Sample records for atomic physics calculations

  1. Proposed software system for atomic-structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, C.F.

    1981-07-01

    Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less

  2. Light element opacities of astrophysical interest from ATOMIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less

  3. Faculty Member for Research in an Undergraduate Institution Prize Talk: Research and Teaching through high-precision spectroscopy of heavy atoms

    NASA Astrophysics Data System (ADS)

    Majumder, Tiku

    2017-04-01

    In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.

  4. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    ERIC Educational Resources Information Center

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  5. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  6. Relativistic calculations of atomic properties

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Sahoo, B. K.; Arora, Bindiya

    2017-04-01

    Singly charged ions are engaging candidates in many areas of Physics. They are especially important in astrophysics for evaluating the radiative properties of stellar objects, in optical frequency standards and for fundamental physics studies such as searches for permanent electric dipole moments and atomic parity violation. Interpretation of these experiments often requires a knowledge of their transition wavelengths and electric dipole amplitudes. In this work, we discuss the calculation of various properties of alkaline earth ions. The relativistic all-order SD method in which all single and double excitations of the Dirac-Fock wave function are included, is used to calculate these atomic properties. We use this method for evaluation of electric dipole matrix elements of alkaline earth ions. Combination of these matrix elements with experimental energies allow to obtain the polarizabilities of ground and excited states of ions. We discuss the applications of estimated polarizabiities as a function of imaginary frequencies in the calculations of long-range atom-ion interactions. We have also located the magic wavelengths for nS1 / 2 - nD3 / 2 , 5 / 2 transitions of alkaline earth ions. These calculated properties will be highly valuable to atomic and astrophysics community. UGC-BSR Grant No. F.7-273/2009/BSR.

  7. A Simple Approach for the Calculation of Energy Levels of Light Atoms

    ERIC Educational Resources Information Center

    Woodyard, Jack R., Sr.

    1972-01-01

    Describes a method for direct calculation of energy levels by using elementary techniques. Describes the limitations of the approach but also claims that with a minimum amount of labor a student can get greater understanding of atomic physics problems. (PS)

  8. Interference, focusing and excitation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.

    2011-05-01

    One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.

  9. Algorithms and physical parameters involved in the calculation of model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Merlo, D. C.

    This contribution summarizes the Doctoral Thesis presented at Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba for the degree of PhD in Astronomy. We analyze some algorithms and physical parameters involved in the calculation of model stellar atmospheres, such as atomic partition functions, functional relations connecting gaseous and electronic pressure, molecular formation, temperature distribution, chemical compositions, Gaunt factors, atomic cross-sections and scattering sources, as well as computational codes for calculating models. Special attention is paid to the integration of hydrostatic equation. We compare our results with those obtained by other authors, finding reasonable agreement. We make efforts on the implementation of methods that modify the originally adopted temperature distribution in the atmosphere, in order to obtain constant energy flux throughout. We find limitations and we correct numerical instabilities. We integrate the transfer equation solving directly the integral equation involving the source function. As a by-product, we calculate updated atomic partition functions of the light elements. Also, we discuss and enumerate carefully selected formulae for the monochromatic absorption and dispersion of some atomic and molecular species. Finally, we obtain a flexible code to calculate model stellar atmospheres.

  10. Isotopic Shift of Atom-Dimer Efimov Resonances in K-Rb Mixtures: Critical Effect of Multichannel Feshbach Physics.

    PubMed

    Kato, K; Wang, Yujun; Kobayashi, J; Julienne, P S; Inouye, S

    2017-04-21

    Multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the ^{41}K-^{87}Rb system relative to the position of the previously observed atom-dimer resonance in the ^{40}K-^{87}Rb system. This shift is well explained by our calculations with a three-body model including van der Waals interactions, and, more importantly, multichannel spinor physics. With only minor differences in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the ^{40}K-^{87}Rb and ^{41}K-^{87}Rb systems, respectively. Our study demonstrates the role of multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.

  11. Application of the Finite Element Method in Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  12. An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization

    NASA Technical Reports Server (NTRS)

    Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.

    1997-01-01

    Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.

  13. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  14. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  15. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE PAGES

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  16. Improving atomic displacement and replacement calculations with physically realistic damage models.

    PubMed

    Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

  17. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.

  18. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  19. Bayesian data analysis tools for atomic physics

    NASA Astrophysics Data System (ADS)

    Trassinelli, Martino

    2017-10-01

    We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested_fit to calculate the different probability distributions and other related quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.

  20. FAC: Flexible Atomic Code

    NASA Astrophysics Data System (ADS)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  1. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  2. REVIEWS OF TOPICAL PROBLEMS: Analytic calculations on digital computers for applications in physics and mathematics

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.

    1980-01-01

    The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.

  3. The role of atomic lines in radiation heating of the experimental space vehicle Fire-II

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2015-10-01

    The results of calculating the convective and radiation heating of the Fire-II experimental space vehicle allowing for atomic lines of atoms and ions using the NERAT-ASTEROID computer platform are presented. This computer platform is intended to solve the complete set of equations of radiation gas dynamics of viscous, heat-conductive, and physically and chemically nonequilibrium gas, as well as radiation transfer. The spectral optical properties of high temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The calculation of the transfer of selective thermal radiation is performed using a line-by-line method using specially generated computational grids over the radiation wavelengths, which make it possible to attain a noticeable economy of computational resources.

  4. Quantum Mechanics for Beginning Physics Students

    ERIC Educational Resources Information Center

    Schneider, Mark B.

    2010-01-01

    The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For…

  5. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  6. Atomic charges of sulfur in ionic liquids: experiments and calculations.

    PubMed

    Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J

    2017-12-14

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.

  7. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2005-11-01

    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green’s function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the full nonequilibrium Green’s function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule.

  8. Parity and Time-Reversal Violation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.

    2015-10-01

    Studying the violation of parity and time-reversal invariance in atomic systems has proven to be a very effective means of testing the electroweak theory at low energy and searching for physics beyond it. Recent developments in both atomic theory and experimental methods have led to the ability to make extremely precise theoretical calculations and experimental measurements of these effects. Such studies are complementary to direct high-energy searches, and can be performed for only a fraction of the cost. We review the recent progress in the field of parity and time-reversal violation in atoms, molecules, and nuclei, and examine the implications for physics beyond the Standard Model, with an emphasis on possible areas for development in the near future.

  9. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    PubMed Central

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  10. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  11. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE PAGES

    Zhang, Gaigong; Lin, Lin; Hu, Wei; ...

    2017-01-27

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  12. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin; Hu, Wei

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  13. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  14. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  15. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    PubMed

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  16. Improved Simulations of Astrophysical Plasmas: Computation of New Atomic Data

    NASA Technical Reports Server (NTRS)

    Gorczyca, Thomas W.; Korista, Kirk T.

    2005-01-01

    Our research program is designed to carry out state-of-the-art atomic physics calculations crucial to advancing our understanding of fundamental astrophysical problems. We redress the present inadequacies in the atomic data base along two important areas: dielectronic recombination and inner-shell photoionization and multiple electron ejection/Auger fluorescence therefrom. All of these data are disseminated to the astrophysical community in the proper format for implementation in spectral simulation code.

  17. Correlations between interacting Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Paris-Mandoki, Asaf; Braun, Christoph; Hofferberth, Sebastian

    2018-04-01

    This paper is a short introduction to Rydberg physics and quantum nonlinear optics using Rydberg atoms. It has been prepared as a compliment to a series of lectures delivered during the Latin American School of Physics "Marcos Moshinsky" 2017. We provide a short introduction to the properties of individual Rydberg atoms and discuss in detail how the interaction potential between Rydberg atom pairs is calculated. We then discuss how this interaction gives rise to the Rydberg blockade mechanism. With the aid of hallmark experiments in the field applications of the blockade for creating correlated quantum systems are discussed. Our aim is to give an overview of this exciting and rapidly evolving field. The interested reader is referred to original work and more comprehensive reviews and tutorials for further details on these subjects.

  18. Learning molecular energies using localized graph kernels.

    PubMed

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-21

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  19. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  20. Atomic Data Needs for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A. (Editor); Kallman, Timothy R. (Editor); Pradhan, Anil K. (Editor)

    2000-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on "Atomic Data Needs for X-ray Astronomy," which was held at NASA's Goddard Space Flight Center on December 16-17, 1999. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters, Spectra Modeling, and Atomic Databases. These proceedings are expected to be of interest to producers and users of atomic data. Moreover, the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  1. Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.

    ERIC Educational Resources Information Center

    Venugopalan, Mundiyath

    1991-01-01

    Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…

  2. Neutral sodium atoms extraction by micrometeoroid impacts on the surface of Mercury

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Orsini, S.; Capria, M. T.; Milillo, A.; Mura, A.; Mangano, V.; Carbognani, A.

    2003-04-01

    The Mercury's exosphere is more dependent on the micrometeoroid impacts than the lunar exosphere and we have applied an order-to-magnitude calculation on the physical conditions of the sodium atoms during these events. This calculation shows the different ionization degree of sodium atoms depending on the meteoroid impact velocity and the related emission enhancements we may have observing the exosphere. We have applied the same calculation to the visible and UV doublets showing the large difference, a factor 5, between the two emission intensities only taking into account the same micrometeoroids contribution. Furthermore we provide a rough estimate for the impact magnitude in sodium light if we observe the night side of the Mercury's surface from the orbit of the ESA mission BepiColombo. Assuming a specific energy distribution of the emitted neutrals, we simulate the characteristics of the low-energy neutral atom fluxes as observable by the SERENA/ELENA instrument proposed on board the ESA BepiColombo Planetary Orbiter.

  3. Ti12Xe: A twelve-coordinated Xe-containing molecule

    NASA Astrophysics Data System (ADS)

    Miao, Junjian; Xu, Wenwu; Zhu, Beien; Gao, Yi

    2017-08-01

    A twelve-coordinated Xe-containing molecule Ti12Xe has been predicted by DFT calculations with quasi-icosahedral symmetry. Structural and NBO analyses show the chemical bonding exists between the central Xe atom and peripheral Ti atoms, which leads to the high stability of the molecule to a considerable degree. First principle molecular dynamics simulations further reveal the particularly high thermal stability of Ti12Xe up to 1500 K. This unique species may disclose new physics and chemistry of xenon element and stir interest in the Xe-transition metal cluster physics and chemistry.

  4. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  5. Does Quantum Physics Refute Realism, Materialism and Determinism?

    ERIC Educational Resources Information Center

    Bunge, Mario

    2012-01-01

    It is argued that the correct answer to the three questions in the title is "no": that the theses being denied derive from traditional philosophy, not from the way the quantum theories are used. For example, the calculation of the energy spectrum of an atom assumes the autonomous existence of the atom, rather than its dependence upon the observer.…

  6. A physically interpretable quantum-theoretic QSAR for some carbonic anhydrase inhibitors with diverse aromatic rings, obtained by a new QSAR procedure.

    PubMed

    Clare, Brian W; Supuran, Claudiu T

    2005-03-15

    A QSAR based almost entirely on quantum theoretically calculated descriptors has been developed for a large and heterogeneous group of aromatic and heteroaromatic carbonic anhydrase inhibitors, using orbital energies, nodal angles, atomic charges, and some other intuitively appealing descriptors. Most calculations have been done at the B3LYP/6-31G* level of theory. For the first time we have treated five-membered rings by the same means that we have used for benzene rings in the past. Our flip regression technique has been expanded to encompass automatic variable selection. The statistical quality of the results, while not equal to those we have had with benzene derivatives, is very good considering the noncongeneric nature of the compounds. The most significant correlation was with charge on the atoms of the sulfonamide group, followed by the nodal orientation and the solvation energy calculated by COSMO and the charge polarization of the molecule calculated as the mean absolute Mulliken charge over all atoms.

  7. Linear combination of atomic orbitals calculation of the Auger neutralization rate of He{sup +} on Al(111) (100), and (110) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdes, Diego; Blanco, J.M.; Monreal, R.C.

    2005-06-15

    We develop a theory of the Auger neutralization rate of ions on solid surfaces in which the matrix elements for the transition are calculated by means of a linear combination of atomic orbitals technique. We apply the theory to the calculation of the Auger rate of He{sup +} on unreconstructed Al(111) (100), and (110) surfaces, assuming He{sup +} to approach these surfaces on high symmetry positions and compare them with the results of the jellium model. Although there are substantial differences between the Auger rates calculated with both kinds of approaches, those differences tend to compensate when evaluating the integralmore » along the ion trajectory and, consequently, are of minor influence in some physical magnitudes like the ion survival probability for perpendicular energies larger than 100 eV. We find that many atoms contribute to the Auger process and small effects of lateral corrugation are registered.« less

  8. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  9. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; Santana, J. A.

    2017-10-01

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all the L-shell ions of silicon and sulfur. We present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.

  10. Dirac R -matrix calculations for the electron-impact excitation of neutral tungsten providing noninvasive diagnostics for magnetic confinement fusion

    NASA Astrophysics Data System (ADS)

    Smyth, R. T.; Ballance, C. P.; Ramsbottom, C. A.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.

    2018-05-01

    Neutral tungsten is the primary candidate as a wall material in the divertor region of the International Thermonuclear Experimental Reactor (ITER). The efficient operation of ITER depends heavily on precise atomic physics calculations for the determination of reliable erosion diagnostics, helping to characterize the influx of tungsten impurities into the core plasma. The following paper presents detailed calculations of the atomic structure of neutral tungsten using the multiconfigurational Dirac-Fock method, drawing comparisons with experimental measurements where available, and includes a critical assessment of existing atomic structure data. We investigate the electron-impact excitation of neutral tungsten using the Dirac R -matrix method, and by employing collisional-radiative models, we benchmark our results with recent Compact Toroidal Hybrid measurements. The resulting comparisons highlight alternative diagnostic lines to the widely used 400.88-nm line.

  11. K-shell X-ray transition energies of multi-electron ions of silicon and sulfur

    DOE PAGES

    Beiersdorfer, P.; Brown, G. V.; Hell, N.; ...

    2017-04-20

    Prompted by the detection of K-shell absorption or emission features in the spectra of plasma surrounding high mass X-ray binaries and black holes, recent measurements using the Livermore electron beam ion trap have focused on the energies of the n = 2 to n = 1 K-shell transitions in the L-shell ions of lithiumlike through fluorinelike silicon and sulfur. In parallel, we have made calculations of these transitions using the Flexible Atomic Code and the multi-reference Møller-Plesset (MRMP) atomic physics code. Using this code we have attempted to produce sets of theoretical atomic data with spectroscopic accuracy for all themore » L-shell ions of silicon and sulfur. Here, we present results of our calculations for oxygenlike and fluorinelike silicon and compare them to the recent electron beam ion trap measurements as well as previous calculations.« less

  12. Calculations of combustion response profiles and oscillations

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1993-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Pressure and velocity oscillations calculated using this procedure are presented for the Space Shuttle Main Engine (SSME) to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Results of calculations to determine local combustion responses using detailed physical models for injection, atomization, and vaporization with gas phase oscillations in baffled and unbaffled SSME combustors are presented. The contributions of the various physical phenomena occurring in a combustor to oscillations in combustion response were determined.

  13. Characterization of cross-section correction to charge exchange recombination spectroscopy rotation measurements using co- and counter-neutral-beam views.

    PubMed

    Solomon, W M; Burrell, K H; Feder, R; Nagy, A; Gohil, P; Groebner, R J

    2008-10-01

    Measurements of rotation using charge exchange recombination spectroscopy can be affected by the energy dependence of the charge exchange cross section. On DIII-D, the associated correction to the rotation can exceed 100 kms at high temperatures. In reactor-relevant low rotation conditions, the correction can be several times larger than the actual plasma rotation and therefore must be carefully validated. New chords have been added to the DIII-D CER diagnostic to view the counter-neutral-beam line. The addition of these views allows determination of the toroidal rotation without depending on detailed atomic physics calculations, while also allowing experimental characterization of the atomic physics. A database of rotation comparisons from the two views shows that the calculated cross-section correction can adequately describe the measurements, although there is a tendency for "overcorrection." In cases where accuracy better than about 15% is desired, relying on calculation of the cross-section correction may be insufficient.

  14. On the physics of the pressure and temperature gradients in the edge of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2018-04-01

    An extended plasma fluid theory including atomic physics, radiation, electromagnetic and themodynamic forces, external sources of particles, momentum and energy, and kinetic ion orbit loss is employed to derive theoretical expressions that display the role of the various factors involved in the determination of the pressure and temperature gradients in the edge of tokamak plasmas. Calculations for current experiments are presented to illustrate the magnitudes of various effects including strong radiative and atomic physics edge cooling effects and strong reduction in ion particle and energy fluxes due to ion orbit loss in the plasma edge. An important new insight is the strong relation between rotation and the edge pressure gradient.

  15. Suprathermal electrons in kJ-laser produced plasmas: M- shell resolved high-resolution x-ray spectroscopic study of transient matter evolution

    NASA Astrophysics Data System (ADS)

    Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Bobin, J.-L.; Rosmej, F. B.

    2016-05-01

    Hot electrons are of key importance to understand many physical processes in plasma physics. They impact strongly on atomic physics as almost all radiative properties are seriously modified. X-ray spectroscopy is of particular interest due to reduced photoabsorption in dense matter. We report on a study of the copper Kα X-ray emission conducted at the ns, kJ laser facility PALS, Prague, Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral and spatial resolution have been set up simultaneously to achieve a high level of confidence in the spectral distribution. In particular, an emission on the red wing of the Kα2 transition (λ = 1.5444 Å) could be identified with complex atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first atomic physics simulations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avrett, E.; Tian, H.; Landi, E.

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equationsmore » for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.« less

  17. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team

    2014-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.

  18. Experimental validation of calculated atomic charges in ionic liquids

    NASA Astrophysics Data System (ADS)

    Fogarty, Richard M.; Matthews, Richard P.; Ashworth, Claire R.; Brandt-Talbot, Agnieszka; Palgrave, Robert G.; Bourne, Richard A.; Vander Hoogerstraete, Tom; Hunt, Patricia A.; Lovelock, Kevin R. J.

    2018-05-01

    A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.

  19. Yong-Ki Kim — His Life and Recent Work

    NASA Astrophysics Data System (ADS)

    Stone, Philip M.

    2007-08-01

    Dr. Kim made internationally recognized contributions in many areas of atomic physics research and applications, and was still very active when he was killed in an automobile accident. He joined NIST in 1983 after 17 years at the Argonne National Laboratory following his Ph.D. work at the University of Chicago. Much of his early work at Argonne and especially at NIST was the elucidation and detailed analysis of the structure of highly charged ions. He developed a sophisticated, fully relativistic atomic structure theory that accurately predicts atomic energy levels, transition wavelengths, lifetimes, and transition probabilities for a large number of ions. This information has been vital to model the properties of the hot interior of fusion research plasmas, where atomic ions must be described with relativistic atomic structure calculations. In recent years, Dr. Kim worked on the precise calculation of ionization and excitation cross sections of numerous atoms, ions, and molecules that are important in fusion research and in plasma processing for manufacturing semiconductor chips. Dr. Kim greatly advanced the state-of-the-art of calculations for these cross sections through development and implementation of highly innovative methods, including his Binary-Encounter-Bethe (BEB) theory and a scaled plane wave Born (scaled PWB) theory. His methods, using closed quantum mechanical formulas and no adjustable parameters, avoid tedious large-scale computations with main-frame computers. His calculations closely reproduce the results of benchmark experiments as well as large-scale calculations requiring hours of computer time. This recent work on BEB and scaled PWB is reviewed and examples of its capabilities are shown.

  20. Learning molecular energies using localized graph kernels

    DOE PAGES

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    2017-03-21

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  1. Learning molecular energies using localized graph kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferré, Grégoire; Haut, Terry Scot; Barros, Kipton Marcos

    We report that recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturallymore » incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. Finally, we benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.« less

  2. HM{sup +}–RG complexes (M = group 2 metal; RG = rare gas): Physical vs. chemical interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Joe P.; Dodson, Hannah; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk

    2015-04-21

    Previous work on the HM{sup +}–He complexes (M = Be–Ra) has been extended to the cases of the heavier rare gas atoms, HM{sup +}–RG (RG = Ne–Rn). Optimized geometries and harmonic vibrational frequencies have been calculated using MP2 theory and quadruple-ζ quality basis sets. Dissociation energies for the loss of the rare gas atom have been calculated at these optimized geometries using coupled cluster with single and double excitations and perturbative triples, CCSD(T)theory, extrapolating interaction energies to the basis set limit. Comparisons are made between the present data and the previously obtained helium results, as well as to those ofmore » the bare HM{sup +} molecules; furthermore, comparisons are made to the related M{sup +}–RG and M{sup 2+}–RG complexes. Partial atomic charge analyses have also been undertaken, and these used to test a simple charge-induced dipole model. Molecular orbital diagrams are presented together with contour plots of the natural orbitals from the quadratic configuration with single and double excitations (QCISD) density. The conclusion is that the majority of these complexes are physically bound, with very little sharing of electron density; however, for M = Be, and to a lesser extent M = Mg, some evidence for chemical effects is seen in HM{sup +}–RG complexes involving RG atoms with the higher atomic numbers.« less

  3. Inductive electronegativity scale. Iterative calculation of inductive partial charges.

    PubMed

    Cherkasov, Artem

    2003-01-01

    A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.

  4. Physical explanation of the periodic table.

    PubMed

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  5. Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor.

    PubMed

    Bugnet, Matthieu; Löffler, Stefan; Hawthorn, David; Dabkowska, Hanna A; Luke, Graeme M; Schattschneider, Peter; Sawatzky, George A; Radtke, Guillaume; Botton, Gianluigi A

    2016-03-01

    Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties.

  6. Real-space localization and quantification of hole distribution in chain-ladder Sr3Ca11Cu24O41 superconductor

    PubMed Central

    Bugnet, Matthieu; Löffler, Stefan; Hawthorn, David; Dabkowska, Hanna A.; Luke, Graeme M.; Schattschneider, Peter; Sawatzky, George A.; Radtke, Guillaume; Botton, Gianluigi A.

    2016-01-01

    Understanding the physical properties of the chain-ladder Sr3Ca11Cu24O41 hole-doped superconductor has been precluded by the unknown hole distribution among chains and ladders. We use electron energy-loss spectrometry (EELS) in a scanning transmission electron microscope (STEM) at atomic resolution to directly separate the contributions of chains and ladders and to unravel the hole distribution from the atomic scale variations of the O-K near-edge structures. The experimental data unambiguously demonstrate that most of the holes lie within the chain layers. A quantitative interpretation supported by inelastic scattering calculations shows that about two holes are located in the ladders, and about four holes in the chains, shedding light on the electronic structure of Sr3Ca11Cu24O41. Combined atomic resolution STEM-EELS and inelastic scattering calculations is demonstrated as a powerful approach toward a quantitative understanding of the electronic structure of cuprate superconductors, offering new possibilities for elucidating their physical properties. PMID:27051872

  7. Computational materials science: Think locally, act globally

    NASA Astrophysics Data System (ADS)

    Rabe, Karin M.

    2002-11-01

    New first-principles calculations reveal the range of atomic arrangements underlying the average crystallographic structure of a perovskite oxide, PZT. This work opens the door to understanding the exceptional physical behaviour of PZT and related systems.

  8. Insight into the Dzyaloshinskii-Moriya interaction through first-principles study of chiral magnetic structures

    NASA Astrophysics Data System (ADS)

    Sandratskii, L. M.

    2017-07-01

    The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya interaction (DMI). The paper aims at the development of the physical picture able to address apparently contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities. We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC). It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason for the peculiar form of the partial DMI contributions is a q -dependent difference in the charge distribution between q and -q spirals. The strongly q -dependent relation between atomic contributions shows that the real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general characteristic of a given material. Our study shows that it is physically most consistent to consider the electronic hybridization as a primary effect reflecting the nature of the DMI whereas the q -dependent real-space distribution of the DMI energy is a consequence of the complex processes in the electronic structure including the charge transfer process. The physical process of the DMI formation is connected with the difference in the hybridization of the Co and Pt states for q and -q spirals under the influence of the SOC and broken spatial inversion. It depends sensitively on details of the electronic structure. The calculations with constraints on the values of the Co and Pt atomic moments show that there is no direct relation between these atomic quantities and the DMI strength since the details of the electronic structure crucial for the DMI are not reflected in these integral characteristics. The application of the method to the calculation of the magnon energies in systems with DMI is briefly addressed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.

    A dramatic symmetry breaking in K-shell photoionization of the CF 4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. In observing the photoejected electron in coincidence with an F + atomic ion after Auger decay we see how selecting the dissociation path where the core hole was localized was almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF 3 + and F + atoms elucidates themore » underlying physics that derives from the Ne-like valence structure of the F(1s -1) core-excited atom.« less

  10. Modeling and Reality in Early Twentieth-Century Physics

    NASA Astrophysics Data System (ADS)

    Seth, Suman

    2011-04-01

    Towards the end of 1913, Arnold Sommerfeld, Professor of theoretical physics at Munich University, sent a letter of congratulations to a young Niels Bohr. The Dane's now-classic trilogy of papers, which coupled Rutherford's conception of the atom with a ``planetary'' configuration of electrons, had just appeared. Sommerfeld saw the calculation of the Rydberg constant as a singular triumph and immediately spotted an opportunity to try to explain the Zeeman effect. Yet he also sounded a note of caution, confessing that he remained ``somewhat skeptical'' of atomic models in general. In this, of course, he was hardly alone. Bohr's atom was a particularly egregious example of a peculiar model, one requiring what even its creator considered ``horrid assumptions.'' Nonetheless, success bred conviction. Expanding upon Bohr's original ideas, Sommerfeld soon produced the so-called ``Bohr-Sommerfeld quantization conditions,'' using them to calculate a myriad of results. Experimental evidence, Sommerfeld argued in 1915, showed that quantised electron-paths ``correspond exactly to reality'' and possess ``real existence.'' This kind of realism would not, of course, last long. In 1925, Werner Heisenberg (earlier a student of Sommerfeld's) made scepticism about the details of the Bohr model into a methodological dictum, one later enshrined in the ``Copenhagen interpretation'' of quantum mechanics. This paper uses Sommerfeld's work from the turn of the twentieth century to the mid-1920s as a window onto a landscape involving multiple contestations over the legitimacy of atomic modelling. The surprise that greeted Heisenberg's and others' phenomenological insistences, we will see, can only be understood with reference to what should be considered a ``realist interlude'' in the history of twentieth century atomic physics, one inspired by the astonishing successes of Rutherford's and Bohr's imaginings.

  11. Max Born and Molecular Theory

    NASA Astrophysics Data System (ADS)

    Rechenberg, H.

    While the 20th century is approaching its conclusion, the historian may look back and assemble the essential scientific fruits of the this period. Nearly fifty years ago, Werner Heisenberg stated in a lecture that in quantum or wave mechanics ``a new, unified science of matter has arisen, where the separation between chemistry and physics essentially lost any meaning", because (Heisenberg 1953)``The chemical properties of atoms have at least in principle become accessible to calculation, and already in the first years after the rise of quantum mechanics the simplest chemical binding, namely that of the two hydrogen atoms in the hydrogen molecule was calculated with the help of the new methods and was found in closest agreement with chemical experience. Thus the chemical valency-forces were explained on a physical basis, and the application of the new knowledge in industrial practices became only a matter of time."

  12. Lanthanide/Actinide Opacities

    NASA Astrophysics Data System (ADS)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  13. To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin

    2012-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .

  14. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2006-04-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  15. The New Physics

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2009-08-01

    Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.

  16. The fully relativistic implementation of the convergent close-coupling method

    NASA Astrophysics Data System (ADS)

    Bostock, Christopher James

    2011-04-01

    The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures.

  17. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  18. Description of the atomic disorder (local order) in crystals by the mixed-symmetry method

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Novikova, N. E.

    2017-11-01

    An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).

  19. Unambiguous observation of F-atom core-hole localization in CF 4 through body-frame photoelectron angular distributions

    DOE PAGES

    McCurdy, C. W.; Rescigno, T. N.; Trevisan, C. S.; ...

    2017-01-17

    A dramatic symmetry breaking in K-shell photoionization of the CF 4 molecule in which a core-hole vacancy is created in one of four equivalent fluorine atoms is displayed in the molecular frame angular distribution of the photoelectrons. In observing the photoejected electron in coincidence with an F + atomic ion after Auger decay we see how selecting the dissociation path where the core hole was localized was almost exclusively on that atom. A combination of measurements and ab initio calculations of the photoelectron angular distribution in the frame of the recoiling CF 3 + and F + atoms elucidates themore » underlying physics that derives from the Ne-like valence structure of the F(1s -1) core-excited atom.« less

  20. Triangular lattice atomic layer of Sn(1 × 1) at graphene/SiC(0001) interface

    NASA Astrophysics Data System (ADS)

    Hayashi, Shingo; Visikovskiy, Anton; Kajiwara, Takashi; Iimori, Takushi; Shirasawa, Tetsuroh; Nakastuji, Kan; Miyamachi, Toshio; Nakashima, Shuhei; Yaji, Koichiro; Mase, Kazuhiko; Komori, Fumio; Tanaka, Satoru

    2018-01-01

    Sn atomic layers attract considerable interest owing to their spin-related physical properties caused by their strong spin-orbit interactions. We performed Sn intercalation into the graphene/SiC(0001) interface and found a new type of Sn atomic layer. Sn atoms occupy on-top sites of Si-terminated SiC(0001) with in-plane Sn-Sn bondings, resulting in a triangular lattice. Angle-resolved photoemission spectroscopy revealed characteristic dispersions at \\bar{\\text{K}} and \\bar{\\text{M}} points, which agreed well with density functional theory calculations. The Sn triangular lattice atomic layer at the interface showed no oxidation upon exposure to air, which is useful for characterization and device fabrication ex situ.

  1. Monte Carlo Particle Trajectory Models for Neutral Cometary Gases. II. The Spatial Morphology of the Lyman-Alpha Coma

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Smyth, William H.

    1988-04-01

    The Monte Carlo particle-trajectory model (MCPTM) developed in Paper 1 is applied to explain the observed morphology of the spatially extended Lyα comae of comets. The physical processes and assumptions used in the model as they relate to the photodissociation of H2O and OH and the solar radiation pressure acceleration are presented herein. For this first application, the rocket and Skylab images of the Lyα coma of comet Kohoutek were chosen for study. The self-consistent modeling analysis of these data consisted of two parts. The first part entailed using a steady state spherically symmetric inner coma MCPTM coupled with a simple gas-dynamic model to calculate the physical development of the coma, i.e., the dependence of coma temperature and outflow speed on radial distance to the center of the nucleus, as a function of the (time) heliocentric distance of the comet. The inner coma MCPTM was used to calculate correctly the photo-chemical heating of the coma due to the partial collisional thermalization of the hot hydrogen atoms produced in the photodissociation of water molecules. In the second part of the analysis the results from the first part were used in a fully time-dependent and three-dimensional extended coma MCPTM which includes the explicit calculation of partial thermalization of the H atoms by multiple collisions with coma molecules. The same physical model yielded very good matches between the modeled Lycα isophotes and those observed in both of the two very different images of comet Kohoutek. The production rate was varied in time as implied by the shape of the visual light curve. All other physical parameters were varied only according to their naturally expected heliocentric distance and velocity dependencies. The complete physical description of the inner coma provided by the coupled gas-dynamic/MCPTM calculation was needed to obtain a good fit to the data. The correct inner coma description is important since it provides not only the initial conditions for the photodissociated H atoms but also (and most importantly) the collisional targets for the H atoms produced in the innermost regions of the coma. Simplistic descriptions for the coma (single speed and perfectly radial molecular motion) do not yield realistic isophote contours. The implications of the model results as they apply to other comets, species, and a variety of conditions are also discussed.

  2. Physics in Screening Environments

    NASA Astrophysics Data System (ADS)

    Certik, Ondrej

    In the current study, we investigated atoms in screening environments like plasmas. It is common practice to extract physical data, such as temperature and electron densities, from plasma experiments. We present results that address inherent computational difficulties that arise when the screening approach is extended to include the interaction between the atomic electrons. We show that there may arise an ambiguity in the interpretation of physical properties, such as temperature and charge density, from experimental data due to the opposing effects of electron-nucleus screening and electron-electron screening. The focus of the work, however, is on the resolution of inherent computational challenges that appear in the computation of two-particle matrix elements. Those enter already at the Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show second-order Green's function results and many body perturbation theory results of second order. A self-contained derivation of all necessary equations has been included. The accuracy of the implementation of the method is established by comparing standard unscreened results for various atoms and molecules against literature for Hartree-Fock as well as Green's function and many body perturbation theory. The main results of the thesis are presented in the chapter called Screened Results, where the behavior of several atomic systems depending on electron-electron and electron-nucleus Debye screening was studied. The computer code that we have developed has been made available for anybody to use. Finally, we present and discuss results obtained for screened interactions. We also examine thoroughly the computational details of the calculations and particular implementations of the method.

  3. Structure and property of metal melt I: The number of residual bonds after solid-liquid phase changes

    NASA Astrophysics Data System (ADS)

    Mi, Guangbao; Li, Peijie; He, Liangju

    2010-09-01

    Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.

  4. Using the theory of small perturbations in performance calculations of the RBMK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaev, N.V.; Druzhinin, V.E.; Pogosbekyan, L.R.

    The theory of small perturbations in reactor physics is discussed and applied to two-dimensional calculations of the RBMK. The classical theory of small perturbations implies considerable errors in calculations because the perturbations cannot be considered small. The modified theory of small perturbations presented here can be used in atomic power stations for determining reactivity effects and reloading rates of channels in reactors and also for assessing the reactivity storage in control rods.

  5. Physical and Chemical Processes Opacity Project: an Overview and Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Mendoza, C.

    1990-11-01

    RESUMEN. El Proyecto de la Opacidad es un esfuerzo internacional dedicado a calcular con precisi6n la gran cantidad de datos at6micos que se necesitan para estimar opacidades en los envolventes estelares. Describimos el panorama general del proyecto incluyendo aspectos astrofisicos, flsico-at6micos y computacionales. El volumen y calidad de los datos que se estan generando se puede apreciar en los resultados preliminares que se presentan. ABSTRACT The Opacity Project is an international effort dedicated to the calculation of the vast, accurate, atomic data required to estimate stellar envelope opacities. We give an overview of the project including astrophysical, atomic-physical and computational aspects. The volume and quality of the data which are being generated can be appreciated in the preliminary results that are presented. }% words: ATOMIC PROCESSES - OPACITIES - STARS-INThRIORS

  6. DiffPy-CMI-Python libraries for Complex Modeling Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billinge, Simon; Juhas, Pavol; Farrow, Christopher

    2014-02-01

    Software to manipulate and describe crystal and molecular structures and set up structural refinements from multiple experimental inputs. Calculation and simulation of structure derived physical quantities. Library for creating customized refinements of atomic structures from available experimental and theoretical inputs.

