De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S
2013-11-01
In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.
Photoelectrochemical cells including chalcogenophosphate photoelectrodes
NASA Technical Reports Server (NTRS)
Reichman, B.; Byvik, C. E. (Inventor)
1984-01-01
Photoelectrochemical cells employing chalcogenophosphate (MPX3) photoelectrodes are described where M is selected from the group of transition metal series of elements beginning with scandium (atomic number 21) through germanium (atomic number 32) yttrium (atomic number 39) through antimony (atomic number 51) and lanthanum (atomic number 57) through polonium (atomic number 84); P is phosphorus; and X is selected from the chalogenide series consisting of sulfur, selenium, and tellurium. These compounds have bandgaps in the desirable range from 2.0 eV to 2.2 eV for the photoelectrolysis of water and are stable when used as photoelectrodes for the same.
Preparation of Ultracold Atom Clouds at the Shot Noise Level.
Gajdacz, M; Hilliard, A J; Kristensen, M A; Pedersen, P L; Klempt, C; Arlt, J J; Sherson, J F
2016-08-12
We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN
Related Structure Characters and Stability of Structural Defects in a Metallic Glass
Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng
2018-01-01
Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298
Effective atomic numbers of some tissue substitutes by different methods: A comparative study.
Singh, Vishwanath P; Badiger, N M
2014-01-01
Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Zeff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Zeff, direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV) where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Zeff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Zeff, direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV). The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV). The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.
Effective atomic numbers of some tissue substitutes by different methods: A comparative study
Singh, Vishwanath P.; Badiger, N. M.
2014-01-01
Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Zeff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Zeff, direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV) where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Zeff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Zeff, direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV). The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV). The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters. PMID:24600169
STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials
2016-11-02
STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.
Effective atomic numbers and electron densities of bioactive glasses for photon interaction
NASA Astrophysics Data System (ADS)
Shantappa, Anil; Hanagodimath, S. M.
2015-08-01
This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.
Defect-suppressed atomic crystals in an optical lattice.
Rabl, P; Daley, A J; Fedichev, P O; Cirac, J I; Zoller, P
2003-09-12
We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.
Glenn T. Seaborg - Contributions to Advancing Science
. Documents: The First Weighing of Plutonium (Atomic Number 94); DOE Technical Report; September 1967 The New Element Americium (Atomic Number 95); DOE Technical Report; January 1948 The New Element Curium (Atomic Number 96); DOE Technical Report; January 1948 Frontiers of Chemistry for Americium and Curium; DOE
High Fidelity Simulation of Atomization in Diesel Engine Sprays
2015-09-01
ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D
Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).
Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).
Effective atomic numbers and electron densities of bioactive glasses for photon interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shantappa, Anil, E-mail: anilmalipatil@yahoo.co.in; Hanagodimath, S. M., E-mail: smhmath@rediffmail.com
2015-08-28
This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO{sub 2}-Na{sub 2}O, SiO{sub 2}-Na{sub 2}O-CaO and SiO{sub 2}-Na{sub 2}O-P{sub 2}O{sub 5} in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (Z{submore » PI,} {sub eff}) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.« less
Coherent single-atom superradiance
NASA Astrophysics Data System (ADS)
Kim, Junki; Yang, Daeho; Oh, Seung-hoon; An, Kyungwon
2018-02-01
Superradiance is a quantum phenomenon emerging in macroscopic systems whereby correlated single atoms cooperatively emit photons. Demonstration of controlled collective atom-field interactions has resulted from the ability to directly imprint correlations with an atomic ensemble. Here we report cavity-mediated coherent single-atom superradiance: Single atoms with predefined correlation traverse a high–quality factor cavity one by one, emitting photons cooperatively with the N atoms that have already gone through the cavity (N represents the number of atoms). Enhanced collective photoemission of N-squared dependence was observed even when the intracavity atom number was less than unity. The correlation among single atoms was achieved by nanometer-precision position control and phase-aligned state manipulation of atoms by using a nanohole-array aperture. Our results demonstrate a platform for phase-controlled atom-field interactions.
The effect of grading the atomic number at resistive guide element interface on magnetic collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alraddadi, R. A. B.; Woolsey, N. C.; Robinson, A. P. L.
2016-07-15
Using 3 dimensional numerical simulations, this paper shows that grading the atomic number and thus the resistivity at the interface between an embedded high atomic number guide element and a lower atomic number substrate enhances the growth of a resistive magnetic field. This can lead to a large integrated magnetic flux density, which is fundamental to confining higher energy fast electrons. This results in significant improvements in both magnetic collimation and fast-electron-temperature uniformity across the guiding. The graded interface target provides a method for resistive guiding that is tolerant to laser pointing.
NASA Astrophysics Data System (ADS)
Taylor, M. L.
2011-04-01
Lithium fluoride thermoluminescent dosimeters (TLD) are the most commonly implemented for clinical dosimetry. The small physical magnitude of TLDs makes them attractive for applications such as small field measurement, in vivo dosimetry and measurement of out-of-field doses to critical structures. The most broadly used TLD is TLD-100 (LiF:Mg,Ti) and, for applications requiring higher sensitivity to low-doses, TLD-100H (LiF:Mg,Cu,P) is frequently employed. The radiological properties of these TLDs are therefore of significant interest. For the first time, in this study effective atomic numbers for radiative, collisional and total electron interaction processes are calculated for TLD-100 and TLD-100H dosimeters over the energy range 1 keV-100 MeV. This is undertaken using a robust, energy-dependent method of calculation rather than typical power-law approximations. The influence of dopant concentrations and unwanted impurities is also investigated. The two TLDs exhibit similar effective atomic numbers, ranging from approximately 5.77-6.51. Differences arising from the different dopants are most pronounced in low-energy radiative effects. The TLDs have atomic numbers approximately 1.48-2.06 times that of water. The effective atomic number of TLD-100H is consistently higher than that of TLD-100 over a broad energy range, due to the greater influence of the higher- Z dopants on the electron interaction cross sections. Typical variation in dopant concentration does not significantly influence the effective atomic number. The influence on TLD-100H is comparatively more pronounced than that on TLD-100. Contrariwise, unwanted hydroxide impurities influence TLD-100 more than TLD-100H. The effective atomic number is a key parameter that influences the radiological properties and energy response of TLDs. Although many properties of these TLDs have been studied rigorously, as yet there has been no investigation of their effective atomic numbers for electron interactions. The discrepancy between the effective atomic numbers of the TLDs and water is significantly higher than would be indicated by comparing effective atomic numbers calculated via the common - but dubious - power-law method. The mean effective numbers over the full energy range are 6.06, 6.09, 3.34 and 3.37 for TLD-100, TLD-100H, soft tissue and water respectively.
Science and Emerging Technology of 2D Atomic Layered Materials and Devices
2017-09-09
AFRL-AFOSR-JP-TR-2017-0067 Science & Emerging Technology of 2D Atomic Layered Materials and Devices Angel Rubio UNIVERSIDAD DEL PAIS VASCO - EUSKAL...Emerging Technology of 2D Atomic Layered Materials and Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-0006 5c. PROGRAM ELEMENT NUMBER...reporting documents for AOARD project 144088, “2D Materials and Devices Beyond Graphene Science & Emerging Technology of 2D Atomic Layered Materials and
Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei
2016-07-25
We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.
High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang
2017-03-07
An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).
Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).
High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice
An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magneticmore » material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.« less
Future population of atomic bomb survivors in Nagasaki.
Yokota, Kenichi; Mine, Mariko; Shibata, Yoshisada
2013-01-01
The Nagasaki University Atomic Bomb Survivor Database, which was established in 1978 for elucidating the long-term health effects of the atomic bombing, has registered since 1970 about 120,000 atomic bomb survivors with a history of residence in Nagasaki city. Since the number of atomic bomb survivors has steadily been decreasing, prediction of future population is important for planning future epidemiologic studies, and we tried to predict the population of atomic bomb survivors in Nagasaki city from 2008 to 2030. In addition, we evaluated our estimated population comparing with the actual number from 2008 to 2011.
Trapped atom number in millimeter-scale magneto-optical traps
NASA Astrophysics Data System (ADS)
Hoth, Gregory W.; Donley, Elizabeth A.; Kitching, John
2012-06-01
For compact cold-atom instruments, it is desirable to trap a large number of atoms in a small volume to maximize the signal-to-noise ratio. In MOTs with beam diameters of a centimeter or larger, the slowing force is roughly constant versus velocity and the trapped atom number scales as d^4. For millimeter-scale MOTs formed from pyramidal reflectors, a d^6 dependence has been observed [Pollack et al., Opt. Express 17, 14109 (2009)]. A d^6 scaling is expected for small MOTs, where the slowing force is proportional to the atom velocity. For a 1 mm diameter MOT, a d^6 scaling results in 10 atoms, and the difference between a d^4 and a d^6 dependence corresponds to a factor of 1000 in atom number and a factor of 30 in the signal-to-noise ratio. We have observed >10^4 atoms in 1 mm diameter MOTs, consistent with a d^4 dependence. We are currently performing measurements for sub-mm MOTs to determine where the d^4 to d^6 crossover occurs in our system. We are also exploring MOTs based on linear polarization, which can potentially produce stronger slowing forces due to stimulated emission [Emile et al., Europhys. Lett. 20, 687 (1992)]. It may be possible to trap more atoms in small volumes with this method, since high intensities can be easily achieved.
Population Dynamics of Excited Atoms in Dissipative Cavities
NASA Astrophysics Data System (ADS)
Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa
2016-10-01
Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.
Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin
2015-07-07
Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.
Mileto, Achille; Allen, Brian C; Pietryga, Jason A; Farjat, Alfredo E; Zarzour, Jessica G; Bellini, Davide; Ebner, Lukas; Morgan, Desiree E
2017-10-01
The purpose of this study was to assess the diagnostic accuracy of effective atomic number maps reconstructed from dual-energy contrast-enhanced data for discriminating between nonenhancing renal cysts and enhancing masses. Two hundred six patients (128 men, 78 women; mean age, 64 years) underwent a CT renal mass protocol (single-energy unenhanced and dual-energy contrast-enhanced nephrographic imaging) at two different hospitals. For each set of patients, two blinded, independent observers performed measurements on effective atomic number maps from contrast-enhanced dual-energy data. Renal mass assessment on unenhanced and nephrographic images, corroborated by imaging and medical records, was the reference standard. The diagnostic accuracy of effective atomic number maps was assessed with ROC analysis. Significant differences in mean effective atomic numbers (Z eff ) were observed between nonenhancing and enhancing masses (set A, 8.19 vs 9.59 Z eff ; set B, 8.05 vs 9.19 Z eff ; sets combined, 8.13 vs 9.37 Z eff ) (p < 0.0001). An effective atomic number value of 8.36 Z eff was the optimal threshold, rendering an AUC of 0.92 (95% CI, 0.89-0.94), sensitivity of 90.8% (158/174 [95% CI, 85.5-94.7%]), specificity of 85.2% (445/522 [95% CI, 81.9-88.2%]), and overall diagnostic accuracy of 86.6% (603/696 [95% CI, 83.9-89.1%]). Nonenhancing renal cysts, including hyperattenuating cysts, can be discriminated from enhancing masses on effective atomic number maps generated from dual-energy contrast-enhanced CT data. This technique may be of clinical usefulness when a CT protocol for comprehensive assessment of renal masses is not available.
NASA Astrophysics Data System (ADS)
Mi, Guangbao; Li, Peijie; He, Liangju
2010-09-01
Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.
Energy levels for Ac-212 (Actinium-212)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope Ac-212 (actinium, atomic number Z = 89, mass number A = 212).
NASA Astrophysics Data System (ADS)
Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E.
2018-04-01
Context. Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the Universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. Aims: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. In a second step synthetic spectra will be compared against extremely high-quality observed spectra, for a large number of BAFGK spectral type stars, in order to critically evaluate the atomic data of a large number of important stellar lines. Methods: Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a new non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. Results: We report on the number of cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that 2% of our line list and Vienna atomic line database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different retrieved literature log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transition pairs are available to download at http://brass.sdf.org
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
NASA Astrophysics Data System (ADS)
Schmidt, Jacob B.; Sands, Brian; Scofield, James; Gord, James R.; Roy, Sukesh
2017-05-01
Absolute number densities of atomic species produced by nanosecond (ns)-duration, repetitively pulsed electric discharges are measured by two-photon-absorption laser-induced fluorescence (TALIF). Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF) that offers a number of advantages over more conventional nanosecond (ns)-pulse-duration laser techniques, such as higher-fidelity quenching rate measurements over a wide pressure range, significantly reduced photolytic interference (including photo-dissociation and photo-ionization), ability to collect two-dimensional images of atomic-species number densities with high spatial resolution aided by higher signal level, and efficient and accurate measurements of atomic-species number densities due to the higher repetition rates of the laser. For full quantification of these advantages, atomic-oxygen TALIF signals are collected from an atmospheric-pressure plasma jet employing both ns- and fs-duration laser-excitation pulses and the results are compared and contrasted.
1990-09-01
accuracy by Carl F. Austin, NWC; James Moore, California Energy Co.; and Robert 0. Fournier, Unites States Geological Survey. Approved by Under authority...protons, electrons , and neutrons. The electrical charge of protons is positive, and that of electrons is negative. Neutrons have no electrical charge...The number of protons determines what element an atom is and gives it its atomic number. In a neutral or nonionized atom the number of electrons
Note: A 3D-printed alkali metal dispenser
NASA Astrophysics Data System (ADS)
Norrgard, E. B.; Barker, D. S.; Fedchak, J. A.; Klimov, N.; Scherschligt, J.; Eckel, S.
2018-05-01
We demonstrate and characterize a source of Li atoms made from direct metal laser sintered titanium. The source's outgassing rate is measured to be 5(2) × 10-7 Pa L s-1 at a temperature T = 330 °C, which optimizes the number of atoms loaded into a magneto-optical trap. The source loads ≈107 7Li atoms in the trap in ≈1 s. The loaded source weighs 700 mg and is suitable for a number of deployable sensors based on cold atoms.
The adsorption of helium atoms on coronene cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin
2016-08-14
We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less
Name that compound: The numbers game for CFCs, HFCs, HCFCs, and Halons
Blasing, T. J.; Jones, Sonja
2012-02-01
Chlorofluorocarbons (CFCs) contain Carbon and some combination of Fluorine and Chlorine atoms. Hydrofluorocarbons (HFCs) contain Hydrogen, Fluorine, and Carbon (no chlorine). Hydrochlorofluorocarbons (HCFCs) contain Hydrogen, Chlorine, Fluorine, and Carbon atoms. Hydrobromofluorocarbons (HBFCs) contain Hydrogen, Bromine, Fluorine, and Carbon atoms. Perfluorocarbons contain Fluorine, Carbon, and Bromine atoms, and some contain Chlorine and/or Hydrogen atoms. These compounds are often designated by a combination of letters and numbers (e.g., CFC-11, HCFC-142b). In the latter example, the lower-case b refers to an isomer, which has no relationship to the chemical formula (C2H3F2Cl), but designates a particular structural arrangement of the atoms included. For example, HCFC-142b identifies the isomer in which all three hydrogen atoms are attached to the same carbon atom, and the structural formula is written as CH3CF2Cl. By contrast, HCFC-142 (without the b) refers to an arrangement in which one carbon atom is attached to two hydrogen atoms and one chlorine atom, while the other carbon atom is attached to the third hydrogen atom and two fluorine atoms. Hence, it has a different structural formula (CH2ClCHF2).
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.
2005-01-01
A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.
NASA Astrophysics Data System (ADS)
Langeveld, Willem G. J.
The most widely used technology for the non-intrusive active inspection of cargo containers and trucks is x-ray radiography at high energies (4-9 MeV). Technologies such as dual-energy imaging, spectroscopy, and statistical waveform analysis can be used to estimate the effective atomic number (Zeff) of the cargo from the x-ray transmission data, because the mass attenuation coefficient depends on energy as well as atomic number Z. The estimated effective atomic number, Zeff, of the cargo then leads to improved detection capability of contraband and threats, including special nuclear materials (SNM) and shielding. In this context, the exact meaning of effective atomic number (for mixtures and compounds) is generally not well-defined. Physics-based parameterizations of the mass attenuation coefficient have been given in the past, but usually for a limited low-energy range. Definitions of Zeff have been based, in part, on such parameterizations. Here, we give an improved parameterization at low energies (20-1000 keV) which leads to a well-defined Zeff. We then extend this parameterization up to energies relevant for cargo inspection (10 MeV), and examine what happens to the Zeff definition at these higher energies.
Multimillion Atom Simulations and Visualization of Hypervelocity Impact Damage and Oxidation
2004-01-01
MULTIMILLION ATOM SIMULATIONS AND VISUALIZATION OF HYPERVELOCITY IMPACT DAMAGE AND OXIDATION Priya Vashishta*, Rajiv K. Kalia, and Aiichiro Nakano...number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 00 DEC 2004 N/A 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multimillion Atom Simulations And...Collaboratory for Advanced Computing and Simulations Department of Materials Science & Engineering, Department of Physics & Astronomy, Department of
ERIC Educational Resources Information Center
Rittenhouse, Robert C.
2015-01-01
The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…
NASA Astrophysics Data System (ADS)
Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.
2018-01-01
This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O + H → OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O + O → O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is likely due to diffusion of H atoms from the partially oxidized regions near the side walls of the reactor into the plasma. Although significant fractions of hydrogen and hydrocarbon fuels are oxidized by O atoms produced in the plasma, chain branching remains a minor effect at these relatively low temperature conditions.
Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H
2015-01-01
Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many seemingly due to erroneous interpretation of structures from patent data. Compared to fragmentation statistics published 40 years ago, the exponential growth in chemistry is mirrored in a nearly eightfold increase in the number of unique chemical fragments; however, this result is clearly an upper bound estimate as earlier studies employed structure sampling approaches and this study shows that a relatively high rate of atom fragments are found in only a single chemical structure (singletons). In addition, the percentage of singletons grows as the size of the chemical fragment is increased. The observed growth of the numbers of unique fragments over time suggests that many chemically possible connections of atom types to larger fragments have yet to be explored by chemists. A dramatic drop in the relative rate of increase of atom environments from smaller to larger fragments shows that larger fragments mainly consist of diverse combinations of a limited subset of smaller fragments. This is further supported by the observed concomitant increase of singleton atom environments. Combined, these findings suggest that there is considerable opportunity for chemists to combine known fragments to novel chemical compounds. The comparison of PubChem to an older study of known chemical structures shows noticeable differences. The changes suggest advances in synthetic capabilities of chemists to combine atoms in new patterns. Log-log plots of fragment incidence show small numbers of fragments are found in many structures and that large numbers of fragments are found in very few structures, with nearly half being novel using the methods in this work. The relative decrease in the count of new fragments as a function of size further suggests considerable opportunity for more novel chemicals exists. Lastly, the differences in atom environment diversity between PubChem Substance and Compound showcase the effect of PubChem standardization protocols, but also indicate that a normalization procedure for atom types, functional groups, and tautomeric/resonance forms based on atom environments is possible. The complete sets of atom types and atom environments are supplied as supporting information.
Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G
2014-09-01
The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.
To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin
2012-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .
NASA Astrophysics Data System (ADS)
Ghasemian, E.; Tavassoly, M. K.
2017-09-01
In this paper we consider a system consisting of a number of two-level atoms in a Bose-Einstein condensate (BEC) and a single-mode quantized field, which interact with each other in the presence of two different damping sources, i.e. cavity and atomic reservoirs. The reservoirs which we consider here are thermal and squeezed vacuum ones corresponding to field and atom modes. Strictly speaking, by considering both types of reservoirs for each of the atom and field modes, we investigate the quantum dynamics of the interacting bosons in the system. Then, via solving the quantum Langevin equations for such a dissipative BEC system, we obtain analytical expressions for the time dependence of atomic population inversion, mean atom as well as photon number and quadrature squeezing in the field and atom modes. Our investigations demonstrate that for modeling the real physical systems, considering the dissipation effects is essential. Also, numerical calculations which are presented show that the atomic population inversion, the mean number of atoms in the BEC and the photons in the cavity possess damped oscillatory behavior due to the presence of reservoirs. In addition, non-classical squeezing effects in the field quadrature can be observed especially when squeezed vacuum reservoirs are taken into account. As an outstanding property of this model, we may refer to the fact that one can extract the atom-field coupling constant from the frequency of oscillations in the mentioned quantities such as atomic population inversion.
RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, N.E.; Holden, N.; Holden,N.E.
2011-07-27
In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotopemore » as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.« less
NASA Technical Reports Server (NTRS)
Hardalupas, Y.; Whitelaw, J. H.
1993-01-01
An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.
NASA Astrophysics Data System (ADS)
Wang, Jian-ming; Xu, Xue-xiang
2018-04-01
Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.
Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.
Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi
2018-02-01
Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving atomic displacement and replacement calculations with physically realistic damage models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models.
Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.
The Concept of Oxidation States in Metal Complexes
ERIC Educational Resources Information Center
Steinborn, Dirk
2004-01-01
The concepts of oxidation numbers when applied means electrons that are shared between atoms in molecules are assigned to a specific atom. Oxidation numbers are assigned from the Lewis structure of a molecule, with knowledge of the electronegativities of elements.
Diamond like carbon coatings: Categorization by atomic number density
NASA Technical Reports Server (NTRS)
Angus, John C.
1986-01-01
Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.
NASA Astrophysics Data System (ADS)
Quezada, L. F.; Nahmad-Achar, E.
2018-06-01
We use coherent states as trial states for a variational approach to study a system of a finite number of three-level atoms interacting in a dipolar approximation with a one-mode electromagnetic field. The atoms are treated as semidistinguishable using different cooperation numbers and representations of SU(3). We focus our analysis on the quantum phases of the system as well as the behavior of the most relevant observables near the phase transitions. The results are computed for all three possible configurations (Ξ , Λ , and V ) of the three-level atoms.
Fisher information in confined hydrogen-like ions
NASA Astrophysics Data System (ADS)
Mukherjee, Neetik; Majumdar, Sangita; Roy, Amlan K.
2018-01-01
Fisher information (I) is investigated for confined hydrogen atom (CHA)-like systems in conjugate r and p spaces. A comparative study between CHA and free H atom (with respect to I) is pursued. A detailed systematic result of I with respect to variation of confinement radius rc is presented, with particular emphasis on non-zero- (l, m) states. In certain respect, inferences in CHA are significantly different from free counterpart, such as (i) dependence on n, l quantum numbers (ii) appearance of maxima in Ip plots for | m | ≠ 0 . The role of atomic number and atomic radius is discussed.
High Atom Number in Microsized Atom Traps
2015-12-14
forces on the order of (hbar)(k) (Omega), where Omega is the laser Rabi frequency. We have observed behavior compatible with bichromatic slowing and... Rabi frequency. We have observed behavior compatible with bichromatic slowing and cooling of some atoms in atomic beam. Results were presented at the
Silver clusters encapsulated in C{sub 60}: A density functional study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiman, Shobhna; Kumar, Ranjan; Dharamvir, Keya
2015-08-28
We explore the possibility of formation of endohedral complexes of Ag{sub n} atoms (n=1-9) inside C{sub 60} molecule using density functional theory and molecular dynamics. The obtained results reveal that Ag{sub n} (n=8) atoms can form stable complexes with the C{sub 60} molecule. Encapsulation of large number of Ag{sub n} atoms (n>8) make C{sub 60} cage instable, showing distortion of cage. Binding energy/atom increases with the number of Ag atoms up to n=4, after that it increases. Ionization potential decreases till n=4 and then increases, electron affinity increases till n=4 and then shows oscillatory nature as a function of Agmore » atoms inside the cage. Homo –Lumo gap shows no systematic pattern. Our results agreed well with the data available.« less
Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi
2015-12-24
Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.
NASA Astrophysics Data System (ADS)
Ohno, Yutaka; Kutsukake, Kentaro; Deura, Momoko; Yonenaga, Ichiro; Shimizu, Yasuo; Ebisawa, Naoki; Inoue, Koji; Nagai, Yasuyoshi; Yoshida, Hideto; Takeda, Seiji
2016-10-01
Three-dimensional distribution of impurity atoms was determined at functional Σ5{013} and small-angle grain boundaries (GBs) in as-grown mono-like silicon crystals by atom probe tomography combined with transmission electron microscopy, and it was correlated with the recombination activity of those GBs, CGB, revealed by photoluminescence imaging. Nickel (Ni), copper (Cu), and oxygen atoms preferentially segregated at the GBs on which arrays of dislocations existed, while those atoms scarcely segregated at Σ5{013} GBs free from dislocations. Silicides containing Ni and Cu about 5 nm in size and oxides about 1 nm in size were formed along the dislocation arrays on those GBs. The number of segregating impurity atoms per unit GB area for Ni and that for Cu, NNi and NCu, were in a trade-off correlation with that for oxygen, NO, as a function of CGB, while the sum of those numbers was almost constant irrespective of the GB character, CGB, and the dislocation density on GBs. CGB would be explained as a linear combination of those numbers: CGB (in %) ˜400(0.38NO + NNi + NCu) (in atoms/nm2). The GB segregation of oxygen atoms would be better for solar cells, rather than that of metal impurities, from a viewpoint of the conversion efficiency of solar cells.
