Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions
Code of Federal Regulations, 2010 CFR
2010-01-01
... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...
ERIC Educational Resources Information Center
Hoffman, Gary G.
2015-01-01
A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…
ERIC Educational Resources Information Center
Ge, Yingbin
2016-01-01
Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…
Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro
2012-07-12
Studying chemical reactions involves the knowledge of the reaction mechanism. Despite activation barriers describing the kinetics or reaction energies reflecting thermodynamic aspects, identifying the underlying physics and chemistry along the reaction path contributes essentially to the overall understanding of reaction mechanisms, especially for catalysis. In the past years the reaction force has evolved as a valuable tool to discern between structural changes and electrons' rearrangement in chemical reactions. It provides a framework to analyze chemical reactions and additionally a rational partition of activation and reaction energies. Here, we propose to separate these energies further in atomic contributions, which will shed new insights in the underlying reaction mechanism. As first case studies we analyze two intramolecular proton transfer reactions. Despite the atom based separation of activation barriers and reaction energies, we also assign the participation of each atom in structural changes or electrons' rearrangement along the intrinsic reaction coordinate. These participations allow us to identify the role of each atom in the two reactions and therfore the underlying chemistry. The knowledge of the reaction chemistry immediately leads us to suggest replacements with other atom types that would facilitate certain processes in the reaction. The characterization of the contribution of each atom to the reaction energetics, additionally, identifies the reactive center of a molecular system that unites the main atoms contributing to the potential energy change along the reaction path.
Synthesis and Characteristics of HgCdSe for IR Detection
2014-03-11
Photoelectron Spectroscopy Study of Oxide Removal Using Atomic Hydrogen for Large-Area II–VI Material Growth, Journal of Electronic Materials...Workshop on the Physics and Chemistry of II-VI Materials, Chicago IL (October 1-3, 2013) “Use of Atomic Hydrogen to Prepare GaSb(211)B and GaSb(100...Workshop on the Physics and Chemistry of II-VI Materials, Chicago IL (October, 2011) "Xray photoelectron spectroscopy study of oxide removal using
Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom
ERIC Educational Resources Information Center
Unlu, Pervin
2010-01-01
Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…
Relationships in Physical Science.
ERIC Educational Resources Information Center
Goodstein, Madeline Prager; Sitzman, Barbara Pressey
This document presents activities in the physical sciences. Activities are grouped in the following chapters: (1) "Science and Measurement"; (2) "Measurement Units"; (3) "Introduction to Chemistry"; (4) "The Periodic Table"; (5) "What is Inside an Atom?"; (6) "Bonding"; (7) "Formulas and Equations"; (8) "The Bursting Atom"; (9) "Relationships…
15 CFR 255.1 - Type of fellowships.
Code of Federal Regulations, 2013 CFR
2013-01-01
... standardization and testing. (b) Practical laboratory training in various branches of physics, chemistry, and... include the usual subdivisions of physics (weights and measures, heat, optics, mechanics, atomic physics...
15 CFR 255.1 - Type of fellowships.
Code of Federal Regulations, 2011 CFR
2011-01-01
... standardization and testing. (b) Practical laboratory training in various branches of physics, chemistry, and... include the usual subdivisions of physics (weights and measures, heat, optics, mechanics, atomic physics...
15 CFR 255.1 - Type of fellowships.
Code of Federal Regulations, 2012 CFR
2012-01-01
... standardization and testing. (b) Practical laboratory training in various branches of physics, chemistry, and... include the usual subdivisions of physics (weights and measures, heat, optics, mechanics, atomic physics...
15 CFR 255.1 - Type of fellowships.
Code of Federal Regulations, 2014 CFR
2014-01-01
... standardization and testing. (b) Practical laboratory training in various branches of physics, chemistry, and... include the usual subdivisions of physics (weights and measures, heat, optics, mechanics, atomic physics...
Ti12Xe: A twelve-coordinated Xe-containing molecule
NASA Astrophysics Data System (ADS)
Miao, Junjian; Xu, Wenwu; Zhu, Beien; Gao, Yi
2017-08-01
A twelve-coordinated Xe-containing molecule Ti12Xe has been predicted by DFT calculations with quasi-icosahedral symmetry. Structural and NBO analyses show the chemical bonding exists between the central Xe atom and peripheral Ti atoms, which leads to the high stability of the molecule to a considerable degree. First principle molecular dynamics simulations further reveal the particularly high thermal stability of Ti12Xe up to 1500 K. This unique species may disclose new physics and chemistry of xenon element and stir interest in the Xe-transition metal cluster physics and chemistry.
ERIC Educational Resources Information Center
Singh, Gurmukh
2012-01-01
The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…
Experimental methods of molecular matter-wave optics.
Juffmann, Thomas; Ulbricht, Hendrik; Arndt, Markus
2013-08-01
We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process.
PEOPLE IN PHYSICS: Atom - from hypothesis to certainty
NASA Astrophysics Data System (ADS)
Lacina, Ales
1999-11-01
The concept of atoms should not be taken for granted. It was developed relatively recently and based on observations in the fields of thermal phenomena, crystallography and chemistry and the crucial discovery of Brownian motion.
NASA Technical Reports Server (NTRS)
Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.
1994-01-01
Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.
ERIC Educational Resources Information Center
Halkyard, Shannon
2012-01-01
Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…
Hanford Atomic Products Operation monthly report for June 1955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1955-07-28
This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
Hanford Atomic Products Operation monthly report, January 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-24
This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals
ERIC Educational Resources Information Center
Robertson, Michael J.; Jorgensen, William L.
2015-01-01
Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…
Students' use of atomic and molecular models in learning chemistry
NASA Astrophysics Data System (ADS)
O'Connor, Eileen Ann
1997-09-01
The objective of this study was to investigate the development of introductory college chemistry students' use of atomic and molecular models to explain physical and chemical phenomena. The study was conducted during the first semester of the course at a University and College II. Public institution (Carnegie Commission of Higher Education, 1973). Students' use of models was observed during one-on-one interviews conducted over the course of the semester. The approach to introductory chemistry emphasized models. Students were exposed to over two-hundred and fifty atomic and molecular models during lectures, were assigned text readings that used over a thousand models, and worked interactively with dozens of models on the computer. These models illustrated various features of the spatial organization of valence electrons and nuclei in atoms and molecules. Despite extensive exposure to models in lectures, in textbook, and in computer-based activities, the students in the study based their explanation in large part on a simple Bohr model (electrons arranged in concentric circles around the nuclei)--a model that had not been introduced in the course. Students used visual information from their models to construct their explanation, while overlooking inter-atomic and intra-molecular forces which are not represented explicitly in the models. In addition, students often explained phenomena by adding separate information about the topic without either integrating or logically relating this information into a cohesive explanation. The results of the study demonstrate that despite the extensive use of models in chemistry instruction, students do not necessarily apply them appropriately in explaining chemical and physical phenomena. The results of this study suggest that for the power of models as aids to learning to be more fully realized, chemistry professors must give more attention to the selection, use, integration, and limitations of models in their instruction.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.
Južnič, Stanislav
2016-12-01
One of the most important Mid-European professor with more than six thousand academic descendants was the leading Slovenian erudite Jurij Vega. In broader sense, Vega's and other applied sciences of the south of Holy Roman Empire of German Nationality were connected with the mercury mine of Idrija during the last half of millennia. The Idrija Mine used to be one of the two top European producers of mercury, the basic substance of atomistic alchemists. Idrija Mine contributions to the history of techniques, their examinations and approbations is comparable to the other Mid-European achievements. The peculiarities of Idrija mining environment where people valued mostly the applicative knowhow is put into the limelight. The applicative abilities of Idrija employers affected the broader surroundings including Vega's Jesuit teachers in nearby Ljubljana and the phenomena of comparatively many China-Based Jesuits connected with the area of modern Slovenia. The Jesuits' Mid-European education and networks are put into the limelight, as well as their adopted Chinese networks used for their bridging between Eastern and Western Sciences. The Western origin of the scientific-technologic-industrial revolution(s) with causes for their apparent nonexistence in Chinese frames is discussed as another Eurocentric rhetorical racist question which presumes the scientific-technologic-industrial revolution(s) as something good, positive, and therefore predominantly European. The Chinese ways into progress without those troublemaking revolutions is focused for the first time in historiography from combined scientific, moral, religious, and economic viewpoints. The Chinese contributions to particular areas of research in chemistry and physics is focused to find out the preferences and most frequent stages of (European) paradigms involved in the Chinese networks. Some predictions of future interests of Chinese chemistry and physics are provided. The Chinese Holistic Confucian distrust in atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.
Index to the Understanding the Atom Series.
ERIC Educational Resources Information Center
Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.
This index was prepared for the set of 51 booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school students and their teachers. In addition to the index, a complete list of the series is provided in which the booklets are grouped into the categories of physics, chemistry, biology, nuclear…
Physical explanation of the periodic table.
Ostrovsky, V N
2003-05-01
The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.
ERIC Educational Resources Information Center
Blanchard, Paul A.
This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…
Students' Mental Models of Atomic Spectra
ERIC Educational Resources Information Center
Körhasan, Nilüfer Didis; Wang, Lu
2016-01-01
Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…
Dissociation of the Ethyl Radical: An Exercise in Computational Chemistry
ERIC Educational Resources Information Center
Nassabeh, Nahal; Tran, Mark; Fleming, Patrick E.
2014-01-01
A set of exercises for use in a typical physical chemistry laboratory course are described, modeling the unimolecular dissociation of the ethyl radical to form ethylene and atomic hydrogen. Students analyze the computational results both qualitatively and quantitatively. Qualitative structural changes are compared to approximate predicted values…
Physical Construction of the Chemical Atom: Is It Convenient to Go All the Way Back?
ERIC Educational Resources Information Center
Izquierdo-Aymerich, Merce; Aduriz-Bravo, Agustin
2009-01-01
In this paper we present an analysis of chemistry texts (mainly textbooks) published during the first half of the 20th century. We show the evolution of the explanations therein in terms of atoms and of atomic structure, when scientists were interpreting phenomena as evidence of the discontinuous, corpuscular structure of matter. In this process…
ERIC Educational Resources Information Center
Holden, Alan
The field of inquiry into how atoms are bonded together to form molecules and solids crosses the borderlines between physics and chemistry encompassing methods characteristic of both sciences. At one extreme, the inquiry is pursued with care and rigor into the simplest cases; at the other extreme, suggestions derived from the more careful inquiry…
ERIC Educational Resources Information Center
Daniel, Esther Gnanamalar Sarojini; Saat, Rohaida Mohd.
2001-01-01
Introduces a learning module integrating three disciplines--physics, chemistry, and biology--and based on four elements: carbon, oxygen, hydrogen, and silicon. Includes atomic model and silicon-based life activities. (YDS)
Kalay, Ziya
2011-08-01
How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.
A RESTful API for Exchanging Materials Data in the AFLOWLIB.org Consortium
2014-03-12
of North Texas, Denton TX 4Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham NC, 27708 †On leave from the...software tools, input and output data are maintained remotely, lowering cost, improving ecological sustainability (saving electricity ) and increas- ing...enthalpy_formation_atom) – Description. Returns the formation enthalpy ∆HF per unit cell (∆HF atomic per atom). For compounds ANABNB · · · with NA + NB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
Research on the chemical physics of atoms and molecules, especially their interaction with external agents such as photons and electrons is reported. Abstracts of seven individual items from the report were prepared separately for the data base. (GHT)
2012-12-13
Margaret Murnane. Invited talk, ITAMP Winter School on Atomic, Molecular and Optical Physics ( Biosphere 2, AZ, January 2012). McElvain Lecture...Molecular and Optical Physics ( Biosphere 2, AZ, January 2012). McElvain Lecture, University of Wisconsin Chemistry Department, February 2012. Seminar
Premier Tools of Energy Research Also Probe Secrets of Viral Disease
DOE R&D Accomplishments Database
Chui, Glennda
2011-03-28
Advanced light sources peer into matter at the atomic and molecular scales, with applications ranging from physics, chemistry, materials science, and advanced energy research, to biology and medicine.
Duan, Haohong; Yan, Ning; Yu, Rong; Chang, Chun-Ran; Zhou, Gang; Hu, Han-Shi; Rong, Hongpan; Niu, Zhiqiang; Mao, Junjie; Asakura, Hiroyuki; Tanaka, Tsunehiro; Dyson, Paul Joseph; Li, Jun; Li, Yadong
2014-01-01
Despite significant advances in the fabrication and applications of graphene-like materials, it remains a challenge to prepare single-layered metallic materials, which have great potential applications in physics, chemistry and material science. Here we report the fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method. Atomic force microscope shows that the thickness of a rhodium nanosheet is <4 Å. Electron diffraction and X-ray absorption spectroscopy measurements suggest that the rhodium nanosheets are composed of planar single-atom-layered sheets of rhodium. Density functional theory studies reveal that the single-layered Rh nanosheet involves a δ-bonding framework, which stabilizes the single-layered structure together with the poly(vinylpyrrolidone) ligands. The poly(vinylpyrrolidone)-supported single-layered rhodium nanosheet represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.
Rieder, Karl-Heinz; Meyer, Gerhard; Hla, Saw-Wai; Moresco, Francesca; Braun, Kai F; Morgenstern, Karina; Repp, Jascha; Foelsch, Stefan; Bartels, Ludwig
2004-06-15
The scanning tunnelling microscope, initially invented to image surfaces down to the atomic scale, has been further developed in the last few years to an operative tool, with which atoms and molecules can be manipulated at will at low substrate temperatures in different manners to create and investigate artificial structures, whose properties can be investigated employing spectroscopic dI/dV measurements. The tunnelling current can be used to selectively break chemical bonds, but also to induce chemical association. These possibilities give rise to startling new opportunities for physical and chemical experiments on the single atom and single molecule level. Here we provide a short overview on recent results obtained with these techniques.
Lorentz Trial Function for the Hydrogen Atom: A Simple, Elegant Exercise
ERIC Educational Resources Information Center
Sommerfeld, Thomas
2011-01-01
The quantum semester of a typical two-semester physical chemistry course is divided into two parts. The initial focus is on quantum mechanics and simple model systems for which the Schrodinger equation can be solved in closed form, but it then shifts in the second half to atoms and molecules, for which no closed solutions exist. The underlying…
A beachhead on the island of stability
Oganessian, Yuri Ts.; Rykaczewski, Krzysztof P.
2015-01-01
Remember learning the periodic table of elements in high school? Our chemistry teachers explained that the chemical properties of elements come from the electronic shell structure of atoms. Furthermore, our physics teachers enriched that picture of the atomic world by introducing us to isotopes and the Segrè chart of nuclides, which arranges them by proton number Z and neutron number N.
ERIC Educational Resources Information Center
Smiar, Karen; Mendez, J. D.
2016-01-01
Molecular model kits have been used in chemistry classrooms for decades but have seen very little recent innovation. Using 3D printing, three sets of physical models were created for a first semester, introductory chemistry course. Students manipulated these interactive models during class activities as a supplement to existing teaching tools for…
Experimenting from a Distance in the Case of Rutherford Scattering
ERIC Educational Resources Information Center
Grober, S.; Vetter, M.; Eckert, B.; Jodl, H. -J.
2010-01-01
The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and…
Hanford Atomic Products Operation monthly report for February 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-02-21
This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.
Intermediate-energy nuclear chemistry workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.; Giesler, G.C.; Liu, L.C.
1981-05-01
This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.
NASA Astrophysics Data System (ADS)
Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.
2011-07-01
We present a summary of precision atomic mass measurements of stable isotopes carried out at Florida State University. These include the alkalis 6Li, 23Na, 39,41K, 85,87Rb, 133Cs; the rare gas isotopes 84,86Kr and 129,130,132,136Xe; 17,18O, 19F, 28Si, 31P, 32S; and various isotope pairs of importance to neutrino physics, namely 74,76Se/74,76Ge, 130Xe/130Te, and 115In/115Sn. We also summarize our Penning trap measurements of the dipole moments of PH + and HCO + .
Physical Chemistry of Energetic Nitrogen Compounds
1993-10-01
2177 (1981). 8. R.F. Heiner, III, H . Helvajian , G.ý. Holloway,-and J.B. Koffend, J. Phys. Chem . 93, 7813 (1989). 9. D.D. Bell and R.D. Coombe, J. Chem...Deuterium Atom Reactions with NFC12 . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. The Reaction of H Atomps with NF2Cl .............. 22 V...or Br,) was admitted downstream such that a portion of the F atoms were converted to H , Cl or Br atoms prior to the admission of HN3 to the flow. When
Yan, Liang; Zheng, Yue Bing; Zhao, Feng; Li, Shoujian; Gao, Xingfa; Xu, Bingqian; Weiss, Paul S; Zhao, Yuliang
2012-01-07
Graphene has attracted great interest for its superior physical, chemical, mechanical, and electrical properties that enable a wide range of applications from electronics to nanoelectromechanical systems. Functionalization is among the significant vectors that drive graphene towards technological applications. While the physical properties of graphene have been at the center of attention, we still lack the knowledge framework for targeted graphene functionalization. In this critical review, we describe some of the important chemical and physical processes for graphene functionalization. We also identify six major challenges in graphene research and give perspectives and practical strategies for both fundamental studies and applications of graphene (315 references). This journal is © The Royal Society of Chemistry 2012
Do general physics textbooks discuss scientists’ ideas about atomic structure? A case in Korea
NASA Astrophysics Data System (ADS)
Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho
2013-01-01
Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general physics textbooks often lack detail about the history and philosophy of science. This result is quite similar to those published for the USA. Furthermore, chemistry textbooks published in the USA, Turkey and Venezuela are quite similar to the physics textbooks. This is a cause for concern as textbooks present theories as facts and ignore the historical reconstructions based on the development of scientific theories that frequently involve controversies and conflicts among scientists. The inclusion of historical reconstructions of ideas about atomic structure can provide students with a better appreciation of the dynamics of scientific progress.
Conceptual Integration of Hybridization by Algerian Students Intending to Teach Physical Sciences
ERIC Educational Resources Information Center
Salah, Hazzi; Dumon, Alain
2011-01-01
This work aims to assess the difficulties encountered by students of the Ecole Normale Superieure of Kouba (Algeria) intending to teach physical science in the integration of the hybridization of atomic orbitals. It is a concept that they should use in describing the formation of molecular orbitals ([sigma] and [pi]) in organic chemistry and gaps…
NASA Astrophysics Data System (ADS)
McDonald, Mickey Patrick
Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, made possible largely by the development of narrow-linewidth lasers and techniques for trapping and cooling at ultracold temperatures. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. These possibilities are all consequences of the richness of molecular structure, which is governed by physics substantially different from that characterizing atomic structure. This same richness of structure, however, increases the complexity of any molecular experiment manyfold over its atomic counterpart, magnifying the difficulty of everything from trapping and cooling to the comparison of theory with experiment. This thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. Our molecules are produced via photoassociation of ultracold strontium atoms followed by spontaneous decay to a stable ground state. We describe a thorough set of measurements characterizing the rovibrational structure of very weakly bound (and therefore very large) 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. The physical intuition gained in these experiments applies generally to weakly bound diatomic molecules, and suggests extensive applications in precision measurement and metrology. In addition, we present a detailed analysis of the thermally broadened spectroscopic lineshape of molecules in a non-magic optical lattice trap, showing how such lineshapes can be used to directly determine the temperature of atoms or molecules in situ, addressing a long-standing problem in ultracold physics. Finally, we discuss the measurement of photofragment angular distributions produced by photodissociation, leading to an exploration of quantum-state-resolved ultracold chemistry.
ERIC Educational Resources Information Center
Pfundt, Helga
The hypothesis as to the atomic structure of any given substance is introduced in many physics and chemistry textbooks by conveying the idea of repetitive division of a given amount of substance, for example, by grinding, dissolving, or evaporating. The rationale for this approach is the assumption of students inferring that this process of…
Hanford Atomic Products Operation monthly report for March 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-04-20
This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.
Delocalized electrons in atomic and molecular nanoclusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kresin, Vitaly
The aim of the award (Program director: Dr. Mark Pederson) was to facilitate the attendance of researchers, students, and postdocs from the U.S. at the international workshop co-organized by the applicant. The award succeeded in making it possible for a number of US attendees to present their work and participate in the meeting, which was a significant event in the research community at the interdisciplinary interface of physical chemistry, nanoscience, atomic and molecular physics, condensed matter physics, and spectroscopy. The workshop did not issue proceedings, but the present report includes present the schedule, the abstracts, and the attendance list ofmore » the July 2016 Workshop. DOE sponsorship is gratefully acknowledged in the program.« less
Chemistry of superheavy elements.
Schädel, Matthias
2006-01-09
The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.
Direct quantitative measurement of the C═O⋅⋅⋅H–C bond by atomic force microscopy
Kawai, Shigeki; Nishiuchi, Tomohiko; Kodama, Takuya; Spijker, Peter; Pawlak, Rémy; Meier, Tobias; Tracey, John; Kubo, Takashi; Meyer, Ernst; Foster, Adam S.
2017-01-01
The hydrogen atom—the smallest and most abundant atom—is of utmost importance in physics and chemistry. Although many analysis methods have been applied to its study, direct observation of hydrogen atoms in a single molecule remains largely unexplored. We use atomic force microscopy (AFM) to resolve the outermost hydrogen atoms of propellane molecules via very weak C═O⋅⋅⋅H–C hydrogen bonding just before the onset of Pauli repulsion. The direct measurement of the interaction with a hydrogen atom paves the way for the identification of three-dimensional molecules such as DNAs and polymers, building the capabilities of AFM toward quantitative probing of local chemical reactivity. PMID:28508080
The influence of atomic alignment on absorption and emission spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Heshou; Yan, Huirong; Richter, Philipp
2018-06-01
Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.
Atomic and molecular supernovae
NASA Technical Reports Server (NTRS)
Liu, Weihong
1997-01-01
Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.
Filtrates and Residues: Ice Cream: Delicious Chemistry.
ERIC Educational Resources Information Center
Martino, James
1983-01-01
An experiment involving preparation of ice cream is conducted after students complete units on solutions, atomic structure, molecular architecture, and bonding. The laboratory gives practical illustration of relation of physical properties to bond type and solution theory developed. Materials needed, procedures used, and questions asked are…
NASA Technical Reports Server (NTRS)
Blanchard, P. A.
1976-01-01
Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.
NASA Astrophysics Data System (ADS)
Bates, Harry E.
1984-05-01
Holography is a new and exciting field that has found many applications in physics and engineering. Atomic spectroscopy has been the experimental cornerstone of modern physics and chemistry. This paper reports on an intermediate undergraduate laboratory experiment that combines fundamental ideas and techniques of both fields. The student utilizes holographic techniques to make a small sinusoidal diffraction grating and then uses this grating to analyze the spectrum of hydrogen. The Rydberg constant can be determined from the wavelength, the angle between the laser beams used to make the grating, and the observed diffractions angles of lines of the Balmer series.
ERIC Educational Resources Information Center
Hepel, Maria
2008-01-01
This experiment teaches students the methodology of investigating novel properties of materials using new instrumental techniques: atomic force microscopy (AFM), electrochemical quartz crystal nanobalance (EQCN), voltammetric techniques (linear potential scan and chronoamperometry), and light reflectance measurements. The unique capabilities of…
NASA Astrophysics Data System (ADS)
Halkyard, Shannon
Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations can be employed in multimedia instructional materials designed following principles understood through the Cognitive Theory of Multimedia Learning. Additionally, these materials can expand the known use of principles like personalization (addressing the learner as "you") and test prospective design principles like personification (referring to abstract objects like atoms as "she" or "he"). The purpose of this study was to use the recommendations on teaching atomic and electronic structure along with known multimedia design principles to create multimedia chemistry learning materials that can be used to test the use of personalization and personification both separately and together. The study also investigated how learning with these materials might be different for male and female students. A sample of 329 students from private northern California high schools were given an atomic structure pre-test, watched a multimedia chemistry instructional video, and took a post-test on atomic structure. Students were randomly assigned to watch one of six versions of the instructional video. Students in the six groups were compared using ANOVA procedures and no significant differences were found. Males were compared to females for the six different treatment conditions and the most significant difference was for the treatment that combined personalization (you) and female personification (she), with a medium effect size (Cohen's d=0.65). Males and females were then compared separately across the six groups using ANOVA procedures and t-tests. A significant difference was found for female students using the treatment that combined personalization (you) and female personification (she) compared to the group with no personalization or personification, with a medium-large effect size (Cohen's d=0.75). Further research is needed to eliminate possible confounding and other factors, but the study results indicate that personalization and personification likely have positive effects on learning, especially for female students.
Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.
Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo
2014-07-11
Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.
Microcomputer Calculation of Theoretical Pre-Exponential Factors for Bimolecular Reactions.
ERIC Educational Resources Information Center
Venugopalan, Mundiyath
1991-01-01
Described is the application of microcomputers to predict reaction rates based on theoretical atomic and molecular properties taught in undergraduate physical chemistry. Listed is the BASIC program which computes the partition functions for any specific bimolecular reactants. These functions are then used to calculate the pre-exponential factor of…
Does crystallography need a new name?
Argryriou, Dimitri
2017-07-01
The discovery of X-rays and their use in the observation of diffraction from crystals placed crystallography at the forefront of science at the beginning of the last century. The combination of this new tool, together with the emerging understanding of the symmetry of crystals, exposed the locations of atoms in matter and allowed us to start understanding macroscopic properties from an atomic perspective for the first time. These discoveries transformed physics and chemistry bringing to light new scientific fields such as materials science and structural biology.
Does crystallography need a new name?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argryriou, Dimitri
The discovery of X-rays and their use in the observation of diffraction from crystals placed crystallography at the forefront of science at the beginning of the last century. The combination of this new tool, together with the emerging understanding of the symmetry of crystals, exposed the locations of atoms in matter and allowed us to start understanding macroscopic properties from an atomic perspective for the first time. These discoveries transformed physics and chemistry bringing to light new scientific fields such as materials science and structural biology.
Stimulated Raman adiabatic passage in physics, chemistry, and beyond
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas
2017-01-01
The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.
Yao, Kun; Herr, John E; Toth, David W; Mckintyre, Ryker; Parkhill, John
2018-02-28
Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry.
A gist of comprehensive review of hadronic chemistry and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tangde, Vijay M.
20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less
NASA Astrophysics Data System (ADS)
Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory
2017-03-01
Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.
Cyclic Polyynes as Examples of the Quantum Mechanical Particle on a Ring
ERIC Educational Resources Information Center
Anderson, Bruce D.
2012-01-01
Many quantum mechanical models are discussed as part of the undergraduate physical chemistry course to help students understand the connection between eigenvalue expressions and spectroscopy. Typical examples covered include the particle in a box, the harmonic oscillator, the rigid rotor, and the hydrogen atom. This article demonstrates that…
Atomic structure and chemistry of human serum albumin
NASA Technical Reports Server (NTRS)
He, Xiao M.; Carter, Daniel C.
1992-01-01
The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.
Atomic structure and chemistry of human serum albumin
NASA Astrophysics Data System (ADS)
He, Xiao Min; Carter, Daniel C.
1992-07-01
The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 Å. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.
NASA Astrophysics Data System (ADS)
McDonald, Mickey
2017-04-01
Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.
Low temperature surface chemistry and nanostructures
NASA Astrophysics Data System (ADS)
Sergeev, G. B.; Shabatina, T. I.
2002-03-01
The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.
Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes
Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.
2015-01-01
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225
Electrochemical Control of Copper Intercalation into Nanoscale Bi 2Se 3
Zhang, Jinsong; Sun, Jie; Li, Yanbin; ...
2017-02-20
Intercalation of exotic atoms or molecules into the layered materials remains an extensively investigated subject in current physics and chemistry. However, traditionally melt-growth and chemical interaction strategies are either limited by insufficiency of intercalant concentrations or destitute of accurate controllability. Here, we have developed a general electrochemical intercalation method to efficaciously regulate the concentration of zerovalent copper atoms into layered Bi 2Se 3, followed by comprehensive experimental characterization and analyses. Up to 57% copper atoms (Cu 6.7Bi 2Se 3) can be intercalated with no disruption to the host lattice. Meanwhile the unconventional resistance dip accompanied by a hysteresis loop belowmore » 40 K, as well as the emergence of new Raman peak in Cu xBi 2Se 3, is a distinct manifestation of the interplay between intercalated Cu atoms with Bi 2Se 3 host. Furthermore, our work demonstrates a new methodology to study fundamentally new and unexpected physical behaviors in intercalated metastable materials.« less
Hierso, Jean-Cyrille; Smaliy, Radomyr; Amardeil, Régine; Meunier, Philippe
2007-11-01
This tutorial review devoted to ligand chemistry deals with the design and properties of ferrocenyl polyphosphines, an original class of multidentate ligands. The development of a varied library of ferrocenyl tetra-, tri- and diphosphine ligands is reviewed. The multidentate nature of these species has led to unique spectroscopic and catalytic properties, in which the spatial proximity of phosphorus atoms is crucial. Regarding their catalytic applications, the key issues of catalyst longevity and ultralow catalyst loadings are discussed. Another part is concerned with fundamental advances gained in physical chemistry for structure elucidation by the study of the intriguing "through-space" NMR spin-spin J couplings existing within several of these polyphosphines.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Albyn, K.; Leger, L.
1990-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.
Once a physicist: Eddie Morland
NASA Astrophysics Data System (ADS)
2008-06-01
How did you originally get into physics? I did maths, physics and chemistry A-levels, and I found physics the most interesting of the three. I chose not to go to university after finishing school because I wanted to get a job and earn some money. Instead, I did a part-time applied-physics degree at Manchester Polytechnic while working for the UK Atomic Energy Authority (UKAEA) as a junior researcher. It took a lot longer than a full-time degree, but it was a great to be able to apply the work from the course back in the laboratory.
ERIC Educational Resources Information Center
Cann, Michael C.; Dickneider, Trudy A.
2004-01-01
Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business…
VizieR Online Data Catalog: Partition functions for molecules and atoms (Barklem+, 2016)
NASA Astrophysics Data System (ADS)
Barklem, P. S.; Collet, R.