  7. Hydrogen Atomic Positions of O-H···O Hydrogen Bonds in Solution and in the Solid State: The Synergy of Quantum Chemical Calculations with ¹H-NMR Chemical Shifts and X-ray Diffraction Methods.

    PubMed

    Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P

    2017-03-07

    The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.

  8. Atomic-level simulation of ferroelectricity in perovskite solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.

    2000-06-26

    Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, P.

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describemore » inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.« less

  10. Many-body physics in two-component Bose–Einstein condensates in a cavity: fragmented superradiance and polarization

    NASA Astrophysics Data System (ADS)

    Lode, Axel U. J.; Diorico, Fritz S.; Wu, RuGway; Molignini, Paolo; Papariello, Luca; Lin, Rui; Lévêque, Camille; Exl, Lukas; Tsatsos, Marios C.; Chitra, R.; Mauser, Norbert J.

    2018-05-01

    We consider laser-pumped one-dimensional two-component bosons in a parabolic trap embedded in a high-finesse optical cavity. Above a threshold pump power, the photons that populate the cavity modify the effective atom trap and mediate a coupling between the two components of the Bose–Einstein condensate. We calculate the ground state of the laser-pumped system and find different stages of self-organization depending on the power of the laser. The modified potential and the laser-mediated coupling between the atomic components give rise to rich many-body physics: an increase of the pump power triggers a self-organization of the atoms while an even larger pump power causes correlations between the self-organized atoms—the BEC becomes fragmented and the reduced density matrix acquires multiple macroscopic eigenvalues. In this fragmented superradiant state, the atoms can no longer be described as two-level systems and the mapping of the system to the Dicke model breaks down.

  11. Evolution in time of an N-atom system. I. A physical basis set for the projection of the master equation

    NASA Astrophysics Data System (ADS)

    Freedhoff, Helen

    2004-01-01

    We study an aggregate of N identical two-level atoms (TLA’s) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,…,9 TLA’s.

  12. An exacting transition probability measurement - a direct test of atomic many-body theories.

    PubMed

    Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas

    2016-07-19

    A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.

  13. Effect of inelastic electron-atom collisions on the Balmer decrement

    NASA Technical Reports Server (NTRS)

    Adams, W. M.; Petrosian, V.

    1974-01-01

    Calculation of the Balmer decrement in radiatively ionized hydrogen gas as a function of temperature and density, taking into account the effect of electron-atom collisions. It is found that once the electron density exceeds 10 to the 10th power per cu cm significant deviations from the normal radiative recombination decrement begin to occur. Implications of these results for the physical conditions in the line-emitting region of the Seyfert galaxy NGC 4151 are discussed briefly.

  14. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene

    PubMed Central

    Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research. PMID:27505418

  15. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene.

    PubMed

    Ericsson, Jonas; Husmark, Teodor; Mathiesen, Christoffer; Sepahvand, Benjamin; Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär; Schröder, Elsebeth

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.

  16. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator.

    PubMed

    Santarelli, G; Audoin, C; Makdissi, A; Laurent, P; Dick, G J; Clairon, A

    1998-01-01

    Atomic frequency standards using trapped ions or cold atoms work intrinsically in a pulsed mode. Theoretically and experimentally, this mode of operation has been shown to lead to a degradation of the frequency stability due to the frequency noise of the interrogation oscillator. In this paper a physical analysis of this effect has been made by evaluating the response of a two-level atom to the interrogation oscillator phase noise in Ramsey and multi-Rabi interrogation schemes using a standard quantum mechanical approach. This response is then used to calculate the degradation of the frequency stability of a pulsed atomic frequency standard such as an atomic fountain or an ion trap standard. Comparison is made to an experimental evaluation of this effect in the LPTF Cs fountain frequency standard, showing excellent agreement.

  17. Acceleration of metal-atom diffusion in electric field at metal/insulator interfaces: First-principles study

    NASA Astrophysics Data System (ADS)

    Nagasawa, Riki; Asayama, Yoshihiro; Nakayama, Takashi

    2018-04-01

    Metal-atom diffusion from metal electrodes into SiO2 in electric fields was studied using first-principles calculations. It was shown in the case without electric field that the diffusion barrier of a metal atom is mainly made of the cohesive energy of bulk metal layers, while the shape of the diffusion potential reflects the hybridization of the metal-atom state with metal-induced gap states (MIGSs) and the electron transfer between the metal atom and the electrode. We found that the metal-atom diffusion is markedly accelerated by the applied electric field, such that the diffusion barrier ϕB(E) decreases almost linearly with increasing electric field strength E. By analyzing the physical origins of the metal-atom diffusion, we derived the universal formula to estimate the diffusion barrier in the electric field, which is closely related to MIGSs.

  18. Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.

    PubMed

    Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A

    2009-08-07

    Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.

  19. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team

    2011-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.

  20. Calculation of the factor of the time's relativity in quantum area for different atoms based on the `Substantial motion' theory of Mulla Sadra

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan

    2015-03-01

    Iranian Philosopher, Mulla Sadra (1571-1640) in his theory of ``Substantial motion'' emphasized that ``the universe moves in its entity'', and ``the time is the fourth dimension of the universe'' This definition of space-time is proposed by him at three hundred years before Einstein. He argued that the time is magnitude of the motion (momentum) of the matter in its entity. In the other words, the time for each atom (body) is sum of the momentums of its involved fundamental particles. The momentum for each atom is different from the other atoms. In this methodology, by proposing some formulas, we can calculate the time for involved particles' momentum (time) for each atom in a second of the Eastern Time Zone (ETZ). Due to differences between these momentums during a second in ETZ, the time for each atom, will be different from the other atoms. This is the relativity in quantum physics. On the other hand, the God communicates with elementary particles via sub-particles (see my next paper) and transfers the packages (bit) of information and laws to them for processing and selection of their next step. Differences between packages like complexity and velocity of processing during the time, is the second variable in relativity of time for each atom which may be effective on the factor.

  1. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.

    PubMed

    Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming

    2011-10-14

    Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics

  2. ARC: An open-source library for calculating properties of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.

    2017-11-01

    We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.

  3. X-Ray Spectroscopic Laboratory Experiments in Support of the X-Ray Astronomy Program

    NASA Technical Reports Server (NTRS)

    Kahn, Steven M.

    1997-01-01

    Our program is to perform a series of laboratory investigations designed to resolved significant atomic physics uncertainties that limit the interpretation of cosmic X-ray spectra. Specific goals include a quantitative characterization of Fe L-shell spectra; the development of new techniques to simulate Maxwellian plasmas using an Electron Beam Ion Trap (EBIT); and the measurement of dielectronic recombination rates for photoionized gas. New atomic calculations have also been carried out in parallel with the laboratory investigations.

  4. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory.

    PubMed

    Mazziotti, David A

    2016-10-07

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  5. Enhanced Constraints for Accurate Lower Bounds on Many-Electron Quantum Energies from Variational Two-Electron Reduced Density Matrix Theory

    NASA Astrophysics Data System (ADS)

    Mazziotti, David A.

    2016-10-01

    A central challenge of physics is the computation of strongly correlated quantum systems. The past ten years have witnessed the development and application of the variational calculation of the two-electron reduced density matrix (2-RDM) without the wave function. In this Letter we present an orders-of-magnitude improvement in the accuracy of 2-RDM calculations without an increase in their computational cost. The advance is based on a low-rank, dual formulation of an important constraint on the 2-RDM, the T 2 condition. Calculations are presented for metallic chains and a cadmium-selenide dimer. The low-scaling T 2 condition will have significant applications in atomic and molecular, condensed-matter, and nuclear physics.

  6. The Russian effort in establishing large atomic and molecular databases

    NASA Astrophysics Data System (ADS)

    Presnyakov, Leonid P.

    1998-07-01

    The database activities in Russia have been developed in connection with UV and soft X-ray spectroscopic studies of extraterrestrial and laboratory (magnetically confined and laser-produced) plasmas. Two forms of database production are used: i) a set of computer programs to calculate radiative and collisional data for the general atom or ion, and ii) development of numeric database systems with the data stored in the computer. The first form is preferable for collisional data. At the Lebedev Physical Institute, an appropriate set of the codes has been developed. It includes all electronic processes at collision energies from the threshold up to the relativistic limit. The ion -atom (and -ion) collisional data are calculated with the methods developed recently. The program for the calculations of the level populations and line intensities is used for spectrical diagnostics of transparent plasmas. The second form of database production is widely used at the Institute of Physico-Technical Measurements (VNIIFTRI), and the Troitsk Center: the Institute of Spectroscopy and TRINITI. The main results obtained at the centers above are reviewed. Plans for future developments jointly with international collaborations are discussed.

  7. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-09-01

    Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods.

  8. The shear instability energy: a new parameter for materials design?

    NASA Astrophysics Data System (ADS)

    Kanani, M.; Hartmaier, A.; Janisch, R.

    2017-10-01

    Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy.

  9. Agreement of Experiment and Theory on the Single Ionization of Helium by Fast Proton Impact.

    PubMed

    Gassert, H; Chuluunbaatar, O; Waitz, M; Trinter, F; Kim, H-K; Bauer, T; Laucke, A; Müller, Ch; Voigtsberger, J; Weller, M; Rist, J; Pitzer, M; Zeller, S; Jahnke, T; Schmidt, L Ph H; Williams, J B; Zaytsev, S A; Bulychev, A A; Kouzakov, K A; Schmidt-Böcking, H; Dörner, R; Popov, Yu V; Schöffler, M S

    2016-02-19

    Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment. This has been expected for several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is briefly discussed in terms of an ongoing dispute on the existence of nodal structures in the electron angular emission distributions.

  10. Numerical optimization of a picosecond pulse driven Ni-like Nb x-ray laser at 20.3 nm

    NASA Astrophysics Data System (ADS)

    Lu, X.; Zhong, J. Y.; Li, Y. J.; Zhang, J.

    2003-07-01

    Detailed simulations of a Ni-like Nb x-ray laser pumped by a nanosecond prepulse followed by a picosecond main pulse are presented. The atomic physics data are obtained using the Cowan code [R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981)]. The optimization calculations are performed in terms of the intensity of prepulse and the time delay between the prepulse and the main pulse. A high gain over 150 cm-1 is obtained for the optimized drive pulse configuration. The ray-tracing calculations suggest that the total pump energy for a saturated x-ray laser can be reduced to less than 1 J.

  11. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less

  12. VizieR Online Data Catalog: Partition functions for molecules and atoms (Barklem+, 2016)

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Collet, R.

    2016-02-01

    The results and input data are presented in the following files. Table 1 contains dissociation energies from the literature, and final adopted values, for 291 molecules. The literature values are from the compilations of Huber & Herzberg (1979, Constants of Diatomic Molecules (Van Nostrand Reinhold), Luo (2007, Comprehensive Handbook of Chemical Bond Energies (CRC Press)) and G2 theory calculations of Curtiss et al. (1991, J. Chem. Phys., 94, 7221). Table 2 contains the input data for the molecular calculations including adopted dissociation energy, nuclear spins, molecular spectroscopic constants and their sources. There are 291 files, one for each molecule, labelled by the molecule name. The various molecular spectroscopic constants are as defined in the paper. Table 4 contains the first, second and third ionisation energies for all chemical elements from H to U. The data comes from the CRC Handbook of Chemistry and Physics (Haynes, W.M. 2010, CRC Handbook of Chemistry and Physics, 91st edn. (CRC Press, Taylor and Francis Group)). Table 5a contains a list of keys to bibliographic references for the atomic energy level data that was extracted from NIST Atomic Spectra Database and used in the present work to compute atomic partition functions. The citation keys are abbreviations of the full bibliographic references which are made available in Table 5b in BibTeX format. Table 5b contains the full bibliographic references for the atomic energy level data that was extracted from the NIST Atomic Spectra Database. Table 6 contains tabulated partition function data as a function of temperature for 291 molecules. Table 7 contains tabulated equilibrium constant data as a function of temperature for 291 molecules. Table 8 contains tabulated partition function data as a function of temperature for 284 atoms and ions. The paper should be consulted for further details. (10 data files).

  13. The calculation of theoretical chromospheric models and the interpretation of the solar spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.

    1994-01-01

    Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for nonradiative heating, and for solar activity in general.

  14. The calculation of theoretical chromospheric models and the interpretation of solar spectra from rockets and spacecraft

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.

    1993-01-01

    Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the Sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for non-radiative heating, and for solar activity in general.

  15. Surface energy of talc and chlorite: Comparison between electronegativity calculation and immersion results.

    PubMed

    Douillard, Jean-Marc; Salles, Fabrice; Henry, Marc; Malandrini, Harold; Clauss, Frédéric

    2007-01-15

    The surface energies of talc and chlorite is computed using a simple model, which uses the calculation of the electrostatic energy of the crystal. It is necessary to calculate the atomic charges. We have chosen to follow Henry's model of determination of partial charges using scales of electronegativity and hardness. The results are in correct agreement with a determination of the surface energy obtained from an analysis of the heat of immersion data. Both results indicate that the surface energy of talc is lower than the surface energy of chlorite, in agreement with observed behavior of wettability. The influence of Al and Fe on this phenomenon is discussed. Surface energy of this type of solids seems to depend more strongly on the geometry of the crystal than on the type of atoms pointing out of the surface; i.e., the surface energy depends more on the physics of the system than on its chemistry.

  16. Predicting the properties of the lead alloys from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.

    2015-12-23

    We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less

  17. Theoretical modeling of laser-induced plasmas using the ATOMIC code

    NASA Astrophysics Data System (ADS)

    Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle

    2014-10-01

    We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  18. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; Chen, Chien-Chun; Wu, Li

    Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less

  19. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography

    DOE PAGES

    Xu, Rui; Chen, Chien-Chun; Wu, Li; ...

    2015-09-21

    Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less

  20. Many-body physics using cold atoms

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.

  1. Physical parameters for proton induced K-, L-, and M-shell ionization processes

    NASA Astrophysics Data System (ADS)

    Shehla; Puri, Sanjiv

    2016-10-01

    The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.

  2. Tunable charge donation and spin polarization of metal adsorbates on graphene using an applied electric field

    NASA Astrophysics Data System (ADS)

    Parq, Jae-Hyeon; Yu, Jaejun; Kwon, Young-Kyun; Kim, Gunn

    2010-11-01

    Metal atoms on graphene, when ionized, can act as a point-charge impurity to probe a charge response of graphene with the Dirac cone band structure. To understand the microscopic physics of the metal-atom-induced charge and spin polarization in graphene, we present scanning tunneling spectroscopy (STS) simulations based on density-functional theory calculations. We find that a Cs atom on graphene is fully ionized with a significant band-bending feature in the STS whereas the charge and magnetic states of Ba and La atoms on graphene appear to be complicated due to orbital hybridization and Coulomb interaction. By applying external electric field, we observe changes in charge donations and spin magnetic moments of the metal adsorbates on graphene.

  3. Solving the electron and electron-nuclear Schroedinger equations for the excited states of helium atom with the free iterative-complement-interaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi

    2008-04-21

    Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less

  4. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  5. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  6. Investigation of ZPE and temperature effects on the Eley-Rideal recombination of hydrogen atoms on graphene using a multidimensional graphene-H-H potential

    NASA Astrophysics Data System (ADS)

    Sizun, M.; Bachellerie, D.; Aguillon, F.; Sidis, V.

    2010-09-01

    We study the Eley-Rideal recombination of H atoms on graphene under the physical conditions of the interstellar medium. Effects of the ZPE motions of the chemisorbed H atom and of the graphene thermal motions are investigated. Classical molecular dynamics calculations undertaken with the multidimensional potential of Bachellerie et al. [Phys. Chem. Chem. Phys. 11 (2009) 2715] are reported. The ZPE effects are the strongest. The closer the collision energy is to the classical reaction threshold the more sizeable the effects. The quantum reaction cross section is also estimated below and above the classical threshold using a capture model.

  7. Valley filters, accumulators, and switches induced in graphene quantum dots by lines of adsorbed hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Azari, Mohammadhadi; Kirczenow, George

    2018-06-01

    We present electronic structure and quantum transport calculations that predict conducting channels induced in graphene quantum dots by lines of adsorbed hydrogen atoms to function as highly efficient, experimentally realizable valley filters, accumulators, and switches. The underlying physics is an interesting property of graphene Dirac point resonances (DPRs) that is revealed here, namely, that an electric current passing through a DPR-mediated conducting channel in a given direction is carried by electrons of only one of the two graphene valleys. Our predictions apply to lines of hydrogen atoms adsorbed on graphene quantum dots that are either free standing or supported on a hexagonal boron nitride substrate.

  8. Cretin Memory Flow on Sierra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, S. H.; Scott, H. A.

    2016-08-05

    The Cretin iCOE project has a goal of enabling the efficient generation of Non-LTE opacities for use in radiation-hydrodynamic simulation codes using the Nvidia boards on LLNL’s upcoming Sierra system. Achieving the desired level of accuracy for some simulations require the use of a vary large number of atomic configurations (a configuration includes the atomic level for all electrons and how they are coupled together). The NLTE rate matrix needs to be solved separately in each zone. Calculating NLTE opacities can consume more time than all other physics packages used in a simulation.

  9. Structural and magnetic evolution of bimetallic MnAu clusters driven by asymmetric atomic migration.

    PubMed

    Wei, Xiaohui; Zhou, Rulong; Lefebvre, Williams; He, Kai; Le Roy, Damien; Skomski, Ralph; Li, Xingzhong; Shield, Jeffrey E; Kramer, Matthew J; Chen, Shuang; Zeng, Xiao Cheng; Sellmyer, David J

    2014-03-12

    The nanoscale structural, compositional, and magnetic properties are examined for annealed MnAu nanoclusters. The MnAu clusters order into the L1(0) structure, and monotonic size-dependences develop for the composition and lattice parameters, which are well reproduced by our density functional theory calculations. Simultaneously, Mn diffusion forms 5 Å nanoshells on larger clusters inducing significant magnetization in an otherwise antiferromagnetic system. The differing atomic mobilities yield new cluster nanostructures that can be employed generally to create novel physical properties.

  10. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  11. Isotopic effects in the muon transfer from pmu and dmu to heavier atoms.

    PubMed

    Dupays, Arnaud

    2004-07-23

    The results of accurate hyperspherical calculations of the muon-transfer rates from muonic protium and deuterium atoms to nitrogen, oxygen, and neon are reported. Very good agreement with measured rates is obtained and, for the three systems, the isotopic effect is perfectly reproduced. The transfer rate is higher for deuterium in the cases of nitrogen and neon due to constructive interferences between two transfer paths. The lower transfer rate for deuterium in the case of oxygen results from a large resonant contribution. Copyright 2004 The American Physical Society

  12. Peculiar bonding associated with atomic doping and hidden honeycombs in borophene

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Cheng; Feng, Baojie; D'angelo, Marie; Yukawa, Ryu; Liu, Ro-Ya; Kondo, Takahiro; Kumigashira, Hiroshi; Matsuda, Iwao; Ozaki, Taisuke

    2018-02-01

    Engineering atomic-scale structures allows great manipulation of physical properties and chemical processes for advanced technology. We show that the B atoms deployed at the centers of honeycombs in boron sheets, borophene, behave as nearly perfect electron donors for filling the graphitic σ bonding states without forming additional in-plane bonds by first-principles calculations. The dilute electron density distribution owing to the weak bonding surrounding the center atoms provides easier atomic-scale engineering and is highly tunable via in-plane strain, promising for practical applications, such as modulating the extraordinarily high thermal conductance that exceeds the reported value in graphene. The hidden honeycomb bonding structure suggests an unusual energy sequence of core electrons that has been verified by our high-resolution core-level photoelectron spectroscopy measurements. With the experimental and theoretical evidence, we demonstrate that borophene exhibits a peculiar bonding structure and is distinctive among two-dimensional materials.

  13. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  14. Measurement of the electron shake-off in the β-decay of laser-trapped 6He atoms

    NASA Astrophysics Data System (ADS)

    Hong, Ran; Bagdasarova, Yelena; Garcia, Alejandro; Storm, Derek; Sternberg, Matthew; Swanson, Erik; Wauters, Frederik; Zumwalt, David; Bailey, Kevin; Leredde, Arnaud; Mueller, Peter; O'Connor, Thomas; Flechard, Xavier; Liennard, Etienne; Knecht, Andreas; Naviliat-Cuncic, Oscar

    2016-03-01

    Electron shake-off is an important process in many high precision nuclear β-decay measurements searching for physics beyond the standard model. 6He being one of the lightest β-decaying isotopes, has a simple atomic structure. Thus, it is well suited for testing calculations of shake-off effects. Shake-off probabilities from the 23S1 and 23P2 initial states of laser trapped 6He matter for the on-going beta-neutrino correlation study at the University of Washington. These probabilities are obtained by analyzing the time-of-flight distribution of the recoil ions detected in coincidence with the beta particles. A β-neutrino correlation independent analysis approach was developed. The measured upper limit of the double shake-off probability is 2 ×10-4 at 90% confidence level. This result is ~100 times lower than the most recent calculation by Schulhoff and Drake. This work is supported by DOE, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.

  15. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined stark shift, coherent coupling of electronic states in a quantum dot molecule etc.; (3) to assess the potential use of the quantum dots in real device implementation and to provide physical insight to the experimentalists. Full three dimensional strain and electronic structure simulations of quantum dot structures containing multi-million atoms are done using NEMO 3-D. Both single and vertically stacked quantum dot structures are analyzed in detail. The results show that the strain and the piezoelectricity significantly impact the electronic structure of these devices. This work shows that the InAs quantum dots when placed in the InGaAs quantum well red shifts the emission wavelength. Such InAs/GaAs-based optical devices can be used for optical-fiber based communication systems at longer wavelengths (1.3um -- 1.5um). Our atomistic simulations of InAs/InGaAs/GaAs quantum dots quantitatively match with the experiment and give the critical insight of the physics involved in these structures. A single quantum dot molecule is studied for coherent quantum coupling of electronic states under the influence of static electric field applied in the growth direction. Such nanostructures can be used in the implementation of quantum information technologies. A close quantitative match with the experimental optical measurements allowed us to get a physical insight into the complex physics of quantum tunnel couplings of electronic states as the device operation switches between atomic and molecular regimes. Another important aspect is to design the quantum dots for a desired isotropic polarization of the optical emissions. Both single and coupled quantum dots are studied for TE/TM ratio engineering. The atomistic study provides a detailed physical analysis of these computationally expensive large nanostructures and serves as a guide for the experimentalists for the design of the polarization independent devices for the optical communication systems.

  16. Probing New Long-Range Interactions by Isotope Shift Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric

    We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less

  17. Probing New Long-Range Interactions by Isotope Shift Spectroscopy.

    PubMed

    Berengut, Julian C; Budker, Dmitry; Delaunay, Cédric; Flambaum, Victor V; Frugiuele, Claudia; Fuchs, Elina; Grojean, Christophe; Harnik, Roni; Ozeri, Roee; Perez, Gilad; Soreq, Yotam

    2018-03-02

    We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca^{+} data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.

  18. Probing New Long-Range Interactions by Isotope Shift Spectroscopy

    DOE PAGES

    Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric; ...

    2018-02-26

    We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less

  19. Partition of unity finite element method for quantum mechanical materials calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pask, J. E.; Sukumar, N.

    The current state of the art for large-scale quantum-mechanical simulations is the planewave (PW) pseudopotential method, as implemented in codes such as VASP, ABINIT, and many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points in space, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires significant nonlocal communications, which limit parallel efficiency. Real-space methods such as finite-differences (FD) and finite-elements (FE) have partially addressed both resolution and parallel-communications issues but have been plagued by one key disadvantage relative tomore » PW: excessive number of degrees of freedom (basis functions) needed to achieve the required accuracies. In this paper, we present a real-space partition of unity finite element (PUFE) method to solve the Kohn–Sham equations of density functional theory. In the PUFE method, we build the known atomic physics into the solution process using partition-of-unity enrichment techniques in finite element analysis. The method developed herein is completely general, applicable to metals and insulators alike, and particularly efficient for deep, localized potentials, as occur in calculations at extreme conditions of pressure and temperature. Full self-consistent Kohn–Sham calculations are presented for LiH, involving light atoms, and CeAl, involving heavy atoms with large numbers of atomic-orbital enrichments. We find that the new PUFE approach attains the required accuracies with substantially fewer degrees of freedom, typically by an order of magnitude or more, than the PW method. As a result, we compute the equation of state of LiH and show that the computed lattice constant and bulk modulus are in excellent agreement with reference PW results, while requiring an order of magnitude fewer degrees of freedom to obtain.« less

  20. Partition of unity finite element method for quantum mechanical materials calculations

    DOE PAGES

    Pask, J. E.; Sukumar, N.

    2016-11-09

    The current state of the art for large-scale quantum-mechanical simulations is the planewave (PW) pseudopotential method, as implemented in codes such as VASP, ABINIT, and many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points in space, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires significant nonlocal communications, which limit parallel efficiency. Real-space methods such as finite-differences (FD) and finite-elements (FE) have partially addressed both resolution and parallel-communications issues but have been plagued by one key disadvantage relative tomore » PW: excessive number of degrees of freedom (basis functions) needed to achieve the required accuracies. In this paper, we present a real-space partition of unity finite element (PUFE) method to solve the Kohn–Sham equations of density functional theory. In the PUFE method, we build the known atomic physics into the solution process using partition-of-unity enrichment techniques in finite element analysis. The method developed herein is completely general, applicable to metals and insulators alike, and particularly efficient for deep, localized potentials, as occur in calculations at extreme conditions of pressure and temperature. Full self-consistent Kohn–Sham calculations are presented for LiH, involving light atoms, and CeAl, involving heavy atoms with large numbers of atomic-orbital enrichments. We find that the new PUFE approach attains the required accuracies with substantially fewer degrees of freedom, typically by an order of magnitude or more, than the PW method. As a result, we compute the equation of state of LiH and show that the computed lattice constant and bulk modulus are in excellent agreement with reference PW results, while requiring an order of magnitude fewer degrees of freedom to obtain.« less

  1. BSR: B-spline atomic R-matrix codes

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg

    2006-02-01

    BSR is a general program to calculate atomic continuum processes using the B-spline R-matrix method, including electron-atom and electron-ion scattering, and radiative processes such as bound-bound transitions, photoionization and polarizabilities. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme by including terms of the Breit-Pauli Hamiltonian. New version program summaryTitle of program: BSR Catalogue identifier: ADWY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers on which the program has been tested: Microway Beowulf cluster; Compaq Beowulf cluster; DEC Alpha workstation; DELL PC Operating systems under which the new version has been tested: UNIX, Windows XP Programming language used: FORTRAN 95 Memory required to execute with typical data: Typically 256-512 Mwords. Since all the principal dimensions are allocatable, the available memory defines the maximum complexity of the problem No. of bits in a word: 8 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.: 69 943 No. of bytes in distributed program, including test data, etc.: 746 450 Peripherals used: scratch disk store; permanent disk store Distribution format: tar.gz Nature of physical problem: This program uses the R-matrix method to calculate electron-atom and electron-ion collision processes, with options to calculate radiative data, photoionization, etc. The calculations can be performed in LS-coupling or in an intermediate-coupling scheme, with options to include Breit-Pauli terms in the Hamiltonian. Method of solution: The R-matrix method is used [P.G. Burke, K.A. Berrington, Atomic and Molecular Processes: An R-Matrix Approach, IOP Publishing, Bristol, 1993; P.G. Burke, W.D. Robb, Adv. At. Mol. Phys. 11 (1975) 143; K.A. Berrington, W.B. Eissner, P.H. Norrington, Comput. Phys. Comm. 92 (1995) 290].

  2. Non-equilibrium Transport in Carbon based Adsorbate Systems

    NASA Astrophysics Data System (ADS)

    Fürst, Joachim; Brandbyge, Mads; Stokbro, Kurt; Jauho, Antti-Pekka

    2007-03-01

    We have used the Atomistix Tool Kit(ATK) and TranSIESTA[1] packages to investigate adsorption of iron atoms on a graphene sheet. The technique of both codes is based on density functional theory using local basis sets[2], and non-equilibrium Green's functions (NEGF) to calculate the charge distribution under external bias. Spin dependent electronic structure calculations are performed for different iron coverages. These reveal adsorption site dependent charge transfer from iron to graphene leading to screening effects. Transport calculations show spin dependent scattering of the transmission which is analysed obtaining the transmission eigenchannels for each spin type. The phenomena of electromigration of iron in these systems at finite bias will be discussed, estimating the so-called wind force from the reflection[3]. [1] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Physical Review B (Condensed Matter and Materials Physics), 65(16):165401/11-7, 2002. [2] Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and Daniel Sanchez-Portal. Journal of Physics Condensed Matter, 14(11):2745-2779, 2002. [3] Sorbello. Theory of electromigration. Solid State Physics, 1997.

  3. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures

    PubMed Central

    Sadan, Maya Bar; Houben, Lothar; Enyashin, Andrey N.; Seifert, Gotthard; Tenne, Reshef

    2008-01-01

    The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS2 nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS2 nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism. PMID:18838681

  4. Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures.

    PubMed

    Bar Sadan, Maya; Houben, Lothar; Enyashin, Andrey N; Seifert, Gotthard; Tenne, Reshef

    2008-10-14

    The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS(2) nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS(2) nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism.

  5. Development of an inter-atomic potential for the Pd-H binary system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Jonathan A.; Hoyt, Jeffrey John; Leonard, Francois Leonard

    2007-09-01

    Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason formore » this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.« less

  6. Photodissociation and photoionisation of atoms and molecules of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Heays, A. N.; Bosman, A. D.; van Dishoeck, E. F.

    2017-06-01

    A new collection of photodissociation and photoionisation cross sections for 102 atoms and molecules of astrochemical interest has been assembled, along with a brief review of the basic physical processes involved. These have been used to calculate dissociation and ionisation rates, with uncertainties, in a standard ultraviolet interstellar radiation field (ISRF) and for other wavelength-dependent radiation fields, including cool stellar and solar radiation, Lyman-α dominated radiation, and a cosmic-ray induced ultraviolet flux. The new ISRF rates generally agree within 30% with our previous compilations, with a few notable exceptions. Comparison with other databases such as PHIDRATES is made. The reduction of rates in shielded regions was calculated as a function of dust, molecular and atomic hydrogen, atomic C, and self-shielding column densities. The relative importance of these shielding types depends on the atom or molecule in question and the assumed dust optical properties. All of the new data are publicly available from the Leiden photodissociation and ionisation database. Sensitivity of the calculated rates to variation of temperature and isotope, and uncertainties in measured or calculated cross sections, are tested and discussed. Tests were conducted on the new rates with an interstellar-cloud chemical model, and find general agreement (within a factor of two) in abundances obtained with the previous iteration of the Leiden database assuming an ISRF, and order-of-magnitude variations assuming various kinds of stellar radiation. The newly parameterised dust-shielding factors makes a factor-of-two difference to many atomic and molecular abundances relative to parameters currently in the UDfA and KIDA astrochemical reaction databases. The newly-calculated cosmic-ray induced photodissociation and ionisation rates differ from current standard values up to a factor of 5. Under high temperature and cosmic-ray-flux conditions the new rates alter the equilibrium abundances of abundant dark cloud abundances by up to a factor of two. The partial cross sections for H2O and NH3 photodissociation forming OH, O, NH2 and NH are also evaluated and lead to radiation-field-dependent branching ratios.

  7. Computational Study on Atomic Structures, Electronic Properties, and Chemical Reactions at Surfaces and Interfaces and in Biomaterials

    NASA Astrophysics Data System (ADS)

    Takano, Yu; Kobayashi, Nobuhiko; Morikawa, Yoshitada

    2018-06-01

    Through computer simulations using atomistic models, it is becoming possible to calculate the atomic structures of localized defects or dopants in semiconductors, chemically active sites in heterogeneous catalysts, nanoscale structures, and active sites in biological systems precisely. Furthermore, it is also possible to clarify physical and chemical properties possessed by these nanoscale structures such as electronic states, electronic and atomic transport properties, optical properties, and chemical reactivity. It is sometimes quite difficult to clarify these nanoscale structure-function relations experimentally and, therefore, accurate computational studies are indispensable in materials science. In this paper, we review recent studies on the relation between local structures and functions for inorganic, organic, and biological systems by using atomistic computer simulations.

  8. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  9. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  10. Quantum-Mechanical Combinatorial Design of Solids having Target Properties

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2007-03-01

    (1) One of the most striking aspects of solid state physics is the diversity of structural forms in which crystals appear in Nature. Not only are there many distinct crystal-types, but combinations of two or more crystalline materials (alloys) give rise to various local geometric atomic patters. The already rich repertoire of such forms has recently been significantly enhanced by the advent of artificial crystal growth techniques (MBE, STM- atom positioning, etc.) that can create desired structural forms, such as superlattices and impurity clusters even in defiance of the rules of equilibrium thermodynamics. (2) At the same time, the fields of chemistry of nanostructures and physics of structural phase-transitions have long revealed that different atomic configurations generally lead to different physical properties even without altering the chemical makeup. While the most widely - known illustration of such ``form controls function'' rule is the dramatically different color, conductivity and hardness of the allotropical forms of pure carbon (diamond,graphite, C60), the physics of semiconductor superstructures and nanostructures is full of striking examples of how optical, magnetic and transport properties depend sensitively on atomic configuration. (3) Yet, the history of material research has generally occurred via accidental discoveries of material structures having interesting physical property (semiconductivity, ferromagnetism; superconductivity etc.). This begs the question: can this discovery process be inverted, i.e. can we first articulate a desired target physical property, then search (within a class) for the configuration that has this property? (4) The number of potentially interesting atomic configurations exhibits a combinatorial explosion, so even fast synthesis or fast computations can not survey all. (5) This talk describes the recent steps made by solid state theory + computational physics to address this ``Inverse Design'' (Franceschetti & Zunger, Nature, 402, 60 (1999) problem. I will show how Genetic Algorithms, in combination with efficient (``Order N'') solutions to the Pseudopotential Schrodinger equation allow us to investigate astronomical spaces of atomic configurations in search of the structure with a target physical property. Only a small fraction of all (˜ 10**14 in our case) configurations need to be examined. Physical properties are either calculated on-the-fly (if it's easy), or first ``Cluster-Expanded'' (if the theory is difficult). I will illustrate this Inverse Band Structure approach for (a) Design of required band-gaps in semiconductor superlattices; (b) architecture of impurity --clusters with desired optical properties (PRL 97, 046401, 2006) (c) search for configuration of magnetic ions in semiconductors that maximize the ferromagnetic Curie temperature (PRL, 97, 047202, 2006).

