Leherte, Laurence; Vercauteren, Daniel P
2014-02-01
Reduced point charge models of amino acids are designed, (i) from local extrema positions in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions, and (ii) from local maxima positions in promolecular electron density distribution functions. Corresponding charge values are fitted versus all-atom Amber99 MEPs. To easily generate reduced point charge models for protein structures, libraries of amino acid templates are built. The program GROMACS is used to generate stable Molecular Dynamics trajectories of an Ubiquitin-ligand complex (PDB: 1Q0W), under various implementation schemes, solvation, and temperature conditions. Point charges that are not located on atoms are considered as virtual sites with a nul mass and radius. The results illustrate how the intra- and inter-molecular H-bond interactions are affected by the degree of reduction of the point charge models and give directions for their implementation; a special attention to the atoms selected to locate the virtual sites and to the Coulomb-14 interactions is needed. Results obtained at various temperatures suggest that the use of reduced point charge models allows to probe local potential hyper-surface minima that are similar to the all-atom ones, but are characterized by lower energy barriers. It enables to generate various conformations of the protein complex more rapidly than the all-atom point charge representation. Copyright © 2013 Elsevier Inc. All rights reserved.
Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.
1993-01-01
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.
Point-to-plane and plane-to-plane electrostatic charge injection atomization for insulating liquids
NASA Astrophysics Data System (ADS)
Malkawi, Ghazi
An electrostatic charge injection atomizer was fabricated and used to introduce and study the electrostatic charge injection atomization methods for highly viscous vegetable oils and high conductivity low viscosity aviation fuel, JP8. The total, spray and leakage currents and spray breakup characteristics for these liquids were investigated and compared with Diesel fuel data. Jet breakup and spray atomization mechanism showed differences for vegetable oils and lower viscosity hydrocarbon fuels. For vegetable oils, a bending/spinning instability phenomenon was observed similar to the phenomenon found in liquid jets of high viscosity polymer solutions. The spray tip lengths and cone angles were presented qualitatively and quantitatively and correlated with the appropriate empirical formulas. The different stages of the breakup mechanisms for such oils, as a function of specific charges and flow rates, were discussed. In order to make this method of atomization more suitable for practical use in high flow rate applications, a blunt face electrode (plane-to-plane) was used as the charge emitter in place of a single pointed electrode (point-to-plane). This allowed the use of a multi-orifice emitter that maintained a specific charge with the flow rate increase which could not be achieved with the needle electrode. The effect of the nozzle geometry, liquid physical properties and applied bulk flow on the spray charge, total charge, maximum critical spray specific charge and electrical efficiency compared with the needle point-to-plane atomizer results was presented. Our investigation revealed that the electrical efficiency of the atomizer is dominated by the charge forced convection rate rather than charge transport by ion motilities and liquid motion by the electric field. As a result of the electric coulomb forces between the electrified jets, the multi-orifice atomizer provided a unique means of dispersing the fuel in a hollow cone with wide angles making the new method suitable for variety of combustion applications.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1993-01-01
Distributed Point Charge Models (PCM) for CO, (H2O)2, and HS-SH molecules have been computed from analytical expressions using multi-center multipole moments. The point charges (set of charges including both atomic and non-atomic positions) exactly reproduce both molecular and segmental multipole moments, thus constituting an accurate representation of the local anisotropy of electrostatic properties. In contrast to other known point charge models, PCM can be used to calculate not only intermolecular, but also intramolecular interactions. Comparison of these results with more accurate calculations demonstrated that PCM can correctly represent both weak and strong (intramolecular) interactions, thus indicating the merit of extending PCM to obtain improved potentials for molecular mechanics and molecular dynamics computational methods.
ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)
NASA Astrophysics Data System (ADS)
Spearing, Dane R.
1994-05-01
ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.
Wang, Jimin
2017-06-01
Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point-field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge-fitting procedures from theoretical ESP density obtained from condensed-state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. © 2017 The Protein Society.
Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu
2015-10-07
Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrastedmore » to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.« less
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
NASA Astrophysics Data System (ADS)
Parq, Jae-Hyeon; Yu, Jaejun; Kwon, Young-Kyun; Kim, Gunn
2010-11-01
Metal atoms on graphene, when ionized, can act as a point-charge impurity to probe a charge response of graphene with the Dirac cone band structure. To understand the microscopic physics of the metal-atom-induced charge and spin polarization in graphene, we present scanning tunneling spectroscopy (STS) simulations based on density-functional theory calculations. We find that a Cs atom on graphene is fully ionized with a significant band-bending feature in the STS whereas the charge and magnetic states of Ba and La atoms on graphene appear to be complicated due to orbital hybridization and Coulomb interaction. By applying external electric field, we observe changes in charge donations and spin magnetic moments of the metal adsorbates on graphene.
NASA Astrophysics Data System (ADS)
Ovsyannikov, V. D.; Kamenskii, A. A.
2002-03-01
The changes in the wave functions and the energies of a hydrogen-like atom in the static field of a structureless charged particle are calculated in the asymptotic approximation. The corrections to the energy of states, as well as to the dipole matrix elements of radiative transitions caused by the interaction of the atom with the point charge at long range are calculated using the perturbation theory and the Sturm series for a reduced Coulomb Green’s function in parabolic coordinates. The analytical expressions are derived and tables of numerical values of the coefficients of asymptotic series that determine the corrections to the matrix elements and the intensities of transitions of the Lyman and Balmer series are presented.
Electrostatic atomization: Effect of electrode materials on electrostatic atomizer performance
NASA Astrophysics Data System (ADS)
Sankaran, Abhilash; Staszel, Christopher; Kashir, Babak; Perri, Anthony; Mashayek, Farzad; Yarin, Alexander
2016-11-01
Electrostatic atomization was studied experimentally with a pointed electrode in a converging nozzle. Experiments were carried out on poorly conductive canola oil where it was observed that electrode material may affect charge transfer. This points at the possible faradaic reactions that can occur at the surfaces of the electrodes. The supply voltage is applied to the sharp electrode and the grounded nozzle body constitutes the counter-electrode. The charge transfer is controlled by the electrochemical reactions on both the electrodes. The electrical performance study of the atomizer issuing a charged oil jet was conducted using three different nozzle body materials - brass, copper and stainless steel. Also, two sharp electrode materials - brass and stainless steel - were tested. The experimental results revealed that both the nozzle body material, as well as the sharp electrode material affected the spray and leak currents. Moreover, the effect of the sharp electrode material is quite significant. This research is supported by NSF Grant 1505276.
Kramer, Christian; Gedeck, Peter; Meuwly, Markus
2013-03-12
Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).
Jakobsen, Sofie; Jensen, Frank
2014-12-09
We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.
Li, Xin; Yang, Zhong-Zhi
2005-05-12
We present a potential model for Li(+)-water clusters based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM) that is to take ABEEM charges of the cation and all atoms, bonds, and lone pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The model allows point charges on cationic site and seven sites of an ABEEM-7P water molecule to fluctuate responding to the cluster geometry. The water molecules in the first sphere of Li(+) are strongly structured and there is obvious charge transfer between the cation and the water molecules; therefore, the charge constraint on the ionic cluster includes the charged constraint on the Li(+) and the first-shell water molecules and the charge neutrality constraint on each water molecule in the external hydration shells. The newly constructed potential model based on ABEEM/MM is first applied to ionic clusters and reproduces gas-phase state properties of Li(+)(H(2)O)(n) (n = 1-6 and 8) including optimized geometries, ABEEM charges, binding energies, frequencies, and so on, which are in fair agreement with those measured by available experiments and calculated by ab initio methods. Prospects and benefits introduced by this potential model are pointed out.
Berente, Imre; Czinki, Eszter; Náray-Szabó, Gábor
2007-09-01
We report an approach for the determination of atomic monopoles of macromolecular systems using connectivity and geometry parameters alone. The method is appropriate also for the calculation of charge distributions based on the quantum mechanically determined wave function and does not suffer from the mathematical instability of other electrostatic potential fit methods. Copyright 2007 Wiley Periodicals, Inc.
Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse
2009-07-28
The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.
Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A
2014-06-14
Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.
Geometry-dependent distributed polarizability models for the water molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.
2016-01-21
Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less
High-energy e- /e+ spectrometer via coherent interaction in a bent crystal
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo; Howard, Alexander
2018-01-01
We propose a novel spectrometer based on the crystal channeling effect capable of discriminating between positive and negative particles well beyond the TeV energy scale. The atomic order of a crystalline structure generates an electrostatic field built up by all the atoms in the crystals, which confines charged particle trajectories between neighbouring atomic planes. Through such an interaction in a tiny curved crystal, the same dynamical action on the highest energy particles as that of a huge superconducting magnet is achieved. Depending on the charge sign, points of equilibrium of the oscillatory motion under channeling lie between or on atomic planes for positive and negative particles, respectively, forcing positive particles to stably oscillate far from the planes, while negative ones repeatedly cross them. The different interaction rate with atomic planes causes a tremendous discrepancy between the deflection efficiency of positive and negative particles under channeling. We suggest the use of interactions between charged particles and oriented bent crystals as a novel non-cryogenic passive charge spectrometer to aid the search for dark matter in the Universe in satellite-borne experiment. The limited angular acceptance makes this technique particularly suited for directional local sources of energetic charged particles.
Chamorro, Ester R; Sequeira, Alfredo F; Zalazar, M Fernanda; Peruchena, Nélida M
2008-09-15
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.
Simple Model for the Benzene Hexafluorobenzene Interaction
Tillack, Andreas F.; Robinson, Bruce H.
2017-06-05
While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less
Simple Model for the Benzene Hexafluorobenzene Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tillack, Andreas F.; Robinson, Bruce H.
While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less
Beaucamp, Sylvain; Mathieu, Didier; Agafonov, Viatcheslav
2005-09-01
A method to estimate the lattice energies E(latt) of nitrate salts is put forward. First, E(latt) is approximated by its electrostatic component E(elec). Then, E(elec) is correlated with Mulliken atomic charges calculated on the species that make up the crystal, using a simple equation involving two empirical parameters. The latter are fitted against point charge estimates of E(elec) computed on available X-ray structures of nitrate crystals. The correlation thus obtained yields lattice energies within 0.5 kJ/g from point charge values. A further assessment of the method against experimental data suggests that the main source of error arises from the point charge approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.
2007-05-15
Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard, P.
The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describemore » inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.« less
NASA Astrophysics Data System (ADS)
Kim, Gunn; Parq, Jae-Hyeon; Yu, Jaejun; Kwon, Young-Kyun; Kyung Hee University Collaboration; Seoul National University Collaboration
2011-03-01
Metal atoms on graphene, when ionized, can act as a point-charge impurity to probe a charge response of graphene with the Dirac cone band structure. To understand charge and spin polarization in graphene, we present scanning tunneling spectroscopy STS simulations based on density-functional theory calculations. We find that a Cs atom on graphene is fully ionized with a significant band-bending feature in the STS whereas the charge and magnetic states of Ba and La atoms on graphene appear to be complicated due to orbital hybridization and Coulomb interaction. By applying external electric field, we observe changes in charge donations and spin magnetic moments of the metal adsorbates on graphene. This work was supported by the National Research Foundation of Korea through the ARP (Grant No. R17-2008-033- 01000-0) (J.Y.) and the Basic Science Research Program through the NRF of Korea (Grant No. 2010-0007805) (G.K.).
Limiting assumptions in molecular modeling: electrostatics.
Marshall, Garland R
2013-02-01
Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.
Yu, Ling; Yang, Zhong-Zhi
2010-05-07
Structures, binding energies, and vibrational frequencies of (NH(3))(n) (n=2-5) isomers and dynamical properties of liquid ammonia have been explored using a transferable intermolecular potential eight point model including fluctuating charges and flexible body based on a combination of the atom-bond electronegativity equalization and molecular (ABEEM) mechanics (ABEEM ammonia-8P) in this paper. The important feature of this model is to divide the charge sites of one ammonia molecule into eight points region containing four atoms, three sigma bonds, and a lone pair, and allows the charges in system to fluctuate responding to the ambient environment. Due to the explicit descriptions of charges and special treatment of hydrogen bonds, the results of equilibrium geometries, dipole moments, cluster interaction energies, vibrational frequencies for the gas phase of small ammonia clusters, and radial distribution function for liquid ammonia calculated with the ABEEM ammonia-8P potential model are in good agreement with those measured by available experiments and those obtained from high level ab initio calculations. The properties of ammonia dimer are studied in detail involving the structure and one-dimensional, two-dimensional potential energy surface. As for interaction energies, the root mean square deviation is 0.27 kcal/mol, and the linear correlation coefficient reaches 0.994.
Long-range Coulomb forces and localized bonds.
Preiser; Lösel; Brown; Kunz; Skowron
1999-10-01
The ionic model is shown to be applicable to all compounds in which the atoms carry a net charge and their electron density is spherically symmetric regardless of the covalent character of the bonding. By examining the electric field generated by an array of point charges placed at the positions of the ions in over 40 inorganic compounds, we show that the Coulomb field naturally partitions itself into localized regions (bonds) which are characterized by the electric flux that links neighbouring ions of opposite charge. This flux is identified with the bond valence, and Gauss' law with the valence-sum rule, providing a secure theoretical foundation for the bond-valence model. The localization of the Coulomb field provides an unambiguous definition of coordination number and our calculations show that, in addition to the expected primary coordination sphere, there are a number of weak bonds between cations and the anions in the second coordination sphere. Long-range Coulomb interactions are transmitted through the crystal by the application of Gauss' law at each of the intermediate atoms. Bond fluxes have also been calculated for compounds containing ions with non-spherical electron densities (e.g. cations with stereoactive lone electron pairs). In these cases the point-charge model continues to describe the distant field, but multipoles must be added to the point charges to give the correct local field.
NASA Astrophysics Data System (ADS)
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Galvin, Conor O. T.; Arya, Ashok K.; Dutta, Bijon K.; Dey, Gautam K.; Grimes, Robin W.
2017-03-01
The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO2 we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO2 is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO2 is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO2-x the most favourable solution equilibrium site is the NTV1 while in ThO2 it is the DV.
Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda
2006-08-24
The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.
Experimental observation of charge-shift bond in fluorite CaF2.
Stachowicz, Marcin; Malinska, Maura; Parafiniuk, Jan; Woźniak, Krzysztof
2017-08-01
On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å -1 , a quantitative experimental charge density distribution has been obtained for fluorite (CaF 2 ). The atoms-in-molecules integrated experimental charges for Ca 2+ and F - ions are +1.40 e and -0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca 2+ ...F - and F - ...F - contacts revealed the character of these interactions. The Ca 2+ ...F - interaction is clearly a closed shell and ionic in character. However, the F - ...F - interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca 2+ ...F - bonded radii - measured as distances from the centre of the ion to the critical point - are 1.21 Å for the Ca 2+ cation and 1.15 Å for the F - anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F - ...F - bond path and bond critical point is also found in the CaF 2 crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.
Guillot, Benoît; Jelsch, Christian; Podjarny, Alberto; Lecomte, Claude
2008-05-01
The valence electron density of the protein human aldose reductase was analyzed at 0.66 angstroms resolution. The methodological developments in the software MoPro to adapt standard charge-density techniques from small molecules to macromolecular structures are described. The deformation electron density visible in initial residual Fourier difference maps was significantly enhanced after high-order refinement. The protein structure was refined after transfer of the experimental library multipolar atom model (ELMAM). The effects on the crystallographic statistics, on the atomic thermal displacement parameters and on the structure stereochemistry are analyzed. Constrained refinements of the transferred valence populations Pval and multipoles Plm were performed against the X-ray diffraction data on a selected substructure of the protein with low thermal motion. The resulting charge densities are of good quality, especially for chemical groups with many copies present in the polypeptide chain. To check the effect of the starting point on the result of the constrained multipolar refinement, the same charge-density refinement strategy was applied but using an initial neutral spherical atom model, i.e. without transfer from the ELMAM library. The best starting point for a protein multipolar refinement is the structure with the electron density transferred from the database. This can be assessed by the crystallographic statistical indices, including Rfree, and the quality of the static deformation electron-density maps, notably on the oxygen electron lone pairs. The analysis of the main-chain bond lengths suggests that stereochemical dictionaries would benefit from a revision based on recently determined unrestrained atomic resolution protein structures.
Numerology, hydrogenic levels, and the ordering of excited states in one-electron atoms
NASA Astrophysics Data System (ADS)
Armstrong, Lloyd, Jr.
1982-03-01
We show that the observed ordering of Rydberg states of one-electron atoms can be understood by assuming that these states are basically hydrogenic in nature. Much of the confusion concerning this point is shown to arise from the failure to differentiate between hydrogenic ordering as the nuclear charge approaches infinity, and hydrogenic ordering for an effective charge of one. The origin of κ ordering of Rydberg levels suggested by Sternheimer is considered within this picture, and the predictions of κ ordering are compared with those obtained by assuming hydrogenic ordering.
Leherte, Laurence; Vercauteren, Daniel P
2017-10-26
We investigate the influence of various solvent models on the structural stability and protein-water interface of three ubiquitin complexes (PDB access codes: 1Q0W , 2MBB , 2G3Q ) modeled using the Amber99sb force field (FF) and two different point charge distributions. A previously developed reduced point charge model (RPCM), wherein each amino acid residue is described by a limited number of point charges, is tested and compared to its all-atom (AA) version. The complexes are solvated in TIP4P-Ew or TIP3P type water molecules, involving either the scaling of the Lennard-Jones protein-O water interaction parameters, or the coarse-grain (CG) SIRAH water description. The best agreements between the RPCM and AA models were obtained for structural, protein-water, and ligand-ubiquitin properties when using the TIP4P-Ew water FF with a scaling factor γ of 0.7. At the RPCM level, a decrease in γ, or the inclusion of SIRAH particles, allows weakening of the protein-water interactions. It results in a slight collapse of the protein structure and a less compact hydration shell and, thus, in a decrease in the number of protein-water and water-water H-bonds. The dynamics of the surface protein atoms and of the water shell molecules are also slightly refrained, which allow the generation of stable RPCM trajectories.
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; Baum, Peter
2015-01-01
For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene. PMID:26412407
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; ...
2015-09-28
For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. Here, we point out nontrivial relations between microscopic electric current and density in undoped graphene.
Yang, Zhong-Zhi; Wu, Yang; Zhao, Dong-Xia
2004-02-08
Recently, experimental and theoretical studies on the water system are very active and noticeable. A transferable intermolecular potential seven points approach including fluctuation charges and flexible body (ABEEM-7P) based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM), and its application to small water clusters are explored and tested in this paper. The consistent combination of ABEEM and molecular mechanics (MM) is to take the ABEEM charges of atoms, bonds, and lone-pair electrons into the intermolecular electrostatic interaction term in molecular mechanics. To examine the charge transfer we have used two models coming from the charge constraint types: one is a charge neutrality constraint on whole water system and the other is on each water molecule. Compared with previous water force fields, the ABEEM-7P model has two characters: (1) the ABEEM-7P model not only presents the electrostatic interaction of atoms, bonds and lone-pair electrons and their changing in respond to different ambient environment but also introduces "the hydrogen bond interaction region" in which a new parameter k(lp,H)(R(lp,H)) is used to describe the electrostatic interaction of the lone-pair electron and the hydrogen atom which can form the hydrogen bond; (2) nonrigid but flexible water body permitting the vibration of the bond length and angle is allowed due to the combination of ABEEM and molecular mechanics, and for van der Waals interaction the ABEEM-7P model takes an all atom-atom interaction, i.e., oxygen-oxygen, hydrogen-hydrogen, oxygen-hydrogen interaction into account. The ABEEM-7P model based on ABEEM/MM gives quite accurate predictions for gas-phase state properties of the small water clusters (H(2)O)(n) (n=2-6), such as optimized geometries, monomer dipole moments, vibrational frequencies, and cluster interaction energies. Due to its explicit description of charges and the hydrogen bond, the ABEEM-7P model will be applied to discuss properties of liquid water, ice, aqueous solutions, and biological systems.
A method to estimate statistical errors of properties derived from charge-density modelling
Lecomte, Claude
2018-01-01
Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with the MoPro software. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This ‘SSD methodology’ procedure can be applied to estimate uncertainties of any property related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely available MoPro program dedicated to charge-density refinement and modelling. PMID:29724964
Modification of the G-phonon mode of graphene by nitrogen doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukashev, Pavel V., E-mail: pavel.lukashev@uni.edu; Hurley, Noah; Zhao, Liuyan
2016-01-25
The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. Wemore » show that the bond length change and the long range interaction of point defects are possible mechanisms responsible for the oscillatory behavior of the G frequency as a function of nitrogen concentration. At the same time, Friedel charge oscillations are unlikely to contribute to this behavior.« less
HPAM: Hirshfeld Partitioned Atomic Multipoles
Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.
2011-01-01
An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274
Takazaki, Aki; Eda, Kazuo; Osakai, Toshiyuki; Nakajima, Takahito
2017-10-12
The answer to the question "Can electron-rich oxygen (O 2- ) withdraw electrons from metal centers?" is seemingly simple, but how the electron population on the M atom behaves when the O-M distance changes is a matter of controversy. A case study has been conducted for Keggin-type polyoxometalate (POM) complexes, and the first-principles electronic structure calculations were carried out not only for real POM species but also for "hypothetical" ones whose heteroatom was replaced with a point charge. From the results of natural population analysis, it was proven that even an electron-rich O 2- , owing to its larger electronegativity as a neutral atom, withdraws electrons when electron redistribution occurs by the change of the bond length. In the case where O 2- coexists with a cation having a large positive charge (e.g., P 5+ (O 2- ) 4 = [PO 4 ] 3- ), the gross electron population (GEP) on the M atom seemingly increases as the O atom comes closer, but this increment in GEP is not due to the role of the O atom but due to a Coulombic effect of the positive charge located on the cation. Furthermore, it was suggested that not GEP but net electron population (NEP) should be responsible for the redox properties.
MoleCoolQt – a molecule viewer for charge-density research
Hübschle, Christian B.; Dittrich, Birger
2011-01-01
MoleCoolQt is a molecule viewer for charge-density research. Features include the visualization of local atomic coordinate systems in multipole refinements based on the Hansen and Coppens formalism as implemented, for example, in the XD suite. Residual peaks and holes from XDfft are translated so that they appear close to the nearest atom of the asymmetric unit. Critical points from a topological analysis of the charge density can also be visualized. As in the program MolIso, color-mapped isosurfaces can be generated with a simple interface. Apart from its visualization features the program interactively helps in assigning local atomic coordinate systems and local symmetry, which can be automatically detected and altered. Dummy atoms – as sometimes required for local atomic coordinate systems – are calculated on demand; XD system files are updated after changes. When using the invariom database, potential scattering factor assignment problems can be resolved by the use of an interactive dialog. The following file formats are supported: XD, MoPro, SHELX, GAUSSIAN (com, FChk, cube), CIF and PDB. MoleCoolQt is written in C++ using the Qt4 library, has a user-friendly graphical user interface, and is available for several flavors of Linux, Windows and MacOS. PMID:22477783
Atomic charges of sulfur in ionic liquids: experiments and calculations.
Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J
2017-12-14
Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.
NASA Astrophysics Data System (ADS)
Woellner, Cristiano F.; Freire, José A.; Guide, Michele; Nguyen, Thuc-Quyen
2011-08-01
We develop a simple continuum model for the current voltage characteristics of a material as measured by the conducting atomic force microscopy, including space charge effects. We address the effect of the point contact on the magnitude of the current and on the transition voltages between the different current regimes by comparing these with the corresponding expressions obtained with planar electrodes.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.
1992-01-01
The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.
Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space
NASA Technical Reports Server (NTRS)
Steigman, G.
1975-01-01
An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.
Resilience of the quantum Rabi model in circuit QED
NASA Astrophysics Data System (ADS)
E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano
2017-07-01
In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface
NASA Astrophysics Data System (ADS)
Nazir, S.; Singh, N.; Schwingenschlögl, U.
2011-03-01
The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.
Hidden topological constellations and polyvalent charges in chiral nematic droplets
NASA Astrophysics Data System (ADS)
Posnjak, Gregor; Čopar, Simon; Muševič, Igor
2017-02-01
Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.
Hidden topological constellations and polyvalent charges in chiral nematic droplets
Posnjak, Gregor; Čopar, Simon; Muševič, Igor
2017-01-01
Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770
A general intermolecular force field based on tight-binding quantum chemical calculations
NASA Astrophysics Data System (ADS)
Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas
2017-10-01
A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.
2017-01-01
Abstract Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. PMID:28370507
NASA Technical Reports Server (NTRS)
Beiersdorfer, P.; Brown, G. V.; Gu, M.-F.; Harris, C. L.; Kahn, S. M.; Kim, S.-H.; Neill, P. A.; Savin, D. W.; Smith, A. J.; Utter, S. B.
2000-01-01
Using the EBIT facility in Livermore we produce definitive atomic data for input into spectral synthesis codes. Recent measurements of line excitation and dielectronic recombination of highly charged K-shell and L-shell ions are presented to illustrate this point.
