase precipitates form at the α/α' interfaces in both alloys. For the 2101more » alloy, Cu clusters act to form a nucleus, around which a Ni–Mn–Si shell develops during the precipitation process. For the 2205 alloy, the Ni and Cu atoms enrich simultaneously and no core–shell chemical distribution was found. This segregation phenomenon may arise from the exact Ni/Cu ratio inside the ferrite. After annealing for 10 000 h, the number density of the G-phase within the 2205 alloy was found to be roughly one order of magnitude higher than in the 2101 alloy. The G-phase precipitates have an additional deleterious effect on the thermal embrittlement, as evaluated by the Ashby–Orowan equation, which explains the discrepancy between the hardness and the rate of phase separation with respect to annealing time (Gladman T 1999 Mater. Sci. Tech. Ser. 15 30–36).« less
Ohta, Yasuhito; Okamoto, Yoshiko; Page, Alister J; Irle, Stephan; Morokuma, Keiji
2009-11-24
The atomic scale details of single-walled carbon nanotube (SWNT) nucleation on metal catalyst particles are elusive to experimental observations. Computer simulation of metal-catalyzed SWNT nucleation is a challenging topic but potentially of great importance to understand the factors affecting SWNT diameters, chirality, and growth efficiency. In this work, we use nonequilibrium density functional tight-binding molecular dynamics simulations and report nucleation of sp(2)-carbon cap structures on an iron particle consisting of 38 atoms. One C(2) molecule was placed every 1.0 ps around an Fe(38) cluster for 30 ps, after which a further 410 ps of annealing simulation without carbon supply was performed. We find that sp(2)-carbon network nucleation and annealing processes occur in three sequential and repetitive stages: (A) polyyne chains on the metal surface react with each other to evolve into a Y-shaped polyyne junction, which preferentially form a five-membered ring as a nucleus; (B) polyyne chains on the first five-membered ring form an additional fused five- or six-membered ring; and (C) pentagon-to-hexagon self-healing rearrangement takes place with the help of short-lived polyyne chains, stabilized by the mobile metal atoms. The observed nucleation process resembles the formation of a fullerene cage. However, the metal particle plays a key role in differentiating the nucleation process from fullerene cage formation, most importantly by keeping the growing cap structure from closing into a fullerene cage and by keeping the carbon edge "alive" for the addition of new carbon material.
Gharabaghi, Masumeh; Shahbazian, Shant
2017-04-21
The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.
2018-05-01
A fully quantum mechanical four-body treatment of charge transfer collisions between energetic protons and atomic helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the collision, the helium atom is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer collisions, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.
Knyihár-Csillik, E; Boncz, I; Sáry, G; Nemcsók, J; Csillik, B
1999-06-01
Meynert's basal nucleus is innervated by calcitonin gene-related peptide (CGRP)-immunoreactive axons synapsing with cholinergic principal cells. Origin of CGRP-immunopositive axons was studied in the albino rat. Since beaded axons containing the nicotinic acetylcholine receptor (nAChR) are also present in the basal nucleus, the microstructural arrangement raises the question whether or not an interaction between CGRP and nAChR exists like in the neuromuscular junction. We found that electrolytic lesion of the parabrachial nucleus results in degeneration of CGRP-immunoreactive axons in the ipsilateral nucleus basalis and induces shrinkage of principal cholinergic neurons while the contralateral nucleus basalis remains intact. Electrolytic lesions in the thalamus, caudate-putamen, and hippocampus did not induce alterations in Meynert's basal nucleus. Disappearance of CGRP after lesions of the parabrachial nucleus does not impair presynaptic nAChR in the basal nucleus, suggesting that, unlike in the neuromuscular junction, CGRP is not involved in the maintenance of nAChR in the basal forebrain. It is concluded that the parabrachial nucleus is involved in the activation of the nucleus basalis-prefrontal cortex system, essential in gnostic and mnemonic functions. Copyright 1999 Academic Press.
The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts
Alam, Samer G.; Lovett, David; Kim, Dae In; Roux, Kyle J.; Dickinson, Richard B.; Lele, Tanmay P.
2015-01-01
ABSTRACT Nuclear positioning is a crucial cell function, but how a migrating cell positions its nucleus is not understood. Using traction-force microscopy, we found that the position of the nucleus in migrating fibroblasts closely coincided with the center point of the traction-force balance, called the point of maximum tension (PMT). Positioning of the nucleus close to the PMT required nucleus–cytoskeleton connections through linker of nucleoskeleton-to-cytoskeleton (LINC) complexes. Although the nucleus briefly lagged behind the PMT following spontaneous detachment of the uropod during migration, the nucleus quickly repositioned to the PMT within a few minutes. Moreover, traction-generating spontaneous protrusions deformed the nearby nucleus surface to pull the nuclear centroid toward the new PMT, and subsequent retraction of these protrusions relaxed the nuclear deformation and restored the nucleus to its original position. We propose that the protruding or retracting cell boundary transmits a force to the surface of the nucleus through the intervening cytoskeletal network connected by the LINC complexes, and that these forces help to position the nucleus centrally and allow the nucleus to efficiently propagate traction forces across the length of the cell during migration. PMID:25908852
Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald
2003-01-01
Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729
NASA Technical Reports Server (NTRS)
Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.
1992-01-01
The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.
Higgs-boson production in nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W. (Principal Investigator)
1990-01-01
Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
Higgs-Boson Production in Nucleus-Nucleus Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
1992-01-01
Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.
The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive.
Fu, Yu Hong; Watson, Charles
2012-01-01
The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus. Copyright © 2012 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Fennelly, A. J.
1981-01-01
The TH epsilon mu formalism, used in analyzing equivalence principle experiments of metric and nonmetric gravity theories, is adapted to the description of the electroweak interaction using the Weinberg-Salam unified SU(2) x U(1) model. The use of the TH epsilon mu formalism is thereby extended to the weak interactions, showing how the gravitational field affects W sub mu (+ or -1) and Z sub mu (0) boson propagation and the rates of interactions mediated by them. The possibility of a similar extension to the strong interactions via SU(5) grand unified theories is briefly discussed. Also, using the effects of the potentials on the baryon and lepton wave functions, the effects of gravity on transition mediated in high-A atoms which are electromagnetically forbidden. Three possible experiments to test the equivalence principle in the presence of the weak interactions, which are technologically feasible, are then briefly outline: (1) K-capture by the FE nucleus (counting the emitted X-ray); (2) forbidden absorption transitions in high-A atoms' vapor; and (3) counting the relative Beta-decay rates in a suitable alpha-beta decay chain, assuming the strong interactions obey the equivalence principle.
2010-03-09
STS134-S-001 (March 2010) --- The design of the STS-134 crew patch highlights research on the International Space Station (ISS) focusing on the fundamental physics of the universe. On this mission, the crew of the space shuttle Endeavour will install the Alpha Magnetic Spectrometer (AMS) experiment - a cosmic particle detector. By studying subatomic particles in the background cosmic radiation and searching for antimatter, dark-matter, and dark energy, it will help scientists better understand the evolution and properties of our universe. The shape of the patch is inspired by the international atomic symbol, and represents the atom with orbiting electrons around the nucleus. The burst near the center refers to the origin of the universe. The space shuttle Endeavour and ISS fly together into the sunrise over the limb of the Earth, representing the dawn of a new age?understanding the nature of the universe. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Zou, Wenli; Filatov, Michael; Cremer, Dieter
2015-06-01
The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.
NASA Astrophysics Data System (ADS)
Feldman, Paul D.; A’Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Keeney, Brian A.; Knight, Matthew M.; Noonan, John; Parker, Joel Wm.; Schindhelm, Eric; Steffl, Andrew J.; Stern, S. Alan; Vervack, Ronald J.; Weaver, Harold A.
2018-01-01
The Alice far-ultraviolet imaging spectrograph onboard Rosetta observed emissions from atomic and molecular species from within the coma of comet 67P/Churyumov–Gerasimenko during the entire escort phase of the mission from 2014 August to 2016 September. The initial observations showed that emissions of atomic hydrogen and oxygen close to the surface were produced by energetic electron impact dissociation of H2O. Following delivery of the lander, Philae, on 2014 November 12, the trajectory of Rosetta shifted to near-terminator orbits that allowed for these emissions to be observed against the shadowed nucleus that, together with the compositional heterogeneity, enabled us to identify unique spectral signatures of dissociative electron impact excitation of H2O, CO2, and O2. CO emissions were found to be due to both electron and photoexcitation processes. Thus, we are able, from far-ultraviolet spectroscopy, to qualitatively study the evolution of the primary molecular constituents of the gaseous coma from start to finish of the escort phase. Our results show asymmetric outgassing of H2O and CO2 about perihelion, H2O dominant before and CO2 dominant after, consistent with the results from both the in situ and other remote sensing instruments on Rosetta.
Violent Tidal Disruptions of Atomic Hydrogen Gas in Quasar Host Galaxies
NASA Astrophysics Data System (ADS)
Lim, Jeremy; Ho, Paul T. P.
1999-01-01
Violent galactic encounters or mergers are the leading contenders for triggering luminous quasar activity at low redshifts: such interactions can lead to the concentration of gas in the host galactic nucleus, thus fueling the suspected central supermassive black hole. Although optical images show a number of violently interacting systems, in many cases, the evidence for such interactions is only circumstantial (e.g., asymmetric optical morphologies, projected nearby companion galaxies) or not at all apparent. Here we image quasar host galaxies for the first time in the redshifted 21 cm line emission of neutral atomic hydrogen (H I) gas, which, in nearby galaxies, has proved to be a particularly sensitive as well as enduring tracer of tidal interactions. The three quasars studied have different optical environments that are normally seen around low-redshift quasars, ranging from a perhaps mildly interacting system to a relatively undisturbed host with a projected neighboring galaxy to an isolated and apparently serene host galaxy. By contrast with their optical appearances, all three quasar host galaxies exhibit ongoing or remnant tidal H I disruptions tracing galactic encounters or mergers. These observations demonstrate the utility of H I at revealing tidal interactions in quasar host galaxies and, combined with optical studies, provide a fuller understanding of the likely stage of the interaction.
NASA Astrophysics Data System (ADS)
Jadambaa, Khuyagbaatar
2017-11-01
The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.
Zhu, Min; Xia, Mengjiao; Song, Zhitang; Cheng, Yan; Wu, Liangcai; Rao, Feng; Song, Sannian; Wang, Miao; Lu, Yegang; Feng, Songlin
2015-06-07
Phase change materials, successfully used in optical data-storage and non-volatile electronic memory, are well-known for their ultrafast crystallization speed. However, the fundamental understanding of their crystallization behavior, especially the nucleation process, is limited by present experimental techniques. Here, real-time radial distribution functions (RDFs), derived from the selected area electron diffractions, are employed as structural probes to comprehensively study both nucleation and subsequent growth stages of Ti-doped Sb2Te3 (TST) materials in the electron-irradiation crystallization process. It can be found that the incorporation of Ti atoms in Sb2Te3 forms wrong bonds such as Ti-Te, Ti-Sb, breaks the originally ordered atomic arrangement and diminishes the initial nucleus size of the as-deposited films, which results in better thermal stability. But these nuclei hardly grow until their sizes exceed a critical value, and then a rapid growth period starts. This means that an extended nucleation time is required to form the supercritical nuclei of TST alloys with higher concentration. Also, the increasing formation of four-membered rings, which served as nucleation sites, after doping excessive Ti is responsible for the change of the crystallization behavior from growth-dominated to nucleation-dominated.