  11. molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters

    DOE PAGES

    Bruneval, Fabien; Rangel, Tonatiuh; Hamed, Samia M.; ...

    2016-07-12

    Here, we summarize the MOLGW code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe–Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe–Salpeter equation, are measurable by optical absorption. The implementation choicesmore » outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in MOLGW allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MOLGW code over several hundreds of processors.« less

  12. Free Energy Perturbation Calculations of the Thermodynamics of Protein Side-Chain Mutations.

    PubMed

    Steinbrecher, Thomas; Abel, Robert; Clark, Anthony; Friesner, Richard

    2017-04-07

    Protein side-chain mutation is fundamental both to natural evolutionary processes and to the engineering of protein therapeutics, which constitute an increasing fraction of important medications. Molecular simulation enables the prediction of the effects of mutation on properties such as binding affinity, secondary and tertiary structure, conformational dynamics, and thermal stability. A number of widely differing approaches have been applied to these predictions, including sequence-based algorithms, knowledge-based potential functions, and all-atom molecular mechanics calculations. Free energy perturbation theory, employing all-atom and explicit-solvent molecular dynamics simulations, is a rigorous physics-based approach for calculating thermodynamic effects of, for example, protein side-chain mutations. Over the past several years, we have initiated an investigation of the ability of our most recent free energy perturbation methodology to model the thermodynamics of protein mutation for two specific problems: protein-protein binding affinities and protein thermal stability. We highlight recent advances in the field and outline current and future challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Electron-impact ionization of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Baertschy, Mark David

    2000-10-01

    Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e - + H --> H+ + e- + e-, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-body final state. Now, by using a mathematical transformation of the Schrödinger equation that makes the final state tractable, a complete solution has finally been achieved. Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section [29].

  14. Electron-impact ionization of atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baertschy, Mark D.

    2000-02-01

    Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e - + H → H + + e - + e +, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-bodymore » final state. Now, by using a mathematical transformation of the Schrodinger equation that makes the final state tractable, a complete solution has finally been achieved, Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section.« less

  15. Computer simulation radiation damages in condensed matters

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.; Gyngazov, V. A.

    2016-02-01

    As part of the cascade-probability method were calculated the energy spectra of primary knocked-out atoms and the concentration of radiation-induced defects in a number of metals irradiated by electrons. As follows from the formulas, the number of Frenkel pairs at a given depth depends on three variables having certain physical meaning: firstly, Cd (Ea h) is proportional to the average energy of the considered depth of the PKA (if it is higher, than the greater number of atoms it will displace); secondly is inversely proportional to the path length λ2 for the formation of the PKA (if λ1 is higher than is the smaller the probability of interaction) and thirdly is inversely proportional to Ed. In this case calculations are in satisfactory agreement with the experimental data (for example, copper and aluminum).

  16. A density-functional study of the phase diagram of cementite-type (Fe,Mn)3C at absolute zero temperature.

    PubMed

    Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard

    2010-11-15

    The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique. 2010 Wiley Periodicals, Inc.

  17. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    PubMed

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  18. On effective and optical resolutions of diffraction data sets.

    PubMed

    Urzhumtseva, Ludmila; Klaholz, Bruno; Urzhumtsev, Alexandre

    2013-10-01

    In macromolecular X-ray crystallography, diffraction data sets are traditionally characterized by the highest resolution dhigh of the reflections that they contain. This measure is sensitive to individual reflections and does not refer to the eventual data incompleteness and anisotropy; it therefore does not describe the data well. A physically relevant and robust measure that provides a universal way to define the `actual' effective resolution deff of a data set is introduced. This measure is based on the accurate calculation of the minimum distance between two immobile point scatterers resolved as separate peaks in the Fourier map calculated with a given set of reflections. This measure is applicable to any data set, whether complete or incomplete. It also allows characterizion of the anisotropy of diffraction data sets in which deff strongly depends on the direction. Describing mathematical objects, the effective resolution deff characterizes the `geometry' of the set of measured reflections and is irrelevant to the diffraction intensities. At the same time, the diffraction intensities reflect the composition of the structure from physical entities: the atoms. The minimum distance for the atoms typical of a given structure is a measure that is different from and complementary to deff; it is also a characteristic that is complementary to conventional measures of the data-set quality. Following the previously introduced terms, this value is called the optical resolution, dopt. The optical resolution as defined here describes the separation of the atomic images in the `ideal' crystallographic Fourier map that would be calculated if the exact phases were known. The effective and optical resolution, as formally introduced in this work, are of general interest, giving a common `ruler' for all kinds of crystallographic diffraction data sets.

  19. Mathematical modeling of the infrastructure of attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials

    NASA Astrophysics Data System (ADS)

    Beznosyuk, Sergey A.; Maslova, Olga A.; Zhukovsky, Mark S.; Valeryeva, Ekaterina V.; Terentyeva, Yulia V.

    2017-12-01

    The task of modeling the multiscale infrastructure of quantum attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials is considered. Computer design and calculation of supra-atomic femtosecond sensors of nonequilibrium physical media in materials based on layered graphene-transition metal nanosystems are carried out by vdW-DF and B3LYP methods. It is shown that the molybdenum substrate provides fixation of graphene nanosheets by Van der Waals forces at a considerable distance (5.3 Å) from the metal surface. This minimizes the effect of the electronic and nuclear subsystem of the substrate metal on the sensory properties of "pure" graphene. The conclusion is substantiated that graphene-molybdenum nanosensors are able to accurately orient and position one molecule of carbon monoxide. It is shown that graphene selectively adsorbs CO and fixes the oxygen atom of the molecule at the position of the center of the graphene ring C6.

  20. One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry

    NASA Astrophysics Data System (ADS)

    Yan, Mu-Lin

    2012-06-01

    The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, ℏ, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α ≡ e2/(ℏc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting ΔE(z) are calculated analytically, which belongs to Script O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R| ≃ {103 Gly, 104 Gly, 105 Gly}, and z ≃ {1, or 2}, the ΔE(z) ≫ 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.

  1. Atomically thin layers of B-N-C-O with tunable composition.

    PubMed

    Ozturk, Birol; de-Luna-Bugallo, Andres; Panaitescu, Eugen; Chiaramonti, Ann N; Liu, Fangze; Vargas, Anthony; Jiang, Xueping; Kharche, Neerav; Yavuzcetin, Ozgur; Alnaji, Majed; Ford, Matthew J; Lok, Jay; Zhao, Yongyi; King, Nicholas; Dhar, Nibir K; Dubey, Madan; Nayak, Saroj K; Sridhar, Srinivas; Kar, Swastik

    2015-07-01

    In recent times, atomically thin alloys of boron, nitrogen, and carbon have generated significant excitement as a composition-tunable two-dimensional (2D) material that demonstrates rich physics as well as application potentials. The possibility of tunably incorporating oxygen, a group VI element, into the honeycomb sp(2)-type 2D-BNC lattice is an intriguing idea from both fundamental and applied perspectives. We present the first report on an atomically thin quaternary alloy of boron, nitrogen, carbon, and oxygen (2D-BNCO). Our experiments suggest, and density functional theory (DFT) calculations corroborate, stable configurations of a honeycomb 2D-BNCO lattice. We observe micrometer-scale 2D-BNCO domains within a graphene-rich 2D-BNC matrix, and are able to control the area coverage and relative composition of these domains by varying the oxygen content in the growth setup. Macroscopic samples comprising 2D-BNCO domains in a graphene-rich 2D-BNC matrix show graphene-like gate-modulated electronic transport with mobility exceeding 500 cm(2) V(-1) s(-1), and Arrhenius-like activated temperature dependence. Spin-polarized DFT calculations for nanoscale 2D-BNCO patches predict magnetic ground states originating from the B atoms closest to the O atoms and sizable (0.6 eV < E g < 0.8 eV) band gaps in their density of states. These results suggest that 2D-BNCO with novel electronic and magnetic properties have great potential for nanoelectronics and spintronic applications in an atomically thin platform.

  2. Application of the Interacting Quantum Atoms Approach to the S66 and Ionic-Hydrogen-Bond Datasets for Noncovalent Interactions.

    PubMed

    Suárez, Dimas; Díaz, Natalia; Francisco, Evelio; Martín Pendás, Angel

    2018-04-17

    The interacting quantum atoms (IQA) method can assess, systematically and in great detail, the strength and physics of both covalent and noncovalent interactions. The lack of a pair density in density functional theory (DFT), which precludes the direct IQA decomposition of the characteristic exchange-correlation energy, has been recently overcome by means of a scaling technique, which can largely expand the applicability of the method. To better assess the utility of the augmented IQA methodology to derive quantum chemical decompositions at the atomic and molecular levels, we report the results of Hartree-Fock (HF) and DFT calculations on the complexes included in the S66 and the ionic H-bond databases of benchmark geometry and binding energies. For all structures, we perform single-point and geometry optimizations using HF and selected DFT methods with triple-ζ basis sets followed by full IQA calculations. Pairwise dispersion energies are accounted for by the D3 method. We analyze the goodness of the HF-D3 and DFT-D3 binding energies, the magnitude of numerical errors, the fragment and atomic distribution of formation energies, etc. It is shown that fragment-based IQA decomposes the formation energies in comparable terms to those of perturbative approaches and that the atomic IQA energies hold the promise of rigorously quantifying atomic and group energy contributions in larger biomolecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid generation of Mott insulators from arrays of noncondensed atoms

    NASA Astrophysics Data System (ADS)

    Sturm, M. R.; Schlosser, M.; Birkl, G.; Walser, R.

    2018-06-01

    We theoretically analyze a scheme for a fast adiabatic transfer of cold atoms from the atomic limit of isolated traps to a Mott insulator close to the superfluid phase. This gives access to the Bose-Hubbard physics without the need of a prior Bose-Einstein condensate. The initial state can be prepared by combining the deterministic assembly of atomic arrays with resolved Raman-sideband cooling. In the subsequent transfer the trap depth is reduced significantly. We derive conditions for the adiabaticity of this process and calculate optimal adiabatic ramp shapes. Using available experimental parameters, we estimate the impact of heating due to photon scattering and compute the fidelity of the transfer scheme. Finally, we discuss the particle number scaling behavior of the method for preparing low-entropy states. Our findings demonstrate the feasibility of the proposed scheme with state-of-the-art technology.

  4. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Self-induced resonance under conditions of radiative equilibrium of quasienergy states in a three-level system

    NASA Astrophysics Data System (ADS)

    Sarkisyan, M. A.

    1989-02-01

    An analysis is made of the interaction of a three-level "cascade" atomic system with a resonant laser field. An investigation is made of the dynamics of the populations of the quasienergy states and of the atomic levels over times greater than the spontaneous transition times. In the steady-state regime the distribution of atoms over various quasienergy states is obtained under two-photon resonance conditions and for the case when all the resonances are strong. It is found that a suitable selection of the interaction parameters can establish an inversion between the quasienergy states and also due to atomic transitions. The total probability of spontaneous scattering is calculated. It is shown that, under two-photon resonance conditions, the scattering intensity increases sharply due to a self-induced resonance.

  5. Electronic Structure Calculation of Permanent Magnets using the KKR Green's Function Method

    NASA Astrophysics Data System (ADS)

    Doi, Shotaro; Akai, Hisazumi

    2014-03-01

    Electronic structure and magnetic properties of permanent magnetic materials, especially Nd2Fe14B, are investigated theoretically using the KKR Green's function method. Important physical quantities in magnetism, such as magnetic moment, Curie temperature, and anisotropy constant, which are obtained from electronics structure calculations in both cases of atomic-sphere-approximation and full-potential treatment, are compared with past band structure calculations and experiments. The site preference of heavy rare-earth impurities are also evaluated through the calculation of formation energy with the use of coherent potential approximations. Further, the development of electronic structure calculation code using the screened KKR for large super-cells, which is aimed at studying the electronic structure of realistic microstructures (e.g. grain boundary phase), is introduced with some test calculations.

  6. Electronic structure studies of adsorbate-induced surface reconstructions: oxygen on Rh(1 0 0)

    NASA Astrophysics Data System (ADS)

    Kirsch, Janet E.; Harris, Suzanne

    2004-03-01

    Solid-state Fenske-Hall band structure calculations have been used to study the electronic structure and bonding that occur on an "asymmetric" clock reconstructed Rh(1 0 0) surface with a half-monolayer of O atom adsorbates. The displacement of the top-layer Rh atoms on reconstructed O/Rh(1 0 0) is similar to that observed when a half-monolayer of C or N atoms adsorb onto clean Ni(1 0 0). Unlike the five-coordinate C or N adsorbates that adsorb into effectively coplanar sites on the Ni(1 0 0) surface, however, O atoms sit well above the Rh surface plane and occupy three-coordinate adsorption sites. The results of these calculations show that the asymmetric clock reconstruction of O/Rh(1 0 0) increases the negative charge localized on the highly electronegative O atoms and strengthens the O-Rh bonding relative to an unreconstructed surface. This suggests that, in contrast to the C(N)/Ni(1 0 0) clock, which appears to be driven primarily by the restoration of metal-metal bonding, the asymmetric O/Rh(1 0 0) clock reconstruction is driven by the optimization of the O atom bonding environment. Comparisons of the O/Rh(1 0 0) and C(N, O)/Ni(1 0 0) surfaces further indicate that the electronegativity and electron count of the adsorbed species, as well as the electron count and physical size of the metal, all play a role in determining the preferred atomic geometries of these adsorbate-covered transition metal surfaces.

  7. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    NASA Astrophysics Data System (ADS)

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H.

    2017-02-01

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.

  8. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    DOE PAGES

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; ...

    2016-07-12

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Craymore » XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.« less

  9. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    PubMed

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  10. Are strategies in physics discrete? A remote controlled investigation

    NASA Astrophysics Data System (ADS)

    Heck, Robert; Sherson, Jacob F.; www. scienceathome. org Team; players Team

    2017-04-01

    In science, strategies are formulated based on observations, calculations, or physical insight. For any given physical process, often several distinct strategies are identified. Are these truly distinct or simply low dimensional representations of a high dimensional continuum of solutions? Our online citizen science platform www.scienceathome.org used by more than 150,000 people recently enabled finding solutions to fast, 1D single atom transport [Nature2016]. Surprisingly, player trajectories bunched into discrete solution strategies (clans) yielding clear, distinct physical insight. Introducing the multi-dimensional vector in the direction of other local maxima we locate narrow, high-yield ``bridges'' connecting the clans. This demonstrates for this problem that a continuum of solutions with no clear physical interpretation does in fact exist. Next, four distinct strategies for creating Bose-Einstein condensates were investigated experimentally: hybrid and crossed dipole trap configurations in combination with either large volume or dimple loading from a magnetic trap. We find that although each conventional strategy appears locally optimal, ``bridges'' can be identified. In a novel approach, the problem was gamified allowing 750 citizen scientists to contribute to the experimental optimization yielding nearly a factor two improvement in atom number.

  11. Advances in atomic physics: Four decades of contribution of the Cairo University - Atomic Physics Group.

    PubMed

    El-Sherbini, Tharwat M

    2015-09-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  12. Excited helium under high pressures in the bulk and in nanobubbles

    NASA Astrophysics Data System (ADS)

    Pyper, N. C.; Naginey, T. C.; Nellist, P. D.; Whelan, Colm T.

    2017-08-01

    We systematically investigate the effects of intense pressures on the excitation energies of helium trapped in bubbles in order to deepen our understanding of the fundamental physics of atoms in extreme conditions. The ? excitation energy of a confined helium atom is known to differ from that of a free atom being greater in both the bulk liquid or solid or a bubble confined in a metallic matrix state. We compare calculations for the energy shift with both laboratory experiments for bulk systems and results derived from scanning transmission electron microscope (STEM) studies of helium nanobubbles embedded in different matrices. We find excellent agreement between our calculations and the latest extensive measurements in the bulk. However, we find significant discrepancies when we compare with results deduced using the 'standard' approach for analysing STEM data. Here, we show the scattering matrix element determining the intensity of this excitation in a STEM experiment is significantly affected by the same environmental factors that shift the excitation energy. Consequently, there is a serious theoretical inconsistency in the way the STEM results are calculated, in that the 'standard' approach depends on a supposedly known ? scattering cross section, whereas we show here that this cross section is itself dependent on the environment. Correcting for this inconsistency does not, in itself, improve agreement.

  13. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  14. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  15. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi superfluids. Although a non-magnetic impurity does not change macroscopic properties of s-wave Fermi superfluids, depending on its shape and strength, a magnetic impurity can induce single or multiple mid-gap bound states. The multiple mid-gap states could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within the superfluid. As an analog of the Scanning Tunneling Microscope, we proposed a modified radio frequency spectroscopic method to measure the focal density of states which can be employed to detect these states and other quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently accessible experimental parameters.

  16. Using ‘particle in a box’ models to calculate energy levels in semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Ebbens, A. T.

    2018-07-01

    Although infinite potential ‘particle in a box’ models are widely used to introduce quantised energy levels their predictions cannot be quantitatively compared with atomic emission spectra. Here, this problem is overcome by describing how both infinite and finite potential well models can be used to calculate the confined energy levels of semiconductor quantum wells. This is done by using physics and mathematics concepts that are accessible to pre-university students. The results of the models are compared with experimental data and their accuracy discussed.

  17. Atoms and Molecules Interacting with Light

    NASA Astrophysics Data System (ADS)

    van der Straten, Peter; Metcalf, Harold

    2016-02-01

    Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.

  18. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  19. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  20. Model for diffuse interstellar clouds: improvements to the theory of molecular hydrogen photodestruction and to the gas phase chemistry of carbon monoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Federman, S.R.

    1979-01-01

    A theoretical model has been developed to determine physical processes in conjunction with astrophysical observation. The calculations are based on isobaric, steady-state, plane-parallel conditions. In the model, the cloud is illuminated by ultraviolet radiation from one side. The density and temperature of the gas are derived by invoking energy conservation in terms of thermal balance. The derived values for density and temperature then are used to determine the abundances of approximately fifty atomic and molecular species, including important ionic species and simple carbon and oxygen bearing molecules. Except for molecular hydrogen formation on dust grains, binary gas phase reactions aremore » used to develop the chemistry of the model cloud. The theoretical model has been found to be appropriate for a particular range of physical parameters. The results of the steady-state calculations have been compared to ultraviolet observations, predominantly those made with the Copernicus satellite. The theory of molecular hydrogen photodestruction has been reexamined so that improvements to the model can be made. By analyzing the region where the atomic to molecuar hydrogen transition occurs, several processes have been found to contribute to dissociation.« less

  1. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  2. Relativistic Collisions of Highly-Charged Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, Dorin; Belkacem, Ali

    1998-11-19

    The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less

  3. Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.

    2012-02-01

    In this paper, we study the interaction between a three-level atom and a quantized single-mode field with ‘intensity-dependent coupling’ in a ‘Kerr medium’. The three-level atom is considered to be in a Λ-type configuration. Under particular initial conditions, which may be prepared for the atom and the field, the dynamical state vector of the entire system will be explicitly obtained, for the arbitrary nonlinearity function f(n) associated with any physical system. Then, after evaluating the variation of the field entropy against time, we will investigate the quantum statistics as well as some of the nonclassical properties of the introduced state. During our calculations we investigate the effects of intensity-dependent coupling, Kerr medium and detuning parameters on the depth and domain of the nonclassicality features of the atom-field state vector. Finally, we compare our obtained results with those of V-type three-level atoms.

  4. Efficient grid-based techniques for density functional theory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hernandez, Juan Ignacio

    Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.

  5. Software Package Completed for Alloy Design at the Atomic Level

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Abel, Phillip B.; Good, Brian S.

    2001-01-01

    As a result of a multidisciplinary effort involving solid-state physics, quantum mechanics, and materials and surface science, the first version of a software package dedicated to the atomistic analysis of multicomponent systems was recently completed. Based on the BFS (Bozzolo, Ferrante, and Smith) method for the calculation of alloy and surface energetics, this package includes modules devoted to the analysis of many essential features that characterize any given alloy or surface system, including (1) surface structure analysis, (2) surface segregation, (3) surface alloying, (4) bulk crystalline material properties and atomic defect structures, and (5) thermal processes that allow us to perform phase diagram calculations. All the modules of this Alloy Design Workbench 1.0 (ADW 1.0) are designed to run in PC and workstation environments, and their operation and performance are substantially linked to the needs of the user and the specific application.

  6. Ethylene-vinyl acetate foam as a new lung substitute in radiotherapy.

    PubMed

    Marqués, Enrique; Mancha, Pedro J

    2018-04-01

    The purpose of this study was to evaluate ethylene-vinyl acetate (EVA) foam as a new lung substitute in radiotherapy and to study its physical and dosimetric characteristics. We calculated the ideal vinyl acetate (VA) content of EVA foam sheets to mimic the physical and dosimetric characteristics of the ICRU lung tissue. We also computed the water-to-medium mass collision stopping power ratios, mass attenuation coefficients, CT numbers, effective atomic numbers and electron densities for: ICRU lung tissue, the RANDO commercial phantom, scaled WATER and EVA foam sheets with varying VA contents in a range between the minimum and maximum values supplied by the manufacturer. For all these substitutes, we simulated percent depth-dose curves with EGSnrc Monte Carlo (MC PDDs) in a water-lung substitute-water slab phantom expressed as dose-to-medium and dose-to-water for 3 × 3- and 10 × 10-cm 2 field sizes. PDD for the 10 × 10-cm 2 field size was also calculated with the MultiGrid Superposition algorithm (MGS PDD) for a relative electron density to water ratio of 0.26. The latter was compared with the MC PDDs in dose-to-water for scaled WATER and EVA foam sheets with the VA content that was most similar to the calculated ideal content that is physically achievable in practice. We calculated an ideal VA content of 55%; however, the maximum physically achievable content with current manufacturing techniques is 40%. The physical characteristics of the EVA foam sheets with a VA content of 40% (EVA40) are very close to those of the ICRU lung reference. The physical densities of the EVA40 foam sheets ranged from 0.030 to 0.965 g/cm 3 , almost covering the entire physical density range of the inflated/deflated lung (0.260-1.050 g/cm 3 ). Its mass attenuation coefficient at the effective energy of a 6-MV photon beam agrees within 0.8% of the ICRU reference value, and its CT number agrees within 6 HU. The effective atomic number for EVA40 varies by less than 0.42 of the ICRU value, and its effective electron density is within 0.9%. PDDs expressed in dose-to-medium and dose-to-water agree with the ICRU curve within 2% in all regions. PDDs calculated with both MC and MGS were within 1.5%. The EVA40 is an excellent cork-like lung substitute for radiotherapy applications. From a sole material used in footwear, it is possible to obtain a lung substitute that mimics the physical and dosimetric characteristics of ICRU lung tissue even better than the RANDO commercial phantom. © 2018 American Association of Physicists in Medicine.

  7. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    PubMed

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  8. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  9. Unoccupied states in Cu and Zn octaethyl-porphyrin and phthalocyanine.

    PubMed

    Cook, Peter L; Yang, Wanli; Liu, Xiaosong; García-Lastra, Juan María; Rubio, Angel; Himpsel, F J

    2011-05-28

    Copper and zinc phthalocyanines and porphyrins are used in organic light emitting diodes and dye-sensitized solar cells. Using near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Cu 2p and Zn 2p edges, the unoccupied valence states at the Cu and Zn atoms are probed and decomposed into 3d and 4s contributions with the help of density functional calculations. A comparison with the N 1s edge provides the 2p states of the N atoms surrounding the metal, and a comparison with inverse photoemission provides a combined density of states. © 2011 American Institute of Physics

  10. Embedded-atom-method interatomic potentials from lattice inversion.

    PubMed

    Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu

    2010-09-22

    The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.

  11. Robust determination of effective atomic numbers for electron interactions with TLD-100 and TLD-100H thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Taylor, M. L.

    2011-04-01

    Lithium fluoride thermoluminescent dosimeters (TLD) are the most commonly implemented for clinical dosimetry. The small physical magnitude of TLDs makes them attractive for applications such as small field measurement, in vivo dosimetry and measurement of out-of-field doses to critical structures. The most broadly used TLD is TLD-100 (LiF:Mg,Ti) and, for applications requiring higher sensitivity to low-doses, TLD-100H (LiF:Mg,Cu,P) is frequently employed. The radiological properties of these TLDs are therefore of significant interest. For the first time, in this study effective atomic numbers for radiative, collisional and total electron interaction processes are calculated for TLD-100 and TLD-100H dosimeters over the energy range 1 keV-100 MeV. This is undertaken using a robust, energy-dependent method of calculation rather than typical power-law approximations. The influence of dopant concentrations and unwanted impurities is also investigated. The two TLDs exhibit similar effective atomic numbers, ranging from approximately 5.77-6.51. Differences arising from the different dopants are most pronounced in low-energy radiative effects. The TLDs have atomic numbers approximately 1.48-2.06 times that of water. The effective atomic number of TLD-100H is consistently higher than that of TLD-100 over a broad energy range, due to the greater influence of the higher- Z dopants on the electron interaction cross sections. Typical variation in dopant concentration does not significantly influence the effective atomic number. The influence on TLD-100H is comparatively more pronounced than that on TLD-100. Contrariwise, unwanted hydroxide impurities influence TLD-100 more than TLD-100H. The effective atomic number is a key parameter that influences the radiological properties and energy response of TLDs. Although many properties of these TLDs have been studied rigorously, as yet there has been no investigation of their effective atomic numbers for electron interactions. The discrepancy between the effective atomic numbers of the TLDs and water is significantly higher than would be indicated by comparing effective atomic numbers calculated via the common - but dubious - power-law method. The mean effective numbers over the full energy range are 6.06, 6.09, 3.34 and 3.37 for TLD-100, TLD-100H, soft tissue and water respectively.

  12. Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen

    DOE PAGES

    Zhao, Xin; Liu, Jun; Yao, Yong-Xin; ...

    2018-01-23

    Developing accurate and computationally efficient methods to calculate the electronic structure and total energy of correlated-electron materials has been a very challenging task in condensed matter physics and materials science. Recently, we have developed a correlation matrix renormalization (CMR) method which does not assume any empirical Coulomb interaction U parameters and does not have double counting problems in the ground-state total energy calculation. The CMR method has been demonstrated to be accurate in describing both the bonding and bond breaking behaviors of molecules. In this study, we extend the CMR method to the treatment of electron correlations in periodic solidmore » systems. By using a linear hydrogen chain as a benchmark system, we show that the results from the CMR method compare very well with those obtained recently by accurate quantum Monte Carlo (QMC) calculations. We also study the equation of states of three-dimensional crystalline phases of atomic hydrogen. We show that the results from the CMR method agree much better with the available QMC data in comparison with those from density functional theory and Hartree-Fock calculations.« less

  13. Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Liu, Jun; Yao, Yong-Xin

    Developing accurate and computationally efficient methods to calculate the electronic structure and total energy of correlated-electron materials has been a very challenging task in condensed matter physics and materials science. Recently, we have developed a correlation matrix renormalization (CMR) method which does not assume any empirical Coulomb interaction U parameters and does not have double counting problems in the ground-state total energy calculation. The CMR method has been demonstrated to be accurate in describing both the bonding and bond breaking behaviors of molecules. In this study, we extend the CMR method to the treatment of electron correlations in periodic solidmore » systems. By using a linear hydrogen chain as a benchmark system, we show that the results from the CMR method compare very well with those obtained recently by accurate quantum Monte Carlo (QMC) calculations. We also study the equation of states of three-dimensional crystalline phases of atomic hydrogen. We show that the results from the CMR method agree much better with the available QMC data in comparison with those from density functional theory and Hartree-Fock calculations.« less

  14. Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr

    DOE PAGES

    Béland, Laurent Karim; Tamm, Artur; Mu, Sai; ...

    2017-05-10

    The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed.more » The pairwise terms and the embedding terms of the potential are modi ed in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni 50Fe 50, Ni 80Cr 20 and Ni 33Fe 33Cr 33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.« less

  15. The effect of crack blunting on the competition between dislocation nucleation and cleavage

    NASA Astrophysics Data System (ADS)

    Fischer, Lisa L.; Beltz, Glenn E.

    2001-03-01

    To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.

  16. ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules

    NASA Astrophysics Data System (ADS)

    Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.

    2005-01-01

    The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1-103) obtained from multiconfiguration Dirac-Fock self-consistent calculations. For comparison purposes, three simple analytical approximations to the electron density of neutral atoms (corresponding to the Thomas-Fermi, the Thomas-Fermi-Dirac and the Dirac-Hartree-Fock-Slater models) are also included. For calculations of elastic scattering by ions, the electron density should be provided by the user. The exchange potential for electron scattering can be selected among three different analytical approximations (Thomas-Fermi, Furness-McCarthy, Riley-Truhlar). The offered options for the correlation-polarization potential are based on the empirical Buckingham potential. The imaginary absorption potential is calculated from the local-density approximation proposed by Salvat [Phys. Rev. A 68 (2003) 012708]. Program summaryTitle of program:ELSEPA Catalogue identifier: ADUS Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADUS Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computer for which the program is designed and others in which it is operable: Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested: Windows XP, Windows 2000, Debian GNU/Linux 3.0r0 (sarge) Compilers:Compaq Visual Fortran v6.5 (Windows); GNU FORTRAN, g77 (Windows and Linux) Programming language used: FORTRAN 77 No. of bits in a word: 32 Memory required to execute with typical data: 0.6 Mb No. of lines in distributed program, including test data, etc.:135 489 No. of bytes in distributed program, including test data, etc.: 1 280 006 Distribution format: tar.gz Keywords: Dirac partial-wave analysis, electron elastic scattering, positron elastic scattering, differential cross sections, momentum transfer cross sections, transport cross sections, scattering amplitudes, spin polarization, scattering by complex potentials, high-energy atomic screening functions Nature of the physical problem: The code calculates differential cross sections, total cross sections and transport cross sections for single elastic scattering of electrons and positrons by neutral atoms, positive ions and randomly oriented molecules. For projectiles with kinetic energies less than about 5 MeV, the programs can also compute scattering amplitudes and spin polarization functions. Method of solution: The effective interaction between the projectile and a target atom is represented by a local central potential that can optionally include an imaginary (absorptive) part to account approximately for the coupling with inelastic channels. For projectiles with kinetic energy less that about 5 MeV, the code performs a conventional relativistic Dirac partial-wave analysis. For higher kinetic energies, where the convergence of the partial-wave series is too slow, approximate factorization methods are used. Restrictions on the complexity of the program: The calculations are based on the static-field approximation. The optional correlation-polarization and inelastic absorption corrections are obtained from approximate, semiempirical models. Calculations for molecules are based on a single-scattering independent-atom approximation. To ensure accuracy of the results for scattering by ions, the electron density of the ion must be supplied by the user. Typical running time: on a 2.8 GHz Pentium 4, the calculation of elastic scattering by atoms and ions takes between a few seconds and about two minutes, depending on the atomic number of the target, the adopted potential model and the kinetic energy of the projectile. Unusual features of the program: The program calculates elastic cross sections for electrons and positrons with kinetic energies in a wide range, from a few tens of eV up to about 1 GeV. Calculations can be performed for neutral atoms of all elements, from hydrogen to lawrencium ( Z=1-103), ions and simple molecules. Commercial products are identified to specify the calculational procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the University of Barcelona or the Polish Academy of Sciences, nor does it imply that the products are necessarily the best available for the purpose.

  17. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  18. Ab initio prediction of superdense tetragonal and monoclinic polymorphs of carbon

    DOE PAGES

    Li, Zhen -Zhen; Wang, Jian -Tao; Xu, Li -Fang; ...

    2016-11-02

    The design and synthesis of three-dimensional denser carbons are one of the hot issues in condensed matter physics because of their fascinating properties. Here we identify by ab initio calculations several tetragonal and monoclinic polymorphs of carbon that adopt the t32, t32*, m32, and m32* structures in P4¯2 1c, P4 32 12, P2 1/c, and C2 symmetry, respectively. These carbon polymorphs have large 32-atom unit cells in all-sp 3 bonding networks comprising five- and six-membered rings that are dynamically stable, as verified by a phonon mode analysis. Electronic band structure calculations show that they are insulators with band gaps inmore » the range of 5.19–5.41 eV, close to the calculated band gap of 5.34 eV for diamond. Remarkably, these carbon phases possess an extremely high atom number density exceeding that of diamond. Lastly, the present results establish different types of carbon phases and offer insights into their outstanding structural and electronic properties.« less

  19. Ab initio study on the structural and electronic properties of water surrounding a multifunctional nanoprobe

    NASA Astrophysics Data System (ADS)

    Xia, Xiuli; Shao, Yuanzhi

    2018-02-01

    We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.

  20. Self-consistent mapping of the ab initio calculations to the multi-orbital p- d model: Magnetism in α-FeSi2 films as the effect of the local environment

    NASA Astrophysics Data System (ADS)

    Zhandun, V.; Zamkova, N.; Ovchinnikov, S.; Sandalov, I.

    2017-11-01

    To accurately translate the results obtained within density functional theory (DFT) to the language of many-body theory we suggest and test the following approach: the parameters of the formulated model are to be found from the requirement that the model self-consistent electron density and density of electron states are as close as possible to the ones found from the DFT-based calculations. The investigation of the phase diagram of the model allows us to find the critical regions in magnetic properties. Then the behavior of the real system in these regions is checked by the ab initio calculations. As an example, we studied the physics of magnetic moment (MM) formation due to substitutions of Si by Fe-atoms or vice versa in the otherwise non-magnetic alloy α-FeSi2. We find that the MM formation is essentially controlled by the interaction of Fe atoms with its next nearest atoms (NNN) and by their particular arrangement. The latter may result in different magnetic states at the same concentrations of constituents. Moreover, one of arrangements produces the counterintuitive result: a ferromagnetism arises due to an increase in Si concentration in Fe1-xSi2+ x ordered alloy. The existing phenomenological models associate the destruction of magnetic moment only with the number of Fe-Si nearest neighbors. The presented results show that the crucial role in MM formation is played by the particular local NNN environment of the metal atom in the transition metal-metalloid alloy.

  1. Cellular Gauge Symmetry and the Li Organization Principle: A Mathematical Addendum. Quantifying energetic dynamics in physical and biological systems through a simple geometric tool and geodetic curves.