A new method to measure electron density and effective atomic number using dual-energy CT images
NASA Astrophysics Data System (ADS)
Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.
2016-01-01
The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 % ± 0.1 % for {ρ\\text{e}} and 4.1 % ± 0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V. Ya.; Shpatakovskaya, G. V., E-mail: shpagalya@yandex.ru
An expression for the binding energies of electrons in the ground state of an atom is derived on the basis of the Bohr–Sommerfeld quantization rule within the Thomas–Fermi model. The validity of this relation for all elements from neon to uranium is tested within a more perfect quantum-mechanical model with and without the inclusion of relativistic effects, as well as with experimental binding energies. As a result, the ordering of electronic levels in filled atomic shells is established, manifested in an approximate atomic-number similarity. It is proposed to use this scaling property to analytically estimate the binding energies of electronsmore » in an arbitrary atom.« less
Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry
NASA Technical Reports Server (NTRS)
Lee, G. H.
1967-01-01
Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.
Dual-Beam Atom Laser Driven by Spinor Dynamics
NASA Technical Reports Server (NTRS)
Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David
2007-01-01
An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.
2015-06-24
The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.
The New Element Curium (Atomic Number 96)
DOE R&D Accomplishments Database
Seaborg, G. T.; James, R. A.; Ghiorso, A.
1948-01-01
Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.
The measurement of argon metastable atoms in the barrier discharge plasma
NASA Astrophysics Data System (ADS)
Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich
2018-04-01
The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.
NASA Astrophysics Data System (ADS)
Akman, Ferdi; Kaçal, Mustafa Recep; Akdemir, Fatma; Araz, Aslı; Turhan, Mehmet Fatih; Durak, Rıdvan
2017-04-01
The total mass attenuation coefficients (μ/ρ), total molecular (σt,m), atomic (σt,a) and electronic (σt,e) cross sections, effective atomic numbers (Zeff) and electron density (NE) were computed in the wide energy region from 1 keV to 100 GeV for the selected narcotic drugs such as morphine, heroin, cocaine, ecstasy and cannabis. The changes of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE with photon energy for total photon interaction shows the dominance of different interaction process in different energy regions. The variations of μ/ρ, σt,m, σt,a, σt,e, Zeff and NE depend on the atom number, photon energy and chemical composition of narcotic drugs. Also, these parameters change with number of elements, the range of atomic numbers in narcotic drugs and total molecular weight. These data can be useful in the field of forensic sciences and medical diagnostic.
Improved atom number with a dual color magneto—optical trap
NASA Astrophysics Data System (ADS)
Cao, Qiang; Luo, Xin-Yu; Gao, Kui-Yi; Wang, Xiao-Rui; Chen, Dong-Min; Wang, Ru-Quan
2012-04-01
We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems.
Zhou, Min; Dick, Jeffrey E; Bard, Allen J
2017-12-06
We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures.
Zhang, S; Nordlund, K; Djurabekova, F; Zhang, Y; Velisa, G; Wang, T S
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
Helium trapping in aluminium near the critical dose on blister formation
NASA Astrophysics Data System (ADS)
Fukahori, T.; Kanda, Y.; Mori, K.; Tobimatsu, H.
1985-08-01
Blistering and flaking caused by energetic He ions emitted from the plasma in fusion reactors possibly contribute to first-wall erosion. In order to study their characteristics, the numbers of He atoms trapped in He-ion-irradiated Al samples have been measured by a He atom measurement system and every sample has been observed by a scanning electron microscope. The samples have been prepared from a polycrystalline plate and irradiated with 20 keV He ions at room temperature. The saw-tooth like variation of the trapped He atoms with the dose has three edges corresponding to the blistering, flaking and double flaking, respectively. The critical doses for the three events are found to be 4 × 10 21, 7 × 10 21, 12 × 10 21 He atoms m -2, respectively. The average number of He atoms included in an event is 5.4 × 10 10 He atoms in the case of the blistering and 2.1 × 10 11 He atoms in the case of flaking.
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
NASA Astrophysics Data System (ADS)
Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.
2016-10-01
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.
The Pt site reactivity of the molecular graphs of Au6Pt isomers
NASA Astrophysics Data System (ADS)
Xu, Tianlv; Jenkins, Samantha; Xiao, Chen-Xia; Maza, Julio R.; Kirk, Steven R.
2013-12-01
Within the framework of the theory of atoms in molecules (QTAIM), in an exploratory study we propose a new measure of site reactivity equivalent to the atomic coordination number based purely on the electronic structure. It was found that the number of ring critical points (NNRCPs) positioned on the boundary of the atomic basin of the dopant (Pt) nucleus correlated very well with the relative zero point energy (ZPE) corrected energies. A weaker condition (i.e. than the number of associated bond paths) for the association of the dopant Pt nucleus with the Au6Pt molecular graph is found for NNRCP = 0.
NASA Technical Reports Server (NTRS)
Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.
1976-01-01
Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2018-03-01
In fusion applications, helium, implanted or created by transmutation, plays an important role in the response of reduced-activation ferritic/martensitic steels to neutron radiation damage. The effects of helium concentration and radiation temperature on interaction of interstitial helium atoms with displacement cascades have been studied in Fe-He system using molecular dynamics with recently developed Fe-He potential. Results indicate that interstitial helium atoms produce no additional defects at peak time and promote recombination of Frenkel pairs at lower helium concentrations, but suppress recombination of Frenkel pairs at larger helium concentrations. Moreover, large helium concentrations promote the production of defects at the end of cascades. The number of substitutional helium atoms increases with helium concentration at peak time and the end of cascades, but the number of substitutional helium atoms at peak time is smaller than that at the end of displacement cascades. High radiation temperatures promote the production at peak time and the recombination of defects at the end of cascades. The number of substitutional helium atoms increases with radiation temperature, but that at peak time is smaller than that at the end of cascades.
Dispersive detection of radio-frequency-dressed states
NASA Astrophysics Data System (ADS)
Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas
2018-04-01
We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
ERIC Educational Resources Information Center
Minkiewicz, Piotr; Darewicz, Malgorzata; Iwaniak, Anna
2018-01-01
A simple equation to calculate the oxidation states (oxidation numbers) of individual atoms in molecules and ions may be introduced instead of rules associated with words alone. The equation includes two of three categories of bonds, classified as proposed by Goodstein: number of bonds with more electronegative atoms and number of bonds with less…
Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Kien, Fam; Hakuta, K.
2010-02-15
We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finessemore » is moderate, the cavity is long, and the probe field is weak.« less
A triple point in 3-level systems
NASA Astrophysics Data System (ADS)
Nahmad-Achar, E.; Cordero, S.; López-Peña, R.; Castaños, O.
2014-11-01
The energy spectrum of a 3-level atomic system in the Ξ-configuration is studied. This configuration presents a triple point independently of the number of atoms, which remains in the thermodynamic limit. This means that in a vicinity of this point any quantum fluctuation will drastically change the composition of the ground state of the system. We study the expectation values of the atomic population of each level, the number of photons, and the probability distribution of photons at the triple point.
Nonlinear Sensing With Collective States of Ultracold Atoms in Optical Lattices
2015-04-02
20) E. Tiesinga, “Particle-hole Pair Coherence in Mott insulator quench dynamics” at the June 2014, Division of atomic, molecular, and optical...Jian, Philip R. Johnson, Eite Tiesinga. Particle-Hole Pair Coherence in Mott Insulator Quench Dynamics, P H Y S I C A L R E V I EW L E T T E R S (01...lattices. We focused on techniques that make use of the coherent superposition states in atom number. These state are not unlike the photon number
SEPARATION OF PLUTONIUM FROM ELEMENTS HAVING AN ATOMIC NUMBER NOT LESS THAN 92
Fitch, F.T.; Russell, D.S.
1958-09-16
other elements having atomic numbers nnt less than 92, It has been proposed in the past to so separate plutonium by solvent extraction iato an organic solvent using triglycoldichlcride as the organic solvent. The improvement lies in the discovery that triglycoldichloride performs far more efflciently as an extractant, wher certain second organie compounds are added to it. Mentioned as satisfactory additive compounds are benzaldehyde, saturated aliphatic aldehydes containtng at least twc carbon atoms, and certain polyhydric phenols.
Simulation of Laser Cooling and Trapping in Engineering Applications
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan
2005-01-01
An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint on the wide range of applications and technology developments that can be tackled using cold atoms and light fields. From more precise atomic clocks and gravity sensors to the development of quantum computers, there will be a need to completely understand the whole ensemble of physical mechanisms that play a role in the development of such technologies. The code also permits the study of the dynamic and steady-state operations of technologies that use cold atoms. The physical characteristics of lasers and fields can be time-controlled to give a realistic simulation of the processes involved such that the design process can determine the best control features to use. It is expected that with the features incorporated into the code it will become a tool for the useful application of ultracold atoms in engineering applications. Currently, the software is being used for the analysis and understanding of simple experiments using cold atoms, and for the design of a modular compact source of cold atoms to be used in future research and development projects. The results so far indicate that the code is a useful design instrument that shows good agreement with experimental measurements (see figure), and a Windows-based user-friendly interface is also under development.
Investigation and Development of Advanced Surface Microanalysis Techniques and Methods
1983-04-01
descriminates against isobars since each of the isobaric species will have a different atomic number or Z and, therefore, will be stripped of its...allow descrimination between two elements at the same mass but which have different atomic numbers. Multiply-charged ions are not produced during the
Self-regulated Gd atom trapping in open Fe nanocorrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, R. X.; Liu, Z.; Miao, B. F.
2014-07-01
Utilizing open Fe nanocorrals built by atom manipulation, we demonstrate self-regulated Gd atom trapping in open quantum corrals. The number of Gd atoms trapped is exactly determined by the diameter of the corral. The quantization can be understood as a self-regulating process, arising from the long-range interaction between Gd atoms and the open corral. We illustrate with arrays of open corrals that such atom trapping can suppress unwanted statistical fluctuations. Our approach opens a potential pathway for nanomaterial design and fabrication with atomic-level precision.
Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales
NASA Astrophysics Data System (ADS)
Dongare, Avinash M.
2014-12-01
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.
NASA Technical Reports Server (NTRS)
Gooderum, P. B.; Bushnell, D. M.
1972-01-01
Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.
Chemical experiments with superheavy elements.
Türler, Andreas
2010-01-01
Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.
NASA Astrophysics Data System (ADS)
Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min
2018-04-01
A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.
NASA Astrophysics Data System (ADS)
Czarnecki, S.; Williams, S.
2017-12-01
The accuracy of a method for measuring the effective atomic numbers of minerals using bremsstrahlung intensities has been investigated. The method is independent of detector-efficiency and maximum accelerating voltage. In order to test the method, experiments were performed which involved low-energy electrons incident on thick malachite, pyrite, and galena targets. The resultant thick-target bremsstrahlung was compared to bremsstrahlung produced using a standard target, and experimental effective atomic numbers were calculated using data from a previous study (in which the Z-dependence of thick-target bremsstrahlung was studied). Comparisons of the results to theoretical values suggest that the method has potential for implementation in energy-dispersive X-ray spectroscopy systems.
Anomalous I-V curve for mono-atomic carbon chains
NASA Astrophysics Data System (ADS)
Song, Bo; Sanvito, Stefano; Fang, Haiping
2010-10-01
The electronic transport properties of mono-atomic carbon chains were studied theoretically using a combination of density functional theory and the non-equilibrium Green's functions method. The I-V curves for the chains composed of an even number of atoms and attached to gold electrodes through sulfur exhibit two plateaus where the current becomes bias independent. In contrast, when the number of carbon atoms in the chain is odd, the electric current simply increases monotonically with bias. This peculiar behavior is attributed to dimerization of the chains, directly resulting from their one-dimensional nature. The finding is expected to be helpful in designing molecular devices, such as carbon-chain-based transistors and sensors, for nanoscale and biological applications.
Relativistic well-tempered Gaussian basis sets for helium through mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Matsuoka, O.
1989-10-01
Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jursenas, Rytis, E-mail: Rytis.Jursenas@tfai.vu.l; Merkelis, Gintaras
2011-01-15
General expressions for the second-order effective atomic Hamiltonian are derived for open-subshell atoms in jj-coupling. The expansion terms are presented as N-body (N=0,1,2,3) effective operators given in the second quantization representation in coupled tensorial form. Two alternative coupled tensorial forms for each expansion term have been developed. To reduce the number of expressions of the effective Hamiltonian, the reduced matrix elements of antisymmetric two-particle wavefunctions are involved in the consideration. The general expressions presented allow the determination of the spin-angular part of expansion terms when studying correlation effects dealing with a number of problems in atomic structure calculations.
NASA Astrophysics Data System (ADS)
Eritenko, A. N.; Tsvetiansky, A. L.; Polev, A. A.
2018-01-01
In the present paper, a universal analytical dependence of effective atomic number on the composition of matter and radiation energy is proposed. This enables one to consider the case of a strong difference in the elemental composition with respect to their atomic numbers over a wide energy range. The contribution of photoelectric absorption and incoherent and coherent scattering during the interaction between radiation and matter is considered. For energy values over 40 keV, the contribution of coherent scattering does not exceed approximately 10% that can be neglected at a further consideration. The effective atomic numbers calculated on the basis of the proposed relationships are compared to the results of calculations based on other methods considered by different authors on the basis of experimental and tabulated data on mass and atomic attenuation coefficients. The examination is carried out for both single-element (e.g., 6C, 14Si, 28Cu, 56Ba, and 82Pb) and multi-element materials. Calculations are performed for W1-xCux alloys (x = 0.35; x = 0.4), PbO, ther moluminescent dosimetry compounds (56Ba, 48Cd, 41Sr, 20Ca, 12Mg, and 11Na), and SO4 in a wide energy range. A case with radiation energy between the K- and L1-absorption edges is considered for 82Pb, 74W, 56Ba, 48Cd, and 38Sr. This enables to substantially simplify the calculation of the atomic number and will be useful in technical and scientific fields related to the interaction between X-ray/gamma radiation and matter.
Some properties of Stark states of hydrogenic atoms and ions
NASA Astrophysics Data System (ADS)
Hey, J. D.
2007-10-01
The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2015-07-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
Correlation of materials properties with the atomic density concept
NASA Technical Reports Server (NTRS)
1975-01-01
Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.
Lucia, Umberto
2016-01-01
The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes. PMID:27762333
Analyzing For Light Elements By X-Ray Scattering
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
Nondestructive method of determining concentrations of low-atomic-number elements in liquids and solids involves measurements of Compton and Rayleigh scattering of x rays. Applied in quantitative analysis of low-atomic-number constituents of alloys, of contaminants and corrosion products on surfaces of alloys, and of fractions of hydrogen in plastics, oils, and solvents.
Effective atomic numbers and electron density of dosimetric material
Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.
2009-01-01
A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kira, M., E-mail: mackillo.kira@physik.uni-marburg.de
Atomic Bose–Einstein condensates (BECs) can be viewed as macroscopic objects where atoms form correlated atom clusters to all orders. Therefore, the presence of a BEC makes the direct use of the cluster-expansion approach–lucrative e.g. in semiconductor quantum optics–inefficient when solving the many-body kinetics of a strongly interacting Bose. An excitation picture is introduced with a nonunitary transformation that describes the system in terms of atom clusters within the normal component alone. The nontrivial properties of this transformation are systematically studied, which yields a cluster-expansion friendly formalism for a strongly interacting Bose gas. Its connections and corrections to the standard Hartree–Fock–Bogoliubov approachmore » are discussed and the role of the order parameter and the Bogoliubov excitations are identified. The resulting interaction effects are shown to visibly modify number fluctuations of the BEC. Even when the BEC has a nearly perfect second-order coherence, the BEC number fluctuations can still resolve interaction-generated non-Poissonian fluctuations. - Highlights: • Excitation picture expresses interacting Bose gas with few atom clusters. • Semiconductor and BEC many-body investigations are connected with cluster expansion. • Quantum statistics of BEC is identified in terms of atom clusters. • BEC number fluctuations show extreme sensitivity to many-body correlations. • Cluster-expansion friendly framework is established for an interacting Bose gas.« less
Simulation of Rutherford backscattering spectrometry from arbitrary atom structures
Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...
2016-10-25
Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less
Influence of spray nozzle shape upon atomization process
NASA Astrophysics Data System (ADS)
Beniuga, Marius; Mihai, Ioan
2016-12-01
The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.
Monte, M J S; Almeida, A R R P; Liebman, J F
2015-11-01
Halogenated benzenes form a class of pollutants with a huge number of members - 1504 distinct benzene compounds, where one or more hydrogen atoms are replaced by halogens, may exist theoretically. This study presents a user friendly method for accurate prediction of vapor pressures and enthalpies of vaporization, at 298.15 K, of any mono or poly halobenzene compound. The derived equations for the prediction of those vaporization properties depend just on the number of each constituent halogen atom. This is a consequence of the absence of intramolecular interactions between the halogen atoms, revealed after examining vaporization results of ca. 40 halogenated benzenes. In order to rationalize the estimation equations, the contribution of the halogen atoms for the referred to above properties of vaporization was decomposed into two atomic properties - the volume and electron affinity. Extension of the applicability of the estimation method to substituted benzenes containing other substituent groups beyond halogen atoms as well as to some polycyclic aromatic species was tested with success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Platinum clusters with precise numbers of atoms for preparative-scale catalysis.
Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa
2017-09-25
Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.
Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange
NASA Astrophysics Data System (ADS)
Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang
2017-10-01
We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.
Fusion barrier characteristics of actinides
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.; Sridhar, K. N.
2018-03-01
We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6
Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case
NASA Astrophysics Data System (ADS)
Cheng, Jing; Chen, Xi; Shan, Chuan-Jia
2018-06-01
We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsunomiya, S; Kushima, N; Katsura, K
Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cmmore » × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.« less
Detailed numerical simulations of laser cooling processes
NASA Technical Reports Server (NTRS)
Ramirez-Serrano, J.; Kohel, J.; Thompson, R.; Yu, N.
2001-01-01
We developed a detailed semiclassical numerical code of the forces applied on atoms in optical and magnetic fields to increase the understanding of the different roles that light, atomic collisions, background pressure, and number of particles play in experiments with laser cooled and trapped atoms.
Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.
Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang
2018-01-16
The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.
Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities
NASA Astrophysics Data System (ADS)
Song, L. N.; Wang, Z. H.; Li, Yong
2018-05-01
We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.
General properties of quantum optical systems in a strong field limit
NASA Technical Reports Server (NTRS)
Chumakov, S. M.; Klimov, Andrei B.
1994-01-01
We investigate the dynamics of an arbitrary atomic system (n-level atoms or many n-level atoms) interacting with a resonant quantized mode of an em field. If the initial field state is a coherent state with a large photon number then the system dynamics possesses some general features, independently of the particular structure of the atomic system. Namely, trapping states, factorization of the wave function, collapses and revivals of the atomic energy oscillations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maaloul, L.; Gangwar, R. K.; Stafford, L., E-mail: luc.stafford@umontreal.ca
2015-07-15
A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over themore » whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.« less
Self-bound droplets of a dilute magnetic quantum liquid
NASA Astrophysics Data System (ADS)
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Self-bound droplets of a dilute magnetic quantum liquid.
Schmitt, Matthias; Wenzel, Matthias; Böttcher, Fabian; Ferrier-Barbut, Igor; Pfau, Tilman
2016-11-10
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested that self-bound ensembles of ultracold atoms should exist for atom number densities that are 10 8 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei and helium droplets.
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number
ERIC Educational Resources Information Center
Smith, Derek W.
2005-01-01
Valence as a numerical measure of an atom's combining power, expressed by the number of bonds it forms in a molecular formulation of the compound in question, was unable to cope with coordination compounds. The covalence of an atom is the nearest model equivalent, but is subject to ambiguity since it often depends on which bonding model is being…
Impact of Pb content on the physical parameters of Se-Te-Pb system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjali,; Sharma, Raman; Thakur, Nagesh
2015-05-15
In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less
Cooling by spontaneous decay of highly excited antihydrogen atoms in magnetic traps.
Pohl, T; Sadeghpour, H R; Nagata, Y; Yamazaki, Y
2006-11-24
An efficient cooling mechanism of magnetically trapped, highly excited antihydrogen (H) atoms is presented. This cooling, in addition to the expected evaporative cooling, results in trapping of a large number of H atoms in the ground state. It is found that the final fraction of trapped atoms is insensitive to the initial distribution of H magnetic quantum numbers. Expressions are derived for the cooling efficiency, demonstrating that magnetic quadrupole (cusp) traps provide stronger cooling than higher order magnetic multipoles. The final temperature of H confined in a cusp trap is shown to depend as approximately 2.2T(n0)n(0)(-2/3) on the initial Rydberg level n0 and temperature T(n0).
NASA Astrophysics Data System (ADS)
Xu, Donghong; Xue, Fei
2017-12-01
We theoretically study cooling of flexural modes of a mechanical oscillator by Bose-Einstein-condensate (BEC) atoms (Rb87) trapped in a magnetic trap. The mechanical oscillator with a tiny magnet attached on one of its free ends produces an oscillating magnetic field. When its oscillating frequency matches certain hyperfine Zeeman energy of Rb87 atoms, the trapped BEC atoms are coupled out of the magnetic trap by the mechanical oscillator, flying away from the trap with stolen energy from the mechanical oscillator. Thus the mode temperature of the mechanical oscillator is reduced. The mode temperature of the steady state of mechanical oscillator, measured by the mean steady-state phonon number in the flexural mode of the mechanical oscillator, is analyzed. It is found that ground state (phonon number less than 1) may be accessible with optimal parameters of the hybrid system of mechanical oscillator and trapped BEC atoms.
Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap
NASA Technical Reports Server (NTRS)
Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu
1996-01-01
The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.
Introduction to the Contributions of A. Temkin and R. J. Drachman to Atomic Physics
NASA Technical Reports Server (NTRS)
Bhatia, A.K.
2007-01-01
Their work, as is the work of most atomic theorists, is concerned with solving the Schroedinger equation accurately for wave function in cases where there is no exact analytical solution. In particular, Temkin is associated with electron scattering from atoms and ions. When he started there already were a number of methods to study the scattering of electrons from atoms.
Magic Numbers in Small Iron Clusters: A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunja; Mohrland, Andrew B.; Weck, Philippe F.
2014-10-03
We perform ab initio spin-polarized density functional calculations of Fen aggregates with n ≤ 17 atoms to reveal the origin of the observed magic numbers, which indicate particularly high stability of clusters with 7, 13 and 15 atoms. Our results clarify the controversy regarding the ground state geometry of clusters such as Fe5and indicate that magnetism plays an important role in determining the stability and magic numbers in small iron clusters.
Nolan, Michael
2012-04-07
The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce(3+), while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.
Coaxial twin-fluid atomization with pattern air gas streams
NASA Astrophysics Data System (ADS)
Hei Ng, Chin; Aliseda, Alberto
2010-11-01
Coaxial twin-fluid atomization has numerous industrial applications, most notably fuel injection and spray coating. In the coating process of pharmaceutical tablets, the coaxial atomizing air stream is accompanied by two diametrically opposed side jets that impinge on the liquid/gas coaxial jets at an angle to produce an elliptical shape of the spray's cross section. Our study focuses on the influence of these side jets on the break up process and on the droplet velocity and diameter distribution along the cross section. The ultimate goal is to predict the size distribution and volume flux per unit area in the spray. With this predictive model, an optimal atomizing air/pattern air ratio can be found to achieve the desired coating result. This model is also crucial in scaling up the laboratory setup to production level. We have performed experiments with different atomized liquids, such as water and glycerine-water mixtures, that allow us to establish the effect of liquid viscosity, through the Ohnesorge number, in the spray characteristics. The gas Reynolds number of our experiments ranges from 9000 to 18000 and the Weber number ranges from 400 to 1600. We will present the effect of pattern air in terms of the resulting droplets size, droplet number density and velocity at various distances downstream of the nozzle where the effect of pattern air is significant.
