Sample records for atomic oxygen durability

  1. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  2. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  3. Atomic Oxygen Durability Evaluation of Protected Polymers Using Thermal Energy Plasma Systems

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.; Stidham, Curtis R.; Gebauer, Linda; Lamoreaux, Cynthia M.

    1995-01-01

    The durability evaluation of protected polymers intended for use in low Earth orbit (LEO) has necessitated the use of large-area, high-fluence, atomic oxygen exposure systems. Two thermal energy atomic oxygen exposure systems which are frequently used for such evaluations are radio frequency (RF) plasma ashers and electron cyclotron resonance plasma sources. Plasma source testing practices such as ample preparation, effective fluence prediction, atomic oxygen flux determination, erosion measurement, operational considerations, and erosion yield measurements are presented. Issues which influence the prediction of in-space durability based on ground laboratory thermal energy plasma system testing are also addressed.

  4. Atomic Oxygen Durability Testing of an International Space Station Solar Array Validation Coupon

    NASA Technical Reports Server (NTRS)

    Forkapa, Mark J.; Stidham, Curtis; Banks, Bruce A.; Rutledge, Sharon K.; Ma, David H.; Sechkar, Edward A.

    1996-01-01

    An International Space Station solar array validation coupon was exposed in a directed atomic oxygen beam for space environment durability testing at the NASA Lewis Research Center. Exposure to atomic oxygen and intermittent tensioning of the solar array were conducted to verify the solar array#s durability to low Earth orbital atomic oxygen and to the docking threat of plume loading both of which are anticipated over its expected mission life of fifteen years. The validation coupon was mounted on a specially designed rotisserie. The rotisserie mounting enabled the solar and anti-solar facing side of the array to be exposed to directed atomic oxygen in a sweeping arrival process replicating space exposure. The rotisserie mounting also enabled tensioning, in order to examine the durability of the array and its hinge to simulated plume loads. Flash testing to verify electrical performance of the solar array was performed with a solar simulator before and after the exposure to atomic oxygen and tensile loading. Results of the flash testing indicated little or no degradation in the solar array#s performance. Photographs were also taken of the array before and after the durability testing and are included along with comparisons and discussions in this report. The amount of atomic oxygen damage appeared minor with the exception of a very few isolated defects. There were also no indications that the simulated plume loadings had weakened or damaged the array, even though there was some erosion of Kapton due to atomic oxygen attack. Based on the results of this testing, it is apparent that the International Space Station#s solar arrays should survive the low Earth orbital atomic oxygen environment and docking threats which are anticipated over its expected mission life.

  5. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Lenczewski, Mary; Demko, Rikako

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.

  6. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers

    NASA Astrophysics Data System (ADS)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.

    2009-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  7. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    NASA Technical Reports Server (NTRS)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  8. Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Banks, B. A.; Lenczewski, M.; Demko, R.

    2002-01-01

    Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.

  9. The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Dever, Therese M.; Quinn, William F.

    1990-01-01

    Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.

  10. Determination of atomic oxygen fluence using spectrophotometric analysis of infrared transparent witness coupons for long duration exposure tests

    NASA Technical Reports Server (NTRS)

    Podojil, Gregg M.; Jaworske, Donald A.

    1993-01-01

    Atomic oxygen degradation is one of several major threats to the durability of spaceborne systems in low Earth orbit. Ground-based simulations are conducted to learn how to minimize the adverse effects of atomic oxygen exposure. Assessing the fluence of atomic oxygen in test chambers such as a plasma asher over long periods of time is necessary for accurate determination of atomic oxygen exposure. Currently, an atomic oxygen susceptible organic material such as Kapton is placed next to samples as a witness coupon and its mass loss is monitored and used to determine the effective atomic oxygen fluence. However, degradation of the Kapton witness coupons occurs so rapidly in plasma ashers that for any long term test many witness coupons must be used sequentially in order to keep track of the fluence. This necessitates opening vacuum to substitute fresh coupons. A passive dosimetry technique was sought to monitor atomic oxygen exposure over longer periods without the need to open the plasma asher to the atmosphere. This paper investigates the use of spectrophotometric analysis of durable IR transparent witness coupons to measure atomic oxygen exposure for longer duration testing. The method considered would be conductive to making in situ measurements of atomic oxygen fluence.

  11. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  12. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    PubMed

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Snyder, Aaron; Miller, Sharon K.; Demko, Rikako

    2002-01-01

    Hydrocarbon based polymers that are exposed to atomic oxygen in low Earth orbit are slowly oxidized which results in recession of their surface. Atomic oxygen protective coatings have been developed which are both durable to atomic oxygen and effective in protecting underlying polymers. However, scratches, pin window defects, polymer surface roughness and protective coating layer configuration can result in erosion and potential failure of protected thin polymer films even though the coatings are themselves atomic oxygen durable. This paper will present issues that cause protective coatings to become ineffective in some cases yet effective in others due to the details of their specific application. Observed in-space examples of failed and successfully protected materials using identical protective thin films will be discussed and analyzed. Proposed approaches to prevent the failures that have been observed will also be presented.

  14. Monte Carlo Computational Modeling of Atomic Oxygen Interactions

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.

    2017-01-01

    Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model which has the capability to tune the interactions of how the atomic oxygen reacts, scatters, or recombines on polymer or nonreactive surfaces. In addition to the specification of atomic oxygen arrival details, a total of 15 atomic oxygen interaction parameters have been identified as necessary to properly simulate observed interactions and resulting polymer erosion that have been observed in LEO. The tuning of the Monte Carlo model has been accomplished by adjusting interaction parameters so the erosion patterns produced by the model match those from several actual LEO space experiments. Surface texturing in LEO can also be predicted by the model. Such comparison of space tests with ground laboratory experiments have enabled confidence in ground laboratory lifetime prediction of protected polymers. Results of Monte Carlo tuning, examples of surface texturing and undercutting erosion prediction, and several examples of how the model can be used to predict other LEO and Mars orbital space results are presented.

  15. Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.

    1996-01-01

    Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an impact site caused negligible changes in reflectance. In all cases oxidation was found to be confined to the vicinity of the seams, impact sites, edges or defect sites. Asher to in-space atomic oxygen correlation issues will be addressed.

  16. Low Earth Orbital Atomic Oxygen Interactions With Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; deGroh, Kim K.

    2004-01-01

    Atomic oxygen is formed in the low Earth orbital environment (LEO) by photo dissociation of diatomic oxygen by short wavelength (< 243 nm) solar radiation which has sufficient energy to break the 5.12 eV O2 diatomic bond in an environment where the mean free path is sufficiently long ( 108 meters) that the probability of reassociation or the formation of ozone (O3) is small. As a consequence, between the altitudes of 180 and 650 km, atomic oxygen is the most abundant species. Spacecraft impact the atomic oxygen resident in LEO with sufficient energy to break hydrocarbon polymer bonds, causing oxidation and thinning of the polymers due to loss of volatile oxidation products. Mitigation techniques, such as the development of materials with improved durability to atomic oxygen attack, as well as atomic oxygen protective coatings, have been employed with varying degrees of success to improve durability of polymers in the LEO environment. Atomic oxygen can also oxidize silicones and silicone contamination to produce non-volatile silica deposits. Such contaminants are present on most LEO missions and can be a threat to performance of optical surfaces. The LEO atomic oxygen environment, its interactions with materials, results of space testing, computational modeling, mitigation techniques, and ground laboratory simulation procedures and issues are presented.

  17. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  18. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  19. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    PubMed Central

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  20. Oxygen reduction reaction activity and structural stability of Pt-Au nanoparticles prepared by arc-plasma deposition.

    PubMed

    Takahashi, Shuntaro; Chiba, Hiroshi; Kato, Takashi; Endo, Shota; Hayashi, Takehiro; Todoroki, Naoto; Wadayama, Toshimasa

    2015-07-28

    The oxygen reduction reaction (ORR) activity and durability of various Au(x)/Pt100 nanoparticles (where x is the atomic ratio of Au against Pt) are evaluated herein. The samples were fabricated on a highly-oriented pyrolytic graphite substrate at 773 K through sequential arc-plasma depositions of Pt and Au. The electrochemical hydrogen adsorption charges (electrochemical surface area), particularly the characteristic currents caused by the corner and edge sites of the Pt nanoparticles, decrease with increasing Au atomic ratio (x). In contrast, the specific ORR activities of the Au(x)/Pt100 samples were dependent on the atomic ratios of Pt and Au: the Au28/Pt100 sample showed the highest specific activity among all the investigated samples (x = 0-42). As for ORR durability evaluated by applying potential cycles between 0.6 and 1.0 V in oxygen-saturated 0.1 M HClO4, Au28/Pt100 was the most durable sample against the electrochemical potential cycles. The results clearly showed that the Au atoms located at coordinatively-unsaturated sites, e.g. at the corners or edges of the Pt nanoparticles, can improve the ORR durability by suppressing unsaturated-site-induced degradation of the Pt nanoparticles.

  1. Transparent conducting thin films for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  2. Transparent conducting thin films for spacecraft applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Davis, M.E.; Malave-Sanabria, T.; Hambourger, P.

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10[sup 2] to 10[sup 11] ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10[sup 7] to 10[sup 11] ohms/square with transmittances from 84 to 91 percent. It was found thatmore » in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.« less

  3. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  4. Synergistic effects of ultraviolet radiation, thermal cycling, and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low Earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine there durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  5. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less

  6. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    DOE PAGES

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; ...

    2017-07-24

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm –2 at 80 °C with a low platinum loading of 0.09 mgPt cm –2, corresponding to a platinum utilization of 0.13 gPt kWmore » –1 in the fuel cell. Good fuel cell durability is also observed. As a result, theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.« less

  7. Atomic Oxygen Durability Evaluation of a UV Curable Ceramer Protective Coating

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Karniotis, Christina A.; Dworak, David; Soucek, Mark

    2004-01-01

    The exposure of most silicones to atomic oxygen in low Earth orbit (LEO) results in the oxidative loss of methyl groups with a gradual conversion to oxides of silicon. Typically there is surface shrinkage of oxidized silicone protective coatings which leads to cracking of the partially oxidized brittle surface. Such cracks widen and branch crack with continued atomic oxygen exposure ultimately allowing atomic oxygen to reach any hydrocarbon polymers under the silicone coating. A need exists for a paintable silicone coating that is free from such surface cracking and can be effectively used for protection of polymers and composites in LEO. A new type of silicone based protective coating holding such potential was evaluated for atomic oxygen durability in an RF atomic oxygen plasma exposure facility. The coating consisted of a UV curable inorganic/organic hybrid coating, known as a ceramer, which was fabricated using a methyl substituted polysiloxane binder and nanophase silicon-oxo-clusters derived from sol-gel precursors. The polysiloxane was functionalized with a cycloaliphatic epoxide in order to be cured at ambient temperature via a cationic UV induced curing mechanism. Alkoxy silane groups were also grafted onto the polysiloxane chain, through hydrosilation, in order to form a network with the incorporated silicon-oxo-clusters. The prepared polymer was characterized by H-1 and Si-29 NMR, FT-IR, and electrospray ionization mass spectroscopy. The paper will present the results of atomic oxygen protection ability of thin ceramer coatings on Kapton H as evaluated over a range of atomic oxygen fluence levels.

  8. Protocol for Atomic Oxygen Testing of Materials in Ground-Based Facilities. No. 2

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.

    1995-01-01

    A second version of standard guidelines is proposed for improving materials testing in ground-based atomic oxygen environments for the purpose of predicting the durability of the tested materials in low Earth orbit (LEO). Accompanying these guidelines are background information and notes about testing. Both the guidelines and the additional information are intended to aid users who wish to evaluate the potential hazard of atomic oxygen in LEO to a candidate space component without actually flying the component in space, and to provide a framework for more consistent atomic oxygen testing in the future.

  9. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  10. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.

  11. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  12. Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  13. Environmental Durability Issues for Solar Power Systems in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.

    1994-01-01

    Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.

  14. Comparison of Atomic Oxygen Erosion Yields of Materials at Various Energy and Impact Angles

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Waters, Deborah L.; Thorson, Stephen D.; deGroh, Kim, K.; Snyder, Aaron; Miller, Sharon

    2006-01-01

    The atomic oxygen erosion yields of various materials, measured in volume of material oxidized per incident atomic oxygen atom, are compared to the commonly accepted standard of Kapton H (DuPont) polyimide. The ratios of the erosion yield of Kapton H to the erosion yield of various materials are not consistent at different atomic oxygen energies. Although it is most convenient to use isotropic thermal energy RF plasma ashers to assess atomic oxygen durability, the results can be misleading because the relative erosion rates at thermal energies are not necessarily the same as low Earth orbital (LEO) energies of approx.4.5 eV. An experimental investigation of the relative atomic oxygen erosion yields of a wide variety of polymers and carbon was conducted using isotropic thermal energy (approx.0.1 eV) and hyperthermal energy (approx.70 eV) atomic oxygen using an RF plasma asher and an end Hall ion source. For hyperthermal energies, the atomic oxygen erosion yields relative to normal incident Kapton H were compared for sweeping atomic oxygen arrival with that of normal incidence arrival. The results of isotropic thermal energy, normal incident, and sweeping incident atomic oxygen are also compared with measured or projected LEO values.

  15. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    PubMed

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  16. Atomic oxygen durability of solar concentrator materials for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Terlep, Judith A.; Dever, Therese M.

    1990-01-01

    The findings are reviewed of atomic oxygen exposure testing of candidate solar concentrator materials containing SiO2 and Al2O3 protective coatings for use on Space Station Freedom solar dynamic power modules. Both continuous and iterative atomic oxygen exposure tests were conducted. Iterative air plasma ashing resulted in larger specular reflectance decreases and solar absorptance increases than continuous ashing to the same fluence, and appears to provide a more severe environment than the continuous atomic oxygen exposure that would occur in the low Earth orbit environment. First generation concentrator fabrication techniques produced surface defects including scratches, macroscopic bumps, dendritic regions, porosity, haziness, and pin hole defects. Several of these defects appear to be preferential sites for atomic oxygen attack leading to erosive undercutting. Extensive undercutting and flaking of reflective and protective coatings were found to be promoted through an undercutting tearing propagation process. Atomic oxygen erosion processes and effects on optical performance is presented.

  17. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  18. Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon; DiFilippo, Frank J.

    1996-01-01

    The probability of atomic oxygen reacting with polymeric materials is orders of magnitude lower at thermal energies (greater than O.1 eV) than at orbital impact energies (4.5 eV). As a result, absolute atomic oxygen fluxes at thermal energies must be orders of magnitude higher than orbital energy fluxes, to produce the same effective fluxes (or same oxidation rates) for polymers. These differences can cause highly pessimistic durability predictions for protected polymers and polymers which develop protective metal oxide surfaces as a result of oxidation if one does not make suitable calibrations. A comparison was conducted of undercut cavities below defect sites in protected polyimide Kapton samples flown on the Long Duration Exposure Facility (LDEF) with similar samples exposed in thermal energy oxygen plasma. The results of this comparison were used to quantify predicted material loss in space based on material loss in ground laboratory thermal energy plasma testing. A microindent hardness comparison of surface oxidation of a silicone flown on the Environmental Oxygen Interaction with Materials-III (EOIM-III) experiment with samples exposed in thermal energy plasmas was similarly used to calibrate the rate of oxidation of silicone in space relative to samples in thermal energy plasmas exposed to polyimide Kapton effective fluences.

  19. Low earth orbit durability of protected silicone for refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    McCollum, Timothy A.; deGroh, Kim K.

    1995-01-01

    Photovoltaic power systems with novel refractive silicone solar concentrators are being developed for use in low Earth orbit (LEO). Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation, these lenses are coated with a multilayer metal oxide protective coating. The objective of this work was to evaluate the effects of atomic oxygen and thermal exposures on multilayer coated silicone. Samples were exposed to high-fluence ground-laboratory and low-fluence in-space atomic oxygen. Ground testing resulted in decreases in both total and specular transmittance, while in-space exposure resulted in only small decreases in specular transmittance. A contamination film, attributed to exposed silicone at coating crack sites, was found to cause transmittance decreases during ground testing. Propagation of coating cracks was found to be the result of sample heating during exposure. The potential for silicone exposure, with the resulting degradation of optical properties from silicone contamination, indicates that this multilayer coated silicone is not durable for LEO space applications where thermal exposures will cause coating crack development and propagation.

  20. Sensitive Technique Developed Using Atomic Force Microscopy to Measure the Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim D.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Fine, Elizabeth; Marx, Laura

    2001-01-01

    A recession measurement technique has been developed at the NASA Glenn Research Center to determine the atomic oxygen durability of polymers exposed to the space environment for short durations. Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene, DuPont) are commonly used in spacecraft because of their desirable properties, such as flexibility, low density, and in the case of FEP, low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low- Earth-orbit environment are exposed to energetic atomic oxygen, resulting in erosion and potential structural loss. It is, therefore, important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data are rare and very costly, short-term exposures, such as on the space shuttles, are often relied on for atomic oxygen erosion determination. The most common technique for determining E is through mass-loss measurements. For limited-duration exposure experiments, such as shuttle flight experiments, the atomic oxygen fluence is often so small that mass-loss measurements are not sensitive enough. Therefore, a recession measurement technique has been developed at Glenn to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences.

  1. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.

    PubMed

    Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael

    2015-06-10

    In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.

  2. Low Earth orbital atomic oxygen and ultraviolet radiation effects on polymers

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.

    1991-01-01

    Because atomic oxygen and solar ultraviolet radiation present in the low earth orbital (LEO) environment can alter the chemistry of polymers resulting in degradation, their effects and mechanisms of degradation must be determined in order to determine the long term durability of polymeric surfaces to be exposed on missions such as Space Station Freedom. The effects of atomic oxygen on polymers which contain protective coatings must also be explored, since unique damage mechanisms can occur in areas where the protective coatings has failed. Mechanisms can be determined by utilizing results from previous LEO missions, by performing ground based LEO simulation tests and analysis, and by carrying out focussed space experiments. A survey is presented of the interactions and possible damage mechanisms for environmental atomic oxygen and UV radiation exposure of polymers commonly used in LEO.

  3. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  4. Atomic Oxygen Treatment and Its Effect on a Variety of Artist's Media

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.; Waters, Deborah L.

    2005-01-01

    Atomic oxygen treatment has been investigated as an unconventional option for art restoration where conventional methods have not been effective. Exposure of surfaces to atomic oxygen was first performed to investigate the durability of materials in the low Earth orbit environment of space. The use of the ground based environmental simulation chambers, developed for atomic oxygen exposure testing, has been investigated in collaboration with conservators at a variety of institutions, as a method to clean the surfaces of works of art. The atomic oxygen treatment technique has been evaluated as a method to remove soot and char from the surface of oil paint (both varnished and unvarnished), watercolors, acrylic paint, and fabric as well as the removal of graffiti and other marks from surfaces which are too porous to lend themselves to conventional solvent removal techniques. This paper will discuss the treatment of these surfaces giving an example of each and a discussion of the treatment results.

  5. Vacuum ultraviolet radiation and thermal cycling effects on atomic oxygen protective photovoltaic array blanket materials

    NASA Technical Reports Server (NTRS)

    Brady, J.; Banks, B.

    1990-01-01

    The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.

  6. Low earth orbit durability evaluation of Haynes 188 solar receiver material

    NASA Technical Reports Server (NTRS)

    De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.

    1992-01-01

    The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.

  7. Proceedings of the NASA Workshop on Atomic Oxygen Effects. [low earth orbital environment

    NASA Technical Reports Server (NTRS)

    Brinza, David E. (Editor)

    1987-01-01

    A workshop was held to address the scientific issues concerning the effects of atomic oxygen on materials in the low Earth orbital (LEO) environment. The program included 18 invited speakers plus contributed posters covering topics such as LEO spaceflight experiments, interaction mechanisms, and atomic oxygen source development. Discussion sessions were also held to organize a test program to evaluate atomic oxygen exposure facilities. The key issues raised in the workshop were: (1) the need to develop a reliable predictive model of the effects of long-term exposure of materials to the LEO environment; (2) the ability of ground-based exposure facilities to provide useful data for development of durable materials; and (3) accurate determination of the composition of the LEO environment. These proceedings include the invited papers, the abstracts for the contributed posters, and an account of the test program discussion sessions.

  8. Design and demonstration of a system for the deposition of atomic-oxygen durable coatings for reflective solar dynamic power system concentrators

    NASA Technical Reports Server (NTRS)

    Mcclure, Donald J.

    1988-01-01

    A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.

  9. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming

    2017-12-01

    A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.

  10. Atomic oxygen effects on materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.; Merrow, James E.

    1989-01-01

    Understanding of the basic processes of atomic oxygen interaction is currently at a very elementary level. However, measurement of erosion yields, surface morphology, and optical properties for low fluences have brought about much progress in the past decade. Understanding the mechanisms and those factors that are important for proper simulation of low Earth orbit is at a much lower level of understanding. The ability to use laboratory simulations with confidence to quantifiably address the functional performance and durability of materials in low Earth orbit will be necessary to assure long-term survivability to the natural space environment.

  11. Low Earth orbit durability evaluation of protected silicone for advanced refractive photovoltaic concentrator arrays

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Mccollum, Timothy A.

    1994-01-01

    The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.

  12. A technique for synergistic atomic oxygen and vacuum ultraviolet radiation durability evaluation of materials for use in LEO

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.

    1996-01-01

    Material erosion data collected during flight experiments such as the Environmental Oxygen Interaction with Materials (EOIM)-3 and the Long Duration Exposure Facility (LDEF) have raised questions as to the sensitivity of material erosion to levels of atomic oxygen exposure and vacuum ultraviolet (VUV) radiation. The erosion sensitivity of some materials such as FEP Teflon used as a thermal control material on satellites in low Earth orbit (LEO), is particularly important but difficult to determine. This is in large part due to the inability to hold all but one exposure parameter constant during a flight experiment. This is also difficult to perform in a ground based facility, because often the variation of the level of atomic oxygen or VUV radiation also results in a change in the level of the other parameter. A facility has been developed which allows each parameter to be changed almost independently and offer broad area exposure. The resulting samples can be made large enough for mechanical testing. The facility uses an electron cyclotron resonance plasma source to provide the atomic oxygen. A series of glass plates is used to focus the atomic oxygen while filtering the VUV radiation from the plasma source. After filtering, atomic oxygen effective flux levels can still be measured which are as high as 7 x 10(exp 15) atoms/cm(exp 2)-sec which is adequate for accelerated testing. VUV radiation levels after filtering can be as low as 0.3 suns. Additional VUV suns can be added with the use of deuterium lamps which allow the VUV level to be changed while keeping the flux of atomic oxygen constant. This paper discusses the facility, and results from exposure of Kapton and FEP at pre-determined atomic oxygen flux and VUV sun levels.

  13. The survivability of large space-borne reflectors under atomic oxygen and micrometeoroid impact

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1987-01-01

    Solar dynamic power system mirrors for use on space station and other spacecraft flown in low Earth orbit (LEO) are exposed to the harshness of the LEO environment. Both atomic oxygen and micrometeoroids/space debris can degrade the performance of such mirrors. Protective coatings will be required to protect oxidizable reflecting media, such as silver and aluminum, from atomic oxygen attack. Several protective coating materials have been identified as good candidates for use in this application. The durability of these coating/mirror systems after pinhole defects have been inflicted during their fabrication and deployment or through micrometeoroid/space debris impact once on-orbit is of concern. Studies of the effect of an oxygen plasma environment on protected mirror surfaces with intentionally induced pinhole defects have been conducted at NASA Lewis and are reviewed. It has been found that oxidation of the reflective layer and/or the substrate in areas adjacent to a pinhole defect, but not directly exposed by the pinhole, can occur.

  14. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  15. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C

    DOE PAGES

    Hu, J.; Wu, L.; Kuttiyiel, K.; ...

    2016-06-30

    We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those ofmore » commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.« less

  16. International Test Program for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2001-01-01

    The components and materials of spacecraft in low Earth orbit can degrade in thermal and optical performance through interaction with atomic oxygen and vacuum ultraviolet (VUV) radiation, which are predominant in low Earth orbit. Because of the importance of low Earth orbit durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests at the NASA Glenn Research Center consisted of exposure of samples representing a variety of thermal control paints, multilayer insulation materials, and Sun sensors that have been used in space. Materials donated from various international sources were tested alongside materials whose performance is well known, such as Teflon FEP, Kapton H, or Z-93-P white paint. The optical, thermal, or mass loss data generated during the tests were then provided to the participating material suppliers. Data were not published unless the participant donating the material consented to publication. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects so that they can improve their predictions of spacecraft performance.

  17. Materials International Space Station Experiment (MISSE): Overview, Accomplishments and Future Needs

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Pippin, Gary; Jenkins, Philip P.; Walters, Robert J.; Thibeault, Sheila A.; Palusinski, Iwona; Lorentzen, Justin R.

    2014-01-01

    Materials and devices used on the exterior of spacecraft in low Earth orbit (LEO) are subjected to environmental threats that can cause degradation in material properties, possibly threatening spacecraft mission success. These threats include: atomic oxygen (AO), ultraviolet and x-ray radiation, charged particle radiation, temperature extremes and thermal cycling, micrometeoroid and debris impacts, and contamination. Space environmental threats vary greatly based on spacecraft materials, thicknesses and stress levels, and the mission environment and duration. For more than a decade the Materials International Space Station Experiment (MISSE) has enabled the study of the long duration environmental durability of spacecraft materials in the LEO environment. The overall objective of MISSE is to test the stability and durability of materials and devices in the space environment in order to gain valuable knowledge on the performance of materials in space, as well as to enable lifetime predictions of new materials that may be used in future space flight. MISSE is a series of materials flight experiments, which are attached to the exterior of the International Space Station (ISS). Individual experiments were loaded onto suitcase-like trays, called Passive Experiment Containers (PECs). The PECs were transported to the ISS in the Space Shuttle cargo bay and attached to, and removed from, the ISS during extravehicular activities (EVAs). The PECs were retrieved after one or more years of space exposure and returned to Earth enabling post-flight experiment evaluation. MISSE is a multi-organization project with participants from the National Aeronautics and Space Administration (NASA), the Department of Defense (DoD), industry and academia. MISSE has provided a platform for environmental durability studies for thousands of samples and numerous devices, and it has produced many tangible impacts. Ten PECs (and one smaller tray) have been flown, representing MISSE 1 through MISSE 8, yielding long-duration space environmental performance and durability data that enable material validation, processing recertification and space qualification; improved predictions of materials and component lifetimes in space; model verification and development; and correlation factors between space-exposure and ground-facilities enabling more accurate in-space performance predictions based on ground-laboratory testing. A few of the many experiment results and observations, and their impacts, are provided. Those highlighted include examples on improved understanding of atomic oxygen scattering mechanisms, LEO coating durability results, and polymer erosion yields and their impacts on spacecraft design. The MISSE 2 Atomic Oxygen Scattering Chamber Experiment discovered that the peak flux of scattered AO was determined to be 45 deg from normal incidence, not the model predicted cosine dependence. In addition, the erosion yield (E(sub y)) of Kapton H for AO scattered off oxidized-Al is 22% of the E(sub y) of direct AO impingement. These results were used to help determine the degradation mechanism of a cesium iodide detector within the Hubble Space Telescope Cosmic Origins Spectrograph Experiment. The MISSE 6 Indium Tin Oxide (ITO) Degradation Experiment measured surface electrical resistance of ram and wake ITO coated samples. The data confirmed that ITO is a stable AO protective coating, and the results validated the durability of ITO conductive coatings for solar arrays for the Atmosphere-Space Transition 2 Explorer program. The MISSE 2, 6 and 7 Polymer Experiments have provided LEO AO Ey data on over 120 polymer and composites samples. The flight E(sub y) values were found to range from 3.05 x 10(exp -26) cu cm/atom for the AO resistant polymer CORIN to 9.14 x 10(exp -26) cu cm/atom for polyoxymethylene (POM). In addition, flying the same polymers on different missions has advanced the understanding of the AO E(sub y) dependency on solar exposure for polymers containing fluorine. The MISSE polymer results are highly requested and have impacted spacecraft design for WorldView-2 & -3, the Global Precipitation Measurement-Microwave Imager, and other spacecraft. The flight data has enabled the development of an Atomic Oxygen Erosion Predictive Tool that allows the erosion prediction of new and non-flown polymers. The data has also been used to develop a new NASA Technical Standards Handbook "Spacecraft Polymers Atomic Oxygen Durability Handbook." Many intangible benefits have also been derived from MISSE. For example, over 40 students have collaborated on Glenn's MISSE experiments, which have resulted in greater than $80K in student scholarships and awards in national and international science fairs. Students have also given presentations and won poster competition awards at international space conferences.

  18. MISSE Results Used for RF Plasma Ground Testing-To-Space-Exposure Correlation for Coated Kapton

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.; Tollis, Greg

    2008-01-01

    The ability to predict the durability of materials in the low Earth orbit (LEO) environment by exposing them in ground-based facilities is important because one can achieve test results sooner, expose more types of materials, and do it much more cost effectively than to test them in flight. However, flight experiments to determine the durability of groups or classes of materials that behave similarly are needed in order to provide correlations of how much time in ground-based facilities represents certain durations in LEO for the material type of interest. An experiment was designed and flown on the Materials International Space Station Experiment (MISSE) 2 (3.95 yr in LEO) and MISSE 4 (1.04 yr in LEO) in order to develop this type of correlation between ground-based RF plasma exposure and LEO exposure for coated Kapton. The experiment consisted of a sample of Kapton H (DuPont) polyimide coated with 1300 of silicon dioxide by Sheldahl, Inc. The samples were exposed to atomic oxygen in a radio frequency (RF) generated atomic oxygen plasma. Mass change was measured for the samples and then the same samples were exposed in flight on MISSE and the mass change was again recorded post-flight. After documentation, the samples were exposed again in the ground-based RF plasma in order to determine if the erosion would be the same as it had been in the same facility pre-flight which would indicate whether or not the sample had been damaged during flight and if the defects on the surface were those that were there preflight. The slopes of the mass change versus fluence plots were then used to develop a correlation factor that can be used to help predict the durability of coated Kapton in ground-based isotropic atomic oxygen plasma systems. This paper describes the experiment and presents the correlation factor results.

  19. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  20. The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Hotes, Deborah L.; Paulsen, Phillip E.

    1989-01-01

    Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.

  1. Comparison of High-Performance Fiber Materials Properties in Simulated and Actual Space Environments

    NASA Technical Reports Server (NTRS)

    Finckernor, M. M.

    2017-01-01

    A variety of high-performance fibers, including Kevlar, Nomex, Vectran, and Spectra, have been tested for durability in the space environment, mostly the low Earth orbital environment. These materials have been tested in yarn, tether/cable, and fabric forms. Some material samples were tested in a simulated space environment, such as the Atomic Oxygen Beam Facility and solar simulators in the laboratory. Other samples were flown on the International Space Station as part of the Materials on International Space Station Experiment. Mass loss due to atomic oxygen erosion and optical property changes due to ultraviolet radiation degradation are given. Tensile test results are also presented, including where moisture loss in a vacuum had an impact on tensile strength.

  2. Atomic oxygen durability evaluation of the flexible batten for the photovoltaic array mast on Space Station

    NASA Technical Reports Server (NTRS)

    Stidham, Curtis R.; Rutledge, Sharon K.; Sechkar, Edward A.; Flaherty, David S.; Roig, David M.; Edwards, Jonathan L.

    1994-01-01

    A test program was conducted at the National Aeronautics and Space Administration's Lewis Research Center (LeRC) to evaluate the long term low Earth orbital (LEO) atomic oxygen (AO) durability of a flexible (fiberglass-epoxy composite) batten. The flexible batten is a component used to provide structural rigidity in the photovoltaic array mast on Space Station. The mast is used to support and articulate the photovoltaic array, therefore, the flexible batten must be preloaded for the 15 year lifetime of an array blanket. Development hardware and composite materials were evaluated in ground testing facilities for AO durability and dynamic retraction-deployment cyclic loading representative of expected full life in-space application. The CV1144 silicone (AO protective) coating was determined to provide adequate protection against AO degradation of the composite material and provided fiber containment, thus the structural integrity of the flexible batten was maintained. Both silicone coated and uncoated flexible battens maintained load carrying capabilities. Results of the testing did indicate that the CV1144 silicone protective coating was oxidized by AO reactions to form a brittle glassy (SiO2) skin that formed cracking patterns on all sides of the coated samples. The cracking was observed in samples that were mechanically stressed as well as samples in non-stressed conditions. The oxidized silicon was observed to randomly spall in small localized areas, on the flexible battens that underwent retraction-deployment cycling. Some darkening of the silicon, attributed to vacuum ultraviolet (VUV) radiation, was observed.