    PubMed

    Yurkin, Alexander; Tozzi, Arturo; Peters, James F; Marijuán, Pedro C

    2017-12-01

    The present Addendum complements the accompanying paper "Cellular Gauge Symmetry and the Li Organization Principle"; it illustrates a recently-developed geometrical physical model able to assess electronic movements and energetic paths in atomic shells. The model describes a multi-level system of circular, wavy and zigzag paths which can be projected onto a horizontal tape. This model ushers in a visual interpretation of the distribution of atomic electrons' energy levels and the corresponding quantum numbers through rather simple tools, such as compasses, rulers and straightforward calculations. Here we show how this geometrical model, with the due corrections, among them the use of geodetic curves, might be able to describe and quantify the structure and the temporal development of countless physical and biological systems, from Langevin equations for random paths, to symmetry breaks occurring ubiquitously in physical and biological phenomena, to the relationships among different frequencies of EEG electric spikes. Therefore, in our work we explore the possible association of binomial distribution and geodetic curves configuring a uniform approach for the research of natural phenomena, in biology, medicine or the neurosciences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Radiative gas dynamics of the Fire-II superorbital space vehicle

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2016-03-01

    The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.

  3. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.

    PubMed

    Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan

    2015-02-25

    MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries.

  4. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.

    PubMed

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-03-23

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.

  5. NLTE atomic kinetics modeling in ICF target simulations

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Mauche, Christopher W.; Scott, Howard A.; Jones, Ogden S.; Shields, Benjamin T.

    2017-10-01

    Radiation hydrodynamics (HYDRA) simulations using recently developed 1D spherical and 2D cylindrical hohlraum models have enabled a reassessment of the accuracy of energetics modeling across a range of NIF target configurations. Higher-resolution hohlraum calculations generally find that the X-ray drive discrepancies are greater than previously reported. We identify important physics sensitivities in the modeling of the NLTE wall plasma and highlight sensitivity variations between different hohlraum configurations (e.g. hohlraum gas fill). Additionally, 1D capsule only simulations show the importance of applying a similar level of rigor to NLTE capsule ablator modeling. Taken together, these results show how improved target performance predictions can be achieved by performing inline atomic kinetics using more complete models for the underlying atomic structure and transitions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  7. Effect of Atomic Charges on Octanol-Water Partition Coefficient Using Alchemical Free Energy Calculation.

    PubMed

    Ogata, Koji; Hatakeyama, Makoto; Nakamura, Shinichiro

    2018-02-15

    The octanol-water partition coefficient (log P ow ) is an important index for measuring solubility, membrane permeability, and bioavailability in the drug discovery field. In this paper, the log P ow values of 58 compounds were predicted by alchemical free energy calculation using molecular dynamics simulation. In free energy calculations, the atomic charges of the compounds are always fixed. However, they must be recalculated for each solvent. Therefore, three different sets of atomic charges were tested using quantum chemical calculations, taking into account vacuum, octanol, and water environments. The calculated atomic charges in the different environments do not necessarily influence the correlation between calculated and experimentally measured ∆ G water values. The largest correlation coefficient values of the solvation free energy in water and octanol were 0.93 and 0.90, respectively. On the other hand, the correlation coefficient of log P ow values calculated from free energies, the largest of which was 0.92, was sensitive to the combination of the solvation free energies calculated from the calculated atomic charges. These results reveal that the solvent assumed in the atomic charge calculation is an important factor determining the accuracy of predicted log P ow values.

  8. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  9. The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering

    NASA Technical Reports Server (NTRS)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.

  10. Systematics of Rydberg Series of Diatomic Molecules and Correlation Diagrams

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Woo

    2015-06-01

    Rydberg states are studied for H2, Li2, HeH, LiH and BeH using the multi-reference configuration interaction (MRCI) method. The systematics and regularities of the physical properties such as potential energies curves (PECs), quantum defect curves, permanent dipole moment and transition dipole moment curves of the Rydberg series are studied. They are explained using united atom perturbation theory by Bingel and Byers-Brown, Fermi model, Stark theory, and Mulliken's theory. Interesting mirror relationships of the dipole moments are observed between l-mixed Rydberg series, indicating that the members of the l-mixed Rydberg series have dipole moments with opposite directions, which are related to the reversal of the polarity of a dipole moment at the avoided crossing points. The assignment of highly excited states is difficult because of the usual absence of the knowledge on the behaviors of potential energy curves at small internuclear separation whereby the correlation between the united atom limit and separated atoms limit cannot be given. All electron MRCI calculations of PECs are performed to obtain the correlation diagrams between Rydberg orbitals at the united-atom and separated atoms limits.

  11. Comment on "Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers"

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Martinazzo, Rocco

    2018-03-01

    It is shown that the theoretical prediction of a transient magnetization in bilayer and multilayer graphene (M. Moaied et al., Phys. Rev. B 91, 155419 (2015), 10.1103/PhysRevB.91.155419) relies on an incorrect physical scenario for adsorption, namely, one in which H atoms adsorb barrierless on graphitic substrates and form a random adsorption pattern of monomers. Rather, according to experimental evidence, H atom sticking is an activated process, and adsorption is under kinetic control, largely ruled by a preferential sticking mechanism that leads to stable, nonmagnetic dimers at all but the smallest coverages (<0.004 ). Theory and experiments are reconciled by reconsidering the hydrogen atom adsorption energetics with the help of van der Waals-inclusive density functional calculations that properly account for the basis set superposition error. It is shown that today van der Waals-density functional theory predicts a shallow physisorption well that nicely agrees with available experimental data and suggests that the hydrogen atom adsorption barrier in graphene is 180 meV high, within ˜5 meV accuracy.

  12. Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System

    DOE PAGES

    Taylor, Christopher D.

    2011-01-01

    Iron-technetium alloys are of relevance to the development of waste forms for disposition of radioactive technetium-99 obtained from spent nuclear fuel. Corrosion of candidate waste forms is a function of the local cohesive energy () of surface atoms. A theoretical model for calculating is developed. Density functional theory was used to construct a modified embedded atom (MEAM) potential for iron-technetium. Materials properties determined for the iron-technetium system were in good agreement with the literature. To explore the relationship between local structure and corrosion, MEAM simulations were performed on representative iron-technetium alloys and intermetallics. Technetium-rich phases have lower , suggesting thatmore » these phases will be more noble than iron-rich ones. Quantitative estimates of based on numbers of nearest neighbors alone can lead to errors up to 0.5 eV. Consequently, atomistic corrosion simulations for alloy systems should utilize physics-based models that consider not only neighbor counts, but also local compositions and atomic arrangements.« less

  13. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures

    PubMed Central

    Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.

    2015-01-01

    Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251

  14. Theoretical prediction of the energy stability of graphene nanoblisters

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.; Barkov, P. V.

    2018-04-01

    The paper presents the results of a theoretical prediction of the energy stability of graphene nanoblisters with various geometrical parameters. As a criterion for the evaluation of the stability of investigated carbon objects we propose to consider the value of local stress of the nanoblister atomic grid. Numerical evaluation of stresses experienced by atoms of the graphene blister framework was carried out by means of an original method for calculation of local stresses that is based on energy approach. Atomistic models of graphene nanoblisters corresponding to the natural experiment data were built for the first time in this work. New physical regularities of the influence of topology on the thermodynamic stability of nanoblisters were established as a result of the analysis of the numerical experiment data. We built the distribution of local stresses for graphene blister structures, whose atomic grid contains a variety of structural defects. We have shown how the concentration and location of defects affect the picture of the distribution of the maximum stresses experienced by the atoms of the nanoblisters.

  15. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  16. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    NASA Astrophysics Data System (ADS)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  17. A program to compute the two-step excitation of mesospheric sodium atoms for the Polychromatic Laser Guide Star Project

    NASA Astrophysics Data System (ADS)

    Bellanger, Véronique; Courcelle, Arnaud; Petit, Alain

    2004-09-01

    A program to compute the two-step excitation of sodium atoms ( 3S→3P→4D) using the density-matrix formalism is presented. The BEACON program calculates population evolution and the number of photons emitted by fluorescence from the 3P, 4D, 4P, 4S levels. Program summaryTitle of program: BEACON Catalogue identifier:ADSX Program Summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Operating systems under which the program has been tested: Win; Unix Programming language used: FORTRAN 77 Memory required to execute with typical data: 1 Mw Number of bits in a word: 32 Number of processors used: 1 (a parallel version of this code is also available and can be obtained on request) Number of lines in distributed program, including test data, etc.: 29 287 Number of bytes in distributed program, including test data, etc.: 830 331 Distribution format: tar.gz CPC Program Library subprograms used: none Nature of physical problem: Resolution of the Bloch equations in the case of the two-step laser excitation of sodium atoms. Method of solution: The program BEACON calculates the evolution of level population versus time using the density-matrix formalism. The number of photons emitted from the 3P, 4D and 4P levels is calculated using the branching ratios and the level lifetimes. Restriction on the complexity of the problem: Since the backscatter emission is calculated after the excitation process, excitation with laser pulse duration longer than the 4D level lifetime cannot be rigorously treated. Particularly, cw laser excitation cannot be calculated with this code. Typical running time:12 h

  18. Infinite variance in fermion quantum Monte Carlo calculations.

    PubMed

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  19. Calculation of surface enthalpy of solids from an ab initio electronegativity based model: case of ice.

    PubMed

    Douillard, J M; Henry, M

    2003-07-15

    A very simple route to calculation of the surface energy of solids is proposed because this value is very difficult to determine experimentally. The first step is the calculation of the attractive part of the electrostatic energy of crystals. The partial charges used in this calculation are obtained by using electronegativity equalization and scales of electronegativity and hardness deduced from physical characteristics of the atom. The lattice energies of the infinite crystal and of semi-infinite layers are then compared. The difference is related to the energy of cohesion and then to the surface energy. Very good results are obtained with ice, if one compares with the surface energy of liquid water, which is generally considered a good approximation of the surface energy of ice.

  20. Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Zhang, Jinyang; Hu, Xun; Li, Cancan; Zhao, Degang; Teng, XinYing; Yang, Cheng

    2018-05-01

    The liquid structure of CuxSn100-x (x = 0, 10, 20, 33, 40, 50, 60, 75, 80 and 100) alloys with atom percentage were investigated with resistivity and viscosity methods. It can be found from the resistivity data that the liquid Cu75Sn25 and Cu80Sn20 alloys had a negative temperature coefficient of resistivity (TCR), and liquid Cu75Sn25 alloy had a minimum value of -9.24 μΩ cm K-1. While the rest of liquid Cu-Sn alloys had a positive TCR. The results indicated that the Cu75Sn25 atomic clusters existed in Cu-Sn alloys. In addition, the method of calculating the percentage of Cu75Sn25 atomic clusters was established on the basis of resistivity theory and the law of conservation of mass. The Cu75Sn25 alloy had a maximum volume of the atomic clusters and a highest activation energy. The results further proved the existence of Cu75Sn25 atomic clusters. Furthermore, the correlation between the liquid structure and the resistivity was established. These results provide a useful reference for the investigation of liquid structure via the sensitive physical properties to the liquid structure.

  1. Database and Related Activities in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Izumi; Kato, Daiji; Kato, Masatoshi

    2011-05-11

    We have constructed and made available atomic and molecular (AM) numerical databases on collision processes such as electron-impact excitation and ionization, recombination and charge transfer of atoms and molecules relevant for plasma physics, fusion research, astrophysics, applied-science plasma, and other related areas. The retrievable data is freely accessible via the internet. We also work on atomic data evaluation and constructing collisional-radiative models for spectroscopic plasma diagnostics. Recently we have worked on Fe ions and W ions theoretically and experimentally. The atomic data and collisional-radiative models for these ions are examined and applied to laboratory plasmas. A visible M1 transition ofmore » W{sup 26+} ion is identified at 389.41 nm by EBIT experiments and theoretical calculations. We have small non-retrievable databases in addition to our main database. Recently we evaluated photo-absorption cross sections for 9 atoms and 23 molecules and we present them as a new database. We established a new association ''Forum of Atomic and Molecular Data and Their Applications'' to exchange information among AM data producers, data providers and data users in Japan and we hope this will help to encourage AM data activities in Japan.« less

  2. Database and Related Activities in Japan

    NASA Astrophysics Data System (ADS)

    Murakami, Izumi; Kato, Daiji; Kato, Masatoshi; Sakaue, Hiroyuki A.; Kato, Takako; Ding, Xiaobin; Morita, Shigeru; Kitajima, Masashi; Koike, Fumihiro; Nakamura, Nobuyuki; Sakamoto, Naoki; Sasaki, Akira; Skobelev, Igor; Tsuchida, Hidetsugu; Ulantsev, Artemiy; Watanabe, Tetsuya; Yamamoto, Norimasa

    2011-05-01

    We have constructed and made available atomic and molecular (AM) numerical databases on collision processes such as electron-impact excitation and ionization, recombination and charge transfer of atoms and molecules relevant for plasma physics, fusion research, astrophysics, applied-science plasma, and other related areas. The retrievable data is freely accessible via the internet. We also work on atomic data evaluation and constructing collisional-radiative models for spectroscopic plasma diagnostics. Recently we have worked on Fe ions and W ions theoretically and experimentally. The atomic data and collisional-radiative models for these ions are examined and applied to laboratory plasmas. A visible M1 transition of W26+ ion is identified at 389.41 nm by EBIT experiments and theoretical calculations. We have small non-retrievable databases in addition to our main database. Recently we evaluated photo-absorption cross sections for 9 atoms and 23 molecules and we present them as a new database. We established a new association "Forum of Atomic and Molecular Data and Their Applications" to exchange information among AM data producers, data providers and data users in Japan and we hope this will help to encourage AM data activities in Japan.

  3. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene H.; Wagner, William J. (Technical Monitor)

    2000-01-01

    During the last three years we have continued the development of extensive computer programs for constructing realistic models of the solar atmosphere and for calculating detailed spectra to use in the interpretation of solar observations. This research involves two major interrelated efforts: work by Avrett and Loeser on the Pandora computer program for optically thick non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed high-resolution synthesis of the solar spectrum using data for over 58 million atomic and molecular lines. Our objective is to construct atmospheric models from which the calculated spectra agree as well as possible with high-and low-resolution observations over a wide wavelength range. Such modeling leads to an improved understanding of the physical processes responsible for the structure and behavior of the atmosphere.

  4. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  5. Random close packing in protein cores

    NASA Astrophysics Data System (ADS)

    Gaines, Jennifer C.; Smith, W. Wendell; Regan, Lynne; O'Hern, Corey S.

    2016-03-01

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈0.75 , a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈0.56 , which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.

  6. Random close packing in protein cores.

    PubMed

    Gaines, Jennifer C; Smith, W Wendell; Regan, Lynne; O'Hern, Corey S

    2016-03-01

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ≈ 0.75, a value that is similar to close packing of equal-sized spheres. A limitation of these analyses was the use of extended atom models, rather than the more physically accurate explicit hydrogen model. The validity of the explicit hydrogen model was proved in our previous studies by its ability to predict the side chain dihedral angle distributions observed in proteins. In contrast, the extended atom model is not able to recapitulate the side chain dihedral angle distributions, and gives rise to large atomic clashes at side chain dihedral angle combinations that are highly probable in protein crystal structures. Here, we employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high-resolution protein structures. We find that these protein cores have ϕ ≈ 0.56, which is similar to results obtained from simulations of random packings of individual amino acids. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations to protein cores and interfaces of known structure.

  7. Obituary: Douglas H. Sampson, 1925-2002

    NASA Astrophysics Data System (ADS)

    Mészáros, Peter; Clark, Robert E. H.; Zhang, Honglin; Fontes, Christopher J.

    2003-12-01

    Douglas H. Sampson, a renowned theoretical atomic physicist and a professor emeritus of astronomy and astrophysics at The Pennsylvania State University, passed away on 8 December 2002, in State College, Pennsylvania, of a hemorrhagic stroke. He had retired in 1997 after 32 years of service to the University and had maintained an active research program up to the day of his death. Doug, as he was universally known to his friends and colleagues, was born in Devils Lake, North Dakota on 19 May 1925. His parents, Abner and Mabel Sampson, were farmers. He was raised without running water or electricity on a farm, homesteaded by his ancestors in Edmore, North Dakota. He was one of two children in his class at a two-room rural elementary school and graduated as valedictorian from Edmore High School in 1944. No physics classes or advanced mathematics classes were offered in his small high school. In 1956, he was married to Carlyn Grutzner. During Doug Sampson's military service in the United States Army from February 1945 until December 1946, he was selected as a MP (Military Policeman) in the Philippines. His military experience provided him with the opportunity to attend college under the GI Bill. Because he had to work on the family farm, he started college a month later every fall and took exams a month earlier each spring. Nevertheless, Sampson graduated as co-salutatorian from Concordia College, Moorhead, Minnesota in 1951 with a BA degree with majors in physics and mathematics. Afterwards he received his MS and PhD degrees in theoretical physics from Yale University in 1953 and 1956 under the guidance of Henry Margenau. Sampson then became a staff member of the Theoretical Division of the Los Alamos National Laboratory until 1961. While there he performed calculations of fundamental atomic cross sections used in the determination of opacities for radiation transport simulations. The calculation of high quality atomic data would end up being a life long pursuit. During this period he was also a visiting staff member in the Theoretical Division, National Aeronautics and Space Administration. During the interval 1961--1964, he worked at the Valley Forge Space Center of the General Electric Company, where he became leader of the atomic and radiation physics group. While working there, he took advanced courses in relativistic quantum mechanics and field theory at the University of Pennsylvania. He joined the faculty of Penn State in 1965 as an associate professor in the recently created department of astronomy and became a full professor in 1969. During his career at Penn State, he contributed a substantial share toward the unprecedented growth in the intellectual stature of the department. Doug's research at Penn State focused on developing theory and corresponding computer programs for calculating cross sections or rates for various atomic processes in very high-temperature gases, or plasmas, which commonly occur in astrophysics, fusion-energy research, and X-ray lasers. The atomic data for these processes help scientists understand high-temperature plasmas and predict the spectra that emerge from them. His early work primarily involved electron-impact processes for nonrelativistic ions. A goal of this research was to perform large-scale, computer-intensive calculations of the fundamental cross sections, and then fit these results to various functional forms so the data could be obtained quickly and accurately by plasma modelers. Doug had noted that for a hydrogenic ion, the relevant matrix elements used in the calculation of cross sections for excitation, scale with the nuclear charge. He realized that it would be possible to obtain quite accurate cross sections for more complex ions by scaling the hydrogenic results by an effective charge. Furthermore, he worked out angular algebra coupling for complex ions with many bound electrons and included the effects of configuration and intermediate coupling mixing in the target states. In this way, he was able to generate cross sections for iso-electronic sequences with affordable computational time. He applied this method to both electron-impact excitation and ionization. This important work took place when computational power was a small fraction of current standards and it allowed relatively massive amounts of cross section data to be calculated for a variety of ions with application to astrophysics and fusion research. By 1985 Doug turned his attention to treating the electron-ion collision problem in a fully relativistic manner, in support of X-ray laser research. He and his research group developed an approach and associated computer programs, including an atomic structure program and electron-impact excitation and ionization programs that were based on solving the Dirac equation. His efforts were also devoted to making the computer codes very efficient so they could rapidly produce large amounts of data. At this time supercomputers were becoming more accessible, which provided much-needed computer power for a fully relativistic treatment of heavier elements. However, a brute force approach was still not feasible and Doug was able to apply a number of numerical procedures that greatly reduced the required computing time while preserving the accuracy of the calculations. This sustained effort (spanning about 17 years) resulted in a suite of robust codes that can be used to determine fundamental atomic cross sections or rates for a wide variety of plasma modeling applications. In addition, Sampson applied the fitting procedures to vast quantities of these relativistic data, making them readily available to a broad audience of researchers. Both of these non-relativistic and fully relativistic approaches, along with the associated computer codes, are currently in use at the Los Alamos National Laboratory, Lawrence Livermore National Laboratory and the Naval Research Laboratory to model the high-temperature plasmas produced there. Although his major efforts were directed toward the rapid production of large amounts of atomic data, Doug had always been a serious researcher, verifying the calculations against experimental data whenever possible. In the course of his work Doug guided a number of PhD students through the Astronomy and Astrophysics Department and the Physics Department. He was always available for discussions of all aspects of the work and willing to listen to his students. A lasting legacy of his work was the care he took in ensuring the accuracy of each step, down to careful reading of the gallery proofs from the journals. He emphasized that even if one had the best theory, but made an error in computer coding, or in producing a table, the resulting incorrect data were of no value. This emphasis on accuracy and faithful reproduction of the theory in the application to a plasma modeling calculation has served his students well. At least three of these students went on to work on data applications at Los Alamos National Laboratory, continuing the tradition of careful application of atomic theory to plasma modeling. Doug was an active graduate and undergraduate teacher, developing a number of upper-level courses in astrophysics, and serving as chairman or member of many departmental and university committees. Undergraduate students invariably commented on his accessibility, patience and human warmth. Sampson presented papers and seminars at numerous conferences and institutions in the United States and abroad, and authored or coauthored over 110 research papers in refereed journals. He was also the author of a book, "Radiative Contributions to Energy and Momentum Transport in a Gas", published by Wiley-Interscience. He consulted with Gulf General Atomic Incorporated; Systems, Science, and Software; the Los Alamos National Laboratory; and the Lawrence Livermore National Laboratory. He was a Fellow of the American Physical Society, and a member of the American Astronomical Society and the International Astronomical Union. He spent his last sabbatical leave before his retirement at The Mathematical Institute, University of Oxford. At the time of his death he was working on a manuscript for Physics Reports, summarizing his research in relativistic atomic theory. Doug had an unobtrusive but keen sense of humor, as well as a positive outlook on life, and remained physically active throughout his life. His colleagues will remember him for his willingness to listen and to help, as well as for his strong sense of pioneer values and humanity. His hobbies included the study of American history and the history of Western Civilization. He is survived by his wife Carlyn, their four children and ten grandchildren.

  8. The physical properties of Li-doped g-C{sub 3}N{sub 4} monolayer sheet investigated by the first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Linwei; Xu, Gengsheng; Gu, Lina

    2015-06-15

    Highlights: • Systematically research on Li-doped g-C{sub 3}N{sub 4} monolayer sheets by first-principles calculation. • Optimal dopant concentration for optical absorption is 7.12%. • Thermodynamics stability of the doped substrate g-C{sub 3}N{sub 4} decreased with Li dopant concentration increasing. • The values of work function Φ decreased monotonously with the increasing of Li dopant concentration. - Abstract: The geometric, electronic, optical properties, thermodynamic stability, and work function of Li-doped g-C{sub 3}N{sub 4} monolayer were investigated by the first-principles calculation. It was found that the Li atoms were preferentially substituted the open-hollow sites of g-C{sub 3}N{sub 4}. Interestingly, the “odd” numbermore » of Li doped g-C{sub 3}N{sub 4} showed metallic properties, while the “even” number of Li atoms widened the band gap of g-C{sub 3}N{sub 4}. The HOMO and LUMO distributions reveal that the active sites located at edge N and C atoms for both pristine and the Li-doped g-C{sub 3}N{sub 4}. In addition, thermodynamic analysis showed that the doped Li atoms reduced the thermodynamic stability of g-C{sub 3}N{sub 4} monolayer sheets.« less

  9. Exotic objects of atomic physics

    NASA Astrophysics Data System (ADS)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  10. AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules.

    PubMed

    Ionescu, Crina-Maria; Sehnal, David; Falginella, Francesco L; Pant, Purbaj; Pravda, Lukáš; Bouchal, Tomáš; Svobodová Vařeková, Radka; Geidl, Stanislav; Koča, Jaroslav

    2015-01-01

    Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.

  11. Spectrophores as one-dimensional descriptors calculated from three-dimensional atomic properties: applications ranging from scaffold hopping to multi-target virtual screening.

    PubMed

    Gladysz, Rafaela; Dos Santos, Fabio Mendes; Langenaeker, Wilfried; Thijs, Gert; Augustyns, Koen; De Winter, Hans

    2018-03-07

    Spectrophores are novel descriptors that are calculated from the three-dimensional atomic properties of molecules. In our current implementation, the atomic properties that were used to calculate spectrophores include atomic partial charges, atomic lipophilicity indices, atomic shape deviations and atomic softness properties. This approach can easily be widened to also include additional atomic properties. Our novel methodology finds its roots in the experimental affinity fingerprinting technology developed in the 1990's by Terrapin Technologies. Here we have translated it into a purely virtual approach using artificial affinity cages and a simplified metric to calculate the interaction between these cages and the atomic properties. A typical spectrophore consists of a vector of 48 real numbers. This makes it highly suitable for the calculation of a wide range of similarity measures for use in virtual screening and for the investigation of quantitative structure-activity relationships in combination with advanced statistical approaches such as self-organizing maps, support vector machines and neural networks. In our present report we demonstrate the applicability of our novel methodology for scaffold hopping as well as virtual screening.

  12. Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems

    NASA Astrophysics Data System (ADS)

    Nistor, Razvan A.

    The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.

  13. All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds

    PubMed Central

    2017-01-01

    Recent advances in understanding protein folding have benefitted from coarse-grained representations of protein structures. Empirical energy functions derived from these techniques occasionally succeed in distinguishing native structures from their corresponding ensembles of nonnative folds or decoys which display varying degrees of structural dissimilarity to the native proteins. Here we utilized atomic coordinates of single protein chains, comprising a large diverse training set, to develop and evaluate twelve all-atom four-body statistical potentials obtained by exploring alternative values for a pair of inherent parameters. Delaunay tessellation was performed on the atomic coordinates of each protein to objectively identify all quadruplets of interacting atoms, and atomic potentials were generated via statistical analysis of the data and implementation of the inverted Boltzmann principle. Our potentials were evaluated using benchmarking datasets from Decoys-‘R'-Us, and comparisons were made with twelve other physics- and knowledge-based potentials. Ranking 3rd, our best potential tied CHARMM19 and surpassed AMBER force field potentials. We illustrate how a generalized version of our potential can be used to empirically calculate binding energies for target-ligand complexes, using HIV-1 protease-inhibitor complexes for a practical application. The combined results suggest an accurate and efficient atomic four-body statistical potential for protein structure prediction and assessment. PMID:29119109

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, K.J.

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed andmore » used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.« less

  15. Some properties of Stark states of hydrogenic atoms and ions

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2007-10-01

    The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.

  16. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.

    PubMed

    Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu

    2016-01-21

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.

  17. Recent progress of laser spectroscopy experiments on antiprotonic helium

    NASA Astrophysics Data System (ADS)

    Hori, Masaki

    2018-03-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  18. Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization

    PubMed Central

    Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu

    2016-01-01

    Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752

  19. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle

    PubMed Central

    Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu

    2016-01-01

    Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253

  20. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  1. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  2. Atomic-Scale Characterization of Oxide Interfaces and Superlattices Using Scanning Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurgeon, Steven R.; Chambers, Scott A.

    Scanning transmission electron microscopy (STEM) has become one of the fundamental tools to characterize oxide interfaces and superlattices. Atomic-scale structure, chemistry, and composition mapping can now be conducted on a wide variety of materials systems thanks to the development of aberration-correctors and advanced detectors. STEM imaging and diffraction, coupled with electron energy loss (EELS) and energy-dispersive X-ray (EDS) spectroscopies, offer unparalleled, high-resolution analysis of structure-property relationships. In this chapter we highlight investigations into key phenomena, including interfacial conductivity in oxide superlattices, charge screening effects in magnetoelectric heterostructures, the design of high-quality iron oxide interfaces, and the complex physics governing atomic-scalemore » chemical mapping. These studies illustrate how unique insights from STEM characterization can be integrated with other techniques and first-principles calculations to develop better models for the behavior of functional oxides.« less

  3. Observation of antiferromagnetic correlations in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Duarte, P. M.; Yang, T. L.; Liu, X.; Hulet, R. G.; Paiva, T. C. L.; Huse, D.; Scalettar, R. T.; Trivedi, N.

    2014-05-01

    The physics of high temperature superconductors is not well understood, although it is known that the undoped parent compounds of many of them are antiferromagnetic (AF) insulators. The Fermi-Hubbard model at half filling (one atom per lattice site) is known to exhibit a phase transition to an antiferromagnetic insulator at a low temperature. We realize the Fermi-Hubbard model by loading ultracold 6Li atoms into a three-dimensional red-detuned optical lattice. We have compensated the confining potential of the lattice with blue-detuned laser beams in order to evaporatively cool the atoms. We have cooled sufficiently to observe AF correlations using spin-sensitive Bragg scattering of near-resonant light. Comparison with Quantum Monte Carlo (QMC) calculations indicates that the temperature is between 2-3 TN, where short-range correlations begin to develop. Bragg scattering combined with QMC provides sensitive thermometry in a previously unexplored regime. Supported by NSF, ONR, DARPA, and the Welch Foundation.

  4. A Hybrid Density Functional Study of Atomic Hydrogen and Oxygen Adsorptions on the (0001) Surface of Non-Magnetic DHCP Americium

    NASA Astrophysics Data System (ADS)

    Amdani-Moten, Shafaq; Atta-Fynn, Raymond; Ray, Asok

    2010-03-01

    As our group have recently shown^+, hybrid density functional theory (HDFT) which replaces a fraction (40%) of approximate DFT exchange with exact Hartree-Fock exchange yield structural, magnetic, and electronic properties for Americium-I that are in excellent agreement with experimental data. As a natural progression, ab initio calculations for atomic adsorptions on the (0001) surface of non-magnetic americium have been performed using HDFT. The americium surface is modeled by a seven-layer slab using inversion symmetry consisting of one atom per layer and non-magnetic ABAC stacking arrangement of these layers. Top, bridge, hcp and fcc chemisorption sites have been investigated with energies optimized with respect to the adatom distance from the surface. Details of the chemisorptions processes as well as comparisons of different sites will be presented. ^+ R. Atta-Fynn and A. K. Ray, Chemical Physics Letters, 482, 223-227 (2009).

  5. Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt.

    PubMed

    Wang, Yeliang; Li, Linfei; Yao, Wei; Song, Shiru; Sun, J T; Pan, Jinbo; Ren, Xiao; Li, Chen; Okunishi, Eiji; Wang, Yu-Qi; Wang, Eryin; Shao, Yan; Zhang, Y Y; Yang, Hai-tao; Schwier, Eike F; Iwasawa, Hideaki; Shimada, Kenya; Taniguchi, Masaki; Cheng, Zhaohua; Zhou, Shuyun; Du, Shixuan; Pennycook, Stephen J; Pantelides, Sokrates T; Gao, Hong-Jun

    2015-06-10

    Single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.

  6. Theoretical studies of chromospheres and winds in cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A.

    1983-01-01

    The formation of spectral lines in expanding spherical atmospheres was determined in a physically realistic way, taking into account multilevel atomic processes, partial frequency redistribution, and other non-LTE transfer effects that affect the formation of optically thick lines. The formation of MgII and Ca II circumstellar absorption lines in late type giants and supergiants is investigated. The radiative cooling rate as a function of density and temperature was calculated from the results of plane parallel chromospheric models and these results were used to approximate the radiative cooling in an extended wind. The run of temperature was calculated along with the density and velocity profiles. The most important prediction of these models is that a warm zone in the wind must exist as a result of the wave heating. Within this zone, the Ca II and Mg II atoms can be ionized to Ca III and Mg III, so that the gas is transparent in the resonance transitions.

  7. Pnma-BN: Another Boron Nitride Polymorph with Interesting Physical Properties

    PubMed Central

    Ma, Zhenyang; Han, Zheng; Liu, Xuhong; Yu, Xinhai; Wang, Dayun; Tian, Yi

    2016-01-01

    Structural, mechanical, electronic properties, and stability of boron nitride (BN) in Pnma structure were studied using first-principles calculations by Cambridge Serial Total Energy Package (CASTEP) plane-wave code, and the calculations were performed with the local density approximation and generalized gradient approximation in the form of Perdew–Burke–Ernzerhof. This BN, called Pnma-BN, contains four boron atoms and four nitrogen atoms buckled through sp3-hybridized bonds in an orthorhombic symmetry unit cell with Space group of Pnma. Pnma-BN is energetically stable, mechanically stable, and dynamically stable at ambient pressure and high pressure. The calculated Pugh ratio and Poisson’s ratio revealed that Pnma-BN is brittle, and Pnma-BN is found to turn brittle to ductile (~94 GPa) in this pressure range. It shows a higher mechanical anisotropy in Poisson’s ratio, shear modulus, Young’s modulus, and the universal elastic anisotropy index AU. Band structure calculations indicate that Pnma-BN is an insulator with indirect band gap of 7.18 eV. The most extraordinary thing is that the band gap increases first and then decreases with the increase of pressure from 0 to 60 GPa, and from 60 to 100 GPa, the band gap increases first and then decreases again. PMID:28336837

  8. Accelerating large scale Kohn-Sham density functional theory calculations with semi-local functionals and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Lin, Lin

    The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.

  9. Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Araujo, Daniel; Piñero, José Carlos; Sánchez-Coronilla, Antonio; Blanco, Eduardo; Villar, Pilar; Alcántara, Rodrigo; Montserrat, Josep; Florentin, Matthieu; Eon, David; Pernot, Julien

    2018-03-01

    Phenomena related with the diamond surface of both power electronic and biosensor devices govern their global behaviour. In particular H- or O-terminations lead to wide variations in their characteristics. To study the origins of such aspects in greater depth, different methods to achieve oxygen terminated diamond were investigated following a multi-technique approach. DFT calculations were then performed to understand the different configurations between the C and O atoms. Three methods for O-terminating the diamond surface were performed: two physical methods with ozone at different pressures, and an acid chemical treatment. X-ray photoelectron spectroscopy, spectroscopic ellipsometry, HRTEM, and EELS were used to characterize the oxygenated surface. Periodic-DFT calculations were undertaken to understand the effect of the different ways in which the oxygen atoms are bonded to carbon atoms on the diamond surface. XPS results showed the presence of hydroxyl or ether groups, composed of simple Csbnd O bonds, and the acid treatment resulted in the highest amount of O on the diamond surface. In turn, ellipsometry showed that the different treatments led to the surface having different optical properties, such as a greater refraction index and extinction coefficient in the case of the sample subjected to acid treatment. TEM analysis showed that applying temperature treatment improved the distribution of the oxygen atoms at the interface and that this generates a thinner amount of oxygen at each position and higher interfacial coverage. Finally, DFT calculations showed both an increase in the number of preferential electron transport pathways when π bonds and ether groups appear in the system, and also the presence of states in the middle of the band gap when there are π bonds, Cdbnd C or Cdbnd O.