Voneida, T J; Sligar, C M
1979-07-01
A H3 proline-leucine mixture was injected into the dorsal ventricular ridge (DVR) and striatum of the Tegu lizard in order to determine their efferent projections. The brains were processed according to standard radioautographic technique, and counterstained with cresyl violet. DVR projections were generally restricted to the telencephalon, while striatal projections were limited to diencephalic and mesencephalic structures. Thus the anterior DVR projects ipsilaterally to nuclei sphericus and lateralis amygdalae, striatum (ipsilateral and contralateral) ventromedial nucleus of the hypothalamus, nucleus accumbens, anterior olfactory nucleus, nucleus of the lateral olfactory tract and lateral pallium. Posterior DVR projections enter ipsilateral anterior olfactory nucleus, lateral and interstitial amygdalar nuclei, olfactory tubercle and bulb, nucleus of the lateral olfactory tract and a zone surrounding the ventromedial hypothalamic nucleus. Labeled axons from striatal injections pass caudally in the lateral forebrain bundle to enter (via dorsal peduncle) nuclei dorsomedialis, medialis posterior, entopeduncularis anterior, and a zone surrounding nucleus rotundus. Others join the ventral peduncle of LFB and enter ventromedial nucleus (thalami), while the remaining fibers continue caudally in the ventral peduncle to the mesencephalic prerubral field, central gray, substantia nigra, nucleus intercollicularis, reticular formation and pretectal nucleus posterodorsalis. These results are discussed in relation to the changing notions regarding terminology, classification and functions of dorsl ventricular ridge and striatum.
A thalamic input to the nucleus accumbens mediates opiate dependence.
Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke
2016-02-11
Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.
A Simple Correlation for Neutron Capture Rates from Nuclear Masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, Aaron Joseph
Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In anmore » astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.« less
Beam Extinction Monitoring in the Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prebys, Eric; Bartoszek, Larry; Gaponenko, Andrei
The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10⁻¹⁰ fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. Themore » precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.« less
Electron momentum density and Compton profile by a semi-empirical approach
NASA Astrophysics Data System (ADS)
Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.
2015-08-01
Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.
Probing the presently tenuous link between comets and the origin of life
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Hollis, J. M.
1982-01-01
The possibilities of using millimeter-wave technology to probe the subsurface processes of comets to investigate links between cometary materials and the origins of life are explored. It is noted that current theories hold that the necessities for life to begin comprise a fairly uniform temperature, the presence of a solvent to give materials mobility, and the presence of atoms which can form long chains of molecules. Consideration is given to two cometary nuclei models: a core with an equal amount of liquid water and lunar material, and a nucleus with equal amounts of frozen water ice and lunar material. Solutions to the radiative transfer equation for the two models are presented to characterize identifiable emissions using radiometric spectrometer instrumentation on a spacecraft. Particular species such as OH, CN, HCN, and glycine are expected to be detectable if present.
A Chemical Model of the Coma of Comet C/2009 P1 (Garradd)
NASA Astrophysics Data System (ADS)
Boice, Daniel C.; Kawakita, H.; Kobayashi, H.; Naka, C.; Phelps, L.
2012-10-01
Modeling is essential to understand the important physical and chemical processes that occur in cometary comae. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that react via impacts are important to the overall ionization. We identify the relevant processes within a global modeling framework to understand simultaneous observations in the visible and near-IR of Comet C/2009 (Garradd) and to provide valuable insights into the intrinsic properties of its nucleus. Details of these processes are presented in the collision-dominated, inner coma of the comet to evaluate the relative chemical pathways and the relationship between parent and sibling molecules. Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program.
A new equation of state Based on Nuclear Statistical Equilibrium for Core-Collapse Simulations
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki
2012-09-01
We calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.
Polymeric Materials With Additives for Durability and Radiation Shielding in Space
NASA Technical Reports Server (NTRS)
Kiefer, Richard
2011-01-01
Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.
Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter
2016-05-01
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
An Investigation of Age-Related Iron Deposition Using Susceptibility Weighted Imaging
Wang, Dan; Li, Wen-Bin; Wei, Xiao-Er; Li, Yue-Hua; Dai, Yong-Ming
2012-01-01
Aim To quantify age-dependent iron deposition changes in healthy subjects using Susceptibility Weighted Imaging (SWI). Materials and Methods In total, 143 healthy volunteers were enrolled. All underwent conventional MR and SWI sequences. Subjects were divided into eight groups according to age. Using phase images to quantify iron deposition in the head of the caudate nucleus and the lenticular nucleus, the angle radian value was calculated and compared between groups. ANOVA/Pearson correlation coefficient linear regression analysis and polynomial fitting were performed to analyze the relationship between iron deposition in the head of the caudate nucleus and lenticular nucleus with age. Results Iron deposition in the lenticular nucleus increased in individuals aged up to 40 years, but did not change in those aged over 40 years once a peak had been reached. In the head of the caudate nucleus, iron deposition peaked at 60 years (p<0.05). The correlation coefficients for iron deposition in the L-head of the caudate nucleus, R-head of the caudate nucleus, L-lenticular nucleus and R-lenticular nucleus with age were 0.67691, 0.48585, 0.5228 and 0.5228 (p<0.001, respectively). Linear regression analyses showed a significant correlation between iron deposition levels in with age groups. Conclusions Iron deposition in the lenticular nucleus was found to increase with age, reaching a plateau at 40 years. Iron deposition in the head of the caudate nucleus also increased with age, reaching a plateau at 60 years. PMID:23226360
Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei
2015-05-19
To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.
Spinodal assisted growing dynamics of critical nucleus in polymer blends
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Qi, Shuanhu; Yan, Dadong
2012-11-01
In metastable polymer blends, nonclassical critical nucleus is not a drop of stable phase in core wrapped with a sharp interface, but a diffuse structure depending on the metastability. Thus, forming a critical nucleus does not mean the birth of a new phase. In the present work, the nonclassical growing dynamics of the critical nucleus is addressed in the metastable polymer blends by incorporating self-consistent field theory and external potential dynamics theory, which leads to an intuitionistic description for the scattering experiments. The results suggest that the growth of nonclassical critical nucleus is controlled by the spinodal-decomposition which happens in the region surrounding the nucleus. This leads to forming the shell structures around the nucleus.
Huang, Zufeng; Miao, Xiaoqing
2015-09-01
To investigate the effect of non-phacoemulsification cataract operation in two different patterns of nucleus delivery on the quantity and morphology of corneal endothelial cells and postoperative visual acuity. Forty patients diagnosed with cataract underwent cataract surgery and were assigned into the direct nuclear delivery and semi-nuclear delivery groups. Lens density was measured and divided into the hard and soft lenses according to Emery-little lens nucleus grading system. Non-phacoemulsification cataract operation was performed. At 3 d after surgery, the quantity and morphology of corneal endothelium were counted and observed under corneal endothelial microscope. During 3-month postoperative follow-up, the endothelial cell loss rate, morphological changes and visual acuity were compared among four groups. Corneal endothelial cell loss rate in the direct delivery of hard nucleus group significantly differed from those in the other three groups before and 3 months after operation (P < 0.01), whereas no statistical significance was found among the direct delivery of soft nucleus, semi-delivery of hard nucleus and semi-delivery soft nucleus groups (all P > 0.05). Preoperative and postoperative 2-d visual acuity did not differ between the semi-delivery of hard nucleus and direct delivery of soft nucleus groups (P = 0.49), significantly differed from those in the semi-delivery of soft nucleus (P = 0.03) and direct delivery of hard nucleus groups (P = 0.14). Visual acuity at postoperative four months did not differ among four groups (P = 0.067). During non-phacoemulsification cataract surgery, direct delivery of hard nucleus caused severe injury to corneal endothelium and semi-delivery of soft nucleus yielded mild corneal endothelial injury. Slight corneal endothelial injury exerted no apparent effect upon visual acuity and corneal endothelial morphology at three months after surgery.
In vitro and in silico investigations of disc nucleus replacement
Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik
2012-01-01
Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630
Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.
Pritz, M B
2016-05-13
The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and mammal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Yang, C C; Chan, J Y; Chan, S H
1995-03-01
We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.
Mapping of somatostatin-28 (1-12) in the alpaca (Lama pacos) brainstem.
De Souza, Eliana; Sánchez, Manuel Lisardo; Aguilar, Luís Ángel; Díaz-Cabiale, Zaida; Narváez, José Ángel; Coveñas, Rafael
2015-05-01
Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing somatostatin-28 (1-12) in the alpaca brainstem. Immunoreactive fibers were widely distributed throughout the whole brainstem: 34 brainstem nuclei/regions showed a high or a moderate density of these fibers. Perikarya containing the peptide were widely distributed throughout the mesencephalon, pons and medulla oblongata. Cell bodies containing somatostatin-28 (1-12) were observed in the lateral and medial divisions of the marginal nucleus of the brachium conjunctivum, reticular formation (mesencephalon, pons and medulla oblongata), inferior colliculus, periaqueductal gray, superior colliculus, pericentral division of the dorsal tegmental nucleus, interpeduncular nucleus, nucleus of the trapezoid body, vestibular nucleus, motor dorsal nucleus of the vagus, nucleus of the solitary tract, nucleus praepositus hypoglossi, and in the substantia nigra. This widespread distribution indicates that somatostatin-28 (1-12) is involved in multiple physiological actions in the alpaca brainstem. © 2015 Wiley Periodicals, Inc.
Nuclear lamina at the crossroads of the cytoplasm and nucleus.
Gerace, Larry; Huber, Michael D
2012-01-01
The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal. Copyright © 2011 Elsevier Inc. All rights reserved.
Kramer, A; Liashkovich, I; Oberleithner, H; Ludwig, S; Mazur, I; Shahin, V
2008-08-12
Apoptosis, a physiologically critical process, is characterized by a destruction of the cell after sequential degradation of key cellular components. Here, we set out to explore the fate of the physiologically indispensable nuclear envelope (NE) in this process. The NE mediates the critical nucleocytoplasmic transport through nuclear pore complexes (NPCs). In addition, the NE is involved in gene expression and contributes significantly to the overall structure and mechanical stability of the cell nucleus through the nuclear lamina, which underlies the entire nucleoplasmic face of the NE and thereby interconnects the NPCs, the NE, and the genomic material. Using the nano-imaging and mechanical probing approach atomic force microscopy (AFM) and biochemical methods, we unveiled the fate of the NE during apoptosis. The doomed NE sustains a degradation of both the mediators of the critical selective nucleocytoplasmic transport, namely NPC cytoplasmic filaments and basket, and the nuclear lamina. These observations are paralleled by marked softening and destabilization of the NE and the detection of vesicle-like nuclear fragments. We conclude that destruction of the cell nucleus during apoptosis proceeds in a strategic fashion. Degradation of NPC cytoplasmic filaments and basket shuts down the critical selective nucleocytoplasmic cross-talk. Degradation of the nuclear lamina disrupts the pivotal connection between the NE and the chromatin, breaks up the overall nuclear architecture, and softens the NE, thereby enabling the formation of nuclear fragments at later stages of apoptosis.
Buhrke, Thorsten; Brecht, Marc; Lubitz, Wolfgang; Friedrich, Bärbel
2002-09-01
[NiFe] hydrogenases contain a highly conserved histidine residue close to the [NiFe] active site which is altered by a glutamine residue in the H(2)-sensing [NiFe] hydrogenases. In this study, we exchanged the respective glutamine residue of the H(2) sensor (RH) of Ralstonia eutropha, Q67 of the RH large subunit HoxC, by histidine, asparagine and glutamate. The replacement by histidine and asparagine resulted in slightly unstable RH proteins which were hardly affected in their regulatory and enzymatic properties. The exchange to glutamate led to a completely unstable RH protein. The purified wild-type RH and the mutant protein with the Gln/His exchange were analysed by continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques. We observed a coupling of a nitrogen nucleus with the [NiFe] active site for the mutant protein which was absent in the spectrum of the wild-type RH. A combination of theoretical calculations with the experimental data provided an explanation for the observed coupling. It is shown that the coupling is due to the formation of a weak hydrogen bond between the protonated N(epsilon) nucleus of the histidine with the sulfur of a conserved cysteine residue which coordinates the metal atoms of the [NiFe] active site as a bridging ligand. The effect of this hydrogen bond on the local structure of the [NiFe] active site is discussed.
Sub-cellular force microscopy in single normal and cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babahosseini, H.; Carmichael, B.; Strobl, J.S.
2015-08-07
This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer andmore » significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.« less
High energy nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Wosiek, B.
1986-01-01
Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.
Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir
2016-01-01
Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C J
A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-raymore » sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.« less
Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.
Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2013-06-01
More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.
Cavdar, Safiye; Onat, Filiz Y; Cakmak, Yusuf Ozgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan
2008-03-01
Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a 'canonical' circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6-1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex.