2016-02-01
The results and input data are presented in the following files. Table 1 contains dissociation energies from the literature, and final adopted values, for 291 molecules. The literature values are from the compilations of Huber & Herzberg (1979, Constants of Diatomic Molecules (Van Nostrand Reinhold), Luo (2007, Comprehensive Handbook of Chemical Bond Energies (CRC Press)) and G2 theory calculations of Curtiss et al. (1991, J. Chem. Phys., 94, 7221). Table 2 contains the input data for the molecular calculations including adopted dissociation energy, nuclear spins, molecular spectroscopic constants and their sources. There are 291 files, one for each molecule, labelled by the molecule name. The various molecular spectroscopic constants are as defined in the paper. Table 4 contains the first, second and third ionisation energies for all chemical elements from H to U. The data comes from the CRC Handbook of Chemistry and Physics (Haynes, W.M. 2010, CRC Handbook of Chemistry and Physics, 91st edn. (CRC Press, Taylor and Francis Group)). Table 5a contains a list of keys to bibliographic references for the atomic energy level data that was extracted from NIST Atomic Spectra Database and used in the present work to compute atomic partition functions. The citation keys are abbreviations of the full bibliographic references which are made available in Table 5b in BibTeX format. Table 5b contains the full bibliographic references for the atomic energy level data that was extracted from the NIST Atomic Spectra Database. Table 6 contains tabulated partition function data as a function of temperature for 291 molecules. Table 7 contains tabulated equilibrium constant data as a function of temperature for 291 molecules. Table 8 contains tabulated partition function data as a function of temperature for 284 atoms and ions. The paper should be consulted for further details. (10 data files).
Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation
NASA Astrophysics Data System (ADS)
Camparo, James
2005-03-01
The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.
Teaching the Growth, Ripening, and Agglomeration of Nanostructures in Computer Experiments
ERIC Educational Resources Information Center
Meyburg, Jan Philipp; Diesing, Detlef
2017-01-01
This article describes the implementation and application of a metal deposition and surface diffusion Monte Carlo simulation in a physical chemistry lab course. Here the self-diffusion of Ag atoms on a Ag(111) surface is modeled and compared to published experimental results. Both the thin-film homoepitaxial growth during adatom deposition onto a…
Presidential Green Chemistry Challenge: 1998 Academic Award (Trost)
Presidential Green Chemistry Challenge 1998 award winner Professor Barry M. Trost, developed the concept of atom economy: chemical reactions that do not waste atoms. This is a fundamental cornerstone of green chemistry.
Peverati, Roberto; Truhlar, Donald G
2014-03-13
Kohn-Sham density functional theory is in principle an exact formulation of quantum mechanical electronic structure theory, but in practice we have to rely on approximate exchange-correlation (xc) functionals. The objective of our work has been to design an xc functional with broad accuracy across as wide an expanse of chemistry and physics as possible, leading--as a long-range goal--to a functional with good accuracy for all problems, i.e. a universal functional. To guide our path towards that goal and to measure our progress, we have developed-building on earlier work of our group-a set of databases of reference data for a variety of energetic and structural properties in chemistry and physics. These databases include energies of molecular processes, such as atomization, complexation, proton addition and ionization; they also include molecular geometries and solid-state lattice constants, chemical reaction barrier heights, and cohesive energies and band gaps of solids. For this paper, we gather many of these databases into four comprehensive databases, two with 384 energetic data for chemistry and solid-state physics and another two with 68 structural data for chemistry and solid-state physics, and we test two wave function methods and 77 density functionals (12 Minnesota meta functionals and 65 others) in a consistent way across this same broad set of data. We especially highlight the Minnesota density functionals, but the results have broader implications in that one may see the successes and failures of many kinds of density functionals when they are all applied to the same data. Therefore, the results provide a status report on the quest for a universal functional.
ERIC Educational Resources Information Center
Rittenhouse, Robert C.
2015-01-01
The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…
Cold molecules: Progress in quantum engineering of chemistry and quantum matter
NASA Astrophysics Data System (ADS)
Bohn, John L.; Rey, Ana Maria; Ye, Jun
2017-09-01
Cooling atoms to ultralow temperatures has produced a wealth of opportunities in fundamental physics, precision metrology, and quantum science. The more recent application of sophisticated cooling techniques to molecules, which has been more challenging to implement owing to the complexity of molecular structures, has now opened the door to the longstanding goal of precisely controlling molecular internal and external degrees of freedom and the resulting interaction processes. This line of research can leverage fundamental insights into how molecules interact and evolve to enable the control of reaction chemistry and the design and realization of a range of advanced quantum materials.
Making a molecular gas in the quantum regime
NASA Astrophysics Data System (ADS)
Ni, Kang-Kuen
2017-04-01
Ultracold molecules are exciting systems for a large range of scientific explorations including studies of novel phases of matter and precision measurement. In this talk, I will present a brief story of the first quantum gas of molecules, KRb, created under my PhD advisor, Deborah Jin, in 2008. A complete surprise was finding ultracold chemistry in such a system through measurements of reactant losses. In particular, long-range physics that determines KRb reactant collision rates, including van der Waals interactions, quantum statistics, and dipolar interactions, were studied extensively. However, the short-range behavior of these chemical reactions remains unknown. A legacy of her work is carried out in my lab at Harvard, where we are integrating physical chemistry tools with cold atom techniques to study ultracold chemistry with KRb molecules. In particular, we aim to elucidate the four-center reaction 2 KRb ->K2 + Rb2 by detecting the reaction products through ionization - both identify the product species and mapping out their complete quantum states.
Energy of Atoms and Molecules, Science (Experimental): 5316.05.
ERIC Educational Resources Information Center
Buffaloe, Jacquelin F.
This third unit in chemistry is considered for any chemistry student and particularly the college-bound student. An understanding of the material included should enable the student to understand better the concepts in the Dynamic Nature of Atoms and Molecules which are essential for Organic Chemistry, the Chemistry of Carbon and Its Compounds and…
Atoms, Strings, Apples, and Gravity: What the Average American Science Teacher Does Not Teach
ERIC Educational Resources Information Center
Berube, Clair
2008-01-01
American science teachers in elementary and middle school face a dilemma as they prepare students for high school physics and advanced placement classes. The dilemma lies in ensuring that these students are equipped with the high-level science content they need to thrive in such classes. Aside from life sciences and chemistry sciences, how are our…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federman, S.R.
1979-01-01
A theoretical model has been developed to determine physical processes in conjunction with astrophysical observation. The calculations are based on isobaric, steady-state, plane-parallel conditions. In the model, the cloud is illuminated by ultraviolet radiation from one side. The density and temperature of the gas are derived by invoking energy conservation in terms of thermal balance. The derived values for density and temperature then are used to determine the abundances of approximately fifty atomic and molecular species, including important ionic species and simple carbon and oxygen bearing molecules. Except for molecular hydrogen formation on dust grains, binary gas phase reactions aremore » used to develop the chemistry of the model cloud. The theoretical model has been found to be appropriate for a particular range of physical parameters. The results of the steady-state calculations have been compared to ultraviolet observations, predominantly those made with the Copernicus satellite. The theory of molecular hydrogen photodestruction has been reexamined so that improvements to the model can be made. By analyzing the region where the atomic to molecuar hydrogen transition occurs, several processes have been found to contribute to dissociation.« less
Three-dimensional coordinates of individual atoms in materials revealed by electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rui; Chen, Chien-Chun; Wu, Li
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less
Three-dimensional coordinates of individual atoms in materials revealed by electron tomography
Xu, Rui; Chen, Chien-Chun; Wu, Li; ...
2015-09-21
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. In this paper, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field andmore » the full strain tensor with a 3D resolution of ~1 nm 3 and a precision of ~10 -3, which are further verified by density functional theory calculations and molecular dynamics simulations. Finally, the ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.« less
Semiconductor Characterization: from Growth to Manufacturing
NASA Astrophysics Data System (ADS)
Colombo, Luigi
The successful growth and/or deposition of materials for any application require basic understanding of the materials physics for a given device. At the beginning, the first and most obvious characterization tool is visual observation; this is particularly true for single crystal growth. The characterization tools are usually prioritized in order of ease of measurement, and have become especially sophisticated as we have moved from the characterization of macroscopic crystals and films to atomically thin materials and nanostructures. While a lot attention is devoted to characterization and understanding of materials physics at the nano level, the characterization of single crystals as substrates or active components is still critically important. In this presentation, I will review and discuss the basic materials characterization techniques used to get to the materials physics to bring crystals and thin films from research to manufacturing in the fields of infrared detection, non-volatile memories, and transistors. Finally I will present and discuss metrology techniques used to understand the physics and chemistry of atomically thin two-dimensional materials for future device applications.
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.
1980-01-01
The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.
NASA Technical Reports Server (NTRS)
Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.
1988-01-01
The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.
Green Chemistry Techniques for Gold Nanoparticles Synthesis
NASA Astrophysics Data System (ADS)
Cannavino, Sarah A.; King, Christy A.; Ferrara, Davon W.
Gold nanoparticles (AuNPs) are often utilized in many technological and research applications ranging from the detection of tumors, molecular and biological sensors, and as nanoantennas to probe physical processes. As these applications move from the research laboratory to industrial settings, there is a need to develop efficient and sustainable synthesis techniques. Recent research has shown that several food products and beverages containing polyphenols, a common antioxidant, can be used as reducing agents in the synthesis of AuNPs in solution. In this study, we explore a variety of products to determine which allow for the most reproducible solution of nanoparticles based on the size and shapes of particles present. We analyzed the AuNPs solutions using extinction spectroscopy and atomic force microscopy. We also develop a laboratory activity to introduce introductory chemistry and physics students to AuNP synthesis techniques and analysis.
PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)
NASA Astrophysics Data System (ADS)
Williams, Jim F.; Buckman, Steve; Bieske, Evan J.
2009-09-01
These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of the Institute of Physics. The support from the IOPCS staff made this publication possible. The 8th AISAMP was sponsored primarily by the University of Western Australia and Curtin University of Technology, both in Perth, Western Australia, and by Journal of Physics: Conference Series. Support was also received from the International Council of Science, ICSU. Guidance and active participation from colleagues, particularly from the University of Western Australia, and Curtin University, and from the Australian National University and Melbourne University were sources of strength for the actual organization of the conference. Dr Elena Semidelova receives special thanks for her organizing abilities. We hope that this issue of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between all scientists and their countries. Evan Bieske, Stephen Buckman and Jim F Williams Guest Editors
Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.
ERIC Educational Resources Information Center
Inner London Education Authority (England).
This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…
CHAiOS: Chemistry of Halogens at the Isles of Shoals
NASA Astrophysics Data System (ADS)
Keene, W. C.; Stutz, J.; Pszenny, A. A.; Russell, L.; von Glasow, R.; Sive, B.; Varner, R.
2005-12-01
During summer 2004, a comprehensive suite of reactive trace gases (including halogen radicals and precursors, O3, reactive N, soluble acids, NH3, HCHO, SO2, hydrocarbons, and halocarbons), the chemical and physical characteristics of size-resolved aerosols, actinic flux, and related physical conditions was measured at Appledore Island, ME as part of the International Consortium for Atmospheric Research on Transport and Transformations (ICARTT). Acid displacement of sea-salt Cl- primarily by HNO3 sustained high HCl mixing ratios (often >2000 pptv or >5 * 1010 cm-3) during daytime. HCl + OH produced 105 to 106 Cl atoms cm-3 sec-1. Cl* (including HOCl and Cl2) typically ranged from <20 (<5 * 108 cm-3) to about 100 pptv (3 * 109 cm-3). Depending on its assumed composition, Cl* photolysis yielded an additional source for Cl ranging from <104 to 107 atoms cm-3 sec-1. Maximum steady-state Cl concentrations during daytime (104 to 106 atoms cm-3) indicated significant contributions to oxidizing capacity. IO, OIO, and I2 were quantified simultaneously by long-path and MAX DOAS. IO ranged from <1.8 to 7 pptv, was detected only during daytime at wind speeds >2 m sec-1, and was uncorrelated with tidal height. For the first time, OIO was detected during daytime indicating that photolysis was an unimportant sink. The presence of OIO at high NOx implies unknown chemical pathways. Calculations with the 1-D photochemical model MISTRA predict longer lifetimes for OIO relative to IO, consistent with observations. I chemistry influenced ozone significantly by direct reaction (e.g., I + O3 → IO + O2) and by changing OH/HO2 and NO/NO2 ratios. Aerosols in all size fractions were highly enriched in I relative to sea salt (factors of 102 to 105) indicating active multiphase transformations. Numerous aerosol growth events were detected some of which were associated with elevated IO and OIO. However, the lack of consistent correlation with iodine species suggests that I chemistry may not be the dominant nucleation pathway in polluted coastal New England air. Br radical chemistry was relatively unimportant.
Index to NASA Tech Briefs, 1974
NASA Technical Reports Server (NTRS)
1975-01-01
The following information was given for 1974: (1) abstracts of reports dealing with new technology derived from the research and development activities of NASA or the U.S. Atomic Energy Commission, arranged by subjects: electronics/electrical, electronics/electrical systems, physical sciences, materials/chemistry, life sciences, mechanics, machines, equipment and tools, fabrication technology, and computer programs, (2) indexes for the above documents: subject, personal author, originating center.
PSPP: A Protein Structure Prediction Pipeline for Computing Clusters
2009-07-01
Evanseck JD, et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 102...dimensional (3-D) protein structures are critical for the understanding of molecular mechanisms of living systems. Traditionally, X-ray crystallography...disordered proteins are often responsible for molecular recognition, molecular assembly, protein modifica- tion, and entropic chain activities in organisms [26
Studies in hot atom chemistry and radiation chemistry
NASA Astrophysics Data System (ADS)
Willard, J. E.
1980-08-01
Information on reactions of H atoms, D atoms, and Methyl radicals in CH4 and CD4 at cro cyrogenic temperature is presented. An X-ray dosimeter was developed. Radiolytic production of trapped hydrogen atoms from organic compounds in Xe, Kr, and Ar at 15 K is discussed. Relative probabilities for the reaction of H with different compounds cryogenic temperatures were derived.
NASA Astrophysics Data System (ADS)
Ariga, Katsuhiko; Aono, Masakazu
2016-11-01
The construction of functional systems with nanosized parts would not possible by simple technology (nanotechnology). It can be handled by certain kinds of more sophisticated carpenter work or artistic architectonics (nanoarchitectonics). However, architecting materials in the nanoscale is not very simple because of various unexpected and uncontrollable thermal/statistical fluctuations and mutual interactions. The latter factors inevitably disturb the interactions between component building blocks. Therefore, several techniques and actions, including the regulation of atomic/molecular manipulation, molecular modification by organic chemistry, control of physicochemical interactions, self-assembly/organization, and application of external physical stimuli, must be well combined. This short review describes the historical backgrounds and essences of nanoarchitectonics, followed by a brief introduction of recent examples related to nanoarchitectonics. These examples are categorized in accordance with their physical usages: (i) atom/molecule control; (ii) devices and sensors; (iii) the other applications based on interfacial nanoarchitectonics.
Spatial Concentrations of Silicon Atoms in RF Discharges of Silane.
1985-02-18
regions. These profiles were much more sensitive to plasma chemistry changes than profiles obtained from plasma emission. Experiments with nitrogen...addition demonstrated significant changes in the silicon atom profiles near the sheath boundary. Originator supplied keywords include: rf discharge, silane, plasma chemistry , silicon atom, laser-induced fluorescence.
Far-infrared Spectroscopy of Interstellar Gas
NASA Technical Reports Server (NTRS)
Phillips, T. G.
1984-01-01
Research results of far-infrared spectroscopy with the Kuiper Airborne Observatory are discussed. Both high and intermediate resolution have been successfully employed in the detection of many new molecular and atomic lines including rotational transition of hydrides such as OH, H2O, NH3 and HCl; high J rotational transitions of CO; and the ground state fine structure transitions of atomic carbon, oxygen, singly ionized carbon and doubly ionized oxygen and nitrogen. These transitions have been used to study the physics and chemistry of clouds throughout the galaxy, in the galactic center region and in neighboring galaxies. This discussion is limited to spectroscopic studies of interstellar gas.
NASA Astrophysics Data System (ADS)
de Berg, Kevin
2014-10-01
Both Lavoisier and Priestley were committed to the role of experiment and observation in their chemistry practice. According to Lavoisier the physical sciences embody three important ingredients; facts, ideas, and language, and Priestley would not have disagreed with this. Ideas had to be consistent with the facts generated from experiment and observation and language needed to be precise and reflect the known chemistry of substances. While Priestley was comfortable with a moderate amount of hypothesis making, Lavoisier had no time for what he termed theoretical speculation about the fundamental nature of matter and avoided the use of the atomic hypothesis and Aristotle's elements in his Elements of Chemistry. In the preface to this famous work he claims he has good educational reasons for this position. While Priestley and Lavoisier used similar kinds of apparatus in their chemistry practice, they came to their task with completely different worldviews as regards the nature of chemical reactivity. This paper examines these worldviews as practiced in the famous experiment on the composition of air and the implications of this for chemistry education are considered.
Core excitation effects on oscillator strengths for transitions in four electron atomic systems
NASA Astrophysics Data System (ADS)
Chang, T. N.; Luo, Yuxiang
2007-06-01
By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).
Definition of molecular structure: by choice or by appeal to observation?
Bader, Richard F W
2010-07-22
There are two schools of thought in chemistry: one derived from the valence bond and molecular orbital models of bonding, the other appealing directly to the measurable electron density and the quantum mechanical theorems that determine its behavior, an approach embodied in the quantum theory of atoms in molecules, QTAIM. No one questions the validity of the former approach, and indeed molecular orbital models and QTAIM play complementary roles, the models finding expression in the principles of physics. However, some orbital proponents step beyond the models to impose their personal stamp on their use in interpretive chemistry, by denying the possible existence of a physical basis for the concepts of chemistry. This places them at odds with QTAIM, whose very existence stems from the discovery in the observable topology of the electron density, the definitions of atoms, of the bonding between atoms and hence of molecular structure. Relating these concepts to the electron density provides the necessary link for their ultimate quantum definition. This paper explores in depth the possible causes of the difficulties some have in accepting the quantum basis of structure beginning with the arguments associated with the acceptance of a "bond path" as a criterion for bonding. This identification is based on the finding that all classical structures may be mapped onto molecular graphs consisting of bond paths linking neighboring atoms, a mapping that has no known exceptions and one that is further bolstered by the finding that there are no examples of "missing bond paths". Difficulties arise when the quantum concept is applied to systems that are not amenable to the classical models of bonding. Thus one is faced with the recurring dilemma of science, of having to escape the constraints of a model that requires a change in the existing paradigm, a process that has been in operation since the discovery of new and novel structures necessitated the extension of the Lewis model and the octet rule. The paper reviews all facets of bonding beginning with the work of Pauling and Slater in their accounting for crystal structures, taking note of Pauling's advocating possible bonding between large anions. Many examples of nonbonded or van der Waals interactions are considered from both points of view. The final section deals with the consequences of the realization that bonded quantum atoms that share an interatomic surface do not "overlap". The time has come for entering students of chemistry to be taught that the electron density can be seen, touched, and measured and that the chemical structures they learn are in fact the tracings of "bonds" onto lines of maximum density that link bonded nuclei. Matter, as we perceive it, is bound by the electrostatic force of attraction between the nuclei and the electron density.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1974-01-01
The aeronomy group at the University of Pittsburgh is actively engaged in a series of coordinated satellite, sounding rocket, and laboratory studies designed to expand and clarify knowledge of the physics and chemistry of planetary atmospheres. Three major discoveries have been made that will lead ultimately to a complete and dramatic revision of our ideas on the ionospheres of Mars, Venus, and the Earth and on the origin of their vacuum ultraviolet airglows. The results have already suggested a new generation of ionosphere studies which probably can be carried out best by laser heterodyning techniques. Laboratory studies have also identified, for the first time, the physical mechanism responsible for the remarkable nitric oxide buildup observed in some auroral arcs. This development is an important break-through in auroral physics, and has military ramifications of considerable interest to the Department of Defense. This work may also shed some light on related NO and atomic nitrogen problems in the mesosphere.
Coordinating an IPLS class with a biology curriculum: NEXUS/Physics
NASA Astrophysics Data System (ADS)
Redish, Edward
2014-03-01
A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.
Presentation of Atomic Structure in Turkish General Chemistry Textbooks
ERIC Educational Resources Information Center
Niaz, Mansoor; Costu, Bayram
2009-01-01
Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general chemistry textbooks published in Turkey based on the eight criteria developed in previous research. Criteria used referred to the atomic models of…
Atoms-First Curriculum: A Comparison of Student Success in General Chemistry
ERIC Educational Resources Information Center
Esterling, Kevin M.; Bartels, Ludwig
2013-01-01
We present an evaluation of the impact of an atoms-first curriculum on student success in introductory chemistry classes and find that initially a lower fraction of students obtain passing grades in the first and second quarters of the general chemistry series. This effect is more than reversed for first-quarter students after one year of…
Ultracold molecules for the masses: Evaporative cooling and magneto-optical trapping
NASA Astrophysics Data System (ADS)
Stuhl, B. K.
While cold molecule experiments are rapidly moving towards their promised benefits of precision spectroscopy, controllable chemistry, and novel condensed phases, heretofore the field has been greatly limited by a lack of methods to cool and compress chemically diverse species to temperatures below ten millikelvin. While in atomic physics these needs are fulfilled by laser cooling, magneto-optical trapping, and evaporative cooling, until now none of these techniques have been applicable to molecules. In this thesis, two major breakthroughs are reported. The first is the observation of evaporative cooling in magnetically trapped hydroxyl (OH) radicals, which potentially opens a path all the way to Bose-Einstein condensation of dipolar radicals, as well as allowing cold- and ultracold-chemistry studies of fundamental reaction mechanisms. Through the combination of an extremely high gradient magnetic quadrupole trap and the use of the OH Λ-doublet transition to enable highly selective forced evaporation, cooling by an order of magnitude in temperature was achieved and yielded a final temperature no higher than 5mK. The second breakthrough is the successful application of laser cooling and magneto-optical trapping to molecules. Motivated by a proposal in this thesis, laser cooling of molecules is now known to be technically feasible in a select but substantial pool of diatomic molecules. The demonstration of not only Doppler cooling but also two-dimensional magneto-optical trapping in yttrium (II) oxide, YO, is expected to enable rapid growth in the availability of ultracold molecules—just as the invention of the atomic magneto-optical trap stimulated atomic physics twenty-five years ago.
The Professorial Career of Clifford R. Haymaker: A Life of Chemistry Imagined and Bequeathed
NASA Astrophysics Data System (ADS)
Eisch, John J.; Haworth, Daniel T.
2003-03-01
The professorial career of Clifford R. Haymaker (1907-1981), a longtime professor of organic chemistry at Marquette University, constitutes a most inspiring triumph of the human spirit over physical disabilities. Blind from birth, he was endowed with exceptional powers of imagination and analysis, and he excelled in both primary and secondary schools through the tutoring of his mother and the help of his sighted classmates and teachers. Despite his blindness, he embarked upon the study of chemistry at Marquette in 1925. Again with the aid of readers and sighted laboratory classmates he obtained the B.S. degree in 1929, the M.S. degree in 1933 and finally the Ph.D. degree in 1938 for the literature study, "The Chemistry of Atomic Nuclei". Beginning as instructor of organic chemistry in 1929 and retiring as professor of chemistry in 1973, Clifford Haymaker offered lectures on theoretical and experimental organic chemistry to countless undergraduate and graduate students with a clarity and vividness that were both greatly appreciated and admired. He was a great advocate of chemical research and inspired many students to undertake studies for advance degrees in chemistry or allied sciences. The authors of this article offer personal comments on how Clifford Haymaker has influenced their careers.
ERIC Educational Resources Information Center
Spencer, James N.; And Others
1996-01-01
Presents an alternative approach to teaching reaction thermodynamics in introductory chemistry courses using calculations of enthalpies, entropies, and free energies of atomization. Uses a consistent concept, that of decomposition of a compound to its gaseous atoms, to discuss not only thermodynamic parameters but also equilibrium and…
NASA Astrophysics Data System (ADS)
Rechenberg, H.
While the 20th century is approaching its conclusion, the historian may look back and assemble the essential scientific fruits of the this period. Nearly fifty years ago, Werner Heisenberg stated in a lecture that in quantum or wave mechanics ``a new, unified science of matter has arisen, where the separation between chemistry and physics essentially lost any meaning", because (Heisenberg 1953)``The chemical properties of atoms have at least in principle become accessible to calculation, and already in the first years after the rise of quantum mechanics the simplest chemical binding, namely that of the two hydrogen atoms in the hydrogen molecule was calculated with the help of the new methods and was found in closest agreement with chemical experience. Thus the chemical valency-forces were explained on a physical basis, and the application of the new knowledge in industrial practices became only a matter of time."
Kinetic Theory and Simulation of Single-Channel Water Transport
NASA Astrophysics Data System (ADS)
Tajkhorshid, Emad; Zhu, Fangqiang; Schulten, Klaus
Water translocation between various compartments of a system is a fundamental process in biology of all living cells and in a wide variety of technological problems. The process is of interest in different fields of physiology, physical chemistry, and physics, and many scientists have tried to describe the process through physical models. Owing to advances in computer simulation of molecular processes at an atomic level, water transport has been studied in a variety of molecular systems ranging from biological water channels to artificial nanotubes. While simulations have successfully described various kinetic aspects of water transport, offering a simple, unified model to describe trans-channel translocation of water turned out to be a nontrivial task.
A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim
2018-06-01
We introduce non-equilibrium molecular hydrogen chemistry into the radiation-hydrodynamics code RAMSES-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionisation, cosmic ray ionisation and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photo-destruction. This self-shielding from Lyman-Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionised hydrogen species with their corresponding dissociating and ionising photon groups. Over a series of tests we show that our model works well compared to specialised photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.
NASA Astrophysics Data System (ADS)
Bull, Barbara Jeanne
Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four-week long investigation into the identity of an inorganic salt during their laboratory class. Students who completed the activity exhibited an improvement in their explanation of the identity of their salt's cation. After completing the activity, another question was posed about the identity of their anion. Both groups saw a decrease in the percentage of students who included reasoning in their answer; however, the activity group maintained a significantly higher percentage of responses with a reasoning than the control group.
Atomic weights of the elements 2009 (IUPAC technical report)
Wieser, M.E.; Coplen, T.B.
2011-01-01
The biennial review of atomic-weight determinations and other cognate data has resulted in changes for the standard atomic weights of 11 elements. Many atomic weights are not constants of nature, but depend upon the physical, chemical, and nuclear history of the material. The standard atomic weights of 10 elements having two or more stable isotopes have been changed to reflect this variability of atomic-weight values in natural terrestrial materials. To emphasize the fact that these standard atomic weights are not constants of nature, each atomic-weight value is expressed as an interval. The interval is used together with the symbol [a; b] to denote the set of atomic-weight values, Ar(E), of element E in normal materials for which a ≤ Ar(E) ≤ b. The symbols a and b denote the bounds of the interval [a; b]. The revised atomic weight of hydrogen, Ar(H), is [1.007 84; 1.008 11] from 1.007 94(7); lithium, Ar(Li), is [6.938; 6.997] from 6.941(2); boron, Ar(B), is [10.806; 10.821] from 10.811(7); carbon, Ar(C), is [12.0096; 12.0116] from 12.0107(8); nitrogen, Ar(N), is [14.006 43; 14.007 28] from 14.0067(2); oxygen, Ar(O), is [15.999 03; 15.999 77] from 15.9994(3); silicon, Ar(Si), is [28.084; 28.086] from 28.0855(3); sulfur, Ar(S), is [32.059; 32.076] from 32.065(2); chlorine, Ar(Cl), is [35.446; 35.457] from 35.453(2); and thallium, Ar(Tl), is [204.382; 204.385] from 204.3833(2). This fundamental change in the presentation of the atomic weights represents an important advance in our knowledge of the natural world and underscores the significance and contributions of chemistry to the well-being of humankind in the International Year of Chemistry 2011. The standard atomic weight of germanium, Ar(Ge), was also changed to 72.63(1) from 72.64(1).
Elementary and brief introduction of hadronic chemistry
NASA Astrophysics Data System (ADS)
Tangde, Vijay M.
2013-10-01
The discipline, today known as Quantum Chemistry for atomic and subatomic level interactions has no doubt made a significant historical contributions to the society. Despite of its significant achievements, quantum chemistry is also known for its widespread denial of insufficiencies it inherits. An Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures without any quantitative scientific contents. Professor R M Santilli first formulated the iso-, geno- and hyper-mathematics [1-4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli's mathematics[3-5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6-8]. In the present discussion, we have briefly reviewed the conceptual foundations of Hadronic Chemistry that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary and its application in development of a new chemical species called Magnecules.
Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng
2015-12-21
The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J.; Willacy, K.; Goldsmith, P. F.
2011-05-01
In understanding the lifecycle and chemistry of the interstellar gas, the transition from diffuse atomic to molecular gas clouds is a very important stage. The evolution of carbon from C+ to C0 and CO is a fundamental part of this transition, and C+ along with its carbon chemistry is a key diagnostic. Until now our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the dense molecular H2 phase traced by CO. However, we have generally been missing an important layer in diffuse and transition clouds, which is denoted by the warm "dark gas'', that is mostly H2 and little HI and CO, and is best traced with C+. Here, we discuss the chemistry in the transition from C+ to C0 and CO in these clouds as understood by a survey of the CII 1.9 THz (158 micron) line from a sparse survey of the inner galaxy over about 40 degrees in longitude as part of the Galactic Observations of Terahertz C+ (GOT C+) program, a Herschel Space Observatory Open Time Key Program to study interstellar clouds by sampling ionized carbon. Using the first results from GOT C+ along 11 LOSs, in a sample of 53 transition clouds, Velusamy, Langer et al. (A&A 521, L18, 2010) detected an excess of CII intensities indicative of a thick H2 layer (a significant warm H2, "dark gas'' component) around the 12CO core. Here we present a much larger, statistically significant sample of a few hundred diffuse and transition clouds traced by CII, along with auxiliary HI and CO data in the inner Galaxy between l=-30° and +30°. Our new and more extensive sample of transition clouds is used to elucidate the time dependent physical and carbon chemical evolution of diffuse to transition clouds, and transition layers. We consider the C+ to CO conversion pathways such as H++ O and C+ + H2 chemistry for CO production to constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse transition clouds.