  3. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction

    DOE PAGES

    Tian, Xinlong; Adzic, Radoslav R.; Luo, Junming; ...

    2016-02-10

    Here, the main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles ofmore » titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst’s outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.« less

  4. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  5. Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Xie, Shuifen; Choi, Sang -Il; Lu, Ning; ...

    2014-05-05

    Here, an effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the depositedmore » Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@Pt nL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt 2–3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt 1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.« less

  6. Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction.

    PubMed

    Peera, S Gouse; Arunchander, A; Sahu, A K

    2016-08-14

    Nitrogen and fluorine co-doped graphite nanofibers (N/F-GNF) and their cumulative effect with Fe and Co have been developed as an alternative non-precious metal catalyst for efficient oxygen reduction reaction (ORR) in acidic media. The synergistic effect between the doped hetero atoms and the co-ordinated Fe and Co towards ORR activity and durability of the catalyst is deeply investigated. A high ORR onset potential comparable with commercial Pt/C catalyst is observed with the Fe-Co/NF-GNF catalyst, which indicates that this catalyst is a potential alternative to Pt/C. A fivefold increase in mass activity is achieved by the Fe-Co/NF-GNF catalyst compared to the simple N/F-GNF catalyst, which endorses the significant role of transition metal atoms in enhancing ORR activity. The advanced Fe-Co/NF-GNF catalyst also exhibits complete tolerance to CH3OH and CO. The Fe-Co/NF-GNF catalyst also exhibits excellent durability towards the ORR with only a 10 mV negative shift in its half wave potential after a 10 000 repeated potential cycling test, whereas in the case of a commercial Pt/C catalyst there was an ∼110 mV negative shift under similar environmental conditions. More stringent corrosive test cycles were also performed by maintaining the cell as high as 1.4 V with a later decrease to 0.6 V vs. RHE for 300 cycles, which showed the excellent durability of the Fe-Co/NF-GNF catalyst in comparison with the Pt/C catalyst. XPS analysis of the Fe-Co/NF-GNF catalyst presents the ORR active chemical states of N (pyridinic-N and graphitic-N) and F (semi-ionic-F) and the co-ordinated sites of Fe and Co species with the dopants. The excellent performance and durability of the Fe-Co/NF-GNF catalyst is due to the synergistic effect between the hetero atoms dopants (N and F) and strong co-ordinating bonds of M-N-C, which protect the graphene layers around the metallic species and greatly mitigates the leaching of Co and Fe during the long term cycling test. The high activity and long term durability of the Fe-Co/NF-GNF catalyst make it a promising ORR electrocatalyst for the fuel cell cathode reaction.

  7. International Low-Earth-Orbit Spacecraft Materials Test Program Initiated for Better Prediction of Durability and Performance

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1999-01-01

    Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.

  8. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  9. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable error in the erosion yield when obtained by the mass loss and recession depth techniques has been compared. The recession depth technique is planned to be used to determine the erosion yield of 42 different polymers in the shuttle flight experiment PEACE (Polymer Erosion And Contamination Experiment) planned to fly in 2002 or 2003.

  10. Liquid phase deposition of a space-durable, antistatic SnO₂ coating on Kapton.

    PubMed

    Gotlib-Vainstein, Katya; Gouzman, Irina; Girshevitz, Olga; Bolker, Asaf; Atar, Nurit; Grossman, Eitan; Sukenik, Chaim N

    2015-02-18

    Polyimides are widely used in thermal blankets covering the external surfaces of spacecrafts due to their space durability and their thermo-optical properties. However, they are susceptible to atomic oxygen (AO) erosion, the main hazard of low Earth orbit (LEO), and to electrical charging. This work demonstrates that liquid phase deposition (LPD) of 100 nm of tin oxide creates a protective coating on Kapton polyimide that has good adherence and is effective in preventing AO-induced surface erosion and in reducing electrical charging. The as-deposited tin oxide induces no significant changes in the original thermo-optical properties of the polymer and is effective in preventing electrostatic discharge (ESD). The durability of the oxide coating under AO attack was studied using oxygen RF plasma. The AO exposure did not result in any significant changes in surface morphology, thermo-optical, mechanical, and electrical properties of the tin oxide-coated Kapton. The erosion yield of tin oxide-coated Kapton was negligible after exposure to 6.4 × 10(20) O atoms·cm(-2) of LEO equivalent AO fluence, indicating a complete protection of Kapton by the LPD deposited coating. Moreover, the tin oxide coating is flexible enough so that its electrical conductivity stays within the desired range of antistatic materials despite mechanical manipulations. The advantages of liquid phase deposited oxides in terms of their not being line of site limited are well established. We now extend these advantages to coatings that reduce electrostatic discharge while still providing a high level of protection from AO erosion.

  11. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE PAGES

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  12. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    NASA Astrophysics Data System (ADS)

    Guo, Aobo; Ashmead, Claire C.; de Groh, Kim K.; Sechkar, Edward A.

    When exposed to low Earth orbit (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and interaction with atomic oxygen (AO). Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical properties deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cm3/atom) of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon® fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 × 10-24 cm3/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 × 10-24 cm3/atom. The Ey of the pristine samples was 1.6 to 1.7 × 10-24 cm3/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  13. Effect of Solar Exposure on the Atomic Oxygen Erosion of Hubble Space Telescope Aluminized-Teflon Thermal Shields

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Ashmead, Claire C.; deGroh, Kim K.

    2012-01-01

    When exposed to low Earth orbital (LEO) environment, external spacecraft materials degrade due to radiation, thermal cycling, micrometeoroid and debris impacts, and atomic oxygen (AO) interaction. Collisions between AO and spacecraft can result in oxidation of external spacecraft surface materials, which can lead to erosion and severe structural and/or optical property deterioration. It is therefore essential to understand the AO erosion yield (Ey), the volume loss per incident oxygen atom (cu cm/atom), of polymers to assure durability of spacecraft materials. The objective of this study was to determine whether solar radiation exposure can increase the rate of AO erosion of polymers in LEO. The material studied was a section of aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) thermal shield exposed to space on the Hubble Space Telescope (HST) for 8.25 years. Retrieved samples were sectioned from the circular thermal shield and exposed to ground laboratory thermal energy AO. The results indicate that the average Ey of the solar facing HST Al-FEP was 1.9 10(exp -24)cu cm/atom, while the average Ey of the anti-solar HST Al-FEP was 1.5 10(exp -24)cu cm/atom. The Ey of the pristine samples was 1.6- 1.7 10(exp -24)cu cm/atom. These results indicate that solar exposure affects the post-flight erosion rate of FEP in a plasma asher. Therefore, it likely affects the erosion rate while in LEO.

  14. International Test Program for Synergistic Atomic Oxygen and VUV Exposure of Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon; Banks, Bruce; Dever, Joyce; Savage, William

    2000-01-01

    Spacecraft in low Earth orbit (LEO) are subject to degradation in thermal and optical performance of components and materials through interaction with atomic oxygen and vacuum ultraviolet radiation which are predominant in LEO. Due to the importance of LEO durability and performance to manufacturers and users, an international test program for assessing the durability of spacecraft materials and components was initiated. Initial tests consisted of exposure of samples representing a variety of thermal control paints and multilayer insulation materials that have been used in space. Materials donated from various international sources were tested alongside a material whose performance is well known such as Teflon FEP or Kapton H for multilayer insulation, or Z-93-P for white thermal control paints. The optical, thermal or mass loss data generated during the test was then provided to the participating material supplier. Data was not published unless the participant donating the material consented to publication. This paper presents a description of the types of tests and facilities that have been used for the test program as well as some examples of data that have been generated. The test program is intended to give spacecraft builders and users a better understanding of degradation processes and effects to enable improved prediction of spacecraft performance.

  15. The Dependence of Atomic Oxygen Undercutting of Protected Polyimide Kapton(tm) H upon Defect Size

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; deGroh, Kim K.

    2001-01-01

    Understanding the behavior of polymeric materials when exposed to the low-Earth-orbit (LEO) environment is important in predicting performance characteristics such as in-space durability. Atomic oxygen (AO) present in LEO is known to be the principal agent in causing undercutting erosion of SiO(x) protected polyimide Kapton(R) H film, which serves as a mechanically stable blanket material in solar arrays. The rate of undercutting is dependent on the rate of arrival, directionality and energy of the AO with respect to the film surface. The erosion rate also depends on the distribution of the size of defects existing in the protective coating. This paper presents results of experimental ground testing using low energy, isotropic AO flux together with numerical modeling to determine the dependence of undercutting erosion upon defect size.

  16. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  17. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    NASA Technical Reports Server (NTRS)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  18. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue; Vera, Madeline; Chi, Miaofang

    Here, we report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity inmore » the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm 2 pt) and mass (1.60 A/mg/ 2 pt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm 2 pt and 0.32 A/mg pt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mg pt, more than twice that of the pristine Pt/C catalyst.« less

  19. Pd@Pt core-shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability

    DOE PAGES

    Wang, Xue; Vera, Madeline; Chi, Miaofang; ...

    2015-11-13

    Here, we report a facile synthesis of multiply twinned Pd@Pt core shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 degrees C, naturally generating a core shell structure covered by concave facets. The nonuniformity inmore » the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm 2 pt) and mass (1.60 A/mg/ 2 pt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm 2 pt and 0.32 A/mg pt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mg pt, more than twice that of the pristine Pt/C catalyst.« less

  20. Enhancement of surface durability of space materials and structures in LEO environment

    NASA Astrophysics Data System (ADS)

    Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.

    2003-09-01

    Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.

  1. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a uniformly thick sheet of semitransparent polymer such as Kapton H polyimide, then as atomic oxygen erodes the polymer, the short-circuit current from the photodiode will increase in an exponential manner with fluence. This nonlinear response with fluence results in a lack of sensitivity for measuring low atomic oxygen fluences. However, if one uses a variable-thickness polymer or carbon sample, which is configured as shown in the preceding figure, then a linear response can be achieved for opaque materials using a parabolic well for a circular geometry detector or a V-shaped well for a rectangular-geometry detector. Variable-thickness samples can be fabricated using many thin polymer layers. For semitransparent polymers such as Kapton H polyimide, there is an initial short-circuit current that is greater than zero. This current has a slightly nonlinear dependence on atomic oxygen fluence in comparison to opaque materials such as black Kapton as shown in the graph. For this graph figure, the total thickness of Kapton H was assumed to be 0.03 cm. The photodiode short-circuit current shown in the graph was generated on the basis of preliminary measurements-a total reflectance rho of 0.0424 and an optical absorption coefficient a of 146.5 cm(sup -1). In addition to obtaining on-orbit data, the advantage of this active erosion and erosion yield measurement technique is its simplicity and reliance upon well-characterized fluence witness materials as well as a nearly linear photodiode short-circuit current dependence upon atomic oxygen fluence. The optical technique is useful for measuring either atomic oxygen fluence or erosion, depending on the information desired. To measure the atomic oxygen erosion yield of a test material, one would need to have two photodiode sensors, one for the test material and one that uses a known erosion yield material (such as Kapton) to measure the atomic oxygen fluence.

  2. Overview of Materials International Space Station Experiment 7B

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Siamidis, John

    2009-01-01

    Materials International Space Station Experiment 7B (MISSE 7B) is the most recent in a series of experiments flown on the exterior of International Space Station for the purpose of determining the durability of materials and components in the space environment. A collaborative effort among the Department of Defense, the National Aeronautics and Space Administration, industry, and academia, MISSE 7B will be flying a number of NASA experiments designed to gain knowledge in the area of space environmental effects to mitigate risk for exploration missions. Consisting of trays called Passive Experiment Containers, the suitcase sized payload opens on hinges and allows active and passive experiments contained within to be exposed to the ram and wake or zenith and nadir directions in low Earth orbit, in essence, providing a test bed for atomic oxygen exposure, ultraviolet radiation exposure, charged particle radiation exposure, and thermal cycling. New for MISSE 7B is the ability to monitor experiments actively, with data sent back to Earth via International Space Station communications. NASA?s active and passive experiments cover a range of interest for the Agency. Materials relevant to the Constellation Program include: solar array materials, seal materials, and thermal protection system materials. Materials relevant to the Exploration Technology Development Program include: fabrics for spacesuits, materials for lunar dust mitigation, and new thermal control coatings. Sensors and components on MISSE 7B include: atomic oxygen fluence monitors, ultraviolet radiation sensors, and electro-optical components. In addition, fundamental space environmental durability science experiments are being flown to gather atomic oxygen erosion data and thin film polymer mechanical and optical property data relevant to lunar lander insulation and the James Web Space Telescope. This paper will present an overview of the NASA experiments to be flown on MISSE 7B, along with a summary of the thermal environment to be expected during the 1 yr mission scheduled for launch in 2009.

  3. Low Earth orbital atomic oxygen environmental simulation facility for space materials evaluation

    NASA Technical Reports Server (NTRS)

    Stidham, Curtis R.; Banks, Bruce A.; Stueber, Thomas J.; Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.

    1993-01-01

    Simulation of low Earth orbit atomic oxygen for accelerated exposure in ground-based facilities is necessary for the durability evaluation of space power system component materials for Space Station Freedom (SSF) and future missions. A facility developed at the National Aeronautics and Space Administrations's (NASA) Lewis Research Center provides accelerated rates of exposure to a directed or scattered oxygen beam, vacuum ultraviolet (VUV) radiation, and offers in-situ optical characterization. The facility utilizes an electron-cyclotron resonance (ECR) plasma source to generate a low energy oxygen beam. Total hemispherical spectral reflectance of samples can be measured in situ over the wavelength range of 250 to 2500 nm. Deuterium lamps provide VUV radiation intensity levels in the 115 to 200 nm range of three to five equivalent suns. Retarding potential analyses show distributed ion energies below 30 electron volts (eV) for the operating conditions most suited for high flux, low energy testing. Peak ion energies are below the sputter threshold energy (approximately 30 eV) of the protective coatings on polymers that are evaluated in the facility, thus allowing long duration exposure without sputter erosion. Neutral species are expected to be at thermal energies of approximately .04 eV to .1 eV. The maximum effective flux level based on polyimide Kapton mass loss is 4.4 x 10 exp 6 atoms/((sq. cm)*s), thus providing a highly accelerated testing capability.

  4. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    NASA Astrophysics Data System (ADS)

    Lohrasbi, Elaheh; Javanbakht, Mehran; Mozaffari, Sayed Ahmad

    2017-06-01

    The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO3sbnd groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm-2 Pt) reaches to a maximum of 530 mW cm-2 at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  5. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  6. Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition–Strain–Activity Relationship

    PubMed Central

    2016-01-01

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt–alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt–Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt–Pt bond length (RPt–Pt). The RPt–Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt–Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs. PMID:25559440

  7. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship.

    PubMed

    Jia, Qingying; Liang, Wentao; Bates, Michael K; Mani, Prasanna; Lee, Wendy; Mukerjee, Sanjeev

    2015-01-27

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt-alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt-Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt-Pt bond length (RPt-Pt). The RPt-Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt-Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs.

  8. Degradation of Spacecraft Materials in the Space Environment

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.

    2010-01-01

    When we think of space, we typically think of a vacuum containing very little matter that lies between the Earth and other planetary and stellar bodies. However, the space above Earth's breathable atmosphere and beyond contains many things that make designing durable spacecraft a challenge. Depending on where the spacecraft is flyng, it may encounter atomic oxygen, ultraviolet and other forms of radiation, charged particles, micrormeteoroids and debris, and temperature extremes. These environments on their own and in combination can cause degradation and failure of polymers, composites, paints and other materials used on the exterior of spacecraft for thermal control, structure, and power generation. This article briefly discusses and gives examples of some of the degradation experienced on spacecraft and night experiments as a result of the space environment and the use of ground and space data to predict durability.

  9. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    PubMed

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  10. Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong

    2017-09-01

    Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (Tg) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.

  11. MSFC Thermal Protection System Materials on MISSE-6

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria M.; Valentine, Peter G.; Gubert, Michael K.

    2010-01-01

    The Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) program studied a number of ceramic matrix composites, ablator materials, and tile materials for durability in simulated space environment. Materials that indicated low atomic oxygen reactivity and negligible change in thermo-optical properties in ground testing were selected to fly on the Materials on International Space Station Experiment (MISSE)-6. These samples were exposed for 17 months to the low Earth orbit environment on both the ram and wake sides of MISSE-6B. Thermo-optical properties are discussed, along with any changes in mass.

  12. Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting

    NASA Astrophysics Data System (ADS)

    Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian

    2018-06-01

    Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.

  13. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lulu; Su, Dong; Zhu, Shangqian

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  14. Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Mufundirwa, Albert; Harrington, George F.; Smid, Břetislav; Cunning, Benjamin V.; Sasaki, Kazunari; Lyth, Stephen M.

    2018-01-01

    Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.

  15. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGES

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; ...

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  16. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.

    PubMed

    Wastl, Daniel S; Judmann, Michael; Weymouth, Alfred J; Giessibl, Franz J

    2015-01-01

    Characterization and imaging at the atomic scale with atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomically resolved imaging of the calcite (101̅4) surface plane using stiff quartz cantilevers ("qPlus sensors", stiffness k = 1280 N/m) equipped with sapphire tips in ambient conditions without any surface preparation. With 10 atoms in one surface unit cell, calcite has a highly complex surface structure comprising three different chemical elements (Ca, C, and O). We obtain true atomic resolution of calcite in air at relative humidity ranging from 20% to 40%, imaging atomic steps and single atomic defects. We observe a great durability of sapphire tips with their Mohs hardness of 9, only one step below diamond. Depending on the state of the sapphire tip, we resolve either the calcium or the oxygen sublattice. We determine the tip termination by comparing the experimental images with simulations and discuss the possibility of chemical tip identification in air. The main challenges for imaging arise from the presence of water layers, which form on almost all surfaces and have the potential to dissolve the crystal surface. Frequency shift versus distance spectra show the presence of at least three ordered hydration layers. The measured height of the first hydration layer corresponds well to X-ray diffraction data and molecular dynamic simulations, namely, ∼220 pm. For the following hydration layers we measure ∼380 pm for the second and third layer, ending up in a total hydration layer thickness of at least 1 nm. Understanding the influence of water layers and their structure is important for surface segregation, surface reactions including reconstructions, healing of defects, and corrosion.

  17. Solar Absorptance of Cermet Coatings Evaluated

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  18. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of approximately five years in the HST environment. Uncoated aluminized FEP Teflon(R) was determined to be the most appropriate thermal shield material and was used on the bi-stems of replacement solar arrays installed on HST during SMI in December 1993. The SMI -installed solar arrays air scheduled to be replaced during MST's fourth servicing mission (SM3B) in early 2002.

  19. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures under AO impact [2,4]. REFERENCES 1. K.B. Vernigorov, A.Yu. Alent'ev, A.M. Muzafarov, L.S. Novikov, V.N. Chernik. J. Surf. Ingestig.-X-Ray Synchro. 5, 263 (2011). 2. E.N. Voronina, L.S. Novikov, V.N. Chernik, et al. Inorg. Mat.: Appl. Res. 3, 95 (2012). 3. N.G. Chechenin, P.N. Chernykh, E.A. Vorobyeva, O.S. Timofeev. Appl. Surf. Science, 275, 217-221 (2013). 4. E.N. Voronina, L.S. Novikov. RSC Adv., 2013, 3 (35), 15362.

  20. Oxidation of platinum nickel nanowires to improve durability of oxygen-reducing electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Pylypenko, Svitlana; Dameron, Arrelaine; ...

    2016-01-12

    In this study, the impact of heat treating platinum-coated nickel (Pt-Ni) nanowires in oxygen is examined to determine the effect on oxygen reduction (ORR) activity and durability. Pt-Ni nanowires exhibit promising ORR mass activities (3 times greater than Pt nanoparticles, 1.5 times greater than U.S. Department of Energy target) both before and after potential cycling for all but the highest annealing temperatures explored. The annealing of Pt-Ni nanowires in oxygen with increasing temperature is found to reduce surface area and ORR activity in comparison to the untreated material, but also reduces activity losses following durability testing. Following potential cycling, unannealedmore » Pt-Ni nanowires show significant losses in surface area (23%) and specific activity (18%) while Pt-Ni nanowires annealed at 200°C show modest increases in surface area (2%) and specific activity (6%) after potential cycling. Increasing annealing temperatures also show a clear trend of decreasing Ni dissolution rates. While oxygen annealing has shown the ability to improve durability of Pt-Ni nanowires, significant Ni dissolution was observed in all samples and suggests oxide passivation while showing promise for improved durability, when employed by itself is insufficient to prevent all contamination concerns involving Ni dissolution.« less

  1. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less

  2. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

    DOE PAGES

    Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin; ...

    2018-01-24

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less

  3. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells.

    PubMed

    Wang, Xiao Xia; Cullen, David A; Pan, Yung-Tin; Hwang, Sooyeon; Wang, Maoyu; Feng, Zhenxing; Wang, Jingyun; Engelhard, Mark H; Zhang, Hanguang; He, Yanghua; Shao, Yuyan; Su, Dong; More, Karren L; Spendelow, Jacob S; Wu, Gang

    2018-03-01

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of Ram and Zenith Exposure on the Optical Properties of Polymers in Space

    NASA Technical Reports Server (NTRS)

    Li, Yuachun; de Groh, Kim K.; Banks, Bruce A.; Leneghan, Halle; Asmar, Olivia

    2017-01-01

    The temperature of spacecraft is influenced by the solar absorptance and thermal emittance of the external spacecraft materials. Optical and thermal properties can degrade over time in the harsh low Earth orbital (LEO) space environment where spacecraft external materials are exposed to various forms of radiation, thermal cycling, and atomic oxygen. Therefore, it is important to test the durability of spacecraft materials in the space environment. One objective of the Polymers and Zenith Polymers Experiments was to determine the effect of LEO space exposure on the optical properties of various spacecraft polymers. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission on the exterior of the International Space Station (ISS) for 1.5 years. Samples were flown in ram, wake or zenith directions, receiving varying amounts of atomic oxygen and solar radiation exposure. Total and diffuse reflectance and transmittance of flight and corresponding control samples were obtained post-flight using a Cary 5000 UV-Vis-NIR Spectrophotometer. Integrated air mass zero solar absorptance (s) of the flight and control samples were computed from the total transmittance and reflectance, and compared. The optical data are compared with similar polymers exposed to space for four years as part of MISSE 2, and with atomic oxygen erosion data, to help understand the degradation of these polymers in the space environment. Results show that prolonged space exposure increases the solar absorptance of some materials. Knowing which polymers remain stable will benefit future spacecraft design.

  5. High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction

    DOE PAGES

    Tian, Xinlong; Tang, Haibo; Luo, Junming; ...

    2017-04-25

    A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less

  6. High-Performance Core–Shell Catalyst with Nitride Nanoparticles as a Core: Well-Defined Titanium Copper Nitride Coated with an Atomic Pt Layer for the Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xinlong; Tang, Haibo; Luo, Junming

    A class of core–shell structured low-platinum catalysts with well-dispersed inexpensive titanium copper nitride nanoparticles as cores and atomic platinum layers as shells exhibiting high activity and stability for the oxygen reduction reaction is successfully developed. In using nitrided carbon nanotubes (NCNTs) as the support greatly improved the morphology and dispersion of the nitride nanoparticles, resulting in significant enhancement of the performance of the catalyst. The optimized catalyst, Ti 0.9Cu 0.1N@Pt/NCNTs, has a Pt mass activity 5 times higher than that of commercial Pt/C, comparable to that of core–shell catalysts with precious metal nanoparticles as the core, and much higher thanmore » that the latter if we take into account the mass activity of all platinum group metals. Furthermore, only a minimal loss of activity can be observed after 10000 potential cycles, demonstrating the catalyst’s high stability. After durability testing, atomic-scale elemental mapping confirmed that the core–shell structure of the catalyst remained intact. This approach may open a pathway for the design and preparation of high-performance inexpensive core–shell catalysts for a wide range of applications in energy conversion processes.« less

  7. Effect of Oxygen Inhibition Layer of Universal Adhesives on Enamel Bond Fatigue Durability and Interfacial Characteristics With Different Etching Modes.

    PubMed

    Ouchi, H; Tsujimoto, A; Nojiri, K; Hirai, K; Takamizawa, T; Barkmeier, W W; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the effect of the oxygen inhibition layer of universal adhesive on enamel bond fatigue durability and interfacial characteristics with different etching modes. The three universal adhesives used were Scotchbond Universal Adhesive (3M ESPE, St Paul, MN, USA), Adhese Universal (Ivoclar Vivadent, Schaan, Lichtenstein), and G-Premio Bond (GC, Tokyo, Japan). The initial shear bond strength and shear fatigue strength to enamel was determined in the presence and absence of the oxygen inhibition layer, with and without phosphoric acid pre-etching. The water contact angle was also measured in all groups using the sessile drop method. The enamel bonding specimens with an oxygen inhibition layer showed significantly higher (p<0.05) initial shear bond strengths and shear fatigue strengths than those without, regardless of the adhesive type and etching mode. Moreover, the water contact angles on the specimens with an oxygen inhibition layer were significantly lower (p<0.05) than on those without, regardless of etching mode. The results of this study suggest that the oxygen inhibition layer of universal adhesives significantly increases the enamel bond fatigue durability and greatly changes interfacial characteristics, suggesting that the bond fatigue durability and interfacial characteristics of these adhesives strongly rely on its presence.

  8. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery.

    PubMed

    Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo

    2015-06-23

    Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.

  9. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  10. Introducing Fe2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity.

    PubMed

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; Bak, Seongmin; Wu, Yueshen; Wu, Zishan; Tian, Yang; Xiong, Xuya; Li, Yaping; Liu, Wen; Siahrostami, Samira; Kuang, Yun; Yang, Xiao-Qing; Duan, Haohong; Feng, Zhenxing; Wang, Hailiang; Sun, Xiaoming

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel-iron layered double hydroxides (NiFe-LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe-O-Fe moieties. These Fe2+-containing NiFe-LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm2, which is among the best OER catalytic performance reported to date. In-situ X-ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe-O-Fe motifs could stabilize high-valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Introducing Fe 2+ into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity

    DOE PAGES

    Cai, Zhao; Zhou, Daojin; Wang, Maoyu; ...

    2018-06-11

    Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Here we report the tuning of the local atomic structure of nickel–iron layered double hydroxides (NiFe–LDHs) by partially substituting Ni 2+ with Fe 2+ to introduce Fe–O–Fe moieties. These Fe 2+–containing NiFe–LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA/cm 2, which is among the best OER catalytic performance reported to date. In–situ X–ray absorption, Raman, and electrochemical analysis jointlymore » reveal that the Fe–O–Fe motifs could stabilize high–valent metal sites at low overpotentials, thereby enhancing the OER activity. Lastly, these results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.« less

  12. Metallic State FeS Anchored (Fe)/Fe3O4/N-Doped Graphitic Carbon with Porous Spongelike Structure as Durable Catalysts for Enhancing Bioelectricity Generation.

    PubMed

    Xu, Xin; Dai, Ying; Yu, Jia; Hao, Liang; Duan, Yaqiang; Sun, Ye; Zhang, Yanhong; Lin, Yuhui; Zou, Jinlong

    2017-03-29

    The critical issues in practical application of microbial fuel cells (MFCs) for wastewater treatment are the high cost and poor activity and durability of precious metal catalysts. To alleviate the activity loss and kinetic barriers for oxygen reduction reaction (ORR) on cathode, (Fe)/Fe 3 O 4 /FeS/N-doped graphitic carbon ((Fe)/Fe 3 O 4 /FeS/NGC) is prepared as ORR catalyst through a one-step method using waste pomelo skins as carbon source. Various characterization techniques and electrochemical analyses are conducted to illustrate the correlation between structural characteristics and catalytic activity. MFCs with Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode produces the maximum power density of 930 ± 10 mW m -2 (Pt/C of 489 mW m -2 ) and maintains a good long-term durability, which only declines 18% after 90 day operation. Coulombic efficiency (22.2%) obtained by Fe/Fe 3 O 4 /FeS/NGC (900 °C) cathode is significantly higher than that of Pt/C (17.3%). Metallic state FeS anchored in porous NGC skeleton can boost electron transport through the interconnected channels in spongelike structure to improve catalytic activity. Charge delocalization of C atoms can be strengthened by N atoms incorporation into carbon skeleton, which correspondingly contributes to the O 2 chemisorptions and O-O bond weakening during ORR. Energetically existed active components (Fe and N species) are more efficient than Pt to trap and consume electrons in catalyzing ORR in wastewater containing Pt-poisoning substances (bacterial metabolites). (Fe)/Fe 3 O 4 /FeS/NGC catalysts with the advantages of durable power outputs and environmental-friendly raw material can cover the shortages of Pt/C and provide an outlook for further applications of these catalysts.

  13. Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction

    PubMed Central

    Cheon, Jae Yeong; Kim, Taeyoung; Choi, YongMan; Jeong, Hu Young; Kim, Min Gyu; Sa, Young Jin; Kim, Jaesik; Lee, Zonghoon; Yang, Tae-Hyun; Kwon, Kyungjung; Terasaki, Osamu; Park, Gu-Gon; Adzic, Radoslav R.; Joo, Sang Hoon

    2013-01-01

    The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. PMID:24056308

  14. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts.

    PubMed

    Yin, Peiqun; Yao, Tao; Wu, Yuen; Zheng, Lirong; Lin, Yue; Liu, Wei; Ju, Huanxin; Zhu, Junfa; Hong, Xun; Deng, Zhaoxiang; Zhou, Gang; Wei, Shiqiang; Li, Yadong

    2016-08-26

    A new strategy for achieving stable Co single atoms (SAs) on nitrogen-doped porous carbon with high metal loading over 4 wt % is reported. The strategy is based on a pyrolysis process of predesigned bimetallic Zn/Co metal-organic frameworks, during which Co can be reduced by carbonization of the organic linker and Zn is selectively evaporated away at high temperatures above 800 °C. The spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements both confirm the atomic dispersion of Co atoms stabilized by as-generated N-doped porous carbon. Surprisingly, the obtained Co-Nx single sites exhibit superior ORR performance with a half-wave potential (0.881 V) that is more positive than commercial Pt/C (0.811 V) and most reported non-precious metal catalysts. Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C. Our findings open up a new routine for general and practical synthesis of a variety of materials bearing single atoms, which could facilitate new discoveries at the atomic scale in condensed materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    DOE PAGES

    Chen, Chen; Kang, Yijin; Huo, Ziyang; ...

    2014-02-27

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less

  16. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  17. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  18. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia.

    PubMed

    Sasikala, Suchithra Padmajan; Huang, Kai; Giroire, Baptiste; Prabhakaran, Prem; Henry, Lucile; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-11-16

    We report the exfoliation of graphite and simultaneous N doping of graphene by two methods: supercritical ammonia treatment and liquid-phase exfoliation with NH 4 OH. While the supercritical ammonia allowed N doping at a level of 6.4 atom % in 2 h, the liquid-phase exfoliation with NH 4 OH allowed N doping at a level of 2.7 atom % in 6 h. The N doped graphene obtained via the supercritical ammonia route had few layers (<5) and showed large lateral flake size (∼8 μm) and low defect density (I D /I G < 0.6) in spite of their high level of N doping. This work is the first demonstration of supercritical ammonia as an exfoliation agent and N doping precursor for graphene. Notably, the N doped graphene showed electrocatalytic activity toward oxygen reduction reaction with high durability and good methanol tolerance compared to those of commercial Pt/C catalyst.

  19. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  20. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.

    PubMed

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-11-21

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

  1. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

    NASA Astrophysics Data System (ADS)

    Xiaoming, ZHU; Heng, GUO; Jianfeng, ZHOU; Xiaofei, ZHANG; Jian, CHEN; Jing, LI; Heping, LI; Jianguo, TAN

    2018-04-01

    Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin-dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin-dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.

  2. Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.

    PubMed

    Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun

    2015-12-01

    Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.

  3. Oxygen reduction reaction on highly-durable Pt/nanographene fuel cell catalyst synthesized employing in-liquid plasma

    NASA Astrophysics Data System (ADS)

    Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru

    2016-09-01

    We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.

  4. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made...

  5. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  6. Graphite fluoride fibers and their applications in the space industry

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  7. Space Station WP-2 application of LDEF MLI results

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Hasegawa, Mark M.; Jones, Cherie A.