Çavdar, Safiye; Onat, Filiz Y; Çakmak, Yusuf Özgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan
2008-01-01
Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a ‘canonical’ circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6–1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex. PMID:18221482
1996-06-07
the auditory nerve, the ventral cochlear nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, spinal neuron, and lower... nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, hippocampus, and striatum (Davis, et al., 1982; Swerdlow, et aI, 1992...Davis, M. (1985) Cocaine effects on acoustic startle and startle elicited electrically from cochlear nucleus . P§ychQpharmacology, 87, 396-399 James
Harris, A C; Atkinson, D M; Aase, D M; Gewirtz, J C
2006-01-01
The basolateral amygdala and portions of the "extended" amygdala (i.e. central nucleus of the amygdala, bed nucleus of the stria terminalis and shell of the nucleus accumbens) have been implicated in the aversive aspects of withdrawal from chronic opiate administration. Given that similar withdrawal signs are observed following a single opiate exposure, these structures may also play a role in "acute opiate dependence." In the current study, drug-naïve rats underwent naloxone-precipitated withdrawal from acute morphine (10 mg/kg) exposure on two successive days. On either the first or second day of testing, the basolateral amygdala, central nucleus of the amygdala, bed nucleus of the stria terminalis, or nucleus accumbens was temporarily inactivated immediately prior to naloxone injection by microinfusion of the glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide (3 microg/0.5 microl). On the first day, inactivation of the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis, but not the nucleus accumbens blocked withdrawal-potentiated startle, a behavioral measure of the anxiogenic effects of withdrawal. On the second day, inactivation of the nucleus accumbens, but not the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis disrupted the withdrawal effect. Effects of structural inactivations on withdrawal-potentiated startle were not influenced by differences in withdrawal severity on the two days of testing. A fear-potentiated startle procedure provided functional confirmation of correct cannulae placement in basolateral amygdale- and central nucleus of the amygdala-implanted animals. Our findings indicate a double dissociation in the neural substrates of withdrawal-potentiated startle following a first versus second morphine exposure, and may reflect a reorganization of the neural circuitry underlying the expression of withdrawal-induced negative affect during the earliest stages of opiate dependence.
Photonuclear absorption cross sections
NASA Technical Reports Server (NTRS)
Norbury, John W.
1989-01-01
Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.
Anatomy of the human hypothalamus (chiasmatic and tuberal region).
Braak, H; Braak, E
1992-01-01
The hypothalamus sensu stricto consists of the chiasmatic, the tuberal and the mamillary region. The present study is confined to the poorly myelinated chiasmatic and tuberal region. Both regions harbor many nuclear grays with relatively clear-cut boundaries embedded in an ill-defined nerve cell assembly referred to as the hypothalamic gray. Prominent components of the chiasmatic region are the magnocellular neurosecretory complex (supraoptic nucleus, paraventricular nucleus, accessory neurosecretory nucleus), the sexually dimorphic intermediate nucleus, the suprachiasmatic and retrochiasmatic nuclei. The dominating structure of the tuberal region is the complex of the ventromedial, posteromedial and dorsomedial nuclei supplemented by the periventricular and infundibular nuclei. Lateral portions of the tuber cinereum harbor the lateral tuberal nucleus and the tuberomamillary nucleus. The lateral tuberal nucleus exhibits pronounced cell loss in Huntington's chorea and is also severely involved in cases of dementia with argyrophilic grains. The large nerve cells of the tuberomamillary nucleus show particularly severe affection in both Alzheimer's (intraneuronal neurofibrillary changes) and Parkinson's disease (Lewy bodies).
Zhang, Haiyan; Wen, Shenglin; Wang, Jihui; Cheng, Minfeng; Wang, Hong
2015-03-10
To explore the magnetic resonance spectroscopy characteristics of lenticular nucleus in Bipolar II disorder and its relation with cognitive function. Thirty Bipolar II disorder patients in hospital from 2012 September to 2013 April and twenty healthy controls were evaluated with Multi-Voxel 1H-MRS scans on lenticular nucleus to assess the NAA, Cho, Cr and MI. All subjects were assessed for attention using the Stroop Test and executive function by Wisconsin card sorting test. NAA, Cho, Cr in right lenticular nucleus and Cr in left lenticular nucleus were lower than healthy controls (P < 0.05). The patients showed significant cognitive impairment in all aspects of Stroop Test and Wisconsin card sorting test (P < 0.05). NAA in right lenticular nucleus was positively correlated with correct number of Stroop-CW. Neural dysfunction in right lenticular nucleus of Bipolar II disorder may influence attention function. Cellular energy metabolism rate was reduced in bilateral lenticular nucleus.
NASA Technical Reports Server (NTRS)
Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.
1992-01-01
To better understand the functional organization of the mammillary nuclei, we investigated the afferents to this nuclear complex in the rat with iontophoretically injected wheat germ agglutinin conjugated to horseradish peroxidase. Particular attention was paid to tracing local hypothalamic afferents to these nuclei. Injections into the medial mammillary nucleus (MMN) revealed strong projections from the subicular region, and weaker projections from the prefrontal cortex, medial septum, and the nucleus of the diagonal band of Broca. Other descending subcortical projections to the MMN arise from the anterior and the lateral hypothalamic area, the medial preoptic area, and the bed nucleus of the stria terminalis. Ascending afferents to the MMN were found to originate in the raphe and various tegmental nuclei. Following all injections into the MMN, labelled neurons were found in nuclei surrounding the mammillary body. The lateral and posterior subdivisions of the tuberomammillary nucleus projected mainly to the pars medianus and pars medialis of the MMN. The dorsal and ventral premammillary nuclei projected to the pars lateralis of the MMN. The supramammillary nucleus at rostral level had a small projection to the pars medialis and lateralis of the MMN. However, the most obvious projection from this nucleus was to the pars posterior of the MMN, chiefly from the lateral part of the caudal supramammillary nucleus. Injections into the lateral mammillary nucleus revealed inputs from the presubiculum, parasubiculum, septal region, dorsal tegmental nucleus, dorsal raphe nucleus, and periaqueductal gray. In addition, the lateral mammillary nucleus was found to receive a moderate projection from the medial part of the supramammillary nucleus and stronger projections from the lateral part of the caudal supramammillary nucleus. A very light projection was also seen from the lateral and posterior subdivisions of the tuberomammillary nucleus. These findings add to our knowledge of the extensive and complex connectivity of the mammillary nuclei. In particular, the local connections we have demonstrated with the supramammillary and tuberomammillary nuclei indicate the existence of significant local circuits as well as circuits involving more distant brain regions such as the septal nuclei, subiculum, prefrontal cortex, and brain stem tegmentum.
Is {sup 276}U a doubly magic nucleus?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.
2016-04-19
We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.
Low P sub T hadron-nucleus interactions
NASA Technical Reports Server (NTRS)
Holynski, R.; Wozniak, K.
1985-01-01
The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.
Subcortical afferent connections of the amygdala in the monkey
NASA Technical Reports Server (NTRS)
Mehler, W. R.
1980-01-01
The cells of origin of the afferent connections of the amygdala in the rhesus and squirrel monkeys are determined according to the retrograde axonal transport of the enzyme horseradish peroxidase injected into various quadrants of the amygdala. Analysis of the distribution of enzyme-labeled cells reveals afferent amygdalar connections with the ipsilateral halves of the midline nucleus paraventricularis thalami and both the parvo- and magnocellular parts of the nucleus subparafascicularis in the dorsal thalamus, all the subdivisions of the midline nucleus centralis complex, the nucleus reuniens ventralis and the nucleus interventralis. The largest populations of enzyme-labeled cells in the hypothalamus are found to lie in the middle and posterior parts of the ipsilateral, lateral hypothalamus and the ventromedial hypothalamic nucleus, with scattered cells in the supramammillary and dorsomedial nuclei and the posterior hypothalamic area, Tsai's ventral tegmental area, the rostral and caudal subdivisions of the nucleus linearis in the midbrain and the dorsal raphe nucleus. The most conspicuous subdiencephalic source of amygdalar afferent connections is observed to be the pars lateralis of the nucleus parabrachialis in the dorsolateral pontine tegmentum, with a few labeled cells differentiated from pigmented cells in the locus coeruleus.
Distribution of Neurotensin and Somatostatin-28 (1-12) in the Minipig Brainstem.
Sánchez, M L; Vecino, E; Coveñas, R
2016-08-01
Using an indirect immunoperoxidase technique, an in depth study has been carried out for the first time on the distribution of fibres and cell bodies containing neurotensin and somatostatin-28 (1-12) (SOM) in the minipig brainstem. The animals used were not treated with colchicine. The distribution of neurotensin- and SOM-immunoreactive fibres was seen to be quite similar and was moderate in the minipig brainstem: a close anatomical relationship between both neuropeptides was observed. The distribution of cell bodies containing neurotensin or SOM was quite different and restricted. Cell bodies containing neurotensin were found in four brainstem nuclei: nucleus centralis raphae, nucleus dorsalis raphae, in the pars centralis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis raphae. Cell bodies containing SOM were found in six nuclei/regions of the brainstem: nucleus ambiguus, nucleus dorsalis motorius nervi vagus, formatio reticularis, nucleus parabrachialis medialis, nucleus reticularis lateralis and nucleus ventralis raphae. According to the observed anatomical distribution of the immunoreactive structures containing neurotensin or SOM, the peptides could be involved in sleep-waking, nociceptive, gustatory, motor, respiratory and autonomic mechanisms. © 2015 Blackwell Verlag GmbH.
Serotonin projection patterns to the cochlear nucleus.
Thompson, A M; Thompson, G C
2001-07-13
The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the dorsal cochlear nucleus, we concluded that the serotoninergic projection pattern to the cochlear nucleus is divergent and non-specific. Double-labeled fiber segments were also present, but sparse, in the superior olive, localized mainly in periolivary regions; this indicated that the divergence of dorsal and median raphe neurons that extends throughout regions of the cochlear nucleus also extended well beyond the cochlear nucleus to include at least the superior olivary complex as well.
Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.
1988-01-01
A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.
Terminal distribution of retinal fibers in the tegu lizard (Tupinambis nigropunctatus).
Ebbesson, S O; Karten, H J
1981-01-01
The retinal projections in the tegu lizard were traced using degeneration-silver methods. Bilateral projections were found to the dorsolateral geniculate and the posterodorsal nuclei. Unilateral, crossed projections were traced to the suprachiasmatic nucleus, the ventrolateral geniculate nucleus, the mesencephalic lentiform nucleus, nucleus geniculatus praetectalis, the ectomammillary nucleus, and the optic tectum. Some of these connections are distinctly different from those reported in other reptiles and suggest that important interspecific variations occur among reptiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de
2011-08-26
Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and realmore » time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.« less
Steinmetz, J E; Sengelaub, D R
1992-03-01
Wheat germ agglutinin and cholera toxin-conjugated horseradish peroxidase (HRP) were used to retrogradely and anterogradely trace connectivity between the lateral regions of the pontine nuclei and the anterior interpositus nucleus of the cerebellum in rabbits. Projections from the pontine nuclei were found to terminate in the anterior interpositus nucleus and the interpositus was found to send projections to the pontine nuclei. Projections from the nucleus reticularis tegmenti pontis, dorsal accessory inferior olive, and Larsell's lobule HVI of the cerebellum were also found to terminate in the interpositus nucleus and projections from the interpositus nucleus to the inferior olivary complex were observed. The projections from brain stem regions to the interpositus nucleus are discussed as possible pathways that are involved in classical eyelid conditioning.
Spectroscopy of a Synthetic Trapped Ion Qubit
NASA Astrophysics Data System (ADS)
Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.
2017-09-01
133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Out-of-Time Beam Extinction in the MU2E Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prebys, E. J.; Werkema, S.
The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches 250 ns FW long, separated by 1.7more » $$\\mu$$ sec, with no out-of-time protons at the $$10^{10}$$ fractional level. Satisfying this "extinction" requirement is very challenging. The formation of the bunches is expected to result in an extinction on the order of $10^5$. The remaining extinction will be accomplished by a system of resonant magnets and collimators, configured such that only in-time beam is delivered to the experiment. Our simulations show that the total extinction achievable by the system is on the order of $$10^{12}$$, with an efficiency for transmitting in-time beam of 99.6%.« less
First determination of ground state electromagnetic moments of Fe 53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. J.; Minamisono, K.; Rossi, D. M.