Quantum computation with cold bosonic atoms in an optical lattice.
García-Ripoll, Juan José; Cirac, Juan Ignacio
2003-07-15
We analyse an implementation of a quantum computer using bosonic atoms in an optical lattice. We show that, even though the number of atoms per site and the tunnelling rate between neighbouring sites is unknown, one may operate a universal set of gates by means of adiabatic passage.
Project Physics Tests 5, Models of the Atom.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…
Stark effect on an excited hydrogen atom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barratt, C.
1983-07-01
The method of degenerate perturbation theory is used to study the dipolar nature of an excited hydrogen atom in an external electric field. The dependence of the atoms perturbed energy levels on the principal and magnetic quantum numbers, n and m, is investigated, along with the perturbed wave functions.
Theory of Reactions at a Solid Surface.
1983-03-01
vibrational and rotational motions of X2 and X are separable even at small distances away from the surface, and that the lattice vibra- tions do not...volume of the clean surface, and o(X) is the reaction cross section of X atoms with lattice atoms M. Rearranging Eq. (28), we ,can write d[n(M) - an(R...positions of only a small number, n, of local surface atoms. We designate these as the "primary lattice atoms". The remaining N-n solid atoms serve
Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms
NASA Astrophysics Data System (ADS)
Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid
2018-06-01
We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.
Tunnel ionization of highly excited atoms in a noncoherent laser radiation field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krainov, V.P.; Todirashku, S.S.
1982-10-01
A theory is developed of the ionization of highly excited atomic states by a low-frequency field of noncoherent laser radiation with a large number of modes. Analytic formulas are obtained for the probability of the tunnel ionization in such a field. An analysis is made of the case of the hydrogen atom when the parabolic quantum numbers are sufficiently good in the low-frequency limit, as well as of the case of highly excited states of complex atoms when these states are characterized by a definite orbital momentum and parity. It is concluded that the statistical factor representing the ratio ofmore » the probability in a stochastic field to the probability in a monochromatic field decreases, compared with the case of a short-range potential, if the ''Coulomb tail'' is included. It is shown that at a given field intensity the statistical factor decreases on increase in the principal quantum number of the state being ionized.« less
Grassmann phase space theory and the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.
2013-07-01
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.
NASA Astrophysics Data System (ADS)
Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong
2016-10-01
To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.
2014-05-20
Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Å to ~ 0.65 Å as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. Themore » contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.« less
NASA Astrophysics Data System (ADS)
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-01
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-18
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.
2010-06-01
Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles
Shuttling single metal atom into and out of a metal nanoparticle.
Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao
2017-10-10
It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.
Atomic-Scale Tuning of Layered Binary Metal Oxides for High Temperature Moving Assemblies
2015-06-01
AFRL-OSR-VA-TR-2015-0166 Atomic-Scale Tuning of Layered Binary Metal OxideS ASHLIE MARTINI UNIVERSITY OF CALIFORNIA MERCED Final Report 06/01/2015...Assemblies 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0221 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) ASHLIE MARTINI 5d. PROJECT NUMBER 5e...ABSTRACT UU 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON ASHLIE MARTINI Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18
ERIC Educational Resources Information Center
Moreno, Luis F.; Hincapié, Gina; Alzate, María Victoria
2014-01-01
Cheminoes is a didactic game that enables the meaningful learning of some relations between concepts such as chemical element, valence, atomic number, and chemical symbol for the first 36 chemical elements of the periodic system. Among the students who have played the game, their opinions of the activity were positive, considering the game to be a…
PREPARATION OF OXALATES OF METALS OF ATOMIC NUMBER GREATER THAN 88
Duffield, R.B.
1959-02-01
A method is presented for the preparation of oxalates of metals of atomic number greater than 88. A solid peroxide of the heavy metal is contacted with an aqueous oxalic acid solution ai a temperature of about 50 C for a period of time sufficient to form the insoluble metal oxalate which is subsequentiy recovered as a pures crystalline compound.
A beachhead on the island of stability
Oganessian, Yuri Ts.; Rykaczewski, Krzysztof P.
2015-01-01
Remember learning the periodic table of elements in high school? Our chemistry teachers explained that the chemical properties of elements come from the electronic shell structure of atoms. Furthermore, our physics teachers enriched that picture of the atomic world by introducing us to isotopes and the Segrè chart of nuclides, which arranges them by proton number Z and neutron number N.
2016-07-10
Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1
Non-Evaporative Cooling Using Spin-Exchange Collision in an Optical Trap
2009-02-03
transit time of the atoms across the optical trap should damp the atoms’ motion significantly. These processes are described in detail in Ref. [ 18]. The...potentials. Finally, since the optical trap was very shallow compared to a MOT, any light-assisted collision that resulted in almost any net acceleration...EXCHANGE COLLISION IN AN OPTICAL TRAP 5a. CONTRACT NUMBER FA9550-06-1-0190 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S
Development of the Science Data System for the International Space Station Cold Atom Lab
NASA Technical Reports Server (NTRS)
van Harmelen, Chris; Soriano, Melissa A.
2015-01-01
Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions
NASA Astrophysics Data System (ADS)
Mewe, R.
1999-07-01
This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.
Suppression and enhancement of decoherence in an atomic Josephson junction
NASA Astrophysics Data System (ADS)
Japha, Yonathan; Zhou, Shuyu; Keil, Mark; Folman, Ron; Henkel, Carsten; Vardi, Amichay
2016-05-01
We investigate the role of interatomic interactions when a Bose gas, in a double-well potential with a finite tunneling probability (a ‘Bose-Josephson junction’), is exposed to external noise. We examine the rate of decoherence of a system initially in its ground state with equal probability amplitudes in both sites. The noise may induce two kinds of effects: firstly, random shifts in the relative phase or number difference between the two wells and secondly, loss of atoms from the trap. The effects of induced phase fluctuations are mitigated by atom-atom interactions and tunneling, such that the dephasing rate may be suppressed by half its single-atom value. Random fluctuations may also be induced in the population difference between the wells, in which case atom-atom interactions considerably enhance the decoherence rate. A similar scenario is predicted for the case of atom loss, even if the loss rates from the two sites are equal. We find that if the initial state is number-squeezed due to interactions, then the loss process induces population fluctuations that reduce the coherence across the junction. We examine the parameters relevant for these effects in a typical atom chip device, using a simple model of the trapping potential, experimental data, and the theory of magnetic field fluctuations near metallic conductors. These results provide a framework for mapping the dynamical range of barriers engineered for specific applications and set the stage for more complex atom circuits (‘atomtronics’).
NASA Astrophysics Data System (ADS)
Rajaram, Sara; Trivedi, Nandini
2013-12-01
We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field’s quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.
Resonance and intercombination lines in Mg-like ions of atomic numbers Z = 13 – 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santana, Juan A.; Trabert, Elmar
2015-02-05
While prominent lines of various Na-like ions have been measured with an accuracy of better than 100 ppm and corroborate equally accurate calculations, there have been remarkably large discrepancies between calculations for Mg-like ions of high atomic number. We present ab initio calculations using the multireference Moller-Plesset approach for Mg-like ions of atomic numbers Z = 13-92 and compare the results with other calculations of this isoelectronic sequence as well as with experimental data. Our results come very close to experiment (typically 100 ppm) over a wide range. Furthermore, data at high values of Z are sparse, which calls formore » further accurate measurements in this range where relativistic and QED effects are large.« less
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…
ERIC Educational Resources Information Center
Hennigan, Jennifer N.; Grubbs, W. Tandy
2013-01-01
The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy…
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
ERIC Educational Resources Information Center
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School
ERIC Educational Resources Information Center
Goss, Valerie; Brandt, Sharon; Lieberman, Marya
2013-01-01
using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…
Atomic clusters and atomic surfaces in icosahedral quasicrystals.
Quiquandon, Marianne; Portier, Richard; Gratias, Denis
2014-05-01
This paper presents the basic tools commonly used to describe the atomic structures of quasicrystals with a specific focus on the icosahedral phases. After a brief recall of the main properties of quasiperiodic objects, two simple physical rules are discussed that lead one to eventually obtain a surprisingly small number of atomic structures as ideal quasiperiodic models for real quasicrystals. This is due to the fact that the atomic surfaces (ASs) used to describe all known icosahedral phases are located on high-symmetry special points in six-dimensional space. The first rule is maximizing the density using simple polyhedral ASs that leads to two possible sets of ASs according to the value of the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second rule is maximizing the number of complete orbits of high symmetry to construct as large as possible atomic clusters similar to those observed in complex intermetallic structures and approximant phases. The practical use of these two rules together is demonstrated on two typical examples of icosahedral phases, i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).
NASA Astrophysics Data System (ADS)
Niemiec, Wiktor; Szczygieł, Przemysław; Jeleń, Piotr; Handke, Mirosław
2018-07-01
Silicon oxycarbide is a material with a number of advantageous properties that strongly depend on its structure. The most common approach to its tailoring is based on varying the silicon to carbon atoms ratio in the preceramic polymeric precursor. This work is the first comparison of the materials obtained from precursors with the same Si to C atoms ratio, but with various distribution of these atoms in the preceramic polymer. In addition to standard mixtures of monomers containing single silicon atom, a number of monomers with high molar masses and well defined structure was used. The IR was used to investigate the structure of the precursors and materials obtained after their annealing in 800 °C. The results show, that not only the distribution of carbon containing groups among the monomers is important, but also the (in)ability of these groups to end up in each other vicinity in the precursor as well as the degree of condensation of each structural unit.
Ohno, Y; Inoue, K; Fujiwara, K; Kutsukake, K; Deura, M; Yonenaga, I; Ebisawa, N; Shimizu, Y; Inoue, K; Nagai, Y; Yoshida, H; Takeda, S; Tanaka, S; Kohyama, M
2017-12-01
We have developed an analytical method to determine the segregation levels on the same tilt boundaries (TBs) at the same nanoscopic location by a joint use of atom probe tomography and scanning transmission electron microscopy, and discussed the mechanism of oxygen segregation at TBs in silicon ingots in terms of bond distortions around the TBs. The three-dimensional distribution of oxygen atoms was determined at the typical small- and large-angle TBs by atom probe tomography with a low impurity detection limit (0.01 at.% on a TB plane) simultaneously with high spatial resolution (about 0.4 nm). The three-dimensional distribution was correlated with the atomic stress around the TBs; the stress at large-angle TBs was estimated by ab initio calculations based on atomic resolution scanning transmission electron microscopy data and that at small-angle TBs were calculated with the elastic theory based on dark-field transmission electron microscopy data. Oxygen atoms would segregate at bond-centred sites under tensile stress above about 2 GPa, so as to attain a more stable bonding network by reducing the local stress. The number of oxygen atoms segregating in a unit TB area N GB (in atoms nm -2 ) was determined to be proportional to both the number of the atomic sites under tensile stress in a unit TB area n bc and the average concentration of oxygen atoms around the TB [O i ] (in at.%) with N GB ∼ 50 n bc [O i ]. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.
2016-01-01
An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.
40 CFR 766.27 - Congeners and LOQs for which quantitation is required.
Code of Federal Regulations, 2014 CFR
2014-07-01
... substances containing predominantly chlorine atoms, only congeners totally chlorinated at the numbered positions need be quantified; for chemical substances containing predominantly bromine atoms, only congeners...
40 CFR 766.27 - Congeners and LOQs for which quantitation is required.
Code of Federal Regulations, 2011 CFR
2011-07-01
... substances containing predominantly chlorine atoms, only congeners totally chlorinated at the numbered positions need be quantified; for chemical substances containing predominantly bromine atoms, only congeners...
40 CFR 766.27 - Congeners and LOQs for which quantitation is required.
Code of Federal Regulations, 2013 CFR
2013-07-01
... substances containing predominantly chlorine atoms, only congeners totally chlorinated at the numbered positions need be quantified; for chemical substances containing predominantly bromine atoms, only congeners...
40 CFR 766.27 - Congeners and LOQs for which quantitation is required.
Code of Federal Regulations, 2012 CFR
2012-07-01
... substances containing predominantly chlorine atoms, only congeners totally chlorinated at the numbered positions need be quantified; for chemical substances containing predominantly bromine atoms, only congeners...
40 CFR 766.27 - Congeners and LOQs for which quantitation is required.
Code of Federal Regulations, 2010 CFR
2010-07-01
... substances containing predominantly chlorine atoms, only congeners totally chlorinated at the numbered positions need be quantified; for chemical substances containing predominantly bromine atoms, only congeners...
Stability chart of small mixed 4He-3He clusters
NASA Astrophysics Data System (ADS)
Guardiola, R.; Navarro, J.
2003-11-01
A stability chart of mixed 4He and 3He clusters has been obtained by means of the diffusion Monte Carlo method, using both the Aziz HFD-B and the Tang-Toennies-Yiu atom-atom interaction. The investigated clusters contain up to eight 4He atoms and up to 20 3He atoms. One single 4He binds 20 3He atoms, and two 4He bind 1, 2, 8, and more than 14 3He atoms. All clusters with three or more 4He atoms are bound, although the combinations 4He33He9,10,11 and 4He34He9 are metastable. Clusters with 2, 8, and 20 3He atoms are particularly stable and define magic 3He numbers.
Method and apparatus for noble gas atom detection with isotopic selectivity
Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.
1984-01-01
Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.
Atom Interferometer Modeling Tool
2011-08-08
present, LiveAtom supports the alkali metals from Lithium to Cesium. LiveAtom will also show where atoms in the equilibrium state will sit if a trap is...Address: 7105 La Vista Pl . Niwot, CO 80503 Phone Number: 303-652-0725 The views and conclusions contained in this document are those of the authors...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing
Quantum teleportation with atoms trapped in cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Jaeyoon; Lee, Hai-Woong
2004-09-01
We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.
Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time
NASA Astrophysics Data System (ADS)
Bragg, Arthur E.; Glover, William J.; Schwartz, Benjamin J.
2010-06-01
We use mixed quantum-classical molecular dynamics simulations and ultrafast transient hole-burning spectroscopy to build a molecular-level picture of the motions of solvent molecules around Na atoms in liquid tetrahydrofuran. We find that even at room temperature, the solvation of Na atoms occurs in discrete steps, with the number of solvent molecules nearest the atom changing one at a time. This explains why the rate of solvent relaxation differs for different initial nonequilibrium states, and reveals how the solvent helps determine the identity of atomic species in liquids.
Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study
NASA Astrophysics Data System (ADS)
Goswami, Sohini; Saha, Sushmita; Yadav, R. K.
2015-11-01
An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the experimental data wherever available. The growth of these most stable structures should be possible in the experiments.
Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun
2009-04-30
By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.
NASA Astrophysics Data System (ADS)
Warrier, M.; Bhardwaj, U.; Hemani, H.; Schneider, R.; Mutzke, A.; Valsakumar, M. C.
2015-12-01
We report on molecular Dynamics (MD) simulations carried out in fcc Cu and bcc W using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code to study (i) the statistical variations in the number of interstitials and vacancies produced by energetic primary knock-on atoms (PKA) (0.1-5 keV) directed in random directions and (ii) the in-cascade cluster size distributions. It is seen that around 60-80 random directions have to be explored for the average number of displaced atoms to become steady in the case of fcc Cu, whereas for bcc W around 50-60 random directions need to be explored. The number of Frenkel pairs produced in the MD simulations are compared with that from the Binary Collision Approximation Monte Carlo (BCA-MC) code SDTRIM-SP and the results from the NRT model. It is seen that a proper choice of the damage energy, i.e. the energy required to create a stable interstitial, is essential for the BCA-MC results to match the MD results. On the computational front it is seen that in-situ processing saves the need to input/output (I/O) atomic position data of several tera-bytes when exploring a large number of random directions and there is no difference in run-time because the extra run-time in processing data is offset by the time saved in I/O.
RADinfo Glossary of Radiation Terms
... electrical charge typically found within an atom's nucleus. nucleus: The central part of an atom that contains ... the number of protons and neutrons in the nucleus. picocurie: One one-trillionth (1/1,000,000, ...
2017-01-01
We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779
NASA Astrophysics Data System (ADS)
Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman
2017-04-01
Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.
Optimally Squeezed Spin States
NASA Astrophysics Data System (ADS)
Rojo, Alberto
2004-03-01
We consider optimally spin-squeezed states that maximize the sensitivity of the Ramsey spectroscopy, and for which the signal to noise ratio scales as the number of particles N. Using the variational principle we prove that these states are eigensolutions of the Hamiltonian H(λ)=λ S_z^2-S_x, and that, for large N, the states become equivalent to the quadrature squeezed states of the harmonic oscillator. We present numerical results that illustrate the validity of the equivalence. We also present results of spin squeezing via atom-field interactions within the context of the Tavis-Cummings model. An ensemble of N two-level atoms interacts with a quantized cavity field. For all the atoms initially in their ground states, it is shown that spin squeezing of both the atoms and the field can be achieved provided the initial state of the cavity field has coherence between number states differing by 2. Most of the discussion is restricted to the case of a cavity field initially in a coherent state, but initial squeezed states for the field are also discussed. An analytic solution is found that is valid in the limit that the number of atoms is much greater than unity. References: A. G. Rojo, Phys. Rev A, 68, 013807 (2003); Claudiu Genes, P. R. Berman, and A. G. Rojo Phys. Rev. A 68, 043809 (2003).
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha
2016-07-01
The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001-20 MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002 MeV and above 0.3 MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002-0.3 MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.
Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics
Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...
2015-06-11
We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
An Estimation of the Number and Size of Atoms in a Printed Period
ERIC Educational Resources Information Center
Schaefer, Beth; Collett, Edward; Tabor-Morris, Anne; Croman, Joseph
2011-01-01
Elementary school students learn that atoms are very, very small. Students are also taught that atoms (and molecules) are the fundamental constituents of the material world. Numerical values of their size are often given, but, nevertheless, it is difficult to imagine their size relative to one's everyday surroundings. In order for students to…
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
40 CFR 63.8000 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... atoms, and you use a combustion-based control device (excluding a flare) to meet an organic HAP emission... calculating the concentration of each organic compound that contains halogen atoms using the procedures specified in § 63.115(d)(2)(v), multiplying each concentration by the number of halogen atoms in the organic...
Modelling the atomic structure of Al92U8 metallic glass.
Michalik, S; Bednarcik, J; Jóvári, P; Honkimäki, V; Webb, A; Franz, H; Fazakas, E; Varga, L K
2010-10-13
The local atomic structure of the glassy Al(92)U(8) alloy was modelled by the reverse Monte Carlo (RMC) method, fitting x-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) signals. The final structural model was analysed by means of partial pair correlation functions, coordination number distributions and Voronoi tessellation. In our study we found that the most probable atomic separations between Al-Al and U-Al pairs in the glassy Al(92)U(8) alloy are 2.7 Å and 3.1 Å with coordination numbers 11.7 and 17.1, respectively. The Voronoi analysis did not support evidence of the existence of well-defined building blocks directly embedded in the amorphous matrix. The dense-random-packing model seems to be adequate for describing the connection between solvent and solute atoms.
Superradiance for Atoms Trapped along a Photonic Crystal Waveguide
NASA Astrophysics Data System (ADS)
Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J.
2015-08-01
We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D1 transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as Γ¯SR∝N ¯Γ1 D for average atom number 0.19 ≲N ¯≲2.6 atoms, where Γ1 D/Γ'=1.0 ±0.1 is the peak single-atom radiative decay rate into the PCW guided mode, and Γ' is the radiative decay rate into all the other channels. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.
Soliton Dynamics of an Atomic Spinor Condensate on a Ring Lattice
2013-02-22
REPORT Soliton dynamics of an atomic spinor condensate on a Ring Lattice 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We study the dynamics of...8/98) Prescribed by ANSI Std. Z39.18 - Soliton dynamics of an atomic spinor condensate on a Ring Lattice Report Title ABSTRACT We study the dynamics...Report Number Soliton dynamics of an atomic spinor condensat Block 13: Supplementary Note © 2013 . Published in Physical Review A (accepted), Vol. Ed
DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.
Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav
2018-02-08
Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.
Optical Thin Film Thickness Measurement for the Single Atom Microscope
NASA Astrophysics Data System (ADS)
Nelson, Courtney; Frisbie, Dustin; Singh, Jaideep; Spinlab Team
2017-09-01
The Single Atom Microscope Project proposes an efficient, selective, and sensitive method to measure the 1022Ne+24 He ->1225 Mg + n reaction. This rare nuclear reaction is a source of neutrons for heavy element development through the slow neutron capture process. This method embeds Magnesium atoms in a solid neon film. The Magnesium atoms exhibit a shifted fluorescence spectrum allowing for the detection of individual fluorescence photons against the excitation light background. Currently, Ytterbium is used in place of Magnesium-25 because it has been more thoroughly studied than Magnesium and we expect it to have a brighter signal. To identify the signal emitted from the Ytterbium atoms, we need to quantify the amount of signal and background per atom in the neon film. We need to know the film thickness to find the number of atoms in the film to determine the amount of light emitted per atom. In preparation for the neon film measurement, I constructed an experiment to advance the understanding of what is required to optically measure a thin film by using a cover glass slide in place of the thin film. This preliminary experiment has determined a measurement method for finding the thickness of a neon thin film on a sapphire substrate. This work is supported by Michigan State University, U.S. National Science Foundation under Grant Number 1654610, and U.S. NSF REU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.
2010-11-15
Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynoldsmore » numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)« less
Superfluid-Mott insulator transition of spin-1 bosons in an optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Shunji; Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7; Kurihara, Susumu
2004-10-01
We study the superfluid-Mott insulator (SF-MI) transition of spin-1 bosons interacting antiferromagnetically in an optical lattice. Starting from a Bose-Hubbard tight-binding model for spin-1 bosons, we obtain the zero-temperature phase diagram by a mean-field approximation. We find that the MI phase with an even number of atoms per site is a spin singlet state, while the MI phase with an odd number of atoms per site has spin 1 at each site in the limit of t=0, where t is the hopping matrix element. We also show that the superfluid phase is a polar state as in the case formore » a spin-1 Bose condensate in a harmonic trap. It is found that the MI phase is strongly stabilized against the SF-MI transition when the number of atoms per site is even, due to the formation of singlet pairs. We derive the effective spin Hamiltonian for the MI phase with one atom per site and briefly discuss the spin order in the MI phase.« less
Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Opanchuk, B.; He, Q. Y.; Reid, M. D.; Drummond, P. D.
2012-08-01
We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. A local nonlinear S-wave scattering interaction has the effect of creating spin squeezing at each well, while a tunneling coupling, analogous to a beam splitter in optics, introduces an interference between these fields that causes interwell entanglement. We consider two internal modes at each well so that the entanglement can be detected by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number. It becomes sufficiently strong at higher numbers of atoms so that the EPR paradox and steering nonlocality can be realized. The entanglement is predicted using an analytical approach and, for larger atom numbers, using stochastic simulations based on a truncated Wigner function approximation. We find generally that strong tunneling is favorable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
On Atom-Bond Connectivity Index
NASA Astrophysics Data System (ADS)
Zhou, Bo; Xing, Rundan
2011-02-01
The atom-bond connectivity (ABC) index, introduced by Estrada et al. in 1998, displays an excellent correlation with the formation heat of alkanes. We give upper bounds for this graph invariant using the number of vertices, the number of edges, the Randíc connectivity indices, and the first Zagreb index. We determine the unique tree with the maximum ABC index among trees with given numbers of vertices and pendant vertices, and the n-vertex trees with the maximum, and the second, the third, and the fourth maximum ABC indices for n ≥ 6.
1980-01-01
ting Oils 6. PERFORMING 04G. REPORT NUMBER -7 AUTHOR(s) 8 . CONTRACT OR GRANT NUMBER(s) O /Thomna-s F. Wynn, Jr: Capt, USAF 9. PERFORMING ORGANIZATION...EXCITED FURNACE ATOMIC FLUORESCENCE SYSTEM FOR THE DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS \\Ac ces-.ic’flr For DDC TL3 Unp-nnounced...DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS By Thomas F. Wynn, Jr. March, 1980 Chairman: James D. Winefordner Major Department: Chemistry A
Effect of Sb content on the physical properties of Ge-Se-Te chalcogenide glasses
NASA Astrophysics Data System (ADS)
Vashist, Priyanka; Anjali, Patial, Balbir Singh; Thakur, Nagesh
2018-05-01
In the present study, the bulk as-(Se80Te20)94-xGe6Sbx (x = 0, 1, 2, 4, 6, 8) glasses were synthesized using melt quenching technique. The physical properties viz coordination number, lone pair of electrons, number of constraints, glass transition temperature, mean bond energy, cohesive energy, electro-negativity and average heat of atomization of the investigated composition are reported and discussed. It is inferred that on increasing Sb content; average coordination number, average number of constraints, mean bond energy, cohesive energy and glass transition temperature increases but lone pair of electrons, average heat of atomization and deviation of stoichiometry decreases.
Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip
2012-01-01
The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.
Partial Coordination Numbers in Binary Metallic Glasses (Postprint)
2011-12-07
structural differences related to relative atom size and quench rate. The magnitude of chemical interactions between the atoms, eij, might also influence...vious calculations.[2] A statistical approach is used to develop the Zij equations from the product of four terms: (1) the number of reference sites...within experimental scatter. The development of equations for Zij from the ECP model uses a statistical view of topology, and the Zij values
Laser-Induced Fluorescence and Performance Analysis of the Ultra-Compact Combustor
2008-06-01
fiber as a sealant. .............................................................................................. 68 Figure 37. A view of AFIT’s flat...ratio cm Centimeters CO Carbon Monoxide CO2 Carbon Dioxide Cp Constant-pressure specific heat CxHy General formula of a hydrocarbon C2H4...Standard liters per minute T Temperature, thrust U Combustor inlet velocity v Velocity x Number of carbon atoms y Number of hydrogen atoms (A-X) OH
NASA Astrophysics Data System (ADS)
Gowda, Shivalinge; Krishnaveni, S.; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna
2004-09-01
Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO_3, CaSO_4, CaSO_4\\cdot2H_2O, SrSO_4, CdSO_4, BaSO_4, C_4H_6BaO_4 and 3CdSO_4\\cdot8H_2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.
Grassmann phase space theory and the Jaynes–Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less
Experimental evaluation of analyte excitation mechanisms in the inductively coupled plasma
NASA Astrophysics Data System (ADS)
Lehn, Scott A.; Hieftje, Gary M.
2003-10-01
The inductively coupled plasma (ICP) is a justifiably popular source for atomic emission spectrometry. However, despite its popularity, the ICP is still only partially understood. Even the mechanisms of analyte excitation remain unclear; some energy levels are quite clearly populated by charge transfer while others might be populated by electron-ion recombination, by electron impact, or by Penning processes. Distinguishing among these alternatives is possible by means of a steady-state kinetics approach that examines correlations between the emission of a selected atom, ion, or level and the local number densities of species assumed to produce the excitation. In an earlier investigation, strong correlations were found between either calcium atom or ion emission and selected combinations of calcium atom or ion number densities and electron number densities in the plasma. However, all radially resolved data employed in the earlier study were produced from Abel inversion and from measurements that were crude by today's standards. Now, by means of tomographic imaging, laser-saturated atomic fluorescence, and Thomson and Rayleigh scattering, it is possible to measure the required radially resolved data without Abel inversion and with far greater fidelity. The correlations previously studied for calcium have been investigated with these more reliable data. Ion-electron recombination, either radiative or with argon as a third body, was determined to be the most likely excitation mechanism for calcium atom, while electron impact appeared to be the most important process to produce excite-state calcium ions. These results were consistent with the previous study. However, the present study suggests that collisional deactivation, rather than radiative decay, is the most likely mode of returning both calcium atoms and ions to the ground state.
Experiments with bosonic atoms for quantum gas assembly
NASA Astrophysics Data System (ADS)
Brown, Mark; Lin, Yiheng; Lester, Brian; Kaufman, Adam; Ball, Randall; Brossard, Ludovic; Isaev, Leonid; Thiele, Tobias; Lewis-Swan, Robert; Schymik, Kai-Niklas; Rey, Ana Maria; Regal, Cindy
2017-04-01
Quantum gas assembly is a promising platform for preparing and observing neutral atom systems on the single-atom level. We have developed a toolbox that includes ground-state laser cooling, high-fidelity loading techniques, addressable spin control, and dynamic spatial control and coupling of atoms. Already, this platform has enabled us to pursue a number of experiments studying entanglement and interference of pairs of bosonic atoms. We discuss our recent work in probabilistically entangling neutral atoms via interference, measurement, and post-selection as well as our future pursuits of interesting spin-motion dynamics of larger arrays of atoms. This work was supported by the David and Lucile Packard Foundation, National Science Foundation Physics Frontier Centers, and the National Defense Science and Engineering Graduate Fellowships program.
Resonant Laser Manipulation of an Atomic Beam
2010-07-01
similar species such as alkali metals . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...resonant laser-atom interaction with other rarefied and collisional solvers for similar species such as alkali metals . Keywords: atomic beam, cesium...a target flow over length scales which push the limits of physical manufacture. The ability to create masks, beam blocks, controlling electric
Elastic scattering of X-rays and gamma rays by 2S electrons in ions and neutral atoms
NASA Astrophysics Data System (ADS)
Costescu, A.; Spânulescu, S.; Stoica, C.
2012-08-01
The nonrelativistic limit of Rayleigh scattering amplitude on 2s electrons of neutral and partially ionized atoms is obtained by making use of the Green Function method. The result takes into consideration the retardation, relativistic kinematics and screening effects. The spurious singularities introduced by the retardation in a nonrelativistic approach are cancelled by the relativistic kinematics. For neutral and partially ionized atoms, a screening model is considered with an effective charge obtained by fitting the Hartree-Fock charge distribution with pure Coulombian wave functions corresponding to a central potential of a nucleus with Zeff as the atomic number. The total cross section of the photoeffect on the 2s electrons is also calculated from the imaginary part of the forward scattering amplitude by means of the optical theorem. The numerical results obtained are in a good agreement (10%) with the ones obtained by Kissell for the Rayleigh amplitude and by Scofield for the Photoeffect total cross section on the 2s electrons, for atoms with atomic number 18 ≤ Z ≤ 92 and photon energies ω≤αZm. (α=1/137,... is the fine structure constant, m is the electron mass).
Curved-line search algorithm for ab initio atomic structure relaxation
NASA Astrophysics Data System (ADS)
Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang
2017-09-01
Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.
Evolution in time of an N-atom system. II. Calculation of the eigenstates
NASA Astrophysics Data System (ADS)
Rudolph, Terry; Yavin, Itay; Freedhoff, Helen
2004-01-01
We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of a number of different arrays of N identical two-level atoms (TLA’s) or qubits, including polygons, “diamond” structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the atoms. We include the interactions between all pairs of atoms, and our results are valid for arbitrary separations relative to the radiation wavelength.
1987-10-13
AD-A±95 686 PHOTOIONIZATION OF ATOMS AND IONS: APPLICATION OF III TIME-DEPENDENT RESPONSE..(U) NAVAL RESEARCH LAB WASHINGTON DC U GUPTA ET AL. 13 OCT...on revere if ncemy and idmntify by block number) FIELD GROUP SUBGROUP Photoionization Density functional Atoms Time dependent 1 S. (Continue on...reverse if necenary and identify by block numnbw) The photoionization cross-section of several atoms (AT, Xe, Rn, Cs) and ions (Ne-like Ar, H-like and Li
Formation of the nitrogen aggregates in annealed diamond by neutron irradiation
NASA Astrophysics Data System (ADS)
Mita, Y.; Nisida, Y.; Okada, M.
2018-02-01
Neutron heavy irradiation was performed on synthetic diamonds contain nitrogen atoms in isolated substitutional form (called "type Ib diamond") and they were annealed under a pressure of 6 GPa. A large number of nitrogen B-aggregate which consists of four substitutional nitrogen atoms symmetrically surrounding a vacancy was formed within 30 m from single nitrogen atoms. Furthermore it is observed that, in these diamonds, single nitrogen atoms coexist with the B-aggregates, which is unexplainable by the simple nitrogen aggregation model.
Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates
Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming
2014-01-01
Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303
Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.
Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo
2014-07-11
Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.
Dopant atoms as quantum components in silicon nanoscale devices
NASA Astrophysics Data System (ADS)
Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua
2018-06-01
Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).
Light-induced atomic desorption in a compact system for ultracold atoms
Torralbo-Campo, Lara; Bruce, Graham D.; Smirne, Giuseppe; Cassettari, Donatella
2015-01-01
In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters. PMID:26458325
Efficient accesses of data structures using processing near memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera
Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less
NASA Astrophysics Data System (ADS)
Mulders, N.; Wyatt, A. F. G.
1994-02-01
It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.
Number-unconstrained quantum sensing
NASA Astrophysics Data System (ADS)
Mitchell, Morgan W.
2017-12-01
Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.
NASA Astrophysics Data System (ADS)
McBride, James R.
This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.
The influence of cavitation in the breakup of liquid free jets
NASA Astrophysics Data System (ADS)
Bode, Juergen
1991-03-01
The interaction between a diesel injection nozzle flow and the atomizing jet was investigated over a wide range of Reynolds numbers. If the pressure gradient towards the centerline of the injection nozzle, generated by the curved streamlines, becomes too large, cavitation occurs at the inlet corner. The cavitation region grows in length and boundary surface with increasing Reynolds number. The instability of the reentry flow causes unsteady fluctuations of the cavitation which influences the breakup of the liquid jet, whereby liquid films are generated which take off from the jet. Cavitation amplifies the mechanism of the atomization, based on the interaction between the jet and surrounding gas. The influence of the cavitation on the atomization is restricted to the region directly behind the nozzle exit. The injection pressure and the temperature of the gas hardly affect the atomization. The jet angle depends mainly on the density of the surrounding gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan
2015-11-15
Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less
NASA Astrophysics Data System (ADS)
Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo
2017-11-01
We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.
Decay dynamics in the coupled-dipole model
NASA Astrophysics Data System (ADS)
Araújo, M. O.; Guerin, W.; Kaiser, R.
2018-06-01
Cooperative scattering in cold atoms has gained renewed interest, in particular in the context of single-photon superradiance, with the recent experimental observation of super- and subradiance in dilute atomic clouds. Numerical simulations to support experimental signatures of cooperative scattering are often limited by the number of dipoles which can be treated, well below the number of atoms in the experiments. In this paper, we provide systematic numerical studies aimed at matching the regime of dilute atomic clouds. We use a scalar coupled-dipole model in the low excitation limit and an exclusion volume to avoid density-related effects. Scaling laws for super- and subradiance are obtained and the limits of numerical studies are pointed out. We also illustrate the cooperative nature of light scattering by considering an incident laser field, where half of the beam has a ? phase shift. The enhanced subradiance obtained under such condition provides an additional signature of the role of coherence in the detected signal.
Photophysical Properties on Functional Pi-Electronic Molecular Systems
2012-08-01
the aromaticity; i) it is possible to control the number of conjugated π-electrons by changing the number of connected pyrrole rings, ii) by...flexibilities, and facile capture and release of two pyrrolic protons upon two-electron oxidation and reduction, respectively. Scheme 2. (a...nitrogen atoms of pyrrole A, B, C and D, and the ortho-carbon atom of meso-pentafluorophenyl group in a trigonal bipyramidal manner. The 1 H NMR spectrum
Strategic Applications of Ultra-Cold Atoms
2008-03-07
journals or in conference proceedings (N/A for none) 68.00Number of Papers published in peer-reviewed journals: Wolfgang Ketterle: New Frontiers with...Helmerson, V.S. Bagnato (American Institute of Physics, 2005) pp. 25-29. Wolfgang Ketterle: The Bose-Einstein Condensate- a Superfluid Gas of Coherent Atoms...Vuletic 0.10 No Wolfgang Ketterle 0.10 Yes David Pritchard 0.10 Yes Mara Prentiss 0.10 No 0.80FTE Equivalent: 8Total Number: Names of Under
Clathrate compounds and method of manufacturing
Nolas, George S [Tampa, FL; Witanachchi, Sarath [Tampa, FL; Mukherjee, Pritish [Tampa, FL
2009-05-19
The present invention comprises new materials, material structures, and processes of fabrication of such that may be used in technologies involving the conversion of light to electricity and/or heat to electricity, and in optoelectronics technologies. The present invention provide for the fabrication of a clathrate compound comprising a type II clathrate lattice with atoms of silicon and germanium as a main framework forming lattice spacings within the framework, wherein the clathrate lattice follows the general formula Si.sub.136-yGe.sub.y, where y indicates the number of Ge atoms present in the main framework and 136-y indicates the number of Si atoms present in the main framework, and wherein y>0.
Sequential desorption energy of hydrogen from nickel clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deepika,; Kumar, Rakesh, E-mail: rakesh@iitrpr.ac.in; R, Kamal Raj.
2015-06-24
We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage andmore » regeneration of Hydrogen as a clean energy carrier.« less
NASA Astrophysics Data System (ADS)
Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos
2017-12-01
We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.
NASA Astrophysics Data System (ADS)
Revathy, J. S.; Anooja, J.; Krishnaveni, R. B.; Gangadathan, M. P.; Varier, K. M.
2018-06-01
A light-weight multichannel analyser (MCA)-based γ -ray spectrometer, developed earlier at the Inter University Accelerator Centre, New Delhi, has been used as part of the PG curriculum, to determine the effective atomic numbers for γ attenuation of ^{137}Cs γ -ray in different types of samples. The samples used are mixtures of graphite, aluminum and selenium powders in different proportions, commercial and home-made edible powders, fruit and vegetable juices as well as certain allopathic and ayurvedic medications. A narrow beam good geometry set-up has been used in the experiments. The measured attenuation coefficients have been used to extract effective atomic numbers in the samples. The results are consistent with XCOM values wherever available. The present results suggest that the γ attenuation technique can be used as an effective non-destructive method for finding adulteration of food materials.
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of atomic constants for optical radiation, volume 2
NASA Technical Reports Server (NTRS)
Kylstra, C. D.; Schneider, R. J.
1974-01-01
Various atomic constant for 23 elements from helium to mercury were computed and are presented in tables. The data given for each element start with the element name, its atomic number, its ionic state, and the designation and series limit for each parent configuration. This is followed by information on the energy level, parent configuration, and designation for each term available to the program. The matrix elements subtables are ordered by the sequence numbers, which represent the initial and final levels of the transitions. Each subtable gives the following: configuration of the core or parent, designation and energy level for the reference state, effective principal quantum number, energy of the series limit, value of the matrix element for the reference state interacting with itself, and sum of all of the dipole matrix elements listed in the subtable. Dipole and quadrupole interaction data are also given.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1975-01-01
Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru
2013-10-15
Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n andmore » for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Shota, E-mail: shota-o@gifu-u.ac.jp; Department of Physics, Graduate School of Engineering, Yokohama National University, Yokohama 240-8501; Tanikawa, Kousei
Revealing a universal relation between geometrical structures and electronic properties of capped carbon nanotubes (CNTs) is one of the current objectives in nanocarbon community. Here, we investigate the local curvature of capped CNTs and define the cap region by a crossover behavior of the curvature energy versus the number of carbon atoms integrated from the tip to the tube region. Clear correlations among the energy gap of the cap localized states, the curvature energy, the number of carbon atoms in the cap region, and the number of specific carbon clusters are observed. The present analysis opens the way to understandmore » the cap states.« less
Normal incidence x-ray mirror for chemical microanalysis
Carr, M.J.; Romig, A.D. Jr.
1987-08-05
An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.
NASA Astrophysics Data System (ADS)
Paziresh, M.; Kingston, A. M.; Latham, S. J.; Fullagar, W. K.; Myers, G. M.
2016-06-01
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073-2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127-135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260-1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and atomic number (Z) reconstructions to a significant extent.
2015-08-01
Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) Software by N Scott Weingarten and James P Larentzos Approved for...Massively Parallel Simulator ( LAMMPS ) Software by N Scott Weingarten Weapons and Materials Research Directorate, ARL James P Larentzos Engility...Shifted Periodic Boundary Conditions in the Large-Scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ) Software 5a. CONTRACT NUMBER 5b
Direct Writing of Graphene-based Nanoelectronics via Atomic Force Microscopy
2012-05-07
To) 07-05-2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Direct Writing of Graphene -based Nanoelectronics via Atomic Force Microscopy 5b. GRANT...ABSTRACT This project employs direct writing with an atomic force microscope (AFM) to fabricate simple graphene -based electronic components like resistors...and transistors at nanometer-length scales. The goal is to explore their electrical properties for graphene -based electronics. Conducting
Generation, storage, and retrieval of nonclassical states of light using atomic ensembles
NASA Astrophysics Data System (ADS)
Eisaman, Matthew D.
This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.
Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.
2002-12-01
The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.
NASA Astrophysics Data System (ADS)
Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.
2018-02-01
Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.
On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel
NASA Astrophysics Data System (ADS)
Lösönen, Pekka
2017-12-01
Irradiation resolution of gas atoms and vacancies from intra- and intergranular bubbles in sintered UO2 fuel was studied by comparing macroscopic models with a more mechanistic approach. The applied macroscopic models imply the resolution rate of gas atoms to be proportional to gas concentration in intragranular bubbles and at grain boundary (including intergranular bubbles). A relation was established between the macroscopic models and a single encounter of an energetic fission fragment with a bubble. The effect of bubble size on resolution was quantified. The number of resoluted gas atoms per encounter of a fission fragment per bubble was of the same order of magnitude for intra- and intergranular bubbles. However, the resulting macroscopic resolution rate of gas atoms was about two orders of magnitude larger from intragranular bubbles. The number of vacancies resoluted from a grain face bubble by a passing fission fragment was calculated. The obtained correlations for resolution of gas atoms from intragranular bubbles and grain boundaries and for resolution of vacancies from grain face bubbles were used to demonstrate the effect of irradiation resolution on fission gas release.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Albyn, K.; Leger, L.
1990-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saidi, Wissam A., E-mail: alsaidi@pitt.edu; Norman, Patrick
2016-07-14
The van der Waals C{sub 6} coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C{sub 6} ∝ N{sup 2.2} as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N{sup 2.75} as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes bymore » fitting against accurate ab initio calculations. This model shows that C{sub 6} ∝ N{sup 2.8}, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.« less
Hyperfine state entanglement of spinor BEC and scattering atom
NASA Astrophysics Data System (ADS)
Li, Zhibing; Bao, Chengguang; Zheng, Wei
2018-05-01
Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.
Combinatorics of aliphatic amino acids
NASA Astrophysics Data System (ADS)
Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan
2011-01-01
This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.
2016-08-01
OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS James D. Scofield (AFRL/RQQE) and James R. Gord (AFRL/RQTC) Electrical Systems Branch, Power and Control...Division (AFRL/RQQE) Combustion Branch, Turbine Engine Division (AFRL/RQTC) Jacob B. Schmidt and Sukesh Roy Spectral Energies LLC Brian Sands...LASER-INDUCED FLUORESCENCE (TALIF) OF ATOMIC OXYGEN IN ATMOSPHERIC PRESSURE PLASMAS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM
NASA Technical Reports Server (NTRS)
Omidvar, K.
1977-01-01
The branching ratios in hydrogen-like atoms due to the electric-dipole transitions are tabulated for the initial principal and azimuthal quantum numbers n prime l prime, and final principal and azimuthal quantum numbers n l. Average values with respect to l prime are given. The branching ratios not tabulated, including the initial states n prime yields infinity l prime corresponding to the threshold of the continuum, could be obtained by extrapolation.
2017-09-30
Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER...Number: W911NF-16-1-0438 Organization: University of Massachusetts - North Dartmouth Title: Young Investigator Proposal, Research Area 7.4 Reactive
Directional detector of gamma rays
Cox, Samson A.; Levert, Francis E.
1979-01-01
A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
König, Dirk, E-mail: dirk.koenig@unsw.edu.au
2016-08-15
Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCsmore » with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.« less
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.
Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures
NASA Astrophysics Data System (ADS)
Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.
2018-05-01
Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.
Ionization Potentials for Isoelectronic Series.
ERIC Educational Resources Information Center
Agmon, Noam
1988-01-01
Presents a quantitative treatment of ionization potentials of isoelectronic atoms. By looking at the single-electron view of calculating the total energy of an atom, trends in the screening and effective quantum number parameters are examined. Approaches the question of determining electron affinities. (CW)
Mg I as a probe of the solar chromosphere - The atomic model
NASA Technical Reports Server (NTRS)
Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf
1988-01-01
This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.
Electromagnetically Induced Transparency In Rydberg Atomic Medium
NASA Astrophysics Data System (ADS)
Deng, Li; Cong, Lu; Chen, Ai-Xi
2018-03-01
Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.
Atomic oxygen exposure of LDEF experiment trays
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gillis, J. R.
1992-01-01
Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.
Estimation of the size of drug-like chemical space based on GDB-17 data.
Polishchuk, P G; Madzhidov, T I; Varnek, A
2013-08-01
The goal of this paper is to estimate the number of realistic drug-like molecules which could ever be synthesized. Unlike previous studies based on exhaustive enumeration of molecular graphs or on combinatorial enumeration preselected fragments, we used results of constrained graphs enumeration by Reymond to establish a correlation between the number of generated structures (M) and the number of heavy atoms (N): logM = 0.584 × N × logN + 0.356. The number of atoms limiting drug-like chemical space of molecules which follow Lipinsky's rules (N = 36) has been obtained from the analysis of the PubChem database. This results in M ≈ 10³³ which is in between the numbers estimated by Ertl (10²³) and by Bohacek (10⁶⁰).
De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S
2015-04-01
Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Yuanyuan; Chai, Xiaoqi; Cai, Xiao; Chen, Mingyang; Jin, Rongchao; Ding, Weiping; Zhu, Yan
2018-06-19
Clusters with an exact number of atoms are of particular research interest in catalysis. Their catalytic behaviors can be potentially altered with the addition or removal of a single atom. Herein we explore the effects of the single-foreign-atom (Au, Pd and Pt) doping into the core of an Ag cluster with 25-atoms on the catalytic properties, where the foreign atom is protected by 24 Ag atoms (i.e., Au@Ag24, Pd@Ag24, and Pt@Ag24). The central doping of a single atom into the Ag25 cluster is found to have a substantial influence on the catalytic performance in the carboxylation reaction of CO2 with terminal alkyne through C-C bond formation to produce propiolic acid. Our studies reveal that the catalytic properties of the cluster catalysts can be dramatically changed with the subtle alteration by a single atom away from the active sites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states
NASA Astrophysics Data System (ADS)
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-01
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.
Shock wave loading of a magnetic guide
NASA Astrophysics Data System (ADS)
Kindt, L.
2011-10-01
The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.
Expansion of an ultracold Rydberg plasma
NASA Astrophysics Data System (ADS)
Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.
2018-04-01
We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .
Adelphi-Goddard emulsified fuel project. [using water/oil emulsions
NASA Technical Reports Server (NTRS)
1977-01-01
Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
Progress towards a cesium atomic fountain clock
NASA Astrophysics Data System (ADS)
Klipstein, William M.; Raithel, Georg A.; Rolston, Steven L.; Phillips, William D.; Ekstrom, Christopher R.
1997-04-01
We have been developing a fountain of laser--cooled cesium atoms for use as an atomic clock. Our design largely follows that of the fountain built at LPTF in Paris. In our fountain, chirp--slowed atoms are first collected in a Magneto--Optic Trap (MOT) and then cooled to a few μK in optical molasses. The cooled atoms are then launched vertically into a "moving molasses" by shifting the frequencies of the vertical cooling beams. The atoms then travel through a microwave cavity tuned to the 9.2 GHz cesium hyperfine frequency for a first Ramsey pulse. After roughly 0.5 seconds of free flight under the influence of gravity, the atoms fall back through the microwave cavity and into an optical state--detection region which detects the number of atoms making the F=3 arrow F=4 transition. The increased Ramsey interaction time improves the short--time precision as compared to traditional atomic beam experiments, while many systematic shifts which limit the accuracy of an atomic beam clock are reduced by the low atomic velocity and the retrace of the atomic trajectory through the microwave cavity. We will discuss the progress towards a working fountain being assembled in our laboratory.
First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction
NASA Astrophysics Data System (ADS)
Zhao, Xiu-Qin; Liu, Ni; Liang, Jiu-Qing
2017-05-01
In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. Supported by the National Natural Science Foundation of China under Grant Nos. 11275118, 11404198, 91430109, 61505100, 51502189, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP) under Grant No. 2014102, and the Launch of the Scientific Research of Shanxi University under Grant No. 011151801004, and the National Fundamental Fund of Personnel Training under Grant No. J1103210. The Natural Science Foundation of Shanxi Province under Grant No. 2015011008
NASA Astrophysics Data System (ADS)
Zhou, Bo; Trinajstić, Nenad
2008-03-01
We report lower bounds for the Kirchhoff index of a connected (molecular) graph in terms of its structural parameters such as the number of vertices (atoms), the number of edges (bonds), maximum vertex degree (valency), connectivity and chromatic number.