    1993-01-01

    The Cascaded Variable Conductance Heat Pipe Experiment, which was developed by Michael Grote of McDonnell Douglas Electronic Systems Company, was located in Tray F-9 of the Long Duration Exposure Facility (LDEF), where it received atomic oxygen almost normal to its surface. The majority of the tray was covered by aluminized Kapton polyimide multilayer insulation (MLI), which showed substantial changes from atomic oxygen erosion. Most of the outermost Kapton layer of the MLI and the polyester scrim cloth under it were lost, and there was evidence of contaminant deposition which discolored the edges of the MLI blanket. Micrometeoroid and orbital debris (MM/OD) hits caused small rips in the MLI layers, and in some cases left cloudy areas where the vapor plume caused by a hit condensed on the next layer. The MLI was bent gradually through 90 deg at the edges to enclose the experiment, and the Kapton that survived along the curved portion showed the effects of atomic oxygen erosion at oblique angles. In spite of space environment effects over the period of the LDEF mission, the MLI blanket remained functional. The results of the analysis of LDEF MLI were used in developing the standard MLI blanket for Space Station Work Package-2 (WP-2). This blanket is expected to last 30 years when exposed to the low Earth orbit (LEO) environment constituents of atomic oxygen and MM/OD, which are the most damaging to MLI materials. The WP-2 standard blanket consists of an outer cover made from Beta-cloth glass fiber fabric which is aluminized on the interior surface, and an inner cover of 0.076-mm (0.003-in) double-side-aluminized perforated Kapton. The inner reflector layers are 0.0076-mm (0.0003-in) double-side aluminized, perforated Kapton separated by layers of Dacron polyester fabric. The outer cover was selected to be resistant to the LEO environment and durable enough to survive in orbit for 30 years. This paper describes the analyses of the LDEF MLI results, and how these results contributed to the selection of the WP-2 MLI blanket materials and configuration.

  8. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  9. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee...

  10. Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.

    1998-01-01

    Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.

  11. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance.

    PubMed

    Alia, Shaun M; Pivovar, Bryan S

    2018-04-27

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing to 250 °C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 °C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. These techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.

  12. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE PAGES

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; ...

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  13. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  14. KSC-20171002-MH-CSH01_0001-MISSE_Arrival_Integration_H265-3170951

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE is unpacked and moved for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  15. View of MISSE-8 taken during a session of EVA

    NASA Image and Video Library

    2011-07-12

    ISS028-E-016111 (12 July 2011) --- This close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.

  16. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  17. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  18. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  19. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  20. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  1. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  2. Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda

    1996-01-01

    The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.

  3. Method for producing an atomic oxygen beam

    NASA Technical Reports Server (NTRS)

    Outlaw, Ronald A. (Inventor)

    1989-01-01

    A method for producing an atomic oxygen beam is provided by the present invention. First, a material 10' is provided which dissociates molecular oxygen and dissolves atomic oxygen into its bulk. Next, molecular oxygen is exposed to entrance surface 11' of material 10'. Next, material 10' is heated by heater 17' to facilitate the permeation of atomic oxygen through material 10' to the UHV side 12'. UHV side 12' is interfaced with an ultra-high vacuum (UHV) environment provided by UHV pump 15'. The atomic oxygen on the UHV side 12' is excited to a non-binding state by exciter 14' thus producing the release of atomic oxygen to form an atomic oxygen beam 35'.

  4. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE PAGES

    Alia, Shaun M.; Pivovar, Bryan S.

    2018-01-01

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  5. Synthesis of Platinum-nickel Nanowires and Optimization for Oxygen Reduction Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Pivovar, Bryan S.

    Platinum-nickel (Pt-Ni) nanowires were developed as fuel cell electrocatalysts, and were optimized for the performance and durability in the oxygen reduction reaction. Spontaneous galvanic displacement was used to deposit Pt layers onto Ni nanowire substrates. The synthesis approach produced catalysts with high specific activities and high Pt surface areas. Hydrogen annealing improved Pt and Ni mixing and specific activity. Acid leaching was used to preferentially remove Ni near the nanowire surface, and oxygen annealing was used to stabilize near-surface Ni, improving durability and minimizing Ni dissolution. These protocols detail the optimization of each post-synthesis processing step, including hydrogen annealing tomore » 250 degrees C, exposure to 0.1 M nitric acid, and oxygen annealing to 175 degrees C. Through these steps, Pt-Ni nanowires produced increased activities more than an order of magnitude than Pt nanoparticles, while offering significant durability improvements. The presented protocols are based on Pt-Ni systems in the development of fuel cell catalysts. Furthermore, these techniques have also been used for a variety of metal combinations, and can be applied to develop catalysts for a number of electrochemical processes.« less

  6. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles

    DOE PAGES

    Jia, Qingying; Zhao, Zipeng; Cao, Liang; ...

    2017-12-22

    Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo–PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shapemore » enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt 3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Lastly, our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.« less

  7. Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qingying; Zhao, Zipeng; Cao, Liang

    Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo–PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shapemore » enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt 3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Lastly, our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.« less

  8. Ozone Depletion, UVB and Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  9. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo

    2015-01-01

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies.

  10. View of MISSE-8 taken during a session of EVA

    NASA Image and Video Library

    2011-07-12

    ISS028-E-016107 (12 July 2011) --- This medium close-up image, recorded during a July 12 spacewalk, shows the Materials on International Space Station Experiment - 8 (MISSE-8). The experiment package is a test bed for materials and computing elements attached to the outside of the orbiting complex. These materials and computing elements are being evaluated for the effects of atomic oxygen, ultraviolet, direct sunlight, radiation, and extremes of heat and cold. This experiment allows the development and testing of new materials and computing elements that can better withstand the rigors of space environments. Results will provide a better understanding of the durability of various materials and computing elements when they are exposed to the space environment, with applications in the design of future spacecraft.

  11. Atomic oxygen interaction at defect sights in protective coatings on polymers flown on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Lamoreaux, Cynthia

    1993-01-01

    Although the Long Duration Exposure Facility (LDEF) has exposed materials with a fixed orientation relative to the ambient low-Earth-orbital environment, arrival of atomic oxygen is angularly distributed as a result of the atomic oxygen's high temperature Maxwellian velocity distribution and the LDEF's orbital inclination. Thus, atomic oxygen entering defects in protective coatings on polymeric surfaces can cause wider undercut cavities than the size of the defect in the protective coating. Because only a small fraction of atomic oxygen reacts upon first impact with most polymeric materials, secondary reactions with lower energy thermally accommodated atomic oxygen can occur. The secondary reactions of scattered and/or thermally accommodated atomic oxygen also contribute to widening the undercut cavity beneath the protective coating defect. As the undercut cavity enlarges, exposing more polymer, the probability of atomic oxygen reacting with underlying polymeric material increases because of multiple opportunities for reaction. Thus, the effective atomic oxygen erosion yield for atoms entering defects increases above that of the unprotected material. Based on the results of analytical modeling and computational modeling, aluminized Kapton multilayer insulation exposed to atomic oxygen on row 9 lost the entire externally exposed layer of polyimide Kapton, yet based on the results of this investigation, the bottom surface aluminum film must have remained in place, but crazed. Atomic oxygen undercutting at defect sites in protective coatings on graphite epoxy composites indicates that between 40 to 100 percent of the atomic oxygen thermally accommodates upon impact, and that the reaction probability of thermally accommodated atomic oxygen may range from 7.7 x 10(exp -6) to 2.1 x 10(exp -3), depending upon the degree of thermal accommodation upon each impact.

  12. Enhanced Performance of Recycled Aggregate Concrete with Atomic Polymer Technology

    DOT National Transportation Integrated Search

    2012-06-01

    The atomic polymer technology in form of mesoporous inorganic polymer (MIP) can effectively improve material durability and performance of concrete by dramatically increase inter/intragranular bond strength of concrete at nano-scale. The strategy of ...

  13. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  14. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists ofmore » NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  15. Atomic Layer-by-Layer Deposition of Platinum on Palladium Octahedra for Enhanced Catalysts toward the Oxygen Reduction Reaction

    DOE PAGES

    Park, Jinho; Zhang, Lei; Choi, Sang-Il; ...

    2015-02-08

    We systematically evaluated two different approaches to the syntheses of Pd@PtnL (n = 2–5) core–shell octahedra. We initially prepared the core–shell octahedra using a polyol-based route by titrating a Pt(IV) precursor into the growth solution containing Pd octahedral seeds at 200 °C through the use of a syringe pump. The number of Pt atomic layers could be precisely controlled from two to five by increasing the volume of the precursor solution while fixing the amount of seeds. We then demonstrated the synthesis of Pd@Pt nL octahedra using a water-based route at 95 °C through the one-shot injection of a Pt(II)more » precursor. Due to the large difference in reaction temperature, the Pd@Pt nL octahedra obtained via the water-based route showed sharper corners than their counterparts obtained through the polyol-based route. When compared to a commercial Pt/C catalyst based upon 3.2 nm Pt particles, the Pd@Pt nL octahedra prepared using both methods showed similar remarkable enhancement in terms of activity (both specific and mass) and durability toward the oxygen reduction reaction. These calculations based upon periodic, self-consistent density functional theory suggested that the enhancement in specific activity for the Pd@Pt nL octahedra could be attributed to the destabilization of OH on their Pt nL*/Pd(111) surface relative to the {111} and {100} facets exposed on the surface of Pt/C. Finally. the destabilization of OH facilitates its hydrogenation, which was found to be the rate-limiting step of the oxygen reduction reaction on all these surfaces.« less

  16. Attenuation of Scattered Thermal Energy Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce a.; Seroka, Katelyn T.; McPhate, Jason B.; Miller, Sharon K.

    2011-01-01

    The attenuation of scattered thermal energy atomic oxygen is relevant to the potential damage that can occur within a spacecraft which sweeps through atomic oxygen in low Earth orbit (LEO). Although there can be significant oxidation and resulting degradation of polymers and some metals on the external surfaces of spacecraft, there are often openings on a spacecraft such as telescope apertures, vents, and microwave cavities that can allow atomic oxygen to enter and scatter internally to the spacecraft. Atomic oxygen that enters a spacecraft can thermally accommodate and scatter to ultimately react or recombine on surfaces. The atomic oxygen that does enter a spacecraft can be scavenged by use of high erosion yield polymers to reduce its reaction on critical surfaces and materials. Polyoxymethylene and polyethylene can be used as effective atomic oxygen scavenging polymers.

  17. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Weiping; Zhu, Jing; Han, Lili

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). A highly active, durable, carbon supported, and monolayer Pt coated Pd–Co–Zn nanoparticle is synthesized via a simple impregnation–reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition–activity volcano curve for the Pd–Co–Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd 8CoZn/C nanoparticles show a substantial enhancement in bothmore » the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd 8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N 2-saturated 0.1 M HClO 4 solution, Pd 8CoZn@Pt/C shows improved mass activity (2.62 A mg -1Pt) and specific activity (4.76 A m -2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O 2-saturated 0.1 M HClO 4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. Our results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.« less

  18. Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    DOE PAGES

    Xiao, Weiping; Zhu, Jing; Han, Lili; ...

    2016-07-15

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). A highly active, durable, carbon supported, and monolayer Pt coated Pd–Co–Zn nanoparticle is synthesized via a simple impregnation–reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition–activity volcano curve for the Pd–Co–Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd 8CoZn/C nanoparticles show a substantial enhancement in bothmore » the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd 8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N 2-saturated 0.1 M HClO 4 solution, Pd 8CoZn@Pt/C shows improved mass activity (2.62 A mg -1Pt) and specific activity (4.76 A m -2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O 2-saturated 0.1 M HClO 4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. Our results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.« less

  19. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  20. Erosion Results of the MISSE 7 Polymers Experiment and Zenith Polymers Experiment After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.

    2016-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.

  1. The MISSE-9 Polymers and Composites Experiment Being Flown on the MISSE-Flight Facility

    NASA Technical Reports Server (NTRS)

    De Groh, Kim K.; Banks, Bruce A.

    2017-01-01

    Materials on the exterior of spacecraft in low Earth orbit (LEO) are subject to extremely harsh environmental conditions, including various forms of radiation (cosmic rays, ultraviolet, x-ray, and charged particle radiation), micrometeoroids and orbital debris, temperature extremes, thermal cycling, and atomic oxygen (AO). These environmental exposures can result in erosion, embrittlement and optical property degradation of susceptible materials, threatening spacecraft performance and durability. To increase our understanding of space environmental effects such as AO erosion and radiation induced embrittlement of spacecraft materials, NASA Glenn has developed a series of experiments flown as part of the Materials International Space Station Experiment (MISSE) missions on the exterior of the International Space Station (ISS). These experiments have provided critical LEO space environment durability data such as AO erosion yield values for many materials and mechanical properties changes after long term space exposure. In continuing these studies, a new Glenn experiment has been proposed, and accepted, for flight on the new MISSE-Flight Facility (MISSE-FF). This experiment is called the Polymers and Composites Experiment and it will be flown as part of the MISSE-9 mission, the inaugural mission of MISSE-FF. Figure 1 provides an artist rendition of MISSE-FF ISS external platform. The MISSE-FF is manifested for launch on SpaceX-13.

  2. Studies concerning the durability of concrete vaults for intermediate level radioactive waste disposal: Electrochemical monitoring and corrosion aspects

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.

    2006-11-01

    The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.

  3. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    NASA Astrophysics Data System (ADS)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  4. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  5. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  6. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  7. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  8. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  9. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.

    PubMed

    Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo

    2015-08-05

    Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to the synergistic effects of Cu presence and the ordered structure of catalyst.

  10. The Erosion of Diamond and Highly Oriented Pyrolytic Graphite After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    De Groh, Kim K.; Banks, Bruce A.

    2018-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft, it is important to know the LEO AO erosion yield (Ey, volume loss per incident oxygen atom) of materials susceptible to AO reaction. The Polymers Experiment was developed to determine the AO Ey of various polymers and other materials flown in ram and wake orientations in LEO. The experiment was flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). As part of the experiment, a sample containing Class 2A diamond (100 plane) and highly oriented pyrolytic graphite (HOPG, basal and edge planes) was exposed to ram AO and characterized for erosion. The materials were salt-sprayed prior to flight to provide isolated sites of AO protection. The Ey of the samples was determined through post-flight electron microscopy recession depth measurements. The experiment also included a Kapton H witness sample for AO fluence determination. This paper provides an overview of the MISSE 7 mission, a description of the flight experiment, the characterization techniques used, the mission AO fluence, and the LEO Ey results for diamond and HOPG (basal and edge planes). The data is compared to the Ey of pyrolytic graphite exposed to four years of space exposure as part of the MISSE 2 mission. The results indicate that diamond erodes, but with a very low Ey of 1.58 +/- 0.04 x 10(exp -26) cm(exp 3)/atom. The different HOPG planes displayed significantly different amounts of erosion from each other. The HOPG basal plane had an Ey of 1.05 +/- 0.08 x 10(exp -24) cm(exp 3)/atom while the edge plane had a lower Ey of only 5.38 +/- 0.90 x 10(exp -25) -cm(exp 3)/atom. The Ey data from this ISS spaceflight experiment provides valuable information for understanding of chemistry and chemical structure dependent modeling of AO erosion.

  11. Air-atomizing splash-cone fuel nozzle reduces pollutant emissions from turbojet engines

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    Advantages of fuel nozzle over conventional pressure-atomizing fuel nozzles: simplicity of construction, ability to distribute fuel-air mixture uniformly across full height of combustor without using auxiliary air supply, reliability when using contaminated fuels, and durability of nozzle at high operating temperatures.

  12. Atomic oxygen reactor having at least one sidearm conduit

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    An apparatus for treating a microporous structure with atomic oxygen is presented. The apparatus includes a main gas chamber for flowing gas in an axial direction and a source of gas, containing atomic oxygen, connected for introducing the gas into the main gas chamber. The apparatus employs at least one side arm extending from the main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  13. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  14. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity

    PubMed Central

    Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.

    2013-01-01

    Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456

  15. Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun

    2017-06-01

    Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nbmore » in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.« less

  16. Use of Atomic Oxygen for the Determination of Document Alteration

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Klubnik, Larisa M.

    2003-01-01

    Atomic oxygen, which normally is found only the near Earth space environment, causes oxidation and erosion of polymers on spacecraft. The development of technology to prevent this degradation has required NASA to develop ground laboratory facilities that generate atomic oxygen. Atomic oxygen has also been found to be able to oxidize most types of ink from a variety of types of pens. The use of atomic oxygen to identify alteration of documents has been investigated and is reported. Results of testing indicates that for many types of ink, pen, and paper, identification of document alteration of pen and ink numbers and evidence of alteration can be made visible by exposing the questionable writing to atomic oxygen. Atomic oxygen provides discrimination because different inks may oxidize at different rates, the amount of time between delayed alteration may add to ink thickness at crossings, and the end of pen strokes tend to have much thicker ink deposits than the rest of the character. Examples and techniques of using atomic oxygen to identify document alteration indicate that the technology can, in many but not all cases, provide discrimination between original and altered documents.

  17. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  18. Method and apparatus for producing a thermal atomic oxygen beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1994-01-01

    Atomic oxygen atoms are routed to a material through a sufficiently tortuous path so that vacuum ultraviolet radiation is obstructed from arriving at the surface of the material. However, the material surface continues to be exposed to the atomic oxygen.

  19. The time variation of atomic oxygen emission around Io during a volcanic event observed with Hisaki/EXCEED

    NASA Astrophysics Data System (ADS)

    Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Yoshikawa, Ichiro; Smith, H. Todd

    2018-01-01

    Io has an atmosphere produced by volcanism and sublimation of frosts deposited around active volcanoes. However, the time variation of atomic oxygen escaping Io's atmosphere is not well known. In this paper, we show a significant increase in atomic oxygen around Io during a volcanic event. Brightening of Io's extended sodium nebula was observed in the spring of 2015. We used the Hisaki satellite to investigate the time variation of atomic oxygen emission around Io during the same period. This investigation reveals that the duration of atomic oxygen brightness increases from a volcanically quiet level to a maximum level during the same approximate time period of 30 days as the observed sodium brightness. On the other hand, the recovery of the atomic oxygen brightness from the maximum to the quiet level (60 days) was longer than that of the sodium nebula decreasing (40 days). Additionally, a dawn-dusk asymmetry of the atomic oxygen emission is observed.

  20. Fully CMOS-compatible titanium nitride nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305; Naik, Gururaj V.

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements onmore » plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.« less

  1. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2006-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic &anhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides. The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  2. Space Environmentally Durable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor); Watson, Kent A. (Inventor); Thompson, Craig M. (Inventor)

    2005-01-01

    Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

  3. High resolution imaging of latent fingerprints by localized corrosion on brass surfaces.

    PubMed

    Goddard, Alex J; Hillman, A Robert; Bond, John W

    2010-01-01

    The Atomic Force Microscope (AFM) is capable of imaging fingerprint ridges on polished brass substrates at an unprecedented level of detail. While exposure to elevated humidity at ambient or slightly raised temperatures does not change the image appreciably, subsequent brief heating in a flame results in complete loss of the sweat deposit and the appearance of pits and trenches. Localized elemental analysis (using EDAX, coupled with SEM imaging) shows the presence of the constituents of salt in the initial deposits. Together with water and atmospheric oxygen--and with thermal enhancement--these are capable of driving a surface corrosion process. This process is sufficiently localized that it has the potential to generate a durable negative topographical image of the fingerprint. AFM examination of surface regions between ridges revealed small deposits (probably microscopic "spatter" of sweat components or transferred particulates) that may ultimately limit the level of ridge detail analysis.

  4. Fuel Cells | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion, Electrochimica Acta (2016) Suppression of Oxygen Reduction Reaction Activity on Pt-Based Electrocatalysts from Ionomer Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction, Journal of the Electrochemical Society

  5. Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2004-01-01

    The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.

  6. 570 mV photovoltage, stabilized n-Si/CoO x heterojunction photoanodes fabricated using atomic layer deposition

    DOE PAGES

    Zhou, Xinghao; Liu, Rui; Sun, Ke; ...

    2016-01-08

    Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thin ~50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of -205 ± 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O 2(g) conversion efficiencies of 1.42 ± 0.20%, and operated continuously for over 100 days (~2500 h) in 1.0 M KOH(aq) under simulated solar illumination. The ALD CoO x thin film: (i) formed a heterojunction with the n-Si(100) that provided a photovoltage of 575 mV under 1 Sun of simulated solar illumination; (ii) stabilized Si photoanodes thatmore » are otherwise unstable when operated in aqueous alkaline electrolytes; and, (iii) catalyzed the oxidation of water, thereby reducing the kinetic overpotential required for the reaction and increasing the overall efficiency relative to electrodes that do not have an inherently electrocatalytic coating. The process provides a simple, effective method for enabling the use of planar n-Si(100) substrates as efficient and durable photoanodes in fully integrated, photovoltaic-biased solar fuels generators.« less

  7. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    DOEpatents

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  8. Comparison of the Atomic Oxygen Erosion Depth and Cone Height of Various Materials at Hyperthermal Energy

    NASA Technical Reports Server (NTRS)

    Waters, Deborah L.; Banks, Bruce A.; Thorson, Stephen D.; deGroh, Kim, K.; Miller, Sharon K.

    2007-01-01

    Atomic oxygen readily reacts with most spacecraft polymer materials exposed to the low Earth orbital (LEO) environment. If the atomic oxygen arrival comes from a fixed angle of impact, the resulting erosion will foster the development of a change in surface morphology as material thickness decreases. Hydrocarbon and halopolymer materials, as well as graphite, are easily oxidized and textured by directed atomic oxygen in LEO at energies of approx.4.5 eV. What has been curious is that the ratio of cone height to erosion depth is quite different for different materials. The formation of cones under fixed direction atomic oxygen attack may contribute to a reduction in material tensile strength in excess of that which would occur if the cone height to erosion depth ratio was very low because of greater opportunities for crack initiation. In an effort to understand how material composition affects the ratio of cone height to erosion depth, an experimental investigation was conducted on 18 different materials exposed to a hyperthermal energy directed atomic oxygen source (approx.70 eV). The materials were first salt-sprayed to provide microscopic local areas that would be protected from atomic oxygen. This allowed erosion depth measurements to be made by scanning microscopy inspection. The polymers were then exposed to atomic oxygen produced by an end Hall ion source that was operated on pure oxygen. Samples were exposed to an atomic oxygen effective fluence of 1.0x10(exp 20) atoms/sq cm based on Kapton H polyimide erosion. The average erosion depth and average cone height were determined using field emission scanning electron microscopy (FESEM). The experimental ratio of average cone height to erosion depth is compared to polymer composition and other properties.

  9. Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Fangfang; Yu, Gang; Shan, Shiyao

    2017-01-01

    The ability to tune the alloying properties and faceting characteristics of bimetallic nanocatalysts is essential for designing catalysts with enhanced activity and stability through optimizing strain and ligand effects, which is an important frontier for designing advanced materials as catalysts for fuel cell applications. This report describes composition-controlled alloying and faceting of platinum–nickel nanowires (PtNi NWs) for the electrocatalytic oxygen reduction reaction. The PtNi NWs are synthesized by a surfactant-free method and are shown to display bundled morphologies of nano-tetrahedra or nanowires, featuring an ultrathin and irregular helix morphology with composition-tunable facets. Using high-energy synchrotron X-ray diffraction coupled with atomicmore » pair distribution function analysis, lattice expansion and shrinking are revealed, with the Pt : Ni ratio of ~3 : 2 exhibiting a clear expansion, which coincides with the maximum electrocatalytic activity for the ORR. In comparison with PtNi nanoparticles (NPs), the PtNi NWs display remarkably higher electrocatalytic activity and stability as a result of the composition dependent atomic-scale alloying and faceting, demonstrating a new pathway to the design of alloy nanocatalysts with enhanced activity and durability for fuel cells.« less

  10. Scattered Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux scattered impingement can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymer interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion re1ative is compared between the various interior locations and the external surface of a LEO spacecraft.

  11. Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.

  12. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    Beger, Lauren; Roberts, Lily; deGroh, Kim; Banks, Bruce

    2007-01-01

    In the low Earth orbit (LEO) space environment, spacecraft surfaces can be altered during atomic oxygen exposure through oxidation and erosion. There can be terrestrial benefits of such interactions, such as the modification of hydrophobic or hydrophilic properties of polymers due to chemical modification and texturing. Such modification of the surface may be useful for biomedical applications. For example, atomic oxygen texturing may increase the hydrophilicity of polymers, such as chlorotrifluoroethylene (Aclar), thus allowing increased adhesion and spreading of cells on textured Petri dishes. The purpose of this study was to determine the effect of atomic oxygen exposure on the hydrophilicity of nine different polymers. To determine whether hydrophilicity remains static after atomic oxygen exposure or changes with exposure, the contact angles between the polymer and a water droplet placed on the polymer s surface were measured. The polymers were exposed to atomic oxygen in a radio frequency (RF) plasma asher. Atomic oxygen plasma treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Significant decreases in the water contact angle occurred with atomic oxygen exposure. Fluorinated polymers were found to be less sensitive to changes in hydrophilicity for equivalent atomic oxygen exposures, and two of the fluorinated polymers became more hydrophobic. The majority of change in water contact angle of the non-fluorinated polymers was found to occur with very low fluence exposures, indicating potential cell culturing benefit with short treatment time.

  13. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the silicon wafers in the presence of activated carbon or in a freezer at -22°C. The enhancement of adhesive bond strength and durability for carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal surface and an increase in the concentration of hydroxyl groups in the oxide film. Following plasma activation, the total hydroxyl species concentration on stainless steel increased from 31% to 57%, while aluminum exhibited an increase from 4% to 16% hydroxyl species. Plasma activation of the surface led to an increase in bond strength of the different surfaces by up to 150% when using Cytec FM300 and FM300-2 epoxy adhesives. Wedge crack extension tests following plasma activation revealed cohesive failure percentages of 97% for carbon-fiber/epoxy composite bonded to stainless steel, and 96% for aluminum bonded to itself. The bond strength and durability of the substrates correlated with changes in the specific surface chemistry, not the wetting angle or the morphological properties of the material. This suggests that enhanced chemical bonding at the interface was responsible for the improvement in mechanical properties following plasma activation. The surface preparation of polymers and composites using atmospheric pressure plasmas is a promising technique for replacing traditional methods of surface preparation by sanding, grit blasting or peel ply. After oxygen plasma activation and joining the materials together with epoxy, one observes 100% cohesive failure within the cured film adhesive. Depending on the material, the lap shear strength can be increased several fold over that achieved by either solvent wiping or abrasion. The trends in adhesion with plasma exposure time do not correlate well with surface wetting or roughness; instead they correlate with the fraction of the polymer surface sites that are converted into carboxylic acid groups.

  14. Method of immobilizing weapons plutonium to provide a durable, disposable waste product

    DOEpatents

    Ewing, Rodney C.; Lutze, Werner; Weber, William J.

    1996-01-01

    A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

  15. Oxygen reduction reaction: A framework for success

    DOE PAGES

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  16. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    NASA Astrophysics Data System (ADS)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  17. Evaluation of atomic oxygen resistant protective coatings for fiberglass-epoxy composites in LEO

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.

    1989-01-01

    Fiberglass-epoxy composite masts are the prime structural members for the Space Station Freedom solar array. At the altitude where Space Station Freedom will operate, atomic oxygen atoms are the most predominant species. Atomic oxygen is highly reactive and has been shown to oxidize organic and some metallic materials. Tests with random and directed atomic oxygen exposure have shown that the epoxy is removed from the composite exposing brittle glass fibers which could be easily removed from the surface where they could contaminate Space Station Freedom Systems. Protection or fiber containment systems; inorganic based paints, aluminum braid, and a metal coating; were evaluated for resistance to atomic oxygen, vacuum ultraviolet radiation, thermal cycling, and mechanical flexing. All appeared to protect well against atomic oxygen and provide fiber containment except for the single aluminum braid covering. UV radiation resistance was acceptable and in general, thermal cycling and flexure had little to no effect on the mass loss rate for most coatings.

  18. Overview on recent upper atmosphere atomic oxygen measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Kaufmann, Martin; Chen, Qiuyu; Martin, Riese

    2017-04-01

    In recent years, new global datasets of atomic oxygen in the upper mesosphere and lower thermosphere have been presented. They are based on airglow measurements from low earth satellites. Surprisingly, the atomic oxygen abundance differs by 30-50% for similar atmospheric conditions. This paper gives an overview on the various atomic oxygen datasets available so far and presents most recent results obtained from measurements on Envisat. Differences between the datasets are discussed.

  19. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  20. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  1. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  2. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  3. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential atmore » 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.« less

  4. Exposure of LDEF materials to atomic oxygen: Results of EOIM 3

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.

    1995-01-01

    The third Effects of Oxygen Atom Interaction with Materials (EOIM 3) experiment flew on STS-46 from July 31 to August 8, 1992. The EOIM-3 sample tray was exposed to the low-earth orbit space environment for 58.55 hours at an altitude of 124 nautical miles resulting in a calculated total atomic oxygen (AO) fluence of 1.99 x 10(exp 20) atoms/sq cm. Five samples previously flown on the Long Duration Exposure Facility (LDEF) Experiment M0003 were included on the Aerospace EOIM 3 experimental tray: (1) Chemglaze A276 white thermal control paint from the LDEF trailing edge (TE); (2) S13GLO white thermal control paint from the LDEF TE; (3) S13GLO from the LDEF leading edge (LE) with a visible contamination layer from the LDEF mission; (4) Z306 black thermal control paint from the LDEF TE with a contamination layer from the LDEF mission; and (5) anodized aluminum from the LDEF TE with a contamination layer from the LDEF mission. The purpose of this experiment was twofold: (l) investigate the response of trailing edge LDEF materials to atomic oxygen exposure, thereby simulating LDEF leading edge phenomena; (2) investigate the response of contaminated LDEF samples to atomic oxygen in attempts to understand LDEF contamination-atomic oxygen interactions. This paper describes the response of these materials to atomic oxygen exposure, and compares the results of the EOIM 3 experiment to the LDEF mission and to ground-based atomic oxygen exposure studies.

  5. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  6. A spectral study of a radio-frequency plasma-generated flux of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E.; Brown, Kenneth G.; Lewis, Beverley W.

    1994-01-01

    The active environment of a radio-frequency (RF) plasma generator, with and without low-pressure oxygen, has been characterized through the identification of emission lines in the spectral region from 250 to 900 nm. The environment is shown to be dependent on the partial pressure of oxygen and the power applied to the RF generator. Atomic oxygen has been found in significant amounts as well as atomic hydrogen and the molecular oxygen species O2((sup 1)Sigma). The only charged species observed was the singly charged molecular ion O2(+). With a polymer specimen in the plasma chamber, carbon monoxide was also observed. The significance of these observations with respect to previous studies using this type of generator to stimulate material degradation in space is discussed. The possibility of using these generators as atomic oxygen sources in the development of oxygen atom fluorescence sensors is explored.

  7. Atomic Oxygen (AO) and Nitrogen (AN) In-situ Flux Sensor

    DTIC Science & Technology

    2016-03-10

    AFRL-AFOSR-VA-TR-2016-0126 DURIP 09) AN ATOMIC OXYGEN FLUX MONITOR FOR USE IN THE SEARCH FOR NEW AND BETT Malcolm Beasley LELAND STANFORD JUNIOR UNIV...Grant # FA9550-01-1-0433 M. R. Beasley, PI Stanford University Project Title: Atomic Oxygen (AO) and Nitrogen (AN) In-situ Flux Sensor...of actively controlled in-situ sources of atomic oxygen and nitrogen suitable for MBE application. The goal of this DURIP was to work with a

  8. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Matthew A; McCormick, Robert L; Baumgardner, Marc E.

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durabilitymore » issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.« less

  9. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  10. Nitrogen diffusion in hafnia and the impact of nitridation on oxygen and hydrogen diffusion: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathiyanarayanan, Rajesh, E-mail: rajessat@in.ibm.com, E-mail: rajesh.sathiyanarayanan@gmail.com; Pandey, R. K.; Murali, K. V. R. M.

    2015-01-21

    Using first-principles simulations, we have computed incorporation energies and diffusion barriers of ammonia, the nitrogen molecule and atomic nitrogen in monoclinic hafnia (m-HfO{sub 2}). Our calculations show that ammonia is likely to dissociate into an NH{sub 2} molecular unit, whereas the nitrogen molecule remains as a molecule either in the interstitial space or at an oxygen lattice site. The lowest energy pathway for the diffusion of atomic nitrogen interstitials consists of the hopping of the nitrogen interstitial between neighboring three-coordinated lattice oxygen atoms that share a single Hf atom, and the barrier for such hops is determined by a switchingmore » mechanism. The substitutional nitrogen atom shows a preference for diffusion through the doubly positive oxygen vacancy-mediated mechanism. Furthermore, we have investigated the impact of nitrogen atoms on the diffusion barriers of oxygen and hydrogen interstitials in m-HfO{sub 2}. Our results show that nitrogen incorporation has a significant impact on the barriers for oxygen and hydrogen diffusion: nitrogen atoms attract oxygen and hydrogen interstitials diffusing in the vicinity, thereby slowing down (reducing) their diffusion (diffusion length)« less

  11. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  12. Materials screening chamber for testing materials resistance to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Carruth, Ralph

    1989-01-01

    A unique test chamber for exposing material to a known flux of oxygen atoms is described. The capabilities and operating parameters of the apparatus include production of an oxygen atom flux in excess of 5 x 10 to the 16th atoms/sq cm-sec, controlled heating of the sample specimen, RF circuitry to contain the plasma within a small volume, and long exposure times. Flux measurement capabilities include a calorimetric probe and a light titration system. Accuracy and limitations of these techniques are discussed. An extension to the main chamber to allow simultaneous ultraviolet and atomic oxygen exposure is discussed. The oxygen atoms produced are at thermal energies. Sample specimens are maintained at any selected temperature between ambient and 200 C, to within + or - 2 C. A representative example of measurements made using the chamber is presented.