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
NASA Astrophysics Data System (ADS)
Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration
2017-08-01
Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.
Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
E, J. C.; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031; Wang, L.
2015-02-14
Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10{sup 32} m{supmore » −3}s{sup −1}, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1–19, which also depends on thermal fluctuations and supercooling.« less
Rover Touchdown on Martian Surface
1997-07-06
This picture taken by the IMP (Imager for Mars Pathfinder) aboard the Mars Pathfinder spacecraft depicts the rover Sojourner's position after driving onto the Martian surface. Sojourner has become the first autonomous robot ever to traverse the surface of Mars. This image reflects the success of Pathfinder's principle objective -- to place a payload on Mars in a safe, operational configuration. The primary mission of Sojourner, scheduled to last seven days, will be to use its Alpha Proton X-ray Spectrometer (APXS) instrument to determine the elements that make up the rocks and soil on Mars. A full study using the APXS takes approximately ten hours, and can measure all elements except hydrogen at any time of the Martian day or night. The APXS will conduct its studies by bombarding rocks and soil samples with alpha particle radiation -- charged particles equivalent to the nucleus of a helium atom, consisting of two protons and two neutrons. http://photojournal.jpl.nasa.gov/catalog/PIA00623
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
First determination of ground state electromagnetic moments of Fe 53
Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...
2017-11-16
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
Novel and Recent Synthesis and Applications of β-Lactams
NASA Astrophysics Data System (ADS)
Troisi, Luigino; Granito, Catia; Pindinelli, Emanuela
In this chapter, a comprehensive overview of the most significant and interesting contributions published from 2000 until now, concerning the preparation of novel β-lactam structures is presented. Among the different synthetic strategies available, either novel or already known but efficient and versatile methodologies are covered. The simple modifications of one or more substituents linked to the nitrogen N-1, the C-3, and the C-4 carbon atoms of the β-lactam nucleus were considered as an alternative synthetic protocol of more complex and polyfunctionalized molecules. Indeed, it is well known and extensively reviewed that the biological activity of this strained four-membered heterocycle is strictly dependent on the nature of the substituent groups that affect the reactivity towards the molecular active sites, increasing or lowering the possibility of interaction with the substrates. Finally, a synthetic survey of the most significant biological and pharmacological applications of the 2-azetidinones is reported.
A single-atom quantum memory in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freer, Solomon; Simmons, Stephanie; Laucht, Arne
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less
NASA Astrophysics Data System (ADS)
Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek
2012-11-01
We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).
A single-atom quantum memory in silicon
Freer, Solomon; Simmons, Stephanie; Laucht, Arne; ...
2017-03-20
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less
Detailed non-LTE calculations of the iron emission from NGC 1068
NASA Technical Reports Server (NTRS)
Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.
1989-01-01
The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.
Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles.
Krpetić, Zeljka; Saleemi, Samia; Prior, Ian A; Sée, Violaine; Qureshi, Rumana; Brust, Mathias
2011-06-28
This paper contributes to the debate on how nanosized objects negotiate membrane barriers inside biological cells. The uptake of peptide-modified gold nanoparticles by HeLa cells has been quantified using atomic emission spectroscopy. The TAT peptide from the HIV virus was singled out as a particularly effective promoter of cellular uptake. The evolution of the intracellular distribution of TAT-modified gold nanoparticles with time has been studied in detail by TEM and systematic image analysis. An unusual trend of particles disappearing from the cytosol and the nucleus and accumulating massively in vesicular bodies was observed. Subsequent release of the particles, both by membrane rupture and by direct transfer across the membrane boundary, was frequently found. Ultimately, near total clearing of particles from the cells occurred. This work provides support for the hypothesis that cell-penetrating peptides can enable small objects to negotiate membrane barriers also in the absence of dedicated transport mechanisms.
Theoretical investigation of gas-surface interactions
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1990-01-01
A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.
A precise measurement of 180 GeV muon energy losses in iron
Amaral, P.
2001-05-28
The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron Tile Calorimeter at the CERN SPS. The differential probability dP/dv per radiation length of a fractional energy loss v = ΔΕ μ/Ε μ has been measured in the range 0.025 ≤ v ≤ 0.97; it is compared with theoretical predictions for energy losses due to bremsstrahlung, production of electron-positron pairs, and energetic knock-on electrons. The iron elastic form factor correction Δmore » $$el\\atop{Fe}$$ = 1.63 ± 0.17 stat ± 0.23 Syst ± $$0.20\\atop{0.14}$$ theor to muon bremsstrahlung in the region of no screening of the nucleus by atomic electrons has been measured for the first time, and is compared with different theoretical predictions.« less
Atomic structure of the Y complex of the nuclear pore
Kelley, Kotaro; Knockenhauer, Kevin E.; Kabachinski, Greg; ...
2015-03-30
The nuclear pore complex (NPC) is the principal gateway for transport into and out of the nucleus. Selectivity is achieved through the hydrogel-like core of the NPC. The structural integrity of the NPC depends on ~15 architectural proteins, which are organized in distinct subcomplexes to form the >40-MDa ring-like structure. In this paper, we present the 4.1-Å crystal structure of a heterotetrameric core element ('hub') of the Y complex, the essential NPC building block, from Myceliophthora thermophila. Using the hub structure together with known Y-complex fragments, we built the entire ~0.5-MDa Y complex. Our data reveal that the conserved coremore » of the Y complex has six rather than seven members. Finally, evolutionarily distant Y-complex assemblies share a conserved core that is very similar in shape and dimension, thus suggesting that there are closely related architectural codes for constructing the NPC in all eukaryotes.« less
Fear-Potential Startle as a Model System for Analyzing Learning and Memory
1988-09-21
connection between the central nucleus of the amygdala and the nucleus reticularis pontis caudalis, an obligatory part of the startle pathway. Because we...Miserendino, M and Davis, M. A direct pathway from the central nucleus of the amygdala to the region of the nucleus reticularis pontis caudalis critical for...blocked by drugs that decrease anxiety in humans as well as by lesions of the central nucleus of the amygdala, an area of the brain known to be critical for
Efferent projections of the septum in the Tegu lizard, Tupinambis nigropunctatus.
Sligar, C M; Voneida, T J
1981-09-01
A H3 proline or H3 leucine mixture was injected into the septal region of the Tegu lizard in order to determine its efferent projections. The brains were processed according to standard autoradiographic technique and counterstained with cresyl violet. Septal projections were limited to either telencephalic or diencephalic areas. Intratelencephalic projections consisted of efferents to medial pallium, nucleus accumbens, bed nucleus of the anterior commissure, preoptic area and septum itself. Fibers entering the diencephalon projected to medial habenular nucleus, dorsomedial thalamic nucleus, dorsolateral thalamic area, periventricular nucleus of the hypothalamus, lateral hypothalamic area and mammillary nucleus. The results are discussed in relation to the efferent projections of the septum in other vertebrates.
Wang, Xian; Liu, Haijiao; Zhu, Min; Cao, Changhong; Xu, Zhensong; Tsatskis, Yonit; Lau, Kimberly; Kuok, Chikin; Filleter, Tobin; McNeill, Helen; Simmons, Craig A; Hopyan, Sevan; Sun, Yu
2018-05-18
Extracellular forces transmitted through the cytoskeleton can deform the cell nucleus. Large nuclear deformation increases the risk of disrupting the nuclear envelope's integrity and causing DNA damage. Mechanical stability of the nucleus defines its capability of maintaining nuclear shape by minimizing nuclear deformation and recovering strain when deformed. Understanding the deformation and recovery behavior of the nucleus requires characterization of nuclear viscoelastic properties. Here, we quantified the decoupled viscoelastic parameters of the cell membrane, cytoskeleton, and the nucleus. The results indicate that the cytoskeleton enhances nuclear mechanical stability by lowering the effective deformability of the nucleus while maintaining nuclear sensitivity to mechanical stimuli. Additionally, the cytoskeleton decreases the strain energy release rate of the nucleus and might thus prevent shape change-induced structural damage to chromatin. © 2018. Published by The Company of Biologists Ltd.
Calculation of two-neutron multiplicity in photonuclear reactions
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1989-01-01
The most important particle emission processes for electromagnetic excitations in nucleus-nucleus collisions are the ejection of single neutrons and protons and also pairs of neutrons and protons. Methods are presented for calculating two-neutron emission cross sections in photonuclear reactions. The results are in a form suitable for application to nucleus-nucleus reactions.
Luiten, P G
1981-03-10
The central projections of the retina in the nurse shark were studied by anterograde transport of horseradish peroxidase and tritiated proline. With regard to efferent retinal fibers, both techniques gave completely identical results. Projections were found to pretectal area, dorsal thalamus, basal optic nucleus, and optic tectum, all at the contralateral side. The retinal target cells in the dorsal thalamus are restricted to the ventrolateral optic nucleus and the posterior optic nucleus. No evidence was found for an earlier-reported projection to the lateral geniculate nucleus. The present findings show that the ventrolateral optic nucleus exhibits homological features of the dorsal lateral geniculate nucleus in other vertebrate groups, whereas the lateral geniculate nucleus of the nurse shark is much more comparable to the nucleus rotundus of teleosts and birds and would be more appropriately so named. The application of the HRP technique also allowed us to study afferents to the retina by retrograde transport of tracer. Retrogradely labeled cells were observed in the contralateral optic tectum and are apparently similar to those reported for teleosts and birds.
Wang, Jing; Han, Yanping; Yang, Ruifu; Zhao, Xingxu
2015-08-04
To observe cell membrane and nucleus in bacteria for subcellular localization. FM4-64 and Hoechst were dyed that can label cell membrane and nucleus, respectively. Both dyes were used to co-stain the membranes and nucleus of eight bacterial strains ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Yersinia pestis, Legionella pneumonia, Vibrio cholerae and Bacillus anthracis). E. coli was dyed with different dye concentrations and times and then observed by confocal fluorescence microscopic imaging. Fluorescence intensity of cell membrane and nucleus is affected by dye concentrations and times. The optimal conditions were determined as follows: staining cell membrane with 20 μg/mL FM4-64 for 1 min and cell nucleus with 20 μg/mL Hoechst for 20 min. Gram-negative bacteria were dyed better than gram-positive bacteria with FM4-64dye. FM4-64 and Hoechst can be used to stain membrane and nucleus in different types of bacteria. Co-staining bacterial membrane and nucleus provides the reference to observe cell structure in prokaryotes for studying subcellular localization.
Glutamatergic projection from the nucleus incertus to the septohippocampal system.
Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana
2012-05-31
Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Electrical coupling: novel mechanism for sleep-wake control.
Garcia-Rill, Edgar; Heister, David S; Ye, Meijun; Charlesworth, Amanda; Hayar, Abdallah
2007-11-01
Recent evidence suggests that certain anesthetic agents decrease electrical coupling, whereas the stimulant modafinil appears to increase electrical coupling. We investigated the potential role of electrical coupling in 2 reticular activating system sites, the subcoeruleus nucleus and in the pedunculopontine nucleus, which has been implicated in the modulation of arousal via ascending cholinergic activation of intralaminar thalamus and descending activation of the subcoeruleus nucleus to generate some of the signs of rapid eye movement sleep. We used 6- to 30-day-old rat pups to obtain brainstem slices to perform whole-cell patch-clamp recordings. Recordings from single cells revealed the presence of spikelets, manifestations of action potentials in coupled cells, and of dye coupling of neurons in the pedunculopontine nucleus. Recordings in pairs of pedunculopontine nucleus and subcoeruleus nucleus neurons revealed that some of these were electrically coupled with coupling coefficients of approximately 2%. After blockade of fast synaptic transmission, the cholinergic agonist carbachol was found to induce rhythmic activity in pedunculopontine nucleus and subcoeruleus nucleus neurons, an effect eliminated by the gap junction blockers carbenoxolone or mefloquine. The stimulant modafinil was found to decrease resistance in neurons in the pedunculopontine nucleus and subcoeruleus nucleus after fast synaptic blockade, indicating that the effect may be due to increased coupling. The finding of electrical coupling in specific reticular activating system cell groups supports the concept that this underlying process behind specific neurotransmitter interactions modulates ensemble activity across cell populations to promote changes in sleep-wake state.