Semiclassical approach to atomic decoherence by gravitational waves
NASA Astrophysics Data System (ADS)
Quiñones, D. A.; Varcoe, B. T. H.
2018-01-01
A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.
Optical characterization of antirelaxation coatings
NASA Astrophysics Data System (ADS)
Tsvetkov, S.; Gateva, S.; Cartaleva, S.; Mariotti, E.; Nasyrov, K.
2018-03-01
Antirelaxation coatings (ARC) are used in optical cells containing alkali metal vapor to reduce the depolarization of alkali atoms after collisions with the cell walls. The long-lived ground state polarization is a basis for development of atomic clocks, magnetometers, quantum memory, slow light experiments, precision measurements of fundamental symmetries etc. In this work, a simple method for measuring the number of collisions of the alkali atoms with the cell walls without atomic spin randomization (Nasyrov et al., Proc. SPIE (2015)) was applied to characterize the AR properties of two PDMS coatings prepared from different solutions in ether (PDMS 2% and PDMS 5%). We observed influence of the light-induced atomic desorption (LIAD) on the AR properties of coatings.
NASA Astrophysics Data System (ADS)
Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.
2018-05-01
An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.
Electronic structure of atoms: atomic spectroscopy information system
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.
2017-10-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.
Cooperative single-photon subradiant states in a three-dimensional atomic array
NASA Astrophysics Data System (ADS)
Jen, H. H.
2016-11-01
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.
Magneto-optical trap for thulium atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukachev, D.; Sokolov, A.; Chebakov, K.
2010-07-15
Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to 7x10{sup 4} atoms at a temperature of 0.8(2) mK after deceleration in a 40-cm-long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the magneto-optical trap which varies between 0.3 and 1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s{sup -1}. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives amore » 30% increase for the lifetime and the number of atoms in the trap.« less
Wigner functions for nonclassical states of a collection of two-level atoms
NASA Technical Reports Server (NTRS)
Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.
1993-01-01
The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.
Dynamics in atomic signaling games.
Fox, Michael J; Touri, Behrouz; Shamma, Jeff S
2015-07-07
We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss. Copyright © 2015 Elsevier Ltd. All rights reserved.
Formation of graphene on BN substrate by vapor deposition method and size effects on its structure
NASA Astrophysics Data System (ADS)
Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo
2018-04-01
We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.
Matsunari, Yuko; Yoshimoto, Nao
2013-12-01
To clarify the factors and reasons for the differences in the outcomes of rescue and relief efforts in Hiroshima and Nagasaki, mainly focusing on the numbers of rescue/relief staffs and casualties in the period within 72 hours of the atomic bombings in August 1945. By retrieving the data and information from the records and reports concerning the disasters in the two cities, together with other publications as to the damages by the atomic bombings and subsequent rescue-relief activities, and restoration activities. It seems that there was less damage in Nagasaki, where a stronger atomic bomb was used than in Hiroshima. There were crucial geographic factors that led to the different effects in terms of the numbers of victims; however, systematic organization and mobilization of rescue and relief staffs, maintenance of functional transportation, and advanced medical knowledge and public warning with regard to disaster all may have contributed to a lower death toll and increase in survivors in Nagasaki.
Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75)
NASA Astrophysics Data System (ADS)
Mikhaylushkin, A. S.; Skorodumova, N. V.; Ahuja, R.; Johansson, B.
2006-05-01
The structural and magnetic properties of the FeHx (x=0.25; 0.50; 0.75) compounds have been studied using the projector augmented wave (PAW) method within the generalized gradient approximation (GGA). We compare the hcp, dhcp and fcc structures and find that for the considered concentrations of hydrogen the hcp structure is most stable in a wide pressure range. The magnetic behavior of iron is crucially influenced by hydrogen. In particular, the local moment on a Fe atom depends on the number of hydrogen atoms in the atom surroundings. Iron atoms, which are crystallographically equivalent in their original structures (hcp, fcc) but have different number of hydrogen neighbors, are shown to have different local magnetic moments. This finding suggests that the experimental observations of two magnetic moments in iron hydride can be explained by nonstoichiometry of the hydride and might not be a direct evidence for the presence of the dhcp phase.
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.
Pedersen, Anders H; Julve, Miguel; Martínez-Lillo, José; Cano, Joan; Brechin, Euan K
2017-09-12
The employment of pyrazine (pyz), pyrimidine (pym) and s-triazine (triz) ligands in Re IV chemistry leads to the isolation of a family of complexes of general formula (NBu 4 ) 2 [(ReX 5 ) 2 (μ-L)] (L = pyz, X = Cl (1) or Br (2); L = pym, X = Br (3); L = triz, X = Br (4)). 1-4 are dinuclear compounds where two pentahalorhenium(iv) fragments are connected by bidentate pyz, pym and triz ligands. Variable-temperature magnetic measurements, in combination with detailed theoretical studies, uncover the underlying magneto-structural correlation whereby the nature of the exchange between the metal ions is dictated by the number of intervening atoms. That is, the spin-polarization mechanism present dictates that odd and even numbers of atoms favour ferromagnetic (F) and antiferromagnetic (AF) exchange interactions, respectively. Hence, while the pyz ligand in 1 and 2 mediates AF coupling, the pym and triz ligands in 3 and 4 promote F interactions.
Resonance-to-intercombination-line ratios of neonlike ions in the relativistic regime
Panchenko, D.; Beiersdorfer, P.; Hell, N.; ...
2017-06-05
We report measurements of the intensity ratio of the 1s 22s 22pmore » $$5\\atop{1/2}$$3d 3/2→1s 22s 22p 6 resonance line to the 1s 22s 22p$$5\\atop{3/2}$$3d 5/2→1s 22s 22p 6 intercombination line in neonlike Kr 26+ and Mo 32+. The measurements were performed at the EBIT-I electron beam ion trap facility at the Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The measured ratio for Mo 32+ is in four times closer agreement with theoretical predictions than earlier measurements of ions with lower atomic number. Our measurement thus suggests a narrowing of the disagreement with atomic number, which had not been observed in the previously existing data. This implies that the disagreement with theory may be localized to ions within a range of atomic numbers in which intermediate coupling dominates.« less
NASA Astrophysics Data System (ADS)
Collins, Gilbert; Valenzuela, Julio; Beg, Farhat
2016-10-01
We have studied the collision of counter-propagating plasma flows using opposing conical wire arrays driven by the 200kA, 150ns rise-time `GenASIS' driver. These plasma flows produced weakly collisional, well-defined bow-shock structures. Varying initial parameters such as the opening angle of the array and the atomic mass of the wires allowed us to modify quantities such as the density contrast between jets, intra-jet mean free path (λmfp, scales with v, atomic mass A, and ionization state Zi-4) , Reynolds number (Re, scales with AZ), and the Peclet number (Pe, scales with Z). We calculate these dimensionless quantities using schlieren imagery, interferometry, and emission data, and determine whether they meet the scaling criteria necessary for the comparison to and subsequent study of astrophysical plasmas. This work was partially supported by the Department of Energy Grant Number DE-SC0014493.
Resonance-to-intercombination-line ratios of neonlike ions in the relativistic regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchenko, D.; Beiersdorfer, P.; Hell, N.
We report measurements of the intensity ratio of the 1s 22s 22pmore » $$5\\atop{1/2}$$3d 3/2→1s 22s 22p 6 resonance line to the 1s 22s 22p$$5\\atop{3/2}$$3d 5/2→1s 22s 22p 6 intercombination line in neonlike Kr 26+ and Mo 32+. The measurements were performed at the EBIT-I electron beam ion trap facility at the Lawrence Livermore National Laboratory and utilized an x-ray microcalorimeter. The measured ratio for Mo 32+ is in four times closer agreement with theoretical predictions than earlier measurements of ions with lower atomic number. Our measurement thus suggests a narrowing of the disagreement with atomic number, which had not been observed in the previously existing data. This implies that the disagreement with theory may be localized to ions within a range of atomic numbers in which intermediate coupling dominates.« less
Effective radiation reduction in Space Station and missions beyond the magnetosphere
NASA Technical Reports Server (NTRS)
Jordan, Thomas M.; Stassinopoulos, E. G.
1989-01-01
This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).
NASA Technical Reports Server (NTRS)
Humphris, R. R.; Boring, J. W.; Nelson, C. V.
1981-01-01
Beams of 5-50 eV He(+), Ar(+), Ne(+), O(+), and N2(+) ions were directed into an aluminum sphere, and the equilibrium number density of the atom or molecules was measured inside the sphere using a quadrupole mass spectrometer and signal averaging techniques. The equilibrium number density is inversely proportional to the average speed of the atoms; thus, the results are expressed in terms of the speed ratio, R = V(i)/V(s), where V(i) is the average speed within the enclosure, and V(s) is the average speed of atoms fully accommodated to the temperature of the wall. The speed ratios vary between 1.0 and 1.8. For N2, several values of R were less than 1; this was largely due to desorbed N2. There was no detectable number density for O, which is explained by the reaction of O with the surface.
Avoided level crossings in very highly charged ions
Beiersdorfer, P.; Scofield, J. H.; Brown, G. V.; ...
2016-05-13
In this paper, we report a systematic measurement of the (2pmore » $$-1\\atop{1/2}$$3d 3/2) J=1 and (2s$$-1\\atop{1/2}$$3p 1/2) J=1 levels in 14 neonlike ions between Ba 46+ and Pb 72+ and document the effects of their avoided crossing near Z = 68. Strong mixing affects the oscillator strengths over a surprisingly wide range of atomic numbers and leads to the vanishing of one transition two atomic numbers below the crossing. The crossing voids the otherwise correct expectation that the (2p$$-1\\atop{1/2}$$3d 3/2) J=1 level energy is only weakly affected by quantum electrodynamics (QED). For about 10 atomic numbers surrounding the crossing, its QED contributions are anomalously large, attaining almost equality to those affecting the (2s$$-1\\atop{1/2}$$3p 1/2) J=1 level. As a result, the accuracy of energy level calculations appears compromised near the crossing.« less
Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry
NASA Astrophysics Data System (ADS)
Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael
2014-10-01
Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.
Atomic-scale reversibility in sheared glasses
NASA Astrophysics Data System (ADS)
Fan, Meng; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey
Systems become irreversible on a macroscopic scale when they are sheared beyond the yield strain and begin flowing. Using computer simulations of oscillatory shear, we investigate atomic scale reversibility. We employ molecular dynamics simulations to cool binary Lennard-Jones liquids to zero temperature over a wide range of cooling rates. We then apply oscillatory quasistatic shear at constant pressure to the zero-temperature glasses and identify neighbor-switching atomic rearrangement events. We determine the critical strain γ*, beyond which atoms in the system do not return to their original positions upon reversing the strain. We show that for more slowly cooled glasses, the average potential energy is lower and the typical size of atomic rearrangements is smaller, which correlates with larger γ*. Finally, we connect atomic- and macro-scale reversibility by determining the number of and correlations between the atomic rearrangements that occur as the system reaches the yield strain.
Observing random walks of atoms in buffer gas through resonant light absorption
NASA Astrophysics Data System (ADS)
Aoki, Kenichiro; Mitsui, Takahisa
2016-07-01
Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its analytical form is obtained. The spectrum has 1 /f2 (f is frequency) behavior at higher frequencies, crossing over to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement. We further discuss other possible applications of our experimental method and analysis.
Squeezing on Momentum States for Atom Interferometry.
Salvi, Leonardo; Poli, Nicola; Vuletić, Vladan; Tino, Guglielmo M
2018-01-19
We propose and analyze a method that allows for the production of squeezed states of the atomic center-of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in a ring resonator on a narrow transition in order to provide a collective measurement of the relative population of two momentum states. We show that this method is applicable to a Bragg diffraction-based strontium atom interferometer with large diffraction orders. This technique can be extended also to small diffraction orders and large atom numbers N by inducing atomic transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling Δϕ∼N^{-3/4}. We show that for realistic parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the standard quantum limit. Our method is applicable to other atomic species where a narrow transition is available or can be synthesized.
Quantum conductance oscillation in linear monatomic silicon chains
NASA Astrophysics Data System (ADS)
Liu, Fu-Ti; Cheng, Yan; Yang, Fu-Bin; Chen, Xiang-Rong
2014-02-01
The conductance of linear silicon atomic chains with n=1-8 atoms sandwiched between Au electrodes is investigated by using the density functional theory combined with non-equilibrium Green's function. The results show that the conductance oscillates with a period of two atoms as the number of atoms in the chain is varied. We optimize the geometric structure of nanoscale junctions in different distances, and obtain that the average bond-length of silicon atoms in each chain at equilibrium positions is 2.15±0.03 Å. The oscillation of average Si-Si bond-length can explain the conductance oscillation from the geometric structure of atomic chains. We calculate the transmission spectrum of the chains in the equilibrium positions, and explain the conductance oscillation from the electronic structure. The transport channel is mainly contributed by px and py orbital electrons of silicon atoms. The even-odd oscillation is robust under external voltage up to 1.2 V.
Compact atom interferometer using single laser
NASA Astrophysics Data System (ADS)
Chiow, Sheng-wey; Yu, Nan
2018-06-01
A typical atom interferometer requires vastly different laser frequencies at different stages of operation, e.g., near resonant light for laser cooling and far detuned light for atom optics, such that multiple lasers are typically employed. The number of laser units constrains the achievable minimum size and power in practical devices for resource critical environments such as space. We demonstrate a compact atom interferometer accelerometer operated by a single diode laser. This is achieved by dynamically changing the laser output frequency in GHz range while maintaining spectroscopic reference to an atomic transition via a sideband generated by phase modulation. At the same time, a beam path sharing configuration is also demonstrated for a compact sensor head design, in which atom interferometer beams share the same path as that of the cooling beam. This beam path sharing also significantly simplifies three-axis atomic accelerometry in microgravity using single sensor head.
On the way to unveiling the atomic structure of superheavy elements
NASA Astrophysics Data System (ADS)
Laatiaoui, Mustapha
2016-12-01
Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.
Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes
Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.
2015-01-01
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225
X-ray natural widths, level widths and Coster-Kronig transition probabilities
NASA Astrophysics Data System (ADS)
Papp, T.; Campbell, J. L.; Varga, D.
1997-01-01
A critical review is given for the K-N7 atomic level widths. The experimental level widths were collected from x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy (XES), x-ray spectra fluoresced by synchrotron radiation, and photoelectrons from x-ray absorption (PAX). There are only limited atomic number ranges for a few atomic levels where data are available from more than one source. Generally the experimental level widths have large scatter compared to the reported error bars. The experimental data are compared with the recent tabulation of Perkins et al. and of Ohno et al. Ohno et al. performed a many body approach calculation for limited atomic number ranges and have obtained reasonable agreement with the experimental data. Perkins et al. presented a tabulation covering the K-Q1 shells of all atoms, based on extensions of the Scofield calculations for radiative rates and extensions of the Chen calculations for non-radiative rates. The experimental data are in disagreement with this tabulation, in excess of a factor of two in some cases. A short introduction to the experimental Coster-Kronig transition probabilities is presented. It is our opinion that the different experimental approaches result in systematically different experimental data.
State-specific transport properties of electronically excited Ar and C
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2018-05-01
In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.
NASA Astrophysics Data System (ADS)
Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der
2016-07-01
We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from +2 to -1 (or -2 to +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.
Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der
2016-07-13
We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from +2 to -1 (or -2 to +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.
Large atom number Bose-Einstein condensate machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.
2006-02-15
We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.
Thermally induced secondary atomization of droplet in an acoustic field
NASA Astrophysics Data System (ADS)
Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan
2012-01-01
We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.
Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms
Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu; ...
2017-04-06
Here, we observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. The role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We also measure the normal-mode splitting and √ n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.
Equation-of-State Scaling Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Anthony J.
2016-06-28
Equation-of-State scaling factors are needed when using a tabular EOS in which the user de ned material isotopic fractions di er from the actual isotopic fractions used by the table. Additionally, if a material is dynamically changing its isotopic structure, then an EOS scaling will again be needed, and will vary in time and location. The procedure that allows use of a table to obtain information about a similar material with average atomic mass Ms and average atomic number Zs is described below. The procedure is exact for a fully ionized ideal gas. However, if the atomic number is replacemore » by the e ective ionization state the procedure can be applied to partially ionized material as well, which extends the applicability of the scaling approximation continuously from low to high temperatures.« less
The Nonlinear Jaynes-Cummings Model for the Multiphoton Transition
NASA Astrophysics Data System (ADS)
Liu, Xiao-Jing; Lu, Jing-Bin; Zhang, Si-Qi; Liu, Ji-Ping; Li, Hong; Liang, Yu; Ma, Ji; Weng, Yi-Jiao; Zhang, Qi-Rui; Liu, Han; Zhang, Xiao-Ru; Wu, Xiang-Yao
2018-01-01
With the nonlinear Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition in nonlinear medium, and researched the effect of the transition photon number N and the nonlinear coefficient χ on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, we find when the transition photon number N increases, the entanglement degrees oscillation get faster. When the nonlinear coefficient α > 0, the entanglement degrees oscillation get quickly, the nonlinear term is disadvantage of the atom and light field entanglement, and when the nonlinear coefficient α < 0, the entanglement degrees oscillation get slow, the nonlinear term is advantage of the atom and light field entanglement. These results will have been used in the quantum communication and quantum information.
Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields
Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.
2016-03-09
Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less
Semi-empirical model for stopping cross sections of p, α and Li ions
NASA Astrophysics Data System (ADS)
Alfaz Uddin, M.; Fazlul Haque, A. K.; Talukder, Tanvir I.; Basak, Arun K.; Saha, Bidhan C.; Malik, Fary B.
2013-10-01
Absolute magnitudes of stopping cross sections (SCS) for H+, He2+ and Li3+ in various stopping media with atomic numbers Z 2 = 2 to 100 are calculated using atomic density functions from Dirac-Hartree-Fock-Slater wave functions in the Lindhard-Schraff theory [J. Lindhard, M. Scharff, Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd. 27, 15 (1953)]. The newly proposed formula, characterizing projectile-specific parameters in the incident energy range considered herein, describes satisfactorily the experimental and SRIM-simulated SCS data from low energies, with projectile velocities nearing v = Z 1 v 0 (with Z 1 as the projectile’s atomic number, v 0 = c / 137, the Bohr velocity and c, the speed of light in vacuum), to high energies up to about 2.5 MeV/u.
Dynamic generation of light states with discrete symmetries
NASA Astrophysics Data System (ADS)
Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.
2018-01-01
A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .
Bremsstrahlung-Based Imaging and Assays of Radioactive, Mixed and Hazardous Waste
NASA Astrophysics Data System (ADS)
Kwofie, J.; Wells, D. P.; Selim, F. A.; Harmon, F.; Duttagupta, S. P.; Jones, J. L.; White, T.; Roney, T.
2003-08-01
A new nondestructive accelerator based x-ray fluorescence (AXRF) approach has been developed to identify heavy metals in large-volume samples. Such samples are an important part of the process and waste streams of U.S Department of Energy sites, as well as other industries such as mining and milling. Distributions of heavy metal impurities in these process and waste samples can range from homogeneous to highly inhomogeneous, and non-destructive assays and imaging that can address both are urgently needed. Our approach is based on using high-energy, pulsed bremsstrahlung beams (3-6.5 MeV) from small electron accelerators to produce K-shell atomic fluorescence x-rays. In addition we exploit pair-production, Compton scattering and x-ray transmission measurements from these beams to probe locations of high density and high atomic number. The excellent penetrability of these beams allows assays and images for soil-like samples at least 15 g/cm2 thick, with elemental impurities of atomic number greater than approximately 50. Fluorescence yield of a variety of targets was measured as a function of impurity atomic number, impurity homogeneity, and sample thickness. We report on actual and potential detection limits of heavy metal impurities in a soil matrix for a variety of samples, and on the potential for imaging, using AXRF and these related probes.
Structural stability and electronic properties of β-tetragonal boron: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp
2015-01-15
It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less
ERIC Educational Resources Information Center
Nika, G. Gerald; Parameswaran, R.
1997-01-01
Describes a visual approach for explaining the filling of electrons in the shells, subshells, and orbitals of the chemical elements. Enables students to apply the principles of atomic electron configuration while using manipulatives to model the building up of electron configurations as the atomic numbers of elements increase on the periodic…
Observational Evidence for Atoms.
ERIC Educational Resources Information Center
Jones, Edwin R., Jr.; Childers, Richard L.
1984-01-01
Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)
Measuring Two Key Parameters of H3 Color Centers in Diamond
NASA Technical Reports Server (NTRS)
Roberts, W. Thomas
2005-01-01
A method of measuring two key parameters of H3 color centers in diamond has been created as part of a continuing effort to develop tunable, continuous-wave, visible lasers that would utilize diamond as the lasing medium. (An H3 color center in a diamond crystal lattice comprises two nitrogen atoms substituted for two carbon atoms bonded to a third carbon atom. H3 color centers can be induced artificially; they also occur naturally. If present in sufficient density, they impart a yellow hue.) The method may also be applicable to the corresponding parameters of other candidate lasing media. One of the parameters is the number density of color centers, which is needed for designing an efficient laser. The other parameter is an optical-absorption cross section, which, as explained below, is needed for determining the number density. The present method represents an improvement over prior methods in which optical-absorption measurements have been used to determine absorption cross sections or number densities. Heretofore, in order to determine a number density from such measurements, it has been necessary to know the applicable absorption cross section; alternatively, to determine the absorption cross section from such measurements, it has been necessary to know the number density. If, as in this case, both the number density and the absorption cross section are initially unknown, then it is impossible to determine either parameter in the absence of additional information.
Nedolya, Anatoliy V; Bondarenko, Natalya V
2016-12-01
Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction <011> occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.
Direct observation of interfacial Au atoms on TiO₂ in three dimensions.
Gao, Wenpei; Sivaramakrishnan, Shankar; Wen, Jianguo; Zuo, Jian-Min
2015-04-08
Interfacial atoms, which result from interactions between the metal nanoparticles and support, have a large impact on the physical and chemical properties of nanoparticles. However, they are difficult to observe; the lack of knowledge has been a major obstacle toward unraveling their role in chemical transformations. Here we report conclusive evidence of interfacial Au atoms formed on the rutile (TiO2) (110) surfaces by activation using high-temperature (∼500 °C) annealing in air. Three-dimensional imaging was performed using depth-sectioning enabled by aberration-corrected scanning transmission electron microscopy. Results show that the interface between Au nanocrystals and TiO2 (110) surfaces consists of a single atomic layer with Au atoms embedded inside Ti-O. The number of interfacial Au atoms is estimated from ∼1-8 in an interfacial atomic column. Direct impact of interfacial Au atoms is observed on an enhanced Au-TiO2 interaction and the reduction of surface TiO2; both are critical to Au catalysis.
Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.
Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu
2017-02-08
Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.
Entanglement of 3000 atoms by detecting one photon
NASA Astrophysics Data System (ADS)
Vuletic, Vladan
2016-05-01
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.
Operation of the computer model for direct atomic oxygen exposure of Earth satellites
NASA Technical Reports Server (NTRS)
Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.
1995-01-01
One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.
Van-der-Waals interaction of atoms in dipolar Rydberg states
NASA Astrophysics Data System (ADS)
Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.
2018-02-01
An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power-12 dependence C 6( n) ∝ n 12 for the dipolar states of the Rydberg manifold.
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)
2017-01-27
Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern
Wigner-Seitz local-environment study of the high-T/sub c/ superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melamud, M.; Bennett, L.H.; Watson, R.E.
The near-neighbor environments and the bonding of atoms in the high-T/sub c/ superconductors are studied using a Wigner-Seitz-cell contruction. Assuming metallic radii for the atoms, it is shown that the Ba, Y, and La atoms have large coordination numbers, implying a three-dimensional bonding scheme. The La-Cu-O type (approx. =40 K) and the Y-Ba-Cu-O type (approx. =90 K) superconductors both display the same bonding characteristics.
Relaxation channels of multi-photon excited xenon clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904
2015-09-21
The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.
Evaluation of atomic pressure in the multiple time-step integration algorithm.
Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu
2017-04-15
In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states.
Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao
2018-05-15
Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the OH stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures. Copyright © 2018 Elsevier B.V. All rights reserved.