Nanotechnology: Societal Implications - II. Individual Perspectives
NASA Astrophysics Data System (ADS)
Roco, Mihail C.; Bainbridge, William S.
Advances in nanoscience and nanotechnology promise to have major impacts on human health, wealth, and peace in the coming decades. Among the expected breakthroughs are `designer' materials created from directed assembly of atoms and molecules, and the emergence of entirely new phenomena in chemistry and physics. This book includes a collection of essays by leading scientists, engineers, and social scientists reviewing the possible uses of these impending developments in various applications, and the corresponding issues that they raise.
Nanotechnology: Societal Implications - I. Maximising Benefits for Humanity
NASA Astrophysics Data System (ADS)
Roco, Mihail C.; Bainbridge, William S.
Advances in nanoscience and nanotechnology promise to have major impacts on human health, wealth, and peace in the coming decades. Among the expected breakthroughs are `designer' materials created from directed assembly of atoms and molecules, and the emergence of entirely new phenomena in chemistry and physics. This book includes a collection of essays by leading scientists, engineers, and social scientists reviewing the possible uses of these impending developments in various applications, and the corresponding issues that they raise.
Pet Imaging Of The Chemistry Of The Brain
NASA Astrophysics Data System (ADS)
Wagner, Henry N., Jr.
1986-06-01
Advances in neurobiology today are as important as the advances in atomic physics at the turn of the century and molecular genetics in the 1950's. Positron-emission tomography is participating in these advances by making it possible for the first time to measure the chemistry of the living human brain in health and disease and to relate the changes at the molecular level to the functioning of the human mind. The amount of data generated requires modern data processing, display, and archiving capabilities. To achieve maximum benefit from the PET imaging and the derived quantitative measurements, the data must be combined with information, usually of a structural nature, from other imaging modalities, chiefly computed tomography and magnetic resonance imaging.
European Virtual Atomic And Molecular Data Center - VAMDC
NASA Astrophysics Data System (ADS)
Dimitrijevic, M. S.; Sahal-Brechot, S.; Kovacevic, A.; Jevremovic, D.; Popovic, L. C.
2010-07-01
Reliable atomic and molecular data are of great importance for different applications in astrophysics, atmospheric physics, fusion, environmental sciences, combustion chemistry, and in industrial applications from plasmas and lasers to lighting. Currently, very important resources of such data are highly fragmented, presented in different, nonstandardized ways, available through a variety of highly specialized and often poorly documented interfaces, so that the full exploitation of all their scientific worth is limited, hindering research in many topics like e.g. the characterization of extrasolar planets, understanding the chemistry of our local solar system and of the wider universe, the study of the terrestrial atmosphere and quantification of climate change; the development of the fusion rersearch, etc. The Virtual Atomic and Molecular Data Centre (http://www.vamdc.eu, VAMDC) is an European Union funded FP7 project aiming to build a secure, documented, flexible and interoperable e-science environment-based interface to existing atomic and molecular data. It will also provide a forum for training potential users and dissemination of expertise worldwide. Partners in the Consortium of the Project are: 1) Centre National de Recherche Scientifique - CNRS (Paris, Reims, Grenoble, Bordeaux, Dijon, Toulouse); 2) The Chancellor, Masters and Scholars of the University of Cambridge - CMSUC; 3) University College London - UCL; 4) Open University - OU; (Milton Keynes, England); 5) Universitaet Wien - UNIVIE; 6) Uppsala Universitet - UU; 7) Universitaet zu Koeln - KOLN; 8) Istituto Nazionale di Astrofisica - INAF (Catania, Cagliari); 9) Queen's University Belfast - QUB; 10) Astronomska Opservatorija - AOB (Belgrade, Serbia); 11) Institute of Spectroscopy RAS - ISRAN (Troitsk, Russia); 12) Russian Federal Nuclear Center - All-Russian Institute of Technical Physics - RFNC-VNIITF (Snezhinsk, Chelyabinsk Region, Russia; 13) Institute of Atmospheric Optics - IAO (Tomsk, Russia); 14) Corporacion Parque tecnologico de Merida - IVIC (Merida, Venezuela); 15) Institute for Astronomy RAS - INASAN (Moscow, Russia). This review describes the VAMDC project and its objectives.
The Physics and Chemistry of Materials
NASA Astrophysics Data System (ADS)
Gersten, Joel I.; Smith, Frederick W.
2001-06-01
A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.
NASA Astrophysics Data System (ADS)
Even, J.; Ballof, J.; Brüchle, W.; Buda, R. A.; Düllmann, Ch. E.; Eberhardt, K.; Gorshkov, A.; Gromm, E.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kratz, J. V.; Krier, J.; Liebe, D.; Mendel, M.; Nayak, D.; Opel, K.; Omtvedt, J. P.; Reichert, P.; Runke, J.; Sabelnikov, A.; Samadani, F.; Schädel, M.; Schausten, B.; Scheid, N.; Schimpf, E.; Semchenkov, A.; Thörle-Pospiech, P.; Toyoshima, A.; Türler, A.; Vicente Vilas, V.; Wiehl, N.; Wunderlich, T.; Yakushev, A.
2011-05-01
Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one -atom -at -a -time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes ( t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ˜1 mbar atmosphere in TASCA from the RTC kept at ˜1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.
Track structure: time evolution from physics to chemistry.
Dingfelder, M
2006-01-01
This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.
Yu, Haoyu S; He, Xiao; Truhlar, Donald G
2016-03-08
Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.
Before Big Science: The Pursuit of Modern Chemistry and Physics 1800-1940
NASA Astrophysics Data System (ADS)
Todd, David
1997-07-01
Mary Jo Nye. Twayne, An Imprint of Simon & Schuster Macmillan: New York, 1996. 282 pp, 11 illus. ISBN 0-8057-9512-X. Cloth. $32.95. Mary Jo Nye, Professor of Humanities and History at Oregon State University, has, since at least 1972, been publishing in the area of the history of science - in particular, physics and chemistry. Her latest book goes at length into the difficulties encountered by 19th century chemists in working out relative atomic weights and the geometry of bound carbon, and by physicists in coping with the problems of the nature of light, whether heat was a fluid or not, and the mechanical equivalent of heat, and problems posed by magnetism and electricity. An example of the mental blocks that had to be overcome is the author's quotation of a French chemist's statement to his students in the late 19th century that "bodies which are not volatile do not have molecular weight", since their molecular weights could not be determined by the Dumas method.
The physics and chemistry of graphene-on-surfaces.
Zhao, Guoke; Li, Xinming; Huang, Meirong; Zhen, Zhen; Zhong, Yujia; Chen, Qiao; Zhao, Xuanliang; He, Yijia; Hu, Ruirui; Yang, Tingting; Zhang, Rujing; Li, Changli; Kong, Jing; Xu, Jian-Bin; Ruoff, Rodney S; Zhu, Hongwei
2017-07-31
Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major "graphene-on-surface" structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.
Insights into the physical chemistry of materials from advances in HAADF-STEM
Sohlberg, Karl; Pennycook, Timothy J.; Zhou, Wu; ...
2014-11-13
The observation that, ‘‘New tools lead to new science’’[P. S. Weiss, ACS Nano., 2012, 6(3), 1877–1879], is perhaps nowhere more evident than in scanning transmission electron microscopy (STEM). Advances in STEM have endowed this technique with several powerful and complimentary capabilities. For example, the application of high-angle annular dark-field imaging has made possible real-space imaging at subangstrom resolution with Z-contrast (Z = atomic number). Further advances have wrought: simultaneous real-space imaging and elemental identification by using electron energy loss spectroscopy (EELS); 3-dimensional (3D) mapping by depth sectioning; monitoring of surface diffusion by time-sequencing of images; reduced electron energy imaging formore » probing graphenes; etc. In this paper we review how these advances, often coupled with first-principles theory, have led to interesting and important new insights into the physical chemistry of materials. We then review in detail a few specific applications that highlight some of these STEM capabilities.« less
Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less
Publications of LASL research, 1972--1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, L.
1977-04-01
This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less
NASA Astrophysics Data System (ADS)
Wang, Zhe-Chen; Bierbaum, Veronica M.
2016-06-01
The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.
Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu
2016-01-21
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle
Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu
2016-01-01
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Chambers, Scott A.
Scanning transmission electron microscopy (STEM) has become one of the fundamental tools to characterize oxide interfaces and superlattices. Atomic-scale structure, chemistry, and composition mapping can now be conducted on a wide variety of materials systems thanks to the development of aberration-correctors and advanced detectors. STEM imaging and diffraction, coupled with electron energy loss (EELS) and energy-dispersive X-ray (EDS) spectroscopies, offer unparalleled, high-resolution analysis of structure-property relationships. In this chapter we highlight investigations into key phenomena, including interfacial conductivity in oxide superlattices, charge screening effects in magnetoelectric heterostructures, the design of high-quality iron oxide interfaces, and the complex physics governing atomic-scalemore » chemical mapping. These studies illustrate how unique insights from STEM characterization can be integrated with other techniques and first-principles calculations to develop better models for the behavior of functional oxides.« less
Quantum-Mechanical Combinatorial Design of Solids having Target Properties
NASA Astrophysics Data System (ADS)
Zunger, Alex
2007-03-01
(1) One of the most striking aspects of solid state physics is the diversity of structural forms in which crystals appear in Nature. Not only are there many distinct crystal-types, but combinations of two or more crystalline materials (alloys) give rise to various local geometric atomic patters. The already rich repertoire of such forms has recently been significantly enhanced by the advent of artificial crystal growth techniques (MBE, STM- atom positioning, etc.) that can create desired structural forms, such as superlattices and impurity clusters even in defiance of the rules of equilibrium thermodynamics. (2) At the same time, the fields of chemistry of nanostructures and physics of structural phase-transitions have long revealed that different atomic configurations generally lead to different physical properties even without altering the chemical makeup. While the most widely - known illustration of such ``form controls function'' rule is the dramatically different color, conductivity and hardness of the allotropical forms of pure carbon (diamond,graphite, C60), the physics of semiconductor superstructures and nanostructures is full of striking examples of how optical, magnetic and transport properties depend sensitively on atomic configuration. (3) Yet, the history of material research has generally occurred via accidental discoveries of material structures having interesting physical property (semiconductivity, ferromagnetism; superconductivity etc.). This begs the question: can this discovery process be inverted, i.e. can we first articulate a desired target physical property, then search (within a class) for the configuration that has this property? (4) The number of potentially interesting atomic configurations exhibits a combinatorial explosion, so even fast synthesis or fast computations can not survey all. (5) This talk describes the recent steps made by solid state theory + computational physics to address this ``Inverse Design'' (Franceschetti & Zunger, Nature, 402, 60 (1999) problem. I will show how Genetic Algorithms, in combination with efficient (``Order N'') solutions to the Pseudopotential Schrodinger equation allow us to investigate astronomical spaces of atomic configurations in search of the structure with a target physical property. Only a small fraction of all (˜ 10**14 in our case) configurations need to be examined. Physical properties are either calculated on-the-fly (if it's easy), or first ``Cluster-Expanded'' (if the theory is difficult). I will illustrate this Inverse Band Structure approach for (a) Design of required band-gaps in semiconductor superlattices; (b) architecture of impurity --clusters with desired optical properties (PRL 97, 046401, 2006) (c) search for configuration of magnetic ions in semiconductors that maximize the ferromagnetic Curie temperature (PRL, 97, 047202, 2006).
An Easily Constructed and Versatile Molecular Model
NASA Astrophysics Data System (ADS)
Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar
1996-08-01
Three-dimensional molecular models are powerful tools used in basic courses of general and organic chemistry when the students must visualize the spatial distributions of atoms in molecules and relate them to the physical and chemical properties of such molecules. This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves. These models are based upon two different types of arrays of thin flexible wires, like telephone hook-up wires, which may be bent easily but keep their shapes.
Optical laser systems at the Linac Coherent Light Source
Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...
2015-04-22
Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.
Molecular Beam Chemistry: Reactions of Oxygen Atoms with Halogen Molecules.
1982-10-15
nonlinear one has s = 3, r = 1, and n = 3/2. In the "loose" complex the bending modes go over to free rotation of the product diatomit molecule; thus s...contains no adjustable parameters. All observable properties *l of the reaction may be predicted including product velocity and angular dis- tributions...example, P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book Co., New York, 1969). 65. Equation (3) is strictly
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco
2008-11-01
The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.
The fully relativistic implementation of the convergent close-coupling method
NASA Astrophysics Data System (ADS)
Bostock, Christopher James
2011-04-01
The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures.
ERIC Educational Resources Information Center
Schreck, James O.
1986-01-01
Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…
Ultrafast electron diffraction and electron microscopy: present status and future prospects
NASA Astrophysics Data System (ADS)
Ishchenko, A. A.; Aseyev, S. A.; Bagratashvili, V. N.; Panchenko, V. Ya; Ryabov, E. A.
2014-07-01
Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure-dynamics-function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space-time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions.
Analytical fuel property effects--small combustors
NASA Technical Reports Server (NTRS)
Sutton, R. D.; Troth, D. L.; Miles, G. A.
1984-01-01
The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.
NASA Astrophysics Data System (ADS)
Rudolph, Dirk; Elding, Lars-Ivar; Fahlander, Claes; Åberg, Sven
2016-12-01
Science often develops most vigorously through challenging studies of extreme phenomena. Superheavy elements fall into such a category. What is the heaviest element that can exist in Nature? Driven by the continued search for an anticipated "island of stability" of superheavy atomic nuclei and the understanding of their underlying nuclear (in)stability and atomic structure hence chemical properties, the past decades have seen a tremendous progress in experimental ingenuity and theoretical methodology to study and characterize superheavy elements. Therefore, we are very grateful that the Nobel Foundation [1] approved and, jointly with the Knut and Alice Wallenberg Foundation [2], provided the financial resources to organize and conduct the Nobel Symposium NS160, entitled Chemistry and Physics of Heavy and Superheavy Elements. These symposia "are devoted to areas of science where breakthroughs are occurring or deal with other topics of primary cultural or social significance" [1]. About three symposia are held each year, roughly every fourth symposium promotes a topic in physics as primary research area, and from about every third symposium a contemporary Nobel Price is being awarded.
Comprehensive Glossary of Nuclear Science
NASA Astrophysics Data System (ADS)
Langlands, Tracy; Stone, Craig; Meyer, Richard
2001-10-01
We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.
Chirality in molecular collision dynamics
NASA Astrophysics Data System (ADS)
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
2006-10-31
microwave signal processing components, and micro-fluidic devices. The projected involved the preparation, surface mounting, and characterization of...Guisinger, R. Basu, and M. C. Hersam, “Atomic-level characterization and control of free radical surface chemistry using scanning tunneling microscopy...Basu, and M. C. Hersam, “Atomic level characterization and control of organosilicon surface chemistry using scanning tunneling microscopy,” presented
ERIC Educational Resources Information Center
Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.
2015-01-01
A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…
Role of Proteome Physical Chemistry in Cell Behavior.
Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A
2016-09-15
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells.
Chapman, Christopher A. R.; Chen, Hao; Stamou, Marianna; ...
2015-02-23
We report that designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron–electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale. In the present in vitro study on np-Au’s interactionmore » with cortical neuron–glia co-cultures, we demonstrate that the nanostructure of np-Au achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte surface coverage ratio. Atomic layer deposition-based surface modification was employed to decouple the effect of morphology from surface chemistry. Additionally, length scale effects were systematically studied by controlling the characteristic feature size of np-Au through variations in the dealloying conditions. In conclusion, our results show that np-Au nanotopography, not surface chemistry, reduces astrocyte surface coverage while maintaining high neuronal coverage and may enhance neuron–electrode coupling through nanostructure-mediated suppression of scar tissue formation.« less
Updated atomic weights: Time to review our table
Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.
2016-01-01
Despite common belief, atomic weights are not necessarily constants of nature. Scientists’ ability to measure these values is regularly improving, so one would expect that the accuracy of these values should be improving with time. It is the task of the IUPAC (International Union of Pure and Applied Chemistry) Commission on Isotopic Abundances and Atomic Weights (CIAAW) to regularly review atomic-weight determinations and release updated values.According to an evaluation published in Pure and Applied Chemistry [1], even the most simplified table abridged to four significant digits needs to be updated for the elements selenium and molybdenum. According to the most recent 2015 release of "Atomic Weights of the Elements" [2], another update is needed for ytterbium.
NASA Astrophysics Data System (ADS)
Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo
2013-08-01
One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.
Laboratory-directed research and development: FY 1996 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1997-05-01
This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less
Atomic weights: no longer constants of nature
Coplen, Tyler B.; Holden, Norman E.
2011-01-01
Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature
Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.
This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…
Research in Chemical Kinetics: Progress Report, January 1, 1978 to September 30, 1978
DOE R&D Accomplishments Database
Rowland, F. S.
1978-01-01
Research was conducted on the following topics: stratospheric chemistry of chlorinated molecules, atmospheric chemistry of methane, atmospheric chemistry of cosmogenic tritium, reactions of energetic and thermal radioactive atoms, methylene chemistry, and laboratory simulation of chemical reactions in Jupiter atmosphere. (DLC)
The Full Story of the Electron Configurations of the Transition Elements
ERIC Educational Resources Information Center
Schwarz, W. H. Eugen
2010-01-01
The dominant electronic valence configurations of atoms in chemical substances of a transition element of group "G" in period "n" is ("n" - 1)d[superscript "G"]"n"s[superscript 0]. Transition-metal chemistry is d orbital chemistry. In contrast, the ground states of free, unbound atoms derive, in most cases, from configurations ("n" -…
Solitary waves in a chain of repelling magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molerón, Miguel; Leonard, Andrea; Daraio, Chiara, E-mail: daraio@ethz.ch
2014-05-14
We study experimentally, numerically, and theoretically the dynamics of a one dimensional array of repelling magnets. We demonstrate that such systems support solitary waves with a profile and propagation speed that depend on the amplitude. The system belongs to the kind of nonlinear lattices studied in [Friesecke and Matthies, Physica D 171, 211–220 (2002)] and exhibits a sech{sup 2} profile in the low energy regime and atomic scale localization in the high energy regime. Such systems may find potential applications in the design of novel devices for shock absorption, energy localization and focusing. Furthermore, due to the similarity of themore » magnetic potential with the potentials governing atomic forces, the system could be used for a better understanding of important problems in physics and chemistry.« less
Roadmap of ultrafast x-ray atomic and molecular physics
NASA Astrophysics Data System (ADS)
Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L'Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.
2018-02-01
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ˜1 Ångstrom, and HHG provides unprecedented time resolution (˜50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ˜280 eV (44 Ångstroms) and the bond length in methane of ˜1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.
Roadmap of ultrafast x-ray atomic and molecular physics
Young, Linda; Ueda, Kiyoshi; Gühr, Markus; ...
2018-01-09
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10 20 W cm -2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scalesmore » can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here in this paper, we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.« less
Roadmap of ultrafast x-ray atomic and molecular physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Linda; Ueda, Kiyoshi; Gühr, Markus
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10 20 W cm -2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scalesmore » can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here in this paper, we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.« less
ERIC Educational Resources Information Center
de Berg, Kevin Charles
2014-01-01
Physical Chemistry's birth was fraught with controversy, a controversy about electrolyte solution chemistry which has much to say about how scientific knowledge originates, matures, and responds to challenges. This has direct implications for the way our students are educated in physical chemistry in particular and science in general. The…
Entangling spin-spin interactions of ions in individually controlled potential wells
NASA Astrophysics Data System (ADS)
Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David
2014-03-01
Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.
Have a Chemistry Field Day in Your Area.
ERIC Educational Resources Information Center
Mattson, Bruce M.; And Others
1989-01-01
Describes a full day of chemistry fun and competition for high school chemistry students. Notes teams have five students from each high school. Lists five competitive events for each team: titration, qualitative analysis, balancing equations, general chemistry quiz, and quantitative analysis with atomic absorption spectroscopy. (MVL)
Captives of Their Fantasies: The German Atomic Bomb Scientists
NASA Astrophysics Data System (ADS)
Klotz, Irving M.
1997-02-01
When the Nazi government collapsed in May, 1945, an Allied intelligence mission took into custody nine of the German scientists who played key roles in the German atomic bomb project. Under great secrecy these men were confined in a large country house, Farm Hall, near Cambridge (England), and their conversations were recorded surreptitiously by hidden microphones in every room. The transcripts were kept TOP SECRET for 47 years and were finally released recently. They give fascinating insights into the personalities of the guests and invaluable information on what the Germans really understood about the physics and chemistry of a nuclear reactor and an atomic bomb. The Farm Hall transcripts clearly establish that (a) the Germans on August 6, 1945 did not believe that the Allies had exploded an atomic bomb over Hiroshima that day; (b) they never succeeded in constructing a self-sustaining nuclear reactor; (c) they were confused about the differences between an atomic bomb and a reactor; (d) they did not know how to correctly calculate the critical mass of a bomb; (e) they thought that "plutonium" was probably element 91. The Farm Hall transcripts contradict the self-serving and sensationalist writings about German efforts that have appeared during the past fifty years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less
Importance of chlorine atom oxidation to tropospheric chemistry in an urban, coastal environment
NASA Astrophysics Data System (ADS)
Young, C. J.; Washenfelder, R. A.; Edwards, P.; Gilman, J. B.; Kuster, W. C.; Brown, S. S.
2012-12-01
Chlorine atom contribution to tropospheric chemistry is considered to be small on a global scale. It has been demonstrated to be significant in a few areas, such as the Arctic, using ratios of volatile organic compounds (VOCs) as tracers. During the CalNex campaign in Los Angeles, CA, Cl was shown to be a significant contributor to the primary radical budget. However, ratios of VOCs during this time period show no evidence of Cl atom oxidation. Using the Master Chemical Mechanism model, we investigate this discrepancy. We observe that the VOC ratios are highly dependent on the presence of secondary radicals through radical propagation, which are dependent on NOx levels. Thus, we suggest that in a high-NOx urban environment, VOC ratios are an unsuitable tracer of the importance of Cl chemistry. During the CalNex campaign, Cl atom reactivity is approximately an order of magnitude larger than OH radical reactivity. Further, Cl atoms react preferentially with unsaturated compounds for which OH reaction rates are small. Using the model, we determine the amount of additional ozone that can be expected in Los Angeles as a result of the presence of Cl atom reactivity.
What is life? Bio-physical perspectives.
Gladyshev, G P
2009-01-01
Life arises and develops in gravitationally bound atomic systems, under certain conditions, in the presence of the inflow of energy. A condition of structural dynamic reactivity to the energy inflow qualifies what are anthropomorphically considered as "alive objects". Alive objects, in this perspective, include such rudimentary animate atomic structures as the retinal molecule C20H28o to the herpes simplex virus C102H152N26o29 to the human being, a twenty-six element atomic structure, which can be quantified further as thermodynamic quasi-closed supramolecular systems, which are part of natural open systems. These systems appear and evolve in periodic conditions near to internal equilibrium. This systems attribute of dynamic life can be understood further by the determination and use of mathematical "state functions", which are functions that quantify the state of a system defined by the ensemble of physical quantities: temperature, pressure, composition, etc., which characterize the system, but neither by its surroundings nor by its history. In this view, the phenomenon of a life is easily understood as a general consequence of the laws of the universe, in particular, the laws of thermodynamics, which in the geocentric perspective translate to a formulation of "hierarchical thermodynamics" and a "principle of substance stability". The formation of living thermodynamic structures, in short, arises on the nanolevel by a constantly varying environment that causes variety of living forms. The definition of a life as the bio-chemical-physical phenomenon can thus be given on the basis of the exact sciences, i. e. chemistry, physics, and thermodynamics, without mention of numerous private attributes of a living substance and without physically baseless models of mathematical modeling, such as Prigoginean thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, W.W.
1976-01-01
Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)
ERIC Educational Resources Information Center
Pfennig, Brian W.; Schaefer, Amy K.
2011-01-01
A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…
Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom
ERIC Educational Resources Information Center
Clark, Ted M.; Chamberlain, Julia M.
2014-01-01
An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…
ERIC Educational Resources Information Center
Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.
2015-01-01
Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…
European TV Brings Chemistry into the Home
ERIC Educational Resources Information Center
O'Sullivan, Dermot A.
1975-01-01
Describes television programs broadcast in the Netherlands and West Germany which explain what chemistry is all about. Both programs, planned under the direction of trained chemists, comprise 13 half-hour presentations and include segments on energy, polymers, chemical processes, the chemistry of life, atomic and molecular chemistry, and chemistry…
Quantum Tunnelling to the Origin and Evolution of Life
Trixler, Frank
2013-01-01
Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling might seem to be an exotic process only important for special physical effects and applications such as the Tunnel Diode, Scanning Tunnelling Microscopy (electron tunnelling) or Near-field Optical Microscopy operating in photon tunnelling mode. However, this review demonstrates that tunnelling can do far more, being of vital importance for life: physical and chemical processes which are crucial in theories about the origin and evolution of life can be traced directly back to the effects of quantum tunnelling. These processes include the chemical evolution in stellar interiors and within the cold interstellar medium, prebiotic chemistry in the atmosphere and subsurface of planetary bodies, planetary habitability via insolation and geothermal heat as well as the function of biomolecular nanomachines. This review shows that quantum tunnelling has many highly important implications to the field of molecular and biological evolution, prebiotic chemistry and astrobiology. PMID:24039543
1990-02-16
radiation has a bent configuration. From the internal energy distributions in the CN fragment, a lower limit for the heat of formation of NCO, 40.7 kcal/mole...Physics, Ben-Gurion University of the Negev Beer-Sheva 84105, Israel Abstract The electronic excitation of Pb atoms in the gas phase, following the...and the calculations indicate that high concentrations of excited, effectively long-lived Pb states are maintained as a result of radiation -trapping
Origin and Future of Plasmonic Optical Tweezers
Huang, Jer-Shing; Yang, Ya-Tang
2015-01-01
Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field. PMID:28347051
Origin and Future of Plasmonic Optical Tweezers.
Huang, Jer-Shing; Yang, Ya-Tang
2015-06-12
Plasmonic optical tweezers can overcome the diffraction limits of conventional optical tweezers and enable the trapping of nanoscale objects. Extension of the trapping and manipulation of nanoscale objects with nanometer position precision opens up unprecedented opportunities for applications in the fields of biology, chemistry and statistical and atomic physics. Potential applications include direct molecular manipulation, lab-on-a-chip applications for viruses and vesicles and the study of nanoscale transport. This paper reviews the recent research progress and development bottlenecks and provides an overview of possible future directions in this field.
Recent developments in LIBXC - A comprehensive library of functionals for density functional theory
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.
2018-01-01
LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.
Silicon chemistry in interstellar clouds
NASA Technical Reports Server (NTRS)
Langer, William D.; Glassgold, A. E.
1990-01-01
A new model of interstellar silicon chemistry is presented that explains the lack of SiO detections in cold clouds and contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine-structure levels of the silicon atom. As part of the explanation of the lack of SiO detections at low temperatures and densities, the model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundance of oxygen bearing molecules and the depletion of interstellar silicon.
On the Making of Quantum Chemistry in Germany
NASA Astrophysics Data System (ADS)
Karachalios, Andreas
During the 1990s several historians of science have studied the emergence of quantum chemistry as an autonomous discipline in different national contexts (Nye, 1993; Simões, 1993; Simões, forthcoming; Gavroglu and Simões, 1994; Karachalios, 1997a). Beyond these disciplinary studies, a number of contributions to special aspects of this theme have appeared (Schweber, 1990; Gavroglu, 1995; Simões and Gavroglu, 1997, 1999a,b; Schwarz et al., 1999). In this literature the birth of quantum chemistry has generally been associated with two dates: the 1927 paper of Walter Heitler and Fritz London and the year 1931 in which Linus Pauling and John Clarke Slater independently explained the tetrahedral orientation of the four bonds of the carbon atom. To these dates we might also add a third: in 1928 London published a paper, 'Zur Quantentheorie der homöopolaren Valenzzahlen' (London, 1928), in which he gave a quantum mechanical explanation of the classical chemical notion of valency. There he showed a relationship between the valency numbers and the spectroscopical multiplicity, namely that valency=multiplicity-1. This relation established a bridge between physical and chemical facts. Taken together, these developments constitute important events for the international development of quantum chemistry.
Competition between Halogen, Hydrogen and Dihydrogen Bonding in Brominated Carboranes.