Zséli, Györgyi; Vida, Barbara; Martinez, Anais; Lechan, Ronald M; Khan, Arshad M; Fekete, Csaba
2016-10-01
We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial, and paraventricular hypothalamic nuclei, lateral hypothalamic area, parabrachial nucleus (PB), nucleus of the solitary tract and central amygdalar nucleus, other refeeding activated regions were also identified, such as the parastrial and parasubthalamic nuclei. To begin to understand the connectivity of the satiety network, the interconnectivity of PB with other refeeding-activated neuronal groups was studied following administration of anterograde or retrograde tracers into the PB. After allowing for tracer transport time, the animals were fasted and then refed before sacrifice. Refeeding-activated neurons that project to the PB were found in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamic area; arcuate, paraventricular, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; parasubthalamic nucleus; central amygdalar nucleus; area postrema; and nucleus of the solitary tract. Axons originating from the PB were observed to closely associate with refeeding-activated neurons in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamus; paraventricular, arcuate, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; central amygdalar nucleus; parasubthalamic nucleus; ventral posterior thalamic nucleus; area postrema; and nucleus of the solitary tract. These data indicate that the PB has bidirectional connections with most refeeding-activated neuronal groups, suggesting that short-loop feedback circuits exist in this satiety network. J. Comp. Neurol. 524:2803-2827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Characterizing the interior of 67P in the vicinity of Abydos
NASA Astrophysics Data System (ADS)
Ciarletti, V.; Lasue, J.; Lemonnier, F.; Herique, A.; Kofman, W. W.; Guiffaut, C.; Levasseur-Regourd, A. C.; Plettemeier, D.
2016-12-01
Since the arrival of Rosetta at comet 67P, numerous pictures have been delivered by the cameras onboard both the main spacecraft and the Philae lander. They revealed, at the nucleus' surface and inside the walls of the deep pits, few-meters scale repeating structures, thus providing hints about the internal structure of the nucleus, and suggesting that primordial 'cometesimals' may be objects around 3m in size. The CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment is a radar that has been designed to specifically sound the interior of the nucleus and to provide information on the nucleus internal structure. The work presented here is based on the CONSERT data collected during the First Science Sequence (FSS) and marginally during Philae's Separation Descent and Landing (SDL) for comparison. During FFS, the smaller lobe of the nucleus in the vicinity of Abydos has been actually sounded by CONSERT's electromagnetic waves at 90 MHz with a spatial resolution around 10 m. The propagation delays measured during FSS are consistent with a very low bulk permittivity value for the investigated cometary material, which confirms the high porosity of the nucleus. The sharp shape of the received pulses indicates that the electromagnetic waves suffered weak scattering when propagating through the nucleus. This suggests that the sounded part nucleus is thus fairly homogeneous on a spatial scale of tens of meters. We will present further results on the variation of the CONSERT's pulse shape transmitted through the small lobe of the nucleus. For a more accurate analysis and interpretation of the data, we split the FSS data into two distinct sets corresponding to soundings performed West and East of Philae in order to investigate potential differences. Tentative interpretation in terms of nucleus internal structure based on propagation simulations performed in non-homogeneous nucleus numerical models will be presented.
Lim, Andrew S. P.; Ellison, Brian A.; Wang, Joshua L.; Yu, Lei; Schneider, Julie A.; Buchman, Aron S.; Bennett, David A.
2014-01-01
Fragmented sleep is a common and troubling symptom in ageing and Alzheimer’s disease; however, its neurobiological basis in many patients is unknown. In rodents, lesions of the hypothalamic ventrolateral preoptic nucleus cause fragmented sleep. We previously proposed that the intermediate nucleus in the human hypothalamus, which has a similar location and neurotransmitter profile, is the homologue of the ventrolateral preoptic nucleus, but physiological data in humans were lacking. We hypothesized that if the intermediate nucleus is important for human sleep, then intermediate nucleus cell loss may contribute to fragmentation and loss of sleep in ageing and Alzheimer’s disease. We studied 45 older adults (mean age at death 89.2 years; 71% female; 12 with Alzheimer’s disease) from the Rush Memory and Aging Project, a community-based study of ageing and dementia, who had at least 1 week of wrist actigraphy proximate to death. Upon death a median of 15.5 months later, we used immunohistochemistry and stereology to quantify the number of galanin-immunoreactive intermediate nucleus neurons in each individual, and related this to ante-mortem sleep fragmentation. Individuals with Alzheimer’s disease had fewer galaninergic intermediate nucleus neurons than those without (estimate −2872, standard error = 829, P = 0.001). Individuals with more galanin-immunoreactive intermediate nucleus neurons had less fragmented sleep, after adjusting for age and sex, and this association was strongest in those for whom the lag between actigraphy and death was <1 year (estimate −0.0013, standard error = 0.0005, P = 0.023). This association did not differ between individuals with and without Alzheimer’s disease, and similar associations were not seen for two other cell populations near the intermediate nucleus. These data are consistent with the intermediate nucleus being the human homologue of the ventrolateral preoptic nucleus. Moreover, they demonstrate that a paucity of galanin-immunoreactive intermediate nucleus neurons is accompanied by sleep fragmentation in older adults with and without Alzheimer’s disease. PMID:25142380
Wachs, Rebecca A; Hoogenboezem, Ella N; Huda, Hammad I; Xin, Shangjing; Porvasnik, Stacy L; Schmidt, Christine E
2017-03-01
Disc degeneration is the leading cause of low back pain and is often characterized by a loss of disc height, resulting from cleavage of chondroitin sulfate proteoglycans (CSPGs) present in the nucleus pulposus. Intact CSPGs are critical to water retention and maintenance of the nucleus osmotic pressure. Decellularization of healthy nucleus pulposus tissue has the potential to serve as an ideal matrix for tissue engineering of the disc because of the presence of native disc proteins and CSPGs. Injectable in situ gelling matrices are the most viable therapeutic option to prevent damage to the anulus fibrosus and future disc degeneration. The purpose of this research was to create a gentle decellularization method for use on healthy nucleus pulposus tissue explants and to develop an injectable formulation of this matrix to enable therapeutic use without substantial tissue disruption. Porcine nuclei pulposi were isolated, decellularized, and solubilized. Samples were assessed to determine the degree of cell removal, matrix maintenance, gelation ability, cytotoxic residuals, and native cell viability. Nuclei pulposi were decellularized using serial detergent, buffer, and enzyme treatments. Decellularized nuclei pulposi were solubilized, neutralized, and buffered. The efficacy of decellularization was assessed by quantifying DNA removal and matrix preservation. An elution study was performed to confirm removal of cytotoxic residuals. Gelation kinetics and injectability were quantified. Long-term in vitro experiments were performed with nucleus pulposus cells to ensure cell viability and native matrix production within the injectable decellularized nucleus pulposus matrices. This work resulted in the creation of a robust acellular matrix (>96% DNA removal) with highly preserved sulfated glycosaminoglycans (>47%), and collagen content and microstructure similar to native nucleus pulposus, indicating preservation of disc components. Furthermore, it was possible to create an injectable formulation that gelled in situ within 45 minutes and formed fibrillar collagen with similar diameters to native nucleus pulposus. The processing did not result in any remaining cytotoxic residuals. Solubilized decellularized nucleus pulposus samples seeded with nucleus pulposus cells maintained robust viability (>89%) up to 21 days of culture in vitro, with morphology similar to native nucleus pulposus cells, and exhibited significantly enhanced sulfated glycosaminoglycans production over 21 days. A gentle decellularization of porcine nucleus pulposus followed by solubilization enabled the creation of an injectable tissue-specific matrix that is well tolerated in vitro by nucleus pulposus cells. These matrices have the potential to be used as a minimally invasive nucleus pulposus therapeutic to restore disc height. Copyright © 2016 Elsevier Inc. All rights reserved.
129Xe on Ir(111): NMR study of xenon on a metal single crystal surface
Jänsch, H. J.; Gerhard, P.; Koch, M.
2004-01-01
NMR experiments of 129Xe adsorbed on an iridium single crystal surface are reported. Very high nuclear polarization (Pz ≈ 0.7) makes the experiment possible. A coverage of less then one monolayer is investigated on the Ir(111) surface with an area of 0.8 cm2. The observed resonance line shifts are very large and highly anisotropic. We find σiso = 1,032 ± 11 ppm and σan = 291 ± 33 ppm, which are far above the typical range of physisorption. The highly ordered substrate leads to homogeneous conditions for the xenon atoms, as seen in the narrow linewidth of 20 ppm. Chemical shifts under physisorption conditions are not large enough to totally explain the results. Knight shift can clearly be identified as the cause of the findings. This shift shows the presence of conduction electrons of the metallic substrate at the xenon nucleus and thus the mixing of metallic and atomic states at the Fermi level. Such mixing is in accordance with recent Hartree–Fock and density functional calculations of similar van der Waals adsorption systems. Quantitative comparisons, however, fail completely. The size and ratio of σan and σiso are pure ground-state properties in a structurally simple system. They are accessible to theory and provide detailed local information that can serve as a benchmark for theory. PMID:15361579
The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit.
Cheng, Bingqing; Tribello, Gareth A; Ceriotti, Michele
2017-09-14
In this paper we discuss how the information contained in atomistic simulations of homogeneous nucleation should be used when fitting the parameters in macroscopic nucleation models. We show how the number of solid and liquid atoms in such simulations can be determined unambiguously by using a Gibbs dividing surface and how the free energy as a function of the number of solid atoms in the nucleus can thus be extracted. We then show that the parameters (the chemical potential, the interfacial free energy, and a Tolman correction) of a model based on classical nucleation theory can be fitted using the information contained in these free-energy profiles but that the parameters in such models are highly correlated. This correlation is unfortunate as it ensures that small errors in the computed free energy surface can give rise to large errors in the extrapolated properties of the fitted model. To resolve this problem we thus propose a method for fitting macroscopic nucleation models that uses simulations of planar interfaces and simulations of three-dimensional nuclei in tandem. We show that when the chemical potentials and the interface energy are pinned to their planar-interface values, more precise estimates for the Tolman length are obtained. Extrapolating the free energy profile obtained from small simulation boxes to larger nuclei is thus more reliable.
Chen, Jing; Yang, Huan; Wang, Jing; Cheng, Shi-Bo
2018-05-30
We present an extensive density functional theory (DFT) calculations on the geometrical and electronic structures of the triatomic LaX 2 - (X=Al, Ga, In) clusters. Various trail structures and spin states have been attempted to determine the lowest-energy geometries of these La-doped metal clusters. The ground states of all three clusters are calculated to possess the trigonal structures with the singlet multiplicities. The calculations on molecular orbitals (MOs) and nucleus-independent chemical shift (NICS) values have been performed to examine the aromatic characteristics of the LaX 2 - (X=Al, Ga, In) clusters. The present calculations disclose that all these metal clusters are doubly aromatic, namely d-p hybridized σ and π aromaticity resulting from the effective overlap between the 5d atomic orbital of the La atom and the p orbitals of the IIIA group elements. Theoretical vertical detachment energies (VDEs) were also calculated to simulate the photoelectron spectra (PES) of the clusters. In addition, by adding the alkali cations (Li + and Na + ) into the LaX 2 - (X=Al, Ga, In) clusters, the geometries and electronic structures of the corresponding neutral salts have also been investigated to gain more insights in the potential of using these aromatic anions as building blocks. Copyright © 2018 Elsevier B.V. All rights reserved.
Spatial transport of electron quantum states with strong attosecond pulses
NASA Astrophysics Data System (ADS)
Chovancova, M.; Agueny, H.; Førre, M.; Kocbach, L.; Hansen, J. P.