Optical Lattice Bose-Einstein Condensates and the dd Fusion - Iwamura Connection
NASA Astrophysics Data System (ADS)
Chubb, Talbot
2003-03-01
My conjecture: LENR dd fusion occurs in PdDx when a subset of the interstitial deuterons occupy tetrahedral sites in a PdDx crystallite. The tetrahedral deuterons(d's), which occupy shallow potential wells, behave as a superfluid, similar to ultracold Na atoms in shallow-well optical traps, as modeled by Jaksch et al.(D. Jaksch, et al, Phys. Rev. Lett., 81, 3108 (1998).) The tetrahedral d's form a deuteron (d) subsystem, which is neutralized by an electron subsystem containing an equal number of electrons. In the superfluid all the properties of each quasiparticle d are partitioned among N_s_i_te equivalent sites. The partitioning of the d point charge reduces the Coulomb self-repulsion within each quasiparticle pair, which causes wave function overlap at large N_s_i_t_e, allowing d-d fusion. Similarly, partitioning of the point charge of each single quasiparticle d reduces the Coulomb repulsion between it and an obstructing impurity atom, which causes wave function overlap between quasiparticle and atom at large N_s_i_t_e, allowing transmutation of the impurity atom. The Iwamura reaction(Y. Iwamura, et al, Japan J. of Appl. Physics, 41A, 4642 (2002).) is 4 ^2D^+_B_l_o_ch + 4 e^-_B_l_o_ch + ^1^3^3Cs arrow ^1^4^1Pr, with the reaction energy incoherently transferred to the lattice.
Electrical control of charged carriers and excitons in atomically thin materials
NASA Astrophysics Data System (ADS)
Wang, Ke; De Greve, Kristiaan; Jauregui, Luis A.; Sushko, Andrey; High, Alexander; Zhou, You; Scuri, Giovanni; Taniguchi, Takashi; Watanabe, Kenji; Lukin, Mikhail D.; Park, Hongkun; Kim, Philip
2018-02-01
Electrical confinement and manipulation of charge carriers in semiconducting nanostructures are essential for realizing functional quantum electronic devices1-3. The unique band structure4-7 of atomically thin transition metal dichalcogenides (TMDs) offers a new route towards realizing novel 2D quantum electronic devices, such as valleytronic devices and valley-spin qubits8. 2D TMDs also provide a platform for novel quantum optoelectronic devices9-11 due to their large exciton binding energy12,13. However, controlled confinement and manipulation of electronic and excitonic excitations in TMD nanostructures have been technically challenging due to the prevailing disorder in the material, preventing accurate experimental control of local confinement and tunnel couplings14-16. Here we demonstrate a novel method for creating high-quality heterostructures composed of atomically thin materials that allows for efficient electrical control of excitations. Specifically, we demonstrate quantum transport in the gate-defined, quantum-confined region, observing spin-valley locked quantized conductance in quantum point contacts. We also realize gate-controlled Coulomb blockade associated with confinement of electrons and demonstrate electrical control over charged excitons with tunable local confinement potentials and tunnel couplings. Our work provides a basis for novel quantum opto-electronic devices based on manipulation of charged carriers and excitons.
NASA Astrophysics Data System (ADS)
Mostafavi, Najmeh; Ebrahimi, Ali
2018-06-01
In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.
Konermann, Lars
2017-08-31
Molecular dynamics (MD) simulations have become a key tool for examining the properties of electrosprayed protein ions. Traditional force fields employ static charges on titratable sites, whereas in reality, protons are highly mobile in gas-phase proteins. Earlier studies tackled this problem by adjusting charge patterns during MD runs. Within those algorithms, proton redistribution was subject to energy minimization, taking into account electrostatic and proton affinity contributions. However, those earlier approaches described (de)protonated moieties as point charges, neglecting charge solvation, which is highly prevalent in the gas phase. Here, we describe a mobile proton algorithm that considers the electrostatic contributions from all atoms, such that charge solvation is explicitly included. MD runs were broken down into 50 ps fixed-charge segments. After each segment, the electrostatics was reanalyzed and protons were redistributed. Challenges associated with computational cost were overcome by devising a streamlined method for electrostatic calculations. Avidin (a 504-residue protein complex) maintained a nativelike fold over 200 ns. Proton transfer and side chain rearrangements produced extensive salt bridge networks at the protein surface. The mobile proton technique introduced here should pave the way toward future studies on protein folding, unfolding, collapse, and subunit dissociation in the gas phase.
Rogers, T Ryan; Wang, Feng
2017-10-28
An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.
Huang, Jing; Mei, Ye; König, Gerhard; ...
2017-01-24
Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less
Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan
2017-02-14
In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jing; Mei, Ye; König, Gerhard
Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less
Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E
2011-11-17
Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results. Substitution effects of the hydrogen, fluorine, and chlorine atoms on the charge and dipole flux QTAIM contributions are found to be additive for the mean dipole derivatives of the fluorochloromethanes.
Garrido, Nuno M; Jorge, Miguel; Queimada, António J; Gomes, José R B; Economou, Ioannis G; Macedo, Eugénia A
2011-10-14
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.
Electronic levels and charge distribution near the interface of nickel
NASA Technical Reports Server (NTRS)
Waber, J. T.
1982-01-01
The energy levels in clusters of nickel atoms were investigated by means of a series of cluster calculations using both the multiple scattering and computational techniques (designated SSO) which avoids the muffin-tin approximation. The point group symmetry of the cluster has significant effect on the energy of levels nominally not occupied. This influences the electron transfer process during chemisorption. The SSO technique permits the approaching atom or molecule plus a small number of nickel atoms to be treated as a cluster. Specifically, molecular levels become more negative in the O atom, as well as in a CO molecule, as the metal atoms are approached. Thus, electron transfer from the nickel and bond formation is facilitated. This result is of importance in understanding chemisorption and catalytic processes.
Scrape-off layer modeling with kinetic or diffusion description of charge-exchange atoms
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2016-12-01
Hydrogen isotope atoms, generated by charge-exchange (c-x) of neutral particles recycling from the first wall of a fusion reactor, are described either kinetically or in a diffusion approximation. In a one-dimensional (1-D) geometry, kinetic calculations are accelerated enormously by applying an approximate pass method for the assessment of integrals in the velocity space. This permits to perform an exhaustive comparison of calculations done with both approaches. The diffusion approximation is deduced directly from the velocity distribution function of c-x atoms in the limit of charge-exchanges with ions occurring much more frequently than ionization by electrons. The profiles across the flux surfaces of the plasma parameters averaged along the main part of the scrape-off layer (SOL), beyond the X-point and divertor regions, are calculated from the one-dimensional equations where parallel flows of charged particles and energy towards the divertor are taken into account as additional loss terms. It is demonstrated that the heat losses can be firmly estimated from the SOL averaged parameters only; for the particle loss the conditions in the divertor are of importance and the sensitivity of the results to the so-called "divertor impact factor" is investigated. The coupled 1-D models for neutral and charged species, with c-x atoms described either kinetically or in the diffusion approximation, are applied to assess the SOL conditions in a fusion reactor, with the input parameters from the European DEMO project. It is shown that the diffusion approximation provides practically the same profiles across the flux surfaces for the plasma density, electron, and ion temperatures, as those obtained with the kinetic description for c-x atoms. The main difference between the two approaches is observed in the characteristics of these species themselves. In particular, their energy flux onto the wall is underestimated in calculations with the diffusion approximation by 20 % - 30 % . This discrepancy can be significantly reduced if after the convergence of coupled plasma-neutral calculations, the final computation for c-x atoms is done kinetically.
Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments.
Darley, Michael G; Handley, Chris M; Popelier, Paul L A
2008-09-09
Intramolecular polarization is the change to the electron density of a given atom upon variation in the positions of the neighboring atoms. We express the electron density in terms of multipole moments. Using glycine and N-methylacetamide (NMA) as pilot systems, we show that neural networks can capture the change in electron density due to polarization. After training, modestly sized neural networks successfully predict the atomic multipole moments from the nuclear positions of all atoms in the molecule. Accurate electrostatic energies between two atoms can be then obtained via a multipole expansion, inclusive of polarization effects. As a result polarization is successfully modeled at short-range and without an explicit polarizability tensor. This approach puts charge transfer and multipolar polarization on a common footing. The polarization procedure is formulated within the context of quantum chemical topology (QCT). Nonbonded atom-atom interactions in glycine cover an energy range of 948 kJ mol(-1), with an average energy difference between true and predicted energy of 0.2 kJ mol(-1), the largest difference being just under 1 kJ mol(-1). Very similar energy differences are found for NMA, which spans a range of 281 kJ mol(-1). The current proof-of-concept enables the construction of a new protein force field that incorporates electron density fragments that dynamically respond to their fluctuating environment.
Ionescu, Crina-Maria; Sehnal, David; Falginella, Francesco L; Pant, Purbaj; Pravda, Lukáš; Bouchal, Tomáš; Svobodová Vařeková, Radka; Geidl, Stanislav; Koča, Jaroslav
2015-01-01
Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.
Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
NASA Astrophysics Data System (ADS)
Sabzyan, Hassan; Sadeghpour, Narges
2016-04-01
Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.
Deep eutectic solvents: similia similibus solvuntur?
Zahn, Stefan
2017-02-01
Deep eutectic solvents, mixtures of an organic compound and a salt with a deep eutectic melting point, are promising cheap and eco-friendly alternatives to ionic liquids. Ab initio molecular dynamics simulations of reline, a mixture consisting of urea and choline chloride, reveal that not solely hydrogen bonds allow similar interactions between both constituents. The chloride anion and the oxygen atom of urea also show a similar spatial distribution close to the cationic core of choline due to a similar charge located on both atoms. As a result of multiple similar interactions, clusters migrating together cannot be observed in reline which supports the hypothesis similia similibus solvuntur. In contrast to previous suggestions, the interaction of the hydroxyl group of choline with a hydrogen bond acceptor is overall rigid. Fast hydrogen bond acceptor dynamics is facilitated by the hydrogen atoms in the trans position to the carbonyl group of urea which contributes to the low melting point of reline.
Characterization of heterocyclic rings through quantum chemical topology.
Griffiths, Mark Z; Popelier, Paul L A
2013-07-22
Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Božin, E. S.; Huq, A.; Shen, Bing
2016-02-01
The importance of charge reservoir layers for supplying holes to the CuO 2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa 2 Cu 3 O 6 + x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this modelmore » to the temperature-dependent shifts of ions along the c axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c -axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi 2 Sr 2 CaCu 2 O 8 + δ .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Božin, E. S.; Huq, A.; Shen, Bing
2016-02-01
The importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers.We address this issue in the case of YBa2Cu3O6+x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along the cmore » axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8+δ .« less
Charge-screening role of c-axis atomic displacements in YBa 2Cu 3O 6+x and related superconductors
E. S. Bozin; Huq, A.; Shen, Bing; ...
2016-02-29
The importance of charge reservoir layers for supplying holes to the CuO 2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa 2Cu 3O 6+x, where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts ofmore » ions along the c axis, we infer a charge transfer of 5-10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. Furthermore, this line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi 2Sr 2CaCu 2O 8+δ.« less
Tuning charge and correlation effects for a single molecule on a graphene device
Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; ...
2016-11-25
The ability to understand and control the electronic properties of individual molecules in a device environment is crucial for developing future technologies at the nanometre scale and below. Achieving this, however, requires the creation of three-terminal devices that allow single molecules to be both gated and imaged at the atomic scale. We have accomplished this by integrating a graphene field effect transistor with a scanning tunnelling microscope, thus allowing gate-controlled charging and spectroscopic interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We observe a non-rigid shift in the molecule’s lowest unoccupied molecular orbital energy (relative to the Dirac point) as a function ofmore » gate voltage due to graphene polarization effects. Our results show that electron–electron interactions play an important role in how molecular energy levels align to the graphene Dirac point, and may significantly influence charge transport through individual molecules incorporated in graphene-based nanodevices.« less
Attractive non-DLVO forces induced by adsorption of monovalent organic ions.
Smith, Alexander M; Maroni, Plinio; Borkovec, Michal
2017-12-20
Direct force measurements between negatively charged colloidal particles were carried out using an atomic force microscope (AFM) in aqueous solutions containing monovalent organic cations, namely tetraphenylarsonium (Ph 4 As + ), 1-hexyl-3-methylimidazolium (HMIM + ), and 1-octyl-3-methylimidazolium (OMIM + ). These ions adsorb to the particle surface, and induce a charge reversal. The forces become attractive at the charge neutralization point, but they are stronger than van der Waals forces. This additional and unexpected attraction decays exponentially with a decay length of a few nanometers, and is strikingly similar to the one previously observed in the presence of multivalent ions. This attractive force probably originates from coupled spontaneous charge fluctuations on the respective surfaces as initially suggested by Kirkwood and Shumaker.
A Scanning Quantum Cryogenic Atom Microscope
NASA Astrophysics Data System (ADS)
Lev, Benjamin
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.
Scanning Quantum Cryogenic Atom Microscope
NASA Astrophysics Data System (ADS)
Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.
2017-03-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.
Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.
2010-01-01
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297
Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore
2017-01-01
We use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica. When graphene is negatively charged, the interface fills faster with a complete three layer water film, compared to uncharged graphene. As charged positively, the third water layer dewets the interface, either by evaporation into the ambient or by the formation of three-dimensional droplets under the graphene, on top of the bilayer. Our experimental findings reveal novel phenomena of water at the nanoscale, which are interesting from a fundamental point of view and demonstrate the direct control over the wetting properties of the graphene/water interface. PMID:28985466
Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs
NASA Astrophysics Data System (ADS)
Tan, T. Y.; You, H.-M.; Gösele, U. M.
1993-03-01
We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.
PHEPS: web-based pH-dependent Protein Electrostatics Server
Kantardjiev, Alexander A.; Atanasov, Boris P.
2006-01-01
PHEPS (pH-dependent Protein Electrostatics Server) is a web service for fast prediction and experiment planning support, as well as for correlation and analysis of experimentally obtained results, reflecting charge-dependent phenomena in globular proteins. Its implementation is based on long-term experience (PHEI package) and the need to explain measured physicochemical characteristics at the level of protein atomic structure. The approach is semi-empirical and based on a mean field scheme for description and evaluation of global and local pH-dependent electrostatic properties: protein proton binding; ionic sites proton population; free energy electrostatic term; ionic groups proton affinities (pKa,i) and their Coulomb interaction with whole charge multipole; electrostatic potential of whole molecule at fixed pH and pH-dependent local electrostatic potentials at user-defined set of points. The speed of calculation is based on fast determination of distance-dependent pair charge-charge interactions as empirical three exponential function that covers charge–charge, charge–dipole and dipole–dipole contributions. After atomic coordinates input, all standard parameters are used as defaults to facilitate non-experienced users. Special attention was given to interactive addition of non-polypeptide charges, extra ionizable groups with intrinsic pKas or fixed ions. The output information is given as plain-text, readable by ‘RasMol’, ‘Origin’ and the like. The PHEPS server is accessible at . PMID:16845042
Structure and bonding in beta-HMX-characterization of a trans-annular N...N interaction.
Zhurova, Elizabeth A; Zhurov, Vladimir V; Pinkerton, A Alan
2007-11-14
Chemical bonding in the beta-phase of the 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) crystal based on the experimental electron density obtained from X-ray diffraction data at 20 K, and solid state theoretical calculations, has been analyzed in terms of the quantum theory of atoms in molecules. Features of the intra- and intermolecular bond critical points and the oxygen atom lone-pair locations are discussed. An unusual N...N bonding interaction across the 8-membered ring has been discovered and characterized. Hydrogen bonding, O...O and O...C intermolecular interactions are reported. Atomic charges and features of the electrostatic potential are discussed.
Experimental validation of calculated atomic charges in ionic liquids
NASA Astrophysics Data System (ADS)
Fogarty, Richard M.; Matthews, Richard P.; Ashworth, Claire R.; Brandt-Talbot, Agnieszka; Palgrave, Robert G.; Bourne, Richard A.; Vander Hoogerstraete, Tom; Hunt, Patricia A.; Lovelock, Kevin R. J.
2018-05-01
A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.
Optical patterning of trapped charge in nitrogen-doped diamond
NASA Astrophysics Data System (ADS)
Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.
2016-08-01
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.
Optical patterning of trapped charge in nitrogen-doped diamond.
Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B; Albu, Remus; Doherty, Marcus W; Meriles, Carlos A
2016-08-30
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.
Optical patterning of trapped charge in nitrogen-doped diamond
Jayakumar, Harishankar; Henshaw, Jacob; Dhomkar, Siddharth; Pagliero, Daniela; Laraoui, Abdelghani; Manson, Neil B.; Albu, Remus; Doherty, Marcus W.; Meriles, Carlos A.
2016-01-01
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories. PMID:27573190
Topological Triply Degenerate Points Induced by Spin-Tensor-Momentum Couplings
NASA Astrophysics Data System (ADS)
Hu, Haiping; Hou, Junpeng; Zhang, Fan; Zhang, Chuanwei
2018-06-01
The recent discovery of triply degenerate points (TDPs) in topological materials has opened a new perspective toward the realization of novel quasiparticles without counterparts in quantum field theory. The emergence of such protected nodes is often attributed to spin-vector-momentum couplings. We show that the interplay between spin-tensor- and spin-vector-momentum couplings can induce three types of TDPs, classified by different monopole charges (C =±2 , ±1 , 0). A Zeeman field can lift them into Weyl points with distinct numbers and charges. Different TDPs of the same type are connected by intriguing Fermi arcs at surfaces, and transitions between different types are accompanied by level crossings along high-symmetry lines. We further propose an experimental scheme to realize such TDPs in cold-atom optical lattices. Our results provide a framework for studying spin-tensor-momentum coupling-induced TDPs and other exotic quasiparticles.
Quasiparticles and charge transfer at the two surfaces of the honeycomb iridate Na2IrO3
NASA Astrophysics Data System (ADS)
Moreschini, L.; Lo Vecchio, I.; Breznay, N. P.; Moser, S.; Ulstrup, S.; Koch, R.; Wirjo, J.; Jozwiak, C.; Kim, K. S.; Rotenberg, E.; Bostwick, A.; Analytis, J. G.; Lanzara, A.
2017-10-01
Direct experimental investigations of the low-energy electronic structure of the Na2IrO3 iridate insulator are sparse and draw two conflicting pictures. One relies on flat bands and a clear gap, the other involves dispersive states approaching the Fermi level, pointing to surface metallicity. Here, by a combination of angle-resolved photoemission, photoemission electron microscopy, and x-ray absorption, we show that the correct picture is more complex and involves an anomalous band, arising from charge transfer from Na atoms to Ir-derived states. Bulk quasiparticles do exist, but in one of the two possible surface terminations the charge transfer is smaller and they remain elusive.
Direct measurement of electrostatic fields using single Teflon nanoparticle attached to AFM tip
2013-01-01
Abstract A single 210-nm Teflon nanoparticle (sTNP) was attached to the vertex of a silicon nitride (Si3N4) atomic force microscope tip and charged via contact electrification. The charged sTNP can then be considered a point charge and used to measure the electrostatic field adjacent to a parallel plate condenser using 30-nm gold/20-nm titanium as electrodes. This technique can provide a measurement resolution of 250/100 nm along the X- and Z-axes, and the minimum electrostatic force can be measured within 50 pN. PACS 07.79.Lh, 81.16.-c, 84.37. + q PMID:24314111
System-size convergence of point defect properties: The case of the silicon vacancy
NASA Astrophysics Data System (ADS)
Corsetti, Fabiano; Mostofi, Arash A.
2011-07-01
We present a comprehensive study of the vacancy in bulk silicon in all its charge states from 2+ to 2-, using a supercell approach within plane-wave density-functional theory, and systematically quantify the various contributions to the well-known finite size errors associated with calculating formation energies and stable charge state transition levels of isolated defects with periodic boundary conditions. Furthermore, we find that transition levels converge faster with respect to supercell size when only the Γ-point is sampled in the Brillouin zone, as opposed to a dense k-point sampling. This arises from the fact that defect level at the Γ-point quickly converges to a fixed value which correctly describes the bonding at the defect center. Our calculated transition levels with 1000-atom supercells and Γ-point only sampling are in good agreement with available experimental results. We also demonstrate two simple and accurate approaches for calculating the valence band offsets that are required for computing formation energies of charged defects, one based on a potential averaging scheme and the other using maximally-localized Wannier functions (MLWFs). Finally, we show that MLWFs provide a clear description of the nature of the electronic bonding at the defect center that verifies the canonical Watkins model.
Direct Observation of Charge Transfer at a MgO(111) Surface
NASA Astrophysics Data System (ADS)
Subramanian, A.; Marks, L. D.; Warschkow, O.; Ellis, D. E.
2004-01-01
Transmission electron diffraction (TED) combined with direct methods have been used to study the √(3)×√(3)R30° reconstruction on the polar (111) surface of MgO and refine the valence charge distribution. The surface is nonstoichiometric and is terminated by a single magnesium atom. A charge-compensating electron hole is localized in the next oxygen layer and there is a nominal charge transfer from the oxygen atoms to the top magnesium atom. The partial charges that we obtain for the surface atoms are in reasonable agreement with empirical bond-valence estimations.
Characterization of an Atomic Hydrogen Source for Charge Exchange Experiments
NASA Technical Reports Server (NTRS)
Leutenegger, M. A.; Beierdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.
2016-01-01
We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source byinjecting the mixed atomic and molecular output of the source into an electron beam ion trapcontaining highly charged ions and recording the x-ray spectrum generated by charge exchangeusing a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchangestate-selective capture cross sections are very different for atomic and molecular hydrogen incidenton the same ions, enabling a clear spectroscopic diagnostic of the neutral species.
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
Wang, Bo; Li, Shaohong L.; Truhlar, Donald G.
2014-10-30
Partial atomic charges are widely used for the description of charge distributions of molecules and solids. These charges are useful to indicate the extent of charge transfer and charge flow during chemical reactions in batteries, fuel cells, and catalysts and to characterize charge distributions in capacitors, liquid-phase electrolytes, and solids and at electrochemical interfaces. However, partial atomic charges given by various charge models differ significantly, especially for systems containing metal atoms. In the present study, we have compared various charge models on both molecular systems and extended systems, including Hirshfeld, CM5, MK, ChElPG, Mulliken, MBS, NPA, DDEC, LoProp, and Badermore » charges. Their merits and drawbacks are compared. The CM5 charge model is found to perform well on the molecular systems, with a mean unsigned percentage deviation of only 9% for the dipole moments. We therefore formulated it for extended systems and applied it to study charge flow during the delithiation process in lithium-containing oxides used as cathodes. Our calculations show that the charges given by the CM5 charge model are reasonable and that during the delithiation process, the charge flow can occur not only on the transition metal but also on the anions. The oxygen atoms can lose a significant density of electrons, especially for deeply delithiated materials. We also discuss other methods in current use to analyze the charge transfer and charge flow in batteries, in particular the use of formal charge, spin density, and orbital occupancy. Here, we conclude that CM5 charges provide useful information in describing charge distributions in various materials and are very promising for the study of charge transfer and charge flows in both molecules and solids.« less
Wang, Bo; Li, Shaohong L; Truhlar, Donald G
2014-12-09
Partial atomic charges are widely used for the description of charge distributions of molecules and solids. These charges are useful to indicate the extent of charge transfer and charge flow during chemical reactions in batteries, fuel cells, and catalysts and to characterize charge distributions in capacitors, liquid-phase electrolytes, and solids and at electrochemical interfaces. However, partial atomic charges given by various charge models differ significantly, especially for systems containing metal atoms. In the present study, we have compared various charge models on both molecular systems and extended systems, including Hirshfeld, CM5, MK, ChElPG, Mulliken, MBS, NPA, DDEC, LoProp, and Bader charges. Their merits and drawbacks are compared. The CM5 charge model is found to perform well on the molecular systems, with a mean unsigned percentage deviation of only 9% for the dipole moments. We therefore formulated it for extended systems and applied it to study charge flow during the delithiation process in lithium-containing oxides used as cathodes. Our calculations show that the charges given by the CM5 charge model are reasonable and that during the delithiation process, the charge flow can occur not only on the transition metal but also on the anions. The oxygen atoms can lose a significant density of electrons, especially for deeply delithiated materials. We also discuss other methods in current use to analyze the charge transfer and charge flow in batteries, in particular the use of formal charge, spin density, and orbital occupancy. We conclude that CM5 charges provide useful information in describing charge distributions in various materials and are very promising for the study of charge transfer and charge flows in both molecules and solids.
Douillard, Jean-Marc; Salles, Fabrice; Henry, Marc; Malandrini, Harold; Clauss, Frédéric
2007-01-15
The surface energies of talc and chlorite is computed using a simple model, which uses the calculation of the electrostatic energy of the crystal. It is necessary to calculate the atomic charges. We have chosen to follow Henry's model of determination of partial charges using scales of electronegativity and hardness. The results are in correct agreement with a determination of the surface energy obtained from an analysis of the heat of immersion data. Both results indicate that the surface energy of talc is lower than the surface energy of chlorite, in agreement with observed behavior of wettability. The influence of Al and Fe on this phenomenon is discussed. Surface energy of this type of solids seems to depend more strongly on the geometry of the crystal than on the type of atoms pointing out of the surface; i.e., the surface energy depends more on the physics of the system than on its chemistry.