Observing heliospheric neutral atoms at 1 AU
NASA Astrophysics Data System (ADS)
Heerikhuisen, Jacob; Pogorelov, Nikolai; Florinski, Vladimir; Zank, Gary
2006-09-01
Although in situ observations of distant heliospheric plasma by the Voyagers has proven to be extremely enlightening, such point observations need to be complemented with global measurements taken remotely to obtain a complete picture of the heliosphere and local interstellar environment. Neutral atoms, with their contempt for magnetic fields, provide useful probes of the plasma that generated them. However, there will be a number of ambiguities in neutral atom readings that require a deeper understanding of the plasma processes generating neutral atoms, as well as the loss mechanisms on their flight to the observation point. We introduce a procedure for generating all-sky maps of energetic H-atoms, calculated directly in our Monte-Carlo neutral atom code. Results obtained for a self-consistent axisymmetric MHD-Boltzmann calculation, as well as several non-selfconsistent 3D sky maps, will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirone, Markus A.; Rzazewski, Kazimierz; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, and College of Science, Al. Lotnikow 32/46, 02-668 Warsaw
1999-03-11
We discuss two striking features of quantum mechanics: The concepts of vacuum and of entanglement. We first study the radiation field inside a double cavity (a cavity which contains a reflecting mirror). If the mirror is rapidly removed, peculiar quantum phenomena, such as photon creation from vacuum and squeezing, occur. We discuss then a gedanken experiment which employs the double cavity to create entanglement between two atoms. The atoms cross the double cavity and interact with its two independent radiation fields. After the atoms leave the cavity, the mirror is suddenly removed. Measurement of the radiation field inside the cavitymore » can give rise to entanglement between the atoms. The method can be extended to an arbitrary number of atoms, providing thus an N-particle GHZ state.« less
Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco
2015-01-01
Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689
Spectroscopy, Understanding the Atom Series.
ERIC Educational Resources Information Center
Hellman, Hal
This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…
Some Reflections on the Periodic Table and Its Use.
ERIC Educational Resources Information Center
Fernelius, W. Conard
1986-01-01
Discusses early periodic tables; effect on the periodic table of atomic numbers; the periodic table in relation to electron distribution in the atoms of elements; terms and concepts related to the table; and the modern basis of the periodic table. Additional comments about these and other topics are included. (JN)
Experiments With Trapped Neutral Atoms
2010-01-05
number of condensate atoms in the trap [11]. (a) i solitons (b) £ 10 \\QT>J — \\^y Darks -WW . ’ VrV Ground state A(|>=0 <* -^ Mr...interacting condensates leading to soliton formation for a relative phase of Pi. (b) The relative phase of two split condensates was monitored for various
Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Emerson, Preston; Crockett, Julie; Maynes, Daniel
2017-11-01
Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).
Measuring Gravitation Using Polarization Spectroscopy
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Yu, Nan; Maleki, Lute
2004-01-01
A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.
1988-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.
Atomic structure of nano voids in irradiated 3C-SiC
NASA Astrophysics Data System (ADS)
Lin, Yan-Ru; Chen, Liu-Gu; Hsieh, Cheng-Yo; Hu, Alice; Lo, Sheng-Chuan; Chen, Fu-Rong; Kai, Ji-Jung
2018-01-01
It is important to understand the atomic structure of defect clusters in SiC, a promising material for nuclear application. In this study, we have directly observed and identified nano voids in ion irradiated 3C-SiC at 800 °C, 20 dpa through ABF and HAADF STEM images. A quantitative method was used to analyze HAADF images in which atomic columns with a difference in the number of atoms could be identified and scattered intensities can be computed. Our result shows that these voids are composed of atomic vacancies in an octahedral arrangement. The density of the void was measured by STEM to be 9.2 × 1019m-3 and the size was ∼1.5 nm.
Preparation of a high concentration of lithium-7 atoms in a magneto-optical trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelener, B. B., E-mail: bobozel@mail.ru; Saakyan, S. A.; Sautenkov, V. A.
2014-11-15
This study is aimed at obtaining high concentration of optically cooled lithium-7 atoms for preparing strongly interacting ultracold plasma and Rydberg matter. A special setup has been constructed, in which two high-power semiconductor lasers are used to cool lithium-7 atoms in a magneto-optical trap. At an optimum detuning of the cooling laser frequency and a magnetic field gradient of 35 G/cm, the concentration of ultracold lithium-7 atoms reaches about 10{sup 11} cm{sup −3}. Additional independent information about the concentration and number of ultracold lithium-7 atoms on different sublevels of the ground state was obtained by using of an additional probingmore » laser.« less
Electron number probability distributions for correlated wave functions.
Francisco, E; Martín Pendás, A; Blanco, M A
2007-03-07
Efficient formulas for computing the probability of finding exactly an integer number of electrons in an arbitrarily chosen volume are only known for single-determinant wave functions [E. Cances et al., Theor. Chem. Acc. 111, 373 (2004)]. In this article, an algebraic method is presented that extends these formulas to the case of multideterminant wave functions and any number of disjoint volumes. The derived expressions are applied to compute the probabilities within the atomic domains derived from the space partitioning based on the quantum theory of atoms in molecules. Results for a series of test molecules are presented, paying particular attention to the effects of electron correlation and of some numerical approximations on the computed probabilities.
Evidence for strong Breit interaction in dielectronic recombination of highly charged heavy ions.
Nakamura, Nobuyuki; Kavanagh, Anthony P; Watanabe, Hirofumi; Sakaue, Hiroyuki A; Li, Yueming; Kato, Daiji; Currell, Fred J; Ohtani, Shunsuke
2008-02-22
Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).
Pauling, Linus; Kamb, Barclay
1985-01-01
The statistical resonating-valence-bond theory of metals is applied in the purely theoretical calculation of the composition of the Ni-Cu alloy at the foot of the curve of saturation ferromagnetic moment, which marks the boundary between hypoelectronic and hyperelectronic metals and determines the value of the number of metallic orbitals per atom. The results, Ni44Cu56 and 0.722 metallic orbitals, agree with the observed values. This agreement provides strong support of the theory. PMID:16593633
Lattice distortion and electron charge redistribution induced by defects in graphene
Zhang, Wei; Lu, Wen -Cai; Zhang, Hong -Xing; ...
2016-09-14
Lattice distortion and electronic charge localization induced by vacancy and embedded-atom defects in graphene were studied by tight-binding (TB) calculations using the recently developed three-center TB potential model. We showed that the formation energies of the defects are strongly correlated with the number of dangling bonds and number of embedded atoms, as well as the magnitude of the graphene lattice distortion induced by the defects. Lastly, we also showed that the defects introduce localized electronic states in the graphene which would affect the electron transport properties of graphene.
Determination of effective atomic number of biomedical samples using Gamma ray back-scattering
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Singh, Bhajan; Sandhu, B. S.; Sabharwal, Arvind D.
2018-05-01
The study of effective atomic number of biomedical sample has been carried out by using a non-destructive multiple back-scattering technique. Also radiation characterization method is used to compare the tissue equivalent material as human tissue. Response function of 3″ × 3″ NaI(Tl) scintillation detector is implemented on recorded pulse-height distribution to boost the counts under the photo-peak and help to reduce the uncertainty in the experimental result. Monte Carlo calculation for multiple back-scattered events supports the reported experimental work.
Simultaneous trapping of rubidium-85 and rubidium-87 in a far off resonant trap
NASA Astrophysics Data System (ADS)
Gorges, Anthony R.
The experiments described in this thesis were focused on the physics of simultaneous trapping of 85Rb and 87 Rb into a Far Off Resonant Trap (FORT), with a view towards the implementation of a nonevaporative cooling scheme. Atoms were first trapped in a Magneto Optical Trap (MOT) and from there loaded into the FORT. We investigated the effects of loading the FORT from a MOT vs. an optical molasses; observing that the molasses significantly improved the trapped atom number. The ultimate number of atoms trapped is determined by a balance between efficient laser cooling into the FORT and light-assisted collisional losses from the FORT. We have studied and measured the loss rates associated with light-assisted collisions for our FORT, measuring both heteronuclear and homonuclear collisions. It was discovered that induced long range dipole-dipole interactions between 85Rb and 87Rb have a significant impact on FORT loading. This interaction interferes with the loading into the trap and thus limits the number of atoms which can be trapped in the FORT under simultaneous load conditions. Despite this limitation, all required experimental parameters for our future measurements have been met. In addition to these FORT studies, we have found a technique which can successfully mitigate the effects of reabsorption in optically thick clouds, which is a limitation to the ultimate temperature an atom cloud will reach during light-based cooling. Planned future measurements for this project include the creation of a variable aspect ratio FORT; along with investigating collision assisted Zeeman cooling.
Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi
2015-02-01
High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.
NASA Astrophysics Data System (ADS)
Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.
2016-08-01
Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.
2014-06-05
PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER Form Approved OMB...Phys., 89, (2001) 5243. [14] M. Depas, R. L. Van Meirhaegue, W. H. Laflère, F. Cardon , Solid- State Electron, 37, (1994) 433. [15] Muhammad Sajjad
Significance of structural changes in proteins: expected errors in refined protein structures.
Stroud, R. M.; Fauman, E. B.
1995-01-01
A quantitative expression key to evaluating significant structural differences or induced shifts between any two protein structures is derived. Because crystallography leads to reports of a single (or sometimes dual) position for each atom, the significance of any structural change based on comparison of two structures depends critically on knowing the expected precision of each median atomic position reported, and on extracting it for each atom, from the information provided in the Protein Data Bank and in the publication. The differences between structures of protein molecules that should be identical, and that are normally distributed, indicating that they are not affected by crystal contacts, were analyzed with respect to many potential indicators of structure precision, so as to extract, essentially by "machine learning" principles, a generally applicable expression involving the highest correlates. Eighteen refined crystal structures from the Protein Data Bank, in which there are multiple molecules in the crystallographic asymmetric unit, were selected and compared. The thermal B factor, the connectivity of the atom, and the ratio of the number of reflections to the number of atoms used in refinement correlate best with the magnitude of the positional differences between regions of the structures that otherwise would be expected to be the same. These results are embodied in a six-parameter equation that can be applied to any crystallographically refined structure to estimate the expected uncertainty in position of each atom. Structure change in a macromolecule can thus be referenced to the expected uncertainty in atomic position as reflected in the variance between otherwise identical structures with the observed values of correlated parameters. PMID:8563637
NASA Astrophysics Data System (ADS)
Majumder, Tiku
2017-04-01
In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.
The Hyperfine Structure of the Ground State in the Muonic Helium Atoms
NASA Astrophysics Data System (ADS)
Aznabayev, D. T.; Bekbaev, A. K.; Korobov, V. I.
2018-05-01
Non-relativistic ionization energies 3He2+μ-e- and 4He2+μ-e- of helium-muonic atoms are calculated for ground states. The calculations are based on the variational method of the exponential expansion. Convergence of the variational energies is studied by an increasing of a number of the basis functions N. This allows to claim that the obtained energy values have 26 significant digits for ground states. With the obtained results we calculate hyperfine splitting of the muonic helium atoms.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We use Ar predissociation and vibrational autodetachment below 2100 wn to obtain vibrational spectra of the low-energy modes of nitromethane anion. We interpret the spectra using anharmonic calculations, which reveal strong mode coupling and Fermi resonances. Not surprisingly, the number of evaporated Ar atoms varies with photon energy, and we follow the propensity of evaporating two versus one Ar atoms as photon energy increases. The photodetachment spectrum is discussed in the context of threshold effects and the importance of hot bands.
NASA Technical Reports Server (NTRS)
1987-01-01
A new spinoff product was derived from Geospectra Corporation's expertise in processing LANDSAT data in a software package. Called ATOM (for Automatic Topographic Mapping), it's capable of digitally extracting elevation information from stereo photos taken by spaceborne cameras. ATOM offers a new dimension of realism in applications involving terrain simulations, producing extremely precise maps of an area's elevations at a lower cost than traditional methods. ATOM has a number of applications involving defense training simulations and offers utility in architecture, urban planning, forestry, petroleum and mineral exploration.
Reconfigurable Electronics and Non-Volatile Memory Research
2011-10-14
Sources of metal dopants were elemental metals and as well as, metal-Se compounds, and there was no evident difference in the measured Raman and Electron...similar in nature. Intensity of the most of the sample reduces with dopant concentration. This is due to the reduction in Ge-Ge and Ge-Se bonds as...the metal is incorporated into the glass. The metal dopant atoms will bond with the Se atoms [5] reducing the number of Se atoms that are available
Laser modified processes: bremsstrahlung and inelastic photon atom scattering
NASA Astrophysics Data System (ADS)
Budriga, Olimpia; Dondera, Mihai; Florescu, Viorica
2007-08-01
We consider the influence of a low-frequency monochromatic external electromagnetic field (the laser) on two basic atomic processes: electron Coulomb bremsstrahlung and inelastic photon scattering on an electron bound in the ground state of a hydrogenic atom. We briefly describe the approximations adopted and illustrate in figures how the laser parameters modify the shape of the differential cross-sections and extend the energy domain for emitted electrons, due to simultaneous absorption or emission of a large number (hundreds) of laser photons.
A quantum trampoline for ultra-cold atoms
NASA Astrophysics Data System (ADS)
Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.
2010-01-01
We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.
DOE R&D Accomplishments Database
Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.
1982-04-01
From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.
NASA Technical Reports Server (NTRS)
Wood, B. J.; Ablow, C. M.; Wise, H.
1973-01-01
For a number of candidate materials of construction for the dual air density explorer satellites the rate of oxygen atom loss by adsorption, surface reaction, and recombination was determined as a function of surface and temperature. Plain aluminum and anodized aluminum surfaces exhibit a collisional atom loss probability alpha .01 in the temperature range 140 - 360 K, and an initial sticking probability. For SiO coated aluminum in the same temperature range, alpha .001 and So .001. Atom-loss on gold is relatively rapid alpha .01. The So for gold varies between 0.25 and unity in the temperature range 360 - 140 K.
Muonic alchemy: Transmuting elements with the inclusion of negative muons
NASA Astrophysics Data System (ADS)
Moncada, Félix; Cruz, Daniel; Reyes, Andrés
2012-06-01
In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less
Empirical model of atomic nitrogen in the upper thermosphere
NASA Technical Reports Server (NTRS)
Engebretson, M. J.; Mauersberger, K.; Kayser, D. C.; Potter, W. E.; Nier, A. O.
1977-01-01
Atomic nitrogen number densities in the upper thermosphere measured by the open source neutral mass spectrometer (OSS) on Atmosphere Explorer-C during 1974 and part of 1975 have been used to construct a global empirical model at an altitude of 375 km based on a spherical harmonic expansion. The most evident features of the model are large diurnal and seasonal variations of atomic nitrogen and only a moderate and latitude-dependent density increase during periods of geomagnetic activity. Maximum and minimum N number densities at 375 km for periods of low solar activity are 3.6 x 10 to the 6th/cu cm at 1500 LST (local solar time) and low latitude in the summer hemisphere and 1.5 x 10 to the 5th/cu cm at 0200 LST at mid-latitudes in the winter hemisphere.
Atomic weights of the elements--Review 2000 (IUPAC Technical Report)
de Laeter, John R.; Böhlke, John Karl; De Bièvre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.
2003-01-01
A consistent set of internationally accepted atomic weights has long been an essential aim of the scientific community because of the relevance of these values to science and technology, as well as to trade and commerce subject to ethical, legal, and international standards. The standard atomic weights of the elements are regularly evaluated, recommended, and published in updated tables by the Commission on Atomic Weights and Isotopic Abundances (CAWIA) of the International Union of Pure and Applied Chemistry (IUPAC). These values are invariably associated with carefully evaluated uncertainties. Atomic weights were originally determined by mass ratio measurements coupled with an understanding of chemical stoichiometry, but are now based almost exclusively on knowledge of the isotopic composition (derived from isotope-abundance ratio measurements) and the atomic masses of the isotopes of the elements. Atomic weights and atomic masses are now scaled to a numerical value of exactly 12 for the mass of the carbon isotope of mass number 12. Technological advances in mass spectrometry and nuclear-reaction energies have enabled atomic masses to be determined with a relative uncertainty of better than 1 ×10−7 . Isotope abundances for an increasing number of elements can be measured to better than 1 ×10−3 . The excellent precision of such measurements led to the discovery that many elements, in different specimens, display significant variations in their isotope-abundance ratios, caused by a variety of natural and industrial physicochemical processes. While such variations increasingly place a constraint on the uncertainties with which some standard atomic weights can be stated, they provide numerous opportunities for investigating a range of important phenomena in physical, chemical, cosmological, biological, and industrial processes. This review reflects the current and increasing interest of science in the measured differences between source-specific and even sample-specific atomic weights. These relative comparisons can often be made with a smaller uncertainty than is achieved in the best calibrated “absolute ” (=SI-traceable) atomic-weight determinations. Accurate determinations of the atomic weights of certain elements also influence the values of fundamental constants such as the Avogadro, Faraday, and universal gas constants. This review is in two parts: the first summarizes the development of the science of atomic-weight determinations during the 20th century; the second summarizes the changes and variations that have been recognized in the values and uncertainties of atomic weights, on an element-by-element basis, in the latter part of the 20th century.
Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu
2018-03-01
For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time-resolved images in future. Published by Elsevier B.V.
AtomDB: Expanding an Accessible and Accurate Atomic Database for X-ray Astronomy
NASA Astrophysics Data System (ADS)
Smith, Randall
Since its inception in 2001, the AtomDB has become the standard repository of accurate and accessible atomic data for the X-ray astrophysics community, including laboratory astrophysicists, observers, and modelers. Modern calculations of collisional excitation rates now exist - and are in AtomDB - for all abundant ions in a hot plasma. AtomDB has expanded beyond providing just a collisional model, and now also contains photoionization data from XSTAR as well as a charge exchange model, amongst others. However, building and maintaining an accurate and complete database that can fully exploit the diagnostic potential of high-resolution X-ray spectra requires further work. The Hitomi results, sadly limited as they were, demonstrated the urgent need for the best possible wavelength and rate data, not merely for the strongest lines but for the diagnostic features that may have 1% or less of the flux of the strong lines. In particular, incorporation of weak but powerfully diagnostic satellite lines will be crucial to understanding the spectra expected from upcoming deep observations with Chandra and XMM-Newton, as well as the XARM and Athena satellites. Beyond incorporating this new data, a number of groups, both experimental and theoretical, have begun to produce data with errors and/or sensitivity estimates. We plan to use this to create statistically meaningful spectral errors on collisional plasmas, providing practical uncertainties together with model spectra. We propose to continue to (1) engage the X-ray astrophysics community regarding their issues and needs, notably by a critical comparison with other related databases and tools, (2) enhance AtomDB to incorporate a large number of satellite lines as well as updated wavelengths with error estimates, (3) continue to update the AtomDB with the latest calculations and laboratory measurements, in particular velocity-dependent charge exchange rates, and (4) enhance existing tools, and create new ones as needed to increase the functionality of, and access to, AtomDB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski,more » Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and atomic number (Z) reconstructions to a significant extent.« less
NASA Astrophysics Data System (ADS)
Clayton, James E.; Bjorkholm, Paul
2006-05-01
The Dual Energy X-ray technique employs two X-ray projection images of an object with X-ray energy spectra at a low X-ray energy and a high X-ray energy. The two energies are both high enough to penetrate all cargoes. The endpoint energies for low and high will be approximately 5-6 MeV and 8-9.5 MeV respectively. These energies are chosen such that pair production is the dominant energy loss mechanism for the high energy mode. By defining the ratio of the transmitted X-ray photon R = T high/T low it can be shown that there is a difference in the ratio that will permit the detection of materials that are significantly higher in atomic number than the low to mid atomic numbered elements that normally appear in the stream of commerce. This difference can be used to assist in the automatic detection of high atomic numbered materials. These materials might be a WMD or dirty bomb. When coupled with detectors that can observe the delayed signature of photon induced fission a confirmation of a WMD may be made. The use of the delayed photons and neutrons from Photofission can confirm the presence of Special Nuclear Materials (SNM). The energy required to induce fission in SNM by a photon is approximately 6 MeV with the maximum fission production rate from X-ray photons in the energy range of 12-15 MeV.
Non-destructive Faraday imaging of dynamically controlled ultracold atoms
NASA Astrophysics Data System (ADS)
Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob
2013-05-01
We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.
A predictive structural model for bulk metallic glasses
Laws, K. J.; Miracle, D. B.; Ferry, M.
2015-01-01
Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667
Quenches across the self-organization transition in multimode cavities
NASA Astrophysics Data System (ADS)
Keller, Tim; Torggler, Valentin; Jäger, Simon B.; Schütz, Stefan; Ritsch, Helmut; Morigi, Giovanna
2018-02-01
A cold dilute atomic gas in an optical resonator can be radiatively cooled by coherent scattering processes when the driving laser frequency is tuned close to but below the cavity resonance. When the atoms are sufficiently illuminated, their steady state undergoes a phase transition from a homogeneous distribution to a spatially organized Bragg grating. We characterize the dynamics of this self-ordering process in the semi-classical regime when distinct cavity modes with commensurate wavelengths are quasi-resonantly driven by laser fields via scattering by the atoms. The lasers are simultaneously applied and uniformly illuminate the atoms; their frequencies are chosen so that the atoms are cooled by the radiative processes, and their intensities are either suddenly switched or slowly ramped across the self-ordering transition. Numerical simulations for different ramp protocols predict that the system will exhibit long-lived metastable states, whose occurrence strongly depends on the initial temperature, ramp speed, and the number of atoms.
Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects
NASA Astrophysics Data System (ADS)
Hogan, Jason
2015-04-01
Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.
Atomic Spectra Bibliography Databases at NIST
NASA Astrophysics Data System (ADS)
Kramida, Alexander
2010-03-01
NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) [http://physics.nist.gov/PhysRefData/ASBib1/index.html]: -- Atomic Energy Levels and Spectra (AEL BD), Atomic Transition Probability (ATP BD), and Atomic Spectral Line Broadening (ALB BD). This year marks new releases of these BDs -- AEL BD v.2.0, ATP BD v.9.0, and ALB DB v.3.0. These releases incorporate significant improvements in the quantity and quality of bibliographic data since the previous versions published first in 2006. The total number of papers in the three DBs grew from 20,000 to 30,000. The data search is now made easier, and the returned content is enriched with direct links to online journal articles and universal Digital Object Identifiers. Statistics show a nearly constant flow of new publications on atomic spectroscopy, about 600 new papers published each year since 1968. New papers are inserted in our BDs every two weeks on average.
Mobilio, Dominick; Walker, Gary; Brooijmans, Natasja; Nilakantan, Ramaswamy; Denny, R Aldrin; Dejoannis, Jason; Feyfant, Eric; Kowticwar, Rupesh K; Mankala, Jyoti; Palli, Satish; Punyamantula, Sairam; Tatipally, Maneesh; John, Reji K; Humblet, Christine
2010-08-01
The Protein Data Bank is the most comprehensive source of experimental macromolecular structures. It can, however, be difficult at times to locate relevant structures with the Protein Data Bank search interface. This is particularly true when searching for complexes containing specific interactions between protein and ligand atoms. Moreover, searching within a family of proteins can be tedious. For example, one cannot search for some conserved residue as residue numbers vary across structures. We describe herein three databases, Protein Relational Database, Kinase Knowledge Base, and Matrix Metalloproteinase Knowledge Base, containing protein structures from the Protein Data Bank. In Protein Relational Database, atom-atom distances between protein and ligand have been precalculated allowing for millisecond retrieval based on atom identity and distance constraints. Ring centroids, centroid-centroid and centroid-atom distances and angles have also been included permitting queries for pi-stacking interactions and other structural motifs involving rings. Other geometric features can be searched through the inclusion of residue pair and triplet distances. In Kinase Knowledge Base and Matrix Metalloproteinase Knowledge Base, the catalytic domains have been aligned into common residue numbering schemes. Thus, by searching across Protein Relational Database and Kinase Knowledge Base, one can easily retrieve structures wherein, for example, a ligand of interest is making contact with the gatekeeper residue.