2017-11-01
This work follows up the work of Dimitrovsky, Briggs and co-workers on translated electron atomic states by a strong field of an atto-second laser pulse, also described as creation of atoms without a nucleus. Here, we propose a new approach by analyzing the electron states in the Kramers-Henneberger moving frame in the dipole approximation. The wave function follows the displacement vector α (t). This allows arbitrarily shaped pulses, including the model delta-function potentials in the Dimitrovsky and Briggs approach. In the case of final-length single-cycle pulses, we apply both the Kramers-Henneberger moving frame analysis and a full numerical treatment of our 1D model. When the laser pulse frequency exceeds the frequency associated by the energy difference between initial and final states, the entire wavefunction is translated in space nearly without loss of coherence, to a well defined distance from the original position where the ionized core is left behind. This statement is demonstrated on the excited Rydberg states (n = 10, n = 15), where almost no distortion in the transported wave functions has been observed. However, the ground state (n = 1) is visibly distorted during the removal by pulses of reasonable frequencies, as also predicted by Dimitrovsky and Briggs analysis. Our approach allows us to analyze general pulses as well as the model delta-function potentials on the same footing in the Kramers-Henneberger frame.
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim
2017-06-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.
A new form of strange matter and new hope for finding it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flam, F.
Deep in the dense cores of collapsed stars even atoms don't survive. The force of gravity crushes them into particle mushes weighing megatons per teaspoon. But even these alien forms of matter don't hold a candle to another possible end product of a collapsing star: something physicists justifiably call strange matter. This strangeness comes from an exotic particle not associated with ordinary matter: the strange quark. It belongs to a six-member quark family, along with up, down, charm, top, and bottom, each of which carries a different combination of charge and mass. The only ones that make up matter asmore » we know it are up and down quarks, but in theory, matter could form out of strange quarks as well. In nature, it would turn up most probably in interiors of collapsed stars. Scientists originally imagined strange matter as a sort of disorganized mixed bag of strange quarks, but this summer a group proposed that the quarks could form a sort of mutant atomic nucleus that could conceivably grow to the size of a star. For the moment this is speculation, but it may not be theoretical musing for long. Physicists are preparing to try making strange matter here on Earth, in experiments at Brookhaven National Laboratory in New York and Switzerland's CERN, next summer.« less
Rivera, Augusto; Quiroga, Diego; Ríos-Motta, Jaime; Kučeraková, Monika; Dušek, Michal
2013-01-01
The title compound, C23H30N2O4, a di-Mannich base derived from 4-methoxyphenol and cis-1,2-diaminecyclohexane, has a perhydrobenzimidazolidine nucleus, in which the cyclohexane ring adopts a chair conformation and the heterocyclic ring has a half-chair conformation with a C—N—C—C torsion angles of −48.14 (15) and −14.57 (16)°. The mean plane of the heterocycle makes dihedral angles of 86.29 (6) and 78.92 (6)° with the pendant benzene rings. The molecular structure of the title compound shows the presence of two interactions between the N atoms of the imidazolidine ring and the hydroxyl groups through intramolecular O—H⋯N hydrogen bonds with graph-set motif S(6). The unobserved lone pairs of the N atoms are presumed to be disposed in a syn conformation, being only the second example of an exception to the typical ‘rabbit-ears’ effect in 1,2-diamines. PMID:24046631
New perspective of Grodzins E × B(E2) ↑ product rule
NASA Astrophysics Data System (ADS)
Gupta, J. B.; Katoch, Vikas
In the collective spectra of atomic nuclei, the level energy E(21+) varies with atomic number Z and neutron number N. Also the E2 decay-reduced transition probability B(E2, 01+ → 2 1+) is related to the energy E(21+). The product E(21+) × B(E2) ↑ is constant according to Grodzins product rule, independent of the vibration or rotational status of the nucleus. The product rule is often used for determining B(E2) from the known E(21+). However, the variation of the product with various parameters is also suggested in the literature. Hence, a detailed global study of this rule for (Z = 54‑‑78, 66 < N < 126) region is warranted. We use a novel method of displaying the linear relation of B(E2) ↑ with 1/E(21+) for the isotopes of each element (Xe-Pt), instead of their variation with N,Z or A. Through our work, we firmly establish the global validity of the Grodzins relation of B(E2), being proportional to the moment of inertia, except for the deviation in specific cases. Our B(E2) ↑ versus 1/E plots provide a transparent view of the variation of the low-energy nuclear structure. This gives a new perspective of their nuclear structure. Also the various theoretical interpretations of B(E2)s and the energy E(21+) are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu
2015-06-07
The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown thatmore » bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.« less
Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim
2018-01-01
Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035
Hadron-nucleus interactions at high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, C.B.; He, Z.; Tow, D.M.
1982-06-01
A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.
Hadron-nucleus interactions at high energies
NASA Astrophysics Data System (ADS)
Chiu, Charles B.; He, Zuoxiu; Tow, Don M.
1982-06-01
A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.
The Ionization Fraction in the Obscuring ``Torus'' of an Active Galactic Nucleus
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Weaver, K. A.; Braatz, J. A.; Henkel, C.; Matsuoka, M.; Xue, S.; Iyomoto, N.; Okada, K.
1998-10-01
The LINER galaxy NGC 2639 contains a water vapor megamaser, suggesting the presence of a nuclear accretion disk or torus viewed close to edge-on. This galaxy is thus a good candidate for revealing absorption by the torus of any compact nuclear continuum emission. In this paper, we report VLBA radio maps at three frequencies and an ASCA X-ray spectrum obtained to search for free-free and photoelectric absorptions, respectively. The radio observations reveal a compact (<0.2 pc) nuclear source with a spectrum that turns over sharply near 5 GHz. This turnover may reflect either synchrotron self-absorption or free-free absorption. The galaxy is detected by ASCA with an observed luminosity of 1.4 × 1041 ergs s-1 in the 0.6-10 keV band. The X-ray spectrum shows emission in excess of a power-law model at energies greater than 4 keV; we interpret this excess as compact, nuclear, hard X-ray emission with the lower energies photoelectrically absorbed by an equivalent hydrogen column of ~= 5 × 1023 cm-2. If we assume that the turnover in the radio spectrum is caused by free-free absorption and that both the free-free and photoelectric absorptions are produced by the same gaseous component, the ratio n2edl/nHdl may be determined. If the masing molecular gas is responsible for both absorptions, the required ionization fraction is >~1.3 × 10-5, which is comparable to the theoretical upper limit derived by Neufeld, Maloney, and Conger for X-ray heated molecular gas. The two values may be reconciled if the molecular gas is very dense: nH2>~109 cm-3. The measured ionization fraction is also consistent with the idea that both absorptions occur in a hot (~6000 K), weakly ionized (ionization fraction a few times 10-2) atomic region that may coexist with the warm molecular gas. If this is the case, the absorbing gas is ~1 pc from the nucleus. We rule out the possibility that both absorptions occur in a fully ionized gas near 104 K. If our line of sight passes through more than one phase, the atomic gas probably dominates the free-free absorption, while the molecular gas may dominate the photoelectric absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nikolai
MARS is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion and low-energy neutron transport in accelerator, detector, spacecraft and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Recent developments in the MARS15 physical models of hadron, heavy-ion and lepton interactions with nuclei and atoms include a new nuclear cross section library, a model for soft pion production, the cascade-exciton model, the quark gluon string models, deuteron-nucleus and neutrino-nucleus interaction models, detailed description of negative hadron and muon absorption and a unified treatment ofmore » muon, charged hadron and heavy-ion electromagnetic interactions with matter. New algorithms are implemented into the code and thoroughly benchmarked against experimental data. The code capabilities to simulate cascades and generate a variety of results in complex media have been also enhanced. Other changes in the current version concern the improved photo- and electro-production of hadrons and muons, improved algorithms for the 3-body decays, particle tracking in magnetic fields, synchrotron radiation by electrons and muons, significantly extended histograming capabilities and material description, and improved computational performance. In addition to direct energy deposition calculations, a new set of fluence-to-dose conversion factors for all particles including neutrino are built into the code. The code includes new modules for calculation of Displacement-per-Atom and nuclide inventory. The powerful ROOT geometry and visualization model implemented in MARS15 provides a large set of geometrical elements with a possibility of producing composite shapes and assemblies and their 3D visualization along with a possible import/export of geometry descriptions created by other codes (via the GDML format) and CAD systems (via the STEP format). The built-in MARS-MAD Beamline Builder (MMBLB) was redesigned for use with the ROOT geometry package that allows a very efficient and highly-accurate description, modeling and visualization of beam loss induced effects in arbitrary beamlines and accelerator lattices. The MARS15 code includes links to the MCNP-family codes for neutron and photon production and transport below 20 MeV, to the ANSYS code for thermal and stress analyses and to the STRUCT code for multi-turn particle tracking in large synchrotrons and collider rings.« less
Celio, Marco R.; Babalian, Alexander; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B.
2013-01-01
A solitary cluster of parvalbumin-positive neurons - the PV1-nucleus - has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the rodent PV1-nucleus using non-specific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1-nucleus was found to project mainly to the periaqueductal grey matter (PAG), preponderantly ipsilateral. Indirectly in rats and directly in mice, a discrete, longitudinally- orientated cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF, which is particularly dense in the rostral portion, located in the supraoculomotor nucleus (Su3), is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbum in-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings that stem from scattered neurons throughout the PV1-nucleus. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal-, the lateral habenular- and the laterodorsal tegmental nuclei. So far no obvious functions can be attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1-nucleus. PMID:23787784
[Topography and mechanical property of goat temporomandibular joint disc cells].
Bao, Guangjie; Kong, Nannan; Guo, Manli; Su, Xuelian; Kang, Hong
2015-08-01
This study is performed to investigate the cell topographies and biomechanical properties of two different types of temporomandibular joint (TMJ) discs from goats by using JPK Nano Wizard 3 biological atomic force microscopy (AFM). This process provides a guideline for selecting seed cells for TMJ disc tissue engineering. TMJ disc cells from primary goats were cultured by monolayer culture method. AFM was used to contact scan the topographies of the two types of TMJ disc cells under physiological environment. Approximately 20 chondrocyte-like and fibroblast-like cells were selected randomly to plot the force-versus-distance curves of the cytoplasm and nucleus. Young's modulus and adhesion were analyzed by JPK Data Processing. The triangle-shapednucleus of the chondrocyte-like cell occupied a large portion of the cell. Cytoskeleton was arranged dendritically on the surface. Pseudopodia were extended from cell edges. The spindle-shaped nucleus of the fibroblast-like cell occupied a significantly larger region compared with the cytoplasmic region. Cytoskeleton was arranged regularly. Cell edges were smooth with less pseudopodia extended. No difference was found in the surface roughness between the two types of cells. According to the force-versus-distance curves, the Young's moduli of the two types of cells were not statistically different (P>0.05), but differences were found in the cytoplasmic regions (P=0.047). No statistical difference was found in the adhesions between the two types of cells (P>0.05). The AFM topography and curves were compared and analyzed. The two types of TMJ disc cells exhibited significantly different topographies, but only slight difference in their mechanical abilities.
Predicting the optical observables for nucleon scattering on even-even actinides
NASA Astrophysics Data System (ADS)
Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.
2017-09-01
The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.
2000-11-15
Watching molecules of the iron-storing protein apoferritin come together to form a nucleus reveals some interesting behavior. In this series of images, researchers observed clusters of four molecules at the corners of a diamond shape (top). As more molecules attach to the cluster, they arrange themselves into rods (second from top), and a raft-like configuration of molecules forms the critical nucleus (third from top), suggesting that crystal growth is much slower than it could be were the molecules arranged in a more compact formation. In the final image, a crystallite consisting of three layers containing approximately 60 to 70 molecules each is formed. Atomic force microscopy made visualizing the process of nucleation possible for the first time. The principal investigator is Peter Vekilov, of the University of Alabama in Huntsville. Vekilov's team at UAH studies protein solutions as they change phases from liquids to crystalline solids. They want to know if the molecules in the solution interact with one another, and if so, how, from the perspectives of thermodynamics and kinetics. They want to understand which forces -- electrical, electrostatic, hydrodynamic, or other kinds of forces -- are responsible for the interactions. They also study nucleation, the begirning stage of crystallization. This process is important to understand because it sets the stage for crystal growth in all kinds of solutions and liquid melts that are important in such diverse fields as agriculture, medicine, and the fabrication of metal components. Nucleation can determine the rate of crystal growth, the number of crystals that will be formed, and the quality and size of the crystals.