  10. The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Foulkes, Matthew

    2015-03-01

    We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.

  11. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  12. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05720a Click here for additional data file.

    PubMed Central

    Smith, J. S.

    2017-01-01

    Deep learning is revolutionizing many areas of science and technology, especially image, text, and speech recognition. In this paper, we demonstrate how a deep neural network (NN) trained on quantum mechanical (QM) DFT calculations can learn an accurate and transferable potential for organic molecules. We introduce ANAKIN-ME (Accurate NeurAl networK engINe for Molecular Energies) or ANI for short. ANI is a new method designed with the intent of developing transferable neural network potentials that utilize a highly-modified version of the Behler and Parrinello symmetry functions to build single-atom atomic environment vectors (AEV) as a molecular representation. AEVs provide the ability to train neural networks to data that spans both configurational and conformational space, a feat not previously accomplished on this scale. We utilized ANI to build a potential called ANI-1, which was trained on a subset of the GDB databases with up to 8 heavy atoms in order to predict total energies for organic molecules containing four atom types: H, C, N, and O. To obtain an accelerated but physically relevant sampling of molecular potential surfaces, we also proposed a Normal Mode Sampling (NMS) method for generating molecular conformations. Through a series of case studies, we show that ANI-1 is chemically accurate compared to reference DFT calculations on much larger molecular systems (up to 54 atoms) than those included in the training data set. PMID:28507695

  13. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems.

    PubMed

    Branduardi, Davide; Faraldo-Gómez, José D

    2013-09-10

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β -D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string.

  14. String method for calculation of minimum free-energy paths in Cartesian space in freely-tumbling systems

    PubMed Central

    Branduardi, Davide; Faraldo-Gómez, José D.

    2014-01-01

    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a pre-defined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a non-trivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically-meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method we analyze the isomerization of the alanine dipeptide in vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we find that the dynamics and the energetics of these processes are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields nearidentical minimum free-energy paths and committor distributions to those obtained via a highly-dimensional string. PMID:24729762

  15. A theoretical study of the omega-phase transformation in metals

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi

    I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.

  16. A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces

    PubMed Central

    Pan, Changchang; Chen, Yuhong; Wu, Na; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-01-01

    The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface. PMID:28772396

  17. Ionization potential depression in an atomic-solid-plasma picture

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.

    2018-05-01

    Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.

  18. Fabrication and characterisation of phantom material made of Tannin-added Rhizophora spp. particleboards for photon and electron beams

    NASA Astrophysics Data System (ADS)

    Yusof, M. F. Mohd; Hamid, P. N. K. Abd; Tajuddin, A. A.; Hashim, R.; Bauk, S.; Isa, N. Mohd; Isa, M. J. Md

    2017-05-01

    Particleboards made of Rhizophora spp. with addition of tannin adhesive were fabricated at target density of 1.0 g/cm3. The physical and mechanical properties of the particleboards including internal bond strength (IB) and modulus of rupture (MOR) were measured based on Japanese Industrial Standards (JIS A-5908). The characterisation of the particleboards including the effective atomic number, CT number and relative electron density were determined and compared to water. The mass attenuation coefficient of the particleboards were measured and compared to the calculated value of water using photon cross-section database (XCOM). The results showed that the physical and mechanical properties of the particleboards complied with Type 13 and 18 of JIS A-5908. The values of effective atomic number, CT number and relative electron density were also close to the value of water. The value of mass attenuation coefficients of the particleboards showed good agreement with water (XCOM) at low and high energy photon indicated by the χ2 values.

  19. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  20. Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni-Nb system by molecular dynamics simulations.

    PubMed

    Dai, X D; Li, J H; Liu, B X

    2005-03-17

    With the aid of ab initio calculations, an n-body potential of the Ni-Nb system is constructed under the Finnis-Sinclair formalism and the constructed potential is capable of not only reproducing some static physical properties but also revealing the atomistic mechanism of crystal-to-amorphous transition and associated kinetics. With application of the constructed potential, molecular dynamics simulations using the solid solution models reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing while the solute atoms are exceeding the critical solid solubilities, which are determined to be 19 atom % Ni and 13 atom % Nb for the Nb- and Ni-based solid solutions, respectively. It follows that an intrinsic glass-forming ability of the Ni-Nb system is within 19-87 atom % Ni, which matches well with that observed in ion beam mixing/solid-state reaction experiments. Simulations using the Nb/Ni/Nb (Ni/Nb/Ni) sandwich models indicate that the amorphous layer at the interfaces grows in a layer-by-layer mode and that, upon dissolving solute atoms, the Ni lattice approaches and exceeds its critical solid solubility faster than the Nb lattice, revealing an asymmetric behavior in growth kinetics. Moreover, an energy diagram is obtained by computing the energetic sequence of the Ni(x)Nb(100)(-)(x) alloy in fcc, bcc, and amorphous structures, respectively, over the entire composition range, and the diagram could serve as a guide for predicting the metastable alloy formation in the Ni-Nb system.

  1. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    NASA Astrophysics Data System (ADS)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising in the low-momentum region ({p}| | ≤slant | 0.2| a.u.) of longitudinal PMDs calculated under condition of the tunneling regime. Thus, the phenomena under consideration can be well understood and adequately interpreted beyond the terms and/or concepts of various different alternative strong-field approaches and models (such as e.g., extensively invoked and exploited nowadays though, more sophisticated SFA-based ‘rescattering’ mechanism) compared to which, the currently applied CV-SFA model (through the same underlying physical mechanism of solely direct ATI suggested) is additionally able to provide and reveal an intimate and transparent interrelation between the phenomena of LES and double-peak structure arising in PMDs observed in the tunneling regime.

  2. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  3. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lian

    2017-03-08

    Our BES supported program integrates molecular beam epitaxy growth with in situ atomic scale imaging using scanning tunneling microscopy/spectroscopy and atomic force microscopy. Aided by density functional theory calculations, we explore enhanced functionalities emerging from the interplay of strain, proximity, and spin-orbit interactions in heterostructures of wide band gap semiconductors, graphene, and Dirac materials, focusing on three thrusts: 1) doping wide bandgap semiconductors and graphene; 2) graphene nanoribbons and graphene-semiconductor heterostructures; and 3) Dirac materials. Our findings and discoveries have led to the publication of one book chapter and twenty-three refereed journal articles, including several in high impact journals suchmore » as Nature Communications, Physical Review Letters, and Nano Letters. Highlights of each thrust are provided in the report.« less

  4. The physical basis for absorption of light. [effects on wave functions of gas molecules and atoms

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1979-01-01

    The effects of light absorption on the wave functions of gas-phase molecules and atoms are investigated by high resolution spectral measurements of radiation emerging from a sample. A Stark-modulated sample of methyl fluoride was irradiated at the 102 GHz rotational transition and the emergent radiation was resolved by means of a spectrum analyzer. For signal oscillator frequencies below or above the molecular resonance by one modulation frequency, the amplitudes of the upper and lower modulation sidebands are found to be of nonuniform intensity, which is inconsistent with amplitude modulation. Emission due to polarization is, however, calculated to be consistent with the results observed, indicating that light absorption should be considered as a subtractive stimulated emission.

  5. The integration of improved Monte Carlo compton scattering algorithms into the Integrated TIGER Series.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, Thomas, J., IV

    2004-08-01

    The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Comptonmore » scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.« less

  6. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in SIESTA in accordance with calculations from CRYSTAL as a check on feasibility. Results are reported here that suggest SIESTA may indeed be useful to model silicate liquids at very high T and P.

  7. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    NASA Astrophysics Data System (ADS)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  8. Quantum dynamics of a BEC interacting with a single-mode quantized field under the influence of a dissipation process: thermal and squeezed vacuum reservoirs

    NASA Astrophysics Data System (ADS)

    Ghasemian, E.; Tavassoly, M. K.

    2017-09-01

    In this paper we consider a system consisting of a number of two-level atoms in a Bose-Einstein condensate (BEC) and a single-mode quantized field, which interact with each other in the presence of two different damping sources, i.e. cavity and atomic reservoirs. The reservoirs which we consider here are thermal and squeezed vacuum ones corresponding to field and atom modes. Strictly speaking, by considering both types of reservoirs for each of the atom and field modes, we investigate the quantum dynamics of the interacting bosons in the system. Then, via solving the quantum Langevin equations for such a dissipative BEC system, we obtain analytical expressions for the time dependence of atomic population inversion, mean atom as well as photon number and quadrature squeezing in the field and atom modes. Our investigations demonstrate that for modeling the real physical systems, considering the dissipation effects is essential. Also, numerical calculations which are presented show that the atomic population inversion, the mean number of atoms in the BEC and the photons in the cavity possess damped oscillatory behavior due to the presence of reservoirs. In addition, non-classical squeezing effects in the field quadrature can be observed especially when squeezed vacuum reservoirs are taken into account. As an outstanding property of this model, we may refer to the fact that one can extract the atom-field coupling constant from the frequency of oscillations in the mentioned quantities such as atomic population inversion.

  9. Impact-parameter dependence of the energy loss of fast molecular clusters in hydrogen

    NASA Astrophysics Data System (ADS)

    Fadanelli, R. C.; Grande, P. L.; Schiwietz, G.

    2008-03-01

    The electronic energy loss of molecular clusters as a function of impact parameter is far less understood than atomic energy losses. For instance, there are no analytical expressions for the energy loss as a function of impact parameter for cluster ions. In this work, we describe two procedures to evaluate the combined energy loss of molecules: Ab initio calculations within the semiclassical approximation and the coupled-channels method using atomic orbitals; and simplified models for the electronic cluster energy loss as a function of the impact parameter, namely the molecular perturbative convolution approximation (MPCA, an extension of the corresponding atomic model PCA) and the molecular unitary convolution approximation (MUCA, a molecular extension of the previous unitary convolution approximation UCA). In this work, an improved ansatz for MPCA is proposed, extending its validity for very compact clusters. For the simplified models, the physical inputs are the oscillators strengths of the target atoms and the target-electron density. The results from these models applied to an atomic hydrogen target yield remarkable agreement with their corresponding ab initio counterparts for different angles between cluster axis and velocity direction at specific energies of 150 and 300 keV/u.

  10. Captives of Their Fantasies: The German Atomic Bomb Scientists

    NASA Astrophysics Data System (ADS)

    Klotz, Irving M.

    1997-02-01

    When the Nazi government collapsed in May, 1945, an Allied intelligence mission took into custody nine of the German scientists who played key roles in the German atomic bomb project. Under great secrecy these men were confined in a large country house, Farm Hall, near Cambridge (England), and their conversations were recorded surreptitiously by hidden microphones in every room. The transcripts were kept TOP SECRET for 47 years and were finally released recently. They give fascinating insights into the personalities of the guests and invaluable information on what the Germans really understood about the physics and chemistry of a nuclear reactor and an atomic bomb. The Farm Hall transcripts clearly establish that (a) the Germans on August 6, 1945 did not believe that the Allies had exploded an atomic bomb over Hiroshima that day; (b) they never succeeded in constructing a self-sustaining nuclear reactor; (c) they were confused about the differences between an atomic bomb and a reactor; (d) they did not know how to correctly calculate the critical mass of a bomb; (e) they thought that "plutonium" was probably element 91. The Farm Hall transcripts contradict the self-serving and sensationalist writings about German efforts that have appeared during the past fifty years.

  11. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Jie; School of Science, Qilu University of Technology, Jinan, Shandong 250353; Xu, Ming-Chun

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. Formore » heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.« less

  12. Transition metal decorated graphene-like zinc oxide monolayer: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lei, Jie; Xu, Ming-Chun; Hu, Shu-Jun

    2015-09-01

    Transition metal (TM) atoms have been extensively employed to decorate the two-dimensional materials, endowing them with promising physical properties. Here, we have studied the adsorption of TM atoms (V, Cr, Mn, Fe, and Co) on graphene-like zinc oxide monolayer (g-ZnO) and the substitution of Zn by TM using first-principles calculations to search for the most likely configurations when TM atoms are deposited on g-ZnO. We found that when a V atom is initially placed on the top of Zn atom, V will squeeze out Zn from the two-dimensional plane then substitute it, which is a no barrier substitution process. For heavier elements (Cr to Co), although the substitution configurations are more stable than the adsorption ones, there is an energy barrier for the adsorption-substitution transition with the height of tens to hundreds meV. Therefore, Cr to Co prefers to be adsorbed on the hollow site or the top of oxygen, which is further verified by the molecular dynamics simulations. The decoration of TM is revealed to be a promising approach in terms of tuning the work function of g-ZnO in a large energy range.

  13. Using low-field NMR to infer the physical properties of glassy oligosaccharide/water mixtures.

    PubMed

    Aeberhardt, Kasia; Bui, Quang D; Normand, Valéry

    2007-03-01

    Low-field NMR (LF-NMR) is usually used as an analytical technique, for instance, to determine water and oil contents. For this application, no attempt is made to understand the physical origin of the data. Here we build a physical model to explain the five fit parameters of the conventional free induction decay (FID) for glassy oligosaccharide/water mixtures. The amplitudes of the signals from low-mobility and high-mobility protons correspond to the density of oligosaccharide protons and water protons, respectively. The relaxation time of the high-mobility protons is described using a statistical model for the probability that oligosaccharide hydroxyl groups form multiple hydrogen bonds. The variation of energy of the hydrogen bond is calculated from the average bond distance and the average angle contribution. Applying the model to experimental data shows that hydrogen atoms screen the water oxygen atoms when two water molecules solvate a single hydroxyl group. Furthermore, the relaxation time of the oligosaccharide protons is independent of its molecular weight and the water content. Finally, inversion of the FID using the inverse Laplace transform gives the continuous spectrum of relaxation times, which is a fingerprint of the oligosaccharide.

  14. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    NASA Astrophysics Data System (ADS)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  15. Solving the Schroedinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2007-12-14

    The Schroedinger equation was solved very accurately for helium atom and its isoelectronic ions (Z=1-10) with the free iterative complement interaction (ICI) method followed by the variational principle. We obtained highly accurate wave functions and energies of helium atom and its isoelectronic ions. For helium, the calculated energy was -2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37 a.u., correct over 40 digit accuracy, and for H{sup -}, it was -0.527 751 016 544 377 196 590 814 566 747 511 383 045 02 a.u. These results prove numerically that with the free ICImore » method, we can calculate the solutions of the Schroedinger equation as accurately as one desires. We examined several types of scaling function g and initial function {psi}{sub 0} of the free ICI method. The performance was good when logarithm functions were used in the initial function because the logarithm function is physically essential for three-particle collision area. The best performance was obtained when we introduce a new logarithm function containing not only r{sub 1} and r{sub 2} but also r{sub 12} in the same logarithm function.« less

  16. Quantum dynamics of hydrogen atoms on graphene. II. Sticking.

    PubMed

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  17. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    NASA Astrophysics Data System (ADS)

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene; Martinazzo, Rocco

    2015-09-01

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (˜0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  18. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  19. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  20. A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe

    NASA Astrophysics Data System (ADS)

    Becquart, C. S.; Ngayam Happy, R.; Olsson, P.; Domain, C.

    2018-03-01

    The energetics, defect volume and magnetic properties of single SIAs and small SIA clusters up to size 6 have been calculated by DFT for different configurations like the parallel 〈110〉 dumbbell, the non parallel 〈110〉 dumbbell and the C15 structure. The most stable configurations of each type have been further analyzed to determine the influence on their stability of various solute atoms (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, W, Pd, Al, Si, P), relevant for steels used under irradiation. The results show that the presence of solute atoms does not change the relative stability order among SIA clusters. The small SIA clusters investigated can bind to both undersized and oversized solutes. Several descriptors have been considered to derive interesting trends from results. It appears that the local atomic volume available for the solute is the main physical quantity governing the binding energy evolution, whatever the solute type (undersized or oversized) and the cluster configuration (size and type).

  1. Remarks on the pion-nucleon σ-term

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  2. GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS THE WHITE DOME STRUCTURE. THE SHED-LIKE STRUCTURE TO THE LEFT IS THE SEARCH-LIGHT BUILDING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Atomic Physics Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  3. Quantum non-barking dogs

    NASA Astrophysics Data System (ADS)

    Imari Walker, Sara; Davies, Paul C. W.; Samantray, Prasant; Aharonov, Yakir

    2014-06-01

    Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.

  4. MCNP6.1 simulations for low-energy atomic relaxation: Code-to-code comparison with GATEv7.2, PENELOPE2014, and EGSnrc

    NASA Astrophysics Data System (ADS)

    Jung, Seongmoon; Sung, Wonmo; Lee, Jaegi; Ye, Sung-Joon

    2018-01-01

    Emerging radiological applications of gold nanoparticles demand low-energy electron/photon transport calculations including details of an atomic relaxation process. Recently, MCNP® version 6.1 (MCNP6.1) has been released with extended cross-sections for low-energy electron/photon, subshell photoelectric cross-sections, and more detailed atomic relaxation data than the previous versions. With this new feature, the atomic relaxation process of MCNP6.1 has not been fully tested yet with its new physics library (eprdata12) that is based on the Evaluated Atomic Data Library (EADL). In this study, MCNP6.1 was compared with GATEv7.2, PENELOPE2014, and EGSnrc that have been often used to simulate low-energy atomic relaxation processes. The simulations were performed to acquire both photon and electron spectra produced by interactions of 15 keV electrons or photons with a 10-nm-thick gold nano-slab. The photon-induced fluorescence X-rays from MCNP6.1 fairly agreed with those from GATEv7.2 and PENELOPE2014, while the electron-induced fluorescence X-rays of the four codes showed more or less discrepancies. A coincidence was observed in the photon-induced Auger electrons simulated by MCNP6.1 and GATEv7.2. A recent release of MCNP6.1 with eprdata12 can be used to simulate the photon-induced atomic relaxation.

  5. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    ERIC Educational Resources Information Center

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  6. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    PubMed

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  7. Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing

    DTIC Science & Technology

    2016-02-03

    goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole

  8. STIR-Physics: Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials

    DTIC Science & Technology

    2016-11-02

    STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber and High-Q Resonator Potentials We worked on a tapered fiber in cold atomic cloud...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: STIR- Physics : Cold Atoms and Nanocrystals in Tapered Nanofiber...other than abstracts): Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): Books Number of Manuscripts: 0.00Number of

  9. Electronic and crystal structure of NiTi martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanati, M.; Albers, R.C.; Pinski, F.J.

    1998-11-01

    All of the first-principles electronic-structure calculations for the martensitic structure of NiTi have used the experimental atomic parameters reported by Michal and Sinclair [Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. {bold B37}, 1803 (1981)]. We have used first-principles, full-potential, linear muffin-tin orbital calculations to examine the total energy of all the experimental martensitic structures reported in the literature. We find that another crystal structure, that of Kudoh {ital et al.} [Acta Metall. Mater. {bold 33}, 2049 (1985)], has the lowest total energy at zero temperature. Ground-state and formation energies were calculated for all of the experimental structures. Total andmore » local densities of states were calculated and compared with each other for the structures of both Kudoh {ital et al.} and Michal and Sinclair thinsp {copyright} {ital 1998} {ital The American Physical Society}« less

  10. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  11. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  12. Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms

    NASA Astrophysics Data System (ADS)

    Giacomazzi, Luigi; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Alessi, A.; de Gironcoli, S.; Richard, N.

    2017-05-01

    In this work we present an extensive investigation of nanoscale physical phenomena related to oxygen-deficient centers (ODCs) in silica and Ge-doped silica by means of first-principles calculations, including nudged-elastic band, electron paramagnetic resonance parameters calculations, and many-body perturbation theory (GW and Bethe-Salpeter equation) techniques. We show that by neutralizing positively charged oxygen monovacancies we can obtain model structures of twofold Si and Ge defects of which the calculated absorption spectra and singlet-to-triplet transitions are in excellent agreement with the experimental optical absorption and photo-luminescence data. In particular we provide an exhaustive analysis of the main exciton peaks related to the presence of twofold defects including long-range correlation effects. By calculating the reaction pathways and energy barriers necessary for the interconversion, we advance a double precursory origin of the {E}α \\prime and Ge(2) centers as due to the ionization of neutral oxygen monovacancies (Si-Si and Ge-Si dimers) and as due to the ionization of twofold Si and Ge defects. Furthermore two distinct structural conversion mechanisms are found to occur between the neutral oxygen monovacancy and the twofold Si (and Ge) atom configurations. Such conversion mechanisms allow to explain the radiation induced generation of the ODC(II) centers, their photobleaching, and also their generation during the drawing of optical fibers.

  13. Ultraviolet emission lines of Si II in cool star and solar spectra

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.; Ayres, Thomas R.; Chatzikos, Marios; van Hoof, Peter A. M.; Williams, Robin J. R.

    2016-01-01

    Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4P_{J^' }} intercombination multiplet of Si II at ˜ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2D_{J^' }} transitions at ˜1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.

  14. Precise measurements of the atomic masses of silicon-28, phosphorus-31, sulfur-32, krypton-84,86, xenon-129,132,136, and the dipole moment of PH+ using single-ion and two-ion Penning trap techniques

    NASA Astrophysics Data System (ADS)

    Redshaw, Matthew

    This dissertation describes high precision measurements of atomic masses by measuring the cyclotron frequency of ions trapped singly, or in pairs, in a precision, cryogenic Penning trap. By building on techniques developed at MIT for measuring the cyclotron frequency of single trapped ions, the atomic masses of 84,86Kr, and 129,132,136Xe have been measured to less than a part in 1010 fractional precision. By developing a new technique for measuring the cyclotron frequency ratio of a pair of simultaneously trapped ions, the atomic masses of 28Si, 31P and 32S have been measured to 2 or 3 parts in 10 11. This new technique has also been used to measure the dipole moment of PH+. During the course of these measurements, two significant, but previously unsuspected sources of systematic error were discovered, characterized and eliminated. Extensive tests for other sources of systematic error were performed and are described in detail. The mass measurements presented here provide a significant increase in precision over previous values for these masses, by factors of 3 to 700. The results have a broad range of physics applications: The mass of 136 Xe is important for searches for neutrinoless double-beta-decay; the mass of 28Si is relevant to the re-definition of the artifact kilogram in terms of an atomic mass standard; the masses of 84,86Kr, and 129,132,136Xe provide convenient reference masses for less precise mass spectrometers in diverse fields such as nuclear physics and chemistry; and the dipole moment of PH+ provides a test of molecular structure calculations.

  15. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    PubMed

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  16. Transverse effects in nonlinear optics: Toward the photon superfluid

    NASA Astrophysics Data System (ADS)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  17. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  18. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  19. Development and evaluation of die and container materials

    NASA Technical Reports Server (NTRS)

    Wills, R. R.

    1978-01-01

    Commercial high purity ultrafine Si3N4, Al2O3, and SiO2 powders were vacuum dried and stored under nitrogen in sealed containers. Extensive analysis of the chemical, physical, and morphological characteristics of these powders was performed. The interaction of molten silicon with fused quartz was examined in a Knudsen cell using a mass spectrometer. The solubility of oxygen at the melting point of silicon was calculated to be 1.78 times 10 to the 18th power atoms/cu cm, and the activity coefficients of oxygen and silicon monoxide, the major vapor species, were calculated to be 4.83 times 10 to the minus 24th power and 0.0000701, respectively.

  20. General contraction of Gaussian basis sets. II - Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almlof, Jan; Taylor, Peter R.

    1990-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.

  1. Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver.

    PubMed

    Nakata, Maho; Braams, Bastiaan J; Fujisawa, Katsuki; Fukuda, Mituhiro; Percus, Jerome K; Yamashita, Makoto; Zhao, Zhengji

    2008-04-28

    The reduced density matrix (RDM) method, which is a variational calculation based on the second-order reduced density matrix, is applied to the ground state energies and the dipole moments for 57 different states of atoms, molecules, and to the ground state energies and the elements of 2-RDM for the Hubbard model. We explore the well-known N-representability conditions (P, Q, and G) together with the more recent and much stronger T1 and T2(') conditions. T2(') condition was recently rederived and it implies T2 condition. Using these N-representability conditions, we can usually calculate correlation energies in percentage ranging from 100% to 101%, whose accuracy is similar to CCSD(T) and even better for high spin states or anion systems where CCSD(T) fails. Highly accurate calculations are carried out by handling equality constraints and/or developing multiple precision arithmetic in the semidefinite programming (SDP) solver. Results show that handling equality constraints correctly improves the accuracy from 0.1 to 0.6 mhartree. Additionally, improvements by replacing T2 condition with T2(') condition are typically of 0.1-0.5 mhartree. The newly developed multiple precision arithmetic version of SDP solver calculates extraordinary accurate energies for the one dimensional Hubbard model and Be atom. It gives at least 16 significant digits for energies, where double precision calculations gives only two to eight digits. It also provides physically meaningful results for the Hubbard model in the high correlation limit.

  2. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  3. Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today

    NASA Astrophysics Data System (ADS)

    Calonico, Davide

    2013-09-01

    The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.

  4. Electromagnetically induced transparency with noisy lasers

    NASA Astrophysics Data System (ADS)

    Xiao, Yanhong; Wang, Tun; Baryakhtar, Maria; van Camp, Mackenzie; Crescimanno, Michael; Hohensee, Michael; Jiang, Liang; Phillips, David F.; Lukin, Mikhail D.; Yelin, Susanne F.; Walsworth, Ronald L.

    2009-10-01

    We demonstrate and characterize two coherent phenomena that can mitigate the effects of laser phase noise for electromagnetically induced transparency (EIT): a laser-power-broadening-resistant resonance in the transmitted intensity cross correlation between EIT optical fields, and a resonant suppression of the conversion of laser phase noise to intensity noise when one-photon noise dominates over two-photon-detuning noise. Our experimental observations are in good agreement with both an intuitive physical picture and numerical calculations. The results have wide-ranging applications to spectroscopy, atomic clocks, and magnetometers.

  5. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    NASA Astrophysics Data System (ADS)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  6. Non-Adiabatic Atomic Transitions: Computational Cross Section Calculations of Alkali Metal-Noble Gas Collisions

    DTIC Science & Technology

    2011-09-01

    there a one time transfer of prob- ability between Coriolis coupled states. One possible way to answer this question would be to literally create and... time -dependent numerical algorithm was developed using FORTRAN 90 to predict S-Matrix elements for alkali metal - noble gas (MNg) collisions. The...committee and the physics department for their time and effort to see me through the completion of my doctorate degree. Charlton D. Lewis, II v Table of

  7. A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

    DTIC Science & Technology

    2016-11-29

    quantum calculations with corrections for low temperature NIST Cutoff • Starts with LANL and assumes higher excited states are ionized • Cutoff... NIST Grouping • Boltzmann or Uniform grouping • Saves 20-30% over Electron Splitting • Case by case basis 11Distribution A – Approved for public release...Temperature: 0.035 eV • Atomic Density: 1020 1/m3 • Ionization fraction: 10-13 • Electron Temperature: 10 & 100 eV • t = [0,106] seconds Groupings • NIST

  8. Evaluation of atomic pressure in the multiple time-step integration algorithm.

    PubMed

    Andoh, Yoshimichi; Yoshii, Noriyuki; Yamada, Atsushi; Okazaki, Susumu

    2017-04-15

    In molecular dynamics (MD) calculations, reduction in calculation time per MD loop is essential. A multiple time-step (MTS) integration algorithm, the RESPA (Tuckerman and Berne, J. Chem. Phys. 1992, 97, 1990-2001), enables reductions in calculation time by decreasing the frequency of time-consuming long-range interaction calculations. However, the RESPA MTS algorithm involves uncertainties in evaluating the atomic interaction-based pressure (i.e., atomic pressure) of systems with and without holonomic constraints. It is not clear which intermediate forces and constraint forces in the MTS integration procedure should be used to calculate the atomic pressure. In this article, we propose a series of equations to evaluate the atomic pressure in the RESPA MTS integration procedure on the basis of its equivalence to the Velocity-Verlet integration procedure with a single time step (STS). The equations guarantee time-reversibility even for the system with holonomic constrants. Furthermore, we generalize the equations to both (i) arbitrary number of inner time steps and (ii) arbitrary number of force components (RESPA levels). The atomic pressure calculated by our equations with the MTS integration shows excellent agreement with the reference value with the STS, whereas pressures calculated using the conventional ad hoc equations deviated from it. Our equations can be extended straightforwardly to the MTS integration algorithm for the isothermal NVT and isothermal-isobaric NPT ensembles. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang

    2014-05-01

    Group-14 elements, including C, Si, Ge, and Sn, can form various stable and metastable structures. Finding new metastable structures of group-14 elements with desirable physical properties for new technological applications has attracted a lot of interest. Using a genetic algorithm, we discovered a new low-energy metastable distorted sp3-hybridized framework structure of the group-14 elements. It has P42/mnm symmetry with 12 atoms per unit cell. The void volume of this structure is as large as 139.7Å3 for Si P42/mnm, and it can be used for gas or metal-atom encapsulation. Band-structure calculations show that P42/mnm structures of Si and Ge are semiconductingmore » with energy band gaps close to the optimal values for optoelectronic or photovoltaic applications. With metal-atom encapsulation, the P42/mnm structure would also be a candidate for rattling-mediated superconducting or used as thermoelectric materials.« less

  10. Thermally induced anchoring of fullerene in copolymers with Si-bridging atom: Spectroscopic evidences

    NASA Astrophysics Data System (ADS)

    Marchiori, Cleber F. N.; Garcia-Basabe, Yunier; de A. Ribeiro, Fabio; Koehler, Marlus; Roman, Lucimara S.; Rocco, Maria Luiza M.

    2017-01-01

    We use X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), resonant Auger spectroscopy (RAS), Attenuation Total Reflection Infrared (ATR-IR) and Atomic Force Microscopy (AFM) to study the blend between the copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) and the fullerene derivative PC71BM submitted to different annealing temperatures. Those measurements indicate that there is an incidental anchoring of a fullerene derivative to the Si-bridging atoms of a copolymer induced by thermal annealing of the film. Insights about the physical properties of one possible PSiF-DBT/PC71BM anchored structure are obtained using Density Functional Theory calculations. Since the performance of organic photovoltaic based on polymer-fullerene blends depends on the chemical structure of the blend components, the anchoring effect might affect the photovoltaic properties of those devices.

  11. Atomic-scale visualization of surface-assisted orbital order

    PubMed Central

    Kim, Howon; Yoshida, Yasuo; Lee, Chi-Cheng; Chang, Tay-Rong; Jeng, Horng-Tay; Lin, Hsin; Haga, Yoshinori; Fisk, Zachary; Hasegawa, Yukio

    2017-01-01

    Orbital-related physics attracts growing interest in condensed matter research, but direct real-space access of the orbital degree of freedom is challenging. We report a first, real-space, imaging of a surface-assisted orbital ordered structure on a cobalt-terminated surface of the well-studied heavy fermion compound CeCoIn5. Within small tip-sample distances, the cobalt atoms on a cleaved (001) surface take on dumbbell shapes alternatingly aligned in the [100] and [010] directions in scanning tunneling microscopy topographies. First-principles calculations reveal that this structure is a consequence of the staggered dxz-dyz orbital order triggered by enhanced on-site Coulomb interaction at the surface. This so far overlooked surface-assisted orbital ordering may prevail in transition metal oxides, heavy fermion superconductors, and other materials. PMID:28948229

  12. 15 Years of Chandra Observations of Capella

    NASA Astrophysics Data System (ADS)

    Kashyap, Vinay

    2014-11-01

    Capella is the strongest coronal line source accessible to Chandra. It has been cumulatively observed with gratings for over 1.2 Ms. The accumulated spectrum represents astrophysical ground truth for atomic physics calculations that is unprecedented in quality. We analyze co-added spectra to generate a comprehensive list of detectable lines and their locations, spanning two orders of magnitude in photon energy. We compare the locations of identifiable lines with locations from atomic databases ATOMDB and Chianti and characterize the uncertainties in the databases. The full line lists and comparisons will be made available at the Dataverse at http://dx.doi.org/10.7910/DVN/27084 This work is supported by Chandra grant AR0-11001X and NASA Contract NAS8-03060 to the Chandra X-Ray Center.

  13. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  14. Electron solvation by polar molecules: the interaction of Na atoms with solid methanol films studied with MIES and density functional theory calculations.

    PubMed

    Borodin, A; Höfft, O; Kahnert, U; Kempter, V; Ferro, Y; Allouche, A

    2004-05-08

    The interaction of Na atoms with CH(3)OH films was studied with metastable impact electron spectroscopy (MIES) under UHV conditions. The films were grown at 90(+/-10) K on tungsten substrates and exposed to Na. Na-induced formation of methoxy (CH(3)O) species takes place, and Na atoms become ionized. At small Na exposures the outermost solvent layer remains largely intact as concluded from the absence of MIES signals caused by the reaction products. However, emission from CH(3)O, located at the film surface, occurs at larger exposures. In the same exposure range also Na species can be detected at the surface. The spectral feature from 3s Na ionization occurs at an energetic position different from that found for metals or semiconductors. The results are compared with density functional theory calculations [see Y. Ferro, A. Allouche, and V. Kempter, J. Chem. Phys. 120, 8683 (2004), preceding paper]. Experiment and theory agree in the energetic positions of the main spectral features from the methanol and sodium ionization. The calculations suggest that the 3s Na emission observed experimentally originates from solvated 3s electrons which are located far from the Na core and become stabilized by solvent molecules. The simultaneous emergence of emission from CH(3)O and from solvated 3s electrons suggests that the delocalization and, consequently, the solvation play an important role in the Na-induced formation of CH(3)O from CH(3)OH. (c) 2004 American Institute of Physics.

  15. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations

    DOE PAGES

    Banerjee, Amartya S.; Lin, Lin; Hu, Wei; ...

    2016-10-21

    The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) canmore » be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale twodimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. In conclusion, employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.« less

  16. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    NASA Astrophysics Data System (ADS)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  17. Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Whitehead, M.A.

    1988-10-01

    The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, andmore » Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.« less

  18. Test-area surface tension calculation of the graphene-methane interface: Fluctuations and commensurability

    NASA Astrophysics Data System (ADS)

    d'Oliveira, H. D.; Davoy, X.; Arche, E.; Malfreyt, P.; Ghoufi, A.