Fanfrlík, Jindřich; Holub, Josef; Růžičková, Zdeňka; Řezáč, Jan; Lane, Paul D; Wann, Derek A; Hnyk, Drahomír; Růžička, Aleš; Hobza, Pavel
2016-11-04
Halogen bonds are a subset of noncovalent interactions with rapidly expanding applications in materials and medicinal chemistry. While halogen bonding is well known in organic compounds, it is new in the field of boron cluster chemistry. We have synthesized and crystallized carboranes containing Br atoms in two different positions, namely, bound to C- and B-vertices. The Br atoms bound to the C-vertices have been found to form halogen bonds in the crystal structures. In contrast, Br atoms bound to B-vertices formed hydrogen bonds. Quantum chemical calculations have revealed that halogen bonding in carboranes can be much stronger than in organic architectures. These findings open new possibilities for applications of carboranes, both in materials and medicinal chemistry. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
What is What in the Nanoworld: A Handbook on Nanoscience and Nanotechnology
NASA Astrophysics Data System (ADS)
Borisenko, Victor E.; Ossicini, Stefano
2004-10-01
This introductory, reference handbook summarizes the terms and definitions, most important phenomena, and regulations discovered in the physics, chemistry, technology, and application of nanostructures. These nanostructures are typically inorganic and organic structures at the atomic scale. Fast progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanotechnology and quantum processing of information, are of strategic importance for the information society of the 21st century. The short form of information taken from textbooks, special encyclopedias, recent original books and papers provides fast support in understanding "old" and new terms of nanoscience and technology widely used in scientific literature on recent developments. Such support is indeed important when one reads a scientific paper presenting new results in nanoscience. A representative collection of fundamental terms and definitions from quantum physics, and quantum chemistry, special mathematics, organic and inorganic chemistry, solid state physics, material science and technology accompanies recommended second sources (books, reviews, websites) for an extended study of a subject. Each entry interprets the term or definition under consideration and briefly presents main features of the phenomena behind it. Additional information in the form of notes ("First described in: ?", "Recognition: ?", "More details in: ?") supplements entries and gives a historical retrospective of the subject with reference to further sources. Ideal for answering questions related to unknown terms and definitions of undergraduate and Ph.D. students studying the physics of low-dimensional structures, nanoelectronics, nanotechnology. The handbook provides fast support, when one likes to know or to remind the essence of a scientific term, especially when it contains a personal name in its title, like in terms "Anderson localization", "Aharonov-Bohm effect", "Bose-Einstein condensate", e.t.c. More than 1000 entries, from a few sentences to a page in length.
Multi-level meta-workflows: new concept for regularly occurring tasks in quantum chemistry.
Arshad, Junaid; Hoffmann, Alexander; Gesing, Sandra; Grunzke, Richard; Krüger, Jens; Kiss, Tamas; Herres-Pawlis, Sonja; Terstyanszky, Gabor
2016-01-01
In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. We investigated the operations that represent basic functionalities in Quantum Chemistry, developed the relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository.Graphical AbstractMeta-workflows and embedded workflows in the template representation.
Kinetics of Fast Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)
2002-01-01
This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.
``But you're just a physics booster!'' -- Why political advocacy for high school physics is crucial
NASA Astrophysics Data System (ADS)
Cottle, Paul
2010-10-01
There is no shortage of research-based arguments supporting the importance of high school physics. A study from the University of South Florida demonstrates the importance of high school physics for the preparation of future STEM professionals [1]. A white paper from the National Academy of Education [2] states that the usual biology-chemistry-physics sequence in high school is ``out of order'' and points out that students in 9th grade biology classes are taught concepts that make no sense to them because they ``know little about atoms and next to nothing about the chemistry and physics that can help them make sense of these structures and their functions.'' Nevertheless, in Florida the high school physics-taking rate has been declining for several years and a large fraction of the International Baccalaureate programs do not even offer IB Physics. I will argue that physicists must collectively advocate in the political arena for the expansion and improvement of high school physics. I will also provide a few examples of collective actions by scientists that may have influenced the formulation of the new high school graduation requirements in Florida. Finally, I will argue that we must lobby our colleagues in the Colleges of Education to devote their scarce resources to recruiting and training teachers in the physical sciences. [4pt] [1] W. Tyson, R. Lee, K.M. Borman, and M.A. Hanson, {Journal of Education for Students Placed at Risk} 12, 243 (2007). [0pt] [2] National Academy of Education White Paper ``Science and Mathematics Education,'' (http://www.naeducation.org/Science/and/Mathematics/Education/White/Paper.pdf).
A Synthesis of Fluid Dynamics and Quantum Chemistry for the Design of Nanoelectronics
NASA Technical Reports Server (NTRS)
MacDougall, Preston J.
1998-01-01
In 1959, during a famous lecture entitled "There's Plenty of Room at the Bottom", Richard Feynman focused on the startling technical possibilities that would exist at the limit of miniaturization, that being atomically precise devices with dimensions in the nanometer range. A nanometer is both a convenient unit of length for medium to large sized molecules, and the root of the name of the new interdisciplinary field of "nanotechnology". Essentially, "nanoelectronics" denotes the goal of shrinking electronic devices, such as diodes and transistors, as well as integrated circuits of such devices that can perform logical operations, down to dimensions in the range of 100 nanometers. The thirty-year hiatus in the development of nanotechnology can figuratively be seen as a period of waiting for the bottom-up and atomically precise construction skills of synthetic chemistry to meet the top-down reductionist aspirations of device physics. The sub-nanometer domain of nineteenth-century classical chemistry has steadily grown, and state-of-the-art supramolecular chemistry can achieve atomic precision in non-repeating molecular assemblies of the size desired for nanotechnology. For nanoelectronics in particular, a basic understanding of the electron transport properties of molecules must also be developed. Quantum chemistry provides powerful computational methods that can accurately predict the properties of small to medium sized molecules on a desktop workstation, and those of large molecules if one has access to a supercomputer. Of the many properties of a molecule that quantum chemistry routinely predicts, the ability to carry a current is one that had not even been considered until recently. "Currently", there is a controversy over just how to define this key property. Reminiscent of the situation in high-Tc superconductivity, much of the difficulty arises from the different models that are used to simplify the complex electronic structure of real materials. A model-independent approach has been proposed, that sacrifices the plentiful molecular orbitals and Bloch functions of conventional approaches, for a single three-dimensional observable quantity, the electron momentum density Pi(sub rho). This quantity is simply the probability of any electron having momentum rho, multiplied by the total number of electrons in the system (the position of the electron is uncertain). We have explored the utility of this new approach in providing a fundamental understanding of the electron transport properties of molecules that have provi been nominated as candidates for components in the design of nanoelectronics; phenylene-ethynylene oligomers. Some of the molecular systems that have been studied are sketched below.
ERIC Educational Resources Information Center
Fiasca, Michael Aldo
Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…
The impact of recent advances in laboratory astrophysics on our understanding of the cosmos.
Savin, D W; Brickhouse, N S; Cowan, J J; Drake, R P; Federman, S R; Ferland, G J; Frank, A; Gudipati, M S; Haxton, W C; Herbst, E; Profumo, S; Salama, F; Ziurys, L M; Zweibel, E G
2012-03-01
An emerging theme in modern astrophysics is the connection between astronomical observations and the underlying physical phenomena that drive our cosmos. Both the mechanisms responsible for the observed astrophysical phenomena and the tools used to probe such phenomena-the radiation and particle spectra we observe-have their roots in atomic, molecular, condensed matter, plasma, nuclear and particle physics. Chemistry is implicitly included in both molecular and condensed matter physics. This connection is the theme of the present report, which provides a broad, though non-exhaustive, overview of progress in our understanding of the cosmos resulting from recent theoretical and experimental advances in what is commonly called laboratory astrophysics. This work, carried out by a diverse community of laboratory astrophysicists, is increasingly important as astrophysics transitions into an era of precise measurement and high fidelity modeling.
Nanostructured silicon membranes for control of molecular transport.
Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J
2010-11-01
A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.
Revealing the planar chemistry of two-dimensional heterostructures at the atomic level.
Chou, Harry; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney S; Dolocan, Andrei
2015-06-23
Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices.
Art in Chemistry: Chemistry in Art. Second Edition
ERIC Educational Resources Information Center
Greenberg, Barbara R.; Patterson, Dianne
2008-01-01
This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,…
ERIC Educational Resources Information Center
Saritas, M. T.
2015-01-01
The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…
NASA Astrophysics Data System (ADS)
Flynn, C. M.; Prather, M. J.; Zhu, X.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Mao, J.; Murray, L. T.; Shindell, D. T.
2016-12-01
Experience with climate and chemistry model intercomparison projects (MIPs) has demonstrated a diversity in model projections for the chemical greenhouse gases CH4 and O3, even when forced by the same emissions. In general, the MIPs show that models diverge in the distribution of the many key trace species that control the reactivity of the troposphere (defined here as the loss of CH4 and the production and loss of O3). Two possible sources of model differences are the chemistry-transport coupling that creates the pattern of the essential precursor species, and the calculation of reactivity. Suppose that observations, such as those planned by NASA's Atmospheric Tomography (ATom) mission, provide us with enough of a chemical climatology to constrain the modeled distribution of the essential chemical species for the current epoch. Would the models calculate the same reactivity? ATom uses the DC-8 to make in situ measurements slicing through the middle of the Pacific and Atlantic Ocean basins each season and measuring the essential trace species. Unfortunately, ATom measurements will not be available until mid-2017. Here we take the baseline chemistry from one model version (as pseudo-observations) and use it to initialize 6 other global chemistry models. In this pre-ATom MIP, we take the full chemical composition for meridional slices centered on the Dateline (UC Irvine Chemistry-Transport Model, 0.6 deg resolution, 30 layers in the troposphere). We use grid cells between 0.5 and 12 km from 60 S to 60 N to initialize grid cells in the other six models (GEOS-Chem, GFDL-AM3, GISS ModelE2, GSFC GMI, NCAR, UCI CTM). The models are then integrated for 1 day and the key chemical rates (CH4, O3) are saved. These simulations assume that the initialized parcels remain unmixed over the 24 hours, and, hence, model-to-model variations will be due to differences in photochemistry, including clouds. In addition, we assess the relative importance of the precursor species by running sensitivity tests in which each of the major precursors (e.g., NOx, HOOH, HCHO, CO) is perturbed by 10%. Such sensitivity tests can help determine the causes of model differences. Overall, this new approach allows us to characterize each model's chemistry package for a wide range of designated chemical composition. The real test will be with ATom data next year.
Nanotechnology: emerging tool for diagnostics and therapeutics.
Chakraborty, Mainak; Jain, Surangna; Rani, Vibha
2011-11-01
Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.
NASA Astrophysics Data System (ADS)
Makabe, Toshiaki; Samukawa, Seiji
2007-06-01
Twenty-first century will be the era of the design technology on a firm basis of physics and chemistry under circumstances of a prospective high-speed computing along the line of environmentally friendly and economically saving society. The 4th International Workshop on Basic Aspects of Nonequilibrium Plasmas Interacting with Surfaces (BANPIS); Negative ions, their function & designability, and the 4th EU-Japan Joint Symposium on Plasma Processes (JSPP) were held at Hotel Highland Resort close to Mt. Fuji in Japan on January 30 - February 1, 2006. The joint conference was organized by the 21st century Center of Excellence (COE) for ;Optical & Electronic Device Technology for Access Networks; in Keio University, and co-operated by the Center for ;Atomic and Molecular Engineering,; in Open University, and by The Japan Society of Applied Physics.
1999 LDRD Laboratory Directed Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rita Spencer; Kyle Wheeler
This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Laboratory Directed Research and Development FY 1998 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Vigil; Kyle Wheeler
This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
Skylab experiments. Volume 1: Physical science, solar astronomy
NASA Technical Reports Server (NTRS)
1973-01-01
The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.
Laboratory directed research and development: FY 1997 progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, J.; Prono, J.
1998-05-01
This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less
NASA Astrophysics Data System (ADS)
Allen, Emily Christine
Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.
Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics
NASA Astrophysics Data System (ADS)
Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo
2014-03-01
While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.
Basic Energy Sciences Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-04
The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less
NATO Advanced Study Institute on Spectroscopy
NASA Technical Reports Server (NTRS)
DiBartolo, Baldassare; Barnes, James (Technical Monitor)
2001-01-01
This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.
Accelerator mass spectrometry for measurement of long-lived radioisotopes.
Elmore, D; Phillips, F M
1987-05-01
Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.
Accelerator Mass Spectrometry for Measurement of Long-Lived Radioisotopes
NASA Astrophysics Data System (ADS)
Elmore, David; Phillips, Fred M.
1987-05-01
Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes 10Be, 14C, 26Al, 36Cl, and 129I can now be measured in small natural samples having isotopic abundances in the range 10-12 to 10-15 and as few as 105 atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.
Zero and root loci of disturbed spring–mass systems
Lecomte, Christophe
2014-01-01
Models consisting of chains of particles that are coupled to their neighbours appear in many applications in physics or engineering, such as in the study of dynamics of mono-atomic and multi-atomic lattices, the resonances of crystals with impurities and the response of damaged bladed discs. Analytical properties of the dynamic responses of such disturbed chains of identical springs and masses are presented, including when damping is present. Several remarkable properties in the location of the resonances (poles) and anti-resonances (zeros) of the displacements in the frequency domain are presented and proved. In particular, it is shown that there exists an elliptical region in the frequency–disturbance magnitude plane from which zeros are excluded and the discrete values of the frequency and disturbance at which double poles occur are identified. A particular focus is on a local disturbance, such as when a spring or damper is modified at or between the first and last masses. It is demonstrated how, notably through normalization, the techniques and results of the paper apply to a broad category of more complex systems in physics, chemistry and engineering. PMID:24711724
Clarifying Atomic Weights: A 2016 Four-Figure Table of Standard and Conventional Atomic Weights
ERIC Educational Resources Information Center
Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.
2017-01-01
To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron,…
The Deformations of Carbon Nanotubes under Cutting.
Deng, Jue; Wang, Chao; Guan, Guozhen; Wu, Hao; Sun, Hong; Qiu, Longbin; Chen, Peining; Pan, Zhiyong; Sun, Hao; Zhang, Bo; Che, Renchao; Peng, Huisheng
2017-08-22
The determination of structural evolution at the atomic level is essential to understanding the intrinsic physics and chemistries of nanomaterials. Mechanochemistry represents a promising method to trace structural evolution, but conventional mechanical tension generates random breaking points, which makes it unavailable for effective analysis. It remains difficult to find an appropriate model to study shear deformations. Here, we synthesize high-modulus carbon nanotubes that can be cut precisely, and the structural evolution is efficiently investigated through a combination of geometry phase analysis and first-principles calculations. The lattice fluctuation depends on the anisotropy, chirality, curvature, and slicing rate. The strain distribution further reveals a plastic breaking mechanism for the conjugated carbon atoms under cutting. The resulting sliced carbon nanotubes with controllable sizes and open ends are promising for various applications, for example, as an anode material for lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Horstemeyer, M. F.
This review of multiscale modeling covers a brief history of various multiscale methodologies related to solid materials and the associated experimental influences, the various influence of multiscale modeling on different disciplines, and some examples of multiscale modeling in the design of structural components. Although computational multiscale modeling methodologies have been developed in the late twentieth century, the fundamental notions of multiscale modeling have been around since da Vinci studied different sizes of ropes. The recent rapid growth in multiscale modeling is the result of the confluence of parallel computing power, experimental capabilities to characterize structure-property relations down to the atomic level, and theories that admit multiple length scales. The ubiquitous research that focus on multiscale modeling has broached different disciplines (solid mechanics, fluid mechanics, materials science, physics, mathematics, biological, and chemistry), different regions of the world (most continents), and different length scales (from atoms to autos).
Role of Proteome Physical Chemistry in Cell Behavior
2016-01-01
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell’s proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell’s proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2–3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells. PMID:27513457
Chemical and Hydrodynamical Models of Cometary Comae
NASA Technical Reports Server (NTRS)
Charnley, Steven
2012-01-01
Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.
Schwabe, Christian
2002-11-01
The new hypothesis of evolution establishes a contiguity of life sciences with cosmology, physics, and chemistry, and provides a basis for the search for life on other planets. Chemistry is the sole driving force of the assembly of life, under the subtle guidance exerted by bonding orbital geometry. That phenomenon leads to multiple origins that function on the same principles but are different to the extent that their nucleic acid core varies. Thus, thoughts about the origins of life and the development of complexity have been transferred from the chance orientation of the past to the realm of atomic structures, which are subject to the laws of thermodynamics and kinetics. Evolution is a legitimate subject of basic science, and the complexity of life will submit to the laws of chemistry and physics as the problem is viewed from a new perspective. The paradigm connects life to the big events that formed every sphere of our living space and that keeps conditions fine-tuned for life to persist, perhaps a billion years or more. The "genomic potential" hypothesis leads to the prediction that life like ours is likely to exist in galaxies that are as distant from the origin of the universe as the Milky Way, and that the habitable zone of our galaxy harbors other living planets as well. Copyright 2002 Wiley-Liss, Inc.
Bayesian Methods and Universal Darwinism
NASA Astrophysics Data System (ADS)
Campbell, John
2009-12-01
Bayesian methods since the time of Laplace have been understood by their practitioners as closely aligned to the scientific method. Indeed a recent Champion of Bayesian methods, E. T. Jaynes, titled his textbook on the subject Probability Theory: the Logic of Science. Many philosophers of science including Karl Popper and Donald Campbell have interpreted the evolution of Science as a Darwinian process consisting of a `copy with selective retention' algorithm abstracted from Darwin's theory of Natural Selection. Arguments are presented for an isomorphism between Bayesian Methods and Darwinian processes. Universal Darwinism, as the term has been developed by Richard Dawkins, Daniel Dennett and Susan Blackmore, is the collection of scientific theories which explain the creation and evolution of their subject matter as due to the Operation of Darwinian processes. These subject matters span the fields of atomic physics, chemistry, biology and the social sciences. The principle of Maximum Entropy states that Systems will evolve to states of highest entropy subject to the constraints of scientific law. This principle may be inverted to provide illumination as to the nature of scientific law. Our best cosmological theories suggest the universe contained much less complexity during the period shortly after the Big Bang than it does at present. The scientific subject matter of atomic physics, chemistry, biology and the social sciences has been created since that time. An explanation is proposed for the existence of this subject matter as due to the evolution of constraints in the form of adaptations imposed on Maximum Entropy. It is argued these adaptations were discovered and instantiated through the Operations of a succession of Darwinian processes.
ERIC Educational Resources Information Center
Hitt, Austin; Townsend, Jeffery Scott
2004-01-01
Chemistry is a difficult subject for students to understand because its core concepts--atoms, molecules, and chemical bonds--cannot be directly observed. Students primarily learn chemistry through their senses and do not distinguish between explanations at different conceptual levels. In order to master chemistry, students must develop an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darlene Roth
Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high ratesmore » of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The two main purchases are an atomic force microscope (AFM) and a scanning tunneling microscope (STM). These two devices allow us to view surfaces at much higher resolution than ever before, even to the level of individual atoms. Already the AFM has been incorporated into courses for advanced physics and biology students, allowing them to view at high resolution material such as carbon nanotubes, cell structure, and proteins. These devices offer possibilities for interdisciplinary collaboration among students and faculty in various departments that have barely begun to be tapped. Additional equipment, such as software, optical tables, lasers, and other support equipment, is also strengthening our research and teaching capabilities in optics-related areas.« less
Presidential Green Chemistry Challenge: 2009 Academic Award
Presidential Green Chemistry Challenge 2009 award winner, Professor Krzysztof Matyjaszewski, developed Atom Transfer Radical Polymerization to make polymers with copper catalysts and environmentally friendly reducing agents.
Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne
2015-01-01
The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.
ERIC Educational Resources Information Center
Ochterski, Joseph W.
2014-01-01
This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…
Physical Chemistry in Practice: Evaluation of DVD Modules
ERIC Educational Resources Information Center
Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.
2007-01-01
The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…
Development of a microlesson in teaching energy levels of atoms
NASA Astrophysics Data System (ADS)
Rodriguez, Cherilyn A.; Buan, Amelia T.
2018-01-01
Energy levels of atoms is one of the difficult topics in understanding atomic structure of matter. It appears tobe abstract, theoretical and needs visual representation and images. Hence, in this study a microlesson in teaching the high school chemistry concept on the energy levels of atoms is developed and validated. The researchers utilized backward curriculum design in planning the microlesson to meet the standards of the science K-12 curriculum. The planning process of the microlesson involved a) Identifying the learning competencies in K-12 science curriculum b) write learning objectives c) planning of assessment tools d) making a storyboard e) designing the microlesson and validate and revise the microlesson. The microlesson made use of varied resources in the internet from which the students accessed and collected information about energy levels of atoms. Working in groups, the students synthesized the information on how and why fireworks produce various colors of light through a post card. Findings of the study showed that there was an increase of achievement in learning the content and the students were highly motivated to learn chemistry. Furthermore, the students perceived that the microlesson helped them to understand the chemistry concept through the use of appropriate multimedia activities.
Nakatsuji, Hiroshi
2012-09-18
Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement functions because they are the elements of the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very accurate solutions of the SE for the ground and excited states of the Born-Oppenheimer (BO) and non-BO states of very small systems like He, H(2)(+), H(2), and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE) method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods for the calculations of ordinary molecules would allow researchers to make these calculations more easily.
Synthesis and chemistry of elemental 2D materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.
2017-01-25
2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case formore » synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.« less
Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf
2017-11-20
By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Web-Based Job Submission Interface for the GAMESS Computational Chemistry Program
ERIC Educational Resources Information Center
Perri, M. J.; Weber, S. H.
2014-01-01
A Web site is described that facilitates use of the free computational chemistry software: General Atomic and Molecular Electronic Structure System (GAMESS). Its goal is to provide an opportunity for undergraduate students to perform computational chemistry experiments without the need to purchase expensive software.
Connecting the Visible World with the Invisible
ERIC Educational Resources Information Center
Pentecost, Thomas; Weber, Sarah; Herrington, Deborah
2016-01-01
Research suggests that connecting the visible (macroscopic) world of chemical phenomena to the invisible (particulate) world of atoms and molecules enhances student understanding in chemistry. This approach aligns with the science standards and is fundamental to the redesigned AP Chemistry curriculum. However, chemistry is usually taught at the…
Provocative Opinion: Can Chemistry be Learned Without Understanding?
ERIC Educational Resources Information Center
Sanderson, R. T.
1974-01-01
Voices the opinion that clearer and more useful explanations of common chemistry are needed to facilitate understanding. Presents examples from the realms of atomic structure, periodic table, history of chemistry, valence, electronegativity, electrode potentials, covalent bonds, polar covalence, bond energy, and causes of chemical change. (GS)
Using Games To Teach Chemistry: An Annotated Bibliography.
ERIC Educational Resources Information Center
Russell, Jeanne V.
1999-01-01
Lists 67 published or marketed chemistry games organized under the following categories: (1) general knowledge; (2) elements and atomic structure; (3) nomenclature, formulas, and equation writing; (4) chemical reactions; (5) solutions and solubilities; (6) organic chemistry, and (8) miscellaneous subjects. Includes a brief description of each…
Basic Chemistry for the Cement Industry.
ERIC Educational Resources Information Center
Turner, Mason
This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…
Timing and Impact of Bohr's Trilogy
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Wang, Lei; Yin, Ming; Datta, Timir
2014-03-01
In their article- Genesis of the Bohr Atom Heilbron and Kuhn asked - what suddenly turned his [Bohr's] attention, to atom models during June 1912- they were absolutely right; during the short period in question Bohr had made an unexpected change in his research activity, he has found a new interest ``atom'' and would soon produce a spectacularly successful theory about it in his now famous trilogy papers in the Phil Mag (1913). We researched the trilogy papers, Bohr`s memorandum, his own correspondence from that time in question and activities by Moseley (Manchester), Henry and Lawrence Bragg. Our work suggests that Bohr, also at Manchester that summer, was likely to have been inspired by Laue's sensational discovery in April 1912, of X-ray interference from atoms in crystals. The three trilogy papers include sixty five distinct (numbered) references from thirty one authors. The publication dates of the cited works range from 1896 to 1913. Bohr showed an extraordinary skill in navigating thru the most important and up-to date works. Eleven of the cited authors (Bohr included, but not John Nicholson) were recognized by ten Noble prizes, six in physics and four in chemistry.
Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range.
Zhang, Yuxia; Yu, Haohai; Zhang, Rui; Zhao, Gang; Zhang, Huaijin; Chen, Yanxue; Mei, Liangmo; Tonelli, Mauro; Wang, Jiyang
2017-02-01
Visible lasers are a fascinating regime, and their significance is illustrated by the 2014 Noble prizes in physics and chemistry. With the development of blue laser diodes (LDs), the LD-pumped solid-state visible lasers become a burgeoning direction today. Constrained by the scarce visible optical modulators, the solid-state ultrafast visible lasers are rarely realized. Based on the bandgap structure and optoelectronic properties of atomic-layer MoS2, it can be proposed that MoS2 has the potential as a visible optical modulator. Here, by originally revealing layer-dependent nonlinear absorption of the atomic-layer MoS2 in the visible range, broadband atomic-layer MoS2 optical modulators for the visible ultrafast pulse generation are developed and selected based on the proposed design criteria for novel two-dimensional (2D) optical modulators. By applying the selected MoS2 optical modulators in the solid-state praseodymium lasers, broadband mode-locked ultrafast lasers from 522 to 639 nm are originally realized. We believe that this Letter should promote the development of visible ultrafast photonics and further applications of 2D optoelectronic materials.
James Franck and the 1919 Discovery of Metastable States
NASA Astrophysics Data System (ADS)
Gearhart, Clayton
Today physicists associate metastable states in atoms with theoretical selection rules and transition probabilities. But these states were first discovered experimentally, at a time when such theories were in their infancy. In 1914, James Franck and Gustav Hertz published their experiments on inelastic collisions of slow electrons with helium and mercury vapor atoms. Famously, they thought they were measuring ionization energies, and not, as we understand it today, excitation energies. During the Great War, experimentalists in North America showed that Franck and Hertz had not seen ionization, and also measured the correct ionization energy of mercury vapor atoms. As Franck resumed work after the war, he and his associates at Fritz Haber's Institute for Physical Chemistry returned to experiments on and theoretical analyses of the collisions of slow electrons with helium atoms, in brisk competition with others in England and America. They were able to measure the ionization energy and to throw new light on the non-combining singlet and ``doublet'' (later found to be triplet) spectral series in helium. In the process, they proposed for the first time the existence of metastable states, first in helium, and later in mercury.
Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P
2015-04-03
Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.
Simple Models for Nanocrystal Growth
NASA Astrophysics Data System (ADS)
Jensen, Pablo
Growth of new materials with tailored properties is one of the most active research directions for physicists. As pointed out by Silvan Schweber in his brilliant analysis of the evolution of physics after World War II [1] "An important transformation has taken place in physics: As had previously happened in chemistry, an ever larger fraction of the efforts in the field were being devoted to the study of novelty rather than to the elucidation of fundamental laws and interactions […] The successes of quantum mechanics at the atomic level immediately made it clear to the more perspicacious physicists that the laws behind the phenomena had been apprehended, that they could therefore control the behavior of simple macroscopic systems and, more importantly, that they could create new structures, new objects and new phenomena […] Condensed matter physics has indeed become the study of systems that have never before existed. Phenomena such as superconductivity are genuine novelties in the universe."
75 FR 14565 - NIST Summer Institute for Middle School Science Teachers; Availability of Funds
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
...), including, but not limited to, earth science, physical science, chemistry, physics, and/or biology. This... science, physical science, chemistry, physics and/or biology. NIST will award funding that will support... instruction in general science fields including earth science, physical science, chemistry, physics, and/or...
da Silva, Rondinelly Brandão; Lima Neto, Alcides Fernandes; Soares Dos Santos, Lucas Samuel; de Oliveira Lima, José Renato; Chaves, Mariana Helena; Dos Santos, José Ribeiro; de Lima, Geraldo Magela; de Moura, Edmilson Miranda; de Moura, Carla Verônica Rodarte
2008-10-01
Catalysts of Cu(II) and Co(II) adsorbed in chitosan was used in transesterification of soy bean and babassu oils. The catalysts were characterized by infrared, atomic absorption and TG, and biodiesels was characterized by infrared, NMR, CG, TG, physic chemistry analysis. The maximum adsorption values found for copper and cobalt cations were 1.584 and 1.260mgg(-1), respectively, in 180min. However, conversion of oils in biodiesel was better when used Co(II) adsorbed in chitosan.
1981-06-05
interactions. Aquilanti and coworkers were able to obtain two analytic forms for the interatomic potential --a Lennard - Jones (12, 6) and an exp(a, 6) function...Sec. UI.D 38 ences between the 3R and 3E- potential functions which described the interac- tions of ground-state oxygen and helium atoms. Instead, for...AO-AIOI 152 AEROSPACE CORP EL SEUMOO CA CHEMISTRY AND PHYSICS LAD r/6 17 HELIUM PLRE FLOW PREVENTION OF ATMOSPHERIC CONTAMINATION OF TAR fTCiO )JN81
NASA Astrophysics Data System (ADS)
Redshaw, Matthew
This dissertation describes high precision measurements of atomic masses by measuring the cyclotron frequency of ions trapped singly, or in pairs, in a precision, cryogenic Penning trap. By building on techniques developed at MIT for measuring the cyclotron frequency of single trapped ions, the atomic masses of 84,86Kr, and 129,132,136Xe have been measured to less than a part in 1010 fractional precision. By developing a new technique for measuring the cyclotron frequency ratio of a pair of simultaneously trapped ions, the atomic masses of 28Si, 31P and 32S have been measured to 2 or 3 parts in 10 11. This new technique has also been used to measure the dipole moment of PH+. During the course of these measurements, two significant, but previously unsuspected sources of systematic error were discovered, characterized and eliminated. Extensive tests for other sources of systematic error were performed and are described in detail. The mass measurements presented here provide a significant increase in precision over previous values for these masses, by factors of 3 to 700. The results have a broad range of physics applications: The mass of 136 Xe is important for searches for neutrinoless double-beta-decay; the mass of 28Si is relevant to the re-definition of the artifact kilogram in terms of an atomic mass standard; the masses of 84,86Kr, and 129,132,136Xe provide convenient reference masses for less precise mass spectrometers in diverse fields such as nuclear physics and chemistry; and the dipole moment of PH+ provides a test of molecular structure calculations.
ERIC Educational Resources Information Center
Donnelly, Julie; Hernández, Florencio E.
2018-01-01
Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…
Physical and Biological Modes of Thought in the Chemistry of Linus Pauling
NASA Astrophysics Data System (ADS)
Nye, Mary Jo
No figure in modern chemistry better exemplifies than Linus Pauling (1901-1994) the intersections of the scientific disciplines of chemistry, physics, and biology nor the roles of physical and biological modes of thought in the 'central science' of chemistry.
Isotope-abundance variations of selected elements (IUPAC technical report)
Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.