Density functional study of structural and electronic properties of Al{sub n}@C{sub 60}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhiman, Shobhna, E-mail: s-dhiman@hotmail.com; Kumar, Ranjan; Dharamvir, Keya
2014-04-24
Fullerene derivatives have been shown to make contributions in many types of applications. Ab initio investigation of structural and electronic properties of aluminum doped endohedral fullerene has been performed using numerical atomic orbital density functional theory. We have obtained ground state structures for Al{sub n}@C{sub 60} (n=1–10). Which shows that C{sub 60} molecule can accommodate maximum of nine aluminum atoms, for n > 9 the cage eventually break. Encapsulated large number of aluminum atoms leads to deformation of cage with diameter varies from 7.16Å to 7.95Å. Binding energy/Al atom is found to increase till n = 4 and after thatmore » it decreases with the number of Al atoms with a sudden increase for n=10 due to breakage of C{sub 60} cage and electronic affinity first increases till n=4 then it decreases up to n=9 with a sharp increase for n=10. Ionization potential also first increases and then decreases. Homo-Lumo gap decreases till n=3 with a sharp increase for n=4, after that it shows an oscillatory nature. The results obtained are consistent with available theoretical and experimental results. The ab-initio calculations were performed using SIESTA code with generalized gradient approximation (GGA)« less
Locality of correlation in density functional theory.
Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano
2016-08-07
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.
NASA Astrophysics Data System (ADS)
Kao, Der-you; Withanage, Kushantha; Hahn, Torsten; Batool, Javaria; Kortus, Jens; Jackson, Koblar
2017-10-01
In the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs. In this paper, we present optimized FODs for the atoms from Li-Kr obtained using an unbiased search method and self-consistent FLO-SIC calculations. The FOD arrangements display a clear shell structure that reflects the principal quantum numbers of the orbitals. We describe trends in the FOD arrangements as a function of atomic number. FLO-SIC total energies for the atoms are presented and are shown to be in close agreement with the results of previous SIC calculations that imposed explicit constraints to determine the optimal local orbitals, suggesting that FLO-SIC yields the same solutions for atoms as these computationally demanding earlier methods, without invoking the constraints.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
ERIC Educational Resources Information Center
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Performance of the density matrix functional theory in the quantum theory of atoms in molecules.
García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A
2012-02-02
The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.
Rydberg interaction induced enhanced excitation in thermal atomic vapor.
Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K
2018-03-27
We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.
Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui
2017-11-01
Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.
2018-04-01
The understanding of atomic adsorption on graphene is of high importance for many advanced technologies. Here we present a complete database of the atomic adsorption energies for the elements of the Periodic Table up to the atomic number 86 (excluding lanthanides) on pristine graphene. The energies have been calculated using the projector augmented wave (PAW) method with PBE, long-range dispersion interaction corrected PBE (PBE+D2, PBE+D3) as well as non-local vdW-DF2 approach. The inclusion of dispersion interactions leads to an exothermic adsorption for all the investigated elements. Dispersion interactions are found to be of particular importance for the adsorption of low atomic weight earth alkaline metals, coinage and s-metals (11th and 12th groups), high atomic weight p-elements and noble gases. We discuss the observed adsorption trends along the groups and rows of the Periodic Table as well some computational aspects of modelling atomic adsorption on graphene.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
Resonant enhanced multiphoton ionization studies of atomic oxygen
NASA Technical Reports Server (NTRS)
Dixit, S. N.; Levin, D.; Mckoy, V.
1987-01-01
In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.
Magnetism of a relaxed single atom vacancy in graphene
NASA Astrophysics Data System (ADS)
Wu, Yunyi; Hu, Yonghong; Xue, Li; Sun, Tieyu; Wang, Yu
2018-04-01
It has been suggested in literature that defects in graphene (e.g. absorbed atoms and vacancies) may induce magnetizations due to unpaired electrons. The nature of magnetism, i.e. ferromagnetic or anti-ferromagnetic, is dependent on a number of structural factors including locations of magnetic moments and lattice symmetry. In the present work we investigated the influence of a relaxed single atom vacancy in garphnene on magnetization which were obtained under different pinning boundary conditions, aiming to achieve a better understanding of the magnetic behaviors of graphene. Through first principles calculations, we found that major spin polarizations occur on atoms that deviate slightly from their original lattice positions, and pinning boundaries could also affect the relaxed positions of atoms and determine which atom(s) would become the main source(s) of total spin polarizations and magnetic moments. When the pinning boundary condition is free, a special non-magnetic and semi-conductive structure may be obtained, suggesting that magnetization should more readily occur under pinning boundary conditions.
Matter, energy, and heat transfer in a classical ballistic atom pump.
Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B
2014-11-01
A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.
Dual-axis high-data-rate atom interferometer via cold ensemble exchange
Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.
2014-11-24
We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less
Electronic levels and charge distribution near the interface of nickel
NASA Technical Reports Server (NTRS)
Waber, J. T.
1982-01-01
The energy levels in clusters of nickel atoms were investigated by means of a series of cluster calculations using both the multiple scattering and computational techniques (designated SSO) which avoids the muffin-tin approximation. The point group symmetry of the cluster has significant effect on the energy of levels nominally not occupied. This influences the electron transfer process during chemisorption. The SSO technique permits the approaching atom or molecule plus a small number of nickel atoms to be treated as a cluster. Specifically, molecular levels become more negative in the O atom, as well as in a CO molecule, as the metal atoms are approached. Thus, electron transfer from the nickel and bond formation is facilitated. This result is of importance in understanding chemisorption and catalytic processes.
NASA Astrophysics Data System (ADS)
Zyablovsky, A. A.; Andrianov, E. S.; Nechepurenko, I. A.; Dorofeenko, A. V.; Pukhov, A. A.; Vinogradov, A. P.
2017-05-01
Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables us to implement many properties of the electromagnetic field at the nanoscale in practical applications. A first-principles quantum-mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom and does not allow the electromagnetic-field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop a framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe nonuniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.
Measuring mercury and other elemental components in tree rings
Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.
2004-01-01
There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples.
Measuring mercury and other elemental components in tree rings
Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.
2004-01-01
There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples. Copyright 2004 by ISA.
Li, Huijuan; Fu, Jianjie; Pan, Wenxiao; Wang, Pu; Li, Yingming; Zhang, Qinghua; Wang, Yawei; Zhang, Aiqian; Liang, Yong; Jiang, Guibin
2017-07-15
The environmental behaviour of short-chain chlorinated paraffins (SCCPs) was investigated in both aquatic and terrestrial ecosystems in the Arctic. The mean concentrations of SCCPs in the aquatic and terrestrial samples were 178.9ng/g dry weight (dw) and 157.2ng/g dw, respectively. Short carbon chain (C 10 ) and less-chlorinated (Cl 6 ) congener groups were predominant in the Arctic samples, accounting for 48.6% and 34.8% of the total SCCPs, respectively. The enrichment of lighter SCCP congener groups (i.e., fewer chlorine atoms with shorter carbon chain lengths) indicated that the fractionation process occurred during long-range transport. The biomagnification factor (BMF) was 0.46 from gammarid to cod, which indicated that the SCCPs did not biomagnify between these two species. The soil-vegetation bioaccumulation factor (BAF) of SCCPs was 29.9, and C 13 and Cl 7, 8 congener groups tended to accumulate in the terrestrial vegetation. Regression analysis (BAFs=10.9×#C+5.6×#Cl-125.2, R=0.53, P<0.01) showed that the number of carbon and chlorine atoms influenced the bioaccumulative behaviour of SCCPs and suggested that the number of carbon atoms had a greater influence on the BAFs of SCCPs in the terrestrial ecosystem than did the number of chlorine atoms. Copyright © 2017 Elsevier B.V. All rights reserved.
Cooperative single-photon subradiant states in a three-dimensional atomic array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, H.H., E-mail: sappyjen@gmail.com
2016-11-15
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping
We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less
An apparatus for immersing trapped ions into an ultracold gas of neutral atoms
NASA Astrophysics Data System (ADS)
Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker
2012-05-01
We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.
High performance computing in biology: multimillion atom simulations of nanoscale systems
Sanbonmatsu, K. Y.; Tung, C.-S.
2007-01-01
Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nanoscale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail. PMID:17187988
Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki
NASA Astrophysics Data System (ADS)
Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Yoshikawa, Ichiro; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Smith, H. Todd; Bagenal, Fran
2018-05-01
We report on the spatial distribution of a neutral oxygen cloud surrounding Jupiter's moon Io and along Io's orbit observed by the Hisaki satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exosphere mainly through atmospheric sputtering. Some of the neutral atoms escape from Io's gravitational sphere and form neutral clouds around Jupiter. The extreme ultraviolet spectrograph called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Japan Aerospace Exploration Agency's Hisaki satellite observed the Io plasma torus continuously in 2014-2015, and we derived the spatial distribution of atomic oxygen emissions at 130.4 nm. The results show that Io's oxygen cloud is composed of two regions, namely, a dense region near Io and a diffuse region with a longitudinally homogeneous distribution along Io's orbit. The dense region mainly extends on the leading side of Io and inside of Io's orbit. The emissions spread out to 7.6 Jupiter radii (RJ). Based on Hisaki observations, we estimated the radial distribution of the atomic oxygen number density and oxygen ion source rate. The peak atomic oxygen number density is 80 cm-3, which is spread 1.2 RJ in the north-south direction. We found more oxygen atoms inside Io's orbit than a previous study. We estimated the total oxygen ion source rate to be 410 kg/s, which is consistent with the value derived from a previous study that used a physical chemistry model based on Hisaki observations of ultraviolet emission ions in the Io plasma torus.
The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures
Gao, Wei
2015-01-01
Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513
Stable Isotopes in Evaluation of Greenhouse Gas Emissions
USDA-ARS?s Scientific Manuscript database
Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...
Atomic Theory and Multiple Combining Proportions: The Search for Whole Number Ratios.
Usselman, Melvyn C; Brown, Todd A
2015-04-01
John Dalton's atomic theory, with its postulate of compound formation through atom-to-atom combination, brought a new perspective to weight relationships in chemical reactions. A presumed one-to-one combination of atoms A and B to form a simple compound AB allowed Dalton to construct his first table of relative atomic weights from literature analyses of appropriate binary compounds. For such simple binary compounds, the atomic theory had little advantages over affinity theory as an explanation of fixed proportions by weight. For ternary compounds of the form AB2, however, atomic theory made quantitative predictions that were not deducible from affinity theory. Atomic theory required that the weight of B in the compound AB2 be exactly twice that in the compound AB. Dalton, Thomas Thomson and William Hyde Wollaston all published within a few years of each other experimental data that claimed to give the predicted results with the required accuracy. There are nonetheless several experimental barriers to obtaining the desired integral multiple proportions. In this paper I will discuss replication experiments which demonstrate that only Wollaston's results are experimentally reliable. It is likely that such replicability explains why Wollaston's experiments were so influential.
Gladysz, Rafaela; Dos Santos, Fabio Mendes; Langenaeker, Wilfried; Thijs, Gert; Augustyns, Koen; De Winter, Hans
2018-03-07
Spectrophores are novel descriptors that are calculated from the three-dimensional atomic properties of molecules. In our current implementation, the atomic properties that were used to calculate spectrophores include atomic partial charges, atomic lipophilicity indices, atomic shape deviations and atomic softness properties. This approach can easily be widened to also include additional atomic properties. Our novel methodology finds its roots in the experimental affinity fingerprinting technology developed in the 1990's by Terrapin Technologies. Here we have translated it into a purely virtual approach using artificial affinity cages and a simplified metric to calculate the interaction between these cages and the atomic properties. A typical spectrophore consists of a vector of 48 real numbers. This makes it highly suitable for the calculation of a wide range of similarity measures for use in virtual screening and for the investigation of quantitative structure-activity relationships in combination with advanced statistical approaches such as self-organizing maps, support vector machines and neural networks. In our present report we demonstrate the applicability of our novel methodology for scaffold hopping as well as virtual screening.
Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F
2011-06-01
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
Electronic stopping in oxides beyond Bragg additivity
NASA Astrophysics Data System (ADS)
Sigmund, P.; Schinner, A.
2018-01-01
We present stopping cross sections calculated by our PASS code for several ions in metal oxides and SiO2 over a wide energy range. Input takes into account changes in the valence structure by assigning two additional electrons to the 2p shell of oxygen and removing the appropriate number of electrons from the outer shells of the metal atom. Results are compared with tabulated experimental values and with two versions of Bragg's additivity rule. Calculated stopping cross sections are applied in testing a recently-proposed scaling rule, which relates the stopping cross section to the number of oxygen atoms per molecule.
1994-03-31
Selective Area Growth, GaAs on Si3 1.SE Q.SWICATIQU10 IL. SEOJUFTY ISICTO 9 SEICUTY TUI& UNTATIM OF ABSTRACT OP SEP03 OF THIS PAGEI OF ABSTRACT...sides were produced by etching in a solution of 30 wt .% KOH in H20 at a temperature of -800 C using an Si0 2 pattern on the substrate to define the...energy which we associate with a bond between atoms i and j. The ni are the number of atoms of type i and the nij are the numbers of each type of bond
The abundances of solar accelerated nuclei from carbon to iron.
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.; Simpson, J. A.
1972-01-01
Revised observation periods and new data are found to confirm previous evidence that the overabundance of solar-flare nuclei with respect to solar photospheric and coronal abundances increases with increasing atomic number. It is also verified that enhancements can vary from flare to flare and that this variability is large enough to explain the differences observed by various investigators regarding the magnitude of solar-flare high-Z particle enhancements. Additional evidence for a two-stage solar acceleration mechanism is obtained. It is shown that the galactic cosmic-ray source composition displays a similar overabundance as a function of atomic number.
Method of identifying defective particle coatings
Cohen, Mark E.; Whiting, Carlton D.
1986-01-01
A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ün, Adem, E-mail: ademun25@yahoo.com; Han, İbrahim, E-mail: ibrahimhan25@hotmail.com; Ün, Mümine, E-mail: mun@agri.edu.tr
2016-04-18
Effective atomic (Z{sub eff}) and electron numbers (N{sub eff}) for 24 Martian meteorites have been determined in the energy range from 1 keV to 100 GeV and also for sixteen significant energies of commonly used radioactive sources. The values of Z{sub eff} and N{sub eff} for all sample were obtained from the DirectZeff program. The obtained results for Martian meteorites have been compared with the results for Earth composition and similarities or differences also evaluated.
DOE R&D Accomplishments Database
Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.
1974-07-15
In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.
Photon Interaction Parameters for Some Borate Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
Exciton-dominated dielectric function of atomically thin MoS 2 films
Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...
2015-11-24
We systematically measure the dielectric function of atomically thin MoS 2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS 2 films and its contribution to the dielectricmore » function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS 2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less
Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3
NASA Astrophysics Data System (ADS)
Adhikari, C. M.; Debierre, V.; Jentschura, U. D.
2017-09-01
The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.
NASA Astrophysics Data System (ADS)
2011-08-01
A scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) dedicated to the 50th anniversary of the creation of lasers was held in the Conference Hall of the Lebedev Physical Institute, RAS, on 13 December 2010. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A, Bagaev S N Opening speech; (2) Bratman V L, Litvak A G, Suvorov E V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Mastering the terahertz domain: sources and applications"; (3) Balykin V I (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Ultracold atoms and atom optics"; (4) Ledentsov N N (Ioffe Physical Technical Institute, RAS, St. Petersburg) "New-generation surface-emitting lasers as the key element of the computer communication era"; (5) Krasil'nik Z F (Institute for the Physics of Microstructures, RAS, Nizhny Novgorod) "Lasers for silicon optoelectronics"; (6) Shalagin A M (Institute of Automation and Electrometry, Siberian Branch, RAS, Novosibirsk) "High-power diode-pumped alkali metal vapor lasers"; (7) Kul'chin Yu N (Institute for Automation and Control Processes, Far Eastern Branch, RAS, Vladivostok) "Photonics of self-organizing biomineral nanostructures"; (8) Kolachevsky N N (Lebedev Physical Institute, RAS, Moscow) "Laser cooling of rare-earth atoms and precision measurements". The papers written on the basis of reports 2-4, 7, and 8 are published below.Because the paper based on report 6 was received by the Editors late, it will be published in the October issue of Physics-Uspekhi together with the material related to the Scientific Session of the Physical Sciences Division, RAS, of 22 December 2010. • Mastering the terahertz domain: sources and applications, V L Bratman, A G Litvak, E V Suvorov Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 837-844 • Ultracold atoms and atomic optics, V I Balykin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 844-852 • New-generation vertically emitting lasers as a key factor in the computer communication era, N N Ledentsov, J A Lott Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 853-858 • The photonics of self-organizing biomineral nanostructures, Yu N Kulchin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 858-863 • Laser cooling of rare-earth atoms and precision measurements, N N Kolachevsky Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 863-870
NASA Astrophysics Data System (ADS)
Xie, Wei; Tamura, Takahiro; Yanase, Takashi; Nagahama, Taro; Shimada, Toshihiro
2018-04-01
The effect of C doping to hexagonal boron nitride (h-BN) to its electronic structure is examined by first principles calculations using the association from π-electron systems of organic molecules embedded in a two-dimensional insulator. In a monolayered carbon-doped structure, odd-number doping with carbon atoms confers metallic properties with different work functions. Various electronic interactions occur between two layers with odd-number carbon substitution. A direct sp3 covalent chemical bond is formed when C replaces adjacent B and N in different layers. A charge transfer complex between layers is found when C replaces B and N in the next-neighboring region, which results in narrower band gaps (e.g., 0.37 eV). Direct bonding between C and B atoms is found when two C atoms in different layers are at a certain distance.
A study of QM/Langevin-MD simulation for oxygen-evolving center of photosystem II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, Waka; Kimura, Yoshiro; Wakabayashi, Masamitsu
2013-12-10
We have performed three QM/Langevin-MD simulations for oxygen-evolving complex (OEC) and surrounding residues, which are different configurations of the oxidation numbers on Mn atoms in the Mn{sub 4}O{sub 5}Ca cluster. By analyzing these trajectories, we have observed sensitivity of the change to the configuration of Mn oxidation state on O atoms of carboxyl on three amino acids, Glu354, Ala344, and Glu333. The distances from Mn to O atoms in residues contacting with the Mn{sub 4}O{sub 5}Ca cluster were analyzed for the three trajectories. We found the good correlation of the distances among the simulations. However, the distances with Glu354, Ala344,more » and Glu333 have not shown the correlation. These residues can be sensitive index of the changes of Mn oxidation numbers.« less
NASA Astrophysics Data System (ADS)
Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team
2011-10-01
In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.
Entanglement-Enhanced Phase Estimation without Prior Phase Information
NASA Astrophysics Data System (ADS)
Colangelo, G.; Martin Ciurana, F.; Puentes, G.; Mitchell, M. W.; Sewell, R. J.
2017-06-01
We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of
Liu, Qi-Jun; Jiao, Zhen; Liu, Fu-Sheng; Liu, Zheng-Tang
2016-06-07
The effects of X-doping (X = S, Se, Te and Po) on the structural, electronic and optical properties of hexagonal CuAlO2 were studied using first-principles density functional theory. The calculated results showed the obtained lattice constants to increase with increasing atomic number, and the X-doping to be energetically more favorable under Al-rich conditions. The calculated electronic properties showed decreased bandgaps with increasing atomic number, which was due to the better covalent hybridizations after sulfuration doping. The enhanced covalency was further confirmed by calculating the Mulliken atomic populations and bond populations. The density of states indicated the increase of the contribution to antibonding from the X-p states to be a benefit for p-type conductivity. Moreover, the X-doping induced a red shift of the absorption edge.
Catalysis by clusters with precise numbers of atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyo, Eric C.; Vajda, Stefan
2015-07-03
Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less
Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic
2013-01-01
The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.
2007-05-15
Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.
The displacement effect of a fluorine atom in CaF2 on the band structure
NASA Astrophysics Data System (ADS)
Mir, A.; Zaoui, A.; Bensaid, D.
2018-05-01
We obtained the results for each configuration [100], [110] and [111] and each configuration contains two atoms of calcium and four fluorine atoms with lattice type B. This study was made by a code that is based on the DFT called wien2k. The results obtained are in good agreement with the experiment. For CaF2, an important variation of the fluoride ions concentration in CaF2 after displacement has been observed on the map of e-Density. The interpretation of the results is based on the existence of an important number of defects which are created by changing the atomic positions inside of sub lattice.
Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.
1991-01-01
Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.
Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.
Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C
2016-05-20
We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.
NASA Technical Reports Server (NTRS)
Segar, D. A.
1971-01-01
A selective, volatalization technique utilizing the heated graphite atomizer atomic absorption technique has been developed for the analysis of iron in sea water. A similar technique may be used to determine vanadium, copper, nickel and cobalt in saline waters when their concentrations are higher than those normally encountered'in unpolluted sea waters. A preliminary solvent extraction using ammonium pyrolidine dithiocarbamate and methyl iso-butyl ketone permits the determination of a number of elements including iron, copper, zinc, nickel, cobalt and lead in sea water. The heated graphite atomized technique has also been applied to the determination of a range of trace transition elements in marine plant and animal tissues.
Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign
NASA Astrophysics Data System (ADS)
Sliwoski, Gregory; Mendenhall, Jeffrey; Meiler, Jens
2016-03-01
Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance.
Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms.
Tretyakov, D B; Beterov, I I; Yakshina, E A; Entin, V M; Ryabtsev, I I; Cheinet, P; Pillet, P
2017-10-27
Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.
A computer model for liquid jet atomization in rocket thrust chambers
NASA Astrophysics Data System (ADS)
Giridharan, M. G.; Lee, J. G.; Krishnan, A.; Yang, H. Q.; Ibrahim, E.; Chuech, S.; Przekwas, A. J.
1991-12-01
The process of atomization has been used as an efficient means of burning liquid fuels in rocket engines, gas turbine engines, internal combustion engines, and industrial furnaces. Despite its widespread application, this complex hydrodynamic phenomenon has not been well understood, and predictive models for this process are still in their infancy. The difficulty in simulating the atomization process arises from the relatively large number of parameters that influence it, including the details of the injector geometry, liquid and gas turbulence, and the operating conditions. In this study, numerical models are developed from first principles, to quantify factors influencing atomization. For example, the surface wave dynamics theory is used for modeling the primary atomization and the droplet energy conservation principle is applied for modeling the secondary atomization. The use of empirical correlations has been minimized by shifting the analyses to fundamental levels. During applications of these models, parametric studies are performed to understand and correlate the influence of relevant parameters on the atomization process. The predictions of these models are compared with existing experimental data. The main tasks of this study were the following: development of a primary atomization model; development of a secondary atomization model; development of a model for impinging jets; development of a model for swirling jets; and coupling of the primary atomization model with a CFD code.
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.
Yuan, Jianmin
2002-10-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.
Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms
NASA Astrophysics Data System (ADS)
Tretyakov, D. B.; Beterov, I. I.; Yakshina, E. A.; Entin, V. M.; Ryabtsev, I. I.; Cheinet, P.; Pillet, P.
2017-10-01
Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015), 10.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N ≫1 . In this Letter, we report on the first experimental observation of the three-body Förster resonances 3 ×n P3 /2(|M |)→n S1 /2+(n +1 )S1 /2+n P3 /2(|M*|) in a few Rb Rydberg atoms with n =36 , 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N =3 - 5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.
ERIC Educational Resources Information Center
Papageorgiou, George; Markos, Angelos; Zarkadis, Nikolaos
2016-01-01
The current study aims to investigate students' representations of the atomic structure in a number of student cohorts with specific characteristics concerning age, grade, class curriculum and some individual differences, such as formal reasoning and field dependence/independence. Two specific task contexts, which were designed in accordance with…
Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model
NASA Technical Reports Server (NTRS)
Dong, Zhengchao; Zhao, Yonglin
1996-01-01
In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.
Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry
ERIC Educational Resources Information Center
Green, Malcolm L. H.; Parkin, Gerard
2014-01-01
The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…
The Atomic Mass Unit, the Avogadro Constant, and the Mole: A Way to Understanding
ERIC Educational Resources Information Center
Baranski, Andrzej
2012-01-01
Numerous articles have been published that address problems encountered in teaching basic concepts of chemistry such as the atomic mass unit, Avogadro's number, and the mole. The origin of these problems is found in the concept definitions. If these definitions are adjusted for teaching purposes, understanding could be improved. In the present…
NASA Astrophysics Data System (ADS)
Le Kien, Fam; Schneeweiss, Philipp; Rauschenbeutel, Arno
2013-05-01
We present a systematic derivation of the dynamical polarizability and the ac Stark shift of the ground and excited states of atoms interacting with a far-off-resonance light field of arbitrary polarization. We calculate the scalar, vector, and tensor polarizabilities of atomic cesium using resonance wavelengths and reduced matrix elements for a large number of transitions. We analyze the properties of the fictitious magnetic field produced by the vector polarizability in conjunction with the ellipticity of the polarization of the light field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainshtein, �. E.; Zhurakovskii, E. A.