Carbon Nanotube Devices Engineered by Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Prisbrey, Landon
This dissertation explores the engineering of carbon nanotube electronic devices using atomic force microscopy (AFM) based techniques. A possible application for such devices is an electronic interface with individual biological molecules. This single molecule biosensing application is explored both experimentally and with computational modeling. Scanning probe microscopy techniques, such as AFM, are ideal to study nanoscale electronics. These techniques employ a probe which is raster scanned above a sample while measuring probe-surface interactions as a function of position. In addition to topographical and electrostatic/magnetic surface characterization, the probe may also be used as a tool to manipulate and engineer at the nanoscale. Nanoelectronic devices built from carbon nanotubes exhibit many exciting properties including one-dimensional electron transport. A natural consequence of onedimensional transport is that a single perturbation along the conduction channel can have extremely large effects on the device's transport characteristics. This property may be exploited to produce electronic sensors with single-molecule resolution. Here we use AFM-based engineering to fabricate atomic-sized transistors from carbon nanotube network devices. This is done through the incorporation of point defects into the carbon nanotube sidewall using voltage pulses from an AFM probe. We find that the incorporation of an oxidative defect leads to a variety of possible electrical signatures including sudden switching events, resonant scattering, and breaking of the symmetry between electron and hole transport. We discuss the relationship between these different electronic signatures and the chemical structure/charge state of the defect. Tunneling through a defect-induced Coulomb barrier is modeled with numerical Verlet integration of Schrodinger's equation and compared with experimental results. Atomic-sized transistors are ideal for single-molecule applications due to their sensitivity to electric fields with very small detection volumes. In this work we demonstrate these devices as single-molecule sensors to detect individual N-(3-Dimethylaminopropyl)- N'-ethylcarbodiimide (EDC) molecules in an aqueous environment. An exciting application of these sensors is to study individual macromolecules participating in biological reactions, or undergoing conformational change. However, it is unknown whether the associated electrostatic signals exceed detection limits. We report calculations which reveal that enzymatic processes, such as substrate binding and internal protein dynamics, are detectable at the single-molecule level using existing atomic-sized transistors. Finally, we demonstrate the use of AFM-based engineering to control the function of nanoelectronic devices without creating a point defect in the sidewall of the nanotube. With a biased AFM probe we write charge patterns on a silicon dioxide surface in close proximity to a carbon nanotube device. The written charge induces image charges in the nearby electronics, and can modulate the Fermi level in a nanotube by +/-1 eV. We use this technique to induce a spatially controlled doping charge pattern in the conduction channel, and thereby reconfigure a field-effect transistor into a pn junction. Other simple charge patterns could be used to create other devices. The doping charge persists for days and can be erased and rewritten, offering a new tool for prototyping nanodevices and optimizing electrostatic doping profiles.
Zhang, Xiaobin; Oshima, Yoshifumi
2016-10-01
An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.
2016-06-01
A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 1017 to 3 × 1020 cm-3, i.e., up to the Mott transition. The model uses no fitting parameters.
Prediction of another semimetallic silicene allotrope with Dirac fermions
NASA Astrophysics Data System (ADS)
Wu, Haiping; Qian, Yan; Du, Zhengwei; Zhu, Renzhu; Kan, Erjun; Deng, Kaiming
2017-11-01
Materials with Dirac point are so amazing since the charge carriers are massless and have an effective speed of light. However, among the predicted two-dimensional silicon allotropes with Dirac point, no one has been directly proved by experiment. This fact motivates us to search for other two-dimensional silicon allotropes. As a result, another stable single atomic layer thin silicon allotrope is found with the help of CALYPSO code in this work. This silicene allotrope is composed of eight-membered rings linked by Si-Si bonds with buckling formation. The electronic calculation reveals that it behaves as a nodal line semimetal with the linear energy dispersion relation near the Fermi surface. Notably, the ab initio molecular dynamics simulations display that the original atomic configuration can be remained even at an extremely high temperature of 1000 K. Additionally, hydrogenation could induce a semimetal-semiconductor transition in this silicene allotrope. We hope this work can expand the family of single atomic layer thin silicon allotropes with special applications.
Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E
2014-11-14
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Characterization of an atomic hydrogen source for charge exchange experiments
Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; ...
2016-07-02
Here, we characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.
Spin properties of charged Mn-doped quantum dota)
NASA Astrophysics Data System (ADS)
Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.
2007-04-01
The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.
Interaction between benzenedithiolate and gold: Classical force field for chemical bonding
NASA Astrophysics Data System (ADS)
Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.
2005-06-01
We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.
Interaction between benzenedithiolate and gold: classical force field for chemical bonding.
Leng, Yongsheng; Krstić, Predrag S; Wells, Jack C; Cummings, Peter T; Dean, David J
2005-06-22
We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as approximately 100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.
Baker, Nathan A.; McCammon, J. Andrew
2008-01-01
The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217
NASA Astrophysics Data System (ADS)
Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew
2007-10-01
The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.
Optical patterning of trapped charge in nitrogen-doped diamond
NASA Astrophysics Data System (ADS)
Dhomkar, Siddharth; Jayakumar, Harishankar; Pagliero, Daniela; Laraoui, Abdelghani; Albu, Remus; Manson, Neil; Doherty, Marcus; Henshaw, Jacob; Meriles, Carlos
The nitrogen-vacancy (NV) center in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge state, which can be attained by optical illumination. Here we use two-color optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion, and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs and to subsequently probe the corresponding redistribution of charge. We uncover the formation of various spatial patterns of trapped charge, which we semi-quantitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects in the diamond lattice. Further, by using the NV as a local probe, we map the relative fraction of positively charged nitrogen upon localized optical excitation. These observations may prove important to various technologies, including the transport of quantum information between remote NVs and the development of three-dimensional, charge-based memories. We acknowledge support from the National Science Foundation through Grant NSF-1314205.
NASA Astrophysics Data System (ADS)
Vanfleteren, Diederik; Van Neck, Dimitri; Bultinck, Patrick; Ayers, Paul W.; Waroquier, Michel
2010-12-01
A double-atom partitioning of the molecular one-electron density matrix is used to describe atoms and bonds. All calculations are performed in Hilbert space. The concept of atomic weight functions (familiar from Hirshfeld analysis of the electron density) is extended to atomic weight matrices. These are constructed to be orthogonal projection operators on atomic subspaces, which has significant advantages in the interpretation of the bond contributions. In close analogy to the iterative Hirshfeld procedure, self-consistency is built in at the level of atomic charges and occupancies. The method is applied to a test set of about 67 molecules, representing various types of chemical binding. A close correlation is observed between the atomic charges and the Hirshfeld-I atomic charges.
Existence of Hartree-Fock excited states for atoms and molecules
NASA Astrophysics Data System (ADS)
Lewin, Mathieu
2018-04-01
For neutral and positively charged atoms and molecules, we prove the existence of infinitely many Hartree-Fock critical points below the first energy threshold (that is, the lowest energy of the same system with one electron removed). This is the equivalent, in Hartree-Fock theory, of the famous Zhislin-Sigalov theorem which states the existence of infinitely many eigenvalues below the bottom of the essential spectrum of the N-particle linear Schrödinger operator. Our result improves a theorem of Lions in 1987 who already constructed infinitely many Hartree-Fock critical points, but with much higher energy. Our main contribution is the proof that the Hartree-Fock functional satisfies the Palais-Smale property below the first energy threshold. We then use minimax methods in the N-particle space, instead of working in the one-particle space.
NOVA SCIENCE UNIT 15, FUNDAMENTAL PARTICLES 4.
ERIC Educational Resources Information Center
1964
THE PRINCIPLES OF ATOMIC STRUCTURE WHICH ARE STRESSED ARE THAT ATOMS ARE MADE UP OF A NUCLEUS WITH A POSITIVE CHARGE, SURROUNDED BY ELECTRONS WITH A NEGATIVE CHARGE, AND THAT THERE IS NO CHANGE IN THE ATOM WHEN THE POSITIVE AND NEGATIVE CHARGES ARE EQUAL. EXPERIMENTS ILLUSTRATE THAT CURRENT ELECTRICITY IS ACTUALLY ELECTRONS IN MOTION, THAT THERE…
Parandekar, Priya V; Hratchian, Hrant P; Raghavachari, Krishnan
2008-10-14
Hybrid QM:QM (quantum mechanics:quantum mechanics) and QM:MM (quantum mechanics:molecular mechanics) methods are widely used to calculate the electronic structure of large systems where a full quantum mechanical treatment at a desired high level of theory is computationally prohibitive. The ONIOM (our own N-layer integrated molecular orbital molecular mechanics) approximation is one of the more popular hybrid methods, where the total molecular system is divided into multiple layers, each treated at a different level of theory. In a previous publication, we developed a novel QM:QM electronic embedding scheme within the ONIOM framework, where the model system is embedded in the external Mulliken point charges of the surrounding low-level region to account for the polarization of the model system wave function. Therein, we derived and implemented a rigorous expression for the embedding energy as well as analytic gradients that depend on the derivatives of the external Mulliken point charges. In this work, we demonstrate the applicability of our QM:QM method with point charge embedding and assess its accuracy. We study two challenging systems--zinc metalloenzymes and silicon oxide cages--and demonstrate that electronic embedding shows significant improvement over mechanical embedding. We also develop a modified technique for the energy and analytic gradients using a generalized asymmetric Mulliken embedding method involving an unequal splitting of the Mulliken overlap populations to offer improvement in situations where the Mulliken charges may be deficient.
Genetics Home Reference: SLC4A1-associated distal renal tubular acidosis
... exchanger 1 (AE1) protein, which transports negatively charged atoms (anions) across cell membranes. Specifically, AE1 exchanges negatively charged atoms of chlorine (chloride ions) for negatively charged bicarbonate ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
Faria, Sergio H D M; da Silva, João Viçozo; Haiduke, Roberto L A; Vidal, Luciano N; Vazquez, Pedro A M; Bruns, Roy E
2007-08-16
The molecular dipole moments, their derivatives, and the fundamental IR intensities of the X2CY (X = H, F, Cl; Y = O, S) molecules are determined from QTAIM atomic charges and dipoles and their fluxes at the MP2/6-311++G(3d,3p) level. Root-mean-square errors of +/-0.03 D and +/-1.4 km mol(-1) are found for the molecular dipole moments and fundamental IR intensities calculated using quantum theory of atoms in molecules (QTAIM) parameters when compared with those obtained directly from the MP2/6-311++G(3d,3p) calculations and +/-0.05 D and 51.2 km mol(-1) when compared with the experimental values. Charge (C), charge flux (CF), and dipole flux (DF) contributions are reported for all the normal vibrations of these molecules. A large negative correlation coefficient of -0.83 is calculated between the charge flux and dipole flux contributions and indicates that electronic charge transfer from one side of the molecule to the other during vibrations is accompanied by a relaxation effect with electron density polarization in the opposite direction. The characteristic substituent effect that has been observed for experimental infrared intensity parameters and core electron ionization energies has been applied to the CCFDF/QTAIM parameters of F2CO, Cl2CO, F2CS, and Cl2CS. The individual atomic charge, atomic charge flux, and atomic dipole flux contributions are seen to obey the characteristic substituent effect equation just as accurately as the total dipole moment derivative. The CH, CF, and CCl stretching normal modes of these molecules are shown to have characteristic sets of charge, charge flux, and dipole flux contributions.
Local electric dipole moments: A generalized approach.
Groß, Lynn; Herrmann, Carmen
2016-09-30
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
FUSE spectra of Lyman series emissions from the interplanetary medium
NASA Astrophysics Data System (ADS)
Clarke, John
Neutral atoms from the local ISM flow into the solar system producing diffuse emissions through resonant scattering of solar emissions. This wind contains the velocity distribution of the local ISM, plus modifications by solar gravity and radiation pressure near the Sun. In addition, the H atom motions are modified by charge exchange collisions with fast protons in the heliospheric interface region, while He atoms are little affected by charge exchange. Recent observations of the He and H flows in the solar system suggest that the He velocity of 26 km s-1 is that of the local ISM cloud, while the lower H velocity of 18-21 km s-1 and greatly increased velocity dispersion in the flow direction are due to an interface modification of the H flow. Remote observations of the H flow thereby provide a method to remotely study the heliospheric interface. The H flow has been studied from H Lyα line profiles at high spectral resolution observed by Copernicus, IUE, and HST, using the Earth orbital motion to Doppler shift the ISM from the geocoronal emission. One serious ambiguity in the interpretation of these data results from the optically thick Lyα emission, leading to uncertainties in derived values of the H density. Using FUSE to observe the brightness and line profile of the optically thin H Lyβ line, close in time to SOHO observations of the Lyα emission, we can determine accurately the optical depth and density n(H) along lines of sight upwind, downwind, and cross-flow. Comparing n(H) with the heliospheric helium density, and with the interstellar cloud HI/HeI ratio measured recently by the EUVE, will give the fraction of H atoms removed by charge exchange at the entrance to the heliosphere, and then the Local Cloud (or ambient ISM) electron density which governs the size of the heliosphere. We request FUSE sky aperture spectra in the two narrow science apertures obtained during other pointed observations, through cooperation in scheduling pointed observations in the correct look directions at the proper times of year.
Search for light scalar dark matter with atomic gravitational wave detectors
NASA Astrophysics Data System (ADS)
Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken
2018-04-01
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
Ogata, Koji; Hatakeyama, Makoto; Nakamura, Shinichiro
2018-02-15
The octanol-water partition coefficient (log P ow ) is an important index for measuring solubility, membrane permeability, and bioavailability in the drug discovery field. In this paper, the log P ow values of 58 compounds were predicted by alchemical free energy calculation using molecular dynamics simulation. In free energy calculations, the atomic charges of the compounds are always fixed. However, they must be recalculated for each solvent. Therefore, three different sets of atomic charges were tested using quantum chemical calculations, taking into account vacuum, octanol, and water environments. The calculated atomic charges in the different environments do not necessarily influence the correlation between calculated and experimentally measured ∆ G water values. The largest correlation coefficient values of the solvation free energy in water and octanol were 0.93 and 0.90, respectively. On the other hand, the correlation coefficient of log P ow values calculated from free energies, the largest of which was 0.92, was sensitive to the combination of the solvation free energies calculated from the calculated atomic charges. These results reveal that the solvent assumed in the atomic charge calculation is an important factor determining the accuracy of predicted log P ow values.
Quantum crystallographic charge density of urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Quantum crystallographic charge density of urea
Wall, Michael E.
2016-06-08
Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less
Tian, Dayong; Lin, Zhifen; Yin, Daqiang; Zhang, Yalei; Kong, Deyang
2012-02-01
Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive toxicants based on the atomic charges. Copyright © 2011 SETAC.
Band gap modulation of graphene by metal substrate: A first principles study
NASA Astrophysics Data System (ADS)
Sahoo, Mihir Ranjan; Sahu, Sivabrata; Kushwaha, Anoop Kumar; Nayak, S. K.
2018-04-01
Due to high in-plane charge carrier mobility with high electron velocity and long spin diffusion length, graphene guarantees as a completely unique material for devices with various applications. Unaffected 2pz orbitals of carbon atoms in graphene can be highly influenced by substrates and leads to tuning in electronic properties. We report here a density functional calculation of graphene monolayer based on metallic substrate like nickel surfaces. Band-gap of graphene near K points opens due to interactions between 2pz and d-orbitals of nickel atoms and the gap modulation can be done with the increasing number of layers of substrates.
NASA Astrophysics Data System (ADS)
Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.
2005-09-01
Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.
Simple Pencil-and-Paper Notation for Representing Electrical Charge States
NASA Astrophysics Data System (ADS)
Morse, Robert A.
2017-11-01
In Benjamin Franklin's one fluid theory of electrification, ordinary unelectrified matter consisted of a matrix of matter suffused with a certain amount of "electrical fluid." Electrical effects were due to an excess or deficit of electrical fluid, hence the terms positive and negative. Before the development of a modern view of the atom, diagrams showing charged objects would simply have "+" or "-" signs to indicate the charged state. As physicists we know how to interpret these diagrams and understand what they are telling us about the underlying atomic model of charging. However, novice students may not readily make the connection between the atomic model, in which a charged solid object either gains or loses electrons but does not gain or lose positive charges. Furthermore, when isolated objects become charged, the total number of electrons must be accounted for as charge is a conserved quantity. To really understand the changes that occur in charging by contact, conduction, or induction, it is useful for students to visually represent the processes in a way that emphasizes the atomicity of the processes, including the induced polarization of objects, and the requirement that charge be conserved.
Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.
Haley, Daniel; Bagot, Paul A J; Moody, Michael P
2017-04-01
In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.
NASA Astrophysics Data System (ADS)
Ruth, Anthony; Collins, Laura; Gomes, Kenjiro; Janko, Boldizsar
We present a real-space representation of molecules which results in the normal bonding rules and electronic structure of chemistry without atom-centered coulomb potentials. Using a simple mapping, we can generate atomless molecules from the structure of real molecules. Additionally, molecules without atoms show similar covalent bonding energies and transfer of charge in ionic bonds as real molecules. The atomless molecules contain only the valence and conduction electronic structure of the real molecule. Using the framework of the Atoms in Molecules (AIM) theory of Bader, we prove that the topological features of the valence charge distribution of molecules without atoms are identical to that of real molecules. In particular, the charge basins of atomless molecules show identical location and quantities of representative charge. We compare the accuracy, computational cost, and intuition gained from electronic structure calculations of molecules without atoms with the use of pseudopotentials to represent atomic cores in density functional theory. A. R. acknowledges support from a NASA Space Technology Research Fellowship.
Bands dispersion and charge transfer in β-BeH2
NASA Astrophysics Data System (ADS)
Trivedi, D. K.; Galav, K. L.; Joshi, K. B.
2018-04-01
Predictive capabilities of ab-initio method are utilised to explore bands dispersion and charge transfer in β-BeH2. Investigations are carried out using the linear combination of atomic orbitals method at the level of density functional theory. The crystal structure and related parameters are settled by coupling total energy calculations with the Murnaghan equation of state. Electronic bands dispersion from PBE-GGA is reported. The PBE-GGA, and PBE0 hybrid functional, show that β-BeH2 is a direct gap semiconductor with 1.18 and 2.40 eV band gap. The band gap slowly decreases with pressure and beyond l00 GPa overlap of conduction and valence bands at the r point is observed. Charge transfer is studied by means of Mullikan population analysis.
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.
2017-12-01
In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
NASA Astrophysics Data System (ADS)
Wang, Fang; Yang, Hongmei; Yang, Zuoyin; Zhang, Jingchang; Cao, Weiliang
2007-01-01
Complete geometry optimizations were carried out by HF and DFT methods to study the molecular structure of binuclear transition-metal compounds (Cp(CO) 3W(μ-PPh 2)W(CO) 5) (I) and (Cp(CO) 2W(μ-PPh 2)W(CO) 5) (II). A comparison of the experimental data and calculated structural parameters demonstrates that the most accurate geometry parameters are predicted by the MPW1PW91/LANL2DZ among the three DFT methods. Topological properties of molecular charge distributions were analyzed with the theory of atoms in molecules. (3, -1) critical points, namely bond critical point, were found between the two tungsten atoms, and between W1 and C10 in complex II, which confirms the existence of the metal-metal bond and a semi-bridging CO between the two tungsten atoms. The result provided a theoretical guidance of detailed study on the binuclear phosphido-bridged complex containing transition metal-metal bond, which could be useful in the further study of the heterobimetallic phosphido-bridged complexes.
Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S
2008-10-01
Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.
Plentiful magnetic moments in oxygen deficient SrTiO 3
Ganesh, Panchapakesan; Lopez-Bezanilla, Alejandro; Littlewood, Peter B.
2015-10-06
In this research, correlated band theory is employed to investigate the magnetic and electronic properties of different arrangements of oxygen di- and tri-vacancy clusters in SrTiO 3. Hole and electron doping of oxygen deficient SrTiO 3 yields various degrees of magnetization as a result of the interaction between localized magnetic moments at the defect sites. Different kinds of Ti atomic orbital hybridization are described as a function of the doping level and defect geometry. We find that magnetism in SrTiO 3–δ is sensitive to the arrangement of neighbouring vacancy sites, charge carrier density, and vacancy-vacancy interaction. Permanent magnetic moments inmore » the absence of vacancy doping electrons are observed. Our description of the charged clusters of oxygen vacancies widens the previous descriptions of mono- and multi-vacancies and points out the importance of the controlled formation at the atomic level of defects for the realization of transition metal oxide based devices with a desirable magnetic performance.« less
DFT computational analysis of piracetam
NASA Astrophysics Data System (ADS)
Rajesh, P.; Gunasekaran, S.; Seshadri, S.; Gnanasambandan, T.
2014-11-01
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals.
Han, Wei; Schulten, Klaus
2012-01-01
PACE, a hybrid force field which couples united-atom protein models with coarse-grained (CG) solvent, has been further optimized, aiming to improve itse ciency for folding simulations. Backbone hydration parameters have been re-optimized based on hydration free energies of polyalanyl peptides through atomistic simulations. Also, atomistic partial charges from all-atom force fields were combined with PACE in order to provide a more realistic description of interactions between charged groups. Using replica exchange molecular dynamics (REMD), ab initio folding using the new PACE has been achieved for seven small proteins (16 – 23 residues) with different structural motifs. Experimental data about folded states, such as their stability at room temperature, melting point and NMR NOE constraints, were also well reproduced. Moreover, a systematic comparison of folding kinetics at room temperature has been made with experiments, through standard MD simulations, showing that the new PACE may speed up the actual folding kinetics 5-10 times. Together with the computational speedup benefited from coarse-graining, the force field provides opportunities to study folding mechanisms. In particular, we used the new PACE to fold a 73-residue protein, 3D, in multiple 10 – 30 μs simulations, to its native states (Cα RMSD ~ 0.34 nm). Our results suggest the potential applicability of the new PACE for the study of folding and dynamics of proteins. PMID:23204949
An assessment for the erosion rate of DEMO first wall
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2018-01-01
In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.
Dadarlat, Voichita M.; Post, Carol Beth
2016-01-01
In this paper we use the results from all atom MD simulations of proteins and peptides to assess individual contribution of charged atomic groups to the enthalpic stability of the native state of globular proteins and investigate how the distribution of charged atomic groups in terms of solvent accessibility relates to protein enthalpic stability. The contributions of charged groups is calculated using a comparison of nonbonded interaction energy terms from equilibrium simulations of charged amino acid dipeptides in water (the “unfolded state”) and charged amino acids in globular proteins (the “folded state”). Contrary to expectation, the analysis shows that many buried, charged atomic groups contribute favorably to protein enthalpic stability. The strongest enthalpic contributions favoring the folded state come from the carboxylate (COO−) groups of either Glu or Asp. The contributions from Arg guanidinium groups are generally somewhat stabilizing, while NH3+ groups from Lys contribute little toward stabilizing the folded state. The average enthalpic gain due to the transfer of a methyl group in an apolar amino acid from solution to the protein interior is described for comparison. Notably, charged groups that are less exposed to solvent contribute more favorably to protein native-state enthalpic stability than charged groups that are solvent exposed. While solvent reorganization/release has favorable contributions to folding for all charged atomic groups, the variation in folded state stability among proteins comes mainly from the change in the nonbonded interaction energy of charged groups between the unfolded and folded states. A key outcome is that the calculated enthalpic stabilization is found to be inversely proportional to the excess charge density on the surface, in support of an hypothesis proposed previously. PMID:18303881
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-03-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.
Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S
1995-01-01
We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain < 11% acidic lipid, the -25 mV equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:7756540
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
Charge injection and transport in a single organic monolayer island
NASA Astrophysics Data System (ADS)
Vuillaume, Dominique
2005-03-01
We report how electrons and holes, that are locally injected in a single organic monolayer island (where organic monolayers are made from sublimated oligomers (pentacene and other oligoacenes), or made from chemisorption in solution (self-assembled monolayers) of pi-conjugated moieties), stay localized or are able to delocalize over the island as a function of the molecular conformation (order vs. disorder) of this island. Charge carriers were locally injected by the apex of an atomic force microscope tip, and the resulting two-dimensional distribution and concentration of injected charges were measured by electrical force microscopy (EFM) experiments. We show that in crystalline monolayer islands, both electrons and holes can be equally injected, at a similar charge concentration for symmetric injection bias conditions, and that both charge carriers are delocalized over the whole island. On the contrary, charges injected into a more disordered monolayer stay localized at their injection point. These different results are discussed in relation with the electrical performances of molecular devices made from these monolayers (OFET, SAMFET). These results provide insight into the electronic properties, at the nanometer scale, of these molecular devices.
Seventeen-Coordinate Actinide Helium Complexes.
Kaltsoyannis, Nikolas
2017-06-12
The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe 17 3+ , ThHe 17 4+ , and PaHe 17 4+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe n 3+ (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R 2 >0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DFT investigation on the electronic structure of Faujasite
NASA Astrophysics Data System (ADS)
Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza
2013-11-01
We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.
Scanning Tunneling Spectroscopy of Potassium on Graphene
NASA Astrophysics Data System (ADS)
Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew
2012-02-01
We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.
A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atomsmore » with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3}, i.e., up to the Mott transition. The model uses no fitting parameters.« less
NASA Astrophysics Data System (ADS)
Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.
2016-01-01
In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.