NASA Astrophysics Data System (ADS)
Huang, Ding Wei; Yen, Edward
1989-08-01
We propose a detailed model, combining the concepts from a partition temperature model and wounded nucleon model, to describe high-energy nucleus-nucleus collisions. One partition temperature is associated with collisions at a fixed wounded nucleon number. The (pseudo-) rapidity distributions are calculated and compared with experimental data. Predictions at higher energy are also presented.
Evaluation of imaging biomarkers for identification of single cancer cells in blood
NASA Astrophysics Data System (ADS)
Odaka, Masao; Kim, Hyonchol; Girault, Mathias; Hattori, Akihiro; Terazono, Hideyuki; Matsuura, Kenji; Yasuda, Kenji
2015-06-01
A method of discriminating single cancer cells from whole blood cells based on their morphological visual characteristics (i.e., “imaging biomarker”) was examined. Cells in healthy rat blood, a cancer cell line (MAT-LyLu), and cells in cancer-cell-implanted rat blood were chosen as models, and their bright-field (BF, whole-cell morphology) and fluorescence (FL, nucleus morphology) images were taken by an on-chip multi-imaging flow cytometry system and compared. Eight imaging biomarker indices, i.e., cellular area in a BF image, nucleus area in an FL image, area ratio of a whole cell and its nucleus, distance of the mass center between a whole cell and nucleus, cellular and nucleus perimeter, and perimeter ratios were calculated and analyzed using the BF and FL images taken. Results show that cancer cells can be clearly distinguished from healthy blood cells using correlation diagrams for cellular and nucleus areas as two different categories. Moreover, a portion of cancer cells showed a low nucleus perimeter ratio less than 0.9 because of the irregular nucleus morphologies of cancer cells. These results indicate that the measurements of imaging biomarkers are practically applicable to identifying cancer cells in blood.
International Halley Watch: Discipline specialists for near-nucleus studies
NASA Technical Reports Server (NTRS)
Larson, S.; Sekanina, Z.; Rahe, J.
1986-01-01
The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.
Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole
2015-01-01
Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.
Dynamic, mechanical integration between nucleus and cell- where physics meets biology.
Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P
2015-01-01
Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.
Dynamic, mechanical integration between nucleus and cell- where physics meets biology
Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P
2015-01-01
Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity. PMID:26338356
NASA Technical Reports Server (NTRS)
Laverghetta, A. V.; Shimizu, T.
1999-01-01
The nucleus rotundus is a large thalamic nucleus in birds and plays a critical role in many visual discrimination tasks. In order to test the hypothesis that there are functionally distinct subdivisions in the nucleus rotundus, effects of selective lesions of the nucleus were studied in pigeons. The birds were trained to discriminate between different types of stationary objects and between different directions of moving objects. Multiple regression analyses revealed that lesions in the anterior, but not posterior, division caused deficits in discrimination of small stationary stimuli. Lesions in neither the anterior nor posterior divisions predicted effects in discrimination of moving stimuli. These results are consistent with a prediction led from the hypothesis that the nucleus is composed of functional subdivisions.
A comparison of total reaction cross section models used in particle and heavy ion transport codes
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Lantz, M.; Takechi, M.; Kohama, A.; Ferrari, A.; Cerutti, F.; Sato, T.
To be able to calculate the nucleon-nucleus and nucleus-nucleus total reaction cross sections with precision is very important for studies of basic nuclear properties, e.g. nuclear structure. This is also of importance for particle and heavy ion transport calculations because, in all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections. Furthermore, the total reaction cross sections will also scale the calculated partial fragmentation cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon-nucleus and nucleus-nucleus total reaction cross sections are compared and discussed.
Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems
NASA Astrophysics Data System (ADS)
Atta, Debasis; Basu, D. N.
2014-12-01
Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.
Possibility of synthesizing a doubly magic superheavy nucleus
NASA Astrophysics Data System (ADS)
Aritomo, Y.
2007-02-01
The possibility of synthesizing a doubly magic superheavy nucleus, 298114184, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus 304114 has two advantages to achieving a high survival probability. First, because of low neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number in the nucleus approaches that of the double closed shell and the nucleus attains a large fission barrier. Because of these two effects, the survival probability of 304114 does not decrease until the excitation energy E*=50 MeV. These properties lead to a rather high evaporation residue cross section.
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Glover, M. G.; Mahmood, M. M.; Gott, S.; Garfin, S. R.; Ballard, R.; Murthy, G.; Brown, M. D.
1992-01-01
Swelling of the intervertebral disc nucleus pulposus is altered by posture and gravity. We have designed and tested a new osmometer for in vitro determination of nucleus pulposus swelling pressure. The functional principle of the osmometer involves compressing a sample of nucleus pulposus with nitrogen gas until saline pressure gradients across a 0.45 microns Millipore filter are eliminated. Swelling pressure of both pooled dog and pooled pig lumbar disc nucleus pulposus were measured on the new osmometer and compared to swelling pressures determined using the equilibrium dialysis technique. The osmometer measured swelling pressures comparable to those obtained by the dialysis technique. This osmometer provides a rapid, direct, and accurate measurement of swelling pressure of the nucleus pulposus.
[Neuronal organization of thalamic nucleus reticularis in adult man].
Berezhnaia, L A
2005-01-01
The neuronal content of human thalamic nucleus reticularis was studied in serial sections cut in sagittal and frontal projections and impregnated with silver nitrate using Golgi method. The neuronal content of human thalamic nucleus reticularis was found to be more diverse than previously reported in animals and man. Besides two types of sparsely-branched long-dendritic spineless R1 and R2 neurons, this nucleus contained spiny cells. Medium and small-sized sparsely-branched short-dendritic neurons and densely-branched spiny cells were demonstrated. The principle of organization of human thalamic nucleus reticularis is described.
... are filled with a gelatinous substance, called the nucleus pulposus, which provides cushioning to the spinal column. ... fibrosus is a fibrocartilaginous ring that surrounds the nucleus pulposus, which keeps the nucleus pulposus in tact ...
Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition
2015-09-01
ARL-CR-0783 ● SEP 2015 US Army Research Laboratory Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid...ARL-CR-0783 ● SEP 2015 US Army Research Laboratory Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle...Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition 5a. CONTRACT NUMBER 1120-1120-99 5b. GRANT NUMBER 5c
NASA Technical Reports Server (NTRS)
Cheung, Wang K.; Norbury, John W.
1994-01-01
The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Gongming; Shen, Nan; Jiang, Xuefeng
2016-01-15
The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferationmore » (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.« less
Cerebral oxidative metabolism mapping in four genetic mouse models of anxiety and mood disorders.
Matrov, Denis; Kaart, Tanel; Lanfumey, Laurence; Maldonado, Rafael; Sharp, Trevor; Tordera, Rosa M; Kelly, Paul A; Deakin, Bill; Harro, Jaanus
2018-06-07
The psychopathology of depression is highly complex and the outcome of studies on animal models is divergent. In order to find brain regions that could be metabolically distinctively active across a variety of mouse depression models and to compare the interconnectivity of brain regions of wild-type and such genetically modified mice, histochemical mapping of oxidative metabolism was performed by the measurement of cytochrome oxidase activity. We included mice with the heterozygous knockout of the vesicular glutamate transporter (VGLUT 1 -/+ ), full knockout of the cannabinoid 1 receptor (CB1 -/- ), an anti-sense knockdown of the glucocorticoid receptor (GRi) and overexpression of the human 5-hydroxytryptamine transporter (h5-HTT). Altogether 76 mouse brains were studied to measure oxidative metabolism in one hundred brain regions, and the obtained dataset was submitted to a variety of machine learning algorithms and multidimensional scaling. Overall, the top brain regions having the largest contribution to classification into depression model were the lateroanterior hypothalamic nucleus, the anterior part of the basomedial amygdaloid nucleus, claustrum, the suprachiasmatic nucleus, the ventromedial hypothalamic nucleus, and the anterior hypothalamic area. In terms of the patterns of inter-regional relationship between wild-type and genetically modified mice there was little overall difference, while the most deviating brain regions were cortical amygdala and ventrolateral and ventral posteromedial thalamic nuclei. The GRi mice that most clearly differed from their controls exhibited deviation of connectivity for a number of brain regions, such as ventrolateral thalamic nucleus, the intermediate part of the lateral septal nucleus, the anteriodorsal part of the medial amygdaloid nucleus, the medial division of the central amygdaloid nucleus, ventral pallidum, nucleus of the vertical limb of the diagonal band, anteroventral parts of the thalamic nucleus and parts of the bed nucleus of the stria terminalis. Conclusively, the GRi mouse model was characterized by changes in the functional connectivity of the extended amygdala and stress response circuits. Copyright © 2018 Elsevier B.V. All rights reserved.
Afferent projections to the deep mesencephalic nucleus in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, R.B.; Severin, C.M.
1982-01-10
Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medialmore » and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.« less
Electrical Coupling: Novel Mechanism for Sleep-Wake Control
Garcia-Rill, Edgar; Heister, David S.; Ye, Meijun; Charlesworth, Amanda; Hayar, Abdallah
2007-01-01
Study Objectives: Recent evidence suggests that certain anesthetic agents decrease electrical coupling, whereas the stimulant modafinil appears to increase electrical coupling. We investigated the potential role of electrical coupling in 2 reticular activating system sites, the subcoeruleus nucleus and in the pedunculopontine nucleus, which has been implicated in the modulation of arousal via ascending cholinergic activation of intralaminar thalamus and descending activation of the subcoeruleus nucleus to generate some of the signs of rapid eye movement sleep. Design: We used 6- to 30-day-old rat pups to obtain brainstem slices to perform whole-cell patch-clamp recordings. Measurements and Results: Recordings from single cells revealed the presence of spikelets, manifestations of action potentials in coupled cells, and of dye coupling of neurons in the pedunculopontine nucleus. Recordings in pairs of pedunculopontine nucleus and subcoeruleus nucleus neurons revealed that some of these were electrically coupled with coupling coefficients of approximately 2%. After blockade of fast synaptic transmission, the cholinergic agonist carbachol was found to induce rhythmic activity in pedunculopontine nucleus and subcoeruleus nucleus neurons, an effect eliminated by the gap junction blockers carbenoxolone or mefloquine. The stimulant modafinil was found to decrease resistance in neurons in the pedunculopontine nucleus and subcoeruleus nucleus after fast synaptic blockade, indicating that the effect may be due to increased coupling. Conclusions: The finding of electrical coupling in specific reticular activating system cell groups supports the concept that this underlying process behind specific neurotransmitter interactions modulates ensemble activity across cell populations to promote changes in sleep-wake state. Citation: Garcia-Rill E; Heister DS; Ye M; Charlesworth A; Hayar A. Electrical coupling: novel mechanism for sleep-wake control. SLEEP 2007;30(11):1405-1414. PMID:18041475
Quantum treatment of the capture of an atom by a fast nucleus incident on a molecule
NASA Astrophysics Data System (ADS)
Shakeshaft, Robin; Spruch, Larry
1980-04-01
The classical double-scattering model of Thomas for the capture of electrons from atoms by fast ions yields a cross section σ which dominates over the single scattering contribution for sufficiently fast ions. The magnitude of the classical double-scattering σ differs, however, from its quantum-mechanical (second-Born) analog by an order of magnitude. Further, a "fast ion" means an ion of some MeV, and at those energies the cross sections are very low. On the other hand, as noted by Bates, Cook, and Smith, the double-scattering cross section for the capture of atoms from molecules by fast ions dominates over the single-scattering contribution for incident ions of very much lower energy; roughly, one must have the velocity of the incident projectile much larger than a characteristic internal velocity of the particles in the target. It follows that we are in the asymptotic domain not at about 10 MeV but at about 100 eV. For the reaction H+ + CH4-->H+2 + CH3 with incident proton energies of 70 to 150 eV, the peak in the angular distribution as determined experimentally is at almost precisely the value predicted by the classical model, but the theoretical total cross section is about 30 times too large. Using a quantum version of the classical model, which involves the same kinematics and therefore preserves the agreement with the angular distribution, we obtain somewhat better agreement with the experimental total cross section, by a factor of about 5. (To obtain very good agreement, one may have to perform a really accurate calculation of large-angle elastic scattering of protons and H atoms by CH3, and take into account interference effects.) In the center-of-mass frame, for sufficiently high incident energy, the first of the two scatterings involves the scattering of H+ by H through an angle of very close to 90°, and it follows that the nuclei of the emergent H+2 ion will almost all be in the singlet state. We have also calculated the cross section for the reaction D+ + CH4-->(HD)+ + CH3.