    2017-06-01

    The surface tension (γ) of methane on a graphene monolayer is calculated by using the test-area approach. By using a united atom model to describe methane molecules, strong fluctuations of surface tension as a function of the surface area of the graphene are evidenced. In contrast with the liquid-vapor interfaces, the use of a larger cutoff does not fully erase the fluctuations in the surface tension. Counterintuitively, the description of methane and graphene from the Optimized Potentials for Liquid Simulations all-atom model and a flexible model, respectively, led to a lessening in the surface tension fluctuations. This result suggests that the origin of fluctuations in γ is due to a model-effect rather than size-effects. We show that the molecular origin of these fluctuations is the result of a commensurable organization between both graphene and methane. This commensurable structure can be avoided by describing methane and graphene from a flexible force field. Although differences in γ with respect to the model have been often reported, it is the first time that the model drastically affects the physics of a system.

  19. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-Z target atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoehlker, T.; Ionescu, D.C.; Rymuza, P.

    1998-02-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogenlike and heliumlike bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine-structure splitting of Bi, the excitation cross sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave functions and the magneticmore » interaction are of considerable importance for the K-shell excitation process in high-Z ions such as Bi. The experimental data confirm the result of the complete relativistic calculations, namely, that the magnetic part of the Li{acute e}nard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross section. {copyright} {ital 1998} {ital The American Physical Society}« less

  20. Charge transport in doped zigzag phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Zahra; Asgari, Reza

    2018-06-01

    The effects of lattice distortion and chemical disorder on charge transport properties of two-terminal zigzag phosphorene nanoribbons (zPNRs), which shows resonant tunneling behavior under an electrical applied bias, are studied. Our comprehensive study is based on ab initio quantum transport calculations on the basis of the Landauer theory. We use nitrogen and silicon substitutional dopant atoms, and employ different physical quantities such as the I -V curve, voltage drop behavior, transmission spectrum, transmission pathway, and atomic current to explore the transport mechanism of zPNR devices under a bias voltage. The calculated transmission pathways show the transition from a ballistic transport regime to a diffusive and in some particular cases to localized transport regimes. Current flowing via the chemical bonds and hopping are monitored; however, the conductance originates mainly from the charge traveling through the chemical bonds in the vicinity of the zigzag edges. Our results show that in the doped systems, the device conductance decreases and the negative differential resistance characteristic becomes weak or is eliminated. Besides, the conductance in a pure zPNR system is almost independent of the ribbon width.

  1. Monolayer PtSe 2 , a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt

    DOE PAGES

    Wang, Yeliang; Li, Linfei; Yao, Wei; ...

    2015-05-21

    For single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. We found that a combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrastmore » to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.« less

  2. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less

  3. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. OEDGE modeling for the planned tungsten ring experiment on DIII-D

    DOE PAGES

    Elder, J. David; Stangeby, Peter C.; Abrams, Tyler W.; ...

    2017-04-19

    The OEDGE code is used to model tungsten erosion and transport for DIII-D experiments with toroidal rings of high-Z metal tiles. Such modeling is needed for both experimental and diagnostic design to have estimates of the expected core and edge tungsten density and to understand the various factors contributing to the uncertainties in these calculations. OEDGE simulations are performed using the planned experimental magnetic geometries and plasma conditions typical of both L-mode and inter-ELM H-mode discharges in DIII-D. OEDGE plasma reconstruction based on specific representative discharges for similar geometries is used to determine the plasma conditions applied to tungsten plasmamore » impurity simulations. We developed a new model for tungsten erosion in OEDGE which imports charge-state resolved carbon impurity fluxes and impact energies from a separate OEDGE run which models the carbon production, transport and deposition for the same plasma conditions as the tungsten simulations. Furthermore, these values are then used to calculate the gross tungsten physical sputtering due to carbon plasma impurities which is then added to any sputtering by deuterium ions; tungsten self-sputtering is also included. The code results are found to be dependent on the following factors: divertor geometry and closure, the choice of cross-field anomalous transport coefficients, divertor plasma conditions (affecting both tungsten source strength and transport), the choice of tungsten atomic physics data used in the model (in particular sviz(Te) for W-atoms), and the model of the carbon flux and energy used for 2 calculating the tungsten source due to sputtering. The core tungsten density is found to be of order 10 15 m -3 (excluding effects of any core transport barrier and with significant variability depending on the other factors mentioned) with density decaying into the scrape off layer.« less

  5. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    NASA Astrophysics Data System (ADS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  6. Underground atom gradiometer array for mass distribution monitoring and advanced geodesy

    NASA Astrophysics Data System (ADS)

    Canuel, B.

    2015-12-01

    After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences

  7. A first-principles study of elastic and diffusion properties of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ganeshan, Swetha

    2011-12-01

    In this thesis, the influence of alloying elements on the elastic and diffusion properties of Magnesium (Mg) has been studied based on first-principles density functional theory. The stress-strain method has been used to predict the elastic constants of the Mg based alloys studied herein. This method involves calculating the resultant change in stress due to application of strain. The validity of this method has been successfully tested for both 0K as well as at finite temperatures. The elastic constants predicted in this work have been correlated to ductility, fracture toughness, stiffness, elastic anisotropy and bond directionality, thus providing a better understanding of the influence of alloying elements on the mechanical and physical properties of Mg. Elastic constants, as a function of temperature have been predicted using first-principles quasi-static approximation. In this approach elastic stiffness coefficients calculated with respect to volume (cij( V)) have been correlated to the equilibrium volume as a function of temperature V(T) from phonon calculations to obtain temperature dependence of elastic stiffness coefficients cij(T). To compare our calculated temperature dependent elastic constants with that of experiments an isentropic correction term has been introduced. It is seen that the influence of this isentropic correction term on the elastic constants becomes significant at high temperatures. The quasi-static approximation has been primarily applied to calculate temperature dependent elastic constants of Mg2Ge, Mg2Si, Mg 2Sn and Mg2Pb. In the case of dilute Mg alloys, a 36 atom supercell with 35 atoms of Mg and one atom of the alloying impurity has been used for calculating the corresponding elastic constants. It is seen that there is a direct correspondence between the trends in the elastic constants and the lattice parameters of all the Mg based alloys studied herein. Elements that cause a decrease (increase) in the lattice constants result in an increase (decrease) in the bulk modulus. Self-diffusion calculations of Mg have been performed within both LDA and GGA. It is seen that, in the absence of surface corrections, while results of the two approximations (i.e. LDA and GGA) bound experimental data, better agreement is seen with respect to results from LDA, in comparison with experimental measurements. The effect of thermal expansion on the diffusivity of Mg has been studied using both HA and QHA. It is seen that the influence of anharmonicity on the diffusivity of Mg is negligible. Self-diffusion of Mg is faster in the basal plane than between adjacent basal planes. Partial correlation factors corresponding to the diffusion of a Mg atom from one basal plane to the adjacent basal plane, i.e. fBx and fBz, decrease with temperature whereas the partial correlation factor corresponding to the diffusion of Mg atom within the basal plane, i.e. fAx , increases with temperature. The ratio of jump frequencies w⊥/w∥ for self-diffusion of Mg increase with increase in temperature. The method used to calculate self-diffusion coefficients has been extended to compute impurity diffusion coefficients of Al, Ca, Sn and Zn in Mg. For these calculations, a 36 atom supercell with 1 vacant site and 1 impurity has been used. The 8-frequencey model has been implemented to obtain the different atom jump frequencies in order to calculate impurity diffusion coefficients in Mg. The trend in the impurity diffusion coefficients, with the exception of DZn-Mg is as follows: D Mg-Ca>DMg>DMg-Sn> DMg-Al. For impurity diffusion of Zn in Mg, at high temperatures DMg-Zn overlaps with that of DMg-Al , while at low temperatures it overlaps with that of D Mg-Sn. The different atom jump frequencies computed during the diffusion calculations are seen to be temperature dependent, increasing with increase in temperature. The correlation factors for all the alloy systems considered herein, is close to 1. This is expected to be due to the close packing of Mg lattice. (Abstract shortened by UMI.)

  8. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the contribution of CX within that region.This work was partially supported by NASA grants NNX09AC46G and NNG09WF24I and accomplished with the help of many collaborators including Phillip C. Stancil, David Lyons, Patrick Mullen, and Robin L. Shelton.

  9. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    NASA Astrophysics Data System (ADS)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  10. Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo

    2014-03-01

    While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.

  11. PyNeb: a new tool for analyzing emission lines. I. Code description and validation of results

    NASA Astrophysics Data System (ADS)

    Luridiana, V.; Morisset, C.; Shaw, R. A.

    2015-01-01

    Analysis of emission lines in gaseous nebulae yields direct measures of physical conditions and chemical abundances and is the cornerstone of nebular astrophysics. Although the physical problem is conceptually simple, its practical complexity can be overwhelming since the amount of data to be analyzed steadily increases; furthermore, results depend crucially on the input atomic data, whose determination also improves each year. To address these challenges we created PyNeb, an innovative code for analyzing emission lines. PyNeb computes physical conditions and ionic and elemental abundances and produces both theoretical and observational diagnostic plots. It is designed to be portable, modular, and largely customizable in aspects such as the atomic data used, the format of the observational data to be analyzed, and the graphical output. It gives full access to the intermediate quantities of the calculation, making it possible to write scripts tailored to the specific type of analysis one wants to carry out. In the case of collisionally excited lines, PyNeb works by solving the equilibrium equations for an n-level atom; in the case of recombination lines, it works by interpolation in emissivity tables. The code offers a choice of extinction laws and ionization correction factors, which can be complemented by user-provided recipes. It is entirely written in the python programming language and uses standard python libraries. It is fully vectorized, making it apt for analyzing huge amounts of data. The code is stable and has been benchmarked against IRAF/NEBULAR. It is public, fully documented, and has already been satisfactorily used in a number of published papers.

  12. Structural stability and electronic properties of β-tetragonal boron: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp

    2015-01-15

    It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less

  13. General contraction of Gaussian basis sets. Part 2: Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Taylor, Peter R.

    1989-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.

  14. All-atom four-body knowledge-based statistical potential to distinguish native tertiary RNA structures from nonnative folds.

    PubMed

    Masso, Majid

    2018-09-14

    Scientific breakthroughs in recent decades have uncovered the capability of RNA molecules to fulfill a wide array of structural, functional, and regulatory roles in living cells, leading to a concomitantly significant increase in both the number and diversity of experimentally determined RNA three-dimensional (3D) structures. Atomic coordinates from a representative training set of solved RNA structures, displaying low sequence and structure similarity, facilitate derivation of knowledge-based energy functions. Here we develop an all-atom four-body statistical potential and evaluate its capacity to distinguish native RNA 3D structures from nonnative folds based on calculated free energy scores. Atomic four-body nearest-neighbors are objectively identified by their occurrence as tetrahedral vertices in the Delaunay tessellations of RNA structures, and rates of atomic quadruplet interactions expected by chance are obtained from a multinomial reference distribution. Our four-body energy function, referred to as RAMP (ribonucleic acids multibody potential), is subsequently derived by applying the inverted Boltzmann principle to the frequency data, yielding an energy score for each type of atomic quadruplet interaction. Several well-known benchmark datasets reveal that RAMP is comparable with, and often outperforms, existing knowledge- and physics-based energy functions. To the best of our knowledge, this is the first study detailing an RNA tertiary structure-based multibody statistical potential and its comparative evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Project Physics Text 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  16. V L Ginzburg and the Atomic Project

    NASA Astrophysics Data System (ADS)

    Ritus, V. I.

    2017-04-01

    This paper is an expanded version of the author's talk presented at a session of the Physical Sciences Division of the Russian Academy of Sciences celebrating the 100th anniversary of V L Ginzburg's birth. Tamm's Special group was organized in June 1948 with the task to clarify the feasibility of constructing a hydrogen bomb. Having verified and confirmed the calculated results by Ya B Zel'dovich's group, the Tamm group proposed an original hydrogen bomb design, which, following A D Sakharov's idea, consisted of an atomic bomb surrounded spherically by nested uranium and heavy water layers: the heavy water, on V L Ginzburg's suggestion, was replaced by higher-calorie solid lithium-6 deuteride. The ionization implosion of deuterium by uranium, both heated by the atomic bomb's explosion, greatly accelerates nuclear reactions in deuterium and uranium and increases the total energy release. Upon their approval by the KB-11 top researchers, the Atomic project leadership, and the government, the proposals were implemented in the RDS-6s bomb, which was successfully tested on 12 August 1953. Lithium-6 deuteride turned out to be a convenient multipurpose nuclear fuel. The paper highlights the recognition by the leaders of the country and of the Atomic project that fundamental science plays a crucial role in promoting scientists' ideas and proposals.

  17. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  18. Interactions of satellite-speed helium atoms with satellite surfaces. 3: Drag coefficients from spatial and energy distributions of reflected helium atoms

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Knuth, E. L.

    1977-01-01

    Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.

  19. New Equations for Calculating Principal and Fine-Structure Atomic Spectra for Single and Multi-Electron Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis R.

    A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation andmore » its relationship to the new equations are presented.« less

  20. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre; von Lilienfeld, O. Anatole

    2018-06-01

    Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.

  1. Atomic model of anti-phase boundaries in a face-centred icosahedral Zn Mg Dy quasicrystal

    NASA Astrophysics Data System (ADS)

    Wang, Jianbo; Yang, Wenge; Wang, Renhui

    2003-03-01

    An atomic model in the physical space for an anti-phase boundary (APB) in the ordered face-centred icosahedral Zn-Mg-Dy quasicrystal phase is presented, based on a six-dimensional model suggested by Ishimasa and Shimizu (2000 Mater. Sci. Eng. A 294-296 232, Ishimasa 2001 private communication). The physical space atomic positions of the defected structure were used for the calculation of the corresponding exit-plane wavefunction and high-resolution transmission electron microscopy images. The analysis of the defect by inverse Fourier transformation reveals that when superstructure reflection spots are used for back-transformation, then at the APB, bright lattice fringes are found to turn into dark ones, and vice versa. When fundamental reflections are used, the APB is not visible. This phenomenon is the same as the corresponding experimental study recently published by Heggen et al(2001a Phys. Rev. B 64 014202). Based on this atomic model it is found that the APB perpendicular to a fivefold axis A5 (APB-A5) is a non-conservative boundary, while the APB perpendicular to a pseudo-twofold axis A2P (APB-A2P) is a conservative one. This fact is consistent with the experimental observation (Heggen et al2002 J. Alloys Compounds 342 330) that the frequency of occurrence of APB-A5 is 90% in the heat-treated samples compared with that in the deformed samples (45%), while the frequency of occurrence of APB-A2P is 34% in the deformed samples compared with that in the heat-treated samples.

  2. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  3. Correlation of Hydrogen-Atom Abstraction Reaction Efficiencies for Aryl Radicals with their Vertical Electron Affinities and the Vertical Ionization Energies of the Hydrogen Atom Donors

    PubMed Central

    Jing, Linhong; Nash, John J.

    2009-01-01

    The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor. PMID:19061320

  4. Contemporary Aspects of Atomic Physics

    ERIC Educational Resources Information Center

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  5. Effects of vacancies on atom displacement threshold energy calculations through Molecular Dynamics Methods in BaTiO3

    NASA Astrophysics Data System (ADS)

    Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio

    2017-09-01

    A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.

  6. Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Li, Zhiying; Krems, Roman V.

    2015-10-01

    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the -H →-X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He.

  7. The Kondo effect in ferromagnetic atomic contacts.

    PubMed

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.

  8. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    NASA Astrophysics Data System (ADS)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  9. Identifying the Molecular Origin of Global Warming

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  10. Physics Division progress report for period ending September 30, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  11. Reaction mechanism and kinetics of the degradation of terbacil initiated by OH radical - A theoretical study

    NASA Astrophysics Data System (ADS)

    Ponnusamy, S.; Sandhiya, L.; Senthilkumar, K.

    2018-02-01

    The reaction of terbacil with OH radical is studied by using electronic structure calculations. The reaction of terbacil with OH radical is found to proceed by H-atom abstraction, Cl-atom abstraction and OH addition reactions. The initially formed alkyl radical will undergo atmospheric transformation in the presence of molecular oxygen leading to the formation of peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals is studied. The rate constant is calculated for the H-atom abstraction reactions over the temperature range of 200-1000 K. The results obtained from electronic structure calculations and kinetic study show that the H-atom abstraction reaction is more favorable. The calculated lifetime of terbacil is 24 h in normal atmospheric OH concentration. The rate constant calculated for H-atom abstraction reactions is 6 × 10-12, 4.4 × 10-12 and 3.2 × 10-12 cm3molecule-1s-1, respectively which is in agreement with the previous literature value of 1.9 × 10-12 cm3molecule-1s-1.

  12. Efficient evaluation of atom tunneling combined with electronic structure calculations.

    PubMed

    Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes

    2018-03-14

    Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.

  13. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  14. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, Natalie

    K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1–10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential – whether through global spectral modeling or through diagnostics from local modeling of individual lines –more » the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro- H/Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data needs.« less

  15. JONAH algorithms: C-2 the ratio option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rego, J.

    1979-02-01

    Information concerning input is given first. Then formulas are given for calculation of atoms/millimeter, fissions, kiloton yield, R-value, atoms/fission, fissions/fission, bomb fraction, fissions/atoms, atoms, atoms/atoms, fissions/atoms, atom ratio, total atoms formed, and thermonuclear bomb fraction. Some of the terminology used is elucidated in an appendix. (RWR)

  16. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  17. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  18. NASA GSFC Science Symposium on Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  19. Ab initio calculation of diffusion barriers for Cu adatom hopping on Cu(1 0 0) surface and evolution of atomic configurations

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada

    2011-06-01

    The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.

  20. Structure and dynamics of the peptide strand KRFK from the thrombospondin TSP-1 in water.

    PubMed

    Taleb Bendiab, W; Benomrane, B; Bounaceur, B; Dauchez, M; Krallafa, A M

    2018-02-14

    Theoretical investigations of a solute in liquid water at normal temperature and pressure can be performed at different levels of theory. Static quantum calculations as well as classical and ab initio molecular dynamics are used to completely explore the conformational space for large solvated molecular systems. In the classical approach, it is essential to describe all of the interactions of the solute and the solvent in detail. Water molecules are very often described as rigid bodies when the most commonly used interaction potentials, such as the SPCE and the TIP4P models, are employed. Recently, a physical model based upon a cluster of rigid water molecules with a tetrahedral architecture (AB 4 ) was proposed that describes liquid water as a mixture of both TIP4P and SPCE molecular species that occur in the proportions implied by the tetrahedral architecture (one central molecule versus four outer molecules; i.e., 20% TIP4P versus 80% SPCE molecules). In this work, theoretical spectroscopic data for a peptide strand were correlated with the structural properties of the peptide strand solvated in water, based on data calculated using different theoretical approaches and physical models. We focused on a particular peptide strand, KRFK (lysine-arginine-phenylalanine-lysine), found in the thrombospondin TSP-1, due to its interesting properties. As the activity and electronic structure of this system is strongly linked to its structure, we correlated its structure with charge-density maps obtained using different semi-empirical charge Q eq equations. The structural and thermodynamic properties obtained from classical simulations were correlated with ab initio molecular dynamics (AIMD) data. Structural changes in the peptide strand were rationalized in terms of the motions of atoms and groups of atoms. To achieve this, conformational changes were investigated using calculated infrared spectra for the peptide in the gas phase and in water solvent. The calculated AIMD infrared spectrum for the peptide was correlated with static quantum calculations of the molecular system based on a harmonic approach as well as the VDOS (vibrational density of states) spectra obtained using various classical solvent models (SPCE, TIP4P, and AB 4 ) and charge maps.

  1. Lowest-energy structures and electronic properties of Na-Si binary clusters from ab initio global search.

    PubMed

    Sai, Linwei; Tang, Lingli; Zhao, Jijun; Wang, Jun; Kumar, Vijay

    2011-11-14

    The ground state structures of neutral and anionic clusters of Na(n)Si(m) (1 ≤ n ≤ 3, 1 ≤ m ≤ 11) have been determined using genetic algorithm incorporated in first principles total energy code. The size dependence of the structural and electronic properties is discussed in detail. It is found that the lowest-energy structures of Na(n)Si(m) clusters resemble those of the pure Si clusters. Interestingly, Na atoms in neutral Na(n)Si(m) clusters are usually well separated by the Si(m) skeleton, whereas Na atoms can form Na-Na bonds in some anionic clusters. The ionization potentials, adiabatic electron affinities, and photoelectron spectra are also calculated and the results compare well with the experimental data. © 2011 American Institute of Physics

  2. The Deformations of Carbon Nanotubes under Cutting.

    PubMed

    Deng, Jue; Wang, Chao; Guan, Guozhen; Wu, Hao; Sun, Hong; Qiu, Longbin; Chen, Peining; Pan, Zhiyong; Sun, Hao; Zhang, Bo; Che, Renchao; Peng, Huisheng

    2017-08-22

    The determination of structural evolution at the atomic level is essential to understanding the intrinsic physics and chemistries of nanomaterials. Mechanochemistry represents a promising method to trace structural evolution, but conventional mechanical tension generates random breaking points, which makes it unavailable for effective analysis. It remains difficult to find an appropriate model to study shear deformations. Here, we synthesize high-modulus carbon nanotubes that can be cut precisely, and the structural evolution is efficiently investigated through a combination of geometry phase analysis and first-principles calculations. The lattice fluctuation depends on the anisotropy, chirality, curvature, and slicing rate. The strain distribution further reveals a plastic breaking mechanism for the conjugated carbon atoms under cutting. The resulting sliced carbon nanotubes with controllable sizes and open ends are promising for various applications, for example, as an anode material for lithium-ion batteries.

  3. PHYSICAL MODEL FOR RECOGNITION TUNNELING

    PubMed Central

    Krstić, Predrag; Ashcroft, Brian; Lindsay, Stuart

    2015-01-01

    Recognition tunneling (RT) identifies target molecules trapped between tunneling electrodes functionalized with recognition molecules that serve as specific chemical linkages between the metal electrodes and the trapped target molecule. Possible applications include single molecule DNA and protein sequencing. This paper addresses several fundamental aspects of RT by multiscale theory, applying both all-atom and coarse-grained DNA models: (1) We show that the magnitude of the observed currents are consistent with the results of non-equilibrium Green's function calculations carried out on a solvated all-atom model. (2) Brownian fluctuations in hydrogen bond-lengths lead to current spikes that are similar to what is observed experimentally. (3) The frequency characteristics of these fluctuations can be used to identify the trapped molecules with a machine-learning algorithm, giving a theoretical underpinning to this new method of identifying single molecule signals. PMID:25650375

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernander, O.; Haga, I.; Segerberg, F.

    BS>From international nuclear industries fair; Basel, Switzerland (16 Oct 1972). Although the present status of the boiling water reactor is one of proven technology, design refinements and technical innovations are still being made to further improve reliability, economy and safety. The new standard ASEA- ATOM BWR features a number of such refinements and design improvements involving main circulation punips, containment design, refuelling system and off-gas treatment plant. In some respects the nuclear and hydraulic design of the ASEA- ATOM BWR differs from that adopted by other BWR manufacturers. Since the Oskarshamn I plant was the first nuclear power station havingmore » these features an extensive physics and hydraulics test program was made during the reactor start- up. The results of these tests have fully confirmed the ability of calculation methods to predict the behavior of the reactor. (auth)« less

  5. The Hyperfine Structure of the Ground State in the Muonic Helium Atoms

    NASA Astrophysics Data System (ADS)

    Aznabayev, D. T.; Bekbaev, A. K.; Korobov, V. I.

    2018-05-01

    Non-relativistic ionization energies 3He2+μ-e- and 4He2+μ-e- of helium-muonic atoms are calculated for ground states. The calculations are based on the variational method of the exponential expansion. Convergence of the variational energies is studied by an increasing of a number of the basis functions N. This allows to claim that the obtained energy values have 26 significant digits for ground states. With the obtained results we calculate hyperfine splitting of the muonic helium atoms.

  6. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  7. Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment

    NASA Technical Reports Server (NTRS)

    Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)

    2002-01-01

    Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.

  8. Monte Carlo calculations of thermal neutron capture in gadolinium: a comparison of GEANT4 and MCNP with measurements.

    PubMed

    Enger, Shirin A; Munck af Rosenschöld, Per; Rezaei, Arash; Lundqvist, Hans

    2006-02-01

    GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.

  9. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    PubMed

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  10. Precise calibration of few-cycle laser pulses with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  12. Semiclassical Planetology: a progress report

    NASA Astrophysics Data System (ADS)

    Celebonovic, V.

    1999-12-01

    Work on planetary internal structure has started in Yugoslavia in the early sixties.It was initiated by P.Savic and R.Kasanin,who have jointly developed a theory of the behaviour of materials under high pressure.By its physical basis,this theory is semiclassical,because it is based on classical physics combined with some quantum mechanical results.The calculations in the theory ( both laboratory and planetological) are baed on ths idea that high pressure leads to excitation and ionisation of atoms and/or molecules which make up the specimen. In this paper we shall briefly present the main ideas of this theory,and then discuss its planetological applications. References P.Savic and V.Celebonovic: 1994,AIP Conf.Proc.,vol.309,p.53. V.Celebonovic: 1999,preprint cond-mat/9906027

  13. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed inmore » detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.« less

  14. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations

    NASA Astrophysics Data System (ADS)

    Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya

    2018-03-01

    We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.

  15. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  16. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    NASA Astrophysics Data System (ADS)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  17. The two-electron atomic systems. S-states

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2010-01-01

    A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrödinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial Ω (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=Ω+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: ˜10 minutes (depends on basis size and computer speed)

  18. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less

  19. Low cost estimation of the contribution of post-CCSD excitations to the total atomization energy using density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Sánchez, H. R.; Pis Diez, R.

    2016-04-01

    Based on the Aλ diagnostic for multireference effects recently proposed [U.R. Fogueri, S. Kozuch, A. Karton, J.M. Martin, Theor. Chem. Acc. 132 (2013) 1], a simple method for improving total atomization energies and reaction energies calculated at the CCSD level of theory is proposed. The method requires a CCSD calculation and two additional density functional theory calculations for the molecule. Two sets containing 139 and 51 molecules are used as training and validation sets, respectively, for total atomization energies. An appreciable decrease in the mean absolute error from 7-10 kcal mol-1 for CCSD to about 2 kcal mol-1 for the present method is observed. The present method provides atomization energies and reaction energies that compare favorably with relatively recent scaled CCSD methods.

  20. On the calculation of atomic term populations

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1992-01-01

    The usefulness of calculations on model atomic term systems which can give spectral multiplet intensities is emphasized, in contrast to more detailed level calculations which are not always feasible because of lack of appropriate atomic data. A more general expression for the multiplet radiative transition rate is proposed to facilitate term representations. The differences between term and level representations are discussed quantitatively with respect to a model three-level atom and real examples of the C III and Ne IV ions. It is shown that term representations fail at lower densities when level inverse lifetimes within terms differ by only a few orders of magnitude. In such cases one must resort to other methods; a hybrid calculation is therefore proposed to fill this need and is carried out for the C III ion to demonstrate its feasibility and validity.

  1. Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems

    NASA Astrophysics Data System (ADS)

    Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.

    2017-02-01

    Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.

  2. Procesos físicos en mezclas gaseosas

    NASA Astrophysics Data System (ADS)

    Milone, L. A.; Merlo, D. C.

    In gaseous mixtures of different compositions (solar, metal poor, Helium-rich and Helium metal poor), we analyze chemical abundances (free electrons, neutral atoms, ions, negative ions and moleculae) as function of temperature and electronic pressures. At relative lower temperatures and higher electronic pressures, we obtain unreachable physical conditions if molecular formation of H2 and C2 are not included (the relations log (Pg) vs log (Pe) tend to infinite); this divergence disappears if molecular formation is taken into account. Finally, we analyze and explain the causes of this phenomena using accuracy numerical calculations.

  3. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope.

    PubMed

    Urban, K W; Mayer, J; Jinschek, J R; Neish, M J; Lugg, N R; Allen, L J

    2013-05-03

    Newly developed achromatic electron optics allows the use of wide energy windows and makes feasible energy-filtered transmission electron microscopy (EFTEM) at atomic resolution. In this Letter we present EFTEM images formed using electrons that have undergone a silicon L(2,3) core-shell energy loss, exhibiting a resolution in EFTEM of 1.35 Å. This permits elemental mapping beyond the nanoscale provided that quantum mechanical calculations from first principles are done in tandem with the experiment to understand the physical information encoded in the images.

  4. Informal Conference on the Chemistry of Energetic Azides, Isocyanates, and Related Species Held in Denver, Colorado on 27-28th April 1989

    DTIC Science & Technology

    1990-02-16

    radiation has a bent configuration. From the internal energy distributions in the CN fragment, a lower limit for the heat of formation of NCO, 40.7 kcal/mole...Physics, Ben-Gurion University of the Negev Beer-Sheva 84105, Israel Abstract The electronic excitation of Pb atoms in the gas phase, following the...and the calculations indicate that high concentrations of excited, effectively long-lived Pb states are maintained as a result of radiation -trapping

  5. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  6. Treatment of delocalized electron transfer in periodic and embedded cluster DFT calculations: The case of Cu on ZnO (10(1)0).

    PubMed

    Hellström, Matti; Spångberg, Daniel; Hermansson, Kersti

    2015-12-15

    We assess the consequences of the interface model-embedded-cluster or periodic-slab model-on the ability of DFT calculations to describe charge transfer (CT) in a particularly challenging case where periodic-slab calculations indicate a delocalized charge-transfer state. Our example is Cu atom adsorption on ZnO(10(1)0), and in fact the periodic slab calculations indicate three types of CT depending on the adsorption site: full CT, partial CT, and no CT. Interestingly, when full CT occurs in the periodic calculations, the calculated Cu atom adsorption energy depends on the underlying ZnO substrate supercell size, since when the electron enters the ZnO it delocalizes over as many atoms as possible. In the embedded-cluster calculations, the electron transferred to the ZnO delocalizes over the entire cluster region, and as a result the calculated Cu atom adsorption energy does not agree with the value obtained using a large periodic supercell, but instead to the adsorption energy obtained for a periodic supercell of roughly the same size as the embedded cluster. Different density functionals (of GGA and hybrid types) and basis sets (local atom-centered and plane-waves) were assessed, and we show that embedded clusters can be used to model Cu adsorption on ZnO(10(1)0), as long as care is taken to account for the effects of CT. © 2015 Wiley Periodicals, Inc.

  7. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of the Institute of Physics. The support from the IOPCS staff made this publication possible. The 8th AISAMP was sponsored primarily by the University of Western Australia and Curtin University of Technology, both in Perth, Western Australia, and by Journal of Physics: Conference Series. Support was also received from the International Council of Science, ICSU. Guidance and active participation from colleagues, particularly from the University of Western Australia, and Curtin University, and from the Australian National University and Melbourne University were sources of strength for the actual organization of the conference. Dr Elena Semidelova receives special thanks for her organizing abilities. We hope that this issue of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between all scientists and their countries. Evan Bieske, Stephen Buckman and Jim F Williams Guest Editors

  8. Combination of large and small basis sets in electronic structure calculations on large systems

    NASA Astrophysics Data System (ADS)

    Røeggen, Inge; Gao, Bin

    2018-04-01

    Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.

  9. First-principles Theory of Magnetic Multipoles in Condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.

    2018-04-01

    The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.

  10. Phonon dispersion and local density of states in NiPd alloy using modified embedded atom method potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Subodh, E-mail: subodhssgk@gmail.com; Chand, Manesh, E-mail: maneshchand@gmail.com; Dabral, Krishna, E-mail: kmkrishna.dabral@gmail.com

    2016-05-06

    A modified embedded atom method (MEAM) potential model up to second neighbours has been used to calculate the phonon dispersions for Ni{sub 0.55}Pd{sub 0.45} alloy in which Pd is introduced as substitutional impurity. Using the force-constants obtained from MEAM potential, the local vibrational density of states in host Ni and substitutional Pd atoms using Green’s function method has been calculated. The calculation of phonon dispersions of NiPd alloy shows a good agreement with the experimental results. Condition of resonance mode has also been investigated and resonance mode in the frequency spectrum of impurity atom at low frequency is observed.

  11. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  12. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  13. Characterization of the 1S-2S transition in antihydrogen.

    PubMed

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Johnson, M A; Jones, J M; Jones, S A; Jonsell, S; Khramov, A; Knapp, P; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Momose, T; Munich, J J; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stutter, G; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S

    2018-05-01

    In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter 3-7 , including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10 15 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10 -12 -two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10 -20 GeV.

  14. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-14

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  15. Will a Decaying Atom Feel a Friction Force?

    PubMed

    Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M

    2017-02-03

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  16. Evolution in time of an N-atom system. II. Calculation of the eigenstates

    NASA Astrophysics Data System (ADS)

    Rudolph, Terry; Yavin, Itay; Freedhoff, Helen

    2004-01-01

    We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of a number of different arrays of N identical two-level atoms (TLA’s) or qubits, including polygons, “diamond” structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the atoms. We include the interactions between all pairs of atoms, and our results are valid for arbitrary separations relative to the radiation wavelength.

  17. Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr

    2016-05-01

    We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.

  18. Polarizabilities and hyperpolarizabilities for the atoms Al, Si, P, S, Cl, and Ar: Coupled cluster calculations.

    PubMed

    Lupinetti, Concetta; Thakkar, Ajit J

    2005-01-22

    Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the Al, Si, P, S, Cl, and Ar atoms. The finite-field computations use energies obtained with various ab initio methods including Moller-Plesset perturbation theory and the coupled cluster approach. Excellent agreement with experiment is found for argon. The experimental alpha for Al is likely to be in error. Only limited comparisons are possible for the other atoms because hyperpolarizabilities have not been reported previously for most of these atoms. Our recommended values of the mean dipole polarizability (in the order Al-Ar) are alpha/e(2)a(0) (2)E(h) (-1)=57.74, 37.17, 24.93, 19.37, 14.57, and 11.085 with an error estimate of +/-0.5%. The recommended values of the mean second dipole hyperpolarizability (in the order Al-Ar) are gamma/e(4)a(0) (4)E(h) (-3)=2.02 x 10(5), 4.31 x 10(4), 1.14 x 10(4), 6.51 x 10(3), 2.73 x 10(3), and 1.18 x 10(3) with an error estimate of +/-2%. Our recommended polarizability anisotropy values are Deltaalpha/e(2)a(0) (2)E(h) (-1)=-25.60, 8.41, -3.63, and 1.71 for Al, Si, S, and Cl respectively, with an error estimate of +/-1%. The recommended hyperpolarizability anisotropies are Deltagamma/e(4)a(0) (4)E(h) (-3)=-3.88 x 10(5), 4.16 x 10(4), -7.00 x 10(3), and 1.65 x 10(3) for Al, Si, S, and Cl, respectively, with an error estimate of +/-4%. (c) 2005 American Institute of Physics.