ERIC Educational Resources Information Center
Kilmer, Donald C.
This guide, the second (part 2) in a set of four guides, is designed for the student interested in a vocation in electrical work, and includes two units: Unit IV--Electrical Theory, covering thirteen lessons (matter, the atom, electrical charges in the atom, rules of electric charges, electricity, atoms in an electrical conductor, electrical…
Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid
Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2016-01-01
Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087
Lanza, Mario
2014-01-01
Metal-Insulator-Metal (MIM) structures have raised as the most promising configuration for next generation information storage, leading to great performance and fabrication-friendly Resistive Random Access Memories (RRAM). In these cells, the memory concept is no more based on the charge storage, but on tuning the electrical resistance of the insulating layer by applying electrical stresses to reach a high resistive state (HRS or “0”) and a low resistive state (LRS or “1”), which makes the memory point. Some high-k dielectrics show this unusual property and in the last years high-k based RRAM have been extensively analyzed, especially at the device level. However, as resistance switching (in the most promising cells) is a local phenomenon that takes place in areas of ~100 nm2, the use of characterization tools with high lateral spatial resolution is necessary. In this paper the status of resistive switching in high-k materials is reviewed from a nanoscale point of view by means of conductive atomic force microscope analyses. PMID:28788561
Inductive electronegativity scale. Iterative calculation of inductive partial charges.
Cherkasov, Artem
2003-01-01
A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.
The structure of K3C60 and the mechanism of superconductivity.
Pauling, L
1991-01-01
Analysis of the interatomic distances in the superconducting substance K3C60 indicates that each of the K atoms in tetrahedral interstices between C60 spheres accepts three electrons from C60, thus becoming quadricovalent; its four bonds resonate among the 24 adjacent carbon atoms to give a strong framework in which the negative charges are localized on these K atoms. The electric current is carried by the motion of positive charges (holes) through the network of C60 spheres and the K atoms in octahedral holes. Superconductivity is favored by the localization of the negative charges on the tetrahedral K atoms and their noninvolvement in valence-bond resonance, decreasing the rate of mutual extinction of electrons and holes. PMID:11607222
Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro
2006-03-02
We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to coexistence of brittle grains and soft amorphous-like grain boundary phases. Simulations predict a crossover from intergranular continuous deformation to intragrain discrete deformation at a critical indentation depth.
Farrugia, Louis J; Khalaji, Aliakbar Dehno
2011-11-17
The charge density in 2,5-dimethoxybenzaldehyde thiosemicarbazone (1) has been studied experimentally using Mo-K(α) X-ray diffraction at 100 K, and by theory using DFT calculations at the B3LYP/6-311++G(2d,2p) level. The quantum theory of atoms in molecules (QTAIM) was used to investigate the extent of π-delocalization in the thioamide side-chain, which is virtually coplanar with the benzene ring. The experimental and theoretical ellipticity profiles along the bond paths were in excellent agreement, and showed that some of the formal single bonds in the side-chain have significant π-bond character. This view was supported by the magnitudes of the topological bond orders and by the delocalization indices δ(Ω(A), Ω(B)). An orbital decomposition of δ(Ω(A), Ω(B)) demonstrated that there was significant π-character in all the interchain non-H chemical bonds. On the other hand, the source function referenced at the interchain bond critical points could not provide any evidence for π-delocalization, showing instead only limited σ-delocalization between nearest neighbors. Overall, the topological evidence and the atomic graphs of the oxygen atoms did not provide convincing evidence for π-delocalization involving the methoxy substituents.
Analytic treatment of charge cloud overlaps: an improvement of the tomographic atom probe efficiency
NASA Astrophysics Data System (ADS)
Bas, P.; Bostel, A.; Grancher, G.; Deconihout, B.; Blavette, D.
1996-03-01
Although reliable position and composition data are obtained with the Tomographic Atom Probe, the procedure of position calculation by charge centroiding fails when the detector receives two or more ions with close spaced positions and the same mass-to-charge ratio. As the charge clouds of the ions overlap, they form a unique charge pattern on the multianode detector. Only one atom is represented and its position is biased. In order to estimate real positions, we have developed a correction method. The spatial distribution of charges inside a cloud issued from one impact is modelled by a Gaussian law. The particular properties of the Gaussian enable the calculation of exact positions of the two impacts of the overlapped charge patterns and charges of corresponding clouds. The calculation may be generalized for more than two overlapped clouds. The method was tested on a plane-by-plane analysis of a fully ordered Cu 3Au alloy performed on a (100) pole.
Moerman, D; Sebaihi, N; Kaviyil, S E; Leclère, P; Lazzaroni, R; Douhéret, O
2014-09-21
In this work, conductive atomic force microscopy (C-AFM) is used to study the local electrical properties in thin films of self-organized fibrillate poly(3-hexylthiophene) (P3HT), as a reference polymer semiconductor. Depending on the geometrical confinement in the transport channel, the C-AFM current is shown to be governed either by the charge transport in the film or by the carrier injection at the tip-sample contact, leading to either bulk or local electrical characterization of the semiconducting polymer, respectively. Local I-V profiles allow discrimination of the different dominating electrical mechanisms, i.e., resistive in the transport regime and space charge limited current (SCLC) in the local regime. A modified Mott-Gurney law is analytically derived for the contact regime, taking into account the point-probe geometry of the contact and the radial injection of carriers. Within the SCLC regime, the probed depth is shown to remain below 12 nm with a lateral electrical resolution below 5 nm. This confirms that high resolution is reached in those C-AFM measurements, which therefore allows for the analysis of single organic semiconducting nanostructures. The carrier density and mobility in the volume probed under the tip under steady-state conditions are also determined in the SCLC regime.
Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiu; Lei, Huan; Gao, Peiyuan
Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a method for quantifying this uncertainty in solvation energies using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many moremore » types of atomic charges; therefore, construction of surrogate models for the charge parameter space required compressed sensing combined with an iterative rotation method to enhance problem sparsity. We present results for the uncertainty in small molecule solvation energies based on these approaches. Additionally, we explore the correlation between uncertainties due to radii and charges which motivates the need for future work in uncertainty quantification methods for high-dimensional parameter spaces.« less
Yang, Qingyi; Sharp, Kim A
2006-07-01
An optimization of Rappe and Goddard's charge equilibration (QEq) method of assigning atomic partial charges is described. This optimization is designed for fast and accurate calculation of solvation free energies using the finite difference Poisson-Boltzmann (FDPB) method. The optimization is performed against experimental small molecule solvation free energies using the FDPB method and adjusting Rappe and Goddard's atomic electronegativity values. Using a test set of compounds for which experimental solvation energies are available and a rather small number of parameters, very good agreement was obtained with experiment, with a mean unsigned error of about 0.5 kcal/mol. The QEq atomic partial charge assignment method can reflect the effects of the conformational changes and solvent induction on charge distribution in molecules. In the second section of the paper we examined this feature with a study of the alanine dipeptide conformations in water solvent. The different contributions to the energy surface of the dipeptide were examined and compared with the results from fixed CHARMm charge potential, which is widely used for molecular dynamics studies.
NASA Astrophysics Data System (ADS)
Zolghadr, Amin Reza; Ghatee, Mohammad Hadi; Moosavi, Fatemeh
2016-08-01
Partial atomic charges using various quantum mechanical calculations for [Cnmim]Cl (n = 1, 4) ionic liquids (ILs) are obtained and used for development of molecular dynamics simulation (MD) force fields. The isolated ion pairs are optimized using HF, B3LYP, and MP2 methods for electronic structure with 6-311++G(d,p) basis set. Partial atomic charges are assigned to the atomic center with CHELPG and NBO methods. The effect of these sets of partial charges on the static and dynamic properties of ILs is evaluated by performing a series of MD simulations and comparing the essential thermodynamic properties with the available experimental data and available molecular dynamics simulation results. In contrast to the general trends reported for ionic liquids with BF4, PF6, and iodide anions (in which restrained electrostatic potential (RESP) charges are preferred), partial charges derived by B3LYP-NBO method are relatively good in prediction of the structural, dynamical, and thermodynamic energetic properties of the chloride based ILs.
NASA Astrophysics Data System (ADS)
Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won
2018-02-01
In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.
Density functional theory and molecular dynamics study of the uranyl ion (UO₂)²⁺.
Rodríguez-Jeangros, Nicolás; Seminario, Jorge M
2014-03-01
The detection of uranium is very important, especially in water and, more importantly, in the form of uranyl ion (UO₂)²⁺, which is one of its most abundant moieties. Here, we report analyses and simulations of uranyl in water using ab initio modified force fields for water with improved parameters and charges of uranyl. We use a TIP4P model, which allows us to obtain accurate water properties such as the boiling point and the second and third shells of water molecules in the radial distribution function thanks to a fictitious charge that corrects the 3-point models by reproducing the exact dipole moment of the water molecule. We also introduced non-bonded interaction parameters for the water-uranyl intermolecular force field. Special care was taken in testing the effect of a range of uranyl charges on the structure of uranyl-water complexes. Atomic charges of the solvated ion in water were obtained using density functional theory (DFT) calculations taking into account the presence of nitrate ions in the solution, forming a neutral ensemble. DFT-based force fields were calculated in such a way that water properties, such as the boiling point or the pair distribution function stand. Finally, molecular dynamics simulations of a water box containing uranyl cations and nitrate anions are performed at room temperature. The three peaks in the oxygen-oxygen radial distribution function for water were found to be kept in the presence of uranyl thanks to the improvement of interaction parameters and charges. Also, we found three shells of water molecules surrounding the uranyl ion instead of two as was previously thought.
Quantification of surface charge density and its effect on boundary slip.
Jing, Dalei; Bhushan, Bharat
2013-06-11
Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.
Electrostatic atomization--Experiment, theory and industrial applications
NASA Astrophysics Data System (ADS)
Okuda, H.; Kelly, Arnold J.
1996-05-01
Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.
NASA Technical Reports Server (NTRS)
Nieman, R. A.
1971-01-01
The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).
An improved limit on the charge of antihydrogen from stochastic acceleration.
Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I
2016-01-21
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Metal-ligand bond directionality in the M2-NH3 complexes (M = Cu, Ag and Au)
NASA Astrophysics Data System (ADS)
Eskandari, K.; Ebadinejad, F.
2018-05-01
The metal-ligand bonds in the M2-NH3 complexes (M = Au, Ag and Cu) are directional and the M-M-N angles tend to be linear. Natural energy decomposition analysis (NEDA) and localised molecular orbital energy decomposition analysis (LMOEDA) approaches indicate that the metal-ligand bonds in these complexes are mainly electrostatic in nature, however, the electrostatic is not the cause of the linearity of M-M-N arrangements. Instead, NEDA shows that the charge transfer and core repulsion are mainly responsible for the directionality of these bonds. In the LMOEDA point of view, the repulsion term is the main reason for the linearity of these complexes. Interacting quantum atoms (IQA) analysis shows that inter-atomic and inter-fragment interactions favour the nonlinear arrangements; however, these terms are compensated by the atomic self-energies, which stabilise the linear structure.
Shannon entropies and Fisher information of K-shell electrons of neutral atoms
NASA Astrophysics Data System (ADS)
Sekh, Golam Ali; Saha, Aparna; Talukdar, Benoy
2018-02-01
We represent the two K-shell electrons of neutral atoms by Hylleraas-type wave function which fulfils the exact behavior at the electron-electron and electron-nucleus coalescence points and, derive a simple method to construct expressions for single-particle position- and momentum-space charge densities, ρ (r) and γ (p) respectively. We make use of the results for ρ (r) and γ (p) to critically examine the effect of correlation on bare (uncorrelated) values of Shannon information entropies (S) and of Fisher information (F) for the K-shell electrons of atoms from helium to neon. Due to inter-electronic repulsion the values of the uncorrelated Shannon position-space entropies are augmented while those of the momentum-space entropies are reduced. The corresponding Fisher information are found to exhibit opposite behavior in respect of this. Attempts are made to provide some plausible explanation for the observed response of S and F to electronic correlation.
NASA Astrophysics Data System (ADS)
Heibron, John
2011-04-01
Rutherford's nuclear model originally was a theory of scattering that represented both the incoming alpha particles and their targets as point charges. The assumption that the apha particle, which Rutherford knew to be a doubly ionized helium atom, was a bare nucleus, and the associated assumption that the electronic structure of the atom played no significant role in large-angle scattering, had immediate and profound consequences well beyond the special problem for which Rutherford introduced them. The group around him in Manchester in 1911/12, which included Niels Bohr, Charles Darwin, Georg von Hevesy, and Henry Moseley, worked out some of these consequences. Their elucidation of radioactivity, isotopy, atomic number, and quantization marked an epoch in microphysics. Rutherford's nuclear model was exemplary not only for its fertility and picturability, but also for its radical simplicity. The lecturer will not undertake to answer the baffling question why such simple models work.
AtomDB Progress Report: Atomic data and new models for X-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Smith, Randall K.; Foster, Adam; Brickhouse, Nancy S.; Stancil, Phillip C.; Cumbee, Renata; Mullen, Patrick Dean; AtomDB Team
2018-06-01
The AtomDB project collects atomic data from both theoretical and observational/experimental sources, providing both a convenient interface (http://www.atomdb.org/Webguide/webguide.php) as well as providing input to spectral models for many types of astrophysical X-ray plasmas. We have released several updates to AtomDB in response to the Hitomi data, including new data for the Fe K complex, and have expanded the range of models available in AtomDB to include the Kronos charge exchange models from Mullen at al. (2016, ApJS, 224, 2). Combined with the previous AtomDB charge exchange model (http://www.atomdb.org/CX/), these data enable a velocity-dependent model for X-ray and EUV charge exchange spectra. We also present a new Kappa-distribution spectral model, enabling plasmas with non-Maxwellian electron distributions to be modeled with AtomDB. Tools are provided within pyAtomDB to explore and exploit these new plasma models. This presentation will review these enhancements and describe plans for the new few years of database and code development in preparation for XARM, Athena, and (hopefully) Arcus.
NASA Astrophysics Data System (ADS)
Kaneko, Tatsuya; Ohta, Yukinori; Yunoki, Seiji
2018-04-01
We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe2 using a realistic multiorbital d -p model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti 3 d and Se 4 p orbitals in the monolayer TiSe2 on the basis of the first-principles band-structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-q CDW state is thus examined to show that the transverse phonon modes at the M1, M2, and M3 points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se 4 p and conduction Ti 3 d bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-q CDW state in TiSe2. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe2 is of a bond type and induces a vortexlike antiferroelectric polarization in the kagome network of Ti atoms.
Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Muneaki; Hirata, So; Valiev, Marat
2008-02-19
Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less
On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.
Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri
2015-12-01
Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.
Tereshchuk, Polina; Freire, Rafael L H; Ungureanu, Crina G; Seminovski, Yohanna; Kiejna, Adam; Da Silva, Juarez L F
2015-05-28
Despite extensive studies of transition metal (TM) clusters supported on ceria (CeO2), fundamental issues such as the role of the TM atoms in the change in the oxidation state of Ce atoms are still not well understood. In this work, we report a theoretical investigation based on static and ab initio molecular dynamics density functional theory calculations of the interaction of 13-atom TM clusters (TM = Pd, Ag, Pt, Au) with the unreduced CeO2(111) surface represented by a large surface unit cell and employing Hubbard corrections for the strong on-site Coulomb correlation in the Ce f-electrons. We found that the TM13 clusters form pyramidal-like structures on CeO2(111) in the lowest energy configurations with the following stacking sequence, TM/TM4/TM8/CeO2(111), while TM13 adopts two-dimensional structures at high energy structures. TM13 induces a change in the oxidation state of few Ce atoms (3 of 16) located in the topmost Ce layer from Ce(IV) (itinerant Ce f-states) to Ce(III) (localized Ce f-states). There is a charge flow from the TM atoms to the CeO2(111) surface, which can be explained by the electronegativity difference between the TM (Pd, Ag, Pt, Au) and O atoms, however, the charge is not uniformly distributed on the topmost O layer due to the pressure induced by the TM13 clusters on the underlying O ions, which yields a decrease in the ionic charge of the O ions located below the cluster and an increase in the remaining O ions. Due to the charge flow mainly from the TM8-layer to the topmost O-layer, the charge cannot flow from the Ce(IV) atoms to the O atoms with the same magnitude as in the clean CeO2(111) surface. Consequently, the effective cationic charge decreases mainly for the Ce atoms that have a bond with the O atoms not located below the cluster, and hence, those Ce atoms change their oxidation state from IV to III. This increases the size of the Ce(III) compared with the Ce(IV) cations, which builds-in a strain within the topmost Ce layer, and hence, also affecting the location of the Ce(III) cations and the structure of the TM13 clusters.
NASA Astrophysics Data System (ADS)
Le Quang, T.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J.-Y.
2018-07-01
We report scanning tunneling microscopy/spectroscopy (STM/STS) investigations of the band-bending in the vicinity of charged point defects and edges of monolayer MoSe2 and mono- and trilayer WSe2 films deposited on graphitized silicon carbide substrates. By tracing the spatial evolution of the structures of the STS spectra, we evaluate the magnitude and the extent of the band-bending to be equal to few hundreds milielectronvolts and several nanometres, respectively. With the aid of a simple electrostatic model, we show that the spatial variation of the Coulomb potential close to the film edges can be well reproduced by taking into account the metallic screening by graphene. Additionally, the analysis of our data for trilayer WSe2 provides reasonable estimations of its dielectric constant () and of the magnitude of the charge trapped at the defect site (Q = +e).
Responsivity calibration of the LoWEUS spectrometer
Lepson, J. K.; Beiersdorfer, P.; Kaita, R.; ...
2016-09-02
We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other linesmore » of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Lastly, our measurements show that the responsivity between about 120 and 300 Å varies by factor of ~30.« less
Energetics of halogen impurities in thorium dioxide
NASA Astrophysics Data System (ADS)
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.
2017-11-01
Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madjet, Mohamed E., E-mail: mmadjet@qf.org.qa; El-Mellouhi, Fedwa; Carignano, Marcelo A.
We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3} in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin–orbit coupling or dispersive interactions. We calculated explicitly the atomic charges withmore » a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.« less
First-principles study of hydrogen-bonded molecular conductor κ -H3(Cat-EDT-TTF/ST)2
NASA Astrophysics Data System (ADS)
Tsumuraya, Takao; Seo, Hitoshi; Kato, Reizo; Miyazaki, Tsuyoshi
2015-07-01
We theoretically study hydrogen-bonded molecular conductors synthesized recently, κ -H3(Cat-EDT-TTF) 2 and its diselena analog, κ -H3(Cat-EDT-ST) 2, by first-principles density functional theory calculations. In these crystals, two H(Cat-EDT-TTF/ST) units share a hydrogen atom with a short O-H-O hydrogen bond. The calculated band structure near the Fermi level shows a quasi-two-dimensional character with a rather large interlayer dispersion due to the absence of insulating layers, in contrast with conventional molecular conductors. We discuss effective low-energy models based on H(Cat-EDT-TTF/ST) units and its dimers, respectively, where the microscopic character of the orbitals composing them are analyzed. Furthermore, we find a stable structure which is different from the experimentally determined structure, where the shared hydrogen atom becomes localized to one of the oxygen atoms, in which charge disproportionation between the two types of H(Cat-EDT-TTF) units is associated. The calculated potential energy surface for the H atom is very shallow near the minimum points; therefore the probability of the H atom can be delocalized between the two O atoms.
DFT computational analysis of piracetam.
Rajesh, P; Gunasekaran, S; Seshadri, S; Gnanasambandan, T
2014-11-11
Density functional theory calculation with B3LYP using 6-31G(d,p) and 6-31++G(d,p) basis set have been used to determine ground state molecular geometries. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of piracetam is calculated using B3LYP/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO/NLMO analysis. The calculation of first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. Molecular electrostatic potential (MEP) at a point in the space around a molecule gives an indication of the net electrostatic effect produced at that point by the total charge distribution of the molecule. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charge is also calculated. Because of vibrational analysis, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-Vis spectra and electronic absorption properties are explained and illustrated from the frontier molecular orbitals. Copyright © 2014 Elsevier B.V. All rights reserved.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2015-12-01
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.
Cooling of trapped ions by resonant charge exchange
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Rangwala, S. A.
2018-04-01
The two most widely used ion cooling methods are laser cooling and sympathetic cooling by elastic collisions (ECs). Here, we demonstrate another method of cooling ions that is based on resonant charge exchange (RCE) between the trapped ion and the ultracold parent atom. Specifically, trapped C s+ ions are cooled by collisions with cotrapped, ultracold Cs atoms and, separately, by collisions with cotrapped, ultracold Rb atoms. We observe that the cooling of C s+ ions by Cs atoms is more efficient than the cooling of C s+ ions by Rb atoms. This signals the presence of a cooling mechanism apart from the elastic ion-atom collision channel for the Cs-C s+ case, which is cooling by RCE. The efficiency of cooling by RCE is experimentally determined and the per-collision cooling is found to be two orders of magnitude higher than cooling by EC. The result provides the experimental basis for future studies on charge transport by electron hopping in atom-ion hybrid systems.
DFT investigation on the electronic structure of Faujasite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian
2013-11-13
We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed formore » describing atomic charge distribution in the chosen systems.« less
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.
1997-01-01
The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.
Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample
NASA Astrophysics Data System (ADS)
Guo, Shifeng; Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; He, Tao; Teo, Serena Lay Ming; Vancso, G. Julius
2016-09-01
Protein charge at various pH and isoelectric point (pI) values is important in understanding protein function. However, often only trace amounts of unknown proteins are available and pI measurements cannot be obtained using conventional methods. Here, we show a method based on the atomic force microscope (AFM) to determine pI using minute quantities of proteins. The protein of interest is immobilized on AFM colloidal probes and the adhesion force of the protein is measured against a positively and a negatively charged substrate made by layer-by-layer deposition of polyelectrolytes. From the AFM force-distance curves, pI values with an estimated accuracy of ±0.25 were obtained for bovine serum albumin, myoglobin, fibrinogen and ribonuclease A over a range of 4.7-9.8. Using this method, we show that the pI of the ‘footprint’ of the temporary adhesive proteins secreted by the barnacle cyprid larvae of Amphibalanus amphitrite is in the range 9.6-9.7.
Proton Radii of 4,6,8He Isotopes from High-Precision Nucleon-Nucleon Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caurier, E; Navratil, P
2005-11-16
Recently, precision laser spectroscopy on {sup 6}He atoms determined accurately the isotope shift between {sup 4}He and {sup 6}He and, consequently, the charge radius of {sup 6}He. A similar experiment for {sup 8}He is under way. We have performed large-scale ab initio calculations for {sup 4,6,8}He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of {sup 4}He and {sup 6}He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the {sup 8}He point proton rms radius to be 1.88(6) fm. Atmore » the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.« less
C library for topological study of the electronic charge density.
Vega, David; Aray, Yosslen; Rodríguez, Jesús
2012-12-05
The topological study of the electronic charge density is useful to obtain information about the kinds of bonds (ionic or covalent) and the atom charges on a molecule or crystal. For this study, it is necessary to calculate, at every space point, the electronic density and its electronic density derivatives values up to second order. In this work, a grid-based method for these calculations is described. The library, implemented for three dimensions, is based on a multidimensional Lagrange interpolation in a regular grid; by differentiating the resulting polynomial, the gradient vector, the Hessian matrix and the Laplacian formulas were obtained for every space point. More complex functions such as the Newton-Raphson method (to find the critical points, where the gradient is null) and the Cash-Karp Runge-Kutta method (used to make the gradient paths) were programmed. As in some crystals, the unit cell has angles different from 90°, the described library includes linear transformations to correct the gradient and Hessian when the grid is distorted (inclined). Functions were also developed to handle grid containing files (grd from DMol® program, CUBE from Gaussian® program and CHGCAR from VASP® program). Each one of these files contains the data for a molecular or crystal electronic property (such as charge density, spin density, electrostatic potential, and others) in a three-dimensional (3D) grid. The library can be adapted to make the topological study in any regular 3D grid by modifying the code of these functions. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Qun; Yang, Guang; Hou, Juan
It is an important topic to investigate the birefringence and reveal the contribution from ions to birefringence because it plays an important role in nonlinear optical materials. In this paper, the birefringence of carbonates with coplanar CO{sub 3} groups were investigated using the first-principles method. The results show that the lead carbonates exhibit relative large birefringence. After detailed investigate the electronic structures, and Born effective charges, the authors find out that anisotropic electron distribution in the CO{sub 3} groups and Pb atoms give positive contribution, while the negative contribution was found from fluorine atoms, meanwhile the Ca, Mg, and Cdmore » atoms give very small contribution to birefringence. - Graphical abstract: Using the DFT and Born effective charges, the birefringence and the contribution of ions were investigated, the positive and negative contribution was found from Pb and F ions, respectively. - Highlights: • Optical properties and Born effective charges of carbonates are investigated. • Lead carbonates exhibit relative large birefringence. • Coplanar CO{sub 3} groups and Pb atoms give positive contribution. • F atoms give negative contribution. • Ca, Mg, and Cd atoms give very small contribution.« less
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
NASA Technical Reports Server (NTRS)
Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.