The Measurement of Strong-Interaction Effects in High-Z Sigma Hyperonic Atoms.
NASA Astrophysics Data System (ADS)
Phillips, William Clarke
Strong-interaction effects have been observed in the X-ray spectra of atoms formed with Sigma ^- in lead and tungsten. In the experiment, performed at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, negative kaons were brought to rest in a novel laminar target consisting of thin sheets of high-Z material in a liquid hydrogen bath. The geometry of the target was designed to optimize the production of high-Z Sigma^- atoms and the detection of their subsequent de-excitation X rays. A method of identifying the energetic pi^+ from the production reaction K^-+ p toSigma^- +pi^+ resulted in a factor of 15 improvement in the signal-to -noise ratio of the Sigma^- atom X-rays over that of previous experiments. The X-ray spectra were recorded by three high-resolution intrinsic Ge detectors and analyzed for shifts, broadenings, and yield reductions of the final X-ray transitions before absorption of the Sigma^- into the nucleus. A lineshape function which reflected the non-Gaussian response of the X-ray spectroscopy system was developed for this analysis. The results are(UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {Sigma^- - W (10to9): varepsilon = 650 +/- 30 eV,&quadGamma = 380 +/- 70 eV,quad %Y = .98 +/- .04cr Sigma^- - Pb (10to9): varepsilon = 510 +/- 50 eV,&quadGamma = 290 +/- 140 eV, quad %Y = .53 +/- .04cr} (TABLE/EQUATION ENDS)where varepsilon = E_{rm meds} - E_{rm calc }, Gamma is the Lorentzian FWHM, and %Y is the ratio (measured yield)/(yield calculated with no strong interaction). Optical model calculations with a = (0.928 + i0.022) fm are able to reproduce all observed effects in the Sigma^--W spectra. Such calculations with a = (0.247 + i0.039) fm reproduce the observed shift and width of the (10to9) transition in Sigma^--Pb, but fail to reproduce the observed yield reduction. It is doubtful if the current status of the theory of Sigma ^--N interactions can explain this discrepancy.
Guo, Jin-Chang; Ren, Guang-Ming; Miao, Chang-Qing; Tian, Wen-Juan; Wu, Yan-Bo; Wang, Xiaotai
2015-12-31
The diagonal relationship between beryllium and aluminum and the isoelectronic relationship between BeH unit and Al atom were utilized to design a new series ppC- or quasi-ppC-containing species C5v CBe5H5(+), Cs CBe5H4, C2v CBe5H3(-), and C2v CBe5H2(2-) by replacing the Al atoms in previously reported global minima planar pentacoordinate carbon (ppC) species D5h CAl5(+), C2v CAl4Be, C2v CAl3Be2(-), and C2v CAl2Be3(2-) with BeH units. The three-center two-electron (3c-2e) bonds formed between Be and bridging H atoms were crucial for the stabilization of these ppC species. The natural bond orbital (NBO) and adaptive natural density partitioning (AdNDP) analyses revealed that the central ppCs or quasi-ppCs possess the stable eight electron-shell structures. The AdNDP analyses also disclosed that these species are all 6σ+2π double-aromatic in nature. The aromaticity was proved by the calculated negative nucleus-independent chemical shifts (NICS) values. DFT and high-level CCSD(T) calculations revealed that these ppC- or quasi-ppC species are the global minimum or competitive low-lying local minimum (Cs CBe5H4) on their potential energy surfaces. The Born-Oppenheimer molecular dynamic (BOMD) simulations revealed that the H atoms in C2v CBe5H3(-) and C2v CBe5H2(2-) can easily rotate around the CBe5 cores and the structure of quasi-planar C5v CBe5H5(+) will become the planar structure at room temperature; however, these interesting dynamic behaviors did not indicate the kinetic instability as the basic ppC structures were maintained during the simulations. Therefore, it would be potentially possible to realize these interesting ppC- or quasi-ppc-species in future experiments.
Actomyosin contractility rotates the cell nucleus
Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.
2014-01-01
The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418
Actomyosin contractility rotates the cell nucleus.
Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V
2014-01-21
The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.
The intercalatus nucleus of Staderini.
Cascella, Marco
2016-01-01
Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.
NASA Astrophysics Data System (ADS)
Crifo, J. F.; Rodionov, A. V.
2000-12-01
The structure of the nightside coma in the vicinity of a strongly active comet nucleus of pure ice is investigated by solving gasdynamic equations for the flow of water vapour sublimated from—or condensed onto—the nucleus surface. To guarantee the physical validity of the solution, both Euler and Navier-Stokes Equations are solved, and the solutions are compared. A spherical nucleus is considered first and then a triaxial ellipsoidal nucleus. The results show that (1) a fluid coma of significant extent and very complicated physical structure is formed; (2) for low heat conduction transfer across the nucleus from the dayside to the nightside surface, a narrow conical weak shock appears near to the antisolar axis; the whole nightside surface acts as a cold trap for the vapor, part of which recondenses onto it; (3) for intermediate heat conduction, part of the nightside surface becomes weakly sublimating, and a different weak shock pattern is formed; and (4) at high heat conduction, the whole nightside surface is weakly sublimating, and the resulting flow pattern becomes similar to that existing in a coma formed by diffusion from the nucleus interior (see Crifo, Rodionov and Bockelée-Morvan, 1999, Icarus138, 83-106). The results are compared to related model results by other authors, and a discussion is made of their relevance to the 1996 observation of the near-nucleus nightside coma of Comet C/1996 B2 Hyakutake.
Otsubo, H; Kondoh, T; Shibata, M; Torii, K; Ueta, Y
2011-11-24
l-glutamate, an umami taste substance, is a key molecule coupled to a food intake signaling pathway. Furthermore, recent studies have unveiled new roles for dietary glutamate on gut-brain axis communication via activation of gut glutamate receptors and subsequent vagus nerve. In the present study, we mapped activation sites of the rat forebrain after intragastric load of 60 mM monosodium l-glutamate (MSG) by measurement of Fos protein, a functional marker of neuronal activation. The same concentration of d-glucose (sweet) and NaCl (salty) was used as controls. MSG administration exclusively produced enhanced Fos expression in four hypothalamic regions (the medial preoptic area, lateral hypothalamic area, dorsomedial nucleus, and arcuate nucleus). On the other hand, glucose administration exclusively enhanced Fos induction in the nucleus accumbens. Both MSG and glucose enhanced Fos induction in three brain regions (the habenular nucleus, paraventricular nucleus, and central nucleus of the amygdala). However, MSG induced Fos inductions were more potent than those of glucose in the habenular nucleus and paraventricular nucleus. Importantly, the present study identified for the first time two brain areas (the paraventricular and arcuate hypothalamic nuclei) that are more potently activated by intragastric MSG loads compared with glucose and NaCl. Overall, our results suggest significant activation of a neural network comprising the habenular nucleus, amygdala, and the hypothalamic subnuclei following intragastric load with glutamate. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szigethy, E.; Quirion, R.; Beaudet, A.
1990-07-22
The distribution of 125I-neurotensin binding sites was compared with that of acetylcholinesterase reactivity in the human basal forebrain by using combined light microscopic radioautography/histochemistry. High 125I-neurotensin binding densities were observed in the bed nucleus of the stria terminalis, islands of Calleja, claustrum, olfactory tubercle, and central nucleus of the amygdala; lower levels were seen in the caudate, putamen, medial septum, diagonal band nucleus, and nucleus basalis of Meynert. Adjacent sections processed for cholinesterase histochemistry demonstrated a regional overlap between the distribution of labeled neurotensin binding sites and that of intense acetylcholinesterase staining in all of the above regions, except inmore » the bed nucleus of the stria terminalis, claustrum, and central amygdaloid nucleus, where dense 125I-neurotensin labeling was detected over areas containing only weak to moderate cholinesterase staining. At higher magnification, 125I-neurotensin-labeled binding sites in the islands of Calleja, supraoptic nucleus of the hypothalamus, medial septum, diagonal band nucleus, and nucleus basalis of Meynert were selectively associated with neuronal perikarya found to be cholinesterase-positive in adjacent sections. Moderate 125I-neurotensin binding was also apparent over the cholinesterase-reactive neuropil of these latter three regions. These data suggest that neurotensin (NT) may directly influence the activity of magnocellular cholinergic neurons in the human basal forebrain, and may be involved in the physiopathology of dementing disorders such as Alzheimer's disease, in which these neurons have been shown to be affected.« less
Topography of the 81/P Wild 2 Nucleus Derived from Stardust Stereoimages
NASA Technical Reports Server (NTRS)
Kirk, R. L.; Duxbury, T. C.; Horz, F.; Brownlee, D. E.; Newburn, R. L.; Tsou, P.
2005-01-01
On 2 January, 2004, the Stardust spacecraft flew by the nucleus of comet 81P/Wild 2 with a closest approach distance of approx. 240 km. During the encounter, the Stardust Optical Navigation Camera (ONC) obtained 72 images of the nucleus with exposure times alternating between 10 ms (near-optimal for most of the nucleus surface) and 100 ms (used for navigation, and revealing additional details in the coma and dark portions of the surface. Phase angles varied from 72 deg. to near zero to 103 deg. during the encounter, allowing the entire sunlit portion of the surface to be imaged. As many as 20 of the images near closest approach are of sufficiently high resolution to be used in mapping the nucleus surface; of these, two pairs of short-exposure images were used to create the nucleus shape model and derived products reported here. The best image resolution obtained was approx. 14 m/pixel, resulting in approx. 300 pixels across the nucleus. The Stardust Wild 2 dataset is therefore markedly superior from a stereomapping perspective to the Deep Space 1 MICAS images of comet Borrelly. The key subset of the latter (3 images) covered only about a quarter of the surface at phase angles approx. 50 - 60 and less than 50 x 160 pixels across the nucleus, yet it sufficed for groups at the USGS and DLR to produce digital elevation models (DEMs) and study the morphology and photometry of the nucleus in detail.
Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.
Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin
2016-04-21
The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.
Finding of increased caudate nucleus in patients with Alzheimer's disease.
Persson, K; Bohbot, V D; Bogdanovic, N; Selbaek, G; Braekhus, A; Engedal, K
2018-02-01
A recently published study using an automated MRI volumetry method (NeuroQuant®) unexpectedly demonstrated larger caudate nucleus volume in patients with Alzheimer's disease dementia (AD) compared to patients with subjective and mild cognitive impairment (SCI and MCI). The aim of this study was to explore this finding. The caudate nucleus and the hippocampus volumes were measured (both expressed as ratios of intracranial volume) in a total of 257 patients with SCI and MCI according to the Winblad criteria and AD according to ICD-10 criteria. Demographic data, cognitive measures, and APOE-ɛ4 status were collected. Compared with non-dementia patients (SCI and MCI), AD patients were older, more of them were female, and they had a larger caudate nucleus volume and smaller hippocampus volume (P<.001). In multiple linear regression analysis, age and female sex were associated with larger caudate nucleus volume, but neither diagnosis nor memory function was. Age, gender, and memory function were associated with hippocampus volume, and age and memory function were associated with caudate nucleus/hippocampus ratio. A larger caudate nucleus volume in AD patients was partly explained by older age and being female. These results are further discussed in the context of (1) the caudate nucleus possibly serving as a mechanism for temporary compensation; (2) methodological properties of automated volumetry of this brain region; and (3) neuropathological alterations. Further studies are needed to fully understand the role of the caudate nucleus in AD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Retinal projections in the electric catfish (Malapterurus electricus).
Ebbesson, S O; O'Donnel, D
1980-01-01
The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.
NASA Technical Reports Server (NTRS)
Norbury, John W.
1989-01-01
Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.
An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.
Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio
2018-06-21
2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.