  19. Molecular physics. Production of trilobite Rydberg molecule dimers with kilo-Debye permanent electric dipole moments.

    PubMed

    Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P

    2015-04-03

    Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.

  20. PREFACE: Atomically controlled fabrication technology: new physics and functional device realization Atomically controlled fabrication technology: new physics and functional device realization

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuji; Kasai, Hideaki

    2011-10-01

    To realize next generation functional devices, atomic level controllability of the application and fabrication techniques is necessary. The conventional route to advance solid state devices, which involves improvement of 'instrumental accuracy', is now facing a major paradigm shift towards 'phenomenal accuracy'. Therefore, to keep up with this critical turn in the development of devices, pioneering research (both theoretical and experimental) on relevant materials, focusing on new physics at the atomic scale, is inevitable. This special section contains articles on the advancements in fabrication of functional devices with an emphasis on the exploration, clarification and understanding of atomistic phenomena. Research articles reporting theoretical and experimental findings on various materials such as semiconductors, metals, magnetic and organic systems, collectively present and 'capture' the appropriate processes and mechanisms of this rapidly developing field. The theoretical investigations employ first-principles quantum-mechanical simulations to clarify and bring about design principles and guidelines, or to develop more reliable computational methods. Experimental studies, on the other hand, introduce novel capabilities to build, view and manipulate materials at the atomic scale by employing pioneering techniques. Thus, the section pays significant attention to novel structures and properties and the accompanying fabrication techniques and design arising from the understanding of properties and structures at the atomic scale. We hope that researchers in the area of physics, materials science and engineering, interested in the development of functional devices via atomic level control, will find valuable information in this collaborative work. We are grateful to all of the authors for their contributions. Atomically controlled fabrication contents On the mechanism of carbon nanotube formation: the role of the catalyst G N Ayre, T Uchino, B Mazumder, A L Hector, J L Hutchison, D C Smith, P Ashburn and C H de Groot Mechanism of atomic-scale passivation and flattening of semiconductor surfaces by wet-chemical preparationsKenta Arima, Katsuyoshi Endo, Kazuto Yamauchi, Kikuji Hirose, Tomoya Ono and Yasuhisa Sano Real-space calculations for electron transport properties of nanostructuresTomoya Ono, Shigeru Tsukamoto, Yoshiyuki Egami and Yoshitaka Fujimoto Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulationsDavid S G Bauer, Phivos Mavropoulos, Samir Lounis and Stefan Blügel An atomically controlled Si film formation process at low temperatures using atmospheric-pressure VHF plasmaK Yasutake, H Kakiuchi, H Ohmi, K Inagaki, Y Oshikane and M Nakano Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrorsKazuto Yamauchi, Hidekazu Mimura, Takashi Kimura, Hirokatsu Yumoto, Soichiro Handa, Satoshi Matsuyama, Kenta Arima, Yasuhisa Sano, Kazuya Yamamura, Koji Inagaki, Hiroki Nakamori, Jangwoo Kim, Kenji Tamasaku, Yoshinori Nishino, Makina Yabashi and Tetsuya Ishikawa Surface magnetism in O2 dissociation—from basics to applicationY Kunisada, M C Escaño and H Kasai Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization methodAkira Sasaki, Masashi Kojo, Kikuji Hirose and Hidekazu Goto Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscopeK Takami, S Tsuruta, Y Miyake, M Akai-Kasaya, A Saito, M Aono and Y Kuwahara

  1. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…

  2. Studies of local polarization in complex oxide multiferroic interfaces by aberration corrected STEM-EELS

    NASA Astrophysics Data System (ADS)

    Sanchez-Santolino, Gabriel; Tornos, Javier; Leon, Carlos; Varela, María; Pennycook, Stephen J.; Santamaría, Jacobo

    2014-03-01

    Interfaces in complex oxide heterostructures are responsible for exciting new physics, which is directly related to the chemical, structural and electronic properties at the atomic scale. Here, we study artificial multiferroic heterostructures combining ferromagnetic La0.7Sr0.3MnO3 with ferroelectric BaTiO3 by atomic resolution aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy. Measurements of the atomic positions in the STEM images permit calculating relative displacements and hence, local polarization. Polarization gradients can be observed in annular bright field images which seem to be correlated to strain gradients associated with the large lattice mismatch between barriers and electrodes. Spectroscopic measurements suggest the presence of O vacancies through the ferroelectric layers. Understanding the effect of the charge carriers associated with the oxygen vacancies may be the key to control the dynamics of domain walls in these heterostructures. Acknowledgements ORNL: U.S. DOE-BES, Materials Sciences and Engineering Division. UCM: ERC Starting Investigator Award, Spanish MICINN MAT2011-27470-C02 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), CAM S2009/MAT-1756 (Phama).

  3. Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures.

    PubMed

    Sun, Qiang; Wang, Qian; Jena, Puru; Kawazoe, Yoshiyuki

    2008-02-01

    Janus nanoparticles, characterized by their anisotropic structure and interactions, have added a new dimension to nanoscience because of their potential applications in biomedicine, sensors, catalysis, and assembled materials. The technological applications of these nanoparticles, however, have been limited as the current chemical, physical, and biosynthetic methods lack sufficient size and shape selectivity. We report a technique where gold clusters doped with tungsten can serve as a seed that facilitates the natural growth of anisotropic nanostructures whose size and shape can be controlled with atomic precision. Using ab initio simulated annealing and molecular dynamics calculations on AunW (n > 12) clusters, we discovered that the W@Au12 cage cluster forms a very stable core with the remaining Au atoms forming patchy structures on its surface. The anisotropic geometry gives rise to anisotropies in vibrational spectra, charge distributions, electronic structures, and reactivity, thus making it useful to have dual functionalities. In particular, the core-patch structure is shown to possess a hydrophilic head and a hydrophobic tail. The W@Au12 clusters can also be used as building blocks of a nanoring with novel properties.

  4. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  5. The Iron Project

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    Recent advances in theoretical atomic physics have enabled large-scale calculation of atomic parameters for a variety of atomic processes with high degree of precision. The development and application of these methods is the aim of the Iron Project. At present the primary focus is on collisional processes for all ions of iron, Fe I - FeXXVI, and other iron-peak elements; new work on radiative processes has also been initiated. Varied applications of the Iron Project work to X-ray astronomy are discussed, and more general applications to other spectral ranges are pointed out. The IP work forms the basis for more specialized projects such as the RmaX Project, and the work on photoionization/recombination, and aims to provide a comprehensive and self-consistent set of accurate collisional and radiative cross sections, and transition probabilities, within the framework of relativistic close coupling formulation using the Breit-Pauli R-Matrix method. An illustrative example is presented of how the IP data may be utilized in the formation of X-ray spectra of the K alpha complex at 6.7 keV from He-like Fe XXV.

  6. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    DOE PAGES

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-20

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces themore » NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.« less

  7. Symmetry-adapted tight-binding calculations of the totally symmetric A1 phonons of single-walled carbon nanotubes and their resonant Raman intensity

    NASA Astrophysics Data System (ADS)

    Popov, Valentin N.; Lambin, Philippe

    2007-03-01

    The atomistic calculations of the physical properties of perfect single-walled carbon nanotubes based on the use of the translational symmetry of the nanotubes face increasing computational difficulties for most of the presently synthesized nanotubes with up to a few thousand atoms in the unit cell. This difficulty can be circumvented by use of the helical symmetry of the nanotubes and a two-atom unit cell. We present the results of such symmetry-adapted tight-binding calculations of the totally symmetric A1 phonons (the RBM and the G-band modes) and their resonant Raman intensity for several hundred nanotubes. In particular, we show that (1) the frequencies and the resonant Raman intensity of the RBM and the G-band modes show diameter and chirality dependence and family patterns, (2) the strong electron- A1LO phonon interactions in metallic nanotubes lead to Kohn anomalies at the zone center, (3) the G-band consists of a subband due to A1LO phonons of semiconducting tubes centered at ∼1593 cm -1, a subband of A1TO phonons at ∼1570 cm -1, and a subband of A1LO phonons of metallic tubes at ∼1540 cm -1. The latter prediction confirms previous theoretical results but disagrees with the commonly adopted assignment of the G-band features.

  8. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    PubMed

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  9. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen.

    PubMed

    Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio

    2011-03-07

    We report a detailed theoretical study of the hydrogen abstraction reaction from methanol by atomic hydrogen. The study includes the analysis of thermal rate constants, branching ratios, and kinetic isotope effects. Specifically, we have performed high-level computations at the MC3BB level together with direct dynamics calculations by canonical variational transition state theory (CVT) with the microcanonically optimized multidimensional tunneling (μOMT) transmission coefficient (CVT/μOMT) to study both the CH(3)OH+H→CH(2)OH+H(2) (R1) reaction and the CH(3)OH+H→CH(3)O+H(2) (R2) reaction. The CVT/μOMT calculations show that reaction R1 dominates in the whole range 298≤T (K)≤2500 and that anharmonic effects on the torsional mode about the C-O bond are important, mainly at high temperatures. The activation energy for the total reaction sum of R1 and R2 reactions changes substantially with temperature and, therefore, the use of straight-line Arrhenius plots is not valid. We recommend the use of new expressions for the total R1 + R2 reaction and for the R1 and R2 individual reactions. © 2011 American Institute of Physics.

  10. Many-Body Theory for Positronium-Atom Interactions

    NASA Astrophysics Data System (ADS)

    Green, D. G.; Swann, A. R.; Gribakin, G. F.

    2018-05-01

    A many-body-theory approach has been developed to study positronium-atom interactions. As first applications, we calculate the elastic scattering and momentum-transfer cross sections and the pickoff annihilation rate 1Zeff for Ps collisions with He and Ne. For He the cross section is in agreement with previous coupled-state calculations, while comparison with experiment for both atoms highlights discrepancies between various sets of measured data. In contrast, the calculated 1Zeff (0.13 and 0.26 for He and Ne, respectively) are in excellent agreement with the measured values.

  11. Obituary: Alexander Dalgarno (1928 - 2015)

    NASA Astrophysics Data System (ADS)

    Hartquist, Tom; Babb, James F. Babb; Loeb, Avi

    Alex Dalgarno's major contributions to the understanding of fundamental atomic and molecular processes enabled him to develop diagnostics of the physical conditions of atmospheres and astrophysical sources and to elucidate the roles of such processes in controlling those environments. He greatly influenced the research of physicists, chemists, atmospheric scientists, and astronomers, leading Sir David Bates to write, "There is no greater figure than Alex in the history of atomic physics and its applications." Alex was born and grew up in London. As a child, he enjoyed mathematical puzzles and did well at sports. He was invited to try out for the Tottenham Hotspur soccer team, but his professional sporting career ended due to an injury, which did not prevent Alex playing tennis and squash into his ninth decade. In 1945 Alex began to study Mathematics at University College London (UCL). In 1947 Sir Harrie Massey invited him to work for a PhD in Physics and suggested that Alex investigate collisions of metastable helium atoms in helium gas to determine the cross sections for excitation transfer. Richard Buckingham was Alex's immediate supervisor. After completing his graduate study in 1951, Alex became a member of staff in Applied Mathematics at the Queen's University of Belfast (QUB). He served as the Director of the Computational Laboratory after a 1954 visit to MIT, which had an electronic computer, led Alex to persuade colleagues that QUB needed one. In 1957, the poet Philip Larkin was the best man at the marriage of Alex to Barbara Kane. They had four children, Fergus, Penelope, Piers, and Rebecca, but the marriage dissolved after ten years. Alex's important work during the 1950s on the quantitative evaluation of long-range interactions underpinned his collaborations on precise scattering calculations relevant to ultra-cold collisions and the formation of atomic Bose-Einstein condensates over four decades later. He investigated the theory of atomic and molecular collisions and calculated charge transfer cross sections. Some of these proved later to be important for forming the spectra of diffuse astronomical matter surrounding high mass stars and 100 million solar mass black holes at the centers of active galaxies. In the early 1950s David Bates stimulated Alex's interest in the study of quantum processes occurring in the upper terrestrial atmosphere. Together they considered the sources of the nightglow and dayglow features and concluded that the altitudes previously inferred for them from observations were up to several hundred kilometers too large. Experiments carried on V2 rockets, like those seen by Alex in wartime London, proved him and David to be right. Alex felt that though many theorists believe that "physics is embodied in its equations," it is instead "to be found in the solutions to the equations." He was a master at developing and applying methods that simplified calculations leading to reliable solutions. Exploiting the contemporary advances in electronic computation, by the 1960s Alex and his colleagues were able to address atomic and molecular processes of increasing complexity. Their development and early applications of the S-matrix theory of molecular rotational excitation by particle impact triggered major advances in molecular physics and theoretical chemistry and in the understanding of processes important in many environments, including a wide variety of astrophysical sources. In 1967 Alex became a professor in the Harvard Department of Astronomy and a member of the staff of the Smithsonian Astrophysical Observatory. He was a team member for several Atmosphere Explorer satellite missions, which elucidated the roles of atoms and ions in the upper atmosphere and paved the way for further applications to the other planets. By 1969 Alex was publishing papers on molecular hydrogen (H2) radiative processes, including photodissociation, in which the foundations of molecular astrophysics began to emerge. H2 is the most abundant astrophysical molecule and the main constituent of the regions where stars form. Interstellar H2 was first detected directly in the following year, and data for interstellar H2 began to become abundant in 1973. Alex was well prepared and led efforts to interpret these data, from which he was able to infer the physical properties of diffuse interstellar molecular clouds. At nearly the same time he was involved in work on the ionization and energy deposition in H2 by nearly relativistic and relativistic particles called cosmic rays. The work has relevance to emission in the atmospheres of the giant planets, as well as for conditions in interstellar molecular clouds. Cosmic ray induced ionization initiates much of the basic chemistry in star forming regions, and the emissions of the product molecules control the temperatures and allow the diagnosis of the physical conditions and dynamics of the stellar nurseries. For more than four decades Alex elucidated the chemical networks governing the molecular abundances in a wide variety of astrophysical sources including star forming regions, supernova ejecta, the pregalactic universe, and extreme environments like those in the vicinities of X-ray sources powered by accretion onto black holes. The refinement of the models led to calculations predicting the existence of subsequently discovered negative ions in giant molecular clouds. One of his astrophysical interests that intrigued him late in his career was the emission of soft X-rays by comets and in the heliosphere due to charge transfer with solar wind particles, and he also worked on related processes occurring in the atmospheres of the giant planets. Alex remained very active in fundamental atomic and molecular physics, as well as for its applications to astrophysics and to terrestrial and extraterrestrial planetary atmospheres. Ultra-cold collisions and ultra-cold chemistry were major interests for Alex for much of the latest phase of his career, most recently with pioneering work on atom-molecule collisions. In the early 1980s Alex had concerns about the future of atomic, molecular, and optical (AMO) physics in the United States, where it was inadequately funded and somewhat out of fashion in many of the physics departments providing most of the physicists who became university faculty. Alex played a key role in efforts to address this issue and led a proposal to the National Science Foundation that resulted in the founding on 1 November 1988 of the Institute of Theoretical Atomic and Molecular Physics (ITAMP) at the Harvard-Smithsonian Center for Astrophysics. Alex served for five years as the first ITAMP director. A number of the former ITAMP students and postdoctoral researchers have become leading AMO physicists, and its visitor program and workshops have led to the identification and stimulation of the leading areas of AMO physics. Alex was a Fellow of the Royal Society, a member of the National Academy of Sciences, and a member (Honorary) of the Royal Irish Academy. He received many medals, including the Benjamin Franklin Medal in Physics, the Royal Society's Hughes Medal, the Royal Astronomical Society's Gold Medal, the American Geophysical Society's Fleming Medal, and the Royal Society of Chemistry's Spiers Medal. He served as the editor of the Astrophysical Journal Letters for nearly thirty years starting in 1973, as the Chair of the Harvard Department of Astronomy from 1971 to 1976, and as the Acting Director of Harvard College Observatory and then the Acting Director of the Harvard-Smithsonian Center for Astrophysics from 1971 to 1973 during a critical period of its existence. Alex was a gifted mentor who spoke and wrote with pride of his former students and postdoctoral researchers. He was able to match projects very well with the abilities of the students. He made availability to students a special priority, and despite his supply of problems would encourage students as they developed their own. Alex was very supportive of junior scientists as they developed their careers, and in addition to writing many letters of recommendation he made many visits to colleagues as they were establishing themselves elsewhere. Furthermore, Alex very graciously hosted a number of his former students when they visited. He combined quiet modesty with a confidence that reassured others, and his humor was dry, interactive, and friendly. Alex passed away peacefully on 9 April 2015 in Cambridge, Massachusetts in the company of Fern Creelan, who was his partner for 30 years.

  12. Classical theory of atomic collisions - The first hundred years

    NASA Astrophysics Data System (ADS)

    Grujić, Petar V.

    2012-05-01

    Classical calculations of the atomic processes started in 1911 with famous Rutherford's evaluation of the differential cross section for α particles scattered on foil atoms [1]. The success of these calculations was soon overshadowed by the rise of Quantum Mechanics in 1925 and its triumphal success in describing processes at the atomic and subatomic levels. It was generally recognized that the classical approach should be inadequate and it was neglected until 1953, when the famous paper by Gregory Wannier appeared, in which the threshold law for the single ionization cross section behaviour by electron impact was derived. All later calculations and experimental studies confirmed the law derived by purely classical theory. The next step was taken by Ian Percival and collaborators in 60s, who developed a general classical three-body computer code, which was used by many researchers in evaluating various atomic processes like ionization, excitation, detachment, dissociation, etc. Another approach was pursued by Michal Gryzinski from Warsaw, who started a far reaching programme for treating atomic particles and processes as purely classical objects [2]. Though often criticized for overestimating the domain of the classical theory, results of his group were able to match many experimental data. Belgrade group was pursuing the classical approach using both analytical and numerical calculations, studying a number of atomic collisions, in particular near-threshold processes. Riga group, lead by Modris Gailitis [3], contributed considerably to the field, as it was done by Valentin Ostrovsky and coworkers from Sanct Petersbourg, who developed powerful analytical methods within purely classical mechanics [4]. We shall make an overview of these approaches and show some of the remarkable results, which were subsequently confirmed by semiclassical and quantum mechanical calculations, as well as by the experimental evidence. Finally we discuss the theoretical and epistemological background of the classical calculations and explain why these turned out so successful, despite the essentially quantum nature of the atomic and subatomic systems.

  13. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    ERIC Educational Resources Information Center

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  14. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  15. Physical Processes at Turnoff

    NASA Astrophysics Data System (ADS)

    Michaud, Georges

    Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars.

  16. Physical Processes at Turnoff

    NASA Astrophysics Data System (ADS)

    Michaud, Georges

    Stellar evolution models taking into account atomic diffusion including radiative accelerations of 28 species have been calculated for Pop II stars of 0.5 to 1.2 solar mass with [Fe/H] from -4.31 to -0.71. Overabundances are expected in some turnoff stars with effective temperatures larger than 5900 K. They depend strongly on the metallicity of the cluster. At the metallicity of M92 they reach a factor of 10 for many species at 12 Gyr but a factor of at most 2 at 13.5 Gyr. Series of models were also calculated with turbulence to determine to what extent turbulence reduces predicted abundance anomalies. The level of abundance anomalies observed in turnoff stars may then determine a level of turbulence. Even in the presence of turbulence however allowance for diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. For M 92 an age of 13.5 Gyr is determined which is about 1.5 Gyr younger than obtained in the absence of diffusion. In clusters atomic diffusion is now known to play a role in white dwarfs HB stars for age determination and for abundance anomalies in some turnoff stars

  17. Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Qiang; Xue, Ying; Tian, Zhi-Yue; Mo, Jing-Jing; Qiu, Nian-Xiang; Chu, Wei; Xie, He-Ping

    2013-11-01

    Graphene doped by nitrogen (N) and/or boron (B) is used to represent the surface models of coal with the structural heterogeneity. Through the density functional theory (DFT) calculations, the interactions between coalbed methane (CBM) and coal surfaces have been investigated. Several adsorption sites and orientations of methane (CH4) on graphenes were systematically considered. Our calculations predicted adsorption energies of CH4 on graphenes of up to -0.179 eV, with the strongest binding mode in which three hydrogen atoms of CH4 direct to graphene surface, observed for N-doped graphene, compared to the perfect (-0.154 eV), B-doped (-0.150 eV), and NB-doped graphenes (-0.170 eV). Doping N in graphene increases the adsorption energies of CH4, but slightly reduced binding is found when graphene is doped by B. Our results indicate that all of graphenes act as the role of a weak electron acceptor with respect to CH4. The interactions between CH4 and graphenes are the physical adsorption and slightly depend upon the adsorption sites on graphenes and the orientations of methane as well as the electronegativity of dopant atoms in graphene.

  18. Physics with Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  19. Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Yousefi, Mohammad; Meskinfam, Masoumeh

    2012-06-01

    The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers.

  20. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  1. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  2. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Braams, Bastiaan J.; Bowman, Joel M.; Carter, Stuart; Tew, David P.

    2008-06-01

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcal/mol, in excellent agreement with the reported ab initio value. Model one-dimensional and ``exact'' full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased ``fixed-node'' diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm-1 in Cartesian coordinates and 22.6 cm-1 in normal coordinates, with an uncertainty of 2-3 cm-1. This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm-1. The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm-1. These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm-1, and agree well with the experimental values of 21.6 and 2.9 cm-1 for the H and D transfer, respectively.

  3. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.

    PubMed

    Wang, Yimin; Braams, Bastiaan J; Bowman, Joel M; Carter, Stuart; Tew, David P

    2008-06-14

    Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.

  4. Atomic Data Needs for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; White, Nicholas E. (Technical Monitor)

    1999-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on Atomic Data Needs for X-ray Astronomy which was held at NASA's Goddard Space Flight Center on December 16-1 7 1999. The idea of hosting such a workshop emerged from an imminent need to update and complete current atomic datasets in anticipation of a new era of high quality X-ray spectra starting with the launching of Chandra and XMM-Newton observatories. At first, our vision of the workshop was of a short and limited attendance event, given the specialization of the topic. But it, was soon realized, from the response to the first workshop announcement, that the topic was of much interest, to researchers working in X-ray spectra (physicists and astronomers). As a result, the workshop grew to approximately 120 participants from several countries. The kind of atomic data that interests us are those parameters needed for analysis and modeling of spectra shortward of about about 100 A and relevant to ionic species of astronomical interest. The physical mechanisms of interest in the formation of spectra include photoionization. collisional ionization, recombination (radiative and dielectronic). collisional excitation (by electrons and protons). and radiative deexcitation. Unique to X-ray spectroscopy are the ionization and excitation processes from inner-closed shells. in addition to the challenges in interpret,ing the medium resolution (epsilon/delta epsilon is about 0.05 - 0.1) data obtained by current X-ray astronomy experiments. Line wavelengths are of interest too, particularly owing to the high resolution spectra from the new experiments. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters. Spectra Modeling, and Atomic Databases. One comforting finding from the work shop is that the enthusiasm felt by X-ray astronomers about the new observational missions seems to be shared by theoretical and experimental physicists. Talks were presented about several exciting new projects and experimental and theoretical techniques devoted to X-ray spectroscopy. Simultaneously, several new tools for spectral analysis and modeling have recently been developed, together with improved atomic databases. These proceeding are expected to be of interests to producers and users of atomic data. Moreover. the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  5. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    PubMed

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  6. Proximity-induced magnetism in transition-metal substituted graphene

    PubMed Central

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-01-01

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646

  7. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    NASA Astrophysics Data System (ADS)

    Maiorova, A. I.; Vasil'ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  8. Five- and six-electron harmonium atoms: Highly accurate electronic properties and their application to benchmarking of approximate 1-matrix functionals

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Strasburger, Krzysztof

    2018-04-01

    Electronic properties of several states of the five- and six-electron harmonium atoms are obtained from large-scale calculations employing explicitly correlated basis functions. The high accuracy of the computed energies (including their components), natural spinorbitals, and their occupation numbers makes them suitable for testing, calibration, and benchmarking of approximate formalisms of quantum chemistry and solid state physics. In the case of the five-electron species, the availability of the new data for a wide range of the confinement strengths ω allows for confirmation and generalization of the previously reached conclusions concerning the performance of the presently known approximations for the electron-electron repulsion energy in terms of the 1-matrix that are at heart of the density matrix functional theory (DMFT). On the other hand, the properties of the three low-lying states of the six-electron harmonium atom, computed at ω = 500 and ω = 1000, uncover deficiencies of the 1-matrix functionals not revealed by previous studies. In general, the previously published assessment of the present implementations of DMFT being of poor accuracy is found to hold. Extending the present work to harmonically confined systems with even more electrons is most likely counterproductive as the steep increase in computational cost required to maintain sufficient accuracy of the calculated properties is not expected to be matched by the benefits of additional information gathered from the resulting benchmarks.

  9. The Hartree product and the description of local and global quantities in atomic systems: A study within Kohn-Sham theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-01-15

    The Hartree product is analyzed in the context of Kohn-Sham theory. The differential equations that emerge from this theory are solved with the optimized effective potential using the Krieger, Li, and Iafrate approximation, in order to get a local potential as required by the ordinary Kohn-Sham procedure. Because the diagonal terms of the exact exchange energy are included in Hartree theory, it is self-interaction free and the exchange potential has the proper asymptotic behavior. We have examined the impact of this correct asymptotic behavior on local and global properties using this simple model to approximate the exchange energy. Local quantities,more » such as the exchange potential and the average local electrostatic potential are used to examine whether the shell structure in an atom is revealed by this theory. Global quantities, such as the highest occupied orbital energy (related to the ionization potential) and the exchange energy are also calculated. These quantities are contrasted with those obtained from calculations with the local density approximation, the generalized gradient approximation, and the self-interaction correction approach proposed by Perdew and Zunger. We conclude that the main characteristics in an atomic system are preserved with the Hartree theory. In particular, the behavior of the exchange potential obtained in this theory is similar to those obtained within other Kohn-Sham approximations. (c) 2000 American Institute of Physics.« less

  10. Determination of a brass alloy concentration composition using calibration-free laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achouri, M.; Baba-Hamed, T.; Beldjilali, S. A., E-mail: sidahmed.beldjilali@univ-usto.dz

    2015-09-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique that can provide qualitative and quantitative measurements of the characteristics of irradiated metals. In the present work, we have calculated the parameters of the plasma produced from a brass alloy sample under the action of a pulsed Nd: YAG laser operating at 1064 nm. The emission lines of copper atoms (Cu I), zinc atoms (Zn I), and lead atoms (Pb I), which are elements of a brass alloy composition, were used to investigate the parameters of the brass plasma. The spectral profiles of Cu, Zn, and Pb lines have been used to extractmore » the electron temperature and density of the brass alloy plasma. The characteristics of Cu, Zn, and Pb were determined quantatively by the calibration-free LIBS (CF-LIBS) method considering for accurate analysis that the laser-induced ablated plasma is optically thin in local thermodynamic equilibrium conditions and the plasma ablation is stoichiometric. The Boltzmann plot method was used to evaluate the plasma temperature, and the Stark broadened profiles were used to determine the electron density. An algorithm based on the experimentally measured values of the intensity of spectral lines and the basic laws of plasma physics was developed for the determination of Cu, Zn, and Pb concentrations in the brass sample. The concentrations C{sub CF-LIBS} calculated by CF-LIBS and the certified concentrations C{sub certified} were very close.« less

  11. GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.

    GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.

  12. A Physics Finale.

    ERIC Educational Resources Information Center

    Haynes, Gail E.

    1991-01-01

    A third-semester physics course that covers the topics of atomic physics, the theory of relativity, and nuclear energy is described. Activities that include the phenomenon of radioactivity, field trips to a nuclear power plant, a simulation of a chain reaction, and comparing the size of atomic particles are presented. (KR)

  13. Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction

    NASA Astrophysics Data System (ADS)

    Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg

    2018-03-01

    Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .

  14. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  15. Machine learning properties of materials and molecules with entropy-regularized kernels

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip

    Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).

  16. Rhodium clustering process on defective (8,0) SWCNT: Analysis of chemical and physical properties using density functional theory

    NASA Astrophysics Data System (ADS)

    Ambrusi, Ruben E.; Luna, C. Romina; Sandoval, Mario G.; Bechthold, Pablo; Pronsato, M. Estela; Juan, Alfredo

    2017-12-01

    The Spin-polarized density functional theory is used to study the effect of a single vacancy in a (8,0) single-walled carbon nanotube (SWCNT) on the Rh clustering process. The vacancy is considered oxygenated and non-oxygenated and, in each case, different Rhn cluster sizes (n = 1-4) are taken into account. For the analysis of these systems some physical and chemical properties are calculated, such as binding energy (Eb), work function (WF), magnetic moment, charge transfer, bond length, band gap (Eg), and density of state (DOS). From this analysis it can be concluded that: a single Rh atom and Rh2 dimer are adsorbed on vacancy without oxygen, whereas Rh3 and Rh4 clusters prefer to be adsorbed on oxygenated vacancy. In all cases, Rh adsorption induces a magnetic moment. When the Rh atom and Rh2 dimer are bonded to the defective SWCNT, it has been found that they show a semiconductor behavior that could be interesting to use in the spintronic area. In the case of Rh3 and Rh4 clusters our results show a metallic behavior suggesting that these systems are good candidates for nanotube contact.

  17. Nuclear chemistry. Annual report, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.

    1975-07-01

    The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

  18. Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto

    2017-06-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  19. Using Density Functional Theory (DFT) for the Calculation of Atomization Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.

  20. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, E.; Young, P. R.

    2009-12-20

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve themore » accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.« less

  1. Interconfigurational energies in transition-metal atoms using gradient-corrected density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1991-03-15

    The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less

  2. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz’s equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com

    L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}

  3. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles

    PubMed Central

    McMahon, Stephen J.; Hyland, Wendy B.; Muir, Mark F.; Coulter, Jonathan A.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Dickson, Glenn R.; Hounsell, Alan R.; O'Sullivan, Joe M.; Prise, Kevin M.; Hirst, David G.; Currell, Fred J.

    2011-01-01

    Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis. PMID:22355537

  4. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  5. Ab initio simulations of subatomic resolution images in noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Minjung; Chelikowsky, James R.

    2015-03-01

    Direct imaging of polycyclic aromatic molecules with a subatomic resolution has recently been achieved with noncontact atomic force microscopy (nc-AFM). Specifically, nc-AFM employing a CO functionalized tip has provided details of the chemical bond in aromatic molecules, including the discrimination of bond order. However, the underlying physics of such high resolution imaging remains problematic. By employing new, efficient algorithms based on real space pseudopotentials, we calculate the forces between the nc-AFM tip and specimen. We simulate images of planar organic molecules with two different approaches: 1) with a chemically inert tip and 2) with a CO functionalized tip. We find dramatic differences in the resulting images, which are consistent with recent experimental work. Our work is supported by the DOE under DOE/DE-FG02-06ER46286 and by the Welch Foundation under Grant F-1837. Computational resources were provided by NERSC and XSEDE.

  6. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chih-Hsien; Hsieh, Wen-Feng; Institute of Electro-Optical Science and Engineering, National Cheng Kung University, 1 Dahsueh Rd., Tainan 701, Taiwan

    2011-07-15

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoidingmore » the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.« less

  7. Role of codeposited impurities during growth. I. Explaining distinctive experimental morphology on Cu(0 0 1)

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi Bh.; Sathiyanarayanan, Rajesh; Pimpinelli, Alberto; Einstein, T. L.

    2011-01-01

    A unified explanation of the physics underlying all the distinctive features of the growth instabilities observed on Cu vicinals has long eluded theorists. Recently, kinetic Monte Carlo studies showed that codeposition of impurities during growth could account for the key distinctive experimental observations [Hamouda , Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.77.245430 77, 245430 (2008)]. To identify the responsible impurity atom, we compute the nearest-neighbor binding energies (ENN) and terrace diffusion barriers (Ed) for several candidate impurity atoms on Cu(0 0 1) using DFT-based VASP. Our calculations show that codeposition (with Cu) of midtransition elements, such as Fe, Mn, and W, could—in conjunction with substantial Ehrlich-Schwoebel barriers—cause the observed instabilities; when the experimental setup is considered, W emerges to be the most likely candidate. We discuss the role of impurities in nanostructuring of surfaces.

  8. A new fundamental type of conformational isomerism

    NASA Astrophysics Data System (ADS)

    Canfield, Peter J.; Blake, Iain M.; Cai, Zheng-Li; Luck, Ian J.; Krausz, Elmars; Kobayashi, Rika; Reimers, Jeffrey R.; Crossley, Maxwell J.

    2018-06-01

    Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term `akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.

  9. Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2.

    PubMed

    Nguyen, Linh-Nam; Lan, Yann-Wen; Chen, Jyun-Hong; Chang, Tay-Rong; Zhong, Yuan-Liang; Jeng, Horng-Tay; Li, Lain-Jong; Chen, Chii-Dong

    2014-05-14

    Two-dimensional crystals can be assembled into three-dimensional stacks with atomic layer precision, which have already shown plenty of fascinating physical phenomena and been used for prototype vertical-field-effect-transistors.1,2 In this work, interlayer electron tunneling in stacked high-quality crystalline MoS2 films were investigated. A trilayered MoS2 film was sandwiched between top and bottom electrodes with an adjacent bottom gate, and the discrete energy levels in each layer could be tuned by bias and gate voltages. When the discrete energy levels aligned, a resonant tunneling peak appeared in the current-voltage characteristics. The peak position shifts linearly with perpendicular magnetic field, indicating formation of Landau levels. From this linear dependence, the effective mass and Fermi velocity are determined and are confirmed by electronic structure calculations. These fundamental parameters are useful for exploitation of its unique properties.