1994-01-01
Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E., E-mail: bruns@iqm.unicamp.br
The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching ofmore » the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone explain 145, 237, and 574 km mol{sup −1} of the H-bond stretching intensity enhancements for the water and HF dimers and their heterodimer compared with total increments of 149, 321, and 592 km mol{sup −1}, respectively.« less
Charge transfer in ultracold gases via Feshbach resonances
NASA Astrophysics Data System (ADS)
Gacesa, Marko; Côté, Robin
2017-06-01
We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.
Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A
2018-01-09
Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.
Tight-binding molecular-dynamics study of point defects in GaAs
NASA Astrophysics Data System (ADS)
Seong, Hyangsuk; Lewis, Laurent J.
1995-08-01
Tight-binding molecular-dynamics simulations at 0 K have been performed in order to study the effect of defects (vacancies and antisites) in different states of charge on the electronic and structural properties of GaAs. Relaxations are fully included in the model, and for each defect we calculate the local atomic structure, the volume change upon relaxing, the formation energy (including chemical potential contributions), and the ionization levels. We find Ga vacancies to relax by an amount which is independent of the state of charge, consistent with positron lifetime measurements. Our calculations also predict Ga vacancies to exhibit a negative-U effect, and to assume a triply negative charge state for most values of the electron chemical potential. The relaxation of As vacancies, on the contrary, depends sensitively on the state of charge. The model confirms the two experimentally observed ionization levels for this defect, just below the conduction-band minimum. Likewise, Ga antisites exhibit large relaxations. In fact, in the neutral state, relaxation is so large that it leads to a ``broken-bond'' configuration, in excellent accord with the first-principles calculations of Zhang and Chadi [Phys. Rev. Lett. 64, 1789 (1990)]. This system also exhibits a negative-U effect, for values of the electron chemical potential near midgap. For As antisites, we find only a weak relaxation, independent of the charge. The model predicts the neutral state of the defect to be the ground state for values of the electron chemical potential near and above midgap, which supports the view that the EL2 defect is a neutral As antisite. Upon comparing the formation energies of the various defects we finally find that, for all values of the atomic chemical potentials, antisites are most likely to occur than vacancies.
Generalized charge-screening in relativistic Thomas–Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less
NASA Astrophysics Data System (ADS)
Froehlicher, Guillaume; Lorchat, Etienne; Berciaud, Stéphane
2018-01-01
Made from stacks of two-dimensional materials, van der Waals heterostructures exhibit unique light-matter interactions and are promising for novel optoelectronic devices. The performance of such devices is governed by near-field coupling through, e.g., interlayer charge and/or energy transfer. New concepts and experimental methodologies are needed to properly describe two-dimensional heterointerfaces. Here, we report an original study of interlayer charge and energy transfer in atomically thin metal-semiconductor [i.e., graphene-transition metal dichalcogenide (TMD, here molybdenum diselenide, MoSe2 )] heterostructures using a combination of microphotoluminescence and Raman scattering spectroscopies. The photoluminescence intensity in graphene /MoSe2 is quenched by more than 2 orders of magnitude and rises linearly with the incident photon flux, demonstrating a drastically shortened (about 1 ps) room-temperature MoSe2 exciton lifetime. Key complementary insights are provided from a comprehensive analysis of the graphene and MoSe2 Raman modes, which reveals net photoinduced electron transfer from MoSe2 to graphene and hole accumulation in MoSe2 . Remarkably, the steady-state Fermi energy of graphene saturates at 290 ±15 meV above the Dirac point. This reproducible behavior is observed both in ambient air and in vacuum and is discussed in terms of intrinsic factors (i.e., band offsets) and environmental effects. In this saturation regime, balanced photoinduced flows of electrons and holes may transfer to graphene, a mechanism that effectively leads to energy transfer. Using a broad range of incident photon fluxes and diverse environmental conditions, we find that the presence of net photoinduced charge transfer has no measurable impact on the near-unity photoluminescence quenching efficiency in graphene /MoSe2 . This absence of correlation strongly suggests that energy transfer to graphene (either in the form of electron exchange or dipole-dipole interaction) is the dominant interlayer coupling mechanism between atomically thin TMDs and graphene.
Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation
NASA Astrophysics Data System (ADS)
Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.
2018-02-01
Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
NASA Astrophysics Data System (ADS)
Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.
2018-04-01
The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.
NASA Astrophysics Data System (ADS)
Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming
2014-01-01
The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.
Stauffer, D; Dragneva, N; Floriano, W B; Mawhinney, R C; Fanchini, G; French, S; Rubel, O
2014-07-28
Graphene Oxide (GO) has been shown to exhibit properties that are useful in applications such as biomedical imaging, biological sensors, and drug delivery. The binding properties of biomolecules at the surface of GO can provide insight into the potential biocompatibility of GO. Here we assess the intrinsic affinity of amino acids to GO by simulating their adsorption onto a GO surface. The simulation is done using Amber03 force-field molecular dynamics in explicit water. The emphasis is placed on developing an atomic charge model for GO. The adsorption energies are computed using atomic charges obtained from an ab initio electrostatic potential based method. The charges reported here are suitable for simulating peptide adsorption to GO.
Probes for dark matter physics
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
NASA Astrophysics Data System (ADS)
Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.
2017-10-01
An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.
Impact of local electrostatic field rearrangement on field ionization
NASA Astrophysics Data System (ADS)
Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste
2018-03-01
Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.
Comparison of direct and flow integration based charge density population analyses.
Francisco, E; Martín Pendas, A; Blanco, M A; Costales, A
2007-12-06
Different exhaustive and fuzzy partitions of the molecular electron density (rho) into atomic densities (rho(A)) are used to compute the atomic charges (Q(A)) of a representative set of molecules. The Q(A)'s derived from a direct integration of rho(A) are compared to those obtained from integrating the deformation density rho(def) = rho - rho(0) within each atomic domain. Our analysis shows that the latter methods tend to give Q(A)'s similar to those of the (arbitrary) reference atomic densities rho(A)(0) used in the definition of the promolecular density, rho(0) = SigmaArho(A)(0). Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed in this type of methods.
NASA Astrophysics Data System (ADS)
Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry
2018-05-01
Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.
Influence of annealing atmosphere on formation of electrically-active defects in rutile TiO2
NASA Astrophysics Data System (ADS)
Zimmermann, C.; Bonkerud, J.; Herklotz, F.; Sky, T. N.; Hupfer, A.; Monakhov, E.; Svensson, B. G.; Vines, L.
2018-04-01
Electronic states in the upper part of the bandgap of reduced and/or hydrogenated n-type rutile TiO2 single crystals have been studied by means of thermal admittance and deep-level transient spectroscopy measurements. The studies were performed at sample temperatures between 28 and 300 K. The results reveal limited charge carrier freeze-out even at 28 K and evidence the existence of dominant shallow donors with ionization energies below 25 meV. Interstitial atomic hydrogen is considered to be a major contributor to these shallow donors, substantiated by infrared absorption measurements. Three defect energy levels with positions of about 70 meV, 95 meV, and 120 meV below the conduction band edge occur in all the studied samples, irrespective of the sample production batch and the post-growth heat treatment used. The origin of these levels is discussed in terms of electron polarons, intrinsic point defects, and/or common residual impurities, where especially interstitial titanium atoms, oxygen vacancies, and complexes involving Al atoms appear as likely candidates. In contrast, no common deep-level defect, exhibiting a charge state transition in the 200-700 meV range below the conduction band edge, is found in different samples. This may possibly indicate a strong influence on deep-level defects by the post-growth heat treatments employed.
Polarization Bremsstrahlung: what is it and why haven't we seen it?
NASA Astrophysics Data System (ADS)
Quarles, C. A.
1997-10-01
Normal bremsstrahlung (NB) is the radiation by a charged particle when deflected in the Coulomb field of a target atom. This process has been studied in some detail since identification of the continuous x-ray spectrum early in this century. Since the early 1980's it has been possible, mainly due to the work of R. H. Pratt and co-workers, to obtain good theoretical predictions for NB for a wide range of incident electron energies and target atomic numbers. In the early 1980's, a second, distinct and competing process which has come to be called polarization bremsstrahlung (PB) was proposed by M. Ya. Amusia and others. PB is the radiation by a polarizable target due to the changing dipole moment induced by the passing charged projectile. It was argued that in some cases, especially for photon energies near the target atom absorption edges, PB would dominate over NB. Only recently, however, with the calculations of A. Korol and his co-workers has it been possible to consider what PB may look like over the whole range of the photon spectrum observed in a typical bremsstrahlung experiment. This paper will discuss, from the point of view of an experimentalist, what is involved in looking for the PB effect, why perhaps it has not been convincingly detected in bremsstrahlung experiments to date, and what the prospects are for its future observation.
Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful
2017-07-01
The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
Machine Learning of ABO3 Crystalline Compounds
NASA Astrophysics Data System (ADS)
Gubernatis, J. E.; Balachandran, P. V.; Lookman, T.
We apply two advanced machine learning methods to a database of experimentally known ABO3 materials to predict the existence of possible new perovskite materials and possible new cubic perovskites. Constructing a list of 625 possible new materials from charge conserving combinations of A and B atoms in known stable ABO3 materials, we predict about 440 new perovskites. These new perovskites are predicted most likely to occur when the A and B atoms are a lanthanide or actinide, when the A atom is a alkali, alkali earth, or late transition metal, and a when the B atom is a p-block atom. These results are in basic agreement with the recent materials discovery by substitution analysis of Hautier et al. who data-mined the entire ICSD data base to develop the probability that in any crystal structure atom X could be substituted for by atom Y. The results of our analysis has several points of disagreement with a recent high throughput DFT study of ABO3 crystalline compounds by Emery et al. who predict few, if any, new perovskites whose A and B atoms are both a lanthanide. They also predict far more new cubic perovskites than we do: We predict few, if any, with a high degree of probability. This work was supported by the LDRD DR program of the Los Alamos National Laboratory.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor
2016-02-01
Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.
Effect of Atomic Oxygen Exposure on Surface Resistivity Change of Spacecraft Insulator Material
NASA Astrophysics Data System (ADS)
Mundari, Noor Danish Ahrar; Khan, Arifur Rahman; Chiga, Masaru; Okumura, Teppei; Masui, Hirokazu; Iwata, Minoru; Toyoda, Kazuhiro; Cho, Mengu
Spacecraft surface charging can lead to arcing and a loss of electricity generation capability in solar panels or even loss of a satellite. The charging problem may be further aggravated by atomic oxygen (AO) exposure in Low Earth orbits, which modifies the surface of materials like polyimide, Teflon, anti-reflective coatings, cover glass etc, used on satellite surfaces, affecting materials properties, such as resistivity, secondary electron emissivity and photo emission, which govern the charging behavior. These properties are crucial input parameters for spacecraft charging analysis. To study the AO exposure effect on charging governing properties, an atomic oxygen exposure facility based on laser detonation of oxygen was built. The facility produces AO with a peak velocity value around 10-12km/s and a higher flux than that existing in orbit. After exposing the polyimide test material to the equivalent of 10 years of AO fluence at an altitude of 700-800 km, surface charging properties like surface resistivity and volume resistivity were measured. The measurement was performed in a vacuum using the charge storage decay method at room temperature, which is considered the most appropriate for measuring resistivity for space applications. The results show that the surface resistivity increases and the volume resistivity remains almost the same for the AO exposure fluence of 5.4×1018 atoms cm-2.
Complex Stoichiometry reordering of PTCDA on Ag(111) upon K Intercalation
NASA Astrophysics Data System (ADS)
Brivio, G. P.; Baby, A.; Zwick, C.; Gruenewald, M.; Forker, R.; Fritz, T.; Fratesi, G.; Hofmann, O. T.; Zojer, E.
Alkali metal atoms are a simple yet efficient n-type dopant of organic semiconductors. However, the molecular crystal structures need be controlled and well understood in order to optimize the electronic properties (charge carrier density and mobility) of the target material. Here, we report that potassium intercalation into PTCDA monolayer domains on a Ag(111) substrate induces distinct stoichiometry-dependent structural reordering processes, resulting in highly ordered and large KxPTCDA domains. The emerging structures are analyzed by low temperature scanning tunneling microscopy (STM), scanning tunneling hydrogen microscopy (STHM), and low-energy electron diffraction (LEED) as a function of the stoichiometry and by density functional theory (DFT) calculations. Large stable monolayer domains are found for x=2,4. The epitaxy types for all intercalated stages are determined as point-on-line. The K atoms adsorb in the vicinity of the oxygen atoms of the PTCDA molecules, and their positions are determined with sub-Angstrom precision. This is a crucial prerequisite for the prospective assessment of the electronic properties of such composite films, as they depend on the mutual alignment between donor atoms and acceptor molecules.
Measurements of atomic splittings in atomic hydrogen and the proton charge radius
NASA Astrophysics Data System (ADS)
Hessels, E. A.
2016-09-01
The proton charge radius can be determined from precise measurements of atomic hydrogen spectroscopy. A review of the relevant measurements will be given, including an update on our measurement of the n=2 Lamb shift. The values obtained from hydrogen will be compared to those obtained from muonic hydrogen and from electron-proton elastic scattering measurements. This work is funded by NSERC, CRC and CFI.
Ion-induced particle desorption in time-of-flight medium energy ion scattering
NASA Astrophysics Data System (ADS)
Lohmann, S.; Primetzhofer, D.
2018-05-01
Secondary ions emitted from solids upon ion impact are studied in a time-of-flight medium energy ion scattering (ToF-MEIS) set-up. In order to investigate characteristics of the emission processes and to evaluate the potential for surface and thin film analysis, experiments employing TiN and Al samples were conducted. The ejected ions exhibit a low initial kinetic energy of a few eV, thus, requiring a sufficiently high acceleration voltage for detection. Molecular and atomic ions of different charge states originating both from surface contaminations and the sample material are found, and relative yields of several species were determined. Experimental evidence that points towards a predominantly electronic sputtering process is presented. For emitted Ti target atoms an additional nuclear sputtering component is suggested.
Crystal structure of (1-ethoxyethylidene)dimethylazanium tetraphenylborate
Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi
2015-01-01
In the cation of the title salt, C6H14NO+·C24H20B−, the C—N bond lengths are 1.297 (2), 1.464 (2) and 1.468 (2) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.309 (2) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯π interactions between the iminium H atoms and the phenyl C atoms of the anion are present. The phenyl rings form aromatic pockets, in which the iminium ions are embedded. PMID:26870564
Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip
2012-01-01
The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.
Partial Ionic Character beyond the Pauling Paradigm: Metal Nanoparticles
Duanmu, Kaining; Truhlar, Donald G.
2014-11-12
A canonical perspective on the chemical bond is the Pauling paradigm: a bond in a molecule containing only identical atoms has no ionic character. However, we show that homonuclear silver clusters have very uneven charge distributions (for example, the C 2v structure of Ag 4 has a larger dipole moment than formaldehyde or acetone), and we show how to predict the charge distribution from coordination numbers and Hirshfeld charges. The new charge model is validated against Kohn–Sham calculations of dipole moments with four approximations for the exchange–correlation functional. We report Kohn–Sham studies of the binding energies of CO on silvermore » monomer and silver clusters containing 2–18 atoms. We also find that an accurate charge model is essential for understanding the site dependence of binding. In particular we find that atoms with more positive charges tend to have higher binding energies, which can be used for guidance in catalyst modeling and design. Furthermore, the nonuniform charge distribution of silver clusters predisposes the site preference of binding of carbon monoxide, and we conclude that nonuniform charge distributions are an important property for understanding binding of metal nanoparticles in general.« less
Excited State Atom-Ion Charge-Exchange
NASA Astrophysics Data System (ADS)
Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana
2017-04-01
We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.
Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav
2013-10-28
We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
NASA Astrophysics Data System (ADS)
Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji
2018-06-01
We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.
NASA Astrophysics Data System (ADS)
Pounds, Michael A.; Salanne, Mathieu; Madden, Paul A.
2015-09-01
We perform molecular dynamics simulations of a system consisting of Eu3+ and Eu2+ species dissolved in a high-temperature KCl electrolyte between two metallic electrodes. The interaction potential includes ion polarisation effects, and a constant electric potential is maintained within the electrodes by allowing the atomic charges to fluctuate in response to the environment. This setup allows us to study the electrochemical Eu3+/Eu2+ reaction in the framework of Marcus theory. Numerous studies have pointed to the highly structured nature of ionic liquids and molten salts close to solid surfaces which is not accounted for in the conventional mean-field description of this interface that underpins the theories of electrochemical reaction rates. Here we examine the influence on the kinetics of the charge-transfer event of the electrical potential across the electrode-electrolyte interface and on the effect of the presence of charged surface on the coordination structure and energetics of the ions in the region important for the charge-transfer event.
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S
2007-02-16
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.
Mei, Ye; Simmonett, Andrew C.; Pickard, Frank C.; DiStasio, Robert A.; Brooks, Bernard R.; Shao, Yihan
2015-01-01
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in 8 small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development; (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles. PMID:25945749
Mei, Ye; Simmonett, Andrew C.; Pickard, IV, Frank C.; ...
2015-05-06
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed in this study using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Lowdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to computemore » the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. In conclusion, the overall results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.« less
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.
1985-01-01
The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.
Revisiting the Bohr Atom 100 Years Later
NASA Astrophysics Data System (ADS)
Wall, Ernst
2013-03-01
We use a novel electron model wherein the electron is modeled as a point charge behaving as a trapped photon revolving in a Compton wavelength orbit at light speed. The revolving point charge gives rise to spiraling Compton wavelets around the electron, which give rise to de Broglie waves. When applied to the Bohr model, the orbital radius of the electron scales to the first Bohr orbit's radius via the fine structure constant. The orbiting electron's orbital velocity, Vb, scales to that of the electron's charge's internal velocity (the velocity of light, c) via the fine structure constant. The Compton wavelets, if they reflect off the nucleus, have a round trip time just long enough to allow the electron to move one of its diameters in distance in the first Bohr orbit. The ratio of the electron's rotational frequency, fe, to its rotational frequency in the Bohr orbit fb, is fe/fb = 1/α2, which is also the number of electron rotations in single orbit. If we scale the electron's rotational energy (h*fe) to that of the orbit using this, the orbital energy value (h*fb) would be 27.2114 eV. However, the virial theorem reduces it to 13.6057, the ground state energy of the first Bohr orbit. Ref: www.tachyonmodel.com.
Solvation effects on chemical shifts by embedded cluster integral equation theory.
Frach, Roland; Kast, Stefan M
2014-12-11
The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.
Fast Atom Ionization in Strong Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Apostol, M.
2018-05-01
The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.
Charge renormalization at the large-D limit for N-electron atoms and weakly bound systems
NASA Astrophysics Data System (ADS)
Kais, S.; Bleil, R.
1995-05-01
We develop a systematic way to determine an effective nuclear charge ZRD such that the Hartree-Fock results will be significantly closer to the exact energies by utilizing the analytically known large-D limit energies. This method yields an expansion for the effective nuclear charge in powers of (1/D), which we have evaluated to the first order. This first order approximation to the desired effective nuclear charge has been applied to two-electron atoms with Z=2-20, and weakly bound systems such as H-. The errors for the two-electron atoms when compared with exact results were reduced from ˜0.2% for Z=2 to ˜0.002% for large Z. Although usual Hartree-Fock calculations for H- show this to be unstable, our results reduce the percent error of the Hartree-Fock energy from 7.6% to 1.86% and predicts the anion to be stable. For N-electron atoms (N=3-18, Z=3-28), using only the zeroth order approximation for the effective charge significantly reduces the error of Hartree-Fock calculations and recovers more than 80% of the correlation energy.
Heat transport through atomic contacts.
Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd
2017-05-01
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.
Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua
2015-01-01
The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.
Li, Bing; Kawakita, Yukinobu; Liu, Yucheng; Wang, Mingchao; Matsuura, Masato; Shibata, Kaoru; Ohira-Kawamura, Seiko; Yamada, Takeshi; Lin, Shangchao; Nakajima, Kenji; Liu, Shengzhong (Frank)
2017-01-01
Perovskite CH3NH3PbI3 exhibits outstanding photovoltaic performances, but the understanding of the atomic motions remains inadequate even though they take a fundamental role in transport properties. Here, we present a complete atomic dynamic picture consisting of molecular jumping rotational modes and phonons, which is established by carrying out high-resolution time-of-flight quasi-elastic and inelastic neutron scattering measurements in a wide energy window ranging from 0.0036 to 54 meV on a large single crystal sample, respectively. The ultrafast orientational disorder of molecular dipoles, activated at ∼165 K, acts as an additional scattering source for optical phonons as well as for charge carriers. It is revealed that acoustic phonons dominate the thermal transport, rather than optical phonons due to sub-picosecond lifetimes. These microscopic insights provide a solid standing point, on which perovskite solar cells can be understood more accurately and their performances are perhaps further optimized. PMID:28665407
Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe
NASA Astrophysics Data System (ADS)
Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.
2014-08-01
A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.
Symmetry and novelty in the electronic and geometric structure of nanoalloys:. the case of Ag27Cu7
NASA Astrophysics Data System (ADS)
Ortigoza, M. Alcántara; Rahman, T. S.
2008-04-01
Nanoparticles of bimetallic alloys have been shown to possess composition dependent characteristics which distinguish themselves from the corresponding bulk alloys. Taking the 34-atom nanoalloy of Ag and Cu (Ag27Cu7), we show using first principles electronic structure calculations that this core-shell alloy indeed has perfect D5h symmetry and consists of only 6 non-equivalent (2 Cu and 4 Ag) atoms. Analysis of the interatomic bond lengths and detailed electronic structure further reveal that the Cu atoms play a major role in controlling the characteristics of the nanoalloy. The higher cohesive energy, together with shorter bond length for Cu, compared to Ag, conspire to produce a hierarchy in the relative strengths of the Ag - Cu, Ag - Ag, and Cu - Cu bonds and corresponding interatomic bond lengths, point to the uniqueness in the characteristics of this nanoalloy. Charge density plots of Ag27Cu7 provide further insights into the relative strengths of the various interatomic bonds.
Geometry-dependent atomic multipole models for the water molecule.
Loboda, O; Millot, C
2017-10-28
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
Geometry-dependent atomic multipole models for the water molecule
NASA Astrophysics Data System (ADS)
Loboda, O.; Millot, C.
2017-10-01
Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.
NASA Astrophysics Data System (ADS)
Senthil kumar, J.; Jeyavijayan, S.; Arivazhagan, M.
2015-02-01
The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm-1 and 4000-400 cm-1, respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms.
Accuracy of free energies of hydration using CM1 and CM3 atomic charges.
Udier-Blagović, Marina; Morales De Tirado, Patricia; Pearlman, Shoshannah A; Jorgensen, William L
2004-08-01
Absolute free energies of hydration (DeltaGhyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard-Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute DeltaGhyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N-methylacetamide in water. Copyright 2004 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, Mathias; Peisert, Heiko, E-mail: heiko.peisert@uni-tuebingen.de; Adler, Hilmar
2015-03-14
The electronic structure of the interface between cobalt phthalocyanine (CoPc) and epitaxially grown manganese oxide (MnO) thin films is studied by means of photoemission (PES) and X-ray absorption spectroscopy (XAS). Our results reveal a flat-lying adsorption geometry of the molecules on the oxide surface which allows a maximal interaction between the π-system and the substrate. A charge transfer from MnO, in particular, to the central metal atom of CoPc is observed by both PES and XAS. The change of the shape of N-K XAS spectra at the interface points, however, to the involvement of the Pc macrocycle in the chargemore » transfer process. As a consequence of the charge transfer, energetic shifts of MnO related core levels were observed, which are discussed in terms of a Fermi level shift in the semiconducting MnO films due to interface charge redistribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, P.; Kim, Jeongnim; Park, Changwon
2014-11-03
In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less
Stabilizing Rabi oscillation of a charge qubit via the atomic clock technique
NASA Astrophysics Data System (ADS)
Yu, Deshui; Landra, Alessandro; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer
2018-02-01
We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor-capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.
Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.
Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria
2015-10-15
Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.
Optimization of classical nonpolarizable force fields for OH(-) and H3O(+).
Bonthuis, Douwe Jan; Mamatkulov, Shavkat I; Netz, Roland R
2016-03-14
We optimize force fields for H3O(+) and OH(-) that reproduce the experimental solvation free energies and the activities of H3O(+) Cl(-) and Na(+) OH(-) solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H3O(+) force field is 0.8 ± 0.1|e|--significantly higher than the value typically used for nonpolarizable water models and H3O(+) force fields. In contrast, the optimal partial charge on the hydrogen atom of OH(-) turns out to be zero. Standard combination rules can be used for H3O(+) Cl(-) solutions, while for Na(+) OH(-) solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.