  13. Ultraviolet absorption experiment MA-059

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1976-01-01

    The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.

  14. Tutorial on Atomic Oxygen Effects and Contamination

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.

    2017-01-01

    Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.

  15. A sputtering derived atomic oxygen source for studying fast atom reactions

    NASA Technical Reports Server (NTRS)

    Ferrieri, Richard A.; Yung, Y. Chu; Wolf, Alfred P.

    1987-01-01

    A technique for the generation of fast atomic oxygen was developed. These atoms are created by ion beam sputtering from metal oxide surfaces. Mass resolved ion beams at energies up to 60 KeV are produced for this purpose using a 150 cm isotope separator. Studies have shown that particles sputtered with 40 KeV Ar(+) on Ta2O5 were dominantly neutral and exclusively atomic. The atomic oxygen also resided exclusively in its 3P ground state. The translational energy distribution for these atoms peaked at ca 7 eV (the metal-oxygen bond energy). Additional measurements on V2O5 yielded a bimodal distribution with the lower energy peak at ca 5 eV coinciding reasonably well with the metal-oxygen bond energy. The 7 eV source was used to investigate fast oxygen atom reactions with the 2-butene stereoisomers. Relative excitation functions for H-abstraction and pi-bond reaction were measured with trans-2-butene. The abstraction channel, although of minor relative importance at thermal energy, becomes comparable to the addition channel at 0.9 eV and dominates the high-energy regime. Structural effects on the specific channels were also found to be important at high energy.

  16. Atomic oxygen protective coating with resistance to undercutting at defect sites

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1994-01-01

    Structures composed at least partially of an organic substrate may be protected from oxidation by applying a catalyst onto said substrate for promoting the combination of atomic oxygen to molecular oxygen. The structure may also be protected by applying both a catalyst and an atomic oxygen shielding layer onto the substrate. The structures to be protected include spacecraft surfaces.

  17. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  18. LDEF microenvironments, observed and predicted

    NASA Astrophysics Data System (ADS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-04-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  19. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-01-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  20. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  1. Evaluation of Oxygen Interactions with Materials 3: Mission and induced environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Leger, Lubert J.; Rickman, Steven L.; Hakes, Charles L.; Bui, David T.; Hunton, Donald; Cross, Jon B.

    1995-01-01

    The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface.

  2. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  3. All-Atom Molecular-Level Computational Analyses of Polyurea/Fused-Silica Interfacial Decohesion Caused by Impinging Tensile Stress-Waves

    DTIC Science & Technology

    2014-01-01

    glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected to...of non-bridging (connected to only a single network forming cation) oxygen atoms per network polyhedron and takes on a zero value in the case of...network polyhedron and takes on a value of 4.0 in the case of fused silica. In addition to the three parameters mentioned above, the “seemingly

  4. Monte Carlo Technique Used to Model the Degradation of Internal Spacecraft Surfaces by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen is one of the predominant constituents of Earth's upper atmosphere. It is created by the photodissociation of molecular oxygen (O2) into single O atoms by ultraviolet radiation. It is chemically very reactive because a single O atom readily combines with another O atom or with other atoms or molecules that can form a stable oxide. The effects of atomic oxygen on the external surfaces of spacecraft in low Earth orbit can have dire consequences for spacecraft life, and this is a well-known and much studied problem. Much less information is known about the effects of atomic oxygen on the internal surfaces of spacecraft. This degradation can occur when openings in components of the spacecraft exterior exist that allow the entry of atomic oxygen into regions that may not have direct atomic oxygen attack but rather scattered attack. Openings can exist because of spacecraft venting, microwave cavities, and apertures for Earth viewing, Sun sensors, or star trackers. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft were simulated at the NASA Glenn Research Center by using Monte Carlo computational techniques. A two-dimensional model was used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of the distance into a parallel-walled cavity. The model allows the atomic oxygen arrival direction, the Maxwell Boltzman temperature, and the ram energy to be varied along with the interaction parameters of the degree of recombination upon impact with polymer or nonreactive surfaces, the initial reaction probability, the reaction probability dependence upon energy and angle of attack, degree of specularity of scattering of reactive and nonreactive surfaces, and the degree of thermal accommodation upon impact with reactive and non-reactive surfaces to be varied to allow the model to produce atomic oxygen erosion geometries that replicate actual experimental results from space. The degree of erosion of various interior locations was compared with the erosion that would occur external to the spacecraft. Results of one cavity model indicate that, at depths into a two-dimensional cavity that are equal to 10 cavity widths, the erosion on the walls of the cavity is less than that on the top surface by over 2 orders of magnitude. Wall erosion near the surface of a cavity depends on which wall is receiving direct atomic oxygen attack. However, deep in the cavity little difference is present. Testing of various cavity models such as these gives spacecraft designers an indication of the level of threat to sensitive interior surfaces for different geometries. Even though the Monte Carlo model is two-dimensional, it can be used to provide qualitative information about spacecraft openings that are three-dimensional by offering reasonable insight as to the nature of the attenuation of damage that occurs within a spacecraft in low Earth orbit. As shown, there is more erosion on the side seeing direct atomic oxygen attack until a depth of approximately 5 times the width of the opening, where the erosion is the same on both sides.

  5. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  6. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  7. Kinetics and mechanisms of some atomic oxygen reactions

    NASA Technical Reports Server (NTRS)

    Cvetanovic, R. J.

    1987-01-01

    Mechanisms and kinetics of some reactions of the ground state of oxygen atoms, O(3P), are briefly summarized. Attention is given to reactions of oxygen atoms with several different types of organic and inorganic compounds such as alkanes, alkenes, alkynes, aromatics, and some oxygen, nitrogen, halogen and sulfur derivatives of these compounds. References to some recent compilations and critical evaluations of reaction rate constants are given.

  8. The Effect of Low Earth Orbit Atomic Oxygen Exposure on Phenylphosphine Oxide-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    2000-01-01

    Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin film samples described herein were part of an atomic oxygen exposure experiment (AOE) and were exposed to primarily atomic oxygen (1 X 1019 atoms/cm2). The thin film samples consisted of three phosphine oxide containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, X-ray photoelectron spectroscopy, and weight loss data, it was found that atomic oxygen exposure of these materials efficiently produces a phosphate layer at the surface of the samples. This layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favorably with those obtained from samples exposed to atomic oxygen and or oxygen plasma in ground based exposure experiments. The results of the low Earth orbit atomic oxygen exposure on these materials will be compared with those of ground based exposure to AO.

  9. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  10. Operation of the computer model for microenvironment atomic oxygen exposure

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  11. Performance and properties of atomic oxygen protective coatings for polymeric materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Lamoreaux, Cynthia

    1992-01-01

    Such large LEO spacecraft as the Space Station Freedom will encounter high atomic oxygen fluences which entail the use of protective coatings for their polymeric structural materials. Such coatings have demonstrated polymer mass losses due to oxidation that are much smaller than those of unprotected materials. Attention is here given to protective and/or electrically conductive coatings of SiO(x), Ge, and indium-tin oxide which have been exposed to atomic oxygen in order to ascertain mass loss, electrical conductivity, and optical property dependence on atomic oxygen exposure.

  12. Comments on the interaction of materials with atomic oxygen

    NASA Technical Reports Server (NTRS)

    Torre, Larry P.; Pippin, H. Gary

    1987-01-01

    An explanation of the relative resistance of various materials to attack by atomic oxygen is presented. Data from both ground based and on-orbit experiments is interpreted. The results indicate the importance of bond strengths, size and structure of pendant groups, and fluorination to the resistance of certain polymers to atomic oxygen. A theory which provides a partial explanation of the degradation of materials in low Earth orbit due to surface recombination of oxygen atoms is also included. Finally, a section commenting on mechanisms of material degradation is provided.

  13. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  14. The NASA atomic oxygen effects test program

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.

    1988-01-01

    The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported.

  15. Low Earth Orbital Atomic Oxygen Interactions With Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen, formed in Earth s thermosphere, interacts readily with many materials on spacecraft flying in low Earth orbit (LEO). All hydrocarbon based polymers and graphite are easily oxidized upon the impact of approx.4.5 eV atomic oxygen as the spacecraft ram into the residual atmosphere. The resulting interactions can change the morphology and reduce the thickness of these materials. Directed atomic oxygen erosion will result in the development of textured surfaces on all materials with volatile oxidation products. Examples from space flight samples are provided. As a result of the erosive properties of atomic oxygen on polymers and composites, protective coatings have been developed and are used to increase the functional life of polymer films and composites that are exposed to the LEO environment. The atomic oxygen erosion yields for actual and predicted LEO exposure of numerous materials are presented. Results of in-space exposure of vacuum deposited aluminum protective coatings on polyimide Kapton indicate high rates of degradation are associated with aluminum coatings on both surfaces of the Kapton. Computational modeling predictions indicate that less trapping of the atomic oxygen occurs, with less resulting damage, if only the space-exposed surface is coated with vapor deposited aluminum rather than having both surfaces coated.

  16. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  17. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.

    PubMed

    Wu, Gang; Zelenay, Piotr

    2013-08-20

    Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various carbon nanostructures by catalyzing the decomposition of the nitrogen/carbon precursor. We can control the formation of different nanostructures during the synthesis of M-N-C catalysts. For example, in situ formed nitrogen-doped graphene-sheets can only be derived from polyaniline (PANI), probably due to structural similarities between the aromatic structures of PANI and graphene. Highly-graphitized carbon nanostructures may serve as a matrix for the formation of ORR-active groups with improved catalytic activity and durability, containing nitrogen and most probably also metal atoms. In the future, we will likely focus NPMC synthesis approaches on precise control of interactions between precursors of the metal and carbon/nitrogen during the heat treatment. The main purposes will be to maximize the number of active sites, optimize nitrogen doping levels, and generate morphologies capable of hosting active and stable ORR sites.

  18. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE PAGES

    Du, Lei; Luo, Langli; Feng, Zhenxing; ...

    2017-07-05

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  19. Volvo Penta 4.3 GL E15 Emissions and Durability Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoubul, G.; Cahoon, M.; Kolb, R.

    2011-10-01

    A new Volvo Penta carbureted 4.3 GL engine underwent emissions and dynamometer durability testing from break-in to expected end of life using an accelerated ICOMIA marine emissions cycle and E15 fuel. Only ethanol content was controlled. All aging used splash-blended E15 fuel. Exhaust emissions, exhaust gas temperature, torque, power, barometric pressure, air temperature, and fuel flow were measured at five intervals using site-blended E15 aging fuel and certification fuel (E0). The durability test cycle showed no noticeable impact on mechanical durability or engine power. Emissions performance degraded beyond the certification limit for this engine family, mostly occurring by 28% ofmore » expected life. Such degradation is inconsistent with prior experience. Comparisons showed that E15 resulted in lower CO and HC, but increased NOX, as expected for non-feedback-controlled carbureted engines with increased oxygen in the fuel. Fuel consumption also increased with E15 compared with E0. Throughout testing, poor starting characteristics were exhibited on E15 fuel for hot re-start and cold-start. Cranking time to start and smooth idle was roughly doubled compared with typical E0 operation. The carburetor was factory-set for lean operation to ensure emissions compliance. Test protocols did not include carburetor adjustment to account for increased oxygen in the E15 fuel.« less

  20. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  1. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

    PubMed Central

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-01-01

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520

  2. Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.

    PubMed

    Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi

    2017-02-10

    To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.

  3. A measurement of the angular distribution of 5 eV atomic oxygen scattered off a solid surface in earth orbit

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Peters, Palmer N.

    1986-01-01

    The angular distribution of 5 eV atomic oxygen scattered off a polished vitreous carbon surface was measured on a recent Space Shuttle flight. The experimental apparatus was of novel design, completely passive, and used thin silver films as the recording device for oxygen atoms. Most of the incident oxygen was contained in the reflected beam and remained in an active form and probably still atoms. Allowance was made for 12 percent loss of incident atoms which are converted to CO at the carbon surface. The scattered distribution which is wide lobular, peaking 15 deg in the forward direction, shows almost but not quite full accommodation.

  4. Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki

    NASA Astrophysics Data System (ADS)

    Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Yoshikawa, Ichiro; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Smith, H. Todd; Bagenal, Fran

    2018-05-01

    We report on the spatial distribution of a neutral oxygen cloud surrounding Jupiter's moon Io and along Io's orbit observed by the Hisaki satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exosphere mainly through atmospheric sputtering. Some of the neutral atoms escape from Io's gravitational sphere and form neutral clouds around Jupiter. The extreme ultraviolet spectrograph called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Japan Aerospace Exploration Agency's Hisaki satellite observed the Io plasma torus continuously in 2014-2015, and we derived the spatial distribution of atomic oxygen emissions at 130.4 nm. The results show that Io's oxygen cloud is composed of two regions, namely, a dense region near Io and a diffuse region with a longitudinally homogeneous distribution along Io's orbit. The dense region mainly extends on the leading side of Io and inside of Io's orbit. The emissions spread out to 7.6 Jupiter radii (RJ). Based on Hisaki observations, we estimated the radial distribution of the atomic oxygen number density and oxygen ion source rate. The peak atomic oxygen number density is 80 cm-3, which is spread 1.2 RJ in the north-south direction. We found more oxygen atoms inside Io's orbit than a previous study. We estimated the total oxygen ion source rate to be 410 kg/s, which is consistent with the value derived from a previous study that used a physical chemistry model based on Hisaki observations of ultraviolet emission ions in the Io plasma torus.

  5. Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system.

    PubMed

    Palla, A D; Zimmerman, J W; Woodard, B S; Carroll, D L; Verdeyen, J T; Lim, T C; Solomon, W C

    2007-07-26

    Laser oscillation at 1315 nm on the I(2P1/2)-->I(2P3/2) transition of atomic iodine has been obtained by a near resonant energy transfer from O2(a1Delta) produced using a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels of complexity to the singlet oxygen generator (SOG) kinetics which are not encountered in a classic purely chemical O2(a1Delta) generation system. The advanced model BLAZE-IV has been introduced to study the energy-transfer laser system dynamics and kinetics. Levels of singlet oxygen, oxygen atoms, and ozone are measured experimentally and compared with calculations. The new BLAZE-IV model is in reasonable agreement with O3, O atom, and gas temperature measurements but is under-predicting the increase in O2(a1Delta) concentration resulting from the presence of NO in the discharge and under-predicting the O2(b1Sigma) concentrations. A key conclusion is that the removal of oxygen atoms by NOX species leads to a significant increase in O2(a1Delta) concentrations downstream of the discharge in part via a recycling process; however, there are still some important processes related to the NOX discharge kinetics that are missing from the present modeling. Further, the removal of oxygen atoms dramatically inhibits the production of ozone in the downstream kinetics.

  6. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  7. The surface properties of fluorinated polyimides exposed to VUV and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1995-01-01

    The effect of atomic oxygen flux and VUV radiation alone and in combination on the surface of fluorinated polyimide films was studied using XPS spectroscopy. Exposure of fluorinated polyimides to VUV radiation alone caused no observable damage to the polymer surface, while an atomic oxygen flux resulted in substantial oxidation of the surface. On the other hand, exposure to VUV radiation and atomic oxygen in combination caused extensive oxidation of the polymer surface after only 2 minutes of exposure. The amount of oxidized carbon on the polymer surface indicated that there is aromatic ring opening oxidation. The changes in the O1s/C1s, N1s/C1s, and F1s/C1s ratios suggested that an ablative degradation process is highly favorable. A synergistic effect of VUV radiation in the presence of atomic oxygen is clearly evidenced from the XPS study. The atomic oxygen could be considered as the main factor in the degradation process of fluorinated polyimide films exposed to a low earth orbit environment.

  8. Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.

    PubMed

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Gille, P; Dubois, J-M; Gaudry, E

    2013-09-04

    Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111).

  9. Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices

    DOE PAGES

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...

    2016-10-24

    Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less

  10. Oxygen-modulated quantum conductance for ultrathin HfO 2 -based memristive switching devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter

    Memristive switching devices, candidates for resistive random access memory technology, have been shown to switch off through a progression of states with quantized conductance and subsequent noninteger conductance (in terms of conductance quantum G 0). We have performed calculations based on density functional theory to model the switching process for a Pt-HfO 2-Pt structure, involving the movement of one or two oxygen atoms. Oxygen atoms moving within a conductive oxygen vacancy filament act as tunneling barriers, and partition the filament into weakly coupled quantum wells. We show that the low-bias conductance decreases exponentially when one oxygen atom moves away frommore » interface. In conclusion, our results demonstrate the high sensitivity of the device conductance to the position of oxygen atoms.« less

  11. Nanoscopic analysis of oxygen segregation at tilt boundaries in silicon ingots using atom probe tomography combined with TEM and ab initio calculations.

    PubMed

    Ohno, Y; Inoue, K; Fujiwara, K; Kutsukake, K; Deura, M; Yonenaga, I; Ebisawa, N; Shimizu, Y; Inoue, K; Nagai, Y; Yoshida, H; Takeda, S; Tanaka, S; Kohyama, M

    2017-12-01

    We have developed an analytical method to determine the segregation levels on the same tilt boundaries (TBs) at the same nanoscopic location by a joint use of atom probe tomography and scanning transmission electron microscopy, and discussed the mechanism of oxygen segregation at TBs in silicon ingots in terms of bond distortions around the TBs. The three-dimensional distribution of oxygen atoms was determined at the typical small- and large-angle TBs by atom probe tomography with a low impurity detection limit (0.01 at.% on a TB plane) simultaneously with high spatial resolution (about 0.4 nm). The three-dimensional distribution was correlated with the atomic stress around the TBs; the stress at large-angle TBs was estimated by ab initio calculations based on atomic resolution scanning transmission electron microscopy data and that at small-angle TBs were calculated with the elastic theory based on dark-field transmission electron microscopy data. Oxygen atoms would segregate at bond-centred sites under tensile stress above about 2 GPa, so as to attain a more stable bonding network by reducing the local stress. The number of oxygen atoms segregating in a unit TB area N GB (in atoms nm -2 ) was determined to be proportional to both the number of the atomic sites under tensile stress in a unit TB area n bc and the average concentration of oxygen atoms around the TB [O i ] (in at.%) with N GB ∼ 50 n bc [O i ]. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    PubMed

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  14. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-04

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future.

  15. One-pot synthesis of a PtPd dendritic nanocube cage superstructure on graphenes as advanced catalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zheng, Yuanyuan; Qiao, Junhua; Yuan, Junhua; Shen, Jianfeng; Wang, Ai-Jun; Gong, Peijun

    2018-03-01

    How to use Pt economically and efficiently in the oxygen reduction reaction (ORR) is of theoretical and practical significance for the industrialization of the proton-exchange membrane fuel cells. In order to minimize Pt consumption and optimize the ORR performance, the ORR catalysts are recommended to be designed as a porous nanostructure. Herein, we report a one-pot solvothermal strategy to prepare PtPd dendritic nanocube cages via a galvanic replacement mechanism triggered by an I- ion. These PtPd alloy crystals are nanoporous, and uniformly dispersed on reduced graphene oxides (RGOs). The size of the PtPd dendritic nanocube cages can be easily tuned from 20-80 nm by controlling their composition. Their composition is optimized to be 1:5 Pt/Pd atomic ratio for these RGO-supported PtPd dendritic nanocages. This catalyst shows superior ORR performance with a specific activity of 2.01 mA cm-2 and a mass activity of 4.45 A mg-1 Pt, far above those for Pt/C catalysts (0.288 mA cm-2 for specific activity, and 0.21 A mg-1 Pt for mass activity). In addition to ORR activity, it also exhibits robust durability with almost negligible decay in ORR mass activity after 10 000 voltammetric cycling.

  16. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  17. MISSE Scattered Atomic Oxygen Characterization Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2006-01-01

    An experiment designed to measure the atomic oxygen (AO) erosion profile of scattered AO was exposed to Low Earth Orbital (LEO) AO for almost four years as part of the Materials International Space Station Experiment 1 and 2 (MISSE 1 and 2). The experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), Tray 1, attached to the exterior of the International Space Station (ISS) Quest Airlock. The experiment consisted of an aperture disk lid of Kapton H (DuPont) polyimide coated on the space exposed surface with a thin AO durable silicon dioxide film. The aperture lid had a small hole in its center to allow AO to enter into a chamber and impact a base disk of aluminum. The AO that scattered from the aluminum base could react with the under side of the aperture lid which was coated sporadically with microscopic sodium chloride particles. Scattered AO erosion can occur to materials within a spacecraft that are protected from direct AO attack but because of apertures in the spacecraft the AO can attack the interior materials after scattering. The erosion of the underside of the Kapton lid was sufficient to be able to use profilometry to measure the height of the buttes that remained after washing off the salt particles. The erosion pattern indicated that peak flux of scattered AO occurred at and angle of approximately 45 from the incoming normal incidence on the aluminum base unlike the erosion pattern predicted for scattering based on Monte Carlo computational predictions for AO scattering from Kapton H polyimide. The effective erosion yield for the scattered AO was found to be a factor of 0.214 of that for direct impingement on Kapton H polyimide.

  18. The Development of a Method to Extract High Purity Oxygen From the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Wu, Dongchuan

    1994-01-01

    A glow-discharge in an ambient Mars atmosphere (total pressure of 5 torr, composed of 96% carbon dioxide) results in the dissociation of carbon dioxide molecules into carbon monoxide and oxygen. If the glow-discharge cone is maintained adjacent and close to a silver membrane, operated at temperatures above 400 deg. C, atomic and molecular oxygen, produced by the glow-discharge, can be separated from the other species by atomic diffusion through the membrane to an ultrahigh vacuum region where the desorbed O2 is then collected. Experiments have been conducted to study the behavior of the glow discharge in both molecular oxygen and carbon dioxide environments, and to study the interaction of atomic and molecular oxygen with silver. It was found that, with this geometry, more than 75% of the CO2 was dissociated into CO and O with only 5 mA discharge current and that the permeation flux increased linearly with discharge current. Only 0.65% of the generated atomic oxygen was adsorbed at the membrane because it quickly recombined to form O2 as it migrated toward the membrane. The atomic oxygen arriving at the membrane, bypassed the thermal dissociative adsorption and therefore had a much higher sticking coefficient. This higher sticking coefficient resulted in a greatly increased surface concentration of oxygen which greatly increased the oxygen flux through the membrane. The sticking coefficient of the atomic oxygen on silver was estimated by using a Langmuir type model and was found to be close to 1 at room temperature. Since most of the gas phase atomic oxygen quickly recombined to form O2 as it migrated toward the silver membrane, both a small amount of atomic oxygen and a relative large amount of molecular oxygen components will adsorb on the hot Ag membrane. But because of the much higher sticking coefficient for atomic oxygen on silver, the atomic component dominated the adsorption. It was also found that the oxygen flux through the Ag membranes is diffusion controlled and therefore proportional to the reciprocal of the membrane thickness. Supported pin hole free Ag membranes with thicknesses of 12 micro m have been developed in this work. Furthermore, a pin hole free Ag membrane that was grown by a combination of Ar ion bombardment assisted physical vapor deposition and intermediate burnishing with a thickness less than 1 micro m is being developed which will substantially improve the oxygen flux level. Thickness of 1 micro m will permit flux levels of at least 106 molecules/cm2s. With this flux level, less than 1.5 m2 membrane surface area would be needed to support an astronaut on a continual basis on the Mars surface. The results of this work show that this approach of producing oxygen from the CO2 Martian atmosphere can eliminate mechanical filtration, compression and high temperature heating of the Mars atmosphere proposed previously by electrochemical methods.

  19. Fast Three-Dimensional Method of Modeling Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Banks, Bruce A.

    2002-01-01

    A method is presented to model atomic oxygen erosion of protected polymers in low Earth orbit (LEO). Undercutting of protected polymers by atomic oxygen occurs in LEO due to the presence of scratch, crack or pin-window defects in the protective coatings. As a means of providing a better understanding of undercutting processes, a fast method of modeling atomic-oxygen undercutting of protected polymers has been developed. Current simulation methods often rely on computationally expensive ray-tracing procedures to track the surface-to-surface movement of individual "atoms." The method introduced in this paper replaces slow individual particle approaches by substituting a model that utilizes both a geometric configuration-factor technique, which governs the diffuse transport of atoms between surfaces, and an efficient telescoping series algorithm, which rapidly integrates the cumulative effects stemming from the numerous atomic oxygen events occurring at the surfaces of an undercut cavity. This new method facilitates the systematic study of three-dimensional undercutting by allowing rapid simulations to be made over a wide range of erosion parameters.

  20. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    PubMed

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  1. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  3. The Effect of Ash and Inorganic Pigment Fill on the Atomic Oxygen Erosion of Polymers and Paints (ISMSE-12)

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Simmons, Julie C.; de Groh, Kim K.; Miller, Sharon K.

    2012-01-01

    Low atomic oxygen fluence (below 1x10(exp 20) atoms/sq cm) exposure of polymers and paints that have a small ash content and/or inorganic pigment fill does not cause a significant difference in erosion yield compared to unfilled (neat) polymers or paints. However, if the ash and/or inorganic pigment content is increased, the surface population of the inorganic content will begin to occupy a significant fraction of the surface area as the atomic oxygen exposure increases because the ash is not volatile and remains as a loosely attached surface layer. This results in a reduction of the flux of atomic oxygen reacting with the polymer and a reduction in the rate of erosion of the polymer remaining. This paper presents the results of ground laboratory and low Earth orbital (LEO) investigations to evaluate the fluence dependence of atomic oxygen erosion yields of polymers and paints having inorganic fill content.

  4. Study of the reaction of atomic oxygen with aerosols

    NASA Technical Reports Server (NTRS)

    Akers, F. I.; Wightman, J. P.

    1975-01-01

    The rate of disappearance of atomic oxygen was measured at several pressures in a fast flow pyrex reactor system with its walls treated with (NH4)2SO4 (s), H2SO4 (l), and NH4CL (s). Atomic oxygen, P-3 was generated by dissociation of pure, low pressure oxygen in a microwave discharge. Concentrations of atomic oxygen were measured at several stations in the reactor system using chemiluminescent titration with NO2. Recombination efficiencies calculated from experimentally determined wall recombination rate constants are in good agreement with reported values for clean Pyrex and an H2SO4 coated wall. The recombination efficiency for (NH4)2SO4, results in a slightly lower value than for H2S04. A rapid exothermic reaction between atomic oxygen and the NH4Cl wall coating prevented recombination efficiency determination for this coating. The results show that the technique is highly useful for wall recombination measurements and as a means of extrapolating to the case of free stream aerosol-gas interactions.

  5. Loss of oxygen from Venus

    NASA Astrophysics Data System (ADS)

    McElroy, M. B.; Prather, M. J.; Rodriguez, J. M.

    1982-06-01

    Ionization of thermal and nonthermal oxygen atoms above the plasmapause on Venus supplies an escape flux for O averaging 6 x 10 to the 6th atoms/sq cm-sec. Hydrogen and oxygen atoms escape with stoichiometry characteristic of water. It is argued that escape of H is controlled by the oxidation state of the atmosphere, regulated by escape of O.

  6. Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.

    1977-01-01

    Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.

  7. Femtosecond, two-photon laser-induced-fluorescence imaging of atomic oxygen in an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.

    2015-06-01

    Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8   ×   1015 to 2.0   ×   1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.

  8. Environmental effects on passive thermal control materials of the space station freedom

    NASA Astrophysics Data System (ADS)

    Jones, C. A.; David, K. E.; LeVesque, R. J.; Babel, H. W.

    The long-life Space Station Freedom (SSF) has power and weight requirements that are not to be exceeded during the detailed design development. There are requirements for both minimum and maximum temperatures associated with allowable fluid temperature ranges as well as prevention of astronaut injury during extravehicular activity, such as frozen or burned skin. In selected areas, temperature gradients must be controlled to prevent distortion of the primary structure. SSF will fly in low Earth orbit, in which atomic oxygen, ultraviolet radiation, meteoroid/orbital debris impacts, and plasma coupling are considered some of the most damaging constituents. These, in conjunction with hardware-induced contamination, required McDonnell Douglas Aerospace to focus on thermal control coatings based on the more durable metals, oxides, and fluorinated polymers. This paper describes the approach and rationale that McDonnell Douglas Aerospace employed for SSF Work Package 2 to provide the required thermal control coatings and insulation to ensure that the operational temperatures remain within acceptable limits.

  9. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Peplinski, D. R.

    1985-01-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  10. Surface interaction of polyimide with oxygen ECR plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  11. An e.s.c.a. study of atomic oxygen interactions with phosphazene-coated polyimide films

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.; Finney, Lorie

    1991-01-01

    Metallic as well as most nonmetallic materials experience oxidation and mass loss via surface erosion in low earth orbit as shown in previous Space Shuttle flights. This study is an evaluation of select polyphosphazene polymers and their resistance to atomic oxygen attack. Electron spectroscopy for chemical analysis examinations of the surfaces of polyphosphazene coatings were monitored for microstructural changes induced during exposures to atomic oxygen. Sample exposures in oxygen plasmas and O(3P) beam were compared as to their effect on surface compositional changes in the polyphosphazene coating. High resolution line scans revealed rearrangements in the polymer backbone and scissioning reactions involving fluorocarbon units of long chain fluoroalkoxy pendant groups. Atom percents and peak areas of all species provided a detailed profile of the microstructural changes induced in phosphazene polymers as a result of exposures to atomic oxygen.

  12. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  13. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  14. Recovery of a Charred Painting Using Atomic Oxygen Treatment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.

    1999-01-01

    A noncontact method is described which uses atomic oxygen to remove soot and char from the surface of a painting. The atomic oxygen was generated by the dissociation of oxygen in low pressure air using radio frequency energy. The treatment, which is an oxidation process, allows control of the amount of material to be removed. The effectiveness of char removal from half of a fire-damaged oil painting was studied using reflected light measurements from selected areas of the painting and by visual and photographic observation. The atomic oxygen was able to effectively remove char and soot from the treated half of the painting. The remaining loosely bound pigment was lightly sprayed with a mist to replace the binder and then varnish was reapplied. Caution should he used when treating an untested paint medium using atomic oxygen. A representative edge or corner should he tested first in order to determine if the process would be safe for the pigments present. As more testing occurs, a greater knowledge base will be developed as to what types of paints and varnishes can or cannot be treated using this technique. With the proper precautions, atomic oxygen treatment does appear to be a technique with great potential for allowing very charred, previously unrestorable art to be salvaged.

  15. A study of the oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge using an ionization region model

    NASA Astrophysics Data System (ADS)

    Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.

    2017-05-01

    The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.

  16. Atomic oxygen damage characterization by photothermal scanning

    NASA Technical Reports Server (NTRS)

    Williams, A. W.; Wood, N. J.; Zakaria, A. B.

    1993-01-01

    In this paper we use a photothermal imaging technique to characterize the damage caused to an imperfectly coated gold-coated Kapton sample exposed to successively increased fluences of atomic oxygen in a laboratory atomic source.

  17. Atomic oxygen effects measurements for shuttle missions STS-8 and 41-G

    NASA Technical Reports Server (NTRS)

    Visentine, James T. (Compiler)

    1988-01-01

    The effects of the atomic oxygen interactions upon optical coatings, thin metallized films, and advanced spacecraft materials, such as high temperature coatings for infrared optical systems are summarized. Also included is a description of a generic model proposed by JPL, which may explain the atomic oxygen interaction mechanisms that lead to surface recession and weight loss.

  18. Atomic Oxygen Cleaning of Unpainted Plaster Sculptures

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2017-01-01

    Atomic oxygen erosion of polymers has been found to be a threat to spacecraft in low Earth orbit. As a result ground facilities have been developed to identify coatings to protect polymers such as used for solar array blankets. As a result of extensive laboratory testing, it was discovered that soot and other organic contamination on paintings could be readily removed by atomic oxygen interactions with minimal damage to the artwork. No method, other than dusting, has been found to be effective in the cleaning of unpainted plaster sculptures This presentation discusses the atomic oxygen interaction processes and how effective they are for cleaning soot damaged unpainted plaster sculptures.