2002-01-01
Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.
Nuclear Chemistry, Science (Experimental): 5316.62.
ERIC Educational Resources Information Center
Williams, Russell R.
This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…
NASA Astrophysics Data System (ADS)
Beeman-Cadwallader, Nicole
In 2007 Pioneer High School, a public school in Whittier, California changed the sequence of its science courses from the Traditional Biology-Chemistry-Physics (B-C-P) to Biology-Physics-Chemistry (B-P-C), or "Physics Second." The California Standards Tests (CSTs) scores in Physics and Chemistry from 2004-2012 were used to determine if there were any effects of the Physics Second sequencing on student achievement in those courses. The data was also used to determine whether the Physics Second sequence had an effect on performance in Physics and Chemistry based on gender. Independent t tests and chi-square analysis of the data determined an improvement in student performance in Chemistry but not Physics. The 2x2 Factorial ANOVA analysis revealed that in Physics male students performed better on the CSTs than their female peers. In Chemistry, it was noted that male and female students performed equally well. Neither finding was a result ofthe change to the "Physics Second" sequencing.
Tomalia, Donald A; Khanna, Shiv N
2016-02-24
Development of a central paradigm is undoubtedly the single most influential force responsible for advancing Dalton's 19th century atomic/molecular chemistry concepts to the current maturity enjoyed by traditional chemistry. A similar central dogma for guiding and unifying nanoscience has been missing. This review traces the origins, evolution, and current status of such a critical nanoperiodic concept/framework for defining and unifying nanoscience. Based on parallel efforts and a mutual consensus now shared by both chemists and physicists, a nanoperiodic/systematic framework concept has emerged. This concept is based on the well-documented existence of discrete, nanoscale collections of traditional inorganic/organic atoms referred to as hard and soft superatoms (i.e., nanoelement categories). These nanometric entities are widely recognized to exhibit nanoscale atom mimicry features reminiscent of traditional picoscale atoms. All unique superatom/nanoelement physicochemical features are derived from quantized structural control defined by six critical nanoscale design parameters (CNDPs), namely, size, shape, surface chemistry, flexibility/rigidity, architecture, and elemental composition. These CNDPs determine all intrinsic superatom properties, their combining behavior to form stoichiometric nanocompounds/assemblies as well as to exhibit nanoperiodic properties leading to new nanoperiodic rules and predictive Mendeleev-like nanoperiodic tables, and they portend possible extension of these principles to larger quantized building blocks including meta-atoms.
Revolutions in the earth sciences
Allègre, C.
1999-01-01
The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.
Molecule formation and infrared emission in fast interstellar shocks. I Physical processes
NASA Technical Reports Server (NTRS)
Hollenbach, D.; Mckee, C. F.
1979-01-01
The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.
Ultracold molecule assembly with photonic crystals
NASA Astrophysics Data System (ADS)
Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung
2017-12-01
Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.
Siskos, Michael G; Choudhary, M Iqbal; Gerothanassis, Ioannis P
2017-03-07
The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.
Douillard, Jean-Marc; Salles, Fabrice; Henry, Marc; Malandrini, Harold; Clauss, Frédéric
2007-01-15
The surface energies of talc and chlorite is computed using a simple model, which uses the calculation of the electrostatic energy of the crystal. It is necessary to calculate the atomic charges. We have chosen to follow Henry's model of determination of partial charges using scales of electronegativity and hardness. The results are in correct agreement with a determination of the surface energy obtained from an analysis of the heat of immersion data. Both results indicate that the surface energy of talc is lower than the surface energy of chlorite, in agreement with observed behavior of wettability. The influence of Al and Fe on this phenomenon is discussed. Surface energy of this type of solids seems to depend more strongly on the geometry of the crystal than on the type of atoms pointing out of the surface; i.e., the surface energy depends more on the physics of the system than on its chemistry.
Bittencourt, Carla; Van Tendeloo, Gustaaf
2015-01-01
Summary A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms. PMID:26425406
Chemistry in 1876: The Way It Was
ERIC Educational Resources Information Center
Bernheim, Robert A.
1976-01-01
Provides a brief history of chemistry up to the founding of the American Chemical Society in 1876. Includes developments in the understanding of matter, phlogiston theory, atomic theory, and chemical reactions. (MLH)
Presidential Green Chemistry Challenge: 1997 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 1997 award winner, BHC Company, developed a highly atom-efficient method to make ibuprofen, a common painkiller, using three catalytic steps instead of six stoichiometric ones.
Supplemental Instruction in Physical Chemistry I
ERIC Educational Resources Information Center
Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth
2016-01-01
Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…
21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Atomic absorption spectrophotometer for clinical... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification...
Low earth orbit durability evaluation of Haynes 188 solar receiver material
NASA Technical Reports Server (NTRS)
De Groh, Kim K.; Rutledge, Sharon K.; Burke, Christopher A.; Dever, Therese M.; Olle, Raymond M.; Terlep, Judith A.
1992-01-01
The effects of elevated-temperature vacuum and elevated-temperature atomic oxygen exposure on the mass, surface chemistry, surface morphology, and optical properties of Haynes 188, a possible heat receiver material for space-based solar dynamic power systems, have been studied. Pristine and surface modified Haynes 188 were exposed to vacuum less than or equal to 10 exp -6 torr at 820 C for 5215.5 h, and to atomic oxygen in an air plasma asher at 34 and 827 C for fluences up to 5.6 x 10 exp 21 atoms/sq cm. Results obtained indicate that vacuum heat treatment caused surface morphology and chemistry changes with corresponding optical property changes. Atomic oxygen exposure caused optical property changes which diminished with time. Mass changes are considered to be negligible for both exposures.
Atomic Covalent Functionalization of Graphene
Johns, James E.; Hersam, Mark C.
2012-01-01
Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two-dimensional materials with fundamentally different electronic and physical properties. Specifically, we focus on recent studies of the addition of atomic hydrogen, fluorine, and oxygen to the basal plane of graphene. In each of these reactions a high energy, activating step initiates the process, breaking the local π structure and distorting the surrounding lattice. Scanning tunneling microscopy experiments reveal that substrate mediated interactions often dominate when the initial binding event occurs. We then compare these substrate effects with the results of theoretical studies that typically assume a vacuum environment. As the surface coverage increases, clusters often form around the initial distortion, and the stoichiometric composition of the saturated end product depends strongly on both the substrate and reactant species. In addition to these chemical and structural observations, we review how covalent modification can extend the range of physical properties that are achievable in two-dimensional materials. PMID:23030800
Generalized Pauli constraints in small atoms
NASA Astrophysics Data System (ADS)
Schilling, Christian; Altunbulak, Murat; Knecht, Stefan; Lopes, Alexandre; Whitfield, James D.; Christandl, Matthias; Gross, David; Reiher, Markus
2018-05-01
The natural occupation numbers of fermionic systems are subject to nontrivial constraints, which include and extend the original Pauli principle. A recent mathematical breakthrough has clarified their mathematical structure and has opened up the possibility of a systematic analysis. Early investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system's qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While the results seem incompatible with the statement that the generalized Pauli constraints drive the behavior of these systems, they suggest that the qualitatively correct wave-function expansions can in some systems already be obtained on the basis of a limited number of Slater determinants, which is in line with numerical evidence from quantum chemistry.
A new definition for the mole based on the Avogadro constant: a journey from physics to chemistry.
Milton, Martin J T
2011-10-28
The mole is the most recent addition to the set of base units that form the International System of Units, although its pre-cursor the 'gram-molecule', had been in use by both physicists and chemists for more than 120 years. A proposal has been published recently to establish a new definition for the mole based on a fixed value for the Avogadro constant. This would introduce consistent relative uncertainties for the molar and the atomic masses while making no change to the system of relative atomic masses ('atomic weights'). Although the proposal would have little impact on the measurement uncertainty of practical work, it has stimulated considerable debate about the mole and the nature of the quantity amount of substance. In this paper, the rationale for the new definition is explained against the background of changes in the way the quantity amount of substance has been used, from its first use during the early development of thermodynamics through to the use of the 'number of gram-molecules' at the end of the nineteenth century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhe-Chen; Bierbaum, Veronica M.
The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominatesmore » but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.« less
Using Computer Visualization Models in High School Chemistry: The Role of Teacher Beliefs.
ERIC Educational Resources Information Center
Robblee, Karen M.; Garik, Peter; Abegg, Gerald L.; Faux, Russell; Horwitz, Paul
This paper discusses the role of high school chemistry teachers' beliefs in implementing computer visualization software to teach atomic and molecular structure from a quantum mechanical perspective. The informants in this study were four high school chemistry teachers with comparable academic and professional backgrounds. These teachers received…
Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.
Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno
2015-01-01
Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. © 2015 The International Union of Biochemistry and Molecular Biology.
Holguín-Gallego, Fernando José; Chávez-Calvillo, Rodrigo; García-Revilla, Marco; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-07-15
The electronic energy partition established by the Interacting Quantum Atoms (IQA) approach is an important method of wavefunction analyses which has yielded valuable insights about different phenomena in physical chemistry. Most of the IQA applications have relied upon approximations, which do not include either dynamical correlation (DC) such as Hartree-Fock (HF) or external DC like CASSCF theory. Recently, DC was included in the IQA method by means of HF/Coupled-Cluster (CC) transition densities (Chávez-Calvillo et al., Comput. Theory Chem. 2015, 1053, 90). Despite the potential utility of this approach, it has a few drawbacks, for example, it is not consistent with the calculation of CC properties different from the total electronic energy. To improve this situation, we have implemented the IQA energy partition based on CC Lagrangian one- and two-electron orbital density matrices. The development presented in this article is tested and illustrated with the H2 , LiH, H2 O, H2 S, N2 , and CO molecules for which the IQA results obtained under the consideration of (i) the CC Lagrangian, (ii) HF/CC transition densities, and (iii) HF are critically analyzed and compared. Additionally, the effect of the DC in the different components of the electronic energy in the formation of the T-shaped (H2 )2 van der Waals cluster and the bimolecular nucleophilic substitution between F(-) and CH3 F is examined. We anticipate that the approach put forward in this article will provide new understandings on subjects in physical chemistry wherein DC plays a crucial role like molecular interactions along with chemical bonding and reactivity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline
NASA Astrophysics Data System (ADS)
Perkins, K. K.; Barbera, J.; Adams, W. K.; Wieman, C. E.
2007-01-01
A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors — generally required to take both of the courses — view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P ⩽ 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in `Overall' and the `Real World Connection' category, respectively, in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses.
Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.
ERIC Educational Resources Information Center
DeVoe, Howard; Hearle, Robert
This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…
Presidential Green Chemistry Challenge: 2005 Greener Synthetic Pathways Award (Merck & Co., Inc.)
Presidential Green Chemistry Challenge 2005 award winner, Merck, designed an atom-economical, energy- and water-saving, convergent synthesis for aprepitant, the active ingredient in Emend, a drug for nausea and vomiting.
2006-09-20
The stabilized free radicals FC60 (or FC70) were generated in sold argon by means of chemical reaction of the photogenerated fluorine atoms with...strong electrophile . Using quantum chemistry methods stability and structure of homoleptic Xe-containing molecules XeM2 and MXen with transition metal...apart from the main CH...F interaction, secondary interactions are present in which the fluorine of the chlorine atoms located in the haloform
Wang, Zhe-Chen; Cole, Callie A; Demarais, Nicholas J; Snow, Theodore P; Bierbaum, Veronica M
2015-08-26
Azines are important in many extraterrestrial environments, from the atmosphere of Titan to the interstellar medium. They have been implicated as possible carriers of the diffuse interstellar bands in astronomy, indicating their persistence in interstellar space. Most importantly, they constitute the basic building blocks of DNA and RNA, so their chemical reactivity in these environments has significant astrobiological implications. In addition, N and O atoms are widely observed in the ISM and in the ionospheres of planets and moons. However, the chemical reactions of molecular anions with abundant interstellar and atmospheric atomic species are largely unexplored. In this paper, gas-phase reactions of deprotonated anions of benzene, pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine with N and O atoms are studied both experimentally and computationally. In all cases, the major reaction channel is associative electron detachment; these reactions are particularly important since they control the balance between negative ions and free electron densities. The reactions of the azine anions with N atoms exhibit larger rate constants than reactions of corresponding chain anions. The reactions of azine anions with O atoms are even more rapid, with complex product patterns for different reactants. The mechanisms are studied theoretically by employing density functional theory; spin conversion is found to be important in determining some product distributions. The rich gas-phase chemistry observed in this work provides a better understanding of ion-atom reactions and their contributions to ionospheric chemistry as well as the chemical processing that occurs in the boundary layers between diffuse and dense interstellar clouds.
Atomic Oxygen Erosion Yield Prediction for Spacecraft Polymers in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Backus, Jane A.; Manno, Michael V.; Waters, Deborah L.; Cameron, Kevin C.; deGroh, Kim K.
2009-01-01
The ability to predict the atomic oxygen erosion yield of polymers based on their chemistry and physical properties has been only partially successful because of a lack of reliable low Earth orbit (LEO) erosion yield data. Unfortunately, many of the early experiments did not utilize dehydrated mass loss measurements for erosion yield determination, and the resulting mass loss due to atomic oxygen exposure may have been compromised because samples were often not in consistent states of dehydration during the pre-flight and post-flight mass measurements. This is a particular problem for short duration mission exposures or low erosion yield materials. However, as a result of the retrieval of the Polymer Erosion and Contamination Experiment (PEACE) flown as part of the Materials International Space Station Experiment 2 (MISSE 2), the erosion yields of 38 polymers and pyrolytic graphite were accurately measured. The experiment was exposed to the LEO environment for 3.95 years from August 16, 2001 to July 30, 2005 and was successfully retrieved during a space walk on July 30, 2005 during Discovery s STS-114 Return to Flight mission. The 40 different materials tested (including Kapton H fluence witness samples) were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The MISSE 2 PEACE Polymers experiment used carefully dehydrated mass measurements, as well as accurate density measurements to obtain accurate erosion yield data for high-fluence (8.43 1021 atoms/sq cm). The resulting data was used to develop an erosion yield predictive tool with a correlation coefficient of 0.895 and uncertainty of +/-6.3 10(exp -25)cu cm/atom. The predictive tool utilizes the chemical structures and physical properties of polymers to predict in-space atomic oxygen erosion yields. A predictive tool concept (September 2009 version) is presented which represents an improvement over an earlier (December 2008) version.
ERIC Educational Resources Information Center
Talanquer, Vicente
2013-01-01
Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…
Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.
ERIC Educational Resources Information Center
Cotton, F. Albert; Chisholm, Malcolm H.
1982-01-01
Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)
Glenn T. Seaborg - Contributions to Advancing Science
. Documents: The First Weighing of Plutonium (Atomic Number 94); DOE Technical Report; September 1967 The New Element Americium (Atomic Number 95); DOE Technical Report; January 1948 The New Element Curium (Atomic Number 96); DOE Technical Report; January 1948 Frontiers of Chemistry for Americium and Curium; DOE
Breen, Andrew J; Xie, Kelvin Y; Moody, Michael P; Gault, Baptiste; Yen, Hung-Wei; Wong, Christopher C; Cairney, Julie M; Ringer, Simon P
2014-08-01
Atom probe is a powerful technique for studying the composition of nano-precipitates, but their morphology within the reconstructed data is distorted due to the so-called local magnification effect. A new technique has been developed to mitigate this limitation by characterizing the distribution of the surrounding matrix atoms, rather than those contained within the nano-precipitates themselves. A comprehensive chemical analysis enables further information on size and chemistry to be obtained. The method enables new insight into the morphology and chemistry of niobium carbonitride nano-precipitates within ferrite for a series of Nb-microalloyed ultra-thin cast strip steels. The results are supported by complementary high-resolution transmission electron microscopy.
Machine learning properties of materials and molecules with entropy-regularized kernels
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip
Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).
Photoemission and photoionization time delays and rates
Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.
2017-01-01
Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414
Understanding Chemistry: Current and Possible
ERIC Educational Resources Information Center
Sanderson, R. T.
1976-01-01
Describes an instructional approach for teaching the cause-and-effect relationship between the qualities of atoms and the properties of their chemical compositions. Discusses atomic structure, ionization energies, homonuclear and heteronuclear bonding, and bond dissociation. (MLH)
Bax, Ben; Chung, Chun Wa; Edge, Colin
2017-02-01
There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.
Publications of LASL research, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A.K.
1975-05-01
This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes.
Anderson, Mark S; Gaimari, Stephen D
2003-06-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Gaimari, Stephen D.
2003-01-01
The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.
ERIC Educational Resources Information Center
Gragson, Derek E.; Hagen, John P.
2010-01-01
Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…
Descriptive Chemistry in High School Curriculum.
ERIC Educational Resources Information Center
Rajan, Raj G.
1983-01-01
Discusses incorporation of descriptive chemistry and scientific/technical writing at the high school level. After discussing the periodic table, each student prepares a paper discussing the history, atomic data, occurring/extraction/purification, properties, and uses of an element. (JN)
NASA Astrophysics Data System (ADS)
Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.
2010-01-01
Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.
Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.
ERIC Educational Resources Information Center
Schlenker, Richard M.
Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…
New Trends in Chemistry Teaching. Volume V. The Teaching of Basic Sciences: Chemistry.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France).
This collection of articles, originally published in national and international journals, is fifth in a series devoted to trends in teaching chemistry. The volume is divided into nine sections, each with an introduction explaining why papers have been selected and outlining their particular interest. Section I provides a list of atomic masses,…
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document provides a study guide for a three-credit-hour fundamentals of chemistry course for marine engineer majors. The course is composed of 17 minicourses including: chemical reactions, atomic theory, solutions, corrosion, organic chemistry, water pollution, metric system, and remedial mathematics skills. Course grading, objectives,…
Metadynamics for training neural network model chemistries: A competitive assessment
NASA Astrophysics Data System (ADS)
Herr, John E.; Yao, Kun; McIntyre, Ryker; Toth, David W.; Parkhill, John
2018-06-01
Neural network model chemistries (NNMCs) promise to facilitate the accurate exploration of chemical space and simulation of large reactive systems. One important path to improving these models is to add layers of physical detail, especially long-range forces. At short range, however, these models are data driven and data limited. Little is systematically known about how data should be sampled, and "test data" chosen randomly from some sampling techniques can provide poor information about generality. If the sampling method is narrow, "test error" can appear encouragingly tiny while the model fails catastrophically elsewhere. In this manuscript, we competitively evaluate two common sampling methods: molecular dynamics (MD), normal-mode sampling, and one uncommon alternative, Metadynamics (MetaMD), for preparing training geometries. We show that MD is an inefficient sampling method in the sense that additional samples do not improve generality. We also show that MetaMD is easily implemented in any NNMC software package with cost that scales linearly with the number of atoms in a sample molecule. MetaMD is a black-box way to ensure samples always reach out to new regions of chemical space, while remaining relevant to chemistry near kbT. It is a cheap tool to address the issue of generalization.
NASA Astrophysics Data System (ADS)
Lundin, D.; Gudmundsson, J. T.; Brenning, N.; Raadu, M. A.; Minea, T. M.
2017-05-01
The oxygen dynamics in a reactive Ar/O2 high power impulse magnetron sputtering discharge has been studied using a new reactive ionization region model. The aim has been to identify the dominating physical and chemical reactions in the plasma and on the surfaces of the reactor affecting the oxygen plasma chemistry. We explore the temporal evolution of the density of the ground state oxygen molecule O 2 ( X 1 Σg - ) , the singlet metastable oxygen molecules O 2 ( a 1 Δ g ) and O 2 ( b 1 Σ g ) , the oxygen atom in the ground state O(3P), the metastable oxygen atom O(1D), the positive ions O2 + and O+, and the negative ion O-. We furthermore investigate the reaction rates for the gain and loss of these species. The density of atomic oxygen increases significantly as we move from the metal mode to the transition mode, and finally into the compound (poisoned) mode. The main gain rate responsible for the increase is sputtering of atomic oxygen from the oxidized target. Both in the poisoned mode and in the transition mode, sputtering makes up more than 80% of the total gain rate for atomic oxygen. We also investigate the possibility of depositing stoichiometric TiO2 in the transition mode.
NASA Astrophysics Data System (ADS)
Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.
2015-05-01
Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.
Atoms in molecules, an axiomatic approach. I. Maximum transferability
NASA Astrophysics Data System (ADS)
Ayers, Paul W.
2000-12-01
Central to chemistry is the concept of transferability: the idea that atoms and functional groups retain certain characteristic properties in a wide variety of environments. Providing a completely satisfactory mathematical basis for the concept of atoms in molecules, however, has proved difficult. The present article pursues an axiomatic basis for the concept of an atom within a molecule, with particular emphasis devoted to the definition of transferability and the atomic description of Hirshfeld.
Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki
NASA Astrophysics Data System (ADS)
Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Yoshikawa, Ichiro; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Smith, H. Todd; Bagenal, Fran
2018-05-01
We report on the spatial distribution of a neutral oxygen cloud surrounding Jupiter's moon Io and along Io's orbit observed by the Hisaki satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exosphere mainly through atmospheric sputtering. Some of the neutral atoms escape from Io's gravitational sphere and form neutral clouds around Jupiter. The extreme ultraviolet spectrograph called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Japan Aerospace Exploration Agency's Hisaki satellite observed the Io plasma torus continuously in 2014-2015, and we derived the spatial distribution of atomic oxygen emissions at 130.4 nm. The results show that Io's oxygen cloud is composed of two regions, namely, a dense region near Io and a diffuse region with a longitudinally homogeneous distribution along Io's orbit. The dense region mainly extends on the leading side of Io and inside of Io's orbit. The emissions spread out to 7.6 Jupiter radii (RJ). Based on Hisaki observations, we estimated the radial distribution of the atomic oxygen number density and oxygen ion source rate. The peak atomic oxygen number density is 80 cm-3, which is spread 1.2 RJ in the north-south direction. We found more oxygen atoms inside Io's orbit than a previous study. We estimated the total oxygen ion source rate to be 410 kg/s, which is consistent with the value derived from a previous study that used a physical chemistry model based on Hisaki observations of ultraviolet emission ions in the Io plasma torus.
A Radiation Laboratory Curriculum Development at Western Kentucky University
NASA Astrophysics Data System (ADS)
Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.
2009-03-01
We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Collisional breakup in a quantum system of three charged particles
Rescigno; Baertschy; Isaacs; McCurdy
1999-12-24
Since the invention of quantum mechanics, even the simplest example of the collisional breakup of a system of charged particles, e(-) + H --> H(+) + e(-) + e(-) (where e(-) is an electron and H is hydrogen), has resisted solution and is now one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculation of the energies and directions for a final state in which all three particles are moving away from each other. Even with supercomputers, the correct mathematical description of this state has proved difficult to apply. A framework for solving ionization problems in many areas of chemistry and physics is finally provided by a mathematical transformation of the Schrodinger equation that makes the final state tractable, providing the key to a numerical solution of this problem that reveals its full dynamics.
Evaluation of Chemical Representations in Physical Chemistry Textbooks
ERIC Educational Resources Information Center
Nyachwaya, James M.; Wood, Nathan B.
2014-01-01
That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…
Frederick National Lab's Contribution to ATOM | FNLCR Staging
As a founding member organization of ATOM, the Frederick National Labwill contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive modelin
Chemistry in protoplanetary disks
NASA Astrophysics Data System (ADS)
Semenov, D. A.
2012-01-01
In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.
Guide for Teaching Chemistry-Physics Combined 1-2, 3-4 (PSSC - CHEMS).
ERIC Educational Resources Information Center
Millstone, H. George
This guide is written for a combined physics-chemistry course taught over a two-year period. The subject matter contains the major ideas in Chemical Education Materials Study (CHEMS) Chemistry and Physical Science Study Committee (PSSC) Physics. The guide includes discussion of text references, laboratory experiments, films, testing and evaluation…
NASA Astrophysics Data System (ADS)
Nakatsuji, Hiroshi
Chemistry is a science of complex subjects that occupy this universe and biological world and that are composed of atoms and molecules. Its essence is diversity. However, surprisingly, whole of this science is governed by simple quantum principles like the Schrödinger and the Dirac equations. Therefore, if we can find a useful general method of solving these quantum principles under the fermionic and/or bosonic constraints accurately in a reasonable speed, we can replace somewhat empirical methodologies of this science with purely quantum theoretical and computational logics. This is the purpose of our series of studies - called ``exact theory'' in our laboratory. Some of our documents are cited below. The key idea was expressed as the free complement (FC) theory (originally called ICI theory) that was introduced to solve the Schrödinger and Dirac equations analytically. For extending this methodology to larger systems, order N methodologies are essential, but actually the antisymmetry constraints for electronic wave functions become big constraints. Recently, we have shown that the antisymmetry rule or `dogma' can be very much relaxed when our subjects are large molecular systems. In this talk, I want to present our recent progress in our FC methodology. The purpose is to construct ``predictive quantum chemistry'' that is useful in chemical and physical researches and developments in institutes and industries
Development and Formative Evaluation of Computer Simulated College Chemistry Experiments.
ERIC Educational Resources Information Center
Cavin, Claudia S.; Cavin, E. D.
1978-01-01
This article describes the design, preparation, and initial evaluation of a set of computer-simulated chemistry experiments. The experiments entailed the use of an atomic emission spectroscope and a single-beam visible absorption spectrophometer. (Author/IRT)
Presidential Green Chemistry Challenge 2010 award winner, Dr. James C. Liao, genetically engineered microorganisms to make higher alcohols (with 3 to 8 carbon atoms) from glucose or directly from carbon dioxide (CO2).
Development of the Flame Test Concept Inventory: Measuring Student Thinking about Atomic Emission
ERIC Educational Resources Information Center
Bretz, Stacey Lowery; Murata Mayo, Ana Vasquez
2018-01-01
This study reports the development of a 19-item Flame Test Concept Inventory, an assessment tool to measure students' understanding of atomic emission. Fifty-two students enrolled in secondary and postsecondary chemistry courses were interviewed about atomic emission and explicitly asked to explain flame test demonstrations and energy level…
Is It Time to Retire the Hybrid Atomic Orbital?
ERIC Educational Resources Information Center
Grushow, Alexander
2011-01-01
A rationale for the removal of the hybrid atomic orbital from the chemistry curriculum is examined. Although the hybrid atomic orbital model does not accurately predict spectroscopic energies, many chemical educators continue to use and teach the model despite the confusion it can cause for students. Three arguments for retaining the model in the…
Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili
2003-01-01
We have investigated the energy distributions of the metastable oxygen atoms in the terrestrial thermosphere. Nascent O(lD) atoms play a fundamental role in the energy balance and chemistry of the terrestrial atmosphere, because they are produced by photo-chemical reactions in the excited electronic states and carry significant translational energies.
ERIC Educational Resources Information Center
Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo
2002-01-01
Reports on a study aimed at facilitating freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. Hypothesizes that classroom discussions based on arguments/counterarguments of the heuristic principles on which these scientists based their atomic models can facilitate students'…
ERIC Educational Resources Information Center
Becker, Nicole M.; Cooper, Melanie M.
2014-01-01
Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…
Molecular dynamics simulations through GPU video games technologies
Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia
2016-01-01
Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251
Chemistry Division. Quarterly progress report for period ending June 30, 1949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1949-09-14
Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less
Silicon chemistry in interstellar clouds
NASA Technical Reports Server (NTRS)
Langer, William D.; Glassgold, A. E.
1989-01-01
Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.
Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.
ERIC Educational Resources Information Center
Whitman, Mark
1984-01-01
Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)
Structure–property relationships in atomic-scale junctions: Histograms and beyond
Mark S. Hybertsen; Venkataraman, Latha
2016-03-03
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
Structure–property relationships in atomic-scale junctions: Histograms and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark S. Hybertsen; Venkataraman, Latha
Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure–function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, themore » scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Furthermore, harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics.« less
NASA Technical Reports Server (NTRS)
Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.
1987-01-01
An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.
Hot atoms in cosmic chemistry.
Rossler, K; Jung, H J; Nebeling, B
1984-01-01
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.
AceDRG: a stereochemical description generator for ligands
Emsley, Paul; Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas
2017-01-01
The program AceDRG is designed for the derivation of stereochemical information about small molecules. It uses local chemical and topological environment-based atom typing to derive and organize bond lengths and angles from a small-molecule database: the Crystallography Open Database (COD). Information about the hybridization states of atoms, whether they belong to small rings (up to seven-membered rings), ring aromaticity and nearest-neighbour information is encoded in the atom types. All atoms from the COD have been classified according to the generated atom types. All bonds and angles have also been classified according to the atom types and, in a certain sense, bond types. Derived data are tabulated in a machine-readable form that is freely available from CCP4. AceDRG can also generate stereochemical information, provided that the basic bonding pattern of a ligand is known. The basic bonding pattern is perceived from one of the computational chemistry file formats, including SMILES, mmCIF, SDF MOL and SYBYL MOL2 files. Using the bonding chemistry, atom types, and bond and angle tables generated from the COD, AceDRG derives the ‘ideal’ bond lengths, angles, plane groups, aromatic rings and chirality information, and writes them to an mmCIF file that can be used by the refinement program REFMAC5 and the model-building program Coot. Other refinement and model-building programs such as PHENIX and BUSTER can also use these files. AceDRG also generates one or more coordinate sets corresponding to the most favourable conformation(s) of a given ligand. AceDRG employs RDKit for chemistry perception and for initial conformation generation, as well as for the interpretation of SMILES strings, SDF MOL and SYBYL MOL2 files. PMID:28177307
ERIC Educational Resources Information Center
Tsaparlis, Georgios
2014-01-01
Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…
ERIC Educational Resources Information Center
Inglis, Michael; Mallaburn, Andrea; Tynan, Richard; Clays, Ken; Jones, Robert Bryn
2013-01-01
A recent Government response to shortages of new physics and chemistry teachers is the extended subject knowledge enhancement (SKE) course. Graduates without a physics or chemistry bachelor degree are prepared by an SKE course to enter a Postgraduate Certificate in Education (PGCE) programme to become science teachers with a physics or chemistry…
ERIC Educational Resources Information Center
Hart, Kathy, Ed.