STM studies of an atomic-scale gate electrode formed by a single charged vacancy in GaAs
NASA Astrophysics Data System (ADS)
Lee, Donghun; Daughton, David; Gupta, Jay
2009-03-01
Electric-field control of spin-spin interactions at the atomic level is desirable for the realization of spintronics and spin-based quantum computation. Here we demonstrate the realization of an atomic-scale gate electrode formed by a single charged vacancy on the GaAs(110) surface[1]. We can position these vacancies with atomic precision using the tip of a home-built, low temperature STM. Tunneling spectroscopy of single Mn acceptors is used to quantify the electrostatic field as a function of distance from the vacancy. Single Mn acceptors are formed by substituting Mn adatoms for Ga atoms in the first layer of the p-GaAs(110) surface[2]. Depending on the distance, the in-gap resonance of single Mn acceptors can shift as much as 200meV. Our data indicate that the electrostatic field decays according to a screened Coulomb potential. The charge state of the vacancy can be switched to neutral, as evidenced by the Mn resonance returning to its unperturbed position. Reversible control of the local electric field as well as charged states of defects in semiconductors can open new insights such as realizing an atomic-scale gate control and studying spin-spin interactions in semiconductors. http://www.physics.ohio-state.edu/sim jgupta [1] D. Lee and J.A. Gupta (in preparation) [2] D. Kitchen et al., Nature 442, 436-439 (2006)
Positive column of a glow discharge in neon with charged dust grains (a review)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less
A unified formulation of dichroic signals using the Borrmann effect and twisted photon beams.
Collins, Stephen P; Lovesey, Stephen W
2018-05-21
Dichroic X-ray signals derived from the Borrmann effect and a twisted photon beam with topological charge l = 1 are formulated with an effective wavevector. The unification applies for non-magnetic and magnetic materials. Electronic degrees of freedom associated with an ion are encapsulated in multipoles previously used to interpret conventional dichroism and Bragg diffraction enhanced by an atomic resonance. A dichroic signal exploiting the Borrmann effect with a linearly polarized beam presents charge-like multipoles that include a hexadecapole. A difference between dichroic signals obtained with a twisted beam carrying spin polarization (circular polarization) and opposite winding numbers presents charge-like atomic multipoles, whereas a twisted beam carrying linear polarization alone presents magnetic (time-odd) multipoles. Charge-like multipoles include a quadrupole, and magnetic multipoles include a dipole and an octupole. We discuss the practicalities and relative merits of spectroscopy exploiting the two remarkably closely-related processes. Signals using beams with topological charges l ≥ 2 present additional atomic multipoles.
Charge-free method of forming nanostructures on a substrate
Hoffbauer; Mark , Akhadov; Elshan
2010-07-20
A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.
GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT
NASA Astrophysics Data System (ADS)
Strubbe, David A.
GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.
2017-01-01
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl2 concentration. Using DLVO theory with charge regulation, we determine from the measured force–distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca2+ ion adsorption, while Cl– adsorption at higher CaCl2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl– ions will co-adsorb, thereby changing the observed ordered surface structure. PMID:29140711
Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I
2017-12-19
High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.
Configuration interaction in charge exchange spectra of tin and xenon
NASA Astrophysics Data System (ADS)
D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.
2011-06-01
Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.
Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.
Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A
2014-02-15
Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, C.-H.; Tan, T. Y.
1995-10-01
Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.
Golmohammadi, Hassan
2009-11-30
A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.
Goli, Mohammad; Shahbazian, Shant
2014-04-14
This report is a primarily survey on the chemical nature of some exotic species containing the positively charged muon and the muonic helium, i.e., the negatively charged muon plus helium nucleus, as exotic isotopes of hydrogen, using the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis, employing ab initio non-Born-Oppenhiemer wavefunctions. Accordingly, the "atoms in molecules" analysis performed on various asymmetric exotic isotopomers of the hydrogen molecule, recently detected experimentally [Science, 2011, 331, 448], demonstrates that both the exotic isotopes are capable of forming atoms in molecules and retaining the identity of hydrogen atoms. Various derived properties of atomic basins containing the muonic helium cast no doubt that apart from its short life time, it is a heavier isotope of hydrogen while the properties of basins containing the positively charged muon are more remote from those of the orthodox hydrogen basins, capable of appreciable donation of electrons as well as large charge polarization. However, with some tolerance, they may also be categorized as hydrogen basins though with a smaller electronegativity. All in all, the present study also clearly demonstrates that the MC-QTAIM analysis is an efficient approach to decipher the chemical nature of species containing exotic constituents, which are difficult to elucidate by experimental and/or alternative theoretical schemes.
Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E
2017-10-26
Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.
Theory of the stopping power of fast multicharged ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, G.L.
1991-12-01
The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less
Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment
NASA Technical Reports Server (NTRS)
Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)
2002-01-01
Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.
1990-09-01
accuracy by Carl F. Austin, NWC; James Moore, California Energy Co.; and Robert 0. Fournier, Unites States Geological Survey. Approved by Under authority...protons, electrons , and neutrons. The electrical charge of protons is positive, and that of electrons is negative. Neutrons have no electrical charge...The number of protons determines what element an atom is and gives it its atomic number. In a neutral or nonionized atom the number of electrons
Lara, A; Riquelme, M; Vöhringer-Martinez, E
2018-05-11
Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Particle confinement by a radially polarized laser Bessel beam
NASA Astrophysics Data System (ADS)
Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi
2017-03-01
The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.
Orbital occupancy evolution across spin- and charge-ordering transitions in YBaFe2O5
NASA Astrophysics Data System (ADS)
Lindén, J.; Lindroos, F.; Karen, P.
2017-08-01
Thermal evolution of the Fe2+-Fe3+ valence mixing in YBaFe2O5 is investigated using Mössbauer spectroscopy. In this high-spin double-cell perovskite, the d6 and d5 Fe states differ by the single minority-spin electron which then controls all the spin- and charge-ordering transitions. Orbital occupancies can be extracted from the spectra in terms of the dxz , dz2 and either dx2-y2 (Main Article) or dxy (Supplement) populations of this electron upon conserving its angular momentum. At low temperatures, the minority-spin electrons fill up the ordered dxz orbitals of Fe2+, in agreement with the considerable orthorhombic distortion of the structure. Heating through the Verwey transition supplies 93% of the mixing entropy, at which point the predominantly mixing electron occupies mainly the dx2-y2 /dxy orbitals weakly bonding the two Fe atoms that face each other across the bases of their coordination pyramids. This might stabilize a weak coulombic checkerboard order suggested by McQueeney et alii in Phys. Rev. B 87(2013)045127. When the remaining 7% of entropy is supplied at a subsequent transition, the mixing electron couples the two Fe atoms predominantly via their dz2 orbitals. The valence mixing concerns more than 95% of the Fe atoms present in the crystalline solid; the rest is semi-quantitatively interpreted as domain walls and antiphase boundaries formed upon cooling through the Néel and Verwey-transition temperatures, respectively.
NASA Astrophysics Data System (ADS)
Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo
2002-08-01
Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic clusters is responsible for formation of negatively charged gold subunits which are expected to be reactive, a situation similar to that of gold clusters supported on metal oxides.
Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point
NASA Astrophysics Data System (ADS)
Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration
2017-12-01
We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .
Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides
NASA Astrophysics Data System (ADS)
Moss, Christopher L.; Chung, Thomas W.; Wyer, Jean A.; Nielsen, Steen Brøndsted; Hvelplund, Preben; Tureček, František
2011-04-01
Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H2PO4 radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.
Asadi, Parvin; Khodarahmi, Ghadamali; Farrokhpour, Hossein; Hassanzadeh, Farshid; Saghaei, Lotfollah
2017-01-01
In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran–imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment. PMID:28626481
Vibrational zero point energy for H-doped silicon
NASA Astrophysics Data System (ADS)
Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.
2014-05-01
Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.
Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei
2015-12-28
Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.
Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy
NASA Astrophysics Data System (ADS)
Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.
2015-12-01
The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki
2002-05-01
To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.
NASA Astrophysics Data System (ADS)
Kristyán, Sándor
1997-11-01
In the author's previous work (Chem. Phys. Lett. 247 (1995) 101 and Chem. Phys. Lett. 256 (1996) 229) a simple quasi-linear relationship was introduced between the number of electrons, N, participating in any molecular system and the correlation energy: -0.035 ( N - 1) > Ecorr[hartree] > - 0.045( N -1). This relationship was developed to estimate more accurately correlation energy immediately in ab initio calculations by using the partial charges of atoms in the molecule, easily obtained after Hartree-Fock self-consistent field (HF-SCF) calculations. The method is compared to the well-known B3LYP, MP2, CCSD and G2M methods. Correlation energy estimations for negatively (-1) charged atomic ions are also reported.
Monte Carlo simulation of neutral-beam injection for mirror fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Ronald Lee
1979-01-01
Computer simulation techniques using the Monte Carlo method have been developed for application to the modeling of neutral-beam intection into mirror-confined plasmas of interest to controlled thermonuclear research. The energetic (10 to 300 keV) neutral-beam particles interact with the target plasma (T i ~ 10 to 100 keV) through electron-atom and ion-atom collisional ionization as well as ion-atom charge-transfer (charge-exchange) collisions to give a fractional trapping of the neutral beam and a loss of charge-transfer-produced neutrals which escape to bombard the reactor first wall. Appropriate interaction cross sections for these processes are calculated for the assumed anisotropic, non-Maxwellian plasma ionmore » phase-space distributions.« less
A New Type of Atom Interferometry for Testing Fundamental Physics
NASA Astrophysics Data System (ADS)
Lorek, Dennis; Lämmerzahl, Claus; Wicht, Andreas
We present a new type of atom interferometer (AI) that provides a tool for ultra-high precision tests of fundamental physics. As an example we present how an AI based on highly charged hydrogen-like atoms is affected by gravitational waves (GW). A qualitative description of the quantum interferometric measurement principle is given, the modifications in the atomic Hamiltonian caused by the GW are presented, and the size of the resulting frequency shifts in hydrogen-like atoms is estimated. For a GW amplitude of h = 10-23 the frequency shift is of the order of 110μHz for an AI based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current AIs in 1s.
Physics with Trapped Antihydrogen
NASA Astrophysics Data System (ADS)
Charlton, Michael
2017-04-01
For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.
Theoretical study of Ag doping-induced vacancies defects in armchair graphene
NASA Astrophysics Data System (ADS)
Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.
2018-06-01
We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.
2015-12-21
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion andmore » dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.« less
NASA Astrophysics Data System (ADS)
Gharabaghi, Masumeh; Shahbazian, Shant
2017-04-01
The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.
Gharabaghi, Masumeh; Shahbazian, Shant
2017-04-21
The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.
NASA Astrophysics Data System (ADS)
Tanuma, Hajime; Numadate, Naoki; Uchikura, Yoshiyuki; Shimada, Kento; Akutsu, Takuto; Long, Elaine; O'Sullivan, Gerry
2017-10-01
We have performed ion beam collision experiments using multiply charged tantalum ions and observed EUV (extreme ultra-violet) emission spectra in collisions of ions with molecular targets, N2 and O2. Broad UTAs (un-resolved transition arrays) from multiply charged Ta ions were observed, and the mean wavelengths of the UTAs shifted and became shorter at higher charge statea of Ta ions. These UTAs may be attributed to the 4f-5d and 4f-5g transitions. Not only the UTA emission from incident ions, but also the sharp emission lines from multiply charged fragment atomic ions were observed. Production of temporary highly charged molecular ions, their kinetic energy and fragmentation processes have been investigated with coincident detection technique. However, the observation of emission from the fragments might be for the first time. The formation mechanisms of the multiply charged fragment atomic ions from target molecules are discussed.
NASA Astrophysics Data System (ADS)
Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.
2017-07-01
Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.
Jarzembska, Katarzyna N; Kamiński, Radosław; Durka, Krzysztof; Woźniak, Krzysztof
2018-05-10
This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å -1 ) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.
Catalytic behavior of ‘Pt-atomic chain encapsulated gold nanotube’: A density functional study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, Sandeep, E-mail: snigam@barc.gov.in; Majumder, Chiranjib
2016-05-23
With an aim to design novel material and explore its catalytic performance towards CO oxidation, Pt atomic chain was introduced inside gold nanotube (Au-NT). Theoretical calculations at the level of first principles formalism was carried out to investigate the atomic and electronic properties of the composite. Geometrically Pt atoms prefer to align in zig-zag fashion. Significant electronic charge transfer from inside Pt atoms to the outer wall Au atoms is observed. Interaction of O{sub 2} with Au-NT wall follows by injection of additional electronic charge in the anti-bonding orbital of oxygen molecule leading to activation of the O-O bond. Furthermore » interaction of CO molecule with the activated oxygen molecule leads to spontaneous oxidation reaction and formation of CO{sub 2}.« less
Nomani, Alireza; Haririan, Ismaeil; Rahimnia, Ramin; Fouladdel, Shamileh; Gazori, Tarane; Dinarvand, Rassoul; Omidi, Yadollah; Azizi, Ebrahim
2010-01-01
To gain a deeper understanding of the physicochemical phenomenon of self-assembled nanoparticles of different generations and ratios of poly (amidoamine) dendrimer (PAMAM) dendrimer and a short-stranded DNA (antisense oligonucleotide), multiple methods were used to characterize these nanoparticles including photon correlation spectroscopy (PCS); zeta potential measurement; and atomic force microscopy (AFM). PCS and AFM results revealed that, in contrast to larger molecules of DNA, smaller molecules produce more heterodisperse and large nanoparticles when they are condensed with a cationic dendrimer. AFM images also showed that such nanoparticles were spherical. The stability of the antisense content of the nanoparticles was investigated over different charge ratios using polyacrylamide gel electrophoresis. It was clear from such analyses that much more than charge neutrality point was required to obtain stable nanoparticles. For cell uptake, self-assembled nanoparticles were prepared with PAMAM G5 and 5’-FITC labeled antisense and the uptake experiment was carried out in T47D cell culture. This investigation also shows that the cytotoxicity of the nanoparticles was dependent upon the generation and charge ratio of the PAMAM dendrimer, and the antisense concentration had no significant effect on the cytotoxicity. PMID:20517481
Rates of Charged Clocks in an Electric Field.
NASA Astrophysics Data System (ADS)
Ozer, Murat
2008-04-01
The gravitational arguments leading to time dilation, redshift, and spacetime curvature are adapted to electric fields. The energy levels of two identical positively charged atoms at different potentials in a static electric field are shown to undergo blueshift. Secondly, the period of a charged simple pendulum (clock) in the electric field of a metallic sphere is shown to vary with the electric potential. The spacetime diagram for the world lines of two photons emitted and absorbed by two pendulums at different potentials at different times and the world lines of the pendulums, as in Schild's argument, is shown to be not a parallelogram in Minkowski spacetime, concluding that spacetime must be curved. A Pound-Rebka-Snider experiment in an electric field is proposed to confirm that photons undergo a frequency shift in an electric field and hence the spacetime manifold is curved. Next, Torretti's gravitational argument that spacetime around a mass distribution concentrated at a point is curved is extended to electric charge distributions to conclude that the nonuniform electric fields of such charge distributions too curve spacetime. Finally, the local equivalence of a uniform electric field times the charge to mass ratio to a uniform acceleration is shown through spacetime transformations and the electrical redshift is obtained in a uniformly accelerated frame by using this principle. These arguments lead to the conclusion that special relativistic electromagnetism is an approximation to a general relativistic multi-metric theory.
Maxwell's conjecture on three point charges with equal magnitudes
NASA Astrophysics Data System (ADS)
Tsai, Ya-Lun
2015-08-01
Maxwell's conjecture on three point charges states that the number of non-degenerate equilibrium points of the electrostatic field generated by them in R3 is at most four. We prove the conjecture in the cases when three point charges have equal magnitudes and show the number of isolated equilibrium points can only be zero, two, three, or four. Specifically, fixing positions of two positive charges in R3, we know exactly where to place the third positive charge to have two, three, or four equilibrium points. All equilibrium points are isolated and there are no other possibilities for the number of isolated equilibrium points. On the other hand, if both two of the fixed charges have negative charge values, there are always two equilibrium points except when the third positive charge lies in the line segment connecting the two negative charges. The exception cases are when the field contains only a curve of equilibrium points. In this paper, computations assisted by computer involve symbolic and exact integer computations. Therefore, all the results are proved rigorously.
Quantum dynamics of charge state in silicon field evaporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp
2016-08-15
The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less
Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M.
Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was definedmore » as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.« less
Efficient acceleration of neutral atoms in laser produced plasma
Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...
2017-06-20
Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less
Berengut, J C; Dzuba, V A; Flambaum, V V
2010-09-17
We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.
HIAF: New opportunities for atomic physics with highly charged heavy ions
NASA Astrophysics Data System (ADS)
Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.
2017-10-01
A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.
Charge transfer between O6+ and atomic hydrogen
NASA Astrophysics Data System (ADS)
Wu, Y.; Stancil, P. C.; Liebermann, H. P.; Buenker, R. J.; Schultz, D. R.; Hui, Y.
2011-05-01
The charge exchange process has been found to play a dominant role in the production of X-rays and/or EUV photons observed in cometary and planetary atmospheres and from the heliosphere. Charge transfer cross sections, especially state-selective cross sections, are necessary parameters in simulations of X-ray emission. In the present work, charge transfer due to collisions of ground state O6+(1s2 1 S) with atomic hydrogen has been investigated theoretically using the quantum-mechanical molecular-orbital close-coupling method (QMOCC). The multi-reference single- and double-excitation configuration interaction approach (MRDCI) has been applied to compute the adiabatic potential and nonadiabatic couplings, and the atomic basis sets used have been optimized with the method proposed previously to obtain precise potential data. Total and state-selective cross sections are calculated for energies between 10 meV/u and 10 keV/u. The QMOCC results are compared to available experimental and theoretical data as well as to new atomic-orbital close-coupling (AOCC) and classical trajectory Monte Carlo (CTMC) calculations. A recommended set of cross sections, based on the MOCC, AOCC, and CTMC calculations, is deduced which should aid in X-ray modeling studies.
Ouyang, Yongzhong; Ye, Fei; Liang, Yizeng
2009-08-07
To further extend the EEM approach to improve its accuracy, a new approach, in which the different connectivities and hybridized states are introduced to represent the different chemical environments, has been developed. The C, O and N atoms are distinguished between different hybridized states. Different states of hydrogen atoms are defined according to their different connectivities. Furthermore, the sp(2) carbons in the aromatic rings are also separated from the other sp(2) carbons. Geometries and NPA charges are calculated at the B3LYP/6-31G* level, and the effective electronegativity and hardness values could be calibrated with the help of a training set of 141 organic molecules using the Differential Evolution (DE) algorithm. The quality of the modified EEM charges is evaluated by comparison with the B3LYP/6-31G* charges calculated for a series of polypeptides, not contained in the training set. For further comparison, the atomic parameters of the original EEM without including chemical environments are recalibrated under the same conditions. It is found that the accuracy of the modified EEM method improves significantly as compared to that of the original EEM method.
Surface charge features of kaolinite particles and their interactions
NASA Astrophysics Data System (ADS)
Gupta, Vishal
Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH<6, and negatively charged at pH>8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed composed of silica/alumina bilayers with a c-spacing of 7.2 A. The surface charge densities of the silica face, the alumina face and the edge surface of kaolinite all influence particle interactions, and thereby affect the mechanical properties of kaolinite suspensions. The improved knowledge of kaolinite surface chemistry from this dissertation research provides a foundation for the development of improved process strategies for both the use and disposal of clay particles such as kaolinite.
Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku
NASA Technical Reports Server (NTRS)
Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.;
2011-01-01
X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.
Pandey, Urmila; Srivastava, Mayuri; Singh, R P; Yadav, R A
2014-08-14
The conformational and IR and Raman spectral studies of 2-(2-hydroxyphenyl)benzothiazole have been carried out by using the DFT method at the B3LYP/6-311++G(**) level. The detailed vibrational assignments have been done on the basis of calculated potential energy distributions. Comparative studies of molecular geometries, atomic charges and vibrational fundamentals of all the conformers have been made. There are four possible conformers for this molecule. The optimized geometrical parameters obtained by B3LYP/6-311++G(**) method showed good agreement with the experimental X-ray data. The atomic polar tensor (APT) charges, Mulliken atomic charges, natural bond orbital (NBO) analysis and HOMO-LUMO energy gap of HBT and its conformers were also computed. Copyright © 2014 Elsevier B.V. All rights reserved.
High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets
NASA Astrophysics Data System (ADS)
Gaillard, Benoit; Owkes, Mark; van Poppel, Bret
2015-11-01
Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.
Relativistic Collisions of Highly-Charged Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionescu, Dorin; Belkacem, Ali
1998-11-19
The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less
Electrostatic forces in the Poisson-Boltzmann systems
NASA Astrophysics Data System (ADS)
Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2013-09-01
Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
NASA Astrophysics Data System (ADS)
Mølholt, T. E.; Mantovan, R.; Gunnlaugsson, H. P.; Svane, A.; Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Johnston, K.; Langouche, G.; Ólafsson, S.; Sielemann, R.; Weyer, G.
2014-01-01
Isolated 57Fe atoms were studied in MgO single-crystals by emission Mössbauer spectroscopy following implantation of 57Mn decaying to 57Fe. Four Mössbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.
Molecular dynamics simulations of polarizable DNA in crystal environment
NASA Astrophysics Data System (ADS)
Babin, Volodymyr; Baucom, Jason; Darden, Thomas A.; Sagui, Celeste
We have investigated the role of the electrostatic description and cell environment in molecular dynamics (MD) simulations of DNA. Multiple unrestrained MD simulations of the DNA duplex d(CCAACGTTGG)2 have been carried out using two different force fields: a traditional description based on atomic point charges and a polarizable force field. For the time scales probed, and given the ?right? distribution of divalent ions, the latter performs better than the nonpolarizable force field. In particular, by imposing the experimental unit cell environment, an initial configuration with ideal B-DNA duplexes in the unit cell acquires sequence-dependent features that very closely resemble the crystallographic ones. Simultaneously, the all-atom root-mean-square coordinates deviation (RMSD) with respect to the crystallographic structure is seen to decay. At later times, the polarizable force field is able to maintain this lower RMSD, while the nonpolarizable force field starts to drift away.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Self-organized semiconductor nano-network on graphene
NASA Astrophysics Data System (ADS)
Son, Dabin; Kim, Sang Jin; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Kang, Jae-Wook; Lee, Sang Hyun
2017-04-01
A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD). The surface of pure and structurally perfect graphene is chemically inert. However, various types of point and line defects, including vacancies/adatoms, grain boundaries, and ripples in graphene are generated by growth, chemical or physical treatments. The defective sites enhance the chemical reactivity with foreign atoms. ZnO nanoparticles formed by ALD were predominantly deposited at the line defects and agglomerated with increasing ALD cycles. Due to the formation of the ZnO nano-network, the photocurrent between two electrodes was clearly changed under UV irradiation as a result of the charge transport between ZnO and graphene. The line patterned ZnO/graphene (ZnO/G) nano-network devices exhibit sensitivities greater than ten times those of non-patterned structures. We also confirmed the superior operation of a fabricated flexible photodetector based on the line patterned ZnO/G nano-network.
Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation
NASA Astrophysics Data System (ADS)
Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian
2001-06-01
The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.
Optimized nanoporous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.
2009-09-01
Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired bymore » these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.« less
A DFT study for the structural and electronic properties of Zn m Se n nanoclusters
NASA Astrophysics Data System (ADS)
Yadav, Phool Singh; Pandey, Dheeraj Kumar
2012-09-01
An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.
NASA Astrophysics Data System (ADS)
KoleŻyński, Andrzej; Szczypka, Wojciech
2016-03-01
Results from theoretical analysis of the crystal structure, electronic structure, and bonding properties of C46 and B6C40 carbon clathrates doped with selected alkali and alkaline earth metals cations (Li, Na, Mg, Ca) are presented. The ab initio calculations were performed by means of the WIEN2k package (full potential linearized augmented plane wave method (FP-LAPW) within density functional theory (DFT)) with PBESol and modified Becke-Johnson exchange-correlation potentials used in geometry optimization and electronic structure calculations, respectively. The bonding properties were analyzed by applying Bader's quantum theory of atoms in molecules formalism to the topological properties of total electron density obtained from ab initio calculations. Analysis of the results obtained (i.a. equilibrium geometry, equation of state, cohesive energy, band structure, density of states—both total and projected on to particular atoms, and topological properties of bond critical points and net charges of topological atoms) is presented in detail.
Valence atom with bohmian quantum potential: the golden ratio approach
2012-01-01
Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157
Density functional study of hypophosphite adsorption on Ni (1 1 1) and Cu (1 1 1) surfaces
NASA Astrophysics Data System (ADS)
Zeng, Yue; Liu, Shubin; Ou, Lihui; Yi, Jianlong; Yu, Shanci; Wang, Huixian; Xiao, Xiaoming
2006-02-01
Surface structures and electronic properties of hypophosphite, H 2PO 2-, molecularly adsorbed on Ni(1 1 1) and Cu(1 1 1) surfaces are investigated in this work by density functional theory at B3LYP/6-31++g(d, p) level. We employ a four-metal-atom cluster as the simplified model for the surface and have fully optimized the geometry and orientation of H 2PO 2- on the metal cluster. Six stable orientations have been discovered on both Ni (1 1 1) and Cu (1 1 1) surfaces. The most stable orientation of H 2PO 2- was found to have its two oxygen atoms interact the surface with two P sbnd O bonds pointing downward. Results of the Mulliken population analysis showed that the back donation from 3d orbitals of the transition metal substrate to the unfilled 3d orbital of the phosphorus atom in H 2PO 2- and 4s orbital's acceptance of electron donation from one lone pair of the oxygen atom in H 2PO 2- play very important roles in the H 2PO 2- adsorption on the transition metals. The averaged electron configuration of Ni in Ni 4 cluster is 4s 0.634p 0.023d 9.35 and that of Cu in Cu 4 cluster is 4s 1.004p 0.033d 9.97. Because of this subtle difference of electron configuration, the adsorption energy is larger on the Ni surface than on the Cu surface. The amount of charge transfers due to above two donations is larger from H 2PO 2- to the Ni surface than to the Cu surface, leading to a more positively charged P atom in Ni nH 2PO 2- than in Cu nH 2PO 2-. These results indicate that the phosphorus atom in Ni nH 2PO 2- complex is easier to be attacked by a nucleophile such as OH - and subsequent oxidation of H 2PO 2- can take place more favorably on Ni substrate than on Cu substrate.