1959-08-01
X-ray spectral analyses confirmed the hypothesis on the metal-like state of hydrogen in tithnium hydrides. Experiments with titunium borides and silicides indicate the special character and degree of the 3d--level participation in the metallic'' bond between the atoms of various complexes. The structure of metalloid elements becomes more complicated with an increase in the specific number of boron and silicon atoms and the bond between the atoms tends to become covalent. (R.V.J.)
Sasamoto, Yukuo
2009-01-01
After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).
Chow, Tze-Show
1988-04-22
A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.
Reactive Collisions and Interactions of Ultracold Dipolar Atoms
2014-10-29
DATE (DD-MM-YYYY) 2. REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR( S ) 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 9...SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 10. SPONSOR/MONITOR’S ACRONYM( S ) 13. SUPPLEMENTARY...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER
Energetic Analysis of Conjugated Hydrocarbons Using the Interacting Quantum Atoms Method.
Jara-Cortés, Jesús; Hernández-Trujillo, Jesús
2018-07-05
A number of aromatic, antiaromatic, and nonaromatic organic molecules was analyzed in terms of the contributions to the electronic energy defined in the quantum theory of atoms in molecules and the interacting quantum atoms method. Regularities were found in the exchange and electrostatic interatomic energies showing trends that are closely related to those of the delocalization indices defined in the theory. In particular, the CC interaction energies between bonded atoms allow to rationalize the energetic stabilization associated with the bond length alternation in conjugated polyenes. This approach also provides support to Clar's sextet rules devised for aromatic systems. In addition, the H⋯H bonding found in some of the aromatic molecules studied was of an attractive nature, according to the stabilizing exchange interaction between the bonded H atoms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Big Bang Day: 5 Particles - 1. The Electron
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.
Accurate atom-mapping computation for biochemical reactions.
Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D
2012-11-26
The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.
Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Cantrell, Gidget
1994-01-01
Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.
Transport spectroscopy of coupled donors in silicon nano-transistors
Moraru, Daniel; Samanta, Arup; Anh, Le The; Mizuno, Takeshi; Mizuta, Hiroshi; Tabe, Michiharu
2014-01-01
The impact of dopant atoms in transistor functionality has significantly changed over the past few decades. In downscaled transistors, discrete dopants with uncontrolled positions and number induce fluctuations in device operation. On the other hand, by gaining access to tunneling through individual dopants, a new type of devices is developed: dopant-atom-based transistors. So far, most studies report transport through dopants randomly located in the channel. However, for practical applications, it is critical to control the location of the donors with simple techniques. Here, we fabricate silicon transistors with selectively nanoscale-doped channels using nano-lithography and thermal-diffusion doping processes. Coupled phosphorus donors form a quantum dot with the ground state split into a number of levels practically equal to the number of coupled donors, when the number of donors is small. Tunneling-transport spectroscopy reveals fine features which can be correlated with the different numbers of donors inside the quantum dot, as also suggested by first-principles simulation results. PMID:25164032
NASA Astrophysics Data System (ADS)
Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst
2016-04-01
Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.
Thin film deposition using rarefied gas jet
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev, , Dr.
2017-01-01
The rarefied gas jet of aluminium is studied at Mach number Ma =(U_j /√{ kbTj / m }) in the range .01
NASA Astrophysics Data System (ADS)
Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.
The Breakup Mechanism and the Spray Pulsation Behavior of a Three-Stream Atomizer
NASA Astrophysics Data System (ADS)
Ng, Chin; Dord, Anne; Aliseda, Alberto
2011-11-01
In many processes of industrial importance, such as gasification, the liquid to gas mass ratio injected at the atomizer exceeds the limit of conventional two-fluid coaxial atomizers. To maximize the shear rate between the atomization gas and the liquid while maintaining a large contact area, a secondary gas stream is added at the centerline of the spray, interior to the liquid flow, which is annular in this configuration. This cylindrical gas jet has low momentum and does not contribute to the breakup process, which is still dominated by the high shear between the concentric annular liquid flow and the high momentum gas stream. The presence of two independently controlled gas streams leads to the appearance of a hydrodynamic instability that manifests itself in pulsating liquid flow rates and droplet sizes. We study the dependency of the atomization process on the relative flow rates of the three streams. We measure the size distribution, droplet number density and total liquid volumetric flow rate as a function of time, for realistic Weber and Ohnesorge numbers. Analysis of the temporal evolution of these physical variables reveals the dominant frequency of the instability and its effect on the breakup and dispersion of droplets in the spray. We present flow visualization and Phase Doppler Particle Analyzer results that provide insight into the behavior of this complex coaxial shear flow.
Sattonnay, G; Tétot, R
2014-02-05
Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd2Ti2O7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd2Zr2O7. Therefore, the defect stability in A2B2O7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd2Ti2O7 amorphization induced by irradiation.
Locality of correlation in density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Kieron; Cancio, Antonio; Gould, Tim
The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that E{sub C} → −A{sub C} ZlnZ +more » B{sub C}Z as Z → ∞, where Z is the atomic number, A{sub C} is known, and we estimate B{sub C} to be about 37 mhartree. The local density approximation yields A{sub C} exactly, but a very incorrect value for B{sub C}, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with B{sub C} a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.« less
Factors driving stable growth of He clusters in W: first-principles study
NASA Astrophysics Data System (ADS)
Feng, Y. J.; Xin, T. Y.; Xu, Q.; Wang, Y. X.
2018-07-01
The evolution of helium (He) bubbles is responsible for the surface morphology variation and subsequent degradation of the properties of plasma-facing materials (PFMs) in nuclear fusion reactors. These severe problems unquestionably trace back to the behavior of He in PFMs, which is closely associated with the interaction between He and the matrix. In this paper, we decomposed the binding energy of the He cluster into three parts, those from W–W, W–He, and He–He interactions, using density functional theory. As a result, we clearly identified the main factors that determine a steplike decrease in the binding energy with increasing number of He atoms, which explains the process of self-trapping and athermal vacancy generation during He cluster growth in the PFM tungsten. The three interactions were found to synergetically shape the features of the steplike decrease in the binding energy. Fairly strong He–He repulsive forces at a short distance, which stem from antibonding states between He atoms, need to be released when additional He atoms are continuously bonded to the He cluster. This causes the steplike feature in the binding energy. The bonding states between W and He atoms in principle facilitate the decreasing trend of the binding energy. The decrease in binding energy with increasing number of He atoms implies that He clusters can grow stably.
Layer-controllable graphene by plasma thinning and post-annealing
NASA Astrophysics Data System (ADS)
Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)
2018-05-01
The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.
Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms
NASA Astrophysics Data System (ADS)
Wiegner, R.; Oppel, S.; Bhatti, D.; von Zanthier, J.; Agarwal, G. S.
2015-09-01
Superradiance typically requires preparation of atoms in highly entangled multiparticle states, the so-called Dicke states. In this paper we discuss an alternative route where we prepare such states from initially uncorrelated atoms by a measurement process. By measuring higher-order intensity-intensity correlations we demonstrate that we can simulate the emission characteristics of Dicke superradiance by starting with atoms in the fully excited state. We describe the essence of the scheme by first investigating two excited atoms. Here we demonstrate how via Hanbury Brown and Twiss type of measurements we can produce Dicke superradiance and subradiance displayed commonly with two atoms in the single excited symmetric and antisymmetric Dicke states, respectively. We thereafter generalize the scheme to arbitrary numbers of atoms and detectors, and explain in detail the mechanism which leads to this result. The approach shows that the Hanbury Brown and Twiss type of intensity interference and the phenomenon of Dicke superradiance can be regarded as two sides of the same coin. We also present a compact result for the characteristic functional which generates all order intensity-intensity correlations.
NASA Astrophysics Data System (ADS)
Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.
2018-04-01
The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.
Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide
NASA Astrophysics Data System (ADS)
Munro, Ewan; Kwek, Leong Chuan; Chang, Darrick E.
2017-08-01
We study the optical properties of an ensemble of two-level atoms coupled to a 1D photonic crystal waveguide (PCW), which mediates long-range coherent dipole-dipole interactions between the atoms. We show that the long-range interactions can dramatically alter the linear and nonlinear optical behavior, as compared to a typical atomic ensemble. In particular, in the linear regime, we find that the transmission spectrum contains multiple transmission dips, whose properties we characterize. Moreover, we show how the linear spectrum may be used to infer the number of atoms present in the system, constituting an important experimental tool in a regime where techniques for conventional ensembles break down. We also show that some of the transmission dips are associated with an effective ‘two-level’ resonance that forms due to the long-range interactions. In particular, under strong global driving and appropriate conditions, we find that the atomic ensemble is only capable of absorbing and emitting single collective excitations at a time. Our results are of direct relevance to atom-PCW experiments that should soon be realizable.
Oxidation Numbers and Their Limitations.
ERIC Educational Resources Information Center
Woolf, A. A.
1988-01-01
Reviews a method for determining oxidation numbers in covalent compounds and balancing mixed organic-inorganic or purely organic systems. Points out ambiguities presented when adjacent atoms have small or zero electronegativity differences. Presents other limitations that arise when using electronegativity values. (CW)
Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin
2011-01-14
The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.
Specific Non-Local Interactions Are Not Necessary for Recovering Native Protein Dynamics
Dasgupta, Bhaskar; Kasahara, Kota; Kamiya, Narutoshi; Nakamura, Haruki; Kinjo, Akira R.
2014-01-01
The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA). In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the ‘contact number diffusion’ model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics. PMID:24625758
Features of electronic structure of hypovalent lithides ALi/sub k/ and ALi/sub k+1//sup +/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimenko, N.M.; Mebel', A.M.; Charkin, O.P.
The features of the chemical bonding and the behavior of the original energies of the lithides ALi/sub k/ and ALi/sub K+1//sup +/ have been analyzed on the basis of nonempirical calculations in the MP3/(DZHD + P/sub A/) approximation. It has been found that the new A-Li bond appearing upon the addition of Li/sup +/ to Ali/sub k/ is formed with the participation of only the p/sub A/ AO's from the atom A. In contrast to the case of the hydrides AK/sub k/ and the fluorides AF/sub k/, in the case of the lithides ALi/sub k/ and ALi/sub k+1//sup +/, themore » lone pair of the atom A consists of its almost pure s/sub A/ AO, which maintains its spherical shape, is not active stereochemically, and practically does not participate in the bonding. The lithides ALi/sub k/ and Ali/sub k+1//sup +/ (such as CLi/sub 2/, Cli/sub 3//sup +/, NLi/sub 3/, NLi/sub 4//sup +/, OLi/sub 2/, OLi/sub 3//sup +/, Fli, Fli/sub 2//sup +/, etc.) may be classified as hypovalent compounds, in which the number of valence AO's of the atom A participating in the bonding is smaller than the number of atoms of Li directly bonded to the atom A. The bonding in them is delocalized over all the atoms comparing the molecule, and the two-center approach and Gillespie's rules are, in principle, not suitable.« less
Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D
2014-12-22
Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.
Use of Atomic Oxygen for the Determination of Document Alteration
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Klubnik, Larisa M.
2003-01-01
Atomic oxygen, which normally is found only the near Earth space environment, causes oxidation and erosion of polymers on spacecraft. The development of technology to prevent this degradation has required NASA to develop ground laboratory facilities that generate atomic oxygen. Atomic oxygen has also been found to be able to oxidize most types of ink from a variety of types of pens. The use of atomic oxygen to identify alteration of documents has been investigated and is reported. Results of testing indicates that for many types of ink, pen, and paper, identification of document alteration of pen and ink numbers and evidence of alteration can be made visible by exposing the questionable writing to atomic oxygen. Atomic oxygen provides discrimination because different inks may oxidize at different rates, the amount of time between delayed alteration may add to ink thickness at crossings, and the end of pen strokes tend to have much thicker ink deposits than the rest of the character. Examples and techniques of using atomic oxygen to identify document alteration indicate that the technology can, in many but not all cases, provide discrimination between original and altered documents.
Sarkar, A; Kerr, J B; Cairns, E J
2013-07-22
Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Colloquium: Laser probing of neutron-rich nuclei in light atoms
NASA Astrophysics Data System (ADS)
Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.
2013-10-01
The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
NASA Astrophysics Data System (ADS)
Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi
1992-06-01
Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.
Pauling, Linus
1989-01-01
Consideration of the relation between bond length and bond number and the average atomic volume for different ways of packing atoms leads to the conclusion that the average ligancy of atoms in a metal should increase when a phase change occurs on increasing the pressure. Minimum volume for each value of the ligancy results from triangular coordination polyhedra (with triangular faces), such as the icosahedron and the Friauf polyhedron. Electron transfer may permit atoms of an element to assume different ligancies. Application of these principles to Cs(IV) and Cs(V), which were previously assigned structures with ligancy 8 and 6, respectively, has led to the assignment to Cs(IV) of a primitive cubic unit cell with a = 16.11 Å and with about 122 atoms in the cube and to Cs(V) of a primitive cubic unit cell resembling that of Mg32(Al,Zn)49, with a = 16.97 Å and with 162 atoms in the cube. PMID:16578839
Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit
Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; ...
2015-10-09
Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation.more » γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.« less
Water-soluble conductive polymers
Aldissi, Mahmoud
1989-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, Mahmoud
1990-01-01
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Water-soluble conductive polymers
Aldissi, M.
1988-02-12
Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.
Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Whitehead, M.A.
1988-10-01
The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, andmore » Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.« less
Martinez, G T; Rosenauer, A; De Backer, A; Verbeeck, J; Van Aert, S
2014-02-01
High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. © 2013 Published by Elsevier B.V. All rights reserved.
Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase
2013-01-01
Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572
The DTIC Review: Volume 2, Number 4, Surviving Chemical and Biological Warfare
1996-12-01
CHROMATOGRAPHIC ANALYSIS, NUCLEAR MAGNETIC RESONANCE, INFRARED SPECTROSCOPY , ARMY RESEARCH, DEGRADATION, VERIFICATION, MASS SPECTROSCOPY , LIQUID... mycotoxins . Such materials are not attractive as weapons of mass destruction however, as large amounts are required to produce lethal effects. In...VERIFICATION, ATOMIC ABSORPTION SPECTROSCOPY , ATOMIC ABSORPTION. AL The DTIC Review Defense Technical Information Center AD-A285 242 AD-A283 754 EDGEWOOO
ERIC Educational Resources Information Center
Yang, Shui-Ping
2007-01-01
This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In…
ERIC Educational Resources Information Center
Klier, Kamil
2010-01-01
The understanding of electronic structure of atomic and molecular term states involved in spectroscopic transitions is aided by projecting combinations of micro-configurations to multi-electron states with "good" quantum numbers of angular momenta. In rare-earth (RE) compounds, atomic term labels are justifiably carried over to compounds, because…
Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto; ...
2017-06-14
The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto
The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less
Preciat Gonzalez, German A; El Assal, Lemmer R P; Noronha, Alberto; Thiele, Ines; Haraldsdóttir, Hulda S; Fleming, Ronan M T
2017-06-14
The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-03-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
Schneider, Nathanaëlle; Lincot, Daniel
2013-01-01
Summary This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned. PMID:24367743
Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique
2013-01-01
This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-06-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan
2018-05-01
In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.
Negative Differential Conductivity in an Interacting Quantum Gas.
Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Wimberger, Sandro; Ott, Herwig
2015-07-31
We report on the observation of negative differential conductivity (NDC) in a quantum transport device for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial difference in chemical potential at one site by local atom removal. The ensuing transport dynamics are governed by the interplay between the tunneling coupling, the interaction energy, and intrinsic collisions, which turn the coherent coupling into a hopping process. The resulting current-voltage characteristics exhibit NDC, for which we identify atom number-dependent tunneling as a new microscopic mechanism. Our study opens new ways for the future implementation and control of complex neutral atom quantum circuits.
Energy level diagrams for black hole orbits
NASA Astrophysics Data System (ADS)
Levin, Janna
2009-12-01
A spinning black hole with a much smaller black hole companion forms a fundamental gravitational system, like a colossal classical analog to an atom. In an appealing if imperfect analogy with atomic physics, this gravitational atom can be understood through a discrete spectrum of periodic orbits. Exploiting a correspondence between the set of periodic orbits and the set of rational numbers, we are able to construct periodic tables of orbits and energy level diagrams of the accessible states around black holes. We also present a closed-form expression for the rational q, thereby quantifying zoom-whirl behavior in terms of spin, energy and angular momentum. The black hole atom is not just a theoretical construct, but corresponds to extant astrophysical systems detectable by future gravitational wave observatories.
Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons
Gordon, John Howard
2014-09-09
A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.
Choosing a therapy electron accelerator target.
Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K
1979-01-01
Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.
NASA Astrophysics Data System (ADS)
Zou, Bin; Wang, Debby D.; Ma, Lichun; Chen, Lijiang; Yan, Hong
2016-05-01
Epidermal growth factor receptor (EGFR) mutation is a pathogenic factor of non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs), such as gefitinib, are widely used in NSCLC treatment. In this work, we investigated the relationship between the number of EGFR residues connected with gefitinib and the response level for each EGFR mutation type. Three-dimensional trimmed Delaunay triangulation was applied to construct connections between EGFR residues and gefitinib atoms. Through molecular dynamics (MD) simulations, we discovered that when the number of EGFR residues connected with gefitinib increases, the response level of the corresponding EGFR mutation tends to descend.
GAMMA PROPORTIONAL COUNTER CONTAINING HIGH Z GAS AND LOW Z MODERATOR
Fox, R.
1963-07-23
A gamma radiation counter employing a gas proportional counter is described. The radiation counter comprises a cylindrical gas proportional counter which contains a high atomic number gas and is surrounded by a low atomic number gamma radiation moderator material. At least one slit is provided in the moderator to allow accident gamma radiation to enter the moderator in the most favorable manner for moderation, and also to allow low energy gamma radiation to enter the counter without the necessity of passing through the moderator. This radiation counter is capable of detecting and measuring gamma radiation in the energy range of 0.5-5 Mev. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com; Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com
2016-05-06
Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi{sub 2}O{sub 3} + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ{sub m}) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z{sub eff}) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.
The New Element Berkelium (Atomic Number 97)
DOE R&D Accomplishments Database
Seaborg, G. T.; Thompson, S. G.; Ghiorso, A.
1950-04-26
An isotope of the element with atomic number 97 has been discovered as a product of the helium-ion bombardment of americium. The name berkelium, symbol Bk, is proposed for element 97. The chemical separation of element 97 from the target material and other reaction products was made by combinations of precipitation and ion exchange adsorption methods making use of its anticipated (III) and (IV) oxidation states and its position as a member of the actinide transition series. The distinctive chemical properties made use of in its separation and the equally distinctive decay properties of the particular isotope constitute the principal evidence for the new element.
NASA Astrophysics Data System (ADS)
Kore, Prashant S.; Pawar, Pravina P.
2014-05-01
The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.
Large-scale quantum transport calculations for electronic devices with over ten thousand atoms
NASA Astrophysics Data System (ADS)
Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry
The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.
NASA Astrophysics Data System (ADS)
Bell, Zane W.
Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.
NASA Astrophysics Data System (ADS)
Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.
2017-08-01
The problem of the codirectional Kerr coupler has been considered several times from different point of view. In the present paper we introduce the interaction between a two-level atom and the codirectional Kerr nonlinear coupler in terms of su (2 ) Lie algebra. Under certain conditions we have adjusted the Kerr coupler and consequently we have managed to handle the problem. The wave function is obtained by using the evolution operator where the Heisnberg equation of motion is invoked to get the constants of the motion. We note that the Kerr parameter χ as well as the quantum number j plays the role of controlling the atomic inversion behavior. Also the maximum entanglement occurs after a short period of time when χ = 0. On the other hand for the entropy and the variance squeezing we observe that there is exchange between the quadrature variances. Furthermore, the variation in the quantum number j as well as in the parameter χ leads to increase or decrease in the number of fluctuations. Finally we examined the second order correlation function where classical and nonclassical phenomena are observed.
Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111) Surface
Silkin, Igor V.; Koroteev, Yury M.; Echenique, Pedro M.; Chulkov, Evgueni V.
2017-01-01
The electronic structure of the Pt/Au(111) heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111) s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111) with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. The excess in the density of states has maximal magnitude in the case of one monolayer Pt adlayer and gradually reduces with increasing number of Pt atomic layers. The spin–orbit coupling produces strong modification of the energy dispersion of the electronic states generated by the Pt adlayer and gives rise to certain quantum states with a characteristic Dirac-cone shape. PMID:29232833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S.
2007-05-03
A general empirical formula was found for calculating lattice thermal expansion for compounds having their properties extended for compound groups having different mean ionicity as well as more than one type of cation atoms with that of different numbers of them such as I{sub 2}-IV-VI{sub 3} and I{sub 3}-V-VI{sub 4}. The difference in the valence electrons for cations and anions in the compound was used to correlate the deviations caused by the compound ionicity. The ionicity effects, which are due to their different numbers for their types, were also added to the correlation equation. In general, the lattice thermal expansionmore » for a compound semiconductor can be calculated from a relation containing melting point, mean atomic distance and number of valence electrons for the atoms forming the compound. The mean ionicity for the group compounds forming I{sub 2}-IV-VI{sub 3} was found to be 0.323 and 0.785 for the ternary group compounds of I{sub 3}-V-VI{sub 4}.« less
Filler, Guido; Felder, Sarah
2014-08-01
In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.
Exploration of the Tavis-Cummings Model with Multiple Qubits in Circuit QED
NASA Astrophysics Data System (ADS)
Fink, J. M.; Blais, A.; Wallraff, A.
2009-03-01
Superconducting qubits in coplanar waveguide resonators provide an unprecedentedly large dipole coupling strength to microwave frequency photons confined in an on-chip waveguide resonator [1]. In contrast to atoms in traditional cavity QED a controlled number of qubits remain at fixed positions with constant coupling to the cavity field at all times. Utilizing these properties we have performed measurements with up to three independently flux-tunable qubits to study cavity mediated multi-qubit interactions. By tuning the qubits in resonance with the cavity field individually, we demonstrate the square root of N scaling of the collective dipole coupling strength with the number of resonant atoms N as described by the Tavis-Cummings model. To our knowledge this is the first observation of this nonlinearity in a system in which the atom number can be changed one by one in a discrete fashion. In addition, the energies of both bright and dark coupled multi-qubit / photon states are well explained by the Tavis-Cummings model over a wide range of detunings. On resonance we obtain an equal superposition of a photon and a Dicke state with an excitation equally shared among the N qubits.[1] J. M. Fink et al. Nature 454, 315 (2008).
Mathematical model for Dengue with three states of infection
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2012-06-01
A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.
A Computational and Experimental Investigation of Shear Coaxial Jet Atomization
NASA Technical Reports Server (NTRS)
Ibrahim, Essam A.; Kenny, R. Jeremy; Walker, Nathan B.
2006-01-01
The instability and subsequent atomization of a viscous liquid jet emanated into a high-pressure gaseous surrounding is studied both computationally and experimentally. Liquid water issued into nitrogen gas at elevated pressures is used to simulate the flow conditions in a coaxial shear injector element relevant to liquid propellant rocket engines. The theoretical analysis is based on a simplified mathematical formulation of the continuity and momentum equations in their conservative form. Numerical solutions of the governing equations subject to appropriate initial and boundary conditions are obtained via a robust finite difference scheme. The computations yield real-time evolution and subsequent breakup characteristics of the liquid jet. The experimental investigation utilizes a digital imaging technique to measure resultant drop sizes. Data were collected for liquid Reynolds number between 2,500 and 25,000, aerodynamic Weber number range of 50-500 and ambient gas pressures from 150 to 1200 psia. Comparison of the model predictions and experimental data for drop sizes at gas pressures of 150 and 300 psia reveal satisfactory agreement particularly for lower values of investigated Weber number. The present model is intended as a component of a practical tool to facilitate design and optimization of coaxial shear atomizers.
Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie
2018-06-13
Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.
Observation of a barium xenon exciplex within a large argon cluster.
Briant, M; Gaveau, M-A; Mestdagh, J-M
2010-07-21
Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagos, M. J.; Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP; Autreto, P. A. S.
2015-03-07
We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfacesmore » that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.« less
NASA Astrophysics Data System (ADS)
Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.
2016-11-01
As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime.
Araújo, Michelle O; Krešić, Ivor; Kaiser, Robin; Guerin, William
2016-08-12
Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.
Big Bang Day: 5 Particles - 1. The Electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born.more » Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.« less
Growth of Ni nanoclusters on irradiated graphene: a molecular dynamics study.
Valencia, F J; Hernandez-Vazquez, E E; Bringa, E M; Moran-Lopez, J L; Rogan, J; Gonzalez, R I; Munoz, F
2018-04-23
We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.