A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…
NASA Astrophysics Data System (ADS)
Mio, Matthew J.
2017-02-01
Many logistic and instructional changes followed the incorporation of the 12 principles of green chemistry into organic chemistry laboratory courses at the University of Detroit Mercy. Over the last decade, institutional limitations have been turned into green chemical strengths in many areas, including integration of atom economy metrics into learning outcomes, replacing overly toxic equipment and reagents, and modifying matters of reaction scale and type.
Obituary: Alexander Dalgarno (1928 - 2015)
NASA Astrophysics Data System (ADS)
Hartquist, Tom; Babb, James F. Babb; Loeb, Avi
Alex Dalgarno's major contributions to the understanding of fundamental atomic and molecular processes enabled him to develop diagnostics of the physical conditions of atmospheres and astrophysical sources and to elucidate the roles of such processes in controlling those environments. He greatly influenced the research of physicists, chemists, atmospheric scientists, and astronomers, leading Sir David Bates to write, "There is no greater figure than Alex in the history of atomic physics and its applications." Alex was born and grew up in London. As a child, he enjoyed mathematical puzzles and did well at sports. He was invited to try out for the Tottenham Hotspur soccer team, but his professional sporting career ended due to an injury, which did not prevent Alex playing tennis and squash into his ninth decade. In 1945 Alex began to study Mathematics at University College London (UCL). In 1947 Sir Harrie Massey invited him to work for a PhD in Physics and suggested that Alex investigate collisions of metastable helium atoms in helium gas to determine the cross sections for excitation transfer. Richard Buckingham was Alex's immediate supervisor. After completing his graduate study in 1951, Alex became a member of staff in Applied Mathematics at the Queen's University of Belfast (QUB). He served as the Director of the Computational Laboratory after a 1954 visit to MIT, which had an electronic computer, led Alex to persuade colleagues that QUB needed one. In 1957, the poet Philip Larkin was the best man at the marriage of Alex to Barbara Kane. They had four children, Fergus, Penelope, Piers, and Rebecca, but the marriage dissolved after ten years. Alex's important work during the 1950s on the quantitative evaluation of long-range interactions underpinned his collaborations on precise scattering calculations relevant to ultra-cold collisions and the formation of atomic Bose-Einstein condensates over four decades later. He investigated the theory of atomic and molecular collisions and calculated charge transfer cross sections. Some of these proved later to be important for forming the spectra of diffuse astronomical matter surrounding high mass stars and 100 million solar mass black holes at the centers of active galaxies. In the early 1950s David Bates stimulated Alex's interest in the study of quantum processes occurring in the upper terrestrial atmosphere. Together they considered the sources of the nightglow and dayglow features and concluded that the altitudes previously inferred for them from observations were up to several hundred kilometers too large. Experiments carried on V2 rockets, like those seen by Alex in wartime London, proved him and David to be right. Alex felt that though many theorists believe that "physics is embodied in its equations," it is instead "to be found in the solutions to the equations." He was a master at developing and applying methods that simplified calculations leading to reliable solutions. Exploiting the contemporary advances in electronic computation, by the 1960s Alex and his colleagues were able to address atomic and molecular processes of increasing complexity. Their development and early applications of the S-matrix theory of molecular rotational excitation by particle impact triggered major advances in molecular physics and theoretical chemistry and in the understanding of processes important in many environments, including a wide variety of astrophysical sources. In 1967 Alex became a professor in the Harvard Department of Astronomy and a member of the staff of the Smithsonian Astrophysical Observatory. He was a team member for several Atmosphere Explorer satellite missions, which elucidated the roles of atoms and ions in the upper atmosphere and paved the way for further applications to the other planets. By 1969 Alex was publishing papers on molecular hydrogen (H2) radiative processes, including photodissociation, in which the foundations of molecular astrophysics began to emerge. H2 is the most abundant astrophysical molecule and the main constituent of the regions where stars form. Interstellar H2 was first detected directly in the following year, and data for interstellar H2 began to become abundant in 1973. Alex was well prepared and led efforts to interpret these data, from which he was able to infer the physical properties of diffuse interstellar molecular clouds. At nearly the same time he was involved in work on the ionization and energy deposition in H2 by nearly relativistic and relativistic particles called cosmic rays. The work has relevance to emission in the atmospheres of the giant planets, as well as for conditions in interstellar molecular clouds. Cosmic ray induced ionization initiates much of the basic chemistry in star forming regions, and the emissions of the product molecules control the temperatures and allow the diagnosis of the physical conditions and dynamics of the stellar nurseries. For more than four decades Alex elucidated the chemical networks governing the molecular abundances in a wide variety of astrophysical sources including star forming regions, supernova ejecta, the pregalactic universe, and extreme environments like those in the vicinities of X-ray sources powered by accretion onto black holes. The refinement of the models led to calculations predicting the existence of subsequently discovered negative ions in giant molecular clouds. One of his astrophysical interests that intrigued him late in his career was the emission of soft X-rays by comets and in the heliosphere due to charge transfer with solar wind particles, and he also worked on related processes occurring in the atmospheres of the giant planets. Alex remained very active in fundamental atomic and molecular physics, as well as for its applications to astrophysics and to terrestrial and extraterrestrial planetary atmospheres. Ultra-cold collisions and ultra-cold chemistry were major interests for Alex for much of the latest phase of his career, most recently with pioneering work on atom-molecule collisions. In the early 1980s Alex had concerns about the future of atomic, molecular, and optical (AMO) physics in the United States, where it was inadequately funded and somewhat out of fashion in many of the physics departments providing most of the physicists who became university faculty. Alex played a key role in efforts to address this issue and led a proposal to the National Science Foundation that resulted in the founding on 1 November 1988 of the Institute of Theoretical Atomic and Molecular Physics (ITAMP) at the Harvard-Smithsonian Center for Astrophysics. Alex served for five years as the first ITAMP director. A number of the former ITAMP students and postdoctoral researchers have become leading AMO physicists, and its visitor program and workshops have led to the identification and stimulation of the leading areas of AMO physics. Alex was a Fellow of the Royal Society, a member of the National Academy of Sciences, and a member (Honorary) of the Royal Irish Academy. He received many medals, including the Benjamin Franklin Medal in Physics, the Royal Society's Hughes Medal, the Royal Astronomical Society's Gold Medal, the American Geophysical Society's Fleming Medal, and the Royal Society of Chemistry's Spiers Medal. He served as the editor of the Astrophysical Journal Letters for nearly thirty years starting in 1973, as the Chair of the Harvard Department of Astronomy from 1971 to 1976, and as the Acting Director of Harvard College Observatory and then the Acting Director of the Harvard-Smithsonian Center for Astrophysics from 1971 to 1973 during a critical period of its existence. Alex was a gifted mentor who spoke and wrote with pride of his former students and postdoctoral researchers. He was able to match projects very well with the abilities of the students. He made availability to students a special priority, and despite his supply of problems would encourage students as they developed their own. Alex was very supportive of junior scientists as they developed their careers, and in addition to writing many letters of recommendation he made many visits to colleagues as they were establishing themselves elsewhere. Furthermore, Alex very graciously hosted a number of his former students when they visited. He combined quiet modesty with a confidence that reassured others, and his humor was dry, interactive, and friendly. Alex passed away peacefully on 9 April 2015 in Cambridge, Massachusetts in the company of Fern Creelan, who was his partner for 30 years.
Using Multiple Representations to Resolve Conflict in Student Conceptual Understanding of Chemistry
NASA Astrophysics Data System (ADS)
Daubenmire, Paul L.
Much like a practiced linguist, expert chemists utilize the power and elegance of chemical symbols to understand what is happening at the atomic level and to manipulate atoms and molecules to effect an observable change at the macroscopic level. Unfortunately, beginning chemistry is often taught in a way that emphasizes memorizing the symbolic representations of equations and reactions without much opportunity to meaningfully connect the observable macroscopic phenomena with an understanding of the chemistry taking place at the atomic level. The compartmentalized manner of chemistry instruction in most chemistry classrooms further nullifies the efficacy of the triplet relationship to connect between macroscopic observations, symbolic representations, and atomic scale views. If symbolic representations are presented as the goal of instruction, rather than as the means to gain understanding, then students will be impaired in developing a coherent understanding of chemical principles. This dissertation describes the development and implementation of an interview study to examine how undergraduate students interpreted multiple representations of a chemical equilibrium. To establish a baseline of ideas, students first were coached to verbally generate successive representations. They were then cued to think about the chemistry occurring between atoms and ions at the molecular level. Next, an experiment involving a change in states of matter and color was performed which paralleled the symbolic representations. Through self-explanations and verbalizing of conjectures, students were encouraged to explore, interpret, and refine their understanding of the observations related to the chemical symbols presented to them. Finally, with the goal of fostering a deeper understanding of the process of equilibrium, a dynamic visualization of the molecular level was introduced as a tool for helping students connect these multiple representations. This study revealed that one way in which students develop conceptual understanding and resolve conflicts between different representations of the same phenomena is by verbalizing their ideas as a conjecture (as a verbal explanation to advance towards a hypothesis). Thus, it is proposed that symbolic representations are most effective viewed not as an end goal but as a bridge for connecting macroscopic, visible phenomena with what is occurring at the molecular, invisible level. When the focus on merely memorizing chemical equations and symbols is removed, students can gain a coherent understanding of the meaning available when multiple representations are viewed together.
Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Berkelbach, Timothy C.; Reichman, David R.
2018-03-01
Starting with the isolation of a single sheet of graphene, the study of layered materials has been one of the most active areas of condensed matter physics, chemistry, and materials science. Single-layer transition-metal dichalcogenides are direct-gap semiconducting analogs of graphene that exhibit novel electronic and optical properties. These features provide exciting opportunities for the discovery of both new fundamental physical phenomena as well as innovative device platforms. Here, we review the progress associated with the creation and use of a simple microscopic framework for describing the optical and excitonic behavior of few-layer transition-metal dichalcogenides, which is based on symmetry, band structure, and the effective interactions between charge carriers in these materials. This approach provides an often quantitative account of experiments that probe the physics associated with strong electron–hole interactions in these quasi two-dimensional systems and has been successfully employed by many groups to both describe and predict emergent excitonic behavior in these layered semiconducting systems.
Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers
ERIC Educational Resources Information Center
More, Michelle B.
2007-01-01
A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.
Journal of Chemical Education: Software.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1989
1989-01-01
"Spreadsheets in Physical Chemistry" contains reviewed and classroom tested Lotus 1-2-3 and SuperCalc IV templates and handouts designed for use in physical chemistry courses. The 21 templates keyed to Atkins' physical chemistry textbook, the 7 numerical methods templates, and the 10 simulation templates are discussed. (MVL)
ERIC Educational Resources Information Center
Tsaparlis, Georgios
2016-01-01
In a previous publication, Jensen's scheme for the logical structure of chemistry was employed to identify a logical structure for physical chemistry, which was further used as a tool for analyzing the organization of twenty physical chemistry textbooks. In addition, science education research was considered for the study of the psychological…
ERIC Educational Resources Information Center
Griffiths, Alan Keith; Preston, Kirk R.
An understanding of the concepts of atoms and molecules is fundamental to the learning of chemistry. Any misconceptions and alternative conceptions related to these concepts which students harbor will impede much further learning. This paper identifies misconceptions related to the fundamental characteristics of atoms and molecules which Grade 12…
Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action.
Miller, R J Dwayne
2014-03-07
With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.
Nationwide Survey of the Undergraduate Physical Chemistry Course
ERIC Educational Resources Information Center
Fox, Laura J.; Roehrig, Gillian H.
2015-01-01
A nationwide survey of the undergraduate physical chemistry course was conducted to investigate the depth and breadth of content that is covered, how content is delivered, how student understanding is assessed, and the experiences and beliefs of instructors. The survey was administered to instructors of physical chemistry (N = 331) at American…
Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model
ERIC Educational Resources Information Center
Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert
2015-01-01
The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…
Physics in ``Polymers, Composites, and Sports Materials" an Interdisciplinary Course
NASA Astrophysics Data System (ADS)
Hagedorn, Eric; Suskavcevic, Milijana
2007-10-01
The undergraduate science course described uses the themes of polymers and composites, as used in sports materials, to teach some key concepts in introductory chemistry and physics. The course is geared towards students who are interested in science, but are still completing prerequisite mathematics courses required for science majors. Each class is built around a laboratory activity. Atoms, molecules and chemical reactions are taught in reference to making polyvinyl acetate (white glue) and polyvinyl alcohol (gel glue). These materials, combined with borax, form balls which are subsequently used in physics activities centered on free-fall and the coefficient of restitution. These activities allow the introduction of kinematics and dynamics. A free fall activity involving ice pellets, with and without embedded tissue paper, illustrates the properties of composites. The final series of activities uses balls, shoes, racquets and bats to further illustrate dynamics concepts (including friction, momentum and energy). The physical properties of these sports objects are discussed in terms of the materials of which they are made. The evaluation plan to determine the effectiveness of these activities and preliminary results are also presented.
Ion traps for precision experiments at rare-isotope-beam facilities
NASA Astrophysics Data System (ADS)
Kwiatkowski, Anna
2016-09-01
Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.
IN MEMORIAM In memoriam of Vladilen Letokhov (1939-2009)
NASA Astrophysics Data System (ADS)
Balykin, Victor
2011-01-01
On 21 March 2009 Professor Vladilen Letokhov passed away in Troitsk near Moscow. Letokhov was an outstanding scientist in laser physics and laser spectroscopy. He was born on 10 November 1939 in the small Siberian town of Taishet, not far from Lake Baikal. After graduating from the Moscow Institute of Physics and Technology (MIPT) in 1963, he attended the Physical Institute of the USSR Academy of Sciences. He did his postgraduate studies under the supervision of Nobel laureate Nicolay Basov. In 1969 he defended his PhD thesis on the theory of laser pulse generation and amplification, and a year later he received a second doctor of science degree in quantum radiophysics. In 1970 Vladilen went to the new Institute of Spectroscopy at the USSR Academy of Sciences in Troitsk. He became the deputy director for research and organized the department of laser spectroscopy, which he headed until his last days. Letokhov was also a faculty member at the MIPT, where he served as a professor of physics from 1972 to his death and as head of the chair of quantum optics from 1986 to 1998. Letokhov's scientific interests included various areas of laser physics, spectroscopy, chemistry, and biomedicine. His most important contributions, however, were in the field of laser spectroscopy. He was the first to realize selective detection of atoms and molecules by multiphoton resonant ionization, which made it possible to develop methods of ultrasensitive analysis. To him belonged the discovery of nonresonance feedback in random lasers. Letokhov was also among the first to achieve laser spectroscopy with sub-wavelength spatial resolution. With his collaborators, he suggested and developed methods of laser control of atomic motion, resulting in the creation of atom traps based on gradient forces. His group carried out the first experiments on cooling, collimation, and reflection of atom beams by laser radiation. Letokhov made decisive contributions to the development of methods of selective laser chemistry, including isotope-selective multiphoton dissociation of molecules by IR laser radiation and vibrationally mediated photochemistry. He developed several effective schemes of laser isotope separation and the first commercial plant for laser isotope separation was created in 1998. Letokhov and his coworkers performed groundbreaking experiments in laser mass spectroscopy of organic molecules, and they also developed methods of picosecond and femtosecond nonlinear laser spectroscopy for the investigation and control of ultrafast processes in condensed media. In recent years Letokhov was engaged in research on laser effects in stellar atmospheres, which he predicted at the beginning of his career. The scientific results obtained by Letokhov and his coworkers were widely recognized. For his efforts, he was awarded the 1978 Lenin Prize, the 1998 Quantum Electronics Prize of the European Physical Society, the 2001 Rozhdestvensky Prize of the Russian Academy of Sciences, and the 2002 State Prize of the Russian Federation. For many years Letokhov was involved in the publishing of international scientific journals. Among the publications he edited were Laser Science and Technology and the Journal of Nonlinear Optics. He also served on the editorial boards of the Journal of Experimental and Theoretical Physics, Chemical Physics Letters, Applied Physics B, and others. He was an author on more than 850 research papers, including 15 monographs. Letokhov was a self-made man who, beginning in his school years, persistently used every possibility to broaden his educational and cultural knowledge. Although he was devoted to science and gave it considerable time, he also was deeply interested in literature, music, art, and history. He was an exceptionally interesting conversationalist and a man of great erudition. He is sadly missed by his many colleagues and friends. Letokhov photo
A Physical Chemist Looks at Organic Chemistry Lab.
ERIC Educational Resources Information Center
Pickering, Miles
1988-01-01
Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)
Biological Physics major as a means to stimulate an undergraduate physics program
NASA Astrophysics Data System (ADS)
Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan
2013-03-01
In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.
Improving High School Physics Through An Outreach Initiative
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2006-04-01
We want to discuss our outreach initiative at Jacksonville State University designed to help improve the teaching of physics at a number of high schools in Northeast Alabama. This initiative is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. IMPACTSEED is designed to achieve a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear-factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend workshops designed to help bring technology into physics classrooms, onsite support, and a hotline, we have been providing year-round support to the physics/chemistry teachers in this area. IMPACTSEED aims at providing our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... will consider candidates from the environmental scientific/technical fields, human health care... physics, aerosol chemistry, aerosol physics); Analytical Chemistry; Green Chemistry; Endocrinology...
Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei
The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysismore » studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.« less
Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions
2016-06-06
Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular
Effect of LEO Exposure on Aromatic Polymers Containing Phenylphosphine Oxide Groups
NASA Technical Reports Server (NTRS)
Watson, K. A.; Ghose, S.; Lillehei, P. T.; Smith, J. G., Jr.; Connell, J. W.
2007-01-01
As part of the Materials on The International Space Station Experiment (MISSE), aromatic polymers containing phenylphosphine oxide groups were exposed to low Earth orbit (LEO) for approximately 4 years. All of the aromatic polymers containing phenylphosphine oxide groups survived the exposure despite the high fluence of atomic oxygen that completely eroded other polymer films such as Kapton and Mylar of comparable or greater thickness. The samples consisted of a colorless polyimide film and a poly(arylene ether benzimidazole) film and thread. The samples were characterized for changes in physical properties, thermal/optical properties (i.e. solar absorptivity and thermal emissivity), surface chemistry (X-ray photoelectron spectroscopy), and surface topography (atomic force microscopy). The data from the polymer samples on MISSE were compared to samples from the same batch of material stored under ambient conditions on Earth. In addition, comparisons were made between the MISSE samples and those subjected to shorter term space flight exposures. The results of these analyses will be presented.
NASA Technical Reports Server (NTRS)
Whipple, F. L.; Huebner, W. F.
1976-01-01
The paper discusses physical processes in comets which involve solar and nuclear radial forces that affect the motions of gases and icy grains, gas-phase chemistry very close to the nuclei of large comets near the sun, sublimation of icy grains, dissociation of parent molecules into radicals and of radicals into atoms, and ionization by sunlight and collisions. The composition and dimensions of nuclei are examined along with variations in intrinsic brightness, the nature of volatiles, gas production rates in the coma, characteristics of icy grains in the coma, and the structure of streamers, ion tails, and dust tails. The structure of the coma is described in detail on the basis of spectroscopic observations of several comets. The origin of comets is briefly reviewed together with the relation of comets to earth, the interplanetary complex, and the interstellar medium. Desirable future observations are noted, especially by space missions to comets.
Light is a Messenger - The Life and Science of William Lawrence Bragg
NASA Astrophysics Data System (ADS)
Hunter, Graeme K.
2004-10-01
Light is a Messenger , is the first biography of William Lawrence Bragg, who was only 25 when he won the 1915 Nobel Prize in Physics-the youngest person ever to win a Nobel Prize. It describes how bragg discovered how to use X-rays to determine the arrangement of atoms in crystals and his pivotal role in developing this technique to the point that the structures of the most complex molecules known to man-the proteins and nucelic acids-could be solved. Although Bragg's Nobel Prize was for Physics, his research profoundly affected chemistry and the new field of molecular biology, of which he became a founding figure. This book explains how these revolutionary scientific events occurred while Bragg struggled to emerge from the shadow of his father, Sir William Bragg, and amidst a career-long rivalry with the brilliant American chemist, Linus Pauling.
Characterization of Nanophase Materials
NASA Astrophysics Data System (ADS)
Wang, Zhong Lin
2000-01-01
Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.
Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.
Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A
2016-04-01
We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.
Ask the experts: past, present and future of the rule of five.
Baell, Jonathan; Congreve, Miles; Leeson, Paul; Abad-Zapatero, Celerino
2013-05-01
Coined in 1997, by Christopher Lipinki et al., the rule of five (Ro5) comprises a set of parameters that determine drug-likeness for oral delivery. The parameters are as follows: no more than five hydrogen bond donors (nitrogen or oxygen atoms with one or more hydrogen atoms); no more than ten hydrogen bond acceptors (nitrogen or oxygen atoms); a molecular mass less than 500 Da; and an octanol-water partition coefficient log P no greater than 5. Future Medicinal Chemistry invited a selection of leading researchers to express their views on Lipinski's Ro5, which has influenced drug design for over a decade. Their enlightening responses provide an insight into the current and future role of Ro5, and other rules of thumb, in the evolving world of medicinal chemistry.
El-Sherbini, Tharwat M
2015-09-01
In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University - Atomic Physics Group. Starting from the late 1960s - when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.
Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts
ERIC Educational Resources Information Center
Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan
2016-01-01
This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…
ERIC Educational Resources Information Center
Becker, Nicole; Towns, Marcy
2012-01-01
Undergraduate physical chemistry courses require students to be proficient in calculus in order to develop an understanding of thermodynamics concepts. Here we present the findings of a study that examines student understanding of mathematical expressions, including partial derivative expressions, in two undergraduate physical chemistry courses.…
ERIC Educational Resources Information Center
Tynan, Richard; Mallaburn, Andrea; Jones, Robert Bryn; Clays, Ken
2014-01-01
During extended subject knowledge enhancement (SKE) courses, graduates without chemistry or physics bachelor degrees prepared to enter a Postgraduate Certificate in Education (PGCE) programme to become chemistry or physics teachers. Data were gathered from the exit survey returned by Liverpool John Moores University SKE students about to start…
Updated Atomic Weights: Time to Review Our Table
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler B. Coplen; Holden, Norman E.; Meyers, Fabienne
Many readers might wonder what can be new about atomic weights and why such a subject deserves even a short paper in Chemistry Views magazine. However, despite common belief, atomic weights are not constants of nature. Scientists' ability to measure these values is regularly improving, so one would expect that the accuracy of these values should be improving with time.
Updated Atomic Weights: Time to Review Our Table
Tyler B. Coplen; Holden, Norman E.; Meyers, Fabienne
2016-04-05
Many readers might wonder what can be new about atomic weights and why such a subject deserves even a short paper in Chemistry Views magazine. However, despite common belief, atomic weights are not constants of nature. Scientists' ability to measure these values is regularly improving, so one would expect that the accuracy of these values should be improving with time.
Physics through the 1990s: Atomic, molecular and optical physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.
Experimental Study on Interactions Between H Atoms and Organic Haze
NASA Technical Reports Server (NTRS)
Sekine, Y.; Imanaka, H.; Khare, B. N.; Bakes, E. L. O.; McKay, C. P.; Sugita, S.; Matsui, T.
2005-01-01
In Titan s atmosphere composed of N2 and CH4, irradiations of both solar ultraviolet light and charged particles induce active chemical reactions. In the processes of these reactions, a large amount of hydrogen (H) atoms are expected to be formed by dissociation of CH4 and other hydrocarbons [e.g., 1, 2]. Theoretical models suggest that these active H atoms need to be converted to stable hydrogen molecules (H2) efficiently to maintain unsaturated hydrocarbons and organic haze in Titan s atmosphere [e.g., 1]. Furthermore, molecular hydrogen is an important greenhouse effect gas in Titan s atmosphere, and small variation in its abundance strongly affects Titan s surface temperature [3]. Thus, the formation of H2 molecules from H atoms is a key reaction for both the atmospheric chemistry and the surface environment of Titan. Although several numerical calculations have been conducted to investigate the atmospheric chemistry of Titan with hypothesized recombination reactions of H atoms, such as catalytic scheme of C4H2 [e.g., 1, 2], it is still unclear what chemical reaction is responsible for the conversion of H atoms to H2 molecules in Titan s atmosphere.
Interactive Chemistry Journey (by Steven D. Gammon, Lynn Hunsberger, Sharon Hutchison)
NASA Astrophysics Data System (ADS)
McCool, Debra J.
1998-05-01
Prentice Hall: Upper Saddle River, NJ, 1997. CD-ROM (Hybrid, MAC and WIN). ISBN 013 548116-3. 26.25 purchased separately; 10.00 when purchased with Prentice Hall Textbook. Interactive Chemistry Journey is a single CD-ROM packed with excellent chemistry content. Every topic that would be covered in high school chemistry and first-year college chemistry is well represented: basic skills, energy and matter, atomic structure, molecular structure, gases, kinetics, and equilibrium. Each content unit has interactive lessons and problems, including MCAT review questions. Several units have simulations that the student can manipulate to better understand the concepts.
Using Games To Teach Chemistry: An Annotated Bibliography
NASA Astrophysics Data System (ADS)
Russell, Jeanne V.
1999-04-01
A list of published or marketed games based on a chemistry motif is presented. Each game is listed according to its level, subject matter, and title. A bibliographic notation and a short description are given for each game. For Introductory/High School/General Chemistry, 45 games are listed under the subjects General Knowledge; Elements & Atomic Structure (not Symbols); Nomenclature, Formulas, & Equation Writing; Chemical Reactions: Solutions & Solubilities; and Other Subjects. Seventeen games are listed under Organic Chemistry and 4 games under Other Chemistry Games. Computer games designed for outdated computers (PDP-11, TRS-80, and Apple II) are not included.
Maxwell, Peter I; Popelier, Paul L A
2017-11-05
Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Prediction of conformationally dependent atomic multipole moments in carbohydrates
Cardamone, Salvatore
2015-01-01
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an “atom in a molecule,” thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol−1 for open chains and just over 90% an error of maximum 4 kJ mol−1 for rings. © 2015 Wiley Periodicals, Inc. PMID:26547500
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
Cardamone, Salvatore; Popelier, Paul L A
2015-12-15
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.
Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X.
Wang, Xuefeng; Shen, Xi; Gao, Yurui; Wang, Zhaoxiang; Yu, Richeng; Chen, Liquan
2015-02-25
MXenes represent a large family of functionalized two-dimensional (2D) transition-metal carbides and carbonitrides. However, most of the understanding on their unique structures and applications stops at the theoretical suggestion and lack of experimental support. Herein, the surface structure and intercalation chemistry of Ti3C2X are clarified at the atomic scale by aberration-corrected scanning transmission electron microscope (STEM) and density functional theory (DFT) calculations. The STEM studies show that the functional groups (e.g., OH(-), F(-), O(-)) and the intercalated sodium (Na) ions prefer to stay on the top sites of the centro-Ti atoms and the C atoms of the Ti3C2 monolayer, respectively. Double Na-atomic layers are found within the Ti3C2X interlayer upon extensive Na intercalation via two-phase transition and solid-solution reactions. In addition, aluminum (Al)-ion intercalation leads to horizontal sliding of the Ti3C2X monolayer. On the basis of these observations, the previous monolayer surface model of Ti3C2X is modified. DFT calculations using the new modeling help to understand more about their physical and chemical properties. These findings enrich the understanding of the MXenes and shed light on future material design and applications. Moreover, the Ti3C2X exhibits prominent rate performance and long-term cycling stability as an anode material for Na-ion batteries.
Recent Progress in Studies of Nanostructured Impurity Helium Solids
NASA Astrophysics Data System (ADS)
Khmelenko, V. V.; Kunttu, H.; Lee, D. M.
2007-07-01
Impurity helium (Im He) solids are porous materials formed inside superfluid 4He by nanoclusters of impurities injected from the gas phase. The results of studies of these materials have relevance to soft condensed matter physics, matrix isolation of free radicals and low temperature chemistry. Recent studies by a variety of experimental techniques, including CW and pulse ESR, X-ray diffraction, ultrasound and Raman spectroscopy allow a better characterization of the properties of Im He solids. The structure of Im He solids, the trapping sites of stabilized atoms and the possible energy content of the samples are analyzed on the basis of experimental data. The kinetics of exchange tunneling reactions of hydrogen isotopes in nanoclusters and the changes of environment of the atoms during the course of these reactions are reviewed. Analysis of the ESR data shows that very large fraction of the stabilized atoms in Im He solids reside on the surfaces of impurity nanoclusters. The future directions for studying Im He solids are described. Among the most attractive are the studies of Im He solids with high concentrations of stabilized atoms at ultralow (10 20 mK) temperature for the observation of new collective quantum phenomena, the studies of practical application of Im He solids as a medium in neutron moderator for efficient production of ultracold (˜1 mK) neutrons, and the possibilities of obtaining high concentration of atomic nitrogen embedded in N2 clusters for energy storage.
Surface structure and chemistry of Pt/Cu/Pt(1 1 1) near surface alloy model catalyst in CO
NASA Astrophysics Data System (ADS)
Zeng, Shibi; Nguyen, Luan; Cheng, Fang; Liu, Lacheng; Yu, Ying; Tao, Franklin (Feng)
2014-11-01
Near surface alloy (NSA) model catalyst Pt/Cu/Pt(1 1 1) was prepared on Pt(1 1 1) through a controlled vapor deposition of Cu atoms. Different coordination environments of Pt atoms of the topmost Pt layer with the underneath Cu atoms in the subsurface result in different local electronic structures of surface Pt atoms. Surface structure and chemistry of the NAS model catalyst in Torr pressure of CO were studied with high pressure scanning tunneling microscopy (HP-STM) and ambient pressure X-ray photoelectron spectroscopy (AP-XPS). In Torr pressure of CO, the topmost Pt layer of Pt/Cu/Pt(1 1 1) is restructured to thin nanoclusters with size of about 1 nm. Photoemission feature of O 1s of CO on Pt/Cu/Pt(1 1 1) suggests CO adsorbed on both edge and surface of these formed nanoclusters. This surface is active for CO oxidation. Atomic layers of carbon are formed on Pt/Cu/Pt(1 1 1) at 573 K in 2 Torr of CO.
Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M
2016-10-26
The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.
NASA Technical Reports Server (NTRS)
Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S.
1979-01-01
Future gravitational wave antennas will be approximately 100 kilogram cylinders, whose end-to-end vibrations must be measured so accurately (10 to the -19th power centimeters) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics where measurements are usually made on an ensemble of identical objects, and care is not given to whether any single object is perturbed or destroyed by the measurement. Electronic techniques required for quantum nondemolition measurements are described as well as the theory underlying them.
Beyond crystallography: Diffractive imaging using coherent x-ray light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J.; Ishikawa, T.; Robinson, I. K.
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imagingmore » in the 21st century.« less
Average M shell fluorescence yields for elements with 70≤Z≤92
NASA Astrophysics Data System (ADS)
Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.
2015-03-01
The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω¯M ) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.
ERIC Educational Resources Information Center
Bemquerer, Marcelo P.; Macedo, Jessica K. A.; Ribeiro, Ana Carolina J.; Carvalho, Andrea C.; Silva, Debora O. C.; Braz, Juliana M.; Medeiros, Kelliane A.; Sallet, Lunalva A. P.; Campos, Pollyanna F.; Prates, Maura V.; Silva, Luciano P.
2012-01-01
Graduate students in chemistry, and in biological and biomedical fields must learn the fundamentals and practices of peptide and protein chemistry as early as possible. A project-oriented approach was conducted by first-year M.Sc and Ph.D students in biological sciences. A blind glass slide containing a cellular smear and an aqueous cellular…
Recent developments with boron as a platform for novel drug design.
Leśnikowski, Zbigniew J
2016-06-01
After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
How an interacting many-body system tunnels through a potential barrier to open space
Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.
2012-01-01
The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703
A Quantum Chemistry Concept Inventory for Physical Chemistry Classes
ERIC Educational Resources Information Center
Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas
2016-01-01
A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…
Comparison of student success using "atoms first" versus "traditional" curricula
NASA Astrophysics Data System (ADS)
Hillesheim, Christina S.
The purpose of this study was to investigate the difference between the "atoms first" and the "traditional" curricula. Specifically focusing on which curriculum better aligns to curricular expectations, leads to higher student success when students are grouped together, and when students are differentiated based on several factors. The main difference between the two approaches being the sequence of topics presented in the first semester general chemistry course. This study involves more than 9,500 general chemistry I and II students over 7 semesters with about half of them being taught using the "atoms first" approach. Student success was measured using the American Chemical Society's (ACS) final examination scores and the final letter grades. Alignment to curricular expectations was determined via a qualitative review of textbooks written for each of the approaches. This showed that the "atoms first" approach better aligns to research supported best practices. An analysis of covariance (ANCOVA) was performed to determine if there is a significant difference between the "atoms first" and the "traditional" curricula. The "traditional" approach was found to lead to higher student achievement for both measures of student success in both chemistry I and II courses. Lastly, multiple linear, multinomial logistic, and binary logistic regressions were run using all of the subgroups---gender, race/ethnicity, major, ACT composite, math ACT, overall GPA, and classroom size---as predictor variables to determine if any significant interactions between the curricular methods and the different subgroups existed. Results found that the relationship between gender, GPA, and classroom size groupings significantly impact student achievement in general chemistry. Specifically, the "traditional" approach lead to higher student success compared to the "atoms first" approach for males, females, below average GPA students, above average GPA students, and students in large classroom settings. However, there are several factors---final examination content, new teacher impact, teacher's view of science, and withdrawal rate and timing---that need to be taken into account when implementing these findings. Overall, the results of this study provides a cautionary reminder of the many impacts affecting curriculum implementation and the importance of professional development and training during a curriculum transitional period.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Demonstrates, with a set of definitive examples, how polymer principles can be introduced into the first undergraduate physical chemistry course in a very natural way. The intent is to encourage introduction of polymer-related material into conventional physical chemistry courses without sacrificing any rigor associated with such courses. (JN)
Wang, En-Jie; Sui, Zhu-Yin; Sun, Ya-Nan; Ma, Zhuang; Han, Bao-Hang
2018-05-22
In this work, a series of highly porous sulfur-doped carbons are prepared through physical activation methods by using polythiophene as a precursor. The morphology, structure, and physicochemical properties are revealed by a variety of characterization methods, such as scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and nitrogen sorption measurement. Their porosity parameters and chemical compositions can be well-tuned by changing the activating agents (steam and carbon dioxide) and reaction temperature. These sulfur-doped porous carbons possess specific surface area of 670-2210 m 2 g -1 , total pore volume of 0.31-1.26 cm 3 g -1 , and sulfur content of 0.6-4.9 atom %. The effect of porosity parameters and surface chemistry on carbon dioxide adsorption in sulfur-doped porous carbons is studied in detail. After a careful analysis of carbon dioxide uptake at different temperatures (273 and 293 K), pore volumes from small pore size (less than 1 nm) play an important role in carbon dioxide adsorption at 273 K, whereas surface chemistry is the key factor at a higher adsorption temperature or lower relative pressure. Furthermore, sulfur-doped porous carbons also possess good gas adsorption selectivity and excellent recyclability for regeneration.
A time-dependent anisotropic plasma chemistry model of the Io plasma torus
NASA Astrophysics Data System (ADS)
Arridge, C. S.
2016-12-01
The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.
NASA Technical Reports Server (NTRS)
Marley, Mark; Freedman, Richard S.
2015-01-01
The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.
Bringing Technology into High School Physics Classrooms
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2005-04-01
In an effort to help high school physics teachers bring technology into their classrooms, we at JSU have been offering professional development to secondary education teachers. This effort is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind (NCLB) grant funded by the Alabama Commission on Higher Education, serving high school physics teachers in Northeast Alabama. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. To achieve IMPACTSEED's goals, we have forged a functional collaboration with school districts from about ten counties. This collaboration is aimed at achieving a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear- factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend technology workshops, and onsite support, we have been providing year-round support to the physics/chemistry teachers in this area. This outreach initiative has helped provide our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.
Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications
NASA Astrophysics Data System (ADS)
Bartschat, Klaus
2016-05-01
Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.
NASA Astrophysics Data System (ADS)
Bartschat, Klaus
2016-09-01
Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.
Pursell, David P
2009-01-01
BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.
2009-01-01
BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect. PMID:19255133
Defining Tropospheric Chemistry As A Heterogeneous Ensemble Of Reactive Air Parcels
NASA Astrophysics Data System (ADS)
Prather, M. J.; Zhu, X.; Flynn, C.; Mao, J.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Shindell, D. T.; Murray, L. T.
2016-12-01
Two major challenges in model-measurement comparisons have been: Which measurements are the most important to match? At what level do models need to simulate the variegated fine structures observed in trace gases and aerosols? This talk presents a novel approach for evaluating high-resolution global chemistry models (1/2 to 1 deg) that is integral to NASA's Atmospheric Tomography (ATom) mission. The approach seeks to develop a chemical climatology for tropospheric regions rather than just event-based testing of specific observations. It enables chemistry-climate models to be readily compared and more severely tested with observations. It uses the reactivity of air parcels (e.g., loss of methane, production and loss of ozone) to weight each parcel in terms of its importance in controlling the two most important chemically reactive greenhouse gases. It looks at the entire statistical distribution of air parcels in terms of a chemical phase space for those species that control the reactivity (e.g., O3, H2O, CH4, CO, NOx, HNO3, HNO4, PAN, CH3NO3, HCHO, HOOH, CH3OOH, C2H6, C3H6O, and other VOCs when present in sufficiently large abundances). It builds statistics of chemically extreme air parcels such as pollution layers to determine if a model failure to match such cases affects the overall reactivity of the region. This approach was designed for the ATom in situ measurements using the DC-8 to slice through the middle of the Pacific and Atlantic Ocean basins each season. The ATom payload will measure the above key trace gases and many other gases and aerosols in every designated air parcel (i.e., 10-sec averages). The first ATom measurements will not be available until mid-2017 and this presentation shows how this climatology looks when sampled with different models. Six global chemistry models have simulated one day in August (no particular year), and we sample all six showing how the 2D probability density plots highlight different regions when weighted by chemical reactivity. These models pre-simulation of ATom provide a target for the ATom measurements. The models also enable us to estimate the representativeness of ATom's single tomographic slice down the ocean basins, and therefore just how well we can observationally determine this chemical climatology of the reactivity of the troposphere.
ERIC Educational Resources Information Center
Stefani, Christina; Tsaparlis, Georgios
2009-01-01
We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…
Atoms and Molecules Interacting with Light
NASA Astrophysics Data System (ADS)
van der Straten, Peter; Metcalf, Harold
2016-02-01
Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.
NASA Astrophysics Data System (ADS)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.
2017-02-01
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C4F8 and CHF3) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO2 and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF3 has a lower FC deposition yield for both SiO2 and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F8. The thickness of deposited FC layers using CHF3 is found to be greater for Si than for SiO2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.
Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)
NASA Astrophysics Data System (ADS)
Pounds, Andrew
2001-05-01
This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.
ERIC Educational Resources Information Center
Rothman, Arthur Israel
Students taking freshman physics and freshman chemistry at The State University of New York at Buffalo (SUNYAB) were administered a science-related semantic differential instrument. This same test was administered to physics and chemistry graduate students from SUNYAB and the University of Rochester. A scoring procedure was developed which…
ERIC Educational Resources Information Center
Erdogan, Melek Nur; Koseoglu, Fitnat
2012-01-01
The purpose of this study is to analyze 9th grade physics, chemistry and biology curriculums, which were implemented by the Ministry of Education since the academic year 2008-2009, in terms of scientific literacy themes and the balance of these themes and also to examine the quality of statements about objectives. Physics, chemistry, and biology…
NASA Astrophysics Data System (ADS)
Shoemaker, James Richard
Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.
Distributed Pore Chemistry in Porous Organic Polymers
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1999-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1999-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
Distributed Pore Chemistry in Porous Organic Polymers
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1998-01-01
A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.
NASA Astrophysics Data System (ADS)
Ederer, D. L.; Ruzycki, N.; Schuler, T.; Zhang, G. P.; Callcott, T. A.; Nachimuthu, P.; Perera, R. C. C.
2002-03-01
Polarization Dependent X-ray Absorption Spectroscopy of the TiO2 Polymorphs Anatase (001) and Rutile (001) N. Ruzycki^a, T. Schuler^a, D.L. Ederer^a, T. A. Callcott^, G. P. Zhang^b, P. Nachimuthu^c,d, and R.C.C. Perera^c a-Tulane University, Department of Physics, New Orleans, LA, 70118 b- Univesity of Tennessee, Department of Physics and Astronomy, Knoxville, TN, 37996 c- Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA, d- Department of Chemistry, University of Nevada Las Vegas, Las Vegas NV, 89154 TiO2 is a useful industrial catalyst and has applications in gas sensing and photoelectric devices. All structures consist of octrahedrally-coordinated Ti atoms and three-fold coordinated O atoms. Anatase and rutile differ mainly in the amount of distortion in the octahedra. Because Soft X-ray Absorption Spectroscoy (SXAS) is sensitive to the ligand field, these small differences are reflected the spectra. In the experiment the electronic polarization vector was varied angulary along the equatorial and the longitudnal axes of the sixfold coordinated titanium atoms. This study showed a strong polarization dependence at the oxygen K-edge for rutile (001) and the anatase (001) in the t_2g and eg region for the equatorial bonds. The Titanium L-edge showed a smaller polarization dependence. There was no polarization dependence in the longitudinal direction for anatase (001) or rutile (001) in either the oxygen K-edge or the Ti-L edge. These data are compared with calculations of polarization-dependent matrix elements of the transitions.
Physics and Its Interfaces with Medicinal Chemistry and Drug Design
NASA Astrophysics Data System (ADS)
Santos, Ricardo N.; Andricopulo, Adriano D.
2013-08-01
Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.
My 65 years in protein chemistry.
Scheraga, Harold A
2015-05-01
This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein-protein interactions and to nucleic acids and to protein-nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena.
My 65 years in protein chemistry
Scheraga, Harold A.
2015-01-01
This is a tour of a physical chemist through 65 years of protein chemistry from the time when emphasis was placed on the determination of the size and shape of the protein molecule as a colloidal particle, with an early breakthrough by James Sumner, followed by Linus Pauling and Fred Sanger, that a protein was a real molecule, albeit a macromolecule. It deals with the recognition of the nature and importance of hydrogen bonds and hydrophobic interactions in determining the structure, properties, and biological function of proteins until the present acquisition of an understanding of the structure, thermodynamics, and folding pathways from a linear array of amino acids to a biological entity. Along the way, with a combination of experiment and theoretical interpretation, a mechanism was elucidated for the thrombin-induced conversion of fibrinogen to a fibrin blood clot and for the oxidative-folding pathways of ribonuclease A. Before the atomic structure of a protein molecule was determined by x-ray diffraction or nuclear magnetic resonance spectroscopy, experimental studies of the fundamental interactions underlying protein structure led to several distance constraints which motivated the theoretical approach to determine protein structure, and culminated in the Empirical Conformational Energy Program for Peptides (ECEPP), an all-atom force field, with which the structures of fibrous collagen-like proteins and the 46-residue globular staphylococcal protein A were determined. To undertake the study of larger globular proteins, a physics-based coarse-grained UNited-RESidue (UNRES) force field was developed, and applied to the protein-folding problem in terms of structure, thermodynamics, dynamics, and folding pathways. Initially, single-chain and, ultimately, multiple-chain proteins were examined, and the methodology was extended to protein–protein interactions and to nucleic acids and to protein–nucleic acid interactions. The ultimate results led to an understanding of a variety of biological processes underlying natural and disease phenomena. PMID:25850343
NASA Astrophysics Data System (ADS)
Shimonishi, Takashi; Nakatani, Naoki; Furuya, Kenji; Hama, Tetsuya
2018-03-01
We propose a new simple computational model to estimate the adsorption energies of atoms and molecules to low-temperature amorphous water ice, and we present the adsorption energies of carbon (3 P), nitrogen (4 S), and oxygen (3 P) atoms based on quantum chemistry calculations. The adsorption energies were estimated to be 14,100 ± 420 K for carbon, 400 ± 30 K for nitrogen, and 1440 ± 160 K for oxygen. The adsorption energy of oxygen is consistent with experimentally reported values. We found that the binding of a nitrogen atom is purely physisorption, while that of a carbon atom is chemisorption, in which a chemical bond to an O atom of a water molecule is formed. That of an oxygen atom has a dual character, with both physisorption and chemisorption. The chemisorption of atomic carbon also implies the possibility of further chemical reactions to produce molecules bearing a C–O bond, though this may hinder the formation of methane on water ice via sequential hydrogenation of carbon atoms. These properties would have a large impact on the chemical evolution of carbon species in interstellar environments. We also investigated the effects of newly calculated adsorption energies on the chemical compositions of cold dense molecular clouds with the aid of gas-ice astrochemical simulations. We found that abundances of major nitrogen-bearing molecules, such as N2 and NH3, are significantly altered by applying the calculated adsorption energy, because nitrogen atoms can thermally diffuse on surfaces, even at 10 K.
Cancer Prevention and Control Research Manpower Development
1997-10-01
of Lagos, Akoka, Lagos, Nigeria B.S. 1975 Chemistry Atlanta University, Atlanta, GA M.S. 1982 Physical Chemistry Georgia Institute of Technology...1992 Instructor of Hands on Laboratory Procedures in Physical Science Kindergarten through K8 Teachers in Atlanta Public School System. 1988-1990...Spectrum of Chlorine Nitrate and Evidence for the Existence of C1OONO. Journal of Physical Chemistry (1983), 87, 1091. 10
NASA Astrophysics Data System (ADS)
Meyer, Patrick Gerard
This study examines college student understanding of key concepts that will support future organic chemistry success as determined by university instructors. During four one-hour individual interviews the sixteen subjects attempted to solve general chemistry problems. A think-aloud protocol was used along with a whiteboard where the students could draw and illustrate their ideas. The protocols for the interviews were adapted from the Covalent Structure and Bonding two-tiered multiple choice diagnostic instrument (Peterson, Treagust, & Garnett, 1989) and augmented by the Geometry and Polarity of Molecules single-tiered multiple choice instrument (Furio & Calatayud, 1996). The interviews were videotaped, transcribed, and coded for analysis to determine the subjects' understanding of the key ideas. The subjects displayed many misconceptions that were summarized into nine assertions about student conceptualization of chemistry. (1) Many students misunderstand the location and nature of intermolecular forces. (2) Some think electronegativity differences among atoms in a molecule are sufficient to make the molecule polar, regardless of spatial arrangement. (3) Most know that higher phase change temperatures imply stronger intermolecular attractions, but many do not understand the difference between covalent molecular and covalent network substances. (4) Many have difficulty deciding whether a molecule is polar or non-polar, often confusing bilateral symmetry with spatial symmetry in all three dimensions. (5) Many cannot reliably draw correct Lewis structures due to carelessness and overuse of flawed algorithms. (6) Many are confused by how electrons can both repel one other and facilitate bonding between atoms via orbitals---this seems oxymoronic to them. (7) Many cannot explain why the atoms of certain elements do not follow the octet rule and some believe the octet rule alone can determine the shape of a molecule. (8) Most do know that electronegativity and polarity are not adequate to determine the shape of a molecule---but some apply the VSEPR theory in incorrect ways. (9) Students do not reason significantly differently when working with various representations of molecules such as ball-and-stick models, molecular formulas, and Lewis structures. The study illuminated specific parts of the general chemistry curriculum that are particularly troublesome for students but necessary for their further achievement in chemistry. This information is important; it gives the discipline of chemistry education target areas to focus on for general chemistry pedagogical improvement efforts.
Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui
2016-12-01
In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.
Bronstein, Hindy E; Scott, Lawrence T
2008-01-04
The title compound (1) undergoes 1,2-addition reactions of both electrophilic and nucleophilic reagents preferentially at the "interior" carbon atoms of the central 6:6-bond to give fullerene-type adducts 2, 3, 4, and 5. Such fullerene-like chemistry is unprecedented for a topologically 2-dimensional polycyclic aromatic hydrocarbon and qualifies this geodesic polyarene as a "bridge" between the old flat world of polycyclic aromatic hydrocarbons (PAHs) and the new round world of fullerenes. The relief of pyramidalization strain, as in the addition reactions of fullerenes, presumably contributes to the atypical mode of reactivity seen in 1. Molecular orbital calculations, however, reveal features of the nonalternant pi system in 1 that may also play an important role. Thus, the fullerene-like chemistry of 1 may be driven by two or more factors, the relative importances of which are difficult to discern.
Physics and Chemistry on Well-Defined Semiconductor and Oxide Surfaces
NASA Astrophysics Data System (ADS)
Chen, Peijun
High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH_3, PH_3 and B_ {10}H_{14} on Si(111)-(7 x 7); NH_3 on Si(100) -(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al_2O_3 and Sn on SiO_2.. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allows the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate molecules such as NH_3 and PH_3, the nature of the initial low temperature (100 -300 K) adsorption is found to be dissociative, while that for B_{10}H_ {14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH_3 on Si(111)-(7 x 7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure in controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111) -(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H. This discovery is potentially meaningful to the technology of gas-phase silicon etching. The electron energy loss studies on the excitation of surface plasmon in heavily B-doped Si(111) and the investigation of surface optical phonon modes in aluminum oxide thin films provide insights into the sensitive dependence of the physical properties of a solid upon its chemical modification. Successful interpretations of these elementary excitation features are built upon the understanding of the fundamental physics of low-energy electron-solid interaction. Finally, the temperature behavior of the interfacial properties of Sn/SiO_2 are explored.
NASA Astrophysics Data System (ADS)
Meltzer, David E.
2007-01-01
As part of an investigation into student learning of thermodynamics, we have probed the reasoning of students enrolled in introductory and advanced courses in both physics and chemistry. A particular focus of this work has been put on the learning difficulties encountered by physics, chemistry, and engineering students enrolled in an upper-level thermal physics course that included many topics also covered in physical chemistry courses. We have explored the evolution of students' understanding as they progressed from the introductory course through more advanced courses. Through this investigation we have gained insights into students' learning difficulties in thermodynamics at various levels. Our experience in addressing these learning difficulties may provide insights into analogous pedagogical issues in upper-level courses in both engineering and chemistry which focus on the theory and applications of thermodynamics.
NASA Astrophysics Data System (ADS)
Barnes, Teresa M.; Hand, Steve; Leaf, Jackie; Wolden, Colin A.
2004-09-01
Zinc oxide thin films were produced by high vacuum plasma-assisted chemical vapor deposition (HVP-CVD) from dimethylzinc (DMZn) and atomic oxygen. HVP-CVD is differentiated from conventional remote plasma-enhanced CVD in that the operating pressures of the inductively coupled plasma (ICP) source and the deposition chamber are decoupled. Both DMZn and atomic oxygen effuse into the deposition chamber under near collisionless conditions. The deposition rate was measured as a function of DMZn and atomic oxygen flux on glass and silicon substrates. Optical emission spectroscopy and quadrupole mass spectrometry (QMS) were used to provide real time analysis of the ICP source and the deposition chamber. The deposition rate was found to be first order in DMZn pressure and zero order in atomic oxygen density. All films demonstrated excellent transparency and were preferentially orientated along the c-axis. The deposition chemistry occurs exclusively through surface-mediated reactions, since the collisionless transport environment eliminates gas-phase chemistry. QMS analysis revealed that DMZn was almost completely consumed, and desorption of unreacted methyl radicals was greatly accelerated in the presence of atomic oxygen. Negligible zinc was detected in the gas phase, suggesting that Zn was efficiently consumed on the substrate and walls of the reactor.
NASA Astrophysics Data System (ADS)
Barbera, Jack
2007-12-01
This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student beliefs about chemistry and the learning of chemistry. This instrument is a modification of the original CLASS-Phys survey designed for use in physics. Statements on the chemistry version (CLASS-Chem) are validated using chemistry students with a broad range of experience levels to ensure clarity in wording and meaning. The chemistry version addresses additional belief areas important in learning chemistry but not physics, specifically, beliefs about reactions and molecular structure. Statements are grouped into statistically robust categories using reduced basis factor analysis. The final part of this dissertation addresses the development and testing of learning tutorials for use in undergraduate physical chemistry. The tutorials are designed to promote the active mental engagement of students in the process of learning. Questions within the pencil-paper format guide students through the reasoning needed to apply concepts to real-world situations. Each tutorial is connected to a physical model or computer simulation providing students with additional hands-on investigations to strengthen their connection with the concepts addressed in the tutorial. Currently tutorials connected with the First and Second Laws of Thermodynamics as well as Kinetics have been developed and tested.
Surface Geometry and Chemistry of Hydrothermally Synthesized Single Crystal Thorium Dioxide
2015-03-01
meeting the larger goals. I appreciate Dr. McClory’s skeptical views and critical thinking that kept me from straying into scientific error. I...Secondary Ion Mass Spectrometry .....................20 UPS ......................Ultraviolet Photoemission Spectrometry...19 M1/M2 ................... Mass of atom 1 and atom 2 ..........................................................18 Mm ........................Molar
Thin Metallic Films from Solvated Metal Atoms.
1987-07-14
platinium , and especially indium are discussed. N, ; ,, -- !, : N) By Dist , , . N S f1 -- ~~r, 821-19 C[ Thin metallic films from solvated metal atoms...metallic films. Cold, palladium, platinium , and especially indium are discussed. 1- INTRQDUCTION In the field of chemistry an active and broad area of
Poetry and Alkali Metals: Building Bridges to the Study of Atomic Radius and Ionization Energy
ERIC Educational Resources Information Center
Araujo, J. L.; Morais, C.; Paiva, J. C.
2015-01-01
Exploring chemistry through its presence in the literature in general, and poetry in particular, may increase students' curiosity, may enhance several basic skills, such as writing, reading comprehension and argumentative skills, as well as may improve the understanding of the chemistry topics covered. Nevertheless, the pedagogical potential of…
Teaching Beginning Chemistry Students Simple Lewis Dot Structures
ERIC Educational Resources Information Center
Nassiff, Peter; Czerwinski, Wendy A.
2015-01-01
Students beginning their initial study of chemistry often have a difficult time mastering simple Lewis dot structures. Textbooks show students how to manipulate Lewis structures by moving valence electron dots around the chemical structure so each atom has an octet or duet. However, an easier method of teaching Lewis structures for simple…
Visualization and Interactivity in the Teaching of Chemistry to Science and Non-Science Students
ERIC Educational Resources Information Center
Venkataraman, Bhawani
2009-01-01
A series of interactive, instructional units have been developed that integrate computational molecular modelling and visualization to teach fundamental chemistry concepts and the relationship between the molecular and macro-scales. The units span the scale from atoms, small molecules to macromolecular systems, and introduce many of the concepts…
ERIC Educational Resources Information Center
Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos
2011-01-01
Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…
ERIC Educational Resources Information Center
Irby, Stefan M.; Phu, Andy L.; Borda, Emily J.; Haskell, Todd R.; Steed, Nicole; Meyer, Zachary
2016-01-01
There is much agreement among chemical education researchers that expertise in chemistry depends in part on the ability to coordinate understanding of phenomena on three levels: macroscopic (observable), sub-microscopic (atoms, molecules, and ions) and symbolic (chemical equations, graphs, etc.). We hypothesize this "level-coordination…
NASA Astrophysics Data System (ADS)
Islam, Md Mahbubul; Strachan, Alejandro
A detailed atomistic-level understanding of the ultrafast chemistry of detonation processes of high energy materials is crucial to understand their performance and safety. Recent advances in laser shocks and ultra-fast spectroscopy is yielding the first direct experimental evidence of chemistry at extreme conditions. At the same time, reactive molecular dynamics (MD) in current high-performance computing platforms enable an atomic description of shock-induced chemistry with length and timescales approaching those of experiments. We use MD simulations with the reactive force field ReaxFF to investigate the shock-induced chemical decomposition mechanisms of polyvinyl nitrate (PVN) and nitromethane (NM). The effect of shock pressure on chemical reaction mechanisms and kinetics of both the materials are investigated. For direct comparison of our simulation results with experimentally derived IR absorption data, we performed spectral analysis using atomistic velocity at various shock conditions. The combination of reactive MD simulations and ultrafast spectroscopy enables both the validation of ReaxFF at extreme conditions and contributes to the interpretation of the experimental data relating changes in spectral features to atomic processes. Office of Naval Research MURI program.
Chemistry in dynamically evolving clouds
NASA Technical Reports Server (NTRS)
Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.
1985-01-01
A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.
Liu, Shuang
2008-01-01
Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Physics and Biology Collaborate to Color the World
ERIC Educational Resources Information Center
Liu, Dennis W. C.
2013-01-01
To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…
Chemistry of the outer planets
NASA Technical Reports Server (NTRS)
Scattergood, Thomas W.
1992-01-01
Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.
NASA Astrophysics Data System (ADS)
Velusamy, T.; Pineda, J. L.; Langer, W. D.; Willacy, K.; Goldsmith, P. F.
2011-05-01
Our knowledge of interstellar gas has been limited primarily to the diffuse atomic phase traced by HI and the well-shielded molecular phase traced by CO. Recently, using the first results of the Herschel Key Project GOT C+, a HIFI C+ survey of the Galactic plane, Velusamy, Langer, Pineda et al. (A&A 521, L18, 2010) have shown that in the diffuse interstellar transition clouds a significant fraction of the carbon exists primarily as C^+ with little C^0 and CO in a warm 'dark gas' layer in which hydrogen is mostly H_2 with little atomic H, surrounding a modest 12CO-emitting core. The [CII] fine structure transition, at 1.9 THz (158 μm) is the best tracer of this component of the interstellar medium, which is critical to our understanding of the atomic to molecular cloud transitions. The Herschel Key Project GOT C+ is designed to study such clouds by observing with HIFI the [CII] line emission along 500 lines of sight (LOSs) throughout the Galactic disk. Here we present the identification and chemical status of a few hundred diffuse and transition clouds traced by [CII], along with auxiliary HI and CO data covering ~100 LOSs in the inner Galaxy between l= -30° and 30°. We identify transition clouds as [CII] components that are characterized by the presence of both HI and 12CO, but no 13CO emission. The intensities, I(CII) and I(HI), are used as measures of the visual extinction, AV, in the cloud up to the C^+/C^0/CO transition layer and a comparison with I(12CO) yields a more complete H_2 molecular inventory. Our results show that [CII] emission is an excellent tool to study transition clouds and their carbon chemistry in the ISM, in particular as a unique tracer of molecular H_2, which is not easily observed by other means. The large sample presented here will serve as a resource to study the chemical and physical status of diffuse transition clouds in a wide range of Galactic environments and constrain the physical parameters such as the FUV intensity and cosmic ray ionization rate that drive the CO chemistry in the diffuse ISM.
El-Sherbini, Tharwat M.
2013-01-01
In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356
Monthly Progress Report No. 60 for April 1948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.
Integrating Computational Chemistry into the Physical Chemistry Curriculum
ERIC Educational Resources Information Center
Johnson, Lewis E.; Engel, Thomas
2011-01-01
Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…
Rethinking Undergraduate Physical Chemistry Curricula
ERIC Educational Resources Information Center
Miller, Stephen R.