  10. Developmant of a Reparametrized Semi-Empirical Force Field to Compute the Rovibrational Structure of Large PAHs

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan

    The Spitzer Space Telescope observation of spectra most likely attributable to diverse and abundant populations of polycyclic aromatic hydrocarbons (PAHs) in space has led to tremendous interest in these molecules as tracers of the physical conditions in different astrophysical regions. A major challenge in using PAHs as molecular tracers is the complexity of the spectral features in the 3-20 μm region. The large number and vibrational similarity of the putative PAHs responsible for these spectra necessitate determination for the most accurate basis spectra possible for comparison. It is essential that these spectra be established in order for the regions explored with the newest generation of observatories such as SOFIA and JWST to be understood. Current strategies to develop these spectra for individual PAHs involve either matrixisolation IR measurements or quantum chemical calculations of harmonic vibrational frequencies. These strategies have been employed to develop the successful PAH IR spectral database as a repository of basis functions used to fit astronomically observed spectra, but they are limited in important ways. Both techniques provide an adequate description of the molecules in their electronic, vibrational, and rotational ground state, but these conditions do not represent energetically hot regions for PAHs near strong radiation fields of stars and are not direct representations of the gas phase. Some non-negligible matrix effects are known in condensed-phase studies, and the inclusion of anharmonicity in quantum chemical calculations is essential to generate physically-relevant results especially for hot bands. While scaling factors in either case can be useful, they are agnostic to the system studied and are not robustly predictive. One strategy that has emerged to calculate the molecular vibrational structure uses vibrational perturbation theory along with a quartic force field (QFF) to account for higher-order derivatives of the potential energy surface. QFFs can regularly predict the fundamental vibrational frequencies to within 5 cm-1 of experimentally measured values. This level of accuracy represents a reduction in discrepancies by an order of magnitude compared with harmonic frequencies calculated with density functional theory (DFT). The major limitation of the QFF strategy is that the level of electronic-structure theory required to develop a predictive force field is prohibitively time consuming for molecular systems larger than 5 atoms. Recent advances in QFF techniques utilizing informed DFT approaches have pushed the size of the systems studied up to 24 heavy atoms, but relevant PAHs can have up to hundreds of atoms. We have developed alternative electronic-structure methods that maintain the accuracy of the coupled-cluster calculations extrapolated to the complete basis set limit with relativistic and core correlation corrections applied: the CcCR QFF. These alternative methods are based on simplifications of Hartree—Fock theory in which the computationally intensive two-electron integrals are approximated using empirical parameters. These methods reduce computational time to orders of magnitude less than the CcCR calculations. We have derived a set of optimized empirical parameters to minimize the difference molecular ions of astrochemical significance. We have shown that it is possible to derive a set of empirical parameters that will produce RMS energy differences of less than 2 cm- 1 for our test systems. We are proposing to adopt this reparameterization strategy and some of the lessons learned from the informed DFT studies to create a semi-empirical method whose tremendous speed will allow us to study the rovibrational structure of large PAHs with up to 100s of carbon atoms.

  11. Ab initio investigation of the structural and electronic properties of the MgFBrxCl1-x quaternary alloy

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Alidoosti, Mohammad

    2014-11-01

    In the present work, we have performed first principles calculations to study the structural and electronic properties of the MgFBrxCl1-x quaternary alloys using the pseudo-potential plane wave approach within the framework of density functional theory. By using the optimized initial parameters, we have obtained the physical quantities such as equilibrium lattice constants a and c, cohesive energy and band gap and then fitted the results by a quadratic expression for all x compositions. The results of bulk modulus exhibit nearly linear concentration dependence (LCD) but other quantities show nonlinear dependence. Finally, we have calculated the total and angular momentum decomposed (partial) density of states and determined the contributions of different orbitals of each atoms.

  12. Electron density diagnositc line ratios from the n = 3 lines of O v

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widing, K.G.; Doyle, J.G.; Dufton, P.L.

    New atomic physic calculations are presented for electron excitation rates for transitions between the n = 2 and n = 3 levels of O v. These are used to calculate theoretical line intensity ratios for the 192 A, 215 A, 220 A and 248 A lines of O v. These line intensity ratios are electron density sensitive and provide valuable diagnostics at T/sub e/approx.2 x 10/sup 5/ K for samll impulsive flare events in which the transition zone ions are enhanced relative to the coronal ions. Two flares observed by NRL spectroheliograph on Skylab, on 1973 December 22 and 1974more » January 21, are studied, with electron densities of approximately 3 x 10/sup 11/ cm/sup -3/ being deduced.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badnell, N. R.; Ballance, C. P.

    Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei, etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe{sup 2+}, which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This ismore » in contradiction to the finding of Bautista et al., who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.« less

  14. Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2015-10-21

    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A–H to make predictions of the dynamical properties for another molecule related to A–H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A–X. We assume that the effect of the −H →−X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can bemore » used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C{sub 6}H{sub 5}CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C{sub 6}H{sub 6} collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C{sub 6}H{sub 5}CN with He.« less

  15. Develop and Test a Solvent Accessible Surface Area-Based Model in Conformational Entropy Calculations

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2012-01-01

    It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (Molecular Mechanics-Poisson Boltzmann Surface Area) and MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parameterized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For the convenience, TS, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for post-entropy calculations): the mean correlation coefficient squares (R2) was 0.56. As to the 20 complexes, the TS changes upon binding, TΔS, were also calculated and the mean R2 was 0.67 between NMA and WSAS. In the second test, TS were calculated for 12 proteins decoy sets (each set has 31 conformations) generated by the Rosetta software package. Again, good correlations were achieved for all decoy sets: the mean, maximum, minimum of R2 were 0.73, 0.89 and 0.55, respectively. Finally, binding free energies were calculated for 6 protein systems (the numbers of inhibitors range from 4 to 18) using four scoring functions. Compared to the measured binding free energies, the mean R2 of the six protein systems were 0.51, 0.47, 0.40 and 0.43 for MM-GBSA-WSAS, MM-GBSA-NMA, MM-PBSA-WSAS and MM-PBSA-NMA, respectively. The mean RMS errors of prediction were 1.19, 1.24, 1.41, 1.29 kcal/mol for the four scoring functions, correspondingly. Therefore, the two scoring functions employing WSAS achieved a comparable prediction performance to that of the scoring functions using NMA. It should be emphasized that no minimization was performed prior to the WSAS calculation in the last test. Although WSAS is not as rigorous as physical models such as quasi-harmonic analysis and thermodynamic integration (TI), it is computationally very efficient as only surface area calculation is involved and no structural minimization is required. Moreover, WSAS has achieved a comparable performance to normal mode analysis. We expect that this model could find its applications in the fields like high throughput screening (HTS), molecular docking and rational protein design. In those fields, efficiency is crucial since there are a large number of compounds, docking poses or protein models to be evaluated. A list of acronyms and abbreviations used in this work is provided for quick reference. PMID:22497310

  16. First-principles analysis of structural and opto-electronic properties of indium tin oxide

    NASA Astrophysics Data System (ADS)

    Tripathi, Madhvendra Nath; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-05-01

    Density functional theory (DFT) and DFT + U (DFT with on-site Coulomb repulsion corrections) calculations have been carried out to study the structural and opto-electronic properties of indium tin oxide (ITO) for both the oxidized and reduced environment conditions. Some of the results obtained by DFT calculations differ from the experimental observations, such as uncertain indication for the site preference of tin atom to replace indium atom at b-site or d-site, underestimation of local inward relaxation in the first oxygen polyhedra around tin atom, and also the improper estimation of electronic density of states and hence resulting in an inappropriate optical spectra of ITO. These discrepancies of theoretical outcomes with experimental observations in ITO arise mainly due to the underestimation of the cationic 4d levels within standard DFT calculations. Henceforth, the inclusion of on-site corrections within DFT + U framework significantly modifies the theoretical results in better agreement to the experimental observations. Within this framework, our calculations show that the indium b-site is preferential site over d-site for tin atom substitution in indium oxide under both the oxidized and reduced conditions. Moreover, the calculated average inward relaxation value of 0.16 Å around tin atom is in good agreement with the experimental value of 0.18 Å. Furthermore, DFT + U significantly modify the electronic structure and consequently induce modifications in the calculated optical spectra of ITO.

  17. Long-range dispersion interactions between Li and rare-gas atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Deng-Hong; Xu, Ya-Bin; Jiang, Jun; Jiang, Li; Xie, Lu-You; Dong, Chen-Zhong

    2017-06-01

    The energy levels, oscillator strength and dipole scalar polarizabilities of Li atoms are calculated by using the relativistic semiempirical-core-potential method (RCICP). The dispersion coefficients C6 between ground 2s1/2 2p1/2,2p3/2 states of Li atom and the ground state of rare gas atoms (Ne, Ar, Kr, Xe) are calculated in JJ coupled states, in which the spin-orbital interactions are included. Present results are in good agreement with other available results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  18. HPAM: Hirshfeld Partitioned Atomic Multipoles

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2011-01-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274

  19. Calculating Time-Integral Quantities in Depletion Calculations

    DOE PAGES

    Isotalo, Aarno

    2016-06-02

    A method referred to as tally nuclides is presented for accurately and efficiently calculating the time-step averages and integrals of any quantities that are weighted sums of atomic densities with constant weights during the step. The method allows all such quantities to be calculated simultaneously as a part of a single depletion solution with existing depletion algorithms. Some examples of the results that can be extracted include step-average atomic densities and macroscopic reaction rates, the total number of fissions during the step, and the amount of energy released during the step. Furthermore, the method should be applicable with several depletionmore » algorithms, and the integrals or averages should be calculated with an accuracy comparable to that reached by the selected algorithm for end-of-step atomic densities. The accuracy of the method is demonstrated in depletion calculations using the Chebyshev rational approximation method. Here, we demonstrate how the ability to calculate energy release in depletion calculations can be used to determine the accuracy of the normalization in a constant-power burnup calculation during the calculation without a need for a reference solution.« less

  20. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  1. Density functional theory calculations establish the experimental evidence of the DX center atomic structure in CdTe.

    PubMed

    Lany, Stephan; Wolf, Herbert; Wichert, Thomas

    2004-06-04

    The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.

  2. Influence Of Inelastic Ridberg Atom-Atom Collisional Process On Kinetic And Optical Properties Of Low-Temperature Laboratory And Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatovic, Lj. M.

    2010-07-01

    Elementary processes in plasma phenomena traditionally attract physicist`s attention. The channel of charged-particle formation in Rydberg Atom-Atom thermal and subthermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI), atomic ions - penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H- , H+, H2, He, He+ ), Hydrogen-like alkali-metal Litium (Li, Li+, Li-) and combinations (HeH+ , LiH- , LiH+). There is a wide range of plasma parameters in which the Rydberg Atoms of the elements called above make the dominant construction to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The first series of quantitative measurements of the rate constants for Rydberg Atoms starts in 1978 (Devdariani, Klyucharev et al.). The method of AI and PI calculations, so-called "dipole resonant" mechanism proposed in 1971 (Smirnov, Mihaylov) was used in semiclassical (Mihailov and Janev 1981) and quantum mechanical theories (Duman, Shmatov, 1980). The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg Atom - Atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modeled as diffusion in the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum (Bezuglov, Borodin, Klyucharev et al. 1997). Such approach makes it possible to operate on efficiently of inelastic collisional processes and sometimes to operate on time of Rydberg Atoms life. This may lead to anomalies of Rydberg Atoms spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg Atom closed to the primary selected one. The Rydberg Atoms ionisaton theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.

  3. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    DOE PAGES

    Zhou, Fei; Nielson, Weston; Xia, Yi; ...

    2014-10-27

    First-principles prediction of lattice thermal conductivity K L of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu 12Sb 4S 13, an earth-abundant thermoelectric with strong phononphonon interactions thatmore » limit the room-temperature K L to values near the amorphous limit.« less

  4. Protecting clean critical points by local disorder correlations

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Laflorencie, Nicolas; Vieira, André.; Vojta, Thomas

    2011-03-01

    We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  5. Mg line formation in late-type stellar atmospheres. I. The model atom

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.; Lind, K.; Belyaev, A. K.; Spielfiedel, A.; Guitou, M.; Feautrier, N.

    2015-07-01

    Context. Magnesium is an element of significant astrophysical importance, often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from local thermodynamic equilibrium (LTE). The importance of Mg , together with the unique range of spectral features in late-type stars probing different parts of the atom, as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. Previous non-LTE modelling of spectral line formation has, however, been subject to uncertainties due to lack of accurate data for inelastic collisions with electrons and hydrogen atoms. Aims: In this paper we build and test a Mg model atom for spectral line formation in late-type stars with new or recent inelastic collision data and no associated free parameters. We aim to reduce these uncertainties and thereby improve the accuracy of Mg non-LTE modelling in late-type stars. Methods: For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Hydrogen collision data, including charge transfer processes, were taken from recent calculations by some of us. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. This model was then employed in the context of standard non-LTE modelling in 1D (including average 3D) model atmospheres in a small set of stellar atmosphere models. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. Results: The modelled spectra agree well with observed spectra from benchmark stars, showing much better agreement with line profile shapes than with LTE modelling. The line-to-line scatter in the derived abundances shows some improvements compared to LTE (where the cores of strong lines must often be ignored), particularly when coupled with averaged 3D models. The observed Mg emission features at 7 and 12 μm in the spectra of the Sun and Arcturus, which are sensitive to the collision data, are reasonably well reproduced. Charge transfer with H is generally important as a thermalising mechanism in dwarfs, but less so in giants. Excitation due to collisions with H is found to be quite important in both giants and dwarfs. The R-matrix calculations for electron collisions also lead to significant differences compared to when approximate formulas are employed. The modelling predicts non-LTE abundance corrections ΔA(Mg )NLTE-LTE in dwarfs, both solar metallicity and metal-poor, to be very small (of order 0.01 dex), even smaller than found in previous studies. In giants, corrections vary greatly between lines, but can be as large as 0.4 dex. Conclusions: Our results emphasise the need for accurate data of Mg collisions with both electrons and H atoms for precise non-LTE predictions of stellar spectra, but demonstrate that such data can be calculated and that ab initio non-LTE modelling without resort to free parameters is possible. In contrast to Li and Na, where only the introduction of charge transfer processes has led to differences with respect to earlier non-LTE modelling, the more complex case of Mg finds changes due to improvements in the data for collisional excitation by electrons and hydrogen atoms, as well as due to the charge transfer processes. Grids of departure coefficients and abundance corrections for a range of stellar parameters are planned for a forthcoming paper.

  6. DIFFRACTION FROM MODEL CRYSTALS

    USDA-ARS?s Scientific Manuscript database

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  7. Vibrational properties of TaW alloy using modified embedded atom method potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chand, Manesh, E-mail: maneshchand@gmail.com; Uniyal, Shweta; Joshi, Subodh

    2016-05-06

    Force-constants up to second neighbours of pure transition metal Ta and TaW alloy are determined using the modified embedded atom method (MEAM) potential. The obtained force-constants are used to calculate the phonon dispersion of pure Ta and TaW alloy. As a further application of MEAM potential, the force-constants are used to calculate the local vibrational density of states and mean square thermal displacements of pure Ta and W impurity atoms with Green’s function method. The calculated results are found to be in agreement with the experimental measurements.

  8. A Si I atomic model for NLTE spectropolarimetric diagnostics of the 10 827 Å line

    NASA Astrophysics Data System (ADS)

    Shchukina, N. G.; Sukhorukov, A. V.; Trujillo Bueno, J.

    2017-07-01

    Aims: The Si I 10 827 Å line is commonly used for spectropolarimetric diagnostics of the solar atmosphere. First, we aim at quantifying the sensitivity of the Stokes profiles of this line to non-local thermodynamic equilibrium (NLTE) effects. Second, we aim at facilitating NLTE diagnostics of the Si I 10 827 Å line. To this end, we propose the use of a relatively simple silicon model atom, which allows a fast and accurate computation of Stokes profiles. The NLTE Stokes profiles calculated using this simple model atom are very similar to those obtained via the use of a very comprehensive silicon model atom. Methods: We investigate the impact of the NLTE effects on the Si I 10 827 Å line by means of multilevel radiative transfer calculations in a three-dimensional (3D) model atmosphere taken from a state-of-the-art magneto-convection simulation with small-scale dynamo action. We calculate the emergent Stokes profiles for this line at the solar disk center and for every vertical column of the 3D snapshot model, neglecting the effects of horizontal radiative transfer. Results: We find significant departures from LTE in the Si I 10 827 Å line, not only in the intensity but also in the linearly and circularly polarized profiles. At wavelengths around 0.1 Å, where most of the Stokes Q, U, and V peaks of the Si I 10 827 Å line occur, the differences between the NLTE and LTE profiles are comparable with the Stokes amplitudes themselves. The deviations from LTE increase with increasing Stokes Q, U, and V signals. Concerning the Stokes V profiles, the NLTE effects correlate with the magnetic field strength in the layers where such circular polarization signals are formed. Conclusions: The NLTE effects should be taken into account when diagnosing the emergent Stokes I profiles as well as the Stokes Q, U, and V profiles of the Si I 10 827 Å line. The sixteen-level silicon model atom proposed here, with six radiative bound-bound transitions, is suitable to account for the physics of formation of the Si I 10 827 Å line and for modeling and inverting its Stokes profiles without assuming LTE.

  9. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  10. Studies of Highly Excited Atoms.

    DTIC Science & Technology

    1986-04-02

    R 2 o i86 Chemical Physics Laboratory " i 0. R . Abrahamson i Vice President Physical Fciences Division ri" - c. -:OP...34 - men I IN RO U TI, .. . . . . . . . . . - .... .... o .. . . . o ......... - TI R SOPA T C LLIS OWZ.... ... . 6 ... ... oo ... .... ... .... . - A...by WA =W + 1ns- 0 (3a) and R = 1’np + ’(n-l)p (3b) .* 7_7. ’ P. z Atom 2 ’b y tom1 SA-846 1-30A FIGURE 2 GEOMETRY OF THE COLLISION OF TWO ATOMS Atom I

  11. A Framework to Learn Physics from Atomically Resolved Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, L.; Maksov, A.; Pan, M.

    Here, we present a generalized framework for physics extraction, i.e., knowledge, from atomically resolved images, and show its utility by applying it to a model system of segregation of chalcogen atoms in an FeSe 0.45Te 0.55 superconductor system. We emphasize that the framework can be used for any imaging data for which a generative physical model exists. Consider that a generative physical model can produce a very large number of configurations, not all of which are observable. By applying a microscope function to a sub-set of this generated data, we form a simulated dataset on which statistics can be computed.

  12. Cluster-collision frequency. I. The long-range intercluster potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadon, A.S.; Marlow, W.H.

    1991-05-15

    In recent years, gas-borne atomic and molecular clusters have emerged as subjects of basic physical and chemical interest and are gaining recognition for their importance in numerous applications. To calculate the evolution of the mass distribution of these clusters, their thermal collision rates are required. For computing these collision rates, the long-range interaction energy between clusters is required and is the subject of this paper. Utilizing a formulation of the iterated van der Waals interaction over discrete molecules that can be shown to converge with increasing numbers of atoms to the Lifshitz--van der Waals interaction for condensed matter, we calculatemore » the interaction energy as a function of center-of-mass separation for identical pairs of clusters of 13, 33, and 55 molecules of carbon tetrachloride in icosahedral and dodecahedral configurations. Two different relative orientations are chosen for each pair of clusters, and the energies are compared with energies calculated from the standard formula for continuum matter derived by summing over pair interactions with the Hamaker constant calculated according to Lifshitz theory. The results of these calculations give long-range interaction energies that assume typical adhesion-type values at cluster contact, unlike the unbounded results for the Lifshitz-Hamaker model. The relative difference between the discrete molecular energies and the continuum energies vanishes for {ital r}{sup *}{approx}2, where {ital r}{sup *} is the center-of-mass separation distance in units of cluster diameter. For larger separations, the relative difference changes sign, showing a value of approximately 15%, with the difference diminishing for increasing-sized clusters.« less

  13. Nuclear Physics Exascale Requirements Review: An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Nuclear Physics, June 15 - 17, 2016, Gaithersburg, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph; Savage, Martin J.; Gerber, Richard

    Imagine being able to predict — with unprecedented accuracy and precision — the structure of the proton and neutron, and the forces between them, directly from the dynamics of quarks and gluons, and then using this information in calculations of the structure and reactions of atomic nuclei and of the properties of dense neutron stars (NSs). Also imagine discovering new and exotic states of matter, and new laws of nature, by being able to collect more experimental data than we dream possible today, analyzing it in real time to feed back into an experiment, and curating the data with fullmore » tracking capabilities and with fully distributed data mining capabilities. Making this vision a reality would improve basic scientific understanding, enabling us to precisely calculate, for example, the spectrum of gravity waves emitted during NS coalescence, and would have important societal applications in nuclear energy research, stockpile stewardship, and other areas. This review presents the components and characteristics of the exascale computing ecosystems necessary to realize this vision.« less

  14. Atomic structure of self-organizing iridium induced nanowires on Ge(001)

    NASA Astrophysics Data System (ADS)

    Kabanov, N. S.; Heimbuch, R.; Zandvliet, H. J. W.; Saletsky, A. M.; Klavsyuk, A. L.

    2017-05-01

    The atomic structure of self-organizing iridium (Ir) induced nanowires on Ge(001) is studied by density functional theory (DFT) calculations and variable-temperature scanning tunneling microscopy. The Ir induced nanowires are aligned in a direction perpendicular to the Ge(001) substrate dimer rows, have a width of two atoms and are completely kink-less. Density functional theory calculations show that the Ir atoms prefer to dive into the Ge(001) substrate and push up the neighboring Ge substrate atoms. The nanowires are composed of Ge atoms and not Ir atoms as previously assumed. The regions in the vicinity of the nanowires are very dynamic, even at temperatures as low as 77 K. Time-resolved scanning tunneling microscopy measurements reveal that this dynamics is caused by buckled Ge substrate dimers that flip back and forth between their two buckled configurations.

  15. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  16. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  17. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  18. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  19. PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.

    2007-09-01

    These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic, Molecular and Optical Physics. We received extensive support from the Journal of Physics: Conference Series staff; Graham Douglas, in particular, has been of tremendous help. The 7th AISAMP was very well attended and was sponsored primarily by the host Indian Institute of Technology, Madras (Chennai), the Board of Research in Nuclear Sciences, (Department of Atomic Energy, Government of India), the Department of Science and Technology, (Government of India), and the Asian Office of Aerospace Research and Development (AOARD) of the US Air Force. There was support from various quarters—each was invaluable and added to the success of the 7th AISAMP. We are very grateful to all the sponsors. It is superfluous to add that guidance and active participation from several colleagues within the host Institute was the primary source of strength for the actual organization of the conference and the multitude of arrangements for the organization came from the young graduate students at the IIT-Madras. We hope that this volume of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between various countries in the region in and around Asia, and also of course to all scientists in this field the world over. Pranawa C Deshmukh, Purushottam Chakraborty and Jim F Williams Editors Conference photograph

  20. DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka

    2014-02-01

    Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.

  1. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.

    PubMed

    Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-04-28

    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.

  2. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    PubMed

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.

  3. MEAM interatomic force calculation subroutine for LAMMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stukowski, A.

    2010-10-25

    Interatomic force and energy calculation subroutine tobe used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluates the total energy and atomic forces (energy gradient) according to cubic spine-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM).

  4. Influence of Spin-Orbit Quenching on the Solvation of Indium in Helium Droplets

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Ernst, Wolfgang E.; Hauser, Andreas W.

    2017-06-01

    Recent experimental interest of the collaborating group of M. Koch on the dynamics of electronic excitations of indium in helium droplets triggered a series of computational studies on the group 13 elements Al, Ga and In and their indecisive behavior between wetting and non wetting when placed onto superfluid helium droplets. We employ a combination of multiconfigurational self consistent field calculations (MCSCF) and multireference configuration interaction (MRCI) to calculate the diatomic potentials. Particularly interesting is the case of indium with an Ancilotto parameter λ close to the threshold value of 1.9. As shown by Reho et al. the spin-orbit splitting of metal atoms solvated in helium droplets is subject to a quenching effect. This can drastically change the solvation behavior. In this work we extend the approach presented by Reho et al. to include distance dependent spin-orbit coupling. The resulting potential surfaces are used to calculate the solvation energy of the ground state and the first excited state with orbital-free helium density functional theory. F. Ancilotto, P. B. Lerner and M. W. Cole, Journal of Low Temperature Physics, 1995, 101, 1123-1146 J. H. Reho, U. Merker, M. R. Radcliff, K. K. Lehmann and G. Scoles, The Journal of Physical Chemistry A, 2000, 104, 3620-3626

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J.E.

    A modification was made to the Kaufman method of calculating binary phase diagrams to permit calculation of intra-rare earth diagrams. Atomic volumes for all phases, real or hypothetical, are necessary to determine interaction parameters for calculation of complete diagrams. The procedures used to determine unknown atomic volumes are describes. Also, procedures are described for determining lattice stability parameters for unknown transformations. Results are presented on the calculation of intra-rare earth diagrams between both trivalent and divalent rare earths. 13 refs., 36 figs., 11 tabs.

  6. Subterranean production of neutrons, 39Ar and 21Ne: Rates and uncertainties

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Stevens, Lauren; McDonough, William F.; Mukhopadhyay, Sujoy; Peterson, R. J.

    2017-01-01

    Accurate understanding of the subsurface production rate of the radionuclide 39Ar is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, 21Ne , and 39Ar take advantage of the state-of-the-art reliable tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, 21Ne , and 39Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of 107-1010 α particles are produced in one kilogram of rock per year (order of 1-103 kg-1 s-1); the number of produced neutrons is lower by ∼ 6 orders of magnitude, 21Ne production rate drops by an additional factor of 15-20, and another one order of magnitude or more is dropped in production of 39Ar. Our calculation yields a nucleogenic 21Ne /4He production ratio of (4.6 ± 0.6) ×10-8 in Continental Crust and (4.2 ± 0.5) ×10-8 in Oceanic Crust and Depleted Mantle. Calculated 39Ar production rates span a great range from 29 ± 9 atoms kg-rock-1 yr-1 in the K-Th-U-enriched Upper Continental Crust to (2.6 ± 0.8) × 10-4 atoms kg-rock-1 yr-1 in Depleted Upper Mantle. Nucleogenic 39Ar production exceeds the cosmogenic production below ∼700 m depth and thus, affects radiometric ages of groundwater. The 39Ar chronometer, which fills in a gap between 3H and 14C , is particularly important given the need to tap deep reservoirs of ancient drinking water.

  7. Dynamical screening of the van der Waals interaction between graphene layers.

    PubMed

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  8. Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.

    PubMed

    Villaseca, S Alarcón; Loli, L N Serkovic; Ledieu, J; Fournée, V; Gille, P; Dubois, J-M; Gaudry, E

    2013-09-04

    Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is described. The preferential adsorption site is identified as a 'bridge' type site between the cluster entities exposed at the (001) surface termination. The Al-O bonding between the adsorbate and the substrate presents a covalent character, with s-p hybridization occurring between the states of the adsorbed oxygen atom and the aluminum atoms of the surface. The simulated STM image of the preferential adsorption site is in agreement with experimental observations. This work shows that oxygen adsorption generates important atomic relaxations of the topmost surface layer and that sub-surface cobalt atoms strongly influence the values of the adsorption energies. The calculated Al-O distances are in agreement with those reported in Al2O and Al2O3 oxides and for oxygen adsorption on Al(111).

  9. Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures

    NASA Astrophysics Data System (ADS)

    Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.

    2011-12-01

    The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.

  10. Semiclassical approach to atomic decoherence by gravitational waves

    NASA Astrophysics Data System (ADS)

    Quiñones, D. A.; Varcoe, B. T. H.

    2018-01-01

    A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.

  11. Pb chains on reconstructed Si(335) surface

    NASA Astrophysics Data System (ADS)

    Krawiec, Mariusz

    2009-04-01

    The structural and electronic properties of Si(335)-Au surface decorated with Pb atoms are studied by means of density-functional theory. The resulting structural model features Pb atoms bonded to neighboring Si and Au surface atoms, forming monoatomic chain located 0.2 nm above the surface. The presence of Pb chain leads to a strong rebonding of Si atoms at the step edge. The fact that Pb atoms occupy positions in the middle of terrace is consistent with scanning tunneling microscopy (STM) data and also confirmed by simulated STM images. The calculated band structure clearly shows one-dimensional metallic character. The calculated electronic bands remain in very good agreement with photoemission data.

  12. Optimal atomic structure of amorphous silicon obtained from density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes

    2017-06-01

    Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.

  13. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  14. Sixteenth International Conference on the physics of electronic and atomic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  15. Electronic Structure and Surface Physics of Two-dimensional Material Molybdenum Disulfide

    NASA Astrophysics Data System (ADS)

    Jin, Wencan

    The interest in two-dimensional materials and materials physics has grown dramatically over the past decade. The family of two-dimensional materials, which includes graphene, transition metal dichalcogenides, phosphorene, hexagonal boron nitride, etc., can be fabricated into atomically thin films since the intralayer bonding arises from their strong covalent character, while the interlayer interaction is mediated by weak van der Waals forces. Among them, molybdenum disulfide (MoS2) has attracted much interest for its potential applications in opto-electronic and valleytronics devices. Previously, much of the experimental studies have concentrated on optical and transport measurements while neglecting direct experimental determination of the electronic structure of MoS2, which is crucial to the full understanding of its distinctive properties. In particular, like other atomically thin materials, the interactions with substrate impact the surface structure and morphology of MoS2, and as a result, its structural and physical properties can be affected. In this dissertation, the electronic structure and surface structure of MoS2 are directly investigated using angle-resolved photoemission spectroscopy and cathode lens microscopy. Local-probe angle-resolved photoemission spectroscopy measurements of monolayer, bilayer, trilayer, and bulk MoS 2 directly demonstrate the indirect-to-direct bandgap transition due to quantum confinement as the MoS2 thickness is decreased from multilayer to monolayer. The evolution of the interlayer coupling in this transition is also investigated using density functional theory calculations. Also, the thickness-dependent surface roughness is characterized using selected-area low energy electron diffraction (LEED) and the surface structural relaxation is investigated using LEED I-V measurements combined with dynamical LEED calculations. Finally, bandgap engineering is demonstrated via tuning of the interlayer interactions in van der Waals interfaces by twisting the relative orientation in bilayer-MoS2 and graphene-MoS 2-heterostructure systems.

  16. Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Chan, V. S.; Chiu, S. C.

    2000-11-01

    Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less

  17. A haptic model of vibration modes in spherical geometry and its application in atomic physics, nuclear physics and beyond

    NASA Astrophysics Data System (ADS)

    Ubben, Malte; Heusler, Stefan

    2018-07-01

    Vibration modes in spherical geometry can be classified based on the number and position of nodal planes. However, the geometry of these planes is non-trivial and cannot be easily displayed in two dimensions. We present 3D-printed models of those vibration modes, enabling a haptic approach for understanding essential features of bound states in quantum physics and beyond. In particular, when applied to atomic physics, atomic orbitals are obtained in a natural manner. Applied to nuclear physics, the same patterns of vibration modes emerge as cornerstone for the nuclear shell model. These applications of the very same model in a range of more than 5 orders of magnitude in length scales leads to a general discussion of the applicability and limits of validity of physical models in general.

  18. On the Functionality of Complex Intermetallics: Frustration, Chemical Pressure Relief, and Potential Rattling Atoms in Y11Ni60C6.

    PubMed

    Guo, Yiming; Fredrickson, Daniel C

    2016-10-17

    Intermetallic carbides provide excellent model systems for exploring how frustration can shape the structures and properties of inorganic materials. Combinations of several metals with carbon can be designed in which the formation of tetrahedrally close-packed (TCP) intermetallics conflicts with the C atoms' requirement of trigonal prismatic or octahedral coordination environments, as offered by the simple close-packings (SCP) of equally sized spheres. In this Article, we explore the driving forces that lead to the coexistence of these incompatible arrangements in the Yb 11 Ni 60 C 6 -type compound Y 11 Ni 60 C 6 (cI154), as well as potential consequences of this intergrowth for the phase's physical properties. Our focus begins on the structure's SCP regions, which appear as C-stuffed versions of a AuCu 3 -type YNi 3 phase that is not observed on its own in the Y-Ni system. DFT-Chemical Pressure (DFT-CP) calculations on this hypothetical YNi 3 phase reveal large negative pressures within the Ni sublattice, as it is stretched to accommodate the size requirements of the Y atoms. In the Y 11 Ni 60 C 6 structure, two structural mechanisms for addressing these CP issues appear: the incorporation of interstitial C atoms, and the presence of interfaces with CaCu 5 -type domains. The relative roles of these two mechanisms are investigated with the CP analysis on a hypothetical YNi 3 C x series of C-stuffed AuCu 3 -type phases, the Y-Ni sublattice of Y 11 Ni 60 C 6 , and finally the full Y 11 Ni 60 C 6 structure. Through these calculations, the C atoms appear to play the roles of relieving positive Y CPs and supporting relaxation at the AuCu 3 -type/CaCu 5 -type interfaces, where the cancellation occurs between opposite CPs experienced by the Y atoms in the two parent structures (following the epitaxial stabilization mechanism). The CP analysis of Y 11 Ni 60 C 6 also highlights a sublattice of Y and Ni atoms with large negative CPs (and thus the potential for soft vibrational modes), illustrating how frustrated structures could lead to the full realization of the phonon glass-electron crystal concept.

  19. Clustering algorithms for identifying core atom sets and for assessing the precision of protein structure ensembles.

    PubMed

    Snyder, David A; Montelione, Gaetano T

    2005-06-01

    An important open question in the field of NMR-based biomolecular structure determination is how best to characterize the precision of the resulting ensemble of structures. Typically, the RMSD, as minimized in superimposing the ensemble of structures, is the preferred measure of precision. However, the presence of poorly determined atomic coordinates and multiple "RMSD-stable domains"--locally well-defined regions that are not aligned in global superimpositions--complicate RMSD calculations. In this paper, we present a method, based on a novel, structurally defined order parameter, for identifying a set of core atoms to use in determining superimpositions for RMSD calculations. In addition we present a method for deciding whether to partition that core atom set into "RMSD-stable domains" and, if so, how to determine partitioning of the core atom set. We demonstrate our algorithm and its application in calculating statistically sound RMSD values by applying it to a set of NMR-derived structural ensembles, superimposing each RMSD-stable domain (or the entire core atom set, where appropriate) found in each protein structure under consideration. A parameter calculated by our algorithm using a novel, kurtosis-based criterion, the epsilon-value, is a measure of precision of the superimposition that complements the RMSD. In addition, we compare our algorithm with previously described algorithms for determining core atom sets. The methods presented in this paper for biomolecular structure superimposition are quite general, and have application in many areas of structural bioinformatics and structural biology.

  20. Collisions involving antiprotons and antihydrogen: an overview

    NASA Astrophysics Data System (ADS)

    Jonsell, S.

    2018-03-01

    I give an overview of experimental and theoretical results for antiproton and antihydrogen scattering with atoms and molecules (in particular H, He). At low energies (>1 keV) there are practically no experimental data available. Instead I compare the results from different theoretical calculations, of various degrees of sophistication. At energies up to a few tens of eV, I focus on simple approximations that give reasonably accurate results, as these allow quick estimates of collision rates without embarking on a research project. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

Top