  19. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  20. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  1. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  2. Automated Reflectance Measurement System Designed and Fabricated to Determine the Limits of Atomic Oxygen Treatment of Art Through Contrast Optimization

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Rutledge, Sharon K.

    2000-01-01

    Atomic oxygen generated in ground-based research facilities has been used to not only test erosion of candidate spacecraft materials but as a noncontact technique for removing organic deposits from the surfaces of artwork. NASA has patented the use of atomic oxygen to remove carbon-based soot contamination from fire-damaged artwork. The process of cleaning soot-damaged paintings with atomic oxygen requires exposures for variable lengths of time, dependent on the condition of a painting. Care must be exercised while cleaning to prevent the removal of pigment. The cleaning process must be stopped as soon as visual inspection or surface reflectance measurements indicate that cleaning is complete. Both techniques rely on optical comparisons of known bright locations against known dark locations on the artwork being cleaned. Difficulties arise with these techniques when either a known bright or dark location cannot be determined readily. Furthermore, dark locations will lighten with excessive exposure to atomic oxygen. Therefore, an automated test instrument to quantitatively characterize cleaning progression was designed and developed at the NASA Glenn Research Center at Lewis Field to determine when atomic oxygen cleaning is complete.

  3. Effects of atomic oxygen on polymeric materials flown on EOIM-3

    NASA Technical Reports Server (NTRS)

    Kamenetzky, Rachel R.; Linton, Roger C.; Finckenor, Miria M.; Vaughn, Jason A.

    1995-01-01

    Diverse polymeric materials, including several variations of Kapton, were flown on STS-46 as part of the Evaluation of Oxygen Interaction with Materials Experiment (EOIM-3). These materials were flown in the cargo bay and exposed to the space environment July 31 - August 8, 1992, including 40 hours of direct atomic oxygen impingement. The atomic oxygen exposure was approximately 2.2 x 10(exp 20) atoms/sq cm. Polymeric materials flown on EOIM-3 include coated and uncoated Kapton, Tefzel ETFE, Lexan, FEP and TFE Teflon, bulk Halar and PEEK, S383 silicone and Viton elastomeric seal material. Analyses performed included thickness measurements using Dektak and eddy current methods, mass loss, resistance, permeability, hardness, and FTIR. The effects of stress and the space environment on Kapton were also evaluated. Previous EOIM missions on STS-5 and STS-8 and the Long Duration Exposure Facility also contained polymeric material samples. Data from these previous flights are shown for comparison, as well as ground simulation of space environment effects using both thermal energy flow tubes and 5 eV neutral atomic oxygen beam facilities. Reaction efficiencies for the various atomic oxygen exposure conditions are discussed.

  4. Adsorption of O_{2} on Ag(111): Evidence of Local Oxide Formation.

    PubMed

    Andryushechkin, B V; Shevlyuga, V M; Pavlova, T V; Zhidomirov, G M; Eltsov, K N

    2016-07-29

    The atomic structure of the disordered phase formed by oxygen on Ag(111) at low coverage is determined by a combination of low-temperature scanning tunneling microscopy and density functional theory. We demonstrate that the previous assignment of the dark objects in STM to chemisorbed oxygen atoms is incorrect and incompatible with trefoil-like structures observed in atomic-resolution images in current work. In our model, each object is an oxidelike ring formed by six oxygen atoms around the vacancy in Ag(111).

  5. Influence of Atomic Oxygen Exposure on Friction Behavior of 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Ye, Z.; Dong, S.; Zhang, L.; Zhang, Z.

    Atomic oxygen (AO) exposure testing has been conducted on a 321 stainless steel rolled 1 mm thick sheet to simulate the effect of AO environment on steel in low Earth orbit (LEO). An atomic oxygen exposure facility was employed to carry out AO experiments with the fluence up to ~1021 atom/cm2. The AO exposed specimens were evaluated in air at room temperature using a nanoindenter and a tribological system. The exposed surfaces were analyzed usign XPS technique.

  6. Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction

    DOE PAGES

    Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; ...

    2017-01-19

    Here, carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of themore » catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.« less

  7. Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Yang, Xuan; Roling, Luke T.; Vara, Madeline; ...

    2016-09-23

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt–Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. Here, after 10 000 cycles of potential cycling in the range of 0.60–1.0 V as in an accelerated durability test, the composition of the nanocagesmore » changed to Pt 56Ag 44, together with a specific activity of 1.23 mA cm –2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm –2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O–O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg –1 Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg –1 Pt).« less

  8. Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuan; Roling, Luke T.; Vara, Madeline

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt–Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. Here, after 10 000 cycles of potential cycling in the range of 0.60–1.0 V as in an accelerated durability test, the composition of the nanocagesmore » changed to Pt 56Ag 44, together with a specific activity of 1.23 mA cm –2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm –2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O–O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg –1 Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg –1 Pt).« less

  9. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Jie; Li, Jing; Jiang, Gaopeng

    Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less

  10. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    PubMed Central

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  11. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    PubMed

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  12. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction

    DOE PAGES

    Ying, Jie; Li, Jing; Jiang, Gaopeng; ...

    2017-11-29

    Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less

  13. Oxygen atom reaction with shuttle materials at orbital altitudes

    NASA Technical Reports Server (NTRS)

    Leger, L. J.

    1982-01-01

    Surfaces of materials used in the space shuttle orbiter payload bay and exposed during STS-1 through STS-3 were examined after flight. Paints and polymers, in particular Kapton used on the television camera thermal blanket, showed significant change. Generally, the change was a loss of surface gloss on the polymer with apparent aging on the paint surfaces. The Kapton surfaces showed the greatest change, and postflight analyses showed mass loss of 4.8 percent on STS-2 and 35 percent on STS-3 for most heavily affected surfaces. Strong shadow patterns were evident. The greatest mass loss was measured on surfaces which were exposed to solar radiation in conjunction with exposure in the vehicle velocity vector. A mechanism which involves the interaction of atomic oxygen with organic polymer surfaces is proposed. Atomic oxygen is the major ambient species at low orbital altitudes and presents a flux of 8 x 10 to the 14th power atoms/cu cm sec for reaction. Correlation of the expected mass loss based on ground-based oxygen atom/polymer reaction rates shows lower mass loss of the Kapton than measured. Consideration of solar heating effects on reaction rates as well as the high oxygen atom energy due to the orbiter's orbital velocity brings the predicted and measured mass loss in surprisingly good agreement. Flight sample surface morphology comparison with ground based Kapton/oxygen atom exposures provides additional support for the oxygen interaction mechanism.

  14. Ice surfaces in the mesosphere: Absence of dangling bonds in the presence of atomic oxygen

    NASA Astrophysics Data System (ADS)

    Boulter, James E.; Morgan, Christopher G.; Marschall, Jochen

    2005-07-01

    Ice deposition experiments in the presence of microwave discharge-dissociated molecular oxygen suggest heterogeneous interactions between dangling OH bonds on the ice surface and atomic oxygen. Ice films deposited on a gold substrate at temperatures of 115, 130, and 140 K from oxygen/water gas mixtures representative of the summertime polar mesosphere exhibit infrared absorption features characteristic of dangling bonds, whereas films grown in the presence of atomic oxygen do not. Dangling bond spectral features are shown to diminish rapidly when the microwave discharge is activated during ice deposition. Similar decreases were not seen when the gas stream was heated or when the ice film was slowly annealed from 130 to 160 K. One interpretation of these results is that atomic oxygen binds to dangling bond sites during ice growth, a phenomenon that may also occur during the formation of ice particles observed just below the cold summertime mesopause.

  15. Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose

    NASA Astrophysics Data System (ADS)

    Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru

    2014-10-01

    We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.

  16. Carbon supported MnO2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan

    2017-05-01

    The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.

  17. Effect of reactor loading on atomic oxygen concentration as measured by NO chemiluminescence

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.

    1989-01-01

    It has previously been observed that the etch rate of polyethylene samples in the afterglow of an RF discharge in oxygen increases with reactor loading. This enhancement of the etch rate is attributed to reactive gas phase products of the polymer etching. In the present work, emission spectroscopy is employed to examine the species present in the gas phase during etching of polyethylene. In particular, the concentration of atomic oxygen downstream from the polyethylene samples is studied as a function of the reactor loading. It is found that the concentration of atomic oxygen increases as the reactor loading is increased. The increase of etch rate with increased reactor loading is attributed to the increase of atomic oxygen concentration in the vicinity of the sample.

  18. Anomalous diffusion of single metal atoms on a graphene oxide support

    DOE PAGES

    Furnival, Tom; Leary, Rowan K.; Tyo, Eric C.; ...

    2017-04-21

    Recent studies of single-atom catalysts open up the prospect of designing exceptionally active and environmentally efficient chemical processes. The stability and durability of such catalysts is governed by the strength with which the atoms are bound to their support and their diffusive behaviour. Here we use aberration-corrected STEM to image the diffusion of single copper adatoms on graphene oxide. As a result, we discover that individual atoms exhibit anomalous diffusion as a result of spatial and energetic disorder inherent in the support, and interpret the origins of this behaviour to develop a physical picture for the surface diffusion of singlemore » metal atoms.« less

  19. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    A pulsed high flux source of nearly monoenergetic atomic oxygen was designed, built, and successfully demonstrated. Molecular oxygen at several atmospheres pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. An 18 J pulsed CO2 TEA laser is focused to intensities greater than 10(9) W/sq cm in the nozzle throat to generate a laser-induced breakdown. The resulting plasma is heated in excess of 20,000 K by a laser supported detonation wave, and then rapidly expands and cools. Nozzle geometry confines the expansion to provide rapid electron-ion recombination into atomic oxygen. Average O atom beam velocities from 5 to 13 km/s were measured at estimated fluxes to 10(18) atoms per pulse. Preliminary materials testing has produced the same surface oxygen enrichment in polyethylene samples as obtained on the STS-8 mission. Scanning electron microscope examinations of irradiated polymer surfaces reveal an erosion morphology similar to that obtained in low Earth orbit, with an estimated mass removal rate of approx. 10(-24) cu cm/atom. The characteristics of the O atom source and the results of some preliminary materials testing studies are reviewed.

  20. ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.

    2004-01-01

    Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also discussed.

  1. Effects of transition metal doping in Pt/M-TiO2 (M = V, Cr, and Nb) on oxygen reduction reaction activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jun-Hyuk; Kwon, Gihan; Lim, Hankwon

    High cost and low durability are unresolved issues that impede the commercialization of proton exchange membrane fuel cells (PEMFCs). To overcome these limitations, Pt/TiO2 is reported as an alternative electrocatalyst for enhancing the oxygen reduction reaction (ORR) activity and/or durability of the system. However, the low electrical conductivity of TiO2 is a drawback that may be addressed by doping. To date, most reports related to Pt/doped-TiO2 focus on changes in the catalyst activity caused by the Pt-TiO2 interaction (metal -support interaction), instead of the effect of doping itself; doping is merely considered to enhance the electrical conductivity of TiO2. Inmore » this study, we discuss the variation in the electronic fine structure of Pt caused by the dopant, and its correlation with the ORR activity. More extensive contraction of the Pt lattice in Pt/M-TiO2 (M = V, Cr, and Nb) relative to Pt/TiO2 and Pt/C leads to outstanding ORR specific activity of Pt/M-TiO2. Notably, a fourfold increase of the specific activity is achieved with Pt/V-TiO2 relative to Pt/C. Furthermore, an accelerated durability test (ADT) of Pt/V-TiO2 demonstrates that this system is three times more durable than conventional Pt/C due to the metal support interaction.« less

  2. Rambutan-like CNT-Al2O3 scaffolds for high-performance cathode catalyst layers of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Chang, KwangHyun; Cho, Seonghun; Lim, Eun Ja; Park, Seok-Hee; Yim, Sung-Dae

    2018-03-01

    Rambutan-like CNT-Al2O3 scaffolds are introduced as a potential candidate for CNT-based catalyst supports to overcome the CNT issues, such as the easy bundling in catalyst ink and the poor pore structure of the CNT-based catalyst layers, and to achieve high MEA performance in PEFCs. Non-porous α-phase Al2O3 balls are introduced to enable the growth of multiwalled CNTs, and Pt nanoparticles are loaded onto the CNT surfaces. In a half-cell, the Pt/CNT-Al2O3 catalyst shows much higher durability than those of a commercial Pt/C catalyst even though it shows lower oxygen reduction reaction (ORR) activity than Pt/C. After using the decal process for MEA formation, the Pt/CNT-Al2O3 shows comparable initial performance characteristics to Pt/C, overcoming the lower ORR activity, mainly due to the facile oxygen transport in the cathode catalyst layers fabricated with the CNT-Al2O3 scaffolds. The Pt/CNT-Al2O3 also exhibits much higher durability against carbon corrosion than Pt/C owing to the durable characteristics of CNTs. Systematic analysis of single cell performance for both initial and after degradation is provided to understand the origin of the high initial performance and durable behavior of Pt/CNT-Al2O3-based catalyst layers. This will provide insights into the design of electrocatalysts for high-performance MEAs in PEFCs.

  3. Oxidation kinetics and soot formation

    NASA Technical Reports Server (NTRS)

    Glassman, I.; Brezinsky, K.

    1983-01-01

    The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.

  4. Densification and Devitrification of Fused Silica Induced by Ballistic Impact: A Computational Investigation

    DTIC Science & Technology

    2015-03-25

    lime glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected...of metallic force-field functions (in the pure metallic environment) within the force-field function database used in the present work. Consequently

  5. Secondary Interstellar Oxygen in the Heliosphere: Numerical Modeling and Comparison with IBEX-Lo Data

    NASA Astrophysics Data System (ADS)

    Baliukin, I. I.; Izmodenov, V. V.; Möbius, E.; Alexashov, D. B.; Katushkina, O. A.; Kucharek, H.

    2017-12-01

    Quantitative analysis of the interstellar heavy (oxygen and neon) atom fluxes obtained by the Interstellar Boundary Explorer (IBEX) suggests the existence of the secondary interstellar oxygen component. This component is formed near the heliopause due to charge exchange of interstellar oxygen ions with hydrogen atoms, as was predicted theoretically. A detailed quantitative analysis of the fluxes of interstellar heavy atoms is only possible with a model that takes into account both the filtration of primary and the production of secondary interstellar oxygen in the boundary region of the heliosphere as well as a detailed simulation of the motion of interstellar atoms inside the heliosphere. This simulation must take into account photoionization, charge exchange with the protons of the solar wind and solar gravitational attraction. This paper presents the results of modeling interstellar oxygen and neon atoms through the heliospheric interface and inside the heliosphere based on a three-dimensional kinetic-MHD model of the solar wind interaction with the local interstellar medium and a comparison of these results with the data obtained on the IBEX spacecraft.

  6. Performance and durability of improved air-atomizing splash-cone fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1974-01-01

    An improved design of air-atomizing fuel nozzles was determined from a study of four differently shaped splash-cone fuel nozzles after 56 hr of durability testing in a combustor segment. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures of 41 to 203 N/cm, inlet-air temperatures of 477 to 811 K, and a reference velocity of 21.3 m/sec. Flat-tip fuel nozzles showed the least erosion damage and at a combustor operating condition of 700 K and 101 N/sq cm an oxides-of-nitrogen emission index of 12 and a smoke number of approximately 18 with a fuel-air ratio of 0.018. Emission indices for carbon monoxide and unburned hydrocarbons were 44 and 16, respectively, at simulated idle conditions of 477 K and 41 N/sq cm.

  7. Intelsat solar array coupon atomic oxygen flight experiment

    NASA Technical Reports Server (NTRS)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-01-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  8. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.

    PubMed

    Kim, Ji Eun; Lim, Joonwon; Lee, Gil Yong; Choi, Sun Hee; Maiti, Uday Narayan; Lee, Won Jun; Lee, Ho Jin; Kim, Sang Ouk

    2016-01-27

    Electrochemical oxygen redox reactions are the crucial elements for energy conversion and storage including fuel cells and metal air batteries. Despite tremendous research efforts, developing high-efficient, low-cost, and durable bifunctional oxygen catalysts remains a major challenge. We report a new class of hybrid material consisting of subnanometer thick amorphous cobalt hydroxide anchored on NCNT as a durable ORR/OER bifunctional catalyst. Although amorphous cobalt species-based catalysts are known as good OER catalysts, hybridizing with NCNT successfully enhanced ORR activity by promoting a 4e reduction pathway. Abundant charge carriers in amorphous cobalt hydroxide are found to trigger the superior OER activity with high current density and low Tafel slope as low as 36 mV/decade. A remarkably high OER turnover frequency (TOF) of 2.3 s(-1) at an overpotential of 300 mV was obtained, one of the highest values reported so far. Moreover, the catalytic activity was maintained over 120 h of cycling. The unique subnanometer scale morphology of amorphous hydroxide cobalt species along with intimate cobalt species-NCNT interaction minimizes the deactivation of catalyst during prolonged repeated cycles.

  9. A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes

    DOE PAGES

    Wang, Jie; Wu, Zexing; Han, Lili; ...

    2017-03-07

    Here, we develop a simple one-pot synthetic strategy for the general preparation of nitrogen doped carbon supported metal/metal oxides (Co@CoO/NDC, Ni@NiO/NDC and MnO/NDC) derived from the complexing function of (ethylenediamine)tetraacetic acid (EDTA). EDTA serves not only as a resource to tune the morphology in terms of the complexation constant for M–EDTA, but also as a nitrogen and oxygen source for nitrogen doping and metal oxide formation, respectively. When the materials are used as electrocatalysts for the oxygen electrode reaction, Co@CoO/NDC-700 and MnO/NDC-700 show superior electrocatalytic activity towards the oxygen reduction reaction (ORR), while Co@CoO/NDC-700 and Ni@NiO/NDC-700 exhibit excellent oxygen evolutionmore » reaction (OER) activities. Taken together, the resultant Co@CoO/NDC-700 exhibits the best catalytic activity with favorable reaction kinetics and durability as a bi-functional catalyst for the ORR and OER, which is much better than the other two catalysts, Pt/C and Ir/C. Moreover, as an air electrode for a homemade zinc–air battery, Co@CoO/NDC-700 shows superior cell performance with a highest power density of 192.1 mW cm -2, the lowest charge–discharge overpotential and high charge–discharge durability over 100 h.« less

  10. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.

    PubMed

    Jung, Yong Chae; Bhushan, Bharat

    2009-12-22

    Superhydrophobic surfaces with high contact angle and low contact angle hysteresis exhibit a self-cleaning effect and low drag for fluid flow. The lotus (Nelumbo nucifera) leaf is one of the examples found in nature for superhydrophobic surfaces. For the development of superhydrophobic surfaces, which is important for various applications such as glass windows, solar panels, and microchannels, materials and fabrication methods need to be explored to provide mechanically durable surfaces. It is necessary to perform durability studies on these surfaces. Carbon nanotube (CNT), composite structures which would lead to superhydrophobicity, self-cleaning, and low-drag, were prepared using a spray method. As a benchmark, structured surfaces with lotus wax were also prepared to compare with the durability of CNT composite structures. To compare the durability of the various fabricated surfaces, waterfall/jet tests were conducted to determine the loss of superhydrophobicity by changing the flow time and pressure conditions. Wear and friction studies were also performed using an atomic force microscope (AFM) and a ball-on-flat tribometer. The changes in the morphology of the structured surfaces were examined by AFM and optical imaging. We find that superhydrophobic CNT composite structures showed good mechanical durability, superior to the structured surfaces with lotus wax, and may be suitable for real world applications.

  11. Atomic oxygen undercutting of defects on SiO2 protected polyimide solar array blankets

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Auer, Bruce M.; Difilippo, Frank

    1990-01-01

    Low Earth Orbital (LEO) atomic oxygen can oxidize SiO2-protected polyimide kapton solar array blanket material which is not totally protected as a result of pinholes or scratches in the SiO2 coatings. The probability of atomic oxygen reaction upon initial impact is low, thus inviting oxidation by secondary impacts. The secondary impacts can produce atomic oxygen undercutting which may lead to coating mechanical failure and ever increasing mass loss rates of kapton. Comparison of undercutting effects in isotropic plasma asher and directed beam tests are reported. These experimental results are compared with computational undercutting profiles based on Monte Carlo methods and their implication on LEO performance of protected polymers.

  12. Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.

    1991-01-01

    Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.

  13. Kinetics of oxygen atom formation during the oxidation of methane behind shock waves

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1974-01-01

    An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.

  14. Consequences of Atomic Oxygen Interaction With Silicone and Silicone Contamination on Surfaces in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Rutledge, Sharon K.; Haytas, Christy A.

    1999-01-01

    The exposure of silicones to atomic oxygen in low Earth orbit causes oxidation of the surface, resulting in conversion of silicone to silica. This chemical conversion increases the elastic modulus of the surface and initiates the development of a tensile strain. Ultimately, with sufficient exposure, tensile strain leads to cracking of the surface enabling the underlying unexposed silicone to be converted to silica resulting in additional depth and extent of cracking. The use of silicone coatings for the protection of materials from atomic oxygen attack is limited because of the eventual exposure of underlying unprotected polymeric material due to deep tensile stress cracking of the oxidized silicone. The use of moderate to high volatility silicones in low Earth orbit has resulted in a silicone contamination arrival at surfaces which are simultaneously being bombarded with atomic oxygen, thus leading to conversion of the silicone contaminant to silica. As a result of these processes, a gradual accumulation of contamination occurs leading to deposits which at times have been up to several microns thick (as in the case of a Mir solar array after 10 years in space). The contamination species typically consist of silicon, oxygen and carbon. which in the synergistic environment of atomic oxygen and UV radiation leads to increased solar absorptance and reduced solar transmittance. A comparison of the results of atomic oxygen interaction with silicones and silicone contamination will be presented based on the LDEF, EOIM-111, Offeq-3 spacecraft and Mir solar array in-space results. The design of a contamination pin-hole camera space experiment which uses atomic oxygen to produce an image of the sources of silicone contamination will also be presented.

  15. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  16. Atomic Oxygen Task

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.

    1997-01-01

    This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.

  17. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  18. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  19. Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures

    DOEpatents

    Sunkara, Mahendra Kumar [Louisville, KY; Vaddiraju, Sreeram [Mountain View, CA; Mozetic, Miran [Ljubljan, SI; Cvelbar, Uros [Idrija, SI

    2009-09-22

    A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.

  20. MoS2 interactions with 1.5 eV atomic oxygen

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Cross, J. B.; Pope, L. E.

    1989-01-01

    Exposures of MoS2 to 1.5-eV atomic oxygen in an anhydrous environment reveal that the degree of oxidation is essentially independent of crystallite orientation, and that the surface-adsorbed reaction products are MoO3 and MoO2. A mixture of oxides and sulfide exists over a depth of about 90 A, and this layer has a low diffusion rate for oxygen. It is concluded that a protective oxide layer forms on MoS2 on exposure to the atomic-oxygen-rich environment of LEO.

  1. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2004-01-01

    We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.

  2. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  3. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  4. ZnO synthesis by high vacuum plasma-assisted chemical vapor deposition using dimethylzinc and atomic oxygen

    NASA Astrophysics Data System (ADS)

    Barnes, Teresa M.; Hand, Steve; Leaf, Jackie; Wolden, Colin A.

    2004-09-01

    Zinc oxide thin films were produced by high vacuum plasma-assisted chemical vapor deposition (HVP-CVD) from dimethylzinc (DMZn) and atomic oxygen. HVP-CVD is differentiated from conventional remote plasma-enhanced CVD in that the operating pressures of the inductively coupled plasma (ICP) source and the deposition chamber are decoupled. Both DMZn and atomic oxygen effuse into the deposition chamber under near collisionless conditions. The deposition rate was measured as a function of DMZn and atomic oxygen flux on glass and silicon substrates. Optical emission spectroscopy and quadrupole mass spectrometry (QMS) were used to provide real time analysis of the ICP source and the deposition chamber. The deposition rate was found to be first order in DMZn pressure and zero order in atomic oxygen density. All films demonstrated excellent transparency and were preferentially orientated along the c-axis. The deposition chemistry occurs exclusively through surface-mediated reactions, since the collisionless transport environment eliminates gas-phase chemistry. QMS analysis revealed that DMZn was almost completely consumed, and desorption of unreacted methyl radicals was greatly accelerated in the presence of atomic oxygen. Negligible zinc was detected in the gas phase, suggesting that Zn was efficiently consumed on the substrate and walls of the reactor.

  5. A kinetic study of the interaction between atomic oxygen and aerosols

    NASA Technical Reports Server (NTRS)

    Akers, F. I.; Wightman, J. P.

    1976-01-01

    This study was concerned with the effects of NH4Cl and (NH4)2SO4 aerosols on the kinetics of disappearance of atomic oxygen. Atomic oxygen was generated by a 2.45-GHz microwave discharge and the kinetics of disappearance measured in a fast flow system using NO2 titration. Values of the recombination coefficient for heterogeneous wall recombination were determined for clean, H2SO4-coated, and (NH4)2SO4-coated Pyrex to be 0.000050, 0.000020, and 0.000019, respectively. A rapid exothermic chemical reaction was found to occur between atomic oxygen and an NH4Cl wall coating; the products were NH3, NO, H2O, and HCl. The NH4Cl aerosol was generated by gas phase reaction of NH3 with HCl. The aerosol particles were approximately spherical and nearly monodisperse with a mean diameter of 1.6 plus or minus 0.2 micron. The rate constant for the disappearance of atomic oxygen in the presence of NH4Cl aerosol was measured. No significant decrease was observed in the rate of disappearance of atomic oxygen in the presence of an (NH4)2SO4 aerosol at a concentration of 285 mg per cu m.

  6. The effects of simulated low Earth orbit environments on spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.; Stidham, Curtis R.; Stueber, Thomas J.; Booth, Roy E.

    1993-01-01

    Candidate Space Station Freedom radiator coatings including Z-93, YB-71, anodized aluminum and SiO(x) coated silvered Teflon have been characterized for optical properties degradation upon exposure to environments containing atomic oxygen, vacuum ultraviolet (VUV) radiation, and/or silicone contamination. YB-71 coating showed a blue-gray discoloration, which has not been observed in space, upon exposure in atomic oxygen facilities which also provide exaggerated VUV radiation. This is evidence that damage mechanisms occur in these ground laboratory facilities which are different from those which occur in space. Radiator coatings exposed to an electron cyclotron resonance (ECR) atomic oxygen source in the presence of silicone-containing samples showed severe darkening from the intense VUV radiation provided by the ECR and from silicone contamination. Samples exposed to atomic oxygen from the ECR source and to VUV lamps, simultaneously, with in situ reflectance measurement, showed that significantly greater degradation occurred when samples received line-of-site ECR beam exposure than when samples were exposed to atomic oxygen scattered off of quartz surfaces without line-of-site view of the ECR beam. For white paints, exposure to air following atomic oxygen/VUV exposure reversed the darkening due to VUV damage. This illustrates the importance of in situ reflectance measurement.

  7. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  8. Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit Studied

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2001-01-01

    Silicones have been widely used on spacecraft as potting compounds, adhesives, seals, gaskets, hydrophobic surfaces, and atomic oxygen protective coatings. Contamination of optical and thermal control surfaces on spacecraft in low Earth orbit (LEO) has been an ever-present problem as a result of the interaction of atomic oxygen with volatile species from silicones and hydrocarbons onboard spacecraft. These interactions can deposit a contaminant that is a risk to spacecraft performance because it can form an optically absorbing film on the surfaces of Sun sensors, star trackers, or optical components or can increase the solar absorptance of thermal control surfaces. The transmittance, absorptance, and reflectance of such contaminant films seem to vary widely from very transparent SiOx films to much more absorbing SiOx-based films that contain hydrocarbons. At the NASA Glenn Research Center, silicone contamination that was oxidized by atomic oxygen has been examined from LEO spacecraft (including the Long Duration Exposure Facility and the Mir space station solar arrays) and from ground laboratory LEO simulations. The findings resulted in the development of predictive models that may help explain the underlying issues and effects. Atomic oxygen interactions with silicone volatiles and mixtures of silicone and hydrocarbon volatiles produce glassy SiOx-based contaminant coatings. The addition of hydrocarbon volatiles in the presence of silicone volatiles appears to cause much more absorbing (and consequently less transmitting) contaminant films than when no hydrocarbon volatiles are present. On the basis of the LDEF and Mir results, conditions of high atomic oxygen flux relative to low contaminant flux appear to result in more transparent contaminant films than do conditions of low atomic oxygen flux with high contaminant flux. Modeling predictions indicate that the deposition of contaminant films early in a LEO flight should depend much more on atomic oxygen flux than it does later in a mission.

  9. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy.

    PubMed

    Yang, Kui; Wen, Jia; Chao, Shuang; Liu, Jing; Yang, Ke; Pei, Yuxin; Pei, Zhichao

    2018-06-05

    A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.

  10. Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer.

    PubMed

    Kim, Yoon-Mi; Hwang, Bu-Yeon; Lee, Ki-Wook; Kim, Jin-Yeol

    2018-05-11

    Highly stable and durable conductive silver nanowire (Ag NW) network electrode films were prepared through decoration with a 5-nm-thick Ti layer. The Ag NW network 2-D films showed sheet resistance values as low as 32 ohm/sq at 88% transparency when decorated with Ti. These 2-D films exhibited a 30% increase in electrical conductivity while maintaining good stability of the films through enhanced resistance to moisture and oxygen penetration as a result of the protective effect of the Ti layer.

  11. Laboratory Studies of Ice Growth in the Presence of Oxygen Atoms

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Boulter, J. E.; Marschall, J.

    2003-12-01

    In the mesopause region, where noctilucent clouds (NLCs) form and polar summertime echoes are present, atomic oxygen is the dominant reactive species. Observations by Gumbel et al. (1998) reveal sharp gradients and distinctive minima in oxygen atom concentration coinciding with observed NLC layers. These observations suggest an interaction between oxygen atoms and NLC particles. Recent laboratory studies conclude that the uptake coefficient of atomic oxygen on ice is not large enough to change the gas-phase concentrations in the mesosphere lower thermosphere (MLT) region (Murray and Plane, 2003). However, the question of whether or not atomic oxygen can affect the formation and growth of ice has not been experimentally addressed. To gain insight into possible interactions between atomic oxygen and ice surfaces, we directly measure ice growth rates at temperatures associated with the summertime mesopause region (110-150 K), with and without exposure of the growing ice layer to partially dissociated oxygen. A liquid nitrogen cooled cryostat is used to control the temperature of a gold mirror in a high vacuum chamber. Water vapor, either from the residual background or from an introduced source, is allowed to condense on the mirror. A microwave discharge is used to partially dissociate an oxygen stream, which is sampled into the chamber through a small orifice facing the gold mirror. Grazing angle Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS) is used to monitor the rate of ice growth. Preliminary results at 130 K indicate that the ice growth rate in the presence of oxygen slows when the microwave discharge is activated and the ratio of water to oxygen is low. For H2O/O2 = ˜0.3 %, at a total chamber pressure of about 7 μ Torr, the growth rate reduction amounts to 24+/-9 %. Changes in the FTIR-RAS absorption profile of the OH stretching vibrations are also noted, which may indicate changes in ice morphology. Both results suggest that the presence of atomic oxygen influences how ice forms and grows, though more extensive experimentation is required to solidify this conclusion. This testing is underway and results will be presented and discussed. Gumbel, J., D. P. Murtagh, P. J. Espy, and G. Witt, "Odd Oxygen measurements during the Noctilucent Cloud 93 rocket campaign," Journal of Geophysical Research, Vol. 103, No. A10, 1998, pp. 23,399-23,414. Murray, B. J, and J. M. C. Plane, personal communications, 2003

  12. Oxygen-storage behavior and local structure in Ti-substituted YMnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I., E-mail: igor.levin@nist.gov; Krayzman, V.; Vanderah, T.A.