Clare, Brian W; Supuran, Claudiu T
2005-03-15
A QSAR based almost entirely on quantum theoretically calculated descriptors has been developed for a large and heterogeneous group of aromatic and heteroaromatic carbonic anhydrase inhibitors, using orbital energies, nodal angles, atomic charges, and some other intuitively appealing descriptors. Most calculations have been done at the B3LYP/6-31G* level of theory. For the first time we have treated five-membered rings by the same means that we have used for benzene rings in the past. Our flip regression technique has been expanded to encompass automatic variable selection. The statistical quality of the results, while not equal to those we have had with benzene derivatives, is very good considering the noncongeneric nature of the compounds. The most significant correlation was with charge on the atoms of the sulfonamide group, followed by the nodal orientation and the solvation energy calculated by COSMO and the charge polarization of the molecule calculated as the mean absolute Mulliken charge over all atoms.
Charge exchange collisions of slow C6 + with atomic and molecular H
NASA Astrophysics Data System (ADS)
Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve
2016-04-01
Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.
Han, Myung-Geun; Garlow, Joseph A.; Bugnet, Matthieu; ...
2016-09-02
Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in hetero-interfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr 0.2Ti 0.8O 3 are strongly coupled to polar interfaces through the formation of ½<101>{h0l} type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs, where necessary compensating charges for stabilizing the CDWs are associated withmore » vacancies at the CSPs. Lasly, the CDW/CSP coupling yields an atomically narrow domain walls, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties.« less
Puri, Swati; Chickos, James S; Welsh, William J
2002-01-01
Three-dimensional Quantitative Structure-Property Relationship (QSPR) models have been derived using Comparative Molecular Field Analysis (CoMFA) to correlate the vaporization enthalpies of a representative set of polychlorinated biphenyls (PCBs) at 298.15 K with their CoMFA-calculated physicochemical properties. Various alignment schemes, such as inertial, as is, and atom fit, were employed in this study. The CoMFA models were also developed using different partial charge formalisms, namely, electrostatic potential (ESP) charges and Gasteiger-Marsili (GM) charges. The most predictive model for vaporization enthalpy (Delta(vap)H(m)(298.15 K)), with atom fit alignment and Gasteiger-Marsili charges, yielded r2 values 0.852 (cross-validated) and 0.996 (conventional). The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for the meta- and para-substituted isomers. This model was used to predict Delta(vap)H(m)(298.15 K) of the entire set of 209 PCB congeners.
Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies
NASA Technical Reports Server (NTRS)
Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.
2002-01-01
We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.
Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system
NASA Astrophysics Data System (ADS)
Kong, Fantai; Longo, Roberto C.; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae
2017-11-01
To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO2. A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li2CoO2 and Li-deficient LiCo2O4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.
Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.
Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae
2017-11-29
To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.
Predictions of nuclear charge radii
NASA Astrophysics Data System (ADS)
Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.
2016-12-01
The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.
Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.
2011-06-01
Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.
Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy.
London, Andrew J; Haley, Daniel; Moody, Michael P
2017-04-01
Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.
The Origin of Low Altitude ENA Emissions from Storms in 2000-2005 as Observed by IMAGE/MENA
NASA Astrophysics Data System (ADS)
Perez, J. D.; Sheehan, M. M.; Jahn, J.; Mackler, D.; Pollock, C. J.
2013-12-01
Low Altitude Emissions (LAEs) are prevalent features of Energetic Neutral Atom (ENA) images of the inner magnetosphere. It is believed that they are created by precipitating ions that reach altitudes near 500 km and then charge exchange with oxygen atoms, subsequently escaping to be observed by satellite borne ENA imagers. In this study, LAEs from the MENA instrument onboard the IMAGE satellite are studied in order to learn about the origin of the precipitating ions. Using the Tsyganenko 05 magnetic field model, the bright pixels capturing the LAEs are mapped to the equator. The LAEs are believed to originate from ions near their mirroring point, i.e., with pitch angles near 90o. Therefore the angle between the line-of-sight and the magnetic field at the point of origin is used to further constrain possible magnetospheric regions that are the origin of the ENAs. By observing the time dependence of the strength and location of the LAEs during geomagnetic storms in the years 2000-2005, the dynamics of the emptying and filling of the loss cone by injected particles is observed. Thus, information regarding the coupling between the inner magnetosphere and the ionosphere is obtained.
The interaction of excited He, Ar and Ne metastable atoms with the CF2Cl2 molecule
NASA Astrophysics Data System (ADS)
Cherid, M.; Ben Arfa, M.; Driss Khodja, M.
2004-02-01
We studied Penning ionization of the CF2Cl2 molecule by neon and helium metastable atoms. In the case of the neon ionizing particle, we measured the electron kinetic energy as well as mass spectra; for helium metastable atoms, only the mass spectrum was recorded. We, therefore, obtained the branching ratios for the heavy charged particles produced in both interactions. In this report we will discuss the mechanism involved in the production of metastable halogen atoms in the dielectric barrier discharge further to the use of rare gases/CF2Cl2 mixtures. We show that this process needs a two-stage reaction. Ground state free halogen atoms are formed over the first stage by Penning ionization, charge transfer, dissociate excitation and ionization. Therefore, metastable halogen atoms can be produced by excitation transfer process in the second stage through interaction with metastable rare gas atoms. This paper is dedicated to Professor F M E Tuffin on the occasion of his retirement.
Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe
NASA Astrophysics Data System (ADS)
Li, Jiangxu; Xie, Qing; Ullah, Sami; Li, Ronghan; Ma, Hui; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu
2018-02-01
In analogy to various fermions of electrons in topological semimetals, topological mechanical states with two types of bosons, Dirac and Weyl bosons, were reported in some macroscopic systems of kHz frequency, and those with a type of doubly-Weyl phonons in atomic vibrational framework of THz frequency of solid crystals were recently predicted. Here, through first-principles calculations, we have reported that the phonon spectra of the WC-type TiS, ZrSe, and HfTe commonly host the unique triply degenerate nodal points (TDNPs) and single two-component Weyl points (WPs) in THz frequency. Quasiparticle excitations near TDNPs of phonons are three-component bosons, beyond the conventional and known classifications of Dirac, Weyl, and doubly-Weyl phonons. Moreover, we have found that both TiS and ZrSe have five pairs of type-I Weyl phonons and a pair of type-II Weyl phonons, whereas HfTe only has four pairs of type-I Weyl phonons. They carry nonzero topological charges. On the (10 1 ¯0 ) crystal surfaces, we observe topological protected surface arc states connecting two WPs with opposite charges, which host modes that propagate nearly in one direction on the surface.
NASA Astrophysics Data System (ADS)
Binoy, J.; James, C.; Hubert Joe, I.; Jayakumar, V. S.
2006-02-01
The compound of therapeutic interest, Bis ( N, N'-diphenyl guanidinium) oxalate, have been crystallized and is subjected to FT IR and Raman spectral studies, along with quantum chemical computations using density functional theory. In the crystal, diphenyl guanidinium ion is found to possess anti anti conformation although syn syn conformer is energetically favored based on the single point energy calculations at B3LYP/6-31G(d) level, which shows the counter ion influence on conformation. The optimized geometry at the same level of theory indicates that guanidinium moiety of diphenyl guanidinium ion is planar, possibly induced by the sp 2 hybridized central carbon atom and the twisting of phenyl ring with respect to guanidinium moiety has been observed. The charge delocalization of the planar oxalate ion predicted by XRD is confirmed by the DFT values of bond lengths. The presence of N-H⋯O intermolecular interactions can be observed in IR spectrum by the broadness of the band in the stretching region and its vibrational spectral consequences can be found as the shifting of band positions for amino group and CO group vibrations. The geometry, vibrational spectra, covalent bond orders and atomic charges of guanidinium ion, diphenyl guanidinium ion and of their corresponding neutral species have been used to investigate the effects of charge delocalization leading to Y-aromaticity. The FT IR and Raman spectra of diphenyl guanidine indicates that phenyl ring modes 8b, 18a, 9b and 6b, active in diphenyl guanidine molecule, are found to be dormant in their ionic species.
Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom
NASA Astrophysics Data System (ADS)
Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan
2011-05-01
In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).
Probing the Importance of Charge Flux in Force Field Modeling.
Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank
2017-08-08
We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.
R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries
Dupradeau, François-Yves; Cézard, Christine; Lelong, Rodolphe; Stanislawiak, Élodie; Pêcher, Julien; Delepine, Jean Charles; Cieplak, Piotr
2008-01-01
The web-based RESP ESP charge DataBase (R.E.DD.B., http://q4md-forcefieldtools.org/REDDB) is a free and new source of RESP and ESP atomic charge values and force field libraries for model systems and/or small molecules. R.E.DD.B. stores highly effective and reproducible charge values and molecular structures in the Tripos mol2 file format, information about the charge derivation procedure, scripts to integrate the charges and molecular topology in the most common molecular dynamics packages. Moreover, R.E.DD.B. allows users to freely store and distribute RESP or ESP charges and force field libraries to the scientific community, via a web interface. The first version of R.E.DD.B., released in January 2006, contains force field libraries for molecules as well as molecular fragments for standard residues and their analogs (amino acids, monosaccharides, nucleotides and ligands), hence covering a vast area of relevant biological applications. PMID:17962302
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.
1996-01-01
Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-12-26
A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonthuis, Douwe Jan, E-mail: douwe.bonthuis@physics.ox.ac.uk; Mamatkulov, Shavkat I.; Netz, Roland R.
We optimize force fields for H{sub 3}O{sup +} and OH{sup −} that reproduce the experimental solvation free energies and the activities of H{sub 3}O{sup +} Cl{sup −} and Na{sup +} OH{sup −} solutions up to concentrations of 1.5 mol/l. The force fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the optimized H{sub 3}O{sup +} force field is 0.8 ± 0.1|e|—significantly higher than the value typically used for nonpolarizable water models and H{sub 3}O{sup +} force fields. In contrast,more » the optimal partial charge on the hydrogen atom of OH{sup −} turns out to be zero. Standard combination rules can be used for H{sub 3}O{sup +} Cl{sup −} solutions, while for Na{sup +} OH{sup −} solutions, we need to significantly increase the effective anion-cation Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results show that it is possible to generate thermodynamically consistent force fields without using atomic polarizability.« less
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
Yu, Hua-Gen
2008-05-21
A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.
Spatially resolving density-dependent screening around a single charged atom in graphene
NASA Astrophysics Data System (ADS)
Wong, Dillon; Corsetti, Fabiano; Wang, Yang; Brar, Victor W.; Tsai, Hsin-Zon; Wu, Qiong; Kawakami, Roland K.; Zettl, Alex; Mostofi, Arash A.; Lischner, Johannes; Crommie, Michael F.
2017-05-01
Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.
Expanded Definition of the Oxidation State
ERIC Educational Resources Information Center
Loock, Hans-Peter
2011-01-01
A proposal to define the oxidation state of an atom in a compound as the hypothetical charge of the corresponding atomic ion that is obtained by heterolytically cleaving its bonds such that the atom with the higher electronegativity in a bond is allocated all electrons in the bond. Bonds between like atoms are cleaved homolytically. This…
Roles of additives and surface control in slurry atomization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, S.C.
1990-01-01
This report focuses on the effects of interparticle forces on the rheology and airblast atomization of micronized coal water slurry (CWS). We found that the CWS flow behavior index is determined by the relative importance of the interparticle van der Waals attraction and the interparticle electrostatic repulsion. The former intensifies as the Hamaker constant increases and the interparticle distance reduces while the latter increases as the particle surface charge density increases. The interparticle attraction causes particle aggregation, which breaks down at high shear rates, and thus leads to slurry pseudoplastic behavior. In contrast, the interparticle repulsion prevents particle aggregation andmore » thus leads to Newtonian behavior. Both atomized at low atomizing air pressures (less than 270 kPa) using twin-fluid jet atomizers of various distributor designs. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. The effects of coal volume fraction, coal particle surface charge, liquid composition and liquid viscosity on slurry atomization can be accounted for by their effects on slurry rheology. 26 refs.« less
Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P
2014-02-14
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.
NASA Astrophysics Data System (ADS)
Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.
2014-02-01
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.
2016-01-01
We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642
Thermal stability of atomic layer deposition Al2O3 film on HgCdTe
NASA Astrophysics Data System (ADS)
Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.
2015-06-01
Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays.
Rudenko, A; Inhester, L; Hanasaki, K; Li, X; Robatjazi, S J; Erk, B; Boll, R; Toyota, K; Hao, Y; Vendrell, O; Bomme, C; Savelyev, E; Rudek, B; Foucar, L; Southworth, S H; Lehmann, C S; Kraessig, B; Marchenko, T; Simon, M; Ueda, K; Ferguson, K R; Bucher, M; Gorkhover, T; Carron, S; Alonso-Mori, R; Koglin, J E; Correa, J; Williams, G J; Boutet, S; Young, L; Bostedt, C; Son, S-K; Santra, R; Rolles, D
2017-06-01
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects-an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure-the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
Rudenko, A.; Inhester, L.; Hanasaki, K.; ...
2017-05-31
We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Fnally, our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.« less
Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudenko, A.; Inhester, L.; Hanasaki, K.
We report x-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10 20 watts per square centimetre). However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption, which in a heteronuclear molecularmore » system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects and has been suggested as a way of phasing the diffraction data. On the basis of experiments using either soft or less-intense hard X-rays, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10 20 watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Fnally, our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.« less
Lu, Zhenyu; Zhou, Nengjie; Wu, Qin; Zhang, Yingkai
2011-01-01
One well-known shortcoming of widely-used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method [J. Chem. Phys., 131, 164112 (2009)], in which the frozen density energy is variationally determined through constrained search. This unique and most significant feature of DEDA enables us to find that the frozen density interaction term is the key factor in determining the HB orientation, while the sum of polarization and charge-transfer components shows very little HB directional dependence. This new insight suggests that the difficulty for current non-polarizable force fields to describe the HB directional dependence is not due to the lack of explicit polarization or charge-transfer terms. Using the DEDA results as reference, we further demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Meanwhile, our results indicate that the van der Waals interaction term needs to be further improved to better model directional hydrogen bonding. PMID:22267958
Ultrafast molecular processes mapped by femtosecond x-ray diffraction
NASA Astrophysics Data System (ADS)
Elsaesser, Thomas
2012-02-01
X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.
Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight.
Torres, A E; Fomine, S
2015-04-28
The electronic structure of graphene nanoribbons doped with a graphitic type of nitrogen atoms has been studied using B3LYP, B2PLYP and CAS methods. In all but one case the restricted B3LYP solutions were unstable and the CAS calculations provided evidence for the multiconfigurational nature of the ground state with contributions from two dominant configurations. The relative stability of the doped nanoribbons depends mostly on the mutual position of the dopant atoms and notably less on the position of nitrogen atoms within the nanoribbon. N-graphitic doping affects cationic states much more than anionic ones due the participation of the nitrogen atoms in the stabilization of the positive charge, resulting in a drop in ionization energies (IPs) for N-graphitic doped systems. Nitrogen atoms do not participate in the negative charge stabilization of anionic species and, therefore, the doping does not affect the electron affinities (EAs). The unrestricted B3LYP method is the method of choice for the calculation of IPs and EAs. Restricted B3LYP and B2PLYP produces unreliable results for both IPs and EAs while CAS strongly underestimates the electron affinities. This is also true for the reorganization energies where restricted B3LYP produces qualitatively incorrect results. Doping changes the reorganization energy of the nanoribbons; the hole reorganization energy is generally higher than the corresponding electron reorganization energy due to the participation of nitrogen atoms in the stabilization of the positive charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, A.J.; Hutchings, R.B.; Turnbull, A.
1993-09-01
The enhanced corrosion fatigue crack growth rates of low alloy steels cathodically protected in marine environments results from absorbed hydrogen atoms. Hydrogen atoms are generated at the crack tip, crack walls and the external surface of the specimen (bulk charging). In previous work, Turnbull and Saenz de Santa Maria developed a model to predict the rate of generation of hydrogen atoms at the tips of fatigue cracks for steels cathodically polarized in marine environments. The main prediction from this work was that the external surface of the specimen can be the dominant source of hydrogen atoms at potentials more negativemore » than about [minus]900 mV (SCE), at a cyclic frequency of 0.1 Hz and a stress ratio of 0.5. The relative importance of bulk charging depends on the specific test conditions and is influenced by the applied potential, bulk chemistry, cyclic frequency, specimen thickness, temperature and use of coatings. Since laboratory test times are usually short in relation to the time required for hydrogen transport measured crack growth rates may be lower than those occurring in practice, for which there is sufficient time for full hydrogen charging. The purpose of this study is to verify experimentally the importance of bulk charging. Since the sensitivity of cracking to variations in hydrogen concentration will be material dependent a high strength steel was selected in this initial study because of its sensitivity to hydrogen. This will enable validation of the basic premise that bulk charging can be important, prior to more extensive studies using lower strength alloys.« less
Comparative Studies for the Sodium and Potassium Atmospheres of the Moon and Mercury
NASA Technical Reports Server (NTRS)
Smyth, William H.
1999-01-01
A summary discussion of recent sodium and potassium observations for the atmospheres of the Moon and Mercury is presented with primary emphasis on new full-disk images that have become available for sodium. For the sodium atmosphere, image observations for both the Moon and Mercury are fitted with model calculations (1) that have the same source speed distribution, one recently measured for electron-stimulated desorption and thought to apply equally well to photon-stimulated desorption, (2) that have similar average surface sodium fluxes, about 2.8 x 10(exp 5) to 8.9 x 10(exp 5) atoms cm(exp -2)s(exp -1) for the Moon and approximately 3.5 x 10(exp 5) to 1.4 x 10(exp 6) atoms cm(exp -2)s(exp -1) for Mercury, but (3) that have very different distributions for the source surface area. For the Moon, a sunlit hemispherical surface source of between approximately 5.3 x 10(exp 22) to 1.2 x 10(exp 23) atoms/s is required with a spatial dependence at least as sharp as the square of the cosine of the solar zenith angle. For Mercury, a time dependent source that varies from 1.5 x 10(exp 22) to 5.8 x l0(exp 22) atoms/s is required which is confined to a small surface area located at, but asymmetrically distributed about, the subsolar point. The nature of the Mercury source suggest that the planetary magnetopause near the subsolar point acts as a time varying and partially protective shield through which charged particles may pass to interact with and liberate gas from the planetary surface. Suggested directions for future research activities are discussed.
NASA Astrophysics Data System (ADS)
Malček, Michal; Cordeiro, M. Natalia D. S.
2018-01-01
Graphene based materials are nowadays extensively studied because of their potential applications as gas sensors, biosensors or adsorbents. Doping the graphene surface with heteroatoms or transition metals can improve its electronic properties and chemical reactivity. Polyaromatic hydrocarbons coronene and circumcoronene can be used as models of tiny graphene quantum dots. The adsorption of a set of organic molecules (water, hydrogen peroxide, hydrogen sulfide, methanol, ethanol and oxygen molecule) over the copper-doped coronene and circumcoronene was theoretically studied using density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM). In the case of coronene, only one site was considered for the Cu-doping, whereas in the case of circumcoronene being a polyaromatic hydrocarbon composed of 54 carbon atoms, three different sites for Cu-doping were considered. For the systems under study, the adsorption of O2 was found energetically the most favorable, with energetic outcome ranging from -3.1 to -3.7 eV related to the position of dopant Cu atom. Changes in the topology of charge densities at Cu and in its vicinity after the adsorption of studied molecules were investigated in the framework of QTAIM. In addition, QTAIM analysis of bond critical points (BCP) was employed to study the character of the newly formed chemical bonds. The results of this study point out the suitability of Cu-doped graphene materials as sensors and/or adsorbents in practical applications.
Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paggel, J.J.; Hasselblatt, M.; Horn, K.
1997-04-01
The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted inmore » terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.« less
NASA Astrophysics Data System (ADS)
Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.
2008-01-01
Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.
Tuning a circular p-n junction in graphene from quantum confinement to optical guiding
NASA Astrophysics Data System (ADS)
Jiang, Yuhang; Mao, Jinhai; Moldovan, Dean; Masir, Massoud Ramezani; Li, Guohong; Watanabe, Kenji; Taniguchi, Takashi; Peeters, Francois M.; Andrei, Eva Y.
2017-11-01
The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility, can lead to applications based on ultrafast electronic response and low dissipation. However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale. The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei. As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes, similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Pérot interference pattern for junctions close to a boundary.
Theoretical study for heterojunction surface of NEA GaN photocathode dispensed with Cs activation
NASA Astrophysics Data System (ADS)
Xia, Sihao; Liu, Lei; Wang, Honggang; Wang, Meishan; Kong, Yike
2016-09-01
For the disadvantages of conventional negative electron affinity (NEA) GaN photocathodes activated by Cs or Cs/O, new-type NEA GaN photocathodes with heterojunction surface dispensed with Cs activation are investigated based on first-principle study with density functional theory. Through the growth of an ultrathin n-type GaN cap layer on p-type GaN emission layer, a p-n heterojunction is formed on the surface. According to the calculation results, it is found that Si atoms tend to replace Ga atoms to result in an n-type doped cap layer which contributes to the decreasing of work function. After the growth of n-type GaN cap layer, the atom structure near the p-type emission layer is changed while that away from the surface has no obvious variations. By analyzing the E-Mulliken charge distribution of emission surface with and without cap layer, it is found that the positive charge of Ga and Mg atoms in the emission layer decrease caused by the cap layer, while the negative charge of N atom increases. The conduction band moves downwards after the growth of cap layer. Si atom produces donor levels around the valence band maximum. The absorption coefficient of GaN emission layer decreases and the reflectivity increases caused by n-type GaN cap layer.
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
A spectral study of a radio-frequency plasma-generated flux of atomic oxygen
NASA Technical Reports Server (NTRS)
Batten, Carmen E.; Brown, Kenneth G.; Lewis, Beverley W.
1994-01-01
The active environment of a radio-frequency (RF) plasma generator, with and without low-pressure oxygen, has been characterized through the identification of emission lines in the spectral region from 250 to 900 nm. The environment is shown to be dependent on the partial pressure of oxygen and the power applied to the RF generator. Atomic oxygen has been found in significant amounts as well as atomic hydrogen and the molecular oxygen species O2((sup 1)Sigma). The only charged species observed was the singly charged molecular ion O2(+). With a polymer specimen in the plasma chamber, carbon monoxide was also observed. The significance of these observations with respect to previous studies using this type of generator to stimulate material degradation in space is discussed. The possibility of using these generators as atomic oxygen sources in the development of oxygen atom fluorescence sensors is explored.
Duan, Yong; Wu, Chun; Chowdhury, Shibasish; Lee, Mathew C; Xiong, Guoming; Zhang, Wei; Yang, Rong; Cieplak, Piotr; Luo, Ray; Lee, Taisung; Caldwell, James; Wang, Junmei; Kollman, Peter
2003-12-01
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1999-2012, 2003
Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-01-01
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca2+-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca2+-binding sites of Ca2+-ATPase and that of the iron atom in the heme in catalase. PMID:25730881
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-03-17
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins.
Nguyen, Bao Linh; Pettitt, B Montgomery
2015-04-14
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.
Hydrogen rearrangements in the fragmentation of anthracene by low-energy electron impact
NASA Astrophysics Data System (ADS)
van der Burgt, Peter J. M.; Dunne, Melissa; Gradziel, Marcin L.
2018-02-01
We have measured mass spectra for positive ions produced by low-energy electron impact on anthracene using a reflectron time-of-flight mass spectrometer. The electron impact energy has been varied from 0 to 100 eV in steps of 0.5 eV. Ion yield curves of most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. Appearance energies for all these ions have been determined, and we report the first direct measurement of the triple ionization energy of anthracene at 45.5±0.5 eV. The groups of fragments containing 8-13 carbon atoms provide evidence for hydrogen rearrangements during the fragmentation, involving retention or loss of one or two additional hydrogen atoms. Groups of fragments with 6 and 7 carbon atoms clearly show the presence of doubly-charged fragments. The smaller fragments with 1-4 carbon atoms all show broadened peaks, and these fragments may be partly or mostly due to energetic charge-separation fragmentations of doubly-charged anthracene.
A numerical study on liquid charging inside electrostatic atomizers
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
A Variational Monte Carlo Approach to Atomic Structure
ERIC Educational Resources Information Center
Davis, Stephen L.
2007-01-01
The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.
Turbomolecular Pumps for Holding Gases in Open Containers
NASA Technical Reports Server (NTRS)
Keller, John W.; Lorenz, John E.