2016-01-01
A summary of fundamental changes made to the undergraduate physical chemistry curriculum in the Chemistry Department at Gustavus Adolphus College (beginning in the 2013-2014 academic year) is presented. The yearlong sequence now consists of an introductory semester covering both quantum mechanics and thermodynamics/kinetics, followed by a second…
J. J. Thomson goes to America.
Downard, Kevin M
2009-11-01
Joseph John (J. J.) Thomson was an accomplished scientist who helped lay the foundations of nuclear physics. A humble man of working class roots, Thomson went on to become one of the most influential physicists of the late 19th century. He is credited with the discovery of the electron, received a Nobel Prize in physics in 1906 for investigations into the conduction of electricity by gases, was knighted in 1908, and served as a Cavendish Professor and Director of the laboratory for over 35 years from 1884. His laboratory attracted some of the world's brightest minds; Francis W. Aston, Niels H. D. Bohr, Hugh L. Callendar, Charles T. R. Wilson, Ernest Rutherford, George F. C. Searle, Geoffrey I. Taylor, and John S. E. Townsend all worked under him. This article recounts J. J. Thomson's visits to North America in 1896, 1903, 1909, and finally 1923. It presents his activities and his personal impressions of the people and society of the U.S.A. and Canada, and the science of atomic physics and chemistry in the late 1800s and early 1900s.
Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic
2010-01-14
We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).
Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?
Niaz, Mansoor; Cardellini, Liberato
2011-12-01
Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.
NASA Astrophysics Data System (ADS)
Campbell, Erin Roberts
The process of chemical education should facilitate students' construction of meaningful conceptual structures about the concepts and processes of chemistry. It is evident, however, that students at all levels possess concepts that are inconsistent with currently accepted scientific views. The purpose of this study was to examine undergraduate chemistry students' conceptions of atomic structure, chemical bonding and molecular structure. A diagnostic instrument to evaluate students' conceptions of atomic and molecular structure was developed by the researcher. The instrument incorporated multiple-choice items and reasoned explanations based upon relevant literature and a categorical summarization of student responses (Treagust, 1988, 1995). A covalent bonding and molecular structure diagnostic instrument developed by Peterson and Treagust (1989) was also employed. The ex post facto portion of the study examined the conceptual understanding of undergraduate chemistry students using descriptive statistics to summarize the results obtained from the diagnostic instruments. In addition to the descriptive portion of the study, a total score for each student was calculated based on the combination of correct and incorrect choices made for each item. A comparison of scores obtained on the diagnostic instruments by the upper and lower classes of undergraduate students was made using a t-Test. This study also examined an axiomatic assumption that an understanding of atomic structure is important in understanding bonding and molecular structure. A Pearson Correlation Coefficient, ṟ, was calculated to provide a measure of the strength of this association. Additionally, this study gathered information regarding expectations of undergraduate chemistry students' understanding held by the chemical community. Two questionnaires were developed with items based upon the propositional knowledge statements used in the development of the diagnostic instruments. Subgroups of items from the questionnaires were formed from the combination of items found to measure different aspects of a specific topic area using a reliability analysis. Average scores for the subgroups were compared to results obtained by students on the diagnostic instrument targeting the same topic area. There were no significant differences of the scores on both of the diagnostic instruments between the levels of undergraduate chemistry students. There were, however, significant differences on certain items of the diagnostic instruments between upper and lower class students. Additionally, misconceptions were identified within all levels of these undergraduate students that corresponded to previous results reported in the literature. A significant relationship was found to exist between the scores obtained on the two diagnostic instruments, as well as strong correlations between specific items and the total scores of the instruments. Response to the expectations questionnaires revealed no differences between the chemical industry and chemical academia, but did provide information concerning the chemical community's expectations of undergraduate chemistry students. Results indicate that undergraduate students majoring in chemistry have conceptions that are inconsistent with currently accepted scientific views. The findings also support the hypothesis that an understanding of the general structure of the atom and the roles played by electrons in molecular bonding and structure is important to an understanding of chemical properties and behavior.
Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor
2011-04-07
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. © The Royal Society of Chemistry 2011
A quasi-classical study of energy transfer in collisions of hyperthermal H atoms with SO2 molecules.
da Silva, Ramon S; Garrido, Juan D; Ballester, Maikel Y
2017-08-28
A deep understanding of energy transfer processes in molecular collisions is at central attention in physical chemistry. Particularly vibrational excitation of small molecules colliding with hot light atoms, via a metastable complex formation, has shown to be an efficient manner of enhancing reactivity. A quasi-classical trajectory study of translation-to-vibration energy transfer (T-V ET) in collisions of hyperthermal H( 2 S) atoms with SO 2 (X̃ 1 A ' ) molecules is presented here. For such a study, a double many-body expansion potential energy surface previously reported for HSO 2 ( 2 A) is used. This work was motivated by recent experiments by Ma et al. studying collisions of H + SO 2 at the translational energy of 59 kcal/mol [J. Ma et al., Phys. Rev. A 93, 040702 (2016)]. Calculations reproduce the experimental evidence that during majority of inelastic non-reactive collision processes, there is a metastable intermediate formation (HOSO or HSO 2 ). Nevertheless, the analysis of the trajectories shows that there are two distinct mechanisms in the T-V ET process: direct and indirect. Direct T-V processes are responsible for the high population of SO 2 with relatively low vibrational excitation energy, while indirect ones dominate the conversion from translational energy to high values of the vibrational counterpart.
Microwave quantum logic gates for trapped ions.
Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J
2011-08-10
Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.
Beyond crystallography: diffractive imaging using coherent x-ray light sources.
Miao, Jianwei; Ishikawa, Tetsuya; Robinson, Ian K; Murnane, Margaret M
2015-05-01
X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century. Copyright © 2015, American Association for the Advancement of Science.
Average M shell fluorescence yields for elements with 70≤Z≤92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahoul, A., E-mail: ka-abdelhalim@yahoo.fr; LPMRN laboratory, Department of Materials Science, Faculty of Sciences and Technology, Mohamed El Bachir El Ibrahimi University, Bordj-Bou-Arreridj 34030; Deghfel, B.
2015-03-30
The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement wasmore » typically obtained between our result and other works.« less
Astrochemistry at the Cryogenic Storage Ring
NASA Astrophysics Data System (ADS)
Kreckel, Holger; Becker, Arno; Blaum, Klaus; Breitenfeldt, Christian; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth; Heber, Oded; Karthein, Jonas; Krantz, Claude; Meyer, Christian; Mishra, Preeti; Novotny, Oldrich; O'Connor, Aodh; Saurabh, Sunny; Schippers, Stefan; Spruck, Kaija; Kumar, S. Sunil; Urbain, Xavier; Vogel, Stephen; von Hahn, Robert; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel
2017-01-01
Almost 200 different molecular species have been identified in space, and this number continues to grow steadily. This surprising molecular diversity bears witness to an active reaction network, in which molecular ions are the main drivers of chemistry in the gas phase. To study these reactions under controlled conditions in the laboratory is a major experimental challenge. The new Cryogenic Storage Ring (CSR) that has recently been commissioned at the Max Planck Institute for Nuclear Physics in Heidelberg will serve as an ideal testbed to study cold molecular ions in the gas phase. With residual gas densities of <140 cm-3 and temperatures below 10K, the CSR will allow for merged beams collision studies involving molecular ions, neutral atoms, free electrons and photons under true interstellar conditions.
PREFACE: 11th International Workshop on Positron and Positronium Chemistry (PPC-11)
NASA Astrophysics Data System (ADS)
Pujari, P. K.; Sudarshan, K.; Dutta, D.
2015-06-01
The International Workshop on Positron and Positronium Chemistry (PPC) is a prestigious triennial conference series with a rich history. The 11th meeting in the series (PPC-11) was held at Cidade de Goa, Goa, India during 9-14, November, 2014. It was organized by Bhabha Atomic Research Centre (BARC), Mumbai. The co-organizers were Saha Institute of Nuclear Physics (SINP), Kolkata, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and Indian Association of Nuclear Chemists and Allied Scientists (IANCAS), Mumbai. PPC-11 attracted participants both from academic institutions and industries. About 120 participants from 20 countries representing all continents participated in the conference. The conference continued the tradition of excellence in terms of quality of presentations and discussions. There were 33 plenary and invited talks, 39 oral presentations and 40 posters. The conference stood true to its multidisciplinary tag with papers presented in the fields of fundamentals of positron and positronium chemistry, applications in polymers, porous materials, metals/alloys, studies in liquids, biological applications as well as developments in theory and experimental techniques. The enthusiastic participation of senior researchers and young students made the scientific program a grand success. In order to encourage the student participants (twenty) and promote excellence, a committee of senior members evaluated their presentations and the top three contributions were awarded. The positron and positronium community paid homage to the memory of late Profs. J. Kristiak and A.T. Stewart. A brief sketch of their life and work was presented by Profs. Jan Kuriplach and Toshio Hyodo, respectively. All the papers published in these proceedings have been peer reviewed by the participants of PPC-11. Editors thank all the reviewers for sparing their valuable time and helping us in bringing out the proceedings with 43 contributed articles in the scheduled time. We are grateful to the members of the International scientific committee, members of the organizing committee and advisory committee for their support. We wish to thank the members of the positron group at the Radiochemistry Division, Bhabha Atomic Research Centre for shouldering the responsibility of organizing the conference and making it a memorable event. We wish to conclude by wishing success to the organizers of PPC-12 and hope to meet you all in Poland.
Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P
2007-01-21
This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
Probing ‘Spin-Forbidden’ Oxygen Atom Transfer: Gas-Phase Reactions of Chromium-Porphyrin Complexes
Fornarini, Simonetta; Lanucara, Francesco; Warren, Jeffrey J.
2010-01-01
Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a ‘two-state’ reactivity model has been extensively applied especially in iron-porphyrin systems. Herein we explore the gas phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)CrIII]+ (1) and [(TPFPP)CrVO]+ (2). These are an attractive system to examine the effects of spin state change on oxygen atom transfer because the d1 CrV species are doublets while the CrIII complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)CrIII]+ forms adducts with a variety of neutral donors but O-atom transfer is only observed for NO2. Pyridine N-oxide adducts of 1 do yield 2 upon collision induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogs do not. [(TPFPP)CrVO]+ is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)3. In general, [(TPFPP)CrVO]+ species are much less reactive than the Fe and Mn analogs. Thermochemical analysis of the reactions points towards the involvement of spin issues in the lower observed reactivity of the chromium complexes. PMID:20218631
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
ERIC Educational Resources Information Center
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
ERIC Educational Resources Information Center
Wedler, Henry B.; Boyes, Lee; Davis, Rebecca L.; Flynn, Dan; Franz, Annaliese; Hamann, Christian S.; Harrison, Jason G.; Lodewyk, Michael W.; Milinkevich, Kristin A.; Shaw, Jared T.; Tantillo, Dean J.; Wang, Selina C.
2014-01-01
Curricula for three chemistry camp experiences for blind and visually impaired (BVI) individuals that incorporated single- and multiday activities and experiments accessible to BVI students are described. Feedback on the camps from students, mentors, and instructors indicates that these events allowed BVI students, who in many cases have been…
ERIC Educational Resources Information Center
Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.
2012-01-01
In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…
ERIC Educational Resources Information Center
Armenta, Sergio; de la Guardia, Miguel
2011-01-01
Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can bemore » obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.« less
Exotic objects of atomic physics
NASA Astrophysics Data System (ADS)
Eletskii, A. V.
2017-11-01
There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.
NASA Astrophysics Data System (ADS)
DuMont, Jaime Willadean
In this thesis, in situ Fourier transform infrared (FTIR) spectroscopy was used to study: i) the growth and pyrolysis of molecular layer deposition (MLD) films. ii) the surface chemistry of atomic layer etching (ALE) processes. Atomic layer processes such as molecular layer deposition (MLD) and atomic layer etching (ALE) are techniques that can add or remove material with atomic level precision using sequential, self-limiting surface reactions. Deposition and removal processes at the atomic scale are powerful tools for many industrial and research applications such as energy storage and semiconductor nanofabrication. The first section of this thesis describes the chemistry of reactions leading to the MLD of aluminum and tin alkoxide polymer films known as "alucone" and "tincone", respectively. The subsequent pyrolysis of these films to produce metal oxide/carbon composites was also investigated. In situ FTIR spectroscopy was conducted to monitor surface species during MLD film growth and to monitor the films background infrared absorbance versus pyrolysis temperature. Ex situ techniques such as transmission electron microscopy (TEM), four-point probe and X-ray diffraction (XRD) were utilized to study the properties of the films post-pyrolysis. TEM confirmed that the pyrolyzed films maintained conformality during post-processing. Four-point probe monitored film resistivity versus pyrolysis temperature and XRD determined the film crystallinity. The second section of this thesis focuses on the surface chemistry of Al2O3 and SiO2 ALE processes, respectively. Thermal ALE processes have been recently developed which utilize sequential fluorination and ligand exchange reactions. An intimate knowledge of the surface chemistry is important in understanding the ALE process. In this section, the competition between the Al2O3 etching and AlF 3 growth that occur during sequential HF (fluorinating agent) and TMA (ligand exchange) exposures is investigated using in situ FTIR spectroscopy. Also included in this section is the first demonstration of thermal ALE for SiO2. In situ FTIR spectroscopy was conducted to monitor the loss of bulk Si-O vibrational modes corresponding to the removal of SiO2. FTIR was also used to monitor surface species during each ALE half cycle and to verify self-limiting behavior. X-ray reflectivity experiments were conducted to establish etch rates on thermal oxide silicon wafers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi
2008-04-21
Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jianwei; Yang, Zenghui; Peng, Haowei
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin densitymore » approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.« less
Radiation-Spray Coupling for Realistic Flow Configurations
NASA Technical Reports Server (NTRS)
El-Asrag, Hossam; Iannetti, Anthony C.
2011-01-01
Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.
Modeling of point defects and rare gas incorporation in uranium mono-carbide
NASA Astrophysics Data System (ADS)
Chartier, A.; Van Brutzel, L.
2007-02-01
An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].
The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation
NASA Astrophysics Data System (ADS)
Chen, Jundong
2018-03-01
Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.
The Linac Coherent Light Source: Recent Developments and Future Plans
Schoenlein, R. W.; Boutet, S.; Minitti, M. P.; ...
2017-08-18
The development of X-ray free-electron lasers (XFELs) has launched a new era in X-ray science by providing ultrafast coherent X-ray pulses with a peak brightness that is approximately one billion times higher than previous X-ray sources. The Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, the world’s first hard X-ray FEL, has already demonstrated a tremendous scientific impact across broad areas of science. Here in this paper, a few of the more recent representative highlights from LCLS are presented in the areas of atomic, molecular, and optical science; chemistry; condensed matter physics; matter in extreme conditions;more » and biology. This paper also outlines the near term upgrade (LCLS-II) and motivating science opportunities for ultrafast X-rays in the 0.25–5 keV range at repetition rates up to 1 MHz. Future plans to extend the X-ray energy reach to beyond 13 keV (<1 Å) at high repetition rate (LCLS-II-HE) are envisioned, motivated by compelling new science of structural dynamics at the atomic scale.« less
Deng, Shiqing; Cheng, Shaobo; Xu, Changsong; Ge, Binghui; Sun, Xuefeng; Yu, Rong; Duan, Wenhui; Zhu, Jing
2017-08-16
The broken symmetry along with anomalous defect structures and charging conditions at multiferroics surface can alter both crystal structures and electronic configurations, bringing in emergent physical properties. Extraordinary surface states are induced into original mutually coupled order parameters in such strongly correlated oxides, which flourish in diverse properties but remain less explored. Here, we report the peculiar surface ferroelectric states and reconfigurable functionalities driven by the relaxation of surface and consequent changes in O 2p and Y 4d orbital (p-d) hybridization within a representative hexagonal multiferroics, YMnO 3 . An unprecedented surface reconstruction is achieved by tailored p-d hybridization coupling with in-plane oxygen vacancies, which is atomically revealed on the basis of the advantages of state-of-the-art aberration-corrected (scanning) transmission electron microscopy. Further ab initio density functional theory calculations verify the key roles of in-plane oxygen vacancies in modulating polarization properties and electronic structure, which should be regarded as the atomic multiferroic element. This surface configuration is found to induce tunable functionalities, such as surface ferromagnetism and conductivity. Meanwhile, the controversial origin of improper ferroelectricity that is unexpectedly free from critical size has also been atomically unraveled. Our findings provide new insights into the design and implementation of surface chemistry devices by simply controlling the oxygen stoichiometry, greatly advance our understandings of surface science in strongly correlated oxides, and enable exciting innovations and new technological functionality paradigms.
ERIC Educational Resources Information Center
Dannhauser, Walter
1980-01-01
Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)
Predicting fire frequency with chemistry and climate
Richard P. Guyette; Michael C. Stambaugh; Daniel C. Dey; Rose-Marie Muzika
2012-01-01
A predictive equation for estimating fire frequency was developed from theories and data in physical chemistry, ecosystem ecology, and climatology. We refer to this equation as the Physical Chemistry Fire Frequency Model (PC2FM). The equation was calibrated and validated with North American fire data (170 sites) prior to widespread industrial influences (before ...
ERIC Educational Resources Information Center
Kozliak, Evguenii I.
2004-01-01
A molecular approach for introducing entropy in undergraduate physical chemistry course and incorporating the features of Davies' treatment that meets the needs of the students but ignores the complexities of statistics and upgrades the qualitative, intuitive approach of Lambert for general chemistry to a semiquantitative treatment using Boltzmann…
Using Physics Principles in the Teaching of Chemistry.
ERIC Educational Resources Information Center
Gulden, Warren
1996-01-01
Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…
An examination of the shrinking-core model of sub-micron aluminum combustion
NASA Astrophysics Data System (ADS)
Buckmaster, John; Jackson, Thomas L.
2013-04-01
We revisit the shrinking-core model of sub-micron aluminum combustion with particular attention to the mass flux balance at the reaction front which necessarily leads to a displacement velocity of the alumina shell surrounding the liquid aluminum. For the planar problem this displacement simply leads to an equal displacement of the entire alumina layer, and therefore a straightforward mathematical framework can be constructed. In this way we are able to construct a single curve which defines the burn time for arbitrary values of the diffusion coefficient of O atoms, the reaction rate, the characteristic length of the combustion field, and the O atom mass concentration within the alumina provided that it is much smaller than the aluminum density. This demonstrates a transition between a 'd 2-t' law for fast chemistry and a 'd-t' law for slow chemistry. For the spherical geometry, the one of physical interest, the outward displacement velocity creates not a simple displacement, but a stress field which, when examined within the framework of linear elasticity, strongly suggests the creation of internal cracking. We note that if the molten aluminum is pushed into these cracks by the high internal pressure characteristic of the stress field, its surface, where reaction occurs, could be fractal in nature and affect the fundamental nature of the burning law. Indeed, if this ingredient is added to the planar model, a single curve for the burn time can again be derived, and this describes a transition from a 'd 2-t' law to a 'd ν-t' law, where 0<ν<1.
Electronegativity determination of individual surface atoms by atomic force microscopy.
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-04-26
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.
Electronegativity determination of individual surface atoms by atomic force microscopy
Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki
2017-01-01
Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645
Quarterly Progress Report (January 1 to March 31, 1950)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookhaven National Laboratory
This is the first of a series of Quarterly Reports. These reports will deal primarily with the progress made in our scientific program during a three months period. Those interested in matters pertaining to organization, administration, complete scientific program, personnel and other matters not directly involved in current scientific progress are referred to our Annual Progress Report which is issued in January. We have attempted to describe new information that appears significant, or of interest, to other scientists within the Atomic Energy Commission Laboratories. No effort has been made, however, to detail progress in each and every research project. Littlemore » or no reference will therefore be found to the projects in which progress during the current period is considered too inconclusive. Since our organizational structure is departmental, the work described herein is arranged in the following sequence: (1) Accelerator Project; (2) Biology Department; (3) Chemistry Department; (4) Instrumentation and Health Physic8 Department; (5) Medical Department; (6) Physics Department; and (7) Reactor Science and Engineering Department.« less
Jang, Ja-Young; Hong, Young June; Lim, Junsup; Choi, Jin Sung; Choi, Eun Ha; Kang, Seongman; Rhim, Hyangshuk
2018-02-01
Plasma, formed by ionization of gas molecules or atoms, is the most abundant form of matter and consists of highly reactive physicochemical species. In the physics and chemistry fields, plasma has been extensively studied; however, the exact action mechanisms of plasma on biological systems, including cells and humans, are not well known. Recent evidence suggests that cold atmospheric plasma (CAP), which refers to plasma used in the biomedical field, may regulate diverse cellular processes, including neural differentiation. However, the mechanism by which these physicochemical signals, elicited by reactive oxygen and nitrogen species (RONS), are transmitted to biological system remains elusive. In this study, we elucidated the physicochemical and biological (PCB) connection between the CAP cascade and Trk/Ras/ERK signaling pathway, which resulted in neural differentiation. Excited atomic oxygen in the plasma phase led to the formation of RONS in the PCB network, which then interacted with reactive atoms in the extracellular liquid phase to form nitric oxide (NO). Production of large amounts of superoxide radical (O 2 - ) in the mitochondria of cells exposed to CAP demonstrated that extracellular NO induced the reversible inhibition of mitochondrial complex IV. We also demonstrated that cytosolic hydrogen peroxide, formed by O 2 - dismutation, act as an intracellular messenger to specifically activate the Trk/Ras/ERK signaling pathway. This study is the first to elucidate the mechanism linking physicochemical signals from the CAP cascade to the intracellular neural differentiation signaling pathway, providing physical, chemical and biological insights into the development of therapeutic techniques to treat neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
William Barlow and the Determination of Atomic Arrangement in Crystals.
Mauskopf, Seymour H
2015-04-01
William Barlow (1845-1934) was an important if unconventional scientist, known for having developed the 'closest-packing' atomic models of crystal structure. He resumed an early nineteenth-century tradition of utilizing crystallographical and chemical data to determine atomic arrangements in crystals. This essay recounts Barlow's career and scientific activity in three parts: (a) His place in the tradition of determining atomic arrangement in context of this earlier tradition and of contemporaneous developments of crystallography and chemistry, (b) his unconventional career, and (c) the 'success' of his program to determine atomic arrangements in crystals and its influence on the work of William Lawrence Bragg.
NASA Astrophysics Data System (ADS)
Kumar, David D.; Morris, John D.
2005-12-01
A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.
Physical Chemistry, Science (Experimental): 5318.60.
ERIC Educational Resources Information Center
Mary, Charlotta B.; Feuer, Jerold
Performance objectives are stated for this secondary school instructional unit concerned with aspects of physical chemistry, involving the physical properties of matter, and laws and theories regarding chemical interaction. Lists of films and state-adopted and other texts are presented. Included are enrollment guidelines; an outline summarizing…
Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum
NASA Astrophysics Data System (ADS)
Collett, Jeffrey
2008-03-01
The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.
Overview on the history of organofluorine chemistry from the viewpoint of material industry
Okazoe, Takashi
2009-01-01
Fluorine (from “le fluor”, meaning “to flow”) is a second row element of Group 17 in the periodic table. When bound to carbon it forms the strongest bond in organic chemistry to give organofluorine compounds. The scientific field treating them, organofluorine chemistry, started before elemental fluorine itself was isolated. Applying the fruits in academia, industrial organofluorine chemistry has developed over 80 years via dramatic changes during World War II. Nowadays, it provides various materials essential for our society. Recently, it utilizes elemental fluorine itself as a reagent for the introduction of fluorine atoms to organic molecules in leading-edge industries. This paper overviews the historical development of organofluorine chemistry especially from the viewpoint of material industry. PMID:19838009
ERIC Educational Resources Information Center
Linenberger, Kimberly J.; Holme, Thomas A.
2014-01-01
Chemists and chemistry educators have long sought meaningful ways to visualize fundamentally abstract components, such as atoms and molecules, of their trade. As technology has improved, computer-based visualization methods have infused both research and education in chemistry. Biochemistry, in particular, has become highly dependent on ways that…
Composite Reinforcement using Boron Nitride Nanotubes
2014-05-09
while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY
An Evaluation of the Chemical Origin of Life as a Context for Teaching Undergraduate Chemistry
ERIC Educational Resources Information Center
Venkataraman, Bhawani
2011-01-01
The chemical origin of life on earth has been used as a conceptual framework in an introductory, undergraduate chemistry course. The course explores the sequence of events through which life is believed to have emerged, from atoms to molecules to macromolecular systems, and uses this framework to teach basic chemical concepts. The results of this…
Using the Plan View to Teach Basic Crystallography in General Chemistry
ERIC Educational Resources Information Center
Cushman, Cody V.; Linford, Matthew R.
2015-01-01
The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…
ERIC Educational Resources Information Center
Raabe, Richard; Gentile, Lisa
2008-01-01
A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the…
ERIC Educational Resources Information Center
O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.
2015-01-01
An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…
ERIC Educational Resources Information Center
Krell, Moritz; Reinisch, Bianca; Krüger, Dirk
2015-01-01
In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…
ERIC Educational Resources Information Center
Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa
2007-01-01
The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…
ERIC Educational Resources Information Center
Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir
2007-01-01
We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…
ERIC Educational Resources Information Center
Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly
2015-01-01
Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…
Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry
ERIC Educational Resources Information Center
Green, Malcolm L. H.; Parkin, Gerard
2014-01-01
The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…
Teaching Avogadro's Hypothesis and Helping Students to See the World Differently
ERIC Educational Resources Information Center
Criswell, Brett
2008-01-01
Within the historical context of the development of chemistry, Avogadro's hypothesis represents a fundamental concept: It allowed Avogadro to explain Gay-Lussac's law of combining volumes and it allowed Cannizzaro to establish a more accurate set of atomic mass values. If students are going to understand the concept of relative atomic masses and…
The Atomic Mass Unit, the Avogadro Constant, and the Mole: A Way to Understanding
ERIC Educational Resources Information Center
Baranski, Andrzej
2012-01-01
Numerous articles have been published that address problems encountered in teaching basic concepts of chemistry such as the atomic mass unit, Avogadro's number, and the mole. The origin of these problems is found in the concept definitions. If these definitions are adjusted for teaching purposes, understanding could be improved. In the present…
NASA Astrophysics Data System (ADS)
Potter, Wendell H.; Lynch, Robert B.
2013-01-01
The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2016-09-08
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
Publications of LASL research, 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A.K.
1976-09-01
This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, andmore » U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)« less
ERIC Educational Resources Information Center
Maron, Marta Katarzyna
2011-01-01
This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…
Quantum Chemistry, 5th Edition by Ira N. Levine
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
2000-12-01
Of course, there is no one- or two-week shortcut by which nonspecialists can master enough quantum mechanics to become informed users of quantum chemical techniques. Nevertheless, a text that integrated the fundamentals of quantum theory with a rigorous introduction to quantum chemistry could help instructors design a class that would benefit both these nonspecialists and graduate students in physical chemistry. Could such a class overcome the (undeserved) stigma associated with the physical chemistry curriculum? That remains to be seen.
Probing physical properties at the nanoscale using atomic force microscopy
NASA Astrophysics Data System (ADS)
Ditzler, Lindsay Rachel
Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating interactions at the nanoscale, such as ligand-receptor interactions. This work examines the interactions between the enzyme dihydrofolate reductase (DHFR), a widely investigated enzyme targeted for cancer and antimicrobial pharmaceutical, and methotrexate (MTX), a strong competitive inhibitor of DHFR. The DHFR was immobilized on a gold substrate, bound through a single surface cysteine, and maintained catalytic activity. AFM probe was functionalized with MTX and the interaction strength was measured using AFM. This work highlights the versatility of AFM, specifically force spectroscopy for the quantification of electrical, mechanical, and ligand-receptor interactions at the nanoscale.
Computational chemistry and aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.
1985-01-01
An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.
Australian thrips of the Haplothrips lineage (Insecta: Thysanoptera)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mound, Laurence A.; Minaei, Kambiz
2007-12-01
Water is important and ubiquitous and surprisingly not understood. Just because is it common, does not mean its understood "Poets say science takes away from the beauty of the stars-mere globs of gas atoms. I too can see the stars on a desert night, and feel them. But do I see less or more? ... What is the pattern, or the meaning, or the why? It does not do harm to the mystery to know a little about it. For far more marvelous is the truth than any artists of the past imagined it." - Richard P. Feynman, The Feynmanmore » Lectures on Physics, 1963. (Cited in the introduction to Chapter 3 of "The Snowflake, Winter's Secret Beauty, Text by Kenneth Libbrecht, Photography by Patricia Rasmussen.) 1. Highlight the fact that water is still one of the most active and challenging research areas in chemistry and physics 2. Describe in general terms why water is unique from the point of view of its properties o Large dipole-moment o Very polarizable o Involved in is own chemistry (e.g. auto ionization defining the pH scale) • Atomic view: o Oxygen and Hydrogen. o Hydrogen is a quantum mechanical in nature. Classical physics is no good. o Water’s Charge-charge interaction described by classical physics laws (e.g. Coulomb) o The statistical mechanics of water. Why counting is important. o You need the full arsenal of theoretical methods to understand water • Waters well known bulk properties do not explain waters anomalies o Surface tension, heat capacity • Understanding the microscopic nature of water and how this gives rise to the known bulk quantities is the thrust of state-of-the-art research o Hydrogen bonding o Liquid structure o The so-called “spherical cow” model gets you no where with water o There are 10s-100s of different water models available in the scientific literature. It is a hard business • All of life takes place at the interfaces of solid, liquid, and gas o Biology takes advantage of waters varying properties in different geometries (e.g. confined, surfaces, etc. o Water behaves differently in confined environments • Water is the most abundant greenhouse gas o How does a microscopic understanding of water impact our knowledge of the radiation budget of the earth o How does a microscopic understanding of water impact our knowledge of weather.« less
From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation
NASA Astrophysics Data System (ADS)
Hansen, Lee D.; McCarlie, V. Wallace
2004-11-01
Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.
Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes
2015-01-01
The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.
The Application of Physical Organic Chemistry to Biochemical Problems.
ERIC Educational Resources Information Center
Westheimer, Frank
1986-01-01
Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)
Molecule by molecule, the physics and chemistry of life: SMB 2007.
Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C
2007-04-01
Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.
Biological and environmental interactions of emerging two-dimensional nanomaterials
Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert
2016-01-01
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the “bio-nanosheet” interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057