    Hexagonal manganates RMnO{sub 3} (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn{sub 1−x}Ti{sub x})O{sub 3} solid solutions exhibit facile oxygen absorption/desorption via reversible Ti{sup 3+}↔Ti{sup 4+} and Mn{sup 3+}↔Mn{sup 4+} reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn{sup 3+}{sub 1−x-y}Mn{sup 4+}{sub y}Ti{sup 4+}{sub x}O{submore » 3+δ}. The presence of Ti promotes the oxidation of Mn{sup 3+} to Mn{sup 4+}, which is almost negligible for YMnO{sub 3} in air, thereby increasing the uptake of oxygen beyond that required for a given Ti{sup 4+} concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO{sub 5}] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO{sub 3} structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO{sub 5}] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti{sup 4+}(and Mn{sup 4+}) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere. - Graphical abstract: Concurrent redox reactions involving Ti and Mn yield facile absorption/desorption of excess oxygen. - Highlights: • Concurrent redox reactions involving Ti and Mn yield oxygen absorption/desorption. • Excess oxygen is accommodated as interstitials via correlated atomic shifts. • Oxygen breathing is facilitated by the under-bonding of host Mn and O atoms.« less

  13. Effective and Durable Co Single Atomic Cocatalysts for Photocatalytic Hydrogen Production.

    PubMed

    Zhao, Qi; Yao, Weifeng; Huang, Cunping; Wu, Qiang; Xu, Qunjie

    2017-12-13

    This research reports for the first time that single cobalt atoms anchored in nitrogen-doped graphene (Co-NG) can serve as a highly effective and durable cocatalyst for visible light photocatalytic hydrogen production from water. Results show that, under identical conditions, the hydrogen production rate (1382 μmol/h) for 0.25 wt % Co-NG-loaded CdS photocatalyst (0.25 wt % Co-NG/CdS) is 3.42 times greater than that of nitrogen-doped graphene (NG) loaded CdS photocatalyst (NG/CdS) and about 1.3 times greater than the greatest hydrogen production rate (1077 μmol/h) for 1.5 wt % Pt nanoparticle loaded CdS photocatalyst (1.5 wt % Pt-NPs/CdS). At 420 nm irradiation, the quantum efficiency of the 0.25 wt % Co-NG/CdS photocatalyst is 50.5%, the highest efficiency among those literature-reported non-noble metal cocatalysts. The Co-NG/CdS nanocomposite-based photocatalyst also has an extended durability. No activity decline was detected during three cyclic photocatalytic life span tests. The very low cocatalyst loading, along with the facile preparation technology for this non-noble metal cocatalyst, will significantly reduce the hydrogen production costs and finally lead to the commercialization of the solar catalytic hydrogen production process. Based on experimental results, we conclude that Co-NG can successfully replace noble metal cocatalysts as a highly effective and durable cocatalyst for renewable solar hydrogen production. This finding will point to a new way for the development of highly effective, long life span, non-noble metal-based cocatalysts for renewable and cost-effective hydrogen production.

  14. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    PubMed Central

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  15. Reactivity of amino acid anions with nitrogen and oxygen atoms.

    PubMed

    Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M

    2018-02-14

    For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.

  16. Novel oxygen atom source for material degradation studies

    NASA Technical Reports Server (NTRS)

    Krech, R. H.; Caledonia, G. E.

    1988-01-01

    Physical Sciences Inc. (PSI) has developed a high flux pulsed source of energetic (8 km/s) atomic oxygen to bombard specimens in experiments on the aging and degradation of materials in a low earth orbit environment. The proof-of-concept of the PSI approach was demonstrated in a Phase 1 effort. In Phase 2 a large O-atom testing device (FAST-2) has been developed and characterized. Quantitative erosion testing of materials, components, and even small assemblies (such as solar cell arrays) can be performed with this source to determine which materials and/or components are most vulnerable to atomic oxygen degradation. The source is conservatively rated to irradiate a 100 sq cm area sample at greater than 10(exp 17) atoms/s, at a 10 Hz pulse rate. Samples can be exposed to an atomic oxygen fluence equivalent to the on-orbit ram direction exposure levels incident on Shuttle surfaces at 250 km during a week-long mission in a few hours.

  17. Influence of average ion energy and atomic oxygen flux per Si atom on the formation of silicon oxide permeation barrier coatings on PET

    NASA Astrophysics Data System (ADS)

    Mitschker, F.; Wißing, J.; Hoppe, Ch; de los Arcos, T.; Grundmeier, G.; Awakowicz, P.

    2018-04-01

    The respective effect of average incorporated ion energy and impinging atomic oxygen flux on the deposition of silicon oxide (SiO x ) barrier coatings for polymers is studied in a microwave driven low pressure discharge with additional variable RF bias. Under consideration of plasma parameters, bias voltage, film density, chemical composition and particle fluxes, both are determined relative to the effective flux of Si atoms contributing to film growth. Subsequently, a correlation with barrier performance and chemical structure is achieved by measuring the oxygen transmission rate (OTR) and by performing x-ray photoelectron spectroscopy. It is observed that an increase in incorporated energy to 160 eV per deposited Si atom result in an enhanced cross-linking of the SiO x network and, therefore, an improved barrier performance by almost two orders of magnitude. Furthermore, independently increasing the number of oxygen atoms to 10 500 per deposited Si atom also lead to a comparable barrier improvement by an enhanced cross-linking.

  18. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  19. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  20. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  1. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    NASA Astrophysics Data System (ADS)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  2. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.

    PubMed

    Sarkar, A; Kerr, J B; Cairns, E J

    2013-07-22

    Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  4. Injection Principles from Combustion Studies in a 200-Pound-Thrust Rocket Engine Using Liquid Oxygen and Heptane

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Auble, C. M.

    1955-01-01

    The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.

  5. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe 3Mn-Iodosobenzene Adducts

    DOE PAGES

    de Ruiter, Graham; Carsch, Kurtis M.; Gul, Sheraz; ...

    2017-03-24

    In this paper, we report the synthesis, characterization, and reactivity of [LFe 3(PhPz) 3OMn( sPhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene–metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2Fe IIMn II vs. Fe III 3Mn II) influence oxygen atom transfer in tetranuclear Fe 3Mn clusters. Finally, in particular, a one-electron redox change atmore » a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude.« less

  6. Accelerated Oxygen Atom Transfer and C-H Bond Oxygenation by Remote Redox Changes in Fe3 Mn-Iodosobenzene Adducts.

    PubMed

    de Ruiter, Graham; Carsch, Kurtis M; Gul, Sheraz; Chatterjee, Ruchira; Thompson, Niklas B; Takase, Michael K; Yano, Junko; Agapie, Theodor

    2017-04-18

    We report the synthesis, characterization, and reactivity of [LFe 3 (PhPz) 3 OMn( s PhIO)][OTf] x (3: x=2; 4: x=3), where 4 is one of very few examples of iodosobenzene-metal adducts characterized by X-ray crystallography. Access to these rare heterometallic clusters enabled differentiation of the metal centers involved in oxygen atom transfer (Mn) or redox modulation (Fe). Specifically, 57 Fe Mössbauer and X-ray absorption spectroscopy provided unique insights into how changes in oxidation state (Fe III 2 Fe II Mn II vs. Fe III 3 Mn II ) influence oxygen atom transfer in tetranuclear Fe 3 Mn clusters. In particular, a one-electron redox change at a distal metal site leads to a change in oxygen atom transfer reactivity by ca. two orders of magnitude. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions

    DOE PAGES

    Vukmirovic, Miomir B.; Teeluck, Krishani M.; Liu, Ping; ...

    2017-08-08

    We prepared atomically dispersed catalyst consisting of Pt atoms arranged in a c(2 × 2) array on RuO2(110) substrate. A large interatomic distance of Pt atoms in a c(2 × 2) phase precludes the reactants to interact with more than one Pt atoms. A strong bond of Pt atoms with RuO2 prevents agglomeration of Pt atoms to form 2D-islands or 3D-clusters. The activities of single Pt atom catalyst for the oxygen reduction and hydrogen oxidation reactions were determined and compared with those of bulk Pt. It has lower catalytic activity for the oxygen reduction reaction and similar activity for hydrogenmore » oxidation reaction compared to Pt(111). This was explained by a large calculated up-shift of the dband center of Pt atoms and larger Pt-Pt interatomic distance than that of Pt(111). Our information is of considerable interest for further development of electrocatalysis.« less

  8. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.

    PubMed

    Luong, John H T; Male, Keith B; Glennon, Jeremy D

    2009-10-01

    In recent years, conductive diamond electrodes for electrochemical applications have been a major focus of research and development. The impetus behind such endeavors could be attributed to their wide potential window, low background current, chemical inertness, and mechanical durability. Several analytes can be oxidized by conducting diamond compared to other carbon-based materials before the breakdown of water in aqueous electrolytes. This is important for detecting and/or identifying species in solution since oxygen and hydrogen evolution do not interfere with the analysis. Thus, conductive diamond electrodes take electrochemical detection into new areas and extend their usefulness to analytes which are not feasible with conventional electrode materials. Different types of diamond electrodes, polycrystalline, microcrystalline, nanocrystalline and ultrananocrystalline, have been synthesized and characterized. Of particular interest is the synthesis of boron-doped diamond (BDD) films by chemical vapor deposition on various substrates. In the tetrahedral diamond lattice, each carbon atom is covalently bonded to its neighbors forming an extremely robust crystalline structure. Some carbon atoms in the lattice are substituted with boron to provide electrical conductivity. Modification strategies of doped diamond electrodes with metallic nanoparticles and/or electropolymerized films are of importance to impart novel characteristics or to improve the performance of diamond electrodes. Biofunctionalization of diamond films is also feasible to foster several useful bioanalytical applications. A plethora of opportunities for nanoscale analytical devices based on conducting diamond is anticipated in the very near future.

  9. Singlet oxygen generation in gas discharge for oxygen-iodine laser pumping

    NASA Astrophysics Data System (ADS)

    Lopaev, D. V.; Braginsky, O. V.; Klopovsky, K. S.; Kovalev, A. S.; Mankelevich, Yu. A.; Popov, N. A.; Rakhimov, A. T.; Rakhimova, T. V.; Vasilieva, A. N.

    2004-09-01

    The possibility of development of effective discharged singlet oxygen (SO) generator (DSOG) for oxygen-iodine laser (OIL) is studied in detail. Researches of kinetics of oxygen atoms and oxygen molecules in the lowest metastable singlet states have been carried out in the different discharges and its afterglow (DC discharges, E-beam controlled discharge and RF discharges) in both CW and pulsed mode in a wide range of conditions (pressures, gas mixtures, energy deposits etc.). The models developed for all the discharges have allowed us to analyze SO generation and loss mechanisms and to find out the key-parameters controlling the highest SO yield. It is shown that in addition to spatial plasma uniformity at low E/N and high specific energy deposit per oxygen molecule, DSOG must be oxygen atom free to avoid fast three-body quenching of SO by atomic oxygen with increasing pressure and thereby to provide pressure scaling (in tens Torrs) for applying to real OIL systems.

  10. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  11. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Sufen; Xiao, Weiping; Wang, Jie

    Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less

  12. Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts

    DOE PAGES

    Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; ...

    2015-11-17

    Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO 2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OHmore » adsorption on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO 2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of Pt ML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.« less

  13. Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction

    DOE PAGES

    Liu, Sufen; Xiao, Weiping; Wang, Jie; ...

    2016-08-01

    Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less

  14. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd 2Ti 2O 7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environmentmore » and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiO x polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd 2Ti 2O 7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less

  15. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    NASA Astrophysics Data System (ADS)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  16. Investigation of diamond-like carbon samples as a charge state conversion surface for neutral atom imaging detectors in space applications

    NASA Astrophysics Data System (ADS)

    Brigitte Neuland, Maike; Riedo, Andreas; Scheer, Jürgen; Wurz, Peter

    2014-05-01

    The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionized. Regarding the constraints of weight, volume and power consumption, the technique of surface ionization complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionized by passing through a foil, are ionized by scattering on a charge state conversion surface. Since more than 30 years intense research work is done to find suitable materials for use as charge state conversion surfaces. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Against all expectations, insulators showed very promising characteristics for serving as conversion surfaces. Particularly diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Energy resolved maps of neutral atoms from the IBEX mission revealed phenomena of the interaction between heliosphere and local interstellar medium (LISM) that demand for new theory and explanations [McComas et al., 2011]. Building on the successes of the IBEX mission, a follow up mission concept to further explore the boundaries of the heliosphere already exists. The Interstellar MApping Probe (IMAP) is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [McComas et al.]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour and pulsed laser deposition method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility [Wahlström et al., 2013] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [Wurz et al., 1997]. Results of very narrow scattering cones and sufficient ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces. But our measurements show that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [McComas et al., 2011] D.J. McComas, H.O. Funsten, S.A. Fuselier, W.S. Lewis, E. Möbius and N.A. Schwadron, IBEX observations of Heliospheric energetic neutral atoms: Current understanding and future directions, Geophys. Res. Lett. 38, L18101, 2011 [McComas et al.] Interstellar Mapping Probe (IMAP) mission concept: Illuminating the dark boundaries at the edge of our solar system, decadal survey white paper [Wahlström et al., 2013] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2), 402-410 [Wurz et al., 1997] P. Wurz, R. Schletti, M.R. Aellig, Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces, Surf. Sci. 373, 56-66, 1997.

  17. Durability to oxygen reactive ion etching enhanced by addition of synthesized bis(trimethylsilyl)phenyl-containing (meth)acrylates in ultraviolet nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Ito, Shunya; Sato, Hiroki; Tasaki, Yuhei; Watanuki, Kimihito; Nemoto, Nobukatsu; Nakagawa, Masaru

    2016-06-01

    We investigated the selection of bis(trimethylsilyl)phenyl-containing (meth)acrylates as additives to improve the durability to oxygen reactive ion etching (O2 RIE) of sub-50 nm imprint resist patterns suitable for bubble-defect-free UV nanoimprinting with a readily condensable gas. 2,5-Bis(2-acryloyloxyethoxy)-1,4-bis(trimethylsilyl)benzene, which has a diacrylate chemical structure similar to that of glycerol 1,3-diglycerolate diacrylate used as a base monomer, and 3-(2-methacryloyloxyethoxy)-1-(hydroxylethoxy)-2-propoxy-3,5-bis(trimethylsilyl)benzene, which has a hydroxy group similar to the base monomer, were synthesized taking into consideration the Ohnishi and ring parameters, and the oxidization of the trimethylsilyl moiety to inorganic species during O2 RIE. The addition of the latter liquid additive to the base monomer decreased etching rate owing to the good miscibility of the additive in the base monomer, while the addition of the former crystalline additive caused phase separation after UV nanoimprinting. The latter additive worked as a compatibilizer to the former additive, which is preferred for etching durability improvement. The coexistence of the additives enabled the fabrication of a 45 nm line-and-space resist pattern by UV nanoimprinting, and its residual layer could be removed by O2 RIE.

  18. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    PubMed

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  19. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    NASA Technical Reports Server (NTRS)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  20. Atomic Oxygen and Space Environment Effects on Aerospace Materials Flown with EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Clatterbuck, Carroll H.; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

    1996-01-01

    Polymer materials samples mounted on a passive carrier tray were flown aboard the STS-46 Atlantis shuttle as complement to the EOIM-3 (Evaluation of Oxygen Interaction with Materials) experiment to evaluate the effects of atomic oxygen on the materials and to measure the gaseous shuttle bay environment. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07 x 10(exp 20) atoms/cm(exp 2) are being reported. The changes have been verified using Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurement, microscopic observations and thermo-optical measurements. The samples, including Kapton, Delrin, epoxies, Beta Cloth, Chemglaze Z306, silver Teflon, silicone coatings, 3M tape and Uralane and Ultem, PEEK, Victrex (PES), Polyethersulfone and Polymethylpentene thermoplastic, have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the oxygen fluence. Those efficiencies have been compared to results from other experiments, when available. The efficiencies of the samples are all in the range of E-24 g/atom. The results indicate that the reaction efficiencies of the reported materials can be grouped in about three ranges of values. The least affected materials which have efficiencies varying from 1 to 10(exp 25) g/atom, include silicones, epoxies, Uralane and Teflon. A second group with efficiency from 10 to 45(exp 25) g/atom includes additional silicone coatings, the Chemglaze Z306 paint and Kapton. The third range from 50 to 75(exp 25) includes organic compound such as Pentene, Peek, Ultem, Sulfone and a 3M tape. A Delrin sample had the highest reaction efficiency of 179(exp 25) g/atom. Two samples, the aluminum Beta cloth X389-7 and the epoxy fiberglass G-11 nonflame retardant, showed a slight mass increase.

  1. Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)

    DTIC Science & Technology

    2010-09-01

    Molecular Mechanics for thermo-mechanical response Materials Characterization • CNT modified durable thermal interface ( DTI ) • MEMS-based RTD micro...stabilization. Surface Characterization by Atomic Force Microscopy: Probing Thermal, Electrical, and Mechanical Properties Heater Current Path Anchor Leg 50 µm

  2. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  3. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    DOE R&D Accomplishments Database

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  4. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    NASA Astrophysics Data System (ADS)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  5. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2003-01-01

    We have investigated the energy distributions of the metastable oxygen atoms in the terrestrial thermosphere. Nascent O(lD) atoms play a fundamental role in the energy balance and chemistry of the terrestrial atmosphere, because they are produced by photo-chemical reactions in the excited electronic states and carry significant translational energies.

  6. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  7. DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka

    2014-02-01

    Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.

  8. Atomic oxygen recombination on quartz at high temperature: experiments and molecular dynamics simulation.

    PubMed

    Bedra, L; Rutigliano, M; Balat-Pichelin, M; Cacciatore, M

    2006-08-15

    A joint experimental and theoretical approach has been developed to study oxygen atom recombination on a beta-quartz surface. The experimental MESOX setup has been applied for the direct measurement of the atomic oxygen recombination coefficient gamma at T(S) = 1000 K. The time evolution of the relative atomic oxygen concentration in the cell is described by the diffusion equation because the mean free path of the atoms is less than the characteristic dimension of the reactor. The recombination coefficient gamma is then calculated from the concentration profile obtained by visible spectroscopy. We get an experimental value of gamma = 0.008, which is a factor of about 3 less than the gamma value reported for O recombination over beta-cristobalite. The experimental results are discussed and compared with the semiclassical collision dynamics calculations performed on the same catalytic system aimed at determining the basic features of the surface catalytic activity. Agreement, both qualitative and quantitative, between the experimental and the theoretical recombination coefficients has been found that supports the Eley-Rideal recombination mechanism and gives more evidence of the impact that surface crystallographic variation has on catalytic activity. Also, several interesting aspects concerning the energetics and the mechanism of the surface processes involving the oxygen atoms are pointed out and discussed.

  9. The Pressure Dependence of Oxygen Isotope Exchange Rates Between Solution and Apical Oxygen Atoms on the [UO2(OH)4]2- Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Steven J.; Ohlin, C. André; Johnson, Rene L.

    2011-04-06

    Under pressure: The pressure dependence of isotope exchange rate was determined for apical oxygen atoms in the [UO2(OH)4]2-(aq) ion (see picture). The results can be interpreted to indicate an associative character of the reaction.

  10. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  11. Oxygen-storage behavior and local structure in Ti-substituted YMnO3

    NASA Astrophysics Data System (ADS)

    Levin, I.; Krayzman, V.; Vanderah, T. A.; Tomczyk, M.; Wu, H.; Tucker, M. G.; Playford, H. Y.; Woicik, J. C.; Dennis, C. L.; Vilarinho, P. M.

    2017-02-01

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.

  12. Oxygen-storage behavior and local structure in Ti-substituted YMnO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Vanderah, T. A.

    Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+↔Ti4+ and Mn3+↔Mn4+ reactions already in ambient air at ≈400 °C and ≈250 °C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn3+1-x-yMn4+yTi4+xO3+δ. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almostmore » negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere.« less

  13. Effects of Irradiation on Albite's Chemical Durability.

    PubMed

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  14. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  15. A high flux pulsed source of energetic atomic oxygen. [for spacecraft materials ground testing

    NASA Technical Reports Server (NTRS)

    Krech, Robert H.; Caledonia, George E.

    1986-01-01

    The design and demonstration of a pulsed high flux source of nearly monoenergetic atomic oxygen are reported. In the present test setup, molecular oxygen under several atmospheres of pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. A 10J CO2 TEA laser is focused to intensities greater than 10 to the 9th W/sq cm in the nozzle throat, generating a laser-induced breakdown with a resulting 20,000-K plasma. Plasma expansion is confined by the nozzle geometry to promote rapid electron-ion recombination. Average O-atom beam velocities from 5-13 km/s at fluxes up to 10 to the 18th atoms/pulse are measured, and a similar surface oxygen enrichment in polyethylene samples to that obtained on the STS-8 mission is found.

  16. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Jun; Chen, Chao; Yang, Shi -Ze

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  17. Defect engineering in atomically-thin bismuth oxychloride towards photocatalytic oxygen evolution

    DOE PAGES

    Di, Jun; Chen, Chao; Yang, Shi -Ze; ...

    2017-06-26

    Photocatalytic solar energy conversion is a clean technology for producing renewable energy sources, but its efficiency is greatly hindered by the kinetically sluggish oxygen evolution reaction. Herein, confined defects in atomically-thin BiOCl nanosheets were created to serve as a remarkable platform to explore the relationship between defects and photocatalytic activity. Surface defects can be clearly observed on atomically-thin BiOCl nanosheets from scanning transmission electron microscopy images. Theoretical/experimental results suggest that defect engineering increased states of density and narrowed the band gap. With combined effects from defect induced shortened hole migratory paths and creation of coordination-unsaturated active atoms with dangling bonds,more » defect-rich BiOCl nanosheets displayed 3 and 8 times higher photocatalytic activity towards oxygen evolution compared with atomically-thin BiOCl nanosheets and bulk BiOCl, respectively. As a result, this successful application of defect engineering will pave a new pathway for improving photocatalytic oxygen evolution activity of other materials.« less

  18. Atomic oxygen dosimetry measurements made on STS-46 by CONCAP 2

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Miller, G. P.; Pettigrew, P. J.; Raikar, G. N.; Cross, Jon B.; Lan, E.; Renschler, C. L.; Sutherland, W. T.

    1995-01-01

    With increasing flight duration and the possibility of a permanent facility in space, long-term monitoring of material degradation due to atomic oxygen is increasing in importance. Reliance on models to determine the fluence of atomic oxygen is not only necessarily complex but also imprecise due to the strong dependence of oxygen concentration on day/night, latitude and solar activity. Mass-spectroscopy, the traditional method for determining the gas phase species densities at low pressure, is not only expensive but is limited in the area that it can monitor. Our group has developed a simple and inexpensive dosimeter to measure the atomic oxygen fluence via the change in resistance as the sensor element is gradually oxidized. The sensors consisted of thin-film circuit elements deposited on a suitable substrate. Four-point resistance measurements were used to monitor the change in resistance. Results obtained using silver and carbon dosimeters flown on STS-46 (CONCAP 2-01) will be discussed.

  19. Laser supported detonation wave source of atomic oxygen for aerospace material testing

    NASA Technical Reports Server (NTRS)

    Krech, Robert H.; Caledonia, George E.

    1990-01-01

    A pulsed high-flux source of nearly monoenergetic atomic oxygen was developed to perform accelerated erosion testing of spacecraft materials in a simulated low-earth orbit (LEO) environment. Molecular oxygen is introduced into an evacuated conical expansion nozzle at several atmospheres pressure through a pulsed molecular beam valve. A laser-induced breakdown is generated in the nozzle throat by a pulsed CO2 TEA laser. The resulting plasma is heated by the ensuing laser-supported detonation wave, and then it rapidly expands and cools. An atomic oxygen beam is generated with fluxes above 10 to the 18th atoms per pulse at 8 + or - 1.6 km/s with an ion content below 1 percent for LEO testing. Materials testing yielded the same surface oxygen enrichment in polyethylene samples as observed on the STS mission, and scanning electron micrographs of the irradiated polymer surfaces showed an erosion morphology similar to that obtained on low earth orbit.

  20. An electrically conductive thermal control surface for spacecraft encountering Low-Earth Orbit (LEO) atomic oxygen indium tin oxide-coated thermal blankets

    NASA Technical Reports Server (NTRS)

    Bauer, J. L.

    1987-01-01

    An organic black thermal blanket material was coated with indium tin oxide (ITO) to prevent blanket degradation in the low Earth orbit (LEO) atomic oxygen environment. The blankets were designed for the Galileo spacecraft. Galileo was initially intended for space shuttle launch and would, therefore, have been exposed to atomic oxygen in LEO for between 10 and 25 hours. Two processes for depositing ITO are described. Thermooptical, electrical, and chemical properties of the ITO film are presented as a function of the deposition process. Results of exposure of the ITO film to atomic oxygen (from a shuttle flight) and radiation exposure (simulated Jovian environment) are also presented. It is shown that the ITO-protected thermal blankets would resist the anticipated LEO oxygen and Jovian radiation yet provide adequate thermooptical and electrical resistance. Reference is made to the ESA Ulysses spacecraft, which also used ITO protection on thermal control surfaces.

  1. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems.

  2. [Effect of a tissue oxygenator (almitrine + raubasine) on the metabolism of 2,3-diphosphoglycerate of rabbits submitted by hypoxia].

    PubMed

    Callis, A; Dorance, M; Magnan de Bornier, B

    1980-01-01

    In normoxic rabbits, the intravenous injection (1 mg/kg) of the product (almitrine + raubasine) do not modify the erythrocytic level of 2,3-DPG. But, after hypoxia (the rabbits being submitted to an oxygen pressure of 7,8 kPa during 20 minutes) the same dose of this product induce a durable rise of erythrocytic 2,3-DPG level which remain, 24 hours latter, + 15% above normal.

  3. Protection of Polymers from the Space Environment by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Lindholm, Ned F.; Zhang, Jianming; Minton, Timothy K.; O'Patchen, Jennifer; George, Steven M.; Groner, Markus D.

    2009-01-01

    Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. For example, oxygen atoms can etch and oxidize these materials. Photons may act either alone or in combination with oxygen atoms to degrade polymers and paints and thus limit their usefulness. Colors fade under the intense vacuum ultraviolet (VUV) solar radiation. Ions can lead to the build-up of static charge on polymers. Atomic layer deposition (ALD) techniques can provide coatings that could mitigate many challenges for polymers in space. ALD is a gas-phase technique based on two sequential, self-limiting surface reactions, and it can deposit very uniform, conformal, and pinhole-free films with atomic layer control. We have studied the efficacy of various ALD coatings to protect Kapton® polyimide, FEP Teflon®, and poly(methyl methacrylate) films from atomic-oxygen and VUV attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-breakdown source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings applied to polyimide and FEP Teflon® films protected the underlying substrates from O-atom attack, and ZnO coatings protected the poly(methyl methacrylate) substrate from VUV-induced damage.

  4. Potential energy surfaces for atomic oxygen reactions: Formation of singlet and triplet biradicals as primary reaction products with unsaturated organic molecules

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.

    1987-01-01

    The experimental study of the interaction of atomic oxygen with organic polymer films under LEO conditions has been hampered by the inability to conduct detailed experiments in situ. As a result, studies of the mechanism of oxygen atom reactions have relied on laboratory O-atom sources that do not fully reproduce the orbital environment. For example, it is well established that only ground electronic state O atoms are present at LEO, yet most ground-based sources are known to produce singlet O atoms and molecules and ions in addition to O(3P). Engineers should not rely on such facilities unless it can be demonstrated either that these different O species are inert or that they react in the same fashion as ground state atoms. Ab initio quantum chemical calculations have been aimed at elucidating the biradical intermediates formed during the electrophilic addition of ground and excited-state O atoms to carbon-carbon double bonds in small olefins and aromatic molecules. These biradicals are critical intermediates in any possible insertion, addition and elimination reaction mechanisms. Through these calculations, we will be able to comment on the relative importance of these pathways for O(3P) and O(1D) reactions. The reactions of O atoms with ethylene and benzene are used to illustrate the important features of the mechanisms of atomic oxygen reaction with unsaturated organic compounds and polymeric materials.

  5. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Xiqing; Wang, Chongmin; Dai, Sheng; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 °C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H 2PtCl 6) in ethylene glycol. Pt nanoparticles of ∼3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of ∼2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials.

  6. Evaluation of Low Earth Orbit Environmental Effects on International Space Station Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rutledge, Sharon K.; Hasegawa, Mark M.; Reed, Charles K.

    1998-01-01

    Samples of International Space Station (ISS) thermal control coatings were exposed to simulated low Earth orbit (LEO) environmental conditions to determine effects on optical properties. In one test, samples of the white paint coating Z-93P were coated with outgassed products from Tefzel(R) (ethylene tetrafluoroethylene copolymer) power cable insulation as-may occur on ISS. These samples were then exposed, along with an uncontaminated Z-93P witness sample, to vacuum ultraviolet (VUV) radiation to determine solar absorptance degradation. The Z-93P samples coated with Tefzel(R) outgassing products experienced greater increases in solar absorptance than witness samples not coated with Tefzel(R) outgassing products. In another test, samples of second surface silvered Teflon(R) FEP (fluorinated ethylene propylene), SiO. (where x=2)-coated silvered Teflon(R) FEP, and Z-93P witness samples were exposed to the combined environments of atomic oxygen and VLTV radiation to determine optical properties changes due to these simulated ISS environmental effects. This test verified the durability of these materials in the absence of contaminants.

  7. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  8. Observation of decreasing resistivity of amorphous indium gallium zinc oxide thin films with an increasing oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Singh, Anup K.; Adhikari, Sonachand; Gupta, Rajeev; Deepak

    2017-01-01

    We have investigated the electrical resistivity behavior in amorphous indium gallium zinc oxide (a-IGZO) thin films. It is well known that resistivity increases as the film is deposited at a higher and higher oxygen partial pressure; we also record the same. However, in process we have discovered a remarkable region, in the oxygen deficient condition, that the resistivity shows an inverse behavior. This leads to the possibility that resistive films, suitable for thin film transistors, can also be obtained in oxygen deficient deposition conditions. Optical spectroscopic investigation could discern between a-IGZO films grown in oxygen deficient and oxygen rich conditions. The related resistivity behavior could be correlated to the presence of sub-bandgap states in films deposited in oxygen deficiency. These subgap states appear to be due to defects arising from local variations around the cations or oxygen atoms. The likely cause is an increase in Ga relative to In around O atom and the nature of cation-cation interaction when an oxygen atom is missing.

  9. Durability of a reinforced concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

    2012-01-01

    The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  10. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  11. Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO 3 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae

    The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less

  12. Orbital atomic oxygen effects on materials: An overview of MSFC experiments on the STS-46 EOIM-3

    NASA Astrophysics Data System (ADS)

    Linton, Roger C.; Vaughn, Jason A.; Finckenor, Miria M.; Kamenetzky, Rachel R.; Dehaye, Robert F.; Whitaker, Ann F.

    1995-02-01

    The third Evaluation of Oxygen Interaction with Materials experiment was flown on Space Shuttle Mission STS-46 (July 31 - August 8, 1992), representing a joint effort of several NASA centers, universities, and contractors. This array of active instrumentation and material exposure sub-assemblies was integrated as a Shuttle cargo bay pallet experiment for investigating the effects of orbital atomic oxygen on candidate space materials. Marshall Space Flight Center contributed several passive exposure trays of material specimens, uniform stress and static stress material exposure fixtures, the Atomic Oxygen Resistance Monitor (AORM), and specimens of thermal coatings for the EOIM-3 variable exposure mechanisms. As a result of 42 hours of spacecraft velocity vector-oriented exposure during the later phases of the STS-46 mission in LEO, EOIM-3 materials were exposed to an atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm. In this paper, an overview is presented of the technical approaches and results from analyses of the MSFC flight specimens, fixtures, and the AORM. More detailed results from earlier EOIM missions, the LDEF, and from laboratory testing are included in associated papers of this conference session.

  13. Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO 3 Films

    DOE PAGES

    Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae; ...

    2018-03-26

    The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less

  14. Orbital atomic oxygen effects on materials: An overview of MSFC experiments on the STS-46 EOIM-3

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Vaughn, Jason A.; Finckenor, Miria M.; Kamenetzky, Rachel R.; Dehaye, Robert F.; Whitaker, Ann F.

    1995-01-01

    The third Evaluation of Oxygen Interaction with Materials experiment was flown on Space Shuttle Mission STS-46 (July 31 - August 8, 1992), representing a joint effort of several NASA centers, universities, and contractors. This array of active instrumentation and material exposure sub-assemblies was integrated as a Shuttle cargo bay pallet experiment for investigating the effects of orbital atomic oxygen on candidate space materials. Marshall Space Flight Center contributed several passive exposure trays of material specimens, uniform stress and static stress material exposure fixtures, the Atomic Oxygen Resistance Monitor (AORM), and specimens of thermal coatings for the EOIM-3 variable exposure mechanisms. As a result of 42 hours of spacecraft velocity vector-oriented exposure during the later phases of the STS-46 mission in LEO, EOIM-3 materials were exposed to an atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm. In this paper, an overview is presented of the technical approaches and results from analyses of the MSFC flight specimens, fixtures, and the AORM. More detailed results from earlier EOIM missions, the LDEF, and from laboratory testing are included in associated papers of this conference session.

  15. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  16. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  17. Improving the Efficiency and Durability of Reversible Solid Oxide Cells for Energy Storage

    NASA Astrophysics Data System (ADS)

    Hughes, Gareth Allen

    This thesis presents research on the use of solid oxide cells (SOCs) as energy storage devices, and covers methods to improve their efficiency and durability for this use. It specifically covers two main topics: the durability of the oxygen electrode under forced alternating current, and the effect of pressurization on various oxygen electrode materials. Additionally, research was completed on thermodynamic modeling of a pressurized SOC energy storage system, and a new experimental testing apparatus was constructed to enable investigation of SOC samples operating under pressure. Forced alternating current using a symmetric sample structure was used to simulate the operation of a reversible SOC, effectively isolating the measurement of the performance response of the oxygen electrode. Cells consisting of La 0.8Sr0.2MnO3-delta - 8mol% Y2O 3-stabilized ZrO2 (LSM-YSZ) oxygen electrodes on YSZ electrolytes were tested. Early testing utilizing Ag current collectors showed that forced currents and the elevated operating temperature of SOCs cause silver to vaporize and deposit at the active region of the electrode. To avoid this artifact, a new test setup utilizing LSM current collectors was created. It was found that a shorter current cycling time of 1 hour helps prevent degradation compared to 12 hour cycles. Additionally, both cycling times showed improvement compared cells operated with dc current. Further study showed that operating at current densities of 0.8 A/cm2 and below can prevent degradation entirely. Pressurization of oxygen electrodes showed, as expected, that polarization resistance decreases with increasing oxygen pressure. The materials tested were LSM-YSZ and La0.6Sr0.4Fe0.8Co0.2 O3-d - Ce0.8Gd0.2O1.95 (LSCF-GDC), both in single-phase and composite electrode structures. Additionally, LSM-infiltrated YSZ was tested. The resistance typically decreased following power-law behavior with exponents ranging from -0.17 to -0.30, with similar trends found in all material systems and electrode structures. The electrodes showed resistance decreases of factors between 1.4 and 3.5 on going from 0.1 atm O2 to 10 atm O2. The electrodes containing LSM each showed distinct features in their frequency responses and capacitances, while the two LSCF containing electrode showed very similar features. The resistance decreases were attributed to decreased charge transfer reaction limitations and accelerated adsorption and surface migration of oxygen ions.

  18. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    NASA Astrophysics Data System (ADS)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  19. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  20. Spatial and temporal variations in infrared emissions of the upper atmosphere. 1. Atomic oxygen (λ 63 μm) emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Khomich, V. Yu.

    2016-09-01

    Rocket and balloon measurement data on atomic-oxygen (λ 63 µm) emission in the upper atmosphere are presented. The data from the longest (1989-2003) period of measurements of the atomic-oxygen (λ 63 µm) emission intensity obtained by spectral instruments on sounding balloons at an altitude of 38 km at midlatitudes have been systematized and analyzed. Regularities in diurnal and seasonal variations in the intensity of this emission, as well as in its relation with solar activity, have been revealed.

  1. A Space Experiment to Measure the Atomic Oxygen Erosion of Polymers and Demonstrate a Technique to Identify Sources of Silicone Contamination

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn; hide

    1999-01-01

    A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.

  2. Coating of Carbon Fiber with Polyhedral Oligomeric Silsesquioxane (POSS) to Enhance Mechanical Properties and Durability of Carbon/Vinyl Ester Composites

    PubMed Central

    Mahfuz, Hassan; Powell, Felicia; Granata, Richard; Hosur, Mahesh; Khan, Mujib

    2011-01-01

    Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS). POSS is a nanostructured inorganic-organic hybrid particle with a cubic structure having silicon atoms at the core and linked to oxygen atoms. The advantage of using POSS is that the silicon atoms can be linked to a substituent that can be almost any chemical group known in organic chemistry. Cubic silica cores are ‘hard particles’ and are about 0.53 nm in diameter. The peripheral organic unit is a sphere of about 1–3 nm in diameter. Further, cubic structure of POSS remains intact during the polymerization process and therefore with appropriate functional groups, if installed on the fiber surface, would provide a stable and strong F/M interface. Two POSS systems with two different functional groups; namely, octaisobutyl and trisilanolphenyl have been investigated. A set of chemical and mechanical procedures has been developed to coat carbon fibers with POSS, and to fabricate layered composites with vinyl ester resin. Interlaminar shear and low velocity impact tests have indicated around 17–38% improvement in mechanical properties with respect to control samples made without the POSS coating. Saltwater and hygrothermal tests at various environmental conditions have revealed that coating with POSS reduces water absorption by 20–30% and retains the composite properties. PMID:28824160

  3. Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.

    PubMed

    Zumelzu, E; Cabezas, C; Vera, A

    2003-01-01

    The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates.

  4. Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals

    NASA Astrophysics Data System (ADS)

    Terada, Yayoi; Mohri, Tetsuo

    2018-05-01

    By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.

  5. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  6. Observations of CO2 in Comets C/2012 S1 ISON and C/2012 K1 PANSTARRS

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Kelley, Michael; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Lisse, Carey; Chanover, Nancy

    2013-10-01

    Comets have undergone very little thermal evolution in their lifetimes, resulting in a primitive composition. This primitive composition makes observations of comets very important tools for understanding the origin of the Solar System. The ices H2O, CO2, and CO are the primary ices present in cometary nuclei, and constraining their abundances has tremendous implications for the formation and evolutionary history of comets. Of these ices, H2O and CO can be observed from the ground, while CO2 cannot. A potentially effective tracer for CO2 in comets that is accessible from the ground is atomic oxygen. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comets C/2012 S1 ISON and C/2012 K1 PANSTARRS. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and McDonald Observatory and observations of H2O and CO at Keck and IRTF. These observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of CO2. In addition, ISON is the target of an extensive observing campaign led by NASA, and the proposed Spitzer observations fill a vital niche as the only observatory that can observe CO2 during both the near-perihelion time frame and significantly (months) after perihelion. Understanding the evolution of the CO2 abundance over the apparition is a key piece to understanding how the volatile compostion of the comet changes over the apparition.

  7. Observation of CO2 in Comet C/2012 K5 LINEAR

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Kelley, Michael; DiSanti, Michael; Chanover, Nancy

    2012-12-01

    The study of cometary composition is important to understanding the formation and evolution of our solar system. Comets have undergone very little thermal evolution in their lifetimes, which results in their near pristine composition. The nucleus of a comet is very rarely detected directly. Instead, we observe the coma that surrounds the nucleus. Physical and chemical processes in the coma affect its composition, and therefore coma composition is not a direct representation of nuclear composition. An important trend is the observed variation of coma composition with heliocentric distance, most likely influenced by the volatility of the main surface ices, H2O, CO2, and CO. Infrared studies of these molecules are complicated by telluric features, so often daughter molecules of these species such as OH are observed instead. A potentially effective tracer for these primary ices is atomic oxygen in the coma. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comet C/2012 K5 LINEAR. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and observations of H2O at Keck. These near simultaneous observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of these primary volatiles and aid our understanding of the variation in coma composition as a function of heliocentric distance, and therefore the composition of the nucleus and how our solar system was formed.

  8. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  9. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongguo; Lv, Haifeng; Kang, Yijin

    2016-04-06

    In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less

  10. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    DOE PAGES

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less

  11. Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Shulda, Sarah; Ngo, Chilan

    Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templatesmore » were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.« less

  12. Iridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Shulda, Sarah; Ngo, Chilan; ...

    2018-01-22

    Iridium-nickel (Ir-Ni) and iridium-cobalt (Ir-Co) nanowires have been synthesized by galvanic displacement and studied for their potential to increase the performance and durability of electrolysis systems. Performances of Ir-Ni and Ir-Co nanowires for the oxygen evolution reaction (OER) have been measured in rotating disk electrode half-cells and single-cell electrolyzers and compared with commercial baselines and literature references. The nanowire catalysts showed improved mass activity, by more than an order of magnitude compared with commercial Ir nanoparticles in half-cell tests. The nanowire catalysts also showed greatly improved durability, when acid-leached to remove excess Ni and Co. Both Ni and Co templatesmore » were found to have similarly positive impacts, although specific differences between the two systems are revealed. In single-cell electrolysis testing, nanowires exceeded the performance of Ir nanoparticles by 4-5 times, suggesting that significant reductions in catalyst loading are possible without compromising performance.« less

  13. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  14. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  15. Evaluation of certain material films flown on the Space Shuttle Mission 46, EOIM-3 experiment

    NASA Technical Reports Server (NTRS)

    Scialdone, John; Clatterbuck, Carroll; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

    1995-01-01

    Nine film samples were carried aboard the STS-46 Atlantis shuttle to complement the 'Evaluation of Oxygen Interaction with Materials (EOIM-III)' experiment to evaluate the effects of atomic oxygen on materials and to monitor the gaseous environment in the shuttle bay. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07E-20 atoms/sq cm have been reported. The changes have been verified using X-ray Photoelectron Spectrometer (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurements, microscopic observations and thermo-optical measurements. The samples including Kapton, Tefzel, Aclar, Polyacrylonitrile film, and Llumalloy films have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the fluence. Those efficiencies have been compared with results from other similar experiments, when available. The efficiencies of the samples are all in the range of E-24 gm/atom.

  16. Cleaning of Fire Damaged Watercolor and Textiles Using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.; Haytas, Christy A.

    2000-01-01

    A noncontact technique is described that uses atomic oxygen generated under low pressure in the presence of nitrogen to remove soot from the surface of a test watercolor panel and strips of cotton, wool and silk. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of soot removal from test panels of six basic watercolors (alizarin crimson, burnt sienna, lemon yellow, yellow ochre, cerulean blue and ultramarine blue) and strips of colored cotton, wool and silk was measured using reflectance spectroscopy. The atomic oxygen removed soot effectively from the treated areas and enabled partial recovery of charred watercolors. However, overexposure can result in removal of sizing, bleaching, and weakening of the structure. With the proper precautions, atomic oxygen treatment appears to have great potential to salvage heavily smoke damaged artworks which were previously considered unrestorable.

  17. Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Cross, J. B.; Hoffbauer, M. A.; Kirkendahl, T. D.

    1991-01-01

    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission.

  18. Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. [Wind Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.

    1993-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.

  19. Structures of nitrato-(2-hydroxybenzaldehydo) (2,2 Prime -bipyridyl)copper and nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Paladi, L. G.; Antosyak, B. Ya.

    2011-03-15

    Nitrato-(2-hydroxy-5-nitrobenzaldehydo)(2,2 Prime -bipyridyl)copper (I) and nitrato-(2-hydroxybenzaldehydo)(2,2 Prime -bipyridyl)copper (II) were synthesized and characterized by X-ray diffraction. The coordination polyhedron of the central copper atom in complex I can be described as a distorted tetragonal pyramid whose base is formed by the phenol and carbonyl oxygen atoms of the monodeprotonated 2-hydroxy-5nitrobenzaldehyde molecule and the nitrogen atoms of the 2,2 Prime -bipyridyl ligand and whose apex is occupied by the oxygen atom of the nitrato group. In the crystal structure, complexes I are linked by the acido ligands and the NO{sub 2} groups of the aldehyde molecule into infinite chains. In complexmore » II, the central copper atom is coordinated by 2-hydroxybenzaldehyde, 2,2 Prime -bipyridyl, and the nitrato group, resulting in the formation of centrosymmetric dimers. The coordination polyhedron of the central copper atom can be described as a bipyramid (4 + 1 + 1) with the same base as in complex I. The axial vertices of the bipyramid are occupied by the oxygen atom of the nitrato group and the bridging phenol oxygen atom of the adjacent complex related to the initial complex by a center of symmetry. In the crystal structure, complexes II are hydrogen bonded into infinite chains.« less

  20. Thermal O-H Bond Activation of Water as Mediated by Heteronuclear [Al2Mg2O5]•+: Evidence for Oxygen-Atom Scrambling.

    PubMed

    Geng, Caiyun; Li, Jilai; Weiske, Thomas; Schwarz, Helmut

    2018-06-25

    Mechanistic insight into the thermal O-H bond activation of water by the cubane-like, prototypical heteronuclear oxide cluster [Al 2 Mg 2 O 5 ] •+ has been derived from a combined experimental/computational study. Experiments in the highly diluted gas phase using Fourier transform ion-cyclotron resonance mass spectrometry show that hydrogen-atom abstraction from water by the cluster cation [Al 2 Mg 2 O 5 ] •+ occurs at ambient conditions accompanied by the liberation of an OH • radical. Due to a complete randomization of all oxygen atoms prior to fragmentation about 83% of the oxygen atoms of the hydroxyl radical released originate from the oxide cluster itself. The experimental findings are supported by detailed high-level quantum chemical calculations. The theoretical analysis reveals that the transfer of a formal hydrogen atom from water to the metal-oxide cation can proceed mechanistically via proton- or hydrogen-atom transfer exploiting different active sites of the cluster oxide. In addition to the unprecedented oxygen-atom scrambling, one of the more general and quite unexpected findings concerns the role of spin density at the hydrogen-acceptor oxide atom. While this feature is so crucial for [M-O] + /CH 4 couples, it is much less important in the O-H bond activation of water.

  1. Recombination activity of nickel, copper, and oxygen atoms segregating at grain boundaries in mono-like silicon crystals

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Kutsukake, Kentaro; Deura, Momoko; Yonenaga, Ichiro; Shimizu, Yasuo; Ebisawa, Naoki; Inoue, Koji; Nagai, Yasuyoshi; Yoshida, Hideto; Takeda, Seiji

    2016-10-01

    Three-dimensional distribution of impurity atoms was determined at functional Σ5{013} and small-angle grain boundaries (GBs) in as-grown mono-like silicon crystals by atom probe tomography combined with transmission electron microscopy, and it was correlated with the recombination activity of those GBs, CGB, revealed by photoluminescence imaging. Nickel (Ni), copper (Cu), and oxygen atoms preferentially segregated at the GBs on which arrays of dislocations existed, while those atoms scarcely segregated at Σ5{013} GBs free from dislocations. Silicides containing Ni and Cu about 5 nm in size and oxides about 1 nm in size were formed along the dislocation arrays on those GBs. The number of segregating impurity atoms per unit GB area for Ni and that for Cu, NNi and NCu, were in a trade-off correlation with that for oxygen, NO, as a function of CGB, while the sum of those numbers was almost constant irrespective of the GB character, CGB, and the dislocation density on GBs. CGB would be explained as a linear combination of those numbers: CGB (in %) ˜400(0.38NO + NNi + NCu) (in atoms/nm2). The GB segregation of oxygen atoms would be better for solar cells, rather than that of metal impurities, from a viewpoint of the conversion efficiency of solar cells.

  2. In situ disordering of monoclinic titanium monoxide Ti5O5 studied by transmission electron microscope TEM.

    PubMed

    Rempel, А А; Van Renterghem, W; Valeeva, А А; Verwerft, M; Van den Berghe, S

    2017-09-07

    The superlattice and domain structures exhibited by ordered titanium monoxide Ti 5 O 5 are disrupted by low energy electron beam irradiation. The effect is attributed to the disordering of the oxygen and titanium sublattices. This disordering is caused by the displacement of both oxygen and titanium atoms by the incident electrons and results in a phase transformation of the monoclinic phase Ti 5 O 5 into cubic B1 titanium monoxide. In order to determine the energies required for the displacement of titanium or oxygen atoms, i.e. threshold displacement energies, a systematic study of the disappearance of superstructure reflections with increasing electron energy and electron bombardment dose has been performed in situ in a transmission electron microscope (TEM). An incident electron energy threshold between 120 and 140 keV has been observed. This threshold can be ascribed to the displacements of titanium atoms with 4 as well as with 5 oxygen atoms as nearest neighbors. The displacement threshold energy of titanium atoms in Ti 5 O 5 corresponding with the observed incident electron threshold energy lies between 6.0 and 7.5 eV. This surprisingly low value can be explained by the presence of either one or two vacant oxygen lattice sites in the nearest neighbors of all titanium atoms.

  3. Durability enhancement of intermetallics electrocatalysts via N-anchor effect for fuel cells.

    PubMed

    Li, Xiang; An, Li; Chen, Xin; Zhang, Nanlin; Xia, Dingguo; Huang, Weifeng; Chu, Wangsheng; Wu, Ziyu

    2013-11-18

    Insufficient durability and catalytic activity of oxygen reduction reaction (ORR) electrocatalyst are key issues that have to be solved for the practical application of low temperature fuel cell. This paper introduces a new catalyst design strategy using N-anchor to promote the corrosion resistance of electrocatalyst. The as-synthesized N-Pt3Fe1/C shows a high electrocatalytic activity and a superior durability towards ORR. The kinetic current density of N-Pt3Fe1/C as normalized by ECSA is still as high as 0.145 mA cm(-2) and only 7% loss after 20,000 potential cycles from 0.6 to 1.2 V (vs. NHE) in O2-bubbling perchloric acid solution, whereas Pt3Fe1/C shows 49% loss under the same tests. The N-anchor approach offers novel opportunities for the development of ORR catalyst with excellent electrochemical properties.

  4. N/S/B-doped graphitized carbon encased Fe species as a highly active and durable catalyst towards oxygen reduction reaction.

    PubMed

    Li, Guang-Lan; Cheng, Guang-Chun; Chen, Wen-Wen; Liu, Cai-Di; Yuan, Li-Fang; Yang, Bei-Bei; Hao, Ce

    2018-03-15

    Exploring cost-effective, high-performance and durable non-precious metal catalysts is of great significance for the acceleration of sluggish oxygen reduction reaction (ORR). Here, we report an intriguing heteroatom-doped graphitized carbon encased Fe species composite by introducing N, S and B sequentially. The experimental approach was designed ingeniously for that the FeCl 3 ·6H 2 O could catalyze thiourea to synthesize N, S co-doped carbon materials which would further react with H 3 BO 3 and NH 3 (emerged at the heat-treatment process) to prepare N, S and B co-doped carbon materials (Fe-N/S/B-C). The Fe-N/S/B-C exhibits an impressive ORR activity for its half-wave potential of -0.1 V, which is 36 mV or 19 mV higher than that of the corresponding single or dual doped counterparts (Fe-N-C or Fe-N/S-C) and 31 mV positive than that of Pt/C catalyst, respectively. Further chronoamperometric measurement and accelerated aging test confirm the excellent electrochemical durability of Fe-N/S/B-C with the stable core-shell structure. The remarkable ORR performance and facile preparation method enable Fe-N/S/B-C as a potential candidate in electrochemical energy devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Deviation from Normal Boltzmann Distribution of High-lying Energy Levels of Iron Atom Excited by Okamoto-cavity Microwave-induced Plasmas Using Pure Nitrogen and Nitrogen-Oxygen Gases.

    PubMed

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen-oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen molecule.

  6. The global characteristics of atmosphere emissions in the lower thermosphere and their aeronomic implications. [OGO-4 airglow photometric observations of oxygen

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Chandra, S.

    1974-01-01

    The green line of atomic oxygen and the Herzberg bands of molecular oxygen as observed from the OGO-4 airglow photometer are discussed in terms of their spatial and temporal distributions and their relation to the atomic oxygen content in the lower thermosphere. Daily maps of the distribution of emissions show considerable structure (cells, patches, and bands) with appreciable daily changes. When data are averaged over periods of several days in length, the resulting patterns have occasional tendencies to follow geomagnetic parallels. The Seasonal variations are characterized by maxima in both the Northern and Southern Hemispheres in October, with the Northern Hemisphere having substantially higher emission rates. Formulae are derived relating the vertical column emission rates of the green line and the Herzberg bands to the atomic oxygen peak density. Global averages for the time period for these data (August 1967 to January 1968), when converted to maximum atomic oxygen densities near 95 km, have a range of 2.0 x 10 to the 11th power/cu cm 2.7 x 10 to the 11th power/cu cm.

  7. Polymeric Materials With Additives for Durability and Radiation Shielding in Space

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard

    2011-01-01

    Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.

  8. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.

    PubMed

    Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong

    2016-02-01

    A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m -2 and excellent durability.

  9. Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Rouhi, S.

    2015-03-01

    The importance of covalent and non-covalent functionalization approaches for modification the properties of carbon nanotubes is being more widely recognized. To this end, elastic properties and buckling behavior of oxygenated CNT with atomic oxygen and hydroxyl under physical adsorption of PE (Polyethylene) and PEO (Poly (ethylene oxide)) are determined through employing the molecular dynamics (MD) simulations. The results demonstrate that non-covalent bonding of polymer on the surface of oxygenated CNT causes reductions in the variations of critical buckling load and critical strain compared to oxygenated CNTs. Critical buckling load and critical strain of oxygenated CNT/polymer are higher than those of oxygenated CNT. Also, it is demonstrated that critical buckling load and critical strain values in the case of oxygenated CNT/polymer are independent of polymer type unlike the value of Young's modulus. It is shown that variations of Young's modulus decrease as PE adsorbed on the surface of oxygenated CNT. Moreover, the presence of oxygen atom on PEO chain leads to bigger variations of Young's modulus with weight percentage of chemisorbed component, i.e. atomic oxygen and hydroxyl. It is also demonstrated that Young's modulus reduces more considerably in the presence of PEO chain compared to PE one.

  10. [Studies on organic protective coatings for anti-atomic oxygen effects by spectrum analysis].

    PubMed

    Zhang, Lei

    2004-11-01

    This paper describes organic protective coatings on space material for anti-AO effects and the experiments to assess properties of the coatings. Organic protection was analyzed after exposures to ground state fast atomic (AO) radiation in the atomic oxygen beam facility for ground simulation experiments. The tests results have been analyzed with advanced FTIR, XPS and SEM. The test indicated that epoxy, alkyd and urethane organic coatings were highly reactive to AO with a strong degradation and changed in morphology of the surface layer. It is evident that siloxane coatings have excellent properties for anti-AO effects. The erosion product has SiO2 left on the surface, thus providing protection from further attack by the energetic oxygen atoms.

  11. Crown oxygen-doping graphene with embedded main-group metal atoms

    NASA Astrophysics Data System (ADS)

    Wu, Liyuan; Wang, Qian; Yang, Chuanghua; Quhe, Ruge; Guan, Pengfei; Lu, Pengfei

    2018-02-01

    Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene's stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.

  12. Relativistic potential energy surfaces of initial oxidations of Si(100) by atomic oxygen: The importance of surface dimer triplet state

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Rae; Shin, Seokmin; Choi, Cheol Ho

    2012-06-01

    The non-relativistic and relativistic potential energy surfaces (PESs) of the symmetric and asymmetric reaction paths of Si(100)-2×1 oxidations by atomic oxygen were theoretically explored. Although only the singlet PES turned out to exist as a major channel leading to "on-dimer" product, both the singlet and triplet PESs leading to "on-top" products are attractive. The singlet PESs leading to the two surface products were found to be the singlet combinations (open-shell singlet) of the low-lying triplet state of surface silicon dimer and the ground 3P state of atomic oxygen. The triplet state of the "on-top" product can also be formed by the ground singlet state of the surface silicon dimer and the same 3P oxygen. The attractive singlet PESs leading to the "on-dimer" and "on-top" products made neither the intersystem crossings from triplet to singlet PES nor high energy 1D of atomic oxygen necessary. Rather, the low-lying triplet state of surface silicon dimer plays an important role in the initial oxidations of silicon surface.

  13. Effects of atomic oxygen and ultraviolet radiation on candidate elastomeric materials for long duration missions. Test series no.1

    NASA Technical Reports Server (NTRS)

    Linton, R. C.; Finckenor, M. M.; Kamenetzky, R. R.; Gray, P.

    1993-01-01

    Research was conducted at MSFC on the behavior of elastomeric materials after exposure to simulated space environment. Silicone S383 and Viton V747 samples were exposed to thermal vacuum, ultraviolet radiation, and atomic oxygen and then evaluated for changes in material properties. Characterization of the elastomeric materials included weight, hardness, optical inspection under normal and black light, spectrofluorescence, solar absorptance and emittance, Fourier transform infrared spectroscopy, and permeability. These results indicate a degree of sensitivity to exposure and provided some evidence of UV and atomic oxygen synergism.

  14. Issues and Effects of Atomic Oxygen Interactions With Silicone Contamination on Spacecraft in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Sechkar, Edward; Stueber, Thomas; Snyder, Aaron; deGroh, Kim; Haytas, Christy; Brinker, David

    2000-01-01

    The continued presence and use of silicones on spacecraft in low Earth orbit (LEO) has been found to cause the deposition of contaminant films on surfaces which are also exposed to atomic oxygen. The composition and optical properties of the resulting SiO(x)- based (where x is near 2) contaminant films may be dependent upon the relative rates of arrival of atomic oxygen, silicone contaminant and hydrocarbons. This paper presents results of in-space silicone contamination tests, ground laboratory simulation tests and analytical modeling to identify controlling processes that affect contaminant characteristics.

  15. Partially autoionizing states of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    Certain Rydberg states and an intershell transition of atomic oxygen were shown to partially autoionize, and to produce emission spectra competitive with autoionization. These states are forbidden to autoionize on the basis of LS coupling; but they were observed both in emission spectroscopy and in photoelectron spectroscopy. The results explain an unidentified structure in the 584 Angstrom He I atomic O spectrum observed by previous investigators.

  16. Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Bola; Yadav, Devinder; Raj, Rishi

    In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, Yu. M.; Tsapkov, V. I., E-mail: vtsapkov@gmail.com; Antosyak, B. Ya.

    Nitrato-4-bromo-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper and nitrato-4-chloro-2-[(2-hydroxyethylimino)methyl]phenolatoimidazolecopper were synthesized and studied by X-ray diffraction. The crystals are isostructural. The coordination polyhedron of the copper atom can be described as a distorted square pyramid whose basal plane is formed by the phenolic and alcoholic oxygen atoms and the nitrogen atom of the monodeprotonated tridentate azomethine molecule and the imidazole nitrogen atom. The apex of the copper polyhedron is occupied by the oxygen atom of the nitrato group. The complexes are linked together by hydrogen bonds with the participation of the nitrato groups to form a three-dimensional framework.

  18. Measurement of O and Ti atom displacements in TiO 2 during flash sintering experiments

    DOE PAGES

    Yoon, Bola; Yadav, Devinder; Raj, Rishi; ...

    2017-12-29

    In-situ flash experiments on rutile TiO 2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X-ray scattering measurements yielded mean-square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. Thus, these large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash.

  19. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia

    2016-07-01

    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are given. The report also presents the results of computer simulation of protons and oxygen atoms interaction with polyimide, and a comparison of the experimental and calculated data.

  20. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-01-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  1. Ruthenium (Ru) peeling and predicting robustness of the capping layer using finite element method (FEM) modeling

    NASA Astrophysics Data System (ADS)

    Jang, Il-Yong; John, Arun; Goodwin, Frank; Lee, Su-Young; Kim, Byung-Gook; Kim, Seong-Sue; Jeon, Chan-Uk; Kim, Jae Hyung; Jang, Yong Hoon

    2014-07-01

    Ruthenium (Ru) film used as capping layer in extreme ultraviolet (EUV) mask peeled off after annealing and in-situ UV (IUV) cleaning. We investigated Ru peeling and found out that the mechanical stress caused by the formation of Si oxide due to the penetration of oxygen atoms from ambient or cleaning media to top-Si of ML is the root cause for the problem. To support our experimental results, we developed a numerical model of finite element method (FEM) using commercial software (ABAQUS™) to calculate the stress and displacement forced on the capping layer. By using this model, we could observe that the displacement agrees well with the actual results measured from the transmission electron microscopy (TEM) image. Using the ion beam deposition (IBD) tool at SEMATECH, we developed four new types of alternative capping materials (RuA, RuB, B4C, B4C-buffered Ru). The durability of each new alternative capping layer observed by experiment was better than that of conventional Ru. The stress and displacement calculated from each new alternative capping layer, using modeling, also agreed well with the experimental results. A new EUV mask structure is proposed, inserting a layer of B4C (B4C-buffered Ru) at the interface between the capping layer (Ru) and the top-Si layer. The modeling results showed that the maximum displacement and bending stress observed from the B4C-buffered Ru are significantly lower than that of single capping layer cases. The durability investigated from the experiment also showed that the B4C-buffered structure is at least 3X stronger than that of conventional Ru.

  2. Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment

    NASA Astrophysics Data System (ADS)

    Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet

    1995-02-01

    The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.

  3. Observation of oxide particles below the apparent oxygen solubility limit in tantalum

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1973-01-01

    The apparent solubility of oxygen in polycrystalline tantalum as determined by the X-ray diffraction lattice parameter technique is about 1.63 atomic percent at 820 C. However, oxide particles were identified in samples containing as low as 0.5 atomic percent of oxygen. These oxide particles were present at the grain boundaries and within the grains. The number of oxide particles increased with increasing oxygen concentration in tantalum. The presence of oxide particles suggests that the true solubility of oxygen in the polycrystalline tantalum metal is probably significantly lower than that reported in the literature.

  4. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction.

    PubMed

    Lee, Eunjik; Park, Ah-Hyeon; Park, Hyun-Uk; Kwon, Young-Uk

    2018-01-01

    In this work, we present facile synthesis of amorphous Ni/Fe mixed (oxy)hydroxide (NiFe(H)) nanoparticles (NPs) and their electrocatalytic performance for oxygen evolution reaction (OER) in alkaline media. a-NiFe(H) NPs have received lots of attention as OER electrocatalysts with many desirable properties. By using a simple sonochemical route, we prepared amorphous Ni and Fe-alkoxide (NiFe(A)) NPs whose composition can be controlled in the entire composition range (Ni 100-x Fe x , 0≤x≤1). These samples are composed of extremely small NiFe(A) NPs with Ni and Fe atoms homogeneously distributed. NiFe(A) NPs are readily converted into corresponding electrocatalytically active NiFe(H) NP by a simple electrochemical treatment. Electrochemical analysis data show that the OER activity of amorphous NiFe(H) samples follows the volcano-type trend when plotted against the Fe content. Ni 70 Fe 30 (H) sample showed the lowest overpotential of 292mV at 10mAcm -2 geo and the lowest Tafel slope of 30.4mVdec -1 , outperforming IrO x /C (326mV, 41.7mVdec -1 ). Our samples are highly durable based on the chronopotentiometry data at the current density of 10mAcm -2 geo for 2h which show that Ni 70 Fe 30 sample maintains the steady-state potential, contrary to the time-varying IrO x /C. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Degradation mechanisms of materials for large space systems in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Gordon, William L.; Hoffman, R. W.

    1987-01-01

    Degradation was explored of various materials used in aerospace vehicles after severe loss of polymeric material coatings (Kapton) was observed on an early shuttle flight in low Earth orbit. Since atomic oxygen is the major component of the atmosphere at 300 km, and the shuttle's orbital velocity produced relative motion corresponding to approx. 5 eV of oxygen energy, it was natural to attribute much of this degradation to oxygen interaction. This assumption was tested using large volume vacuum systems and ion beam sources, in an exploratory effort to produce atomic oxygen of the appropriate energy, and to observe mass loss from various samples as well as optical radiation. Several investigations were initiated and the results of these investigations are presented in four papers. These papers are summarized. They are entitled: (1) The Space Shuttle Glow; (2) Laboratory Degradation of Kapton in a Low Energy Oxygen Ion Beam; (3) The Energy Dependence and Surface Morphology of Kapton Degradation Under Atomic Oxygen Bombardment; and (4) Surface Analysis of STS 8 Samples.

  6. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Feng, Chun, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect ismore » achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.« less

  7. Stereochemistry of silicon in oxygen-containing compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serezhkin, V. N., E-mail: Serezhkin@samsu.ru; Urusov, V. S.

    2017-01-15

    Specific stereochemical features of silicon in oxygen-containing compounds, including hybrid silicates with all oxygen atoms of SiO{sub n} groups ({sub n} = 4, 5, or 6) entering into the composition of organic anions or molecules, are described by characteristics of Voronoi—Dirichlet polyhedra. It is found that in rutile-like stishovite and post-stishovite phases with the structures similar to those of СаСl{sub 2}, α-PbO{sub 2}, or pyrite FeS{sub 2}, the volume of Voronoi—Dirichlet polyhedra of silicon and oxygen atoms decreases linearly with pressure increasing to 268 GPa. Based on these results, the possibility of formation of new post-stishovite phases is shown, namely,more » the fluorite-like structure (transition predicted at ~400 GPa) and a body-centered cubic lattice with statistical arrangement of silicon and oxygen atoms (~900 GPa).« less

  8. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    PubMed

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 < δ < 0.5) by carefully monitoring the resistance changes under a switching flow of oxidizing gas (O2) and reducing gas (H2) in the temperature range of 250 ~ 800 °C. A giant resistance change ΔR by three to four orders of magnitude in less than 0.1 s was found with a fast oscillation behavior in the resistance change rates in the ΔR vs. t plots, suggesting that the oxygen vacancy exchange diffusion with oxygen/hydrogen atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  9. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers.

    PubMed

    Anavi, Sarit; Madar, Zecharia; Tirosh, Oren

    2017-10-01

    Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Thermodynamic Stability of Molybdenum Oxycarbides Formed from Orthorhombic Mo 2 C in Oxygen-Rich Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Likith, S. R. J.; Farberow, C. A.; Manna, S.

    Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less

  11. Thermodynamic Stability of Molybdenum Oxycarbides Formed from Orthorhombic Mo 2 C in Oxygen-Rich Environments

    DOE PAGES

    Likith, S. R. J.; Farberow, C. A.; Manna, S.; ...

    2017-12-20

    Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less

  12. Mechanisms by which oxygen acts as a surfactant in giant magnetoresistance film growth

    NASA Astrophysics Data System (ADS)

    Larson, D. J.; Petford-Long, A. K.; Cerezo, A.; Bozeman, S. P.; Morrone, A.; Ma, Y. Q.; Georgalakis, A.; Clifton, P. H.

    2003-04-01

    The mechanisms by which oxygen acts as a surfactant in giant magnetoresistance multilayers have been elucidated for the first time. Three-dimensional atom probe analysis of Cu/CoFe multilayers reveals the elemental distributions at the atomic level. Interfacial intermixing and oxygen impurity levels have been quantified for the first time. Both with and without oxygen the intermixing is greater at the CoFe-on-Cu interface than at the Cu-on-CoFe one and for both interfaces, oxygen reduced the intermixing. The oxygen largely floats to the growing surface and is incorporated at grain boundaries. The oxygen also reduces conformal roughness and grain boundary grooving, indicating a reduction in long-range surface diffusion.

  13. Atomic Oxygen Cleaning Shown to Remove Organic Contaminants at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.

    1998-01-01

    The NASA Lewis Research Center has developed and filed for a patent on a method to produce atomic oxygen at atmospheric pressure by using a direct current arc in a gas flow mixture of oxygen and helium. A prototype device has been tested for its ability to remove various soot residues from surfaces exposed to fire, and various varnishes such as acrylic and egg white.

  14. Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Nagy, A. F.; Kim, J.; Cravens, T. E.

    1990-04-01

    Optical observations of hot atoms in the atmospheres of Venus and Mars are briefly reviewed. A summary of hot hydrogen and oxygen production and loss processes is given. Results of some recent model calculations as well as a number of new results of the hot hydrogen and oxygen populations are presented and their implication in terms of solar wind interaction processes is discussed.

  15. Atomic Oxygen Exposure of Power System and other Spacecraft Materials: Results of the EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    1997-01-01

    In order to test their reactivity with Atomic Oxygen, twenty five materials were flown on the EOIM-3 (Evaluation of Oxygen Interactions with Materials) portion of the STS-46 Mission. These materials include refractory metals, candidate insulation materials, candidate radiator coatings, and a selection of miscellaneous materials. This report documents the results of the pre- and post-flight analysis of these materials.

  16. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    NASA Astrophysics Data System (ADS)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  17. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  18. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  19. Feasibility study of oxygen-dispensing emitters for thermionic converters, phase 1

    NASA Technical Reports Server (NTRS)

    Desteese, J. G.

    1972-01-01

    A metal/ceramic Marchuk tube was used to measure work functions of oxygen-doped tantalum, to determine applicability of the material to plasma-mode thermionic converters. Oxygen-doped tantalum was shown to increase in work function monotonically with oxygen doping in the range 0.1 to 0.3 atomic percent. Oxygenated test emitters were run at an average temperature of 2165 K and a T/T sub Cs ratio -5.8 to observe the influence of oxygen depletion. Bare work function decreased with outgassing of oxygen. Projections were made based on outgassing kinetics and area/volume ratios to calculate the longevity of oxygen doping in a practical converter. Calculations indicated that the program goal of 10,000 hr could be achieved at 1800 K with an initial oxygen doping of 1 atomic percent and a practical emitter area/volume ratio.

  20. Reducing chronic obstructive pulmonary disease readmissions: the role of the durable medical equipment provider.

    PubMed

    Messenger, Robert W

    2012-01-01

    Exacerbation and frequent rehospitalization in chronic obstructive pulmonary disease exacts a heavy toll on the US health care system. To address these issues, new initiatives have been proposed that are largely based on financial penalties to promote patient education and postdischarge care. However, as laudable as these goals are, improving outcomes in the chronic obstructive pulmonary disease population is more confounding than it may first appear. Chronic hypoxia, cognitive dysfunction, poor nutrition, and economic disadvantage are just a few of the challenges that require creative solutions and ongoing support. Case managers need to utilize all the potential products and services that can assist in improving outcomes for these patients. Durable medical equipment providers are often viewed as purveyors of medical equipment that offer little in the form of clinical support. However, in many cases these providers represent an overlooked resource that provides individualized, highly structured patient education and ongoing support programs. The challenge is in identifying those durable medical equipment providers that offer patients contemporary technology, and have both the resources and the commitment to provide patient support that is amenable to the goals of the hospital. This article reviews many of the confounding issues that contribute to the frequent rehospitalization of chronic obstructive pulmonary disease patients. Recommendations to improve patient education and oxygen therapy outcomes are provided along with suggestions to aid in the vetting of durable medical equipment providers. Acute care hospitals, long-term acute care hospitals, extended care facilities, integrated delivery systems. 1. An understanding of the complex variables that play in the management of chronic obstructive pulmonary disease will help the case manager to plan an effective course of care. 2. Case managers need to ensure that patients receive long-term oxygen technology that supports their lifestyle, promotes compliance, and ultimately achieves the desired outcomes. 3. Case managers must advocate for coordinated, ongoing patient education and stress the need for continuing reinforcement. 4. Case managers must ensure that patients under their care be matched with durable medical equipment providers that provide the technology and support that favors positive clinical outcomes.

  1. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  2. First-Principles Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen

    PubMed Central

    Yu, Yanlin; Xiao, Wei; Wang, Jianwei; Wang, Ligen

    2015-01-01

    Segregation at metal alloy surfaces is an important issue because many electrochemical and catalytic properties are directly correlated to the surface composition. We have performed density functional theory calculations for Mo segregation in MoNi(111) in the presence of chemisorbed atomic oxygen. In particular, the coverage dependence and possible adsorption-induced segregation phenomena are addressed by investigating segregation energies of the Mo atom in MoNi(111). The theoretical calculated results show that the Mo atom prefers to be embedded in the bulk for the clean MoNi(111), while it segregates to the top-most layer when the oxygen coverage is thicker than 1/9 monolayer (ML). Furthermore, we analyze the densities of states for the clean and oxygen-chemisorbed MoNi(111), and see a strong covalent bonding between Mo d-band states and O p-states. The present study provides valuable insight for exploring practical applications of Ni-based alloys as hydrogen evolution electrodes. PMID:28787811

  3. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    PubMed

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design.

  4. Atomic Oxygen Density Retrievals using FUV Observations by the Imaging Ultraviolet Spectrograph on MAVEN

    NASA Astrophysics Data System (ADS)

    Evans, J. Scott; Stevens, Michael H.; Schneider, Nicholas M.; Stewart, Ian; Deighan, Justin; Jain, Sonal Kumar; Eparvier, Francis; Thiemann, E. M.; Bougher, Stephen W.; Jakosky, Bruce

    2016-10-01

    We present the first direct retrievals of neutral atomic oxygen in Mars's upper atmosphere using daytime FUV periapse limb scan observations from 130 - 200 km tangent altitude. Atmospheric composition is inferred using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] adapted to the Martian atmosphere [Evans et al., 2015]. For our retrievals we use O I 135.6 nm emission observed by IUVS on MAVEN under daytime conditions (solar zenith angle < 60 degrees) over both northern and southern hemispheres (latitudes between -65 and +35 degrees) from October 2014 to August 2016. We investigate the sensitivity of atomic oxygen density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our retrievals to predictions from the Mars Global Ionosphere-Thermosphere Model [MGITM, Bougher et al., 2015] and the Mars Climate Database [MCD, Forget et al., 1999] and quantify the differences throughout the altitude region of interest. The retrieved densities are used to characterize global transport of atomic oxygen in the Martian thermosphere.

  5. Remote air lasing for trace detection

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Michael, James B.; Miles, Richard B.

    2011-05-01

    We demonstrate coherent light propagating backwards from a remotely generated high gain air laser. A short ultraviolet laser pulse tuned to a two-photon atomic oxygen electronic resonance at 226 nm simultaneously dissociates the oxygen molecules in air and excites the resulting atomic oxygen fragments. Due to the focal depth of the pumping laser, a millimeter long region of high gain is created in air for the atomic oxygen stimulated emission at 845nm. We demonstrate that the gain in excess of 60 cm-1 is responsible for both forward and backwards emission of a strong, collimated, coherent laser beam. We present evidence for coherent emission and characterize the backscattered laser beam while varying the pumping conditions. The optical gain and directional emission allows for six orders of magnitude enhancement for the backscattered emission when compared with the fluorescence emission collected into the same solid angle. . This opens new opportunities for the remote detection capabilities of trace species, and provides much greater range for the detection of optical molecular and atomic features from a distant target.

  6. Theoretical approach to oxygen atom degradation of silver

    NASA Technical Reports Server (NTRS)

    Fromhold, Albert T., Jr.; Noh, Seung; Beshears, Ronald; Whitaker, Ann F.; Little, Sally A.

    1987-01-01

    Based on available Rutherford backscattering spectrometry (RBS), proton induced X-ray emission (PIXE) and ellipsometry data obtained on silver specimens subjected to atomic oxygen attack in low Earth orbit STS flight 41-G, a theory was developed to model the oxygen atom degradation of silver. The diffusion of atomic oxygen in a microscopically nonuniform medium is an essential constituent of the theory. The driving force for diffusion is the macroscopic electrochemical potential gradient developed between the specimen surface exposed to the ambient and the bulk of the silver specimen. The longitudinal electric effect developed parallel to the gradient is modified by space charge of the diffusing charged species. Lateral electric fields and concentration differences also exist due to the nonuniform nature of the medium. The lateral concentration differences are found to be more important than the lateral electric fields in modifying the diffusion rate. The model was evaluated numerically. Qualitative agreement exists between the kinetics predicted by the theory and kinetic data taken in ground-based experiments utilizing a plasma asher.

  7. Silver Teflon blanket: LDEF tray C-08

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    A study of the Teflon blanket surface at the edge of tray C-08 illustrates the complexity of the microenvironments on the Long Duration Exposure Facility (LDEF). The distribution of particulate contaminants varied dramatically over a distance of half a centimeter (quarter of an inch) near the edge of the blanket. The geometry and optical effects of the atomic oxygen erosion varied significantly over the few centimeters where the blanket folded over the edge of the tray resulting in a variety of orientations to the atomic oxygen flux. A very complex region of combined mechanical and atomic oxygen damage occurred where the blanket contacted the edge of the tray. A brown film deposit apparently fixed by ultraviolet light traveling by reflection through the Teflon film was conspicuous beyond the tray contract zone. Chemical and structural analysis of the surface of the brown film and beyond toward the protected edge of the blanket indicated some penetration of energetic atomic oxygen at least five millimeters past the blanket-tray contact interface.

  8. Multi-functional magnesium alloys containing interstitial oxygen atoms

    PubMed Central

    Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.

    2016-01-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design. PMID:26976372

  9. All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate.

    PubMed

    Abdollahi Nejand, B; Nazari, P; Gharibzadeh, S; Ahmadi, V; Moshaii, A

    2017-01-05

    Here, a low-cost perovskite solar cell using CuI and ZnO as the respective inorganic hole and electron transport layers is introduced. Copper foil is chosen as a cheap and low-weight conductive substrate which has a similar work function to ITO. Besides, copper foil is an interesting copper atom source for the growth of the upper cuprous iodide layer on copper foil. A spray coating of a transparent silver nanowire electrode is used as a top contact. The prepared device shows a maximum power conversion efficiency of 12.80% and long-term durability providing an environmentally and market friendly perovskite solar cell.

  10. Large-Area Atomic Oxygen Facility Used to Clean Fire-Damaged Artwork

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Steuber, Thomas J.; Sechkar, Edward A.

    2000-01-01

    In addition to completely destroying artwork, fires in museums and public buildings can soil a displayed artwork with so much accumulated soot that it can no longer be used for study or be enjoyed by the public. In situations where the surface has not undergone extensive charring or melting, restoration can be attempted. However, soot deposits can be very difficult to remove from some types of painted surfaces, particularly when the paint is fragile or flaking or when the top surface of the paint binder has been damaged. Restoration typically involves the use of organic solvents to clean the surface, but these solvents may cause the paint layers to swell or leach out. Also, immersion of the surface or swabbing during solvent cleaning may move or remove pigment through mechanical contact, especially if the fire damage extends into the paint binder. A noncontact technique of removing organic deposits from surfaces was developed out of NASA research on the effects of oxygen atoms on various materials. Atomic oxygen is present in the atmosphere surrounding the Earth at the altitudes where satellites typically orbit. It can react chemically with surface coatings or deposits that contain carbon. In the reaction, the carbon is converted to carbon monoxide and some carbon dioxide. Water vapor is also a byproduct of the reaction if the surface contains carbon-hydrogen bonds. To study this reaction, NASA developed Earth-based facilities to produce atomic oxygen for material exposure and testing. A vacuum facility designed and built by the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field to provide atomic oxygen over a large area for studying reactions in low Earth orbit has been used to successfully clean several full-size paintings. (This facility can accommodate paintings up to 1.5 by 2.1 m. The atomic oxygen plasma is produced between two large parallel aluminum plates using a radiofrequency power source operating at roughly 400 W. Atomic oxygen is generated uniformly over this area at an operating pressure of 1 to 5 mtorr.

  11. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC

    PubMed Central

    2012-01-01

    A computational study of the dependence of the electronic band structure and density of states on the chemical surface passivation of cubic porous silicon carbide (pSiC) was performed using ab initio density functional theory and the supercell method. The effects of the porosity and the surface chemistry composition on the energetic stability of pSiC were also investigated. The porous structures were modeled by removing atoms in the [001] direction to produce two different surface chemistries: one fully composed of silicon atoms and one composed of only carbon atoms. The changes in the electronic states of the porous structures as a function of the oxygen (O) content at the surface were studied. Specifically, the oxygen content was increased by replacing pairs of hydrogen (H) atoms on the pore surface with O atoms attached to the surface via either a double bond (X = O) or a bridge bond (X-O-X, X = Si or C). The calculations show that for the fully H-passivated surfaces, the forbidden energy band is larger for the C-rich phase than for the Si-rich phase. For the partially oxygenated Si-rich surfaces, the band gap behavior depends on the O bond type. The energy gap increases as the number of O atoms increases in the supercell if the O atoms are bridge-bonded, whereas the band gap energy does not exhibit a clear trend if O is double-bonded to the surface. In all cases, the gradual oxygenation decreases the band gap of the C-rich surface due to the presence of trap-like states. PMID:22913486

  12. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    PubMed

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  13. Colossal super saturation of oxygen at the iron-aluminum interfaces fabricated using solid state welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Isheim, D.; Seidman, David N.

    Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.

  14. Colossal super saturation of oxygen at the iron-aluminum interfaces fabricated using solid state welding

    DOE PAGES

    Sridharan, Niyanth; Isheim, D.; Seidman, David N.; ...

    2016-12-14

    Solid state joining is achieved in three steps, (i) interface asperity deformation, (ii) oxide dispersion, followed by (iii) atomic contact and bonding. Atomically clean metallic surfaces without an oxide layer bond spontaneously. Despite its importance the oxide dispersion mechanism is not well studied. In this work the first ever atom probe study of iron-aluminum solid state welds show that the oxygen concentration at the interface is 20 at.%. This is significantly lower than any equilibrium oxide concentration. Here, we therefore propose that the high-strain rate deformation at the interfaces renders the oxide unstable resulting in the observed concentration of oxygen.

  15. Direct asymmetric N-specific reaction of nitrosobenzene with aldehydes catalyzed by a chiral primary amine-based organocatalyst.

    PubMed

    Qin, Long; Li, Lei; Yi, Lei; Da, Chao-Shan; Zhou, Yi-Feng

    2011-08-01

    Nitroso compounds have two reactive nitrogen and oxygen atoms. It is interesting and important to perform a nitrogen or oxygen selective reaction with interesting substrates. These atom specific reactions are crucial to specifically synthesis of specific compounds. An enantioselective N-specific reaction of nitrosobenzene with unmodified aldehydes was successfully achieved catalyzed first by a variety of primary amine-based organocatalysts with higher yield and enantioselectivity. The bulkier substituted groups of the organocatalyst and two hydrogen bonds from the organocatalyst and the oxygen atom of nitrosobenzene make the reaction preferentially N-specific and predominantly afford R products. Copyright © 2011 Wiley-Liss, Inc.

  16. Anomaly of the composition of the F-2 equatorial region of the ionosphere during the hours after sunset according to data from the mass-spectrometer experiment on the Cosmos-274

    NASA Technical Reports Server (NTRS)

    Gaydukov, V. Y.; Istomin, V. G.; Romanovskiy, Y. A.

    1979-01-01

    A mass spectrometer on board Cosmos-274 measured concentrations of light atoms and ions. While traversing the geomagnetic equator during the evening hours it recorded on anomalous drop in ionized molecular oxygen and ionized atomic oxygen and nitrogen. A similar, less dramatic, decline was observed in the concentration of neutral atomic oxygen. A possible explanation for this and previously observed behavior is an ascent in altitude of the F layer in the hours after sunset, a possibility which is supported by calculations.

  17. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, Sandeep, E-mail: snigam@barc.gov.in; Majumder, Chiranjib; Sahoo, Suman K.

    2014-04-24

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  18. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  19. Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.

  20. Interactions of atomic hydrogen with amorphous SiO2

    NASA Astrophysics Data System (ADS)

    Yue, Yunliang; Wang, Jianwei; Zhang, Yuqi; Song, Yu; Zuo, Xu

    2018-03-01

    Dozens of models are investigated by the first-principles calculations to simulate the interactions of an atomic hydrogen with a defect-free random network of amorphous SiO2 (a-SiO2) and oxygen vacancies. A wide variety of stable configurations are discovered due to the disorder of a-SiO2, and their structures, charges, magnetic moments, spin densities, and density of states are calculated. The atomic hydrogen interacts with the defect-free a-SiO2 in positively or negatively charged state, and produces the structures absent in crystalline SiO2. It passivates the neutral oxygen vacancies and generates two neutral hydrogenated E‧ centers with different Si dangling bond projections. Electron spin resonance parameters, including Fermi contacts, and g-tensors, are calculated for these centers. The atomic hydrogen interacts with the positive oxygen vacancies in dimer configuration, and generate four different positive hydrogenated defects, two of which are puckered like the Eγ‧ centers. This research helps to understand the interactions between an atomic hydrogen, and defect-free a-SiO2 and oxygen vacancies, which may generate the hydrogen-complexed defects that play a key role in the degeneration of silicon/silica-based microelectronic devices.

  1. The structure and properties of a nickel-base superalloy produced by osprey atomization-deposition

    NASA Astrophysics Data System (ADS)

    Bricknell, Rodger H.

    1986-04-01

    The production of a nickel-base superalloy, René* 80, by the Osprey atomization-deposition process has been investigated. Dense (>99 pct) material with a fine-grained equiaxed microstructure was deposited using either argon or nitrogen as the atomizing gas. Defects present in the material included a chill region at the collector plate interface, entrapped recirculated particles, porosity, and ceramic particles from the melting and dispensing system. In contrast to other rapid solidification techniques, low oxygen pick-ups are noted in the current technique. Tensile strengths above those displayed by castings are found in both nitrogen and argon atomized material, and in both the as-deposited and heat treated conditions. In addition, no profound mid-temperature ductility loss is displayed by this low oxygen material, in contrast to results on other rapidly solidified material with high oxygen contents. These results are explained in terms of oxygen embrittlement. In view of the excellent properties measured, the attractive economics of the process, and the fact that fine control of the gas/metal flow ratio is shown to be unnecessary, it is concluded that atomization-deposition presents an attractive potential production route for advanced alloys.

  2. Rates and mechanisms of the atomic oxygen reaction with nickel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1973-01-01

    The oxidation of nickel by atomic oxygen at pressure from 1 to 45 N/sq m between 1050 and 1250 K was investigated. In these ranges, the oxidation was found to follow the parobolic rate law, viz., K sub p = 0.0000114 exp(-13410/T) g squared/cm4/sec for films of greater than 1 micron thickness and was pressure independent. The activation enthalpy for the oxidation reaction was 112 + or - 11 kj/mole (27 + or - 3 kcal/mole). Of a number of possible mechanisms and defect structures considered, it was shown that the most likely was a saturated surface defect model for atomic oxidation, based on reaction activation enthalpies, impurity effects, pressure independence, and magnitudes of rates. A model judged somewhat less likely was one having doubly ionized cationic defects rate controlling in both atomic and molecular oxygen. From comparisons of the appropriate processes, the following enthalpy values were derived: enthalpy of activation (Ni diffusion in Ni0) = 110 + or - 30 kj/mole and standard enthalpy change for reaction formation (doubly ionized cation vacancies in Ni0 from atomic oxygen)= -9 + or - 25 kj/mole.

  3. Evaluation of Low-Earth-Orbit Environmental Effects on International Space Station Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.

    1998-01-01

    Many spacecraft thermal control coatings in low Earth orbit (LEO) can be affected by solar ultraviolet radiation and atomic oxygen. Ultraviolet radiation can darken some polymers and oxides commonly used in thermal control materials. Atomic oxygen can erode polymer materials, but it may reverse the ultraviolet-darkening effect on oxides. Maintaining the desired solar absorptance for thermal control coatings is important to assure the proper operating temperature of the spacecraft. Thermal control coatings to be used on the International Space Station (ISS) were evaluated for their performance after exposure in the NASA Lewis Research Center's Atomic Oxygen-Vacuum Ultraviolet Exposure (AO-VUV) facility. This facility simulated the LEO environments of solar vacuum ultraviolet (VUV) radiation (wavelength range, 115 to 200 nanometers (nm)) and VUV combined with atomic oxygen. Solar absorptance was measured in vacuo to eliminate the "bleaching" effects of ambient oxygen on VUV-induced degradation. The objective of these experiments was to determine solar absorptance increases of various thermal control materials due to exposure to simulated LEO conditions similar to those expected for ISS. Work was done in support of ISS efforts at the requests of Boeing Space and Defense Systems and Lockheed Martin Vought Systems.

  4. Characteristics of Honeycomb-Type Oxygen Generator with Electrolyte Based on Doped Bismuth Oxide

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Wen; Liu, Yi-Xin; Wang, Sea-Fue; Devasenathipathy, Rajkumar

    2018-03-01

    An oxygen generator using Y-doped Bi2O3 as electrolyte to transport oxygen ions has been developed, having honeycomb-type structure with dimensions of 40 mm × 35 mm × 30 mm and consisting of 13 × 12 channels. External wire circuitry for the channels arrayed using parallel, series, and hybrid connection was evaluated to achieve the best oxygen separation efficiency. It was observed that the oxygen generator with hybrid connection facilitated evolution of oxygen at maximum of 117 sccm and high purity > 99.9% at 550°C under current flow of 14 A. Addition of 5 wt.% silane and 3 wt.% glass-ceramic powder to the Ag slurry used at both electrodes not only increased the coverage of the metal electrode on the ceramic substrate during dip coating but also prevented cracking at the electrode layer of the module under stress from the electric field and temperature during high-temperature operation, thus reducing the decay rate of the oxygen generator in durability testing.

  5. Research, development and application of noncombustible Beta fiber structures. [for Apollo

    NASA Technical Reports Server (NTRS)

    Dillon, J. J.; Cobb, E. S.

    1975-01-01

    Beta fiber was selected as the primary material for flexible fibrous structures used in spacecraft and crew systems applications in the Apollo program because it was noncombustible in a 100 percent oxygen atmosphere up to 16.5 psia. It met NASA criteria for outgassing, toxicity, odor, and crew comfort, and possessed sufficient durability to last through the mission. Topics discussed include: study of spacecraft applications; design of Beta fiber textile structures to meet the requirements; selection of surface treatments (finishes, coatings, and printing systems) to impart the required durability and special functional use to the textile structures; development of sewing and fabrication techniques; and testing and evaluation programs, and development of production sources.

  6. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    PubMed Central

    Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  7. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method

    USGS Publications Warehouse

    Casciotti, K.L.; Sigman, D.M.; Hastings, M. Galanter; Böhlke, J.K.; Hilkert, A.

    2002-01-01

    We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate.1Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N2O analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N2O product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consistent within a given batch of analyses. The analysis of appropriate isotopic reference materials can thus be used to correct the measured 18O/16O ratios of samples for both effects. This is the first method tested for 18O/16O analysis of nitrate in seawater. Benefits of this method, relative to published freshwater methods, include higher sensitivity (tested down to 10 nmol and 1 μM NO3-), lack of interference by other solutes, and ease of sample preparation.

  8. 42 CFR 424.57 - Special payment rules for items furnished by DMEPOS suppliers and issuance of DMEPOS supplier...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... effort, and arterial oxygen saturation furnished in a sleep laboratory facility in which a technologist... inspiration and expiration. DMEPOS stands for durable medical equipment, prosthetics, orthotics and supplies... items means medical equipment and supplies as defined in section 1834(j)(5) of the Act. National...

  9. 42 CFR 424.57 - Special payment rules for items furnished by DMEPOS suppliers and issuance of DMEPOS supplier...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... effort, and arterial oxygen saturation furnished in a sleep laboratory facility in which a technologist... inspiration and expiration. DMEPOS stands for durable medical equipment, prosthetics, orthotics and supplies... items means medical equipment and supplies as defined in section 1834(j)(5) of the Act. National...

  10. 42 CFR 424.57 - Special payment rules for items furnished by DMEPOS suppliers and issuance of DMEPOS supplier...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... effort, and arterial oxygen saturation furnished in a sleep laboratory facility in which a technologist... inspiration and expiration. DMEPOS stands for durable medical equipment, prosthetics, orthotics and supplies... items means medical equipment and supplies as defined in section 1834(j)(5) of the Act. National...

  11. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis

    NASA Astrophysics Data System (ADS)

    Niu, Yanli; Huang, Xiaoqin; Hu, Weihua

    2016-11-01

    Oxygen reduction reaction (ORR) electrocatalysts with high activity, low cost and good durability are crucial to promote the large-scale practical application of fuel cells. Particularly, iron carbide (Fe3C) supported on nitrogen-doped carbon has recently demonstrated compelling promise for ORR electrocatalysis. In this paper, we report the facile synthesis of mesoporous Fe/N-doped graphene with encapsulated Fe3C nanoparticles (Fe3C@Fe/N-graphene) and its superior ORR catalytic activity. This hybrid material was synthesized by the spontaneous oxidative polymerization of dopamine on graphene oxide (GO) sheets in the presence of iron ion, followed by thermal annealing in Argon (Ar) atmosphere. As-prepared material shows high ORR catalytic activity with overwhelming four-electron reduction pathway, long-term durability and high methanol tolerance in alkaline media. This work reports a facile method to synthesize promising ORR electrocatalysis with multiple components and hierarchical architecture, and may offer valuable insight into the underlying mechanism of Fe3C-boosted ORR activity of Fe/N doped carbon.

  12. Comparison of iridium- and ruthenium-based, Pt-surface-enriched, nanosize catalysts for the oxygen-reduction reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Goor, M.; Alon, M.; Tsizin, S.; Burstein, L.; Rosenberg, Y.; Popov, I.; Peled, E.

    2016-02-01

    Pt-surface-enriched nanosize catalysts (Pt-SENS catalysts) with ruthenium and iridium cores, supported on XC72, were synthesized and characterized. The structure and composition of the catalysts are determined by Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), Scanning Transmission Electron Microscopy (STEM) and X-Ray Diffraction (XRD). Electrochemical characterization tests, including oxygen-reduction-catalysis activity and durability studies of catalysts are performed with the use of cyclic-voltammetry and rotating-disk-electrode (RDE) techniques at room temperature. The ORR activity of the homemade catalysts is also compared to ORR activity of commercial 50%Pt/C catalyst. It is determined that the Ir-based catalyst (Pt/Ir/XC72) shows higher ORR activity in terms of A g-1 of Pt (at 0.85 V vs. RHE) than the Ru-based catalyst (Pt/Ru/XC72) and the commercial 50%Pt/C. The Ru-based catalyst shows similar ORR activity in terms of A g-1 of Pt, to that of the commercial 50%Pt/C, but with much lower durability.

  13. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts.

    PubMed

    Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon

    2016-10-01

    Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. First-principles study of the stability of free-standing germanene in oxygen atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, G.; College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022; Liu, S. B., E-mail: sbliu@bjut.edu.cn

    2015-09-28

    The O{sub 2} dissociation and O atoms adsorption on free-standing germanene are studied by using first-principles calculations in this paper. Compared with the extremely active silicene in oxygen atmosphere, germanene is found to be less active due to an energy barrier for dissociation of about 0.57 eV. Moreover, the dissociated oxygen atom follows two opposite migration pathways on the germanene surface, which is quite different from the case of silicene. Furthermore, the migration and desorption of O atoms at room temperature are relatively difficult due to the strong Ge-O bonding, resulting in the formation of germanium oxides. Our results reveal themore » interplay between germanene and O{sub 2} and suggest the enhanced stability of germanene in oxygen atmosphere compared with silicene.« less

  15. Alternative Method for the Thermospheric Atomic Oxygen Density Determination

    NASA Technical Reports Server (NTRS)

    Bennett, A. C.; Omidvar, K.; Atlas, Robert (Technical Monitor)

    2001-01-01

    Atomic oxygen density in the upper thermosphere (approximately 300 km) can be calculated using ground based incoherent scatter radar and Fabry-Perot interferometer measurements. Burnside et al. was the first to try this method, but Buonsanto et al. provided an extensive treatment of the method in 1997. This paper further examines the method using 46 nights of data collected over six years and the latest information on the oxygen collision frequency. The method is compared with the MSIS (Mass Spectrometer Incoherent Scatter)-86 atomic oxygen prediction values, which are based upon in situ rocket born and satellite measurements from the 70s to the mid-80s. In general, the method supports the MSIS-86 model, but indicates several areas of discrepancy. Furthermore, no direct correlation is found between the geomagnetic conditions and the difference between the method and MSIS-86 predictions.

  16. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  17. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  18. Energy transfer in O collisions with He isotopes and helium escape from Mars

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Zhang, P.; Kharchenko, V.; Dalgarno, A.

    2010-12-01

    Helium is one of the dominant constituents in the upper atmosphere of Mars [1]. Thermal (Jeans’) escape of He is negligible on Mars [2] and major mechanism of escape is related to the collisional ejection of He atoms by energetic oxygen. Collisional ejection dominates over ion-related mechanisms [3] and evaluation of the escape flux of neutral He becomes an important issue. The dissociative recombination of O2+ is considered to be the major source of energetic oxygen atoms [4]. We report accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas. Angular dependent scattering cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation, describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O + He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere at different solar conditions. We have identified atmospheric layers mostly responsible for production of the He escape flux. Our results are consistent with recent data from Monte Carlo simulations of the escape of O atoms: strong angular anisotropy of atomic cross sections leads to an increased transparency of the upper atmosphere for escaping O flux [5] and stimulate the collisional ejection of He atoms. References [1] Krasnopolsky, V. A., and G. R. Gladstone (2005), Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395. [2] Chassefiere E. and F. Leblanc (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52, 1039 [3] Krasnopolsky, V. (2010), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmoshpere, Icarus, 207, 638. [4] Fox, J. L. (1995), On the escape of oxygen and hydrogen from Mars, Geophy. Rev. Lett., 20, 1847. [5] Krestyanikova, M. A. and V. I. Shematovich (2006), Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars, Solar System Research, 40, 384.

  19. Inflight resistance measurement on high-T(sub c) superconducting thin films exposed to orbital atomic oxygen on CONCAP-2 (STS-46)

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Raiker, G. N.; Bijvoet, J. A.; Nerren, P. D.; Sutherland, W. T.; Mogro-Camperso, A.; Turner, L. G.; Kwok, Hoi; Raistrick, I. D.; Cross, J. B.

    1995-01-01

    In 1992, UAH (University of Alabama in Huntsville) conducted a unique experiment on STS-46 in which YBa2Cu3O7 (commonly known as '1-2-3' superconductor) high-T(c) superconducting thin film samples prepared at three different laboratories were exposed to 5 eV atomic oxygen in low Earth orbit on the ambient and 320 C hot plate during the first flight of the CONCAP-2 (Complex Autonomous Payload) experiment carrier. The resistance of the thin films was measured in flight during the atomic oxygen exposure and heating cycle. Superconducting properties were measured in the laboratory before and after the flight by the individual experimenters. Films with good superconducting properties, and which were exposed to the oxygen flux, survived the flight including those heated to 320 C (600 K) with properties essentially unchanged, while other samples which were heated but not exposed to oxygen were degraded. The properties of other flight controls held at ambient temperature appear unchanged and indistinguishable from those of ground controls, whether exposed to oxygen or not.

  20. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

Top