2010-01-01
Proposed special-purpose turbomolecular pumps denoted turbotraps would be designed, along with mating open containers, to prevent the escape of relatively slowly (thermal) moving gas molecules from the containers while allowing atoms moving at much greater speeds to pass through. In the original intended applications, the containers would be electron-attachment cells, and the contained gases would be vapors of alkali metal atoms moving at thermal speeds that would be of the order of a fraction of 300 meters per second. These cells would be parts of apparatuses used to measure fluxes of neutral atoms incident at kinetic energies in the approximate range of 10 eV to 10 keV (corresponding to typical speeds of the order of 40,000 m/s and higher). The incident energetic neutral atoms would pass through the cells, wherein charge-exchange reactions with the alkali metal atoms would convert the neutral atoms to negative ions, which, in turn, could then be analyzed by use of conventional charged-particle optics.
NASA Astrophysics Data System (ADS)
Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B.; Woo, S. H.; Ahn, J. R.
2016-08-01
Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.
An estimating formula for ion-atom association rates in gases
NASA Technical Reports Server (NTRS)
Chatterjee, B. K.; Johnsen, R.
1990-01-01
A simple estimating formula is derived for rate coefficients of three-body ion atom association in gases and compare its predictions to experimental data on ion association and three-body radiative charge transfer reactions of singly- and doubly-charged rare-gas ions. The formula appears to reproduce most experimental data quite well. It may be useful for estimating the rates of reactions that have not been studied in the laboratory.
Charge-state distribution of Li ions from the β decay of laser-trapped 6He atoms
NASA Astrophysics Data System (ADS)
Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Knecht, A.; Müller, P.; Naviliat-Cuncic, O.; Pedersen, J.; Smith, E.; Sternberg, M.; Storm, D. Â. W.; Swanson, H. Â. E.; Wauters, F.; Zumwalt, D.
2017-11-01
The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β -ν angular correlation with improved precision. Beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Lin + ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1 s 2 s ,S31) and (1 s 2 p ,P32) states confined by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. We find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.
Direct numerical simulation of leaky dielectrics with application to electrohydrodynamic atomization
NASA Astrophysics Data System (ADS)
Owkes, Mark; Desjardins, Olivier
2013-11-01
Electrohydrodynamics (EHD) have the potential to greatly enhance liquid break-up, as demonstrated in numerical simulations by Van Poppel et al. (JCP (229) 2010). In liquid-gas EHD flows, the ratio of charge mobility to charge convection timescales can be used to determine whether the charge can be assumed to exist in the bulk of the liquid or at the surface only. However, for EHD-aided fuel injection applications, these timescales are of similar magnitude and charge mobility within the fluid might need to be accounted for explicitly. In this work, a computational approach for simulating two-phase EHD flows including the charge transport equation is presented. Under certain assumptions compatible with a leaky dielectric model, charge transport simplifies to a scalar transport equation that is only defined in the liquid phase, where electric charges are present. To ensure consistency with interfacial transport, the charge equation is solved using a semi-Lagrangian geometric transport approach, similar to the method proposed by Le Chenadec and Pitsch (JCP (233) 2013). This methodology is then applied to EHD atomization of a liquid kerosene jet, and compared to results produced under the assumption of a bulk volumetric charge.
Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.
2011-05-01
Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.
2003-01-01
The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.
Spray Formation from a Charged Liquid Jet of a Dielectric Fluid
NASA Astrophysics Data System (ADS)
Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team
2017-11-01
Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.
NASA Astrophysics Data System (ADS)
Dennerl, Konrad
2010-12-01
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.
A script to highlight hydrophobicity and charge on protein surfaces
Hagemans, Dominique; van Belzen, Ianthe A. E. M.; Morán Luengo, Tania; Rüdiger, Stefan G. D.
2015-01-01
The composition of protein surfaces determines both affinity and specificity of protein-protein interactions. Matching of hydrophobic contacts and charged groups on both sites of the interface are crucial to ensure specificity. Here, we propose a highlighting scheme, YRB, which highlights both hydrophobicity and charge in protein structures. YRB highlighting visualizes hydrophobicity by highlighting all carbon atoms that are not bound to nitrogen and oxygen atoms. The charged oxygens of glutamate and aspartate are highlighted red and the charged nitrogens of arginine and lysine are highlighted blue. For a set of representative examples, we demonstrate that YRB highlighting intuitively visualizes segments on protein surfaces that contribute to specificity in protein-protein interfaces, including Hsp90/co-chaperone complexes, the SNARE complex and a transmembrane domain. We provide YRB highlighting in form of a script that runs using the software PyMOL. PMID:26528483
Evolution of electron density towards the conical intersection of a nucleic acid purine
NASA Astrophysics Data System (ADS)
Gutiérrez-Arzaluz, Luis; Ramírez-Palma, David; Buitrón-Cabrera, Frida; Rocha-Rinza, Tomás; Cortés-Guzmán, Fernando; Peon, Jorge
2017-09-01
We analyzed the evolution of the electron density across the S0 and S1 states potential energy curves of hypoxanthine (Hx) using the Quantum Theory of Atoms in Molecules (QTAIM). Examination of QTAIM energies and electronic populations indicates that charge transfer processes are important in the stabilization of the S1 state towards the Conical Intersection (CI) which confers to Hx its photostability. Our results point that the rise of energy of the S0 state approaching the CI is accompanied by a loss of aromaticity of hypoxanthine. Overall, the analyses presented herein give important insights on the photostability of nucleobases.
First-principles study of Ti intercalation between graphene and Au surface
NASA Astrophysics Data System (ADS)
Kaneko, T.; Imamura, H.
2011-06-01
We investigate the effects of Ti intercalation between graphene and Au surface on binding energy and charge doping by using the first-principles calculations. We show that the largest binding energy is realized by the intercalation of single mono-layer of Ti. We also show that electronic structure is very sensitive to the arrangement of metal atoms at the interface. If the composition of the interface layer is Ti0.33Au0.67 and the Ti is located at the top site, the Fermi level lies closely at the Dirac point, i.e., the Dirac cone of the ideal free-standing graphene is recovered.
Charge Inversion by Electrostatic Complexation: Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Faraudo, Jordi; Travesset, Alex
2007-03-01
Ions near interfaces play an important role in many biological and physico-chemical processes and exhibit a fascinating diverse range of phenomena. A relevant example is charge inversion, where interfacial charges attract counterions in excess of their own nominal charge, thus leading to an inversion of the sign of the interfacial charge. In this work, we argue that in the case of amphiphilic interfaces, charge inversion can be generated by complexation, that is, electrostatic complexes containing several counterions bound to amphiphilic molecules. The formation of these complexes require the presence at the interface of groups with conformational degrees of freedom with many electronegative atoms. We illustrate this mechanism by analyzing all atomic molecular dynamics simulations of a DMPA (Dimirystoil-Phosphatidic acid) phospholipid monolayer in contact with divalent counterions. The results are found to be in agreement with recent experimental results on Langmuir monolayers. We also discuss the implications for biological systems, as Phosphatidic acid is emerging as a key signaling phospholipid.
Final Technical Report of Project DE-FG02-96ER14647
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundeen, Stephen R.
This is the final technical report of work completed under DOE support over the period Sept. 1, 1996 until May 31, 2015. The title of the project was "Ion/Excited Atom Collision Studies with a Rydberg Target and a CO2 Laser" from 9/1/96 to 10/31/06, and "Properties of Actinide Ions from Measurements of Rydberg Ion Fine Structure" from 11/1/06 until 5/31/15. The primary technical results were a detailed experimental study of resonant charge transfer between Rydberg atoms and highly-charged ions, and unique measurements of many properties of multiply-charged Thorium ions.
Signatures of the atomic nucleus in laser-assisted single ionization of one-electron atoms
NASA Astrophysics Data System (ADS)
Ajana, Imane; Khalil, Driss; Makhoute, Abdelkader
2018-03-01
The dynamics of the electron-impact single ionization of hydrogenic targets in the presence of a laser field (e, 2e) has been studied for different residual ion charges Z = 1, 2, 3 and 4. The state of fast electron in the laser field is described by the Volkov state, while the dressed state of the ejected slow electron and atomic target is treated perturbatively to the first-order perturbation theory. We calculate the triple differential cross section in the Ehrhardt asymmetric coplanar geometry. We have compared and analyzed the triple differential cross sections from one-electron atoms by varying the charge state of the residual ion, and evaluating the interplay between the laser influence and the role of scattering from the residual ion.
NASA Astrophysics Data System (ADS)
Lu, Shih-I.
2018-01-01
We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.
Critical screening in the one- and two-electron Yukawa atoms
NASA Astrophysics Data System (ADS)
Montgomery, H. E.; Sen, K. D.; Katriel, Jacob
2018-02-01
The one- and two-electron Yukawa atoms, also referred to as the Debye-Hückel or screened Coulomb atoms, have been topics of considerable interest both for intrinsic reasons and because of their relevance to terrestrial and astrophysical plasmas. At sufficiently high screening the one-electron Yukawa atom ceases to be bound. Some calculations appeared to suggest that as the screening increases in the ground state of the two-electron Yukawa atom (in which both the one-particle attraction and the interparticle repulsion are screened) the two electrons are detached simultaneously, at the same screening constant at which the one-electron atom becomes unbound. Our results rule this scenario out, offering an alternative that is not less interesting. In particular, it is found that for Z <1 a mild amount of screening actually increases the binding energy of the second electron. At the nuclear charge Zc≈0.911028 ... , at which the bare Coulomb two-electron atom becomes unbound, and even over a range of lower nuclear charges, an appropriate amount of screening gives rise to a bound two-electron system.
Charge transfer collisions of Si^3+ with H at low energies
NASA Astrophysics Data System (ADS)
Joseph, D. C.; Gu, J. P.; Saha, B. C.
2009-11-01
Charge transfer of positively charged ions with atomic hydrogen is important not only in magnetically confined plasmas between impurity ions and H atoms from the chamber walls influences the overall ionization balance and effects the plasma cooling but also in astrophysics, where it plays a key role in determining the properties of the observed gas. It also provides a recombination mechanism for multiply charged ions in X-ray ionized astronomical environments. We report an investigation using the molecular-orbital close-coupling (MOCC) method, both quantum mechanically and semi-classically, in the adiabatic representation. Ab initio adiabatic potentials and coupling matrix elements--radial and angular--are calculated using the MRD-CI method. Comparison of our results with other theoretical as well as experimental findings will be discussed.
Numerical quasi-linear study of the critical ionization velocity phenomenon
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.
1993-01-01
The critical ionization velocity (CIV) for a neutral barium (Ba) gas cloud moving across the static magnetic field is studied numerically using quasi-linear equations and a parameter range which is typical for the shaped-charge Ba gas release experiments in space. For consistency the charge exchange between the background oxygen ions and neutral atoms and its reverse process, as well as the excitation of the neutral Ba atoms, are included. The numerical results indicate that when the ionization rate due to CIV becomes comparable to the charge exchange rate the energy lost to the ionization and excitation collisions by the superthermal electrons exceeds the energy gain from the waves that are excited by the ion beam. This results in a CIV yield less than the yield by the charge exchange process.
Li, Xin; Yang, Zhong-Zhi
2005-02-22
We have carried out molecular dynamics simulations of a Li(+) ion in water over a wide range of temperature (from 248 to 368 K). The simulations make use of the atom-bond electronegativity equalization method-7P water model, a seven-site flexible model with fluctuating charges, which has accurately reproduced many bulk water properties. The recently constructed Li(+)-water interaction potential through fitting to the experimental and ab initio gas-phase binding energies and to the measured structures for Li(+)-water clusters is adopted in the simulations. ABEEM was proposed and developed in terms of partitioning the electron density into atom and bond regions and using the electronegativity equalization method (EEM) and the density functional theory (DFT). Based on a combination of the atom-bond electronegativity equalization method and molecular mechanics (ABEEM/MM), a new set of water-water and Li(+)-water potentials, successfully applied to ionic clusters Li(+)(H(2)O)(n)(n=1-6,8), are further investigated in an aqueous solution of Li(+) in the present paper. Two points must be emphasized in the simulations: first, the model allows for the charges on the interacting sites fluctuating as a function of time; second, the ABEEM-7P model has applied the parameter k(lp,H)(R(lp,H)) to explicitly describe the short-range interaction of hydrogen bond in the hydrogen bond interaction region, and has a new description for the hydrogen bond. The static, dynamic, and thermodynamic properties have been studied in detail. In addition, at different temperatures, the structural properties such as radial distribution functions, and the dynamical properties such as diffusion coefficients and residence times of the water molecules in the first hydration shell of Li(+), are also simulated well. These simulation results show that the ABEEM/MM-based water-water and Li(+)-water potentials appear to be robust giving the overall characteristic hydration properties in excellent agreement with experiments and other molecular dynamics simulations on similar system.
Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.
Yuan, Jianmin
2002-10-01
An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.
Introduction to Atomic Structure: Demonstrations and Labs.
ERIC Educational Resources Information Center
Ciparick, Joseph D.
1988-01-01
Demonstrates a variety of electrical phenomena to help explain atomic structure. Topics include: establishing electrical properties, electrochemistry, and electrostatic charges. Recommends demonstration equipment needed and an explanation of each. (MVL)
Lopez-Bezanilla, Alejandro
2016-01-20
By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modifiedmore » phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.« less
NASA Astrophysics Data System (ADS)
Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Wang, Yangang; Hupalo, Myron; McDougall, Dan; Tringides, Michael; Ho, Kaiming
2013-12-01
The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H2 molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H2 molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials.
Charge versus orbital-occupancy ordering in manganites
NASA Astrophysics Data System (ADS)
Luo, Weidong; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.
2006-03-01
It is generally assumed that density-functional theory (DFT) in the local-spin-density approximation (LSDA) or the generalized- gradient approximation (GGA) is not adequate to describe mixed- valence manganites. Here we report benchmark DFT/GGA calculations for the ground-state structural, electronic and magnetic properties for both undoped and doped CaMnO3 and find the results to be in excellent agreement with available data, including new atomic-resolution Z-contrast imaging and electron-energy loss spectra. More specifically, we found that the DFT results predict two inequivalent Mn atoms in both 0.33 and 0.5 electron-doped CaMnO3, in agreement with experimental evidence of Mn^+3/Mn^+4 oxidation state ordering. The inequivalent Mn atoms are marked by their distinctive orbital occupancies, dissimilar local Jahn-Teller distortion and different magnetic moments from DFT calculations. We also show that the spherically integrated charges associated with the two inequivalent Mn atoms are the same, and they are actually the same as in the Mn metal. This charge neutrality with different orbital occupancies is the result of self-consistency and atomic relaxations in the crystal. We conclude that DFT without additional correlations can account for the observed properties of oxidation-state ordering in this system. The impact of the results on other mixed-valence systems will be discussed.
Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao
2008-08-01
Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.
NASA Astrophysics Data System (ADS)
Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.
2018-01-01
Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the adsorption energy with the shift of the center of gravity of the occupied d-states of Pt sites.
Radiation from an Accelerated Point Charge and Non-Inertial Observers
ERIC Educational Resources Information Center
Leonov, A. B.
2012-01-01
It is known that observers comoving with a uniformly accelerated point charge detect the electromagnetic field of a charge as a static electric field. We show that one can find a similar family of observers, which detect the field of a charge as a static electric field, in the general case of arbitrary point-charge motion. We find the velocities…
Nanosecond pulsed electric field induced changes in cell surface charge density.
Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi
2017-09-01
This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fatayer, Shadi; Schuler, Bruno; Steurer, Wolfram; Scivetti, Ivan; Repp, Jascha; Gross, Leo; Persson, Mats; Meyer, Gerhard
2018-05-01
Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.
Atomic masses 1993. The 1993 atomic mass evaluation
NASA Astrophysics Data System (ADS)
Audi, G.; Wapstra, A. H.
1993-11-01
The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge.
Dynamics of a single-atom electron pump.
van der Heijden, J; Tettamanzi, G C; Rogge, S
2017-03-15
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level spacings, enabling robust charge capturing processes. In contrast to the frequently used gate-defined quantum dot pumps, which experience a strongly time-dependent potential, the confinement potential in these single-atom pumps is hardly affected by the periodic driving of the system. Here we describe the behaviour and performance of an atomic, single parameter, electron pump. This is done by considering the loading, isolating and unloading of one electron at the time, on a phosphorous atom embedded in a silicon double gate transistor. The most important feature of the atom pump is its very isolated ground state, which is populated through the fast loading of much higher lying excited states and a subsequent fast relaxation process. This leads to a substantial increase in pumping accuracy, and is opposed to the adverse role of excited states observed for quantum dot pumps due to non-adiabatic excitations. The pumping performance is investigated as a function of dopant position, revealing a pumping behaviour robust against the expected variability in atomic position.
Dynamics of a single-atom electron pump
van der Heijden, J.; Tettamanzi, G. C.; Rogge, S.
2017-01-01
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level spacings, enabling robust charge capturing processes. In contrast to the frequently used gate-defined quantum dot pumps, which experience a strongly time-dependent potential, the confinement potential in these single-atom pumps is hardly affected by the periodic driving of the system. Here we describe the behaviour and performance of an atomic, single parameter, electron pump. This is done by considering the loading, isolating and unloading of one electron at the time, on a phosphorous atom embedded in a silicon double gate transistor. The most important feature of the atom pump is its very isolated ground state, which is populated through the fast loading of much higher lying excited states and a subsequent fast relaxation process. This leads to a substantial increase in pumping accuracy, and is opposed to the adverse role of excited states observed for quantum dot pumps due to non-adiabatic excitations. The pumping performance is investigated as a function of dopant position, revealing a pumping behaviour robust against the expected variability in atomic position. PMID:28295055
Colloquium: Laser probing of neutron-rich nuclei in light atoms
NASA Astrophysics Data System (ADS)
Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.
2013-10-01
The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
Bauzá, Antonio; Seth, Saikat Kumar; Frontera, Antonio
2018-04-05
Using ab initio calculations, we analyze the interplay between π-hole interactions involving the nitro group of 1,4-dinitrobenzene and lone pair···π (lp···π), C-H···π or metal(M)···π noncovalent interactions. Moreover, we have also used 1,4-phenylenebis(phosphine dioxide) for comparison purposes. Interesting cooperativity effects are found when π-hole (F···N,P) and lp···π/C-H···π/M···π interactions coexist in the same supramolecular assembly. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods (RI-MP2/def2-TZVP). A charge density analysis using the Bader's theory of "atoms in molecules" is carried out to characterize the interactions and to analyze their strengthening or weakening depending on the variation of charge density at critical points. The importance of electrostatic effects on the mutual influence of the interaction is studied by means of molecular electrostatic potential calculations. By taking advantage of these computational tools, the present study examines interplay of these interactions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Plane, John M. C.; Saunders, Russell W.; Hedin, Jonas; Stegman, Jacek; Khaplanov, Misha; Gumbel, Jörg; Lynch, Kristina A.; Bracikowski, Phillip J.; Gelinas, Lynette J.; Friedrich, Martin; Blindheim, Sandra; Gausa, Michael; Williams, Bifford P.
2014-10-01
The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75-105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice-Ramsperger-Kassel-Markus theory are used to show that even small Fe-Mg-silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm-3 prevents the formation of stable negative ions.
Focused beams of fast neutral atoms in glow discharge plasma
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.
2017-06-01
Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.
Theoretical Study of Group 14 M^{+}(^{2}P_{J})-RG Complexes (M^{+} = C^{+}, Si^{+}; RG = he - Ar)
NASA Astrophysics Data System (ADS)
Tuttle, William Duncan; Thorington, Rebecca L.; Wright, Timothy G.; Viehland, Larry A.
2017-06-01
The light group 14 cations are found in a wide variety of environments, with, for example, C^{+} ions thought to play a key role in the chemistry of the interstellar medium, while Si^{+} ions are an important component of the upper atmosphere of the Earth due to their presence in meteoroids. We calculate accurate interatomic potentials for a singly charged carbon cation and a singly charged silicon cation interacting with the rare gas atoms helium, neon and argon. The RCCSD(T) method is employed, with basis sets of quadruple-ζ and quintuple-ζ quality, and the energies counterpoise corrected and extrapolated to the basis set limit at each point. In all cases, we consider the lowest electronic states of the M^{+} atom, (^{2}P_{J}), interacting with the ground electronic state of the RG atom, (^{1}S_{0}), and compute potentials corresponding to the molecular terms, ^{2}Π and ^{2}Σ^{+}, as well as the spin-orbit levels which arise: ^{2}Π_{3/2}, ^{2}Π_{1/2} and ^{2}Σ_{1/2}^{+}. The potentials are employed to calculated spectroscopic constants and ion transport properties. S. Petrie and D. K. Bohme, Mass Spec. Rev., 26, 258 (2007). J. M. C. Plane, J. C. Gómez-Martin, W. Feng, and D. Janches, J. Geophys. Res. Atmos. 121, 3718 (2016). W. D. Tuttle, R. L. Thorington, L. A. Viehland and T. G. Wright, Mol. Phys. 113, 3767 (2015). W. D. Tuttle, R. L. Thorington, L. A. Viehland and T. G. Wright (in preparation). W. D. Tuttle, R. L. Thorington, L. A. Viehland and T. G. Wright, Mol. Phys. 115, 437 (2017).
Self field electromagnetism and quantum phenomena
NASA Astrophysics Data System (ADS)
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2016-02-09
A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.
NASA Astrophysics Data System (ADS)
Tong, Tong; Zhu, Bicheng; Jiang, Chuanjia; Cheng, Bei; Yu, Jiaguo
2018-03-01
Single atoms of platinum (Pt), palladium (Pd) or gold (Au) trapped by two-dimensional graphitic carbon nitride (g-C3N4) exhibit superior photocatalytic performance. However, the underlying mechanism of single-atom noble metal/g-C3N4 photocatalytic system is still unclear. Herein, the structural, electronic and optical properties of single-atom Pt, Pd and Au loaded on bilayer g-C3N4 (BL-g-C3N4) substrate were investigated by density functional theory (DFT) simulations. The results indicate that single-atom Pt/Pd/Au loading can significantly narrow the band gap of g-C3N4 and thus increase its light absorption in the visible-light region. Rather than being adsorbed on the surface, Pt and Pd atoms tend to be embedded into g-C3N4 interlayer and act as bridges to facilitate the interlayer charge carrier transfer due to the effects of conduction band offset. In particular, an internal electric field is generated in Pt/BL-g-C3N4, which is further beneficial for separating charge carrier of photoexcited g-C3N4. By contrast, Au can only be adsorbed on the g-C3N4 surface (in the six-fold cavity) and deliver a limited amount of charge carrier excited in the N-conjugated aromatic pore of g-C3N4 surface. Our finding is conducive to understanding the interactive relationship between single-atom noble metal co-catalysts and g-C3N4 and to the design of high-efficiency photocatalyst.
Electronic structure of Ag7GeS5I superionic compound
NASA Astrophysics Data System (ADS)
Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl
2018-05-01
This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.
NASA Astrophysics Data System (ADS)
Hu, Yan-Fei; Jiang, Gang; Meng, Da-Qiao
2012-01-01
The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n = 1-10) and pure gold Au n (n ≤ 11) clusters. For the geometric structures of the Au n Rb (n = 1-10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n -1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n = 4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even-odd alternation phenomenon. The same pronounced even-odd alternations are found for the HOMO-LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster.
Luria, Justin L; Schwarz, Kathleen A; Jaquith, Michael J; Hennig, Richard G; Marohn, John A
2011-02-01
Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.
RADinfo Glossary of Radiation Terms
... electrical charge typically found within an atom's nucleus. nucleus: The central part of an atom that contains ... the number of protons and neutrons in the nucleus. picocurie: One one-trillionth (1/1,000,000, ...
Predicting p Ka values from EEM atomic charges
2013-01-01
The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on carboxylic acids. In summary, EEM QSPR models constitute a fast and accurate p Ka prediction approach that can be used in virtual screening. PMID:23574978
The generator coordinate Dirac-Fock method for open-shell atomic systems
NASA Astrophysics Data System (ADS)
Malli, Gulzari L.; Ishikawa, Yasuyuki
1998-11-01
Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthaka Silva, G.W., E-mail: chinthaka.silva@gmail.com; Kercher, Andrew A., E-mail: rokparent@comcast.net; Hunn, John D., E-mail: hunnjd@ornl.gov
2012-10-15
Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electronmore » density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.« less
Liang, Haixing; Cheng, Long; Zhai, Xiaofang; Pan, Nan; Guo, Hongli; Zhao, Jin; Zhang, Hui; Li, Lin; Zhang, Xiaoqiang; Wang, Xiaoping; Zeng, Changgan; Zhang, Zhenyu; Hou, J. G.
2013-01-01
For polar/nonpolar heterostructures, Maxwell's theory dictates that the electric potential in the polar components will increase divergently with the film thickness. For LaAlO3/SrTiO3, a conceptually intriguing route, termed charge reconstruction, has been proposed to avert such “polar catastrophe”. The existence of a polar potential in LaAlO3 is a prerequisite for the validity of the charge reconstruction picture, yet to date, its direct measurement remains a major challenge. Here we establish unambiguously the existence of the residual polar potential in ultrathin LaAlO3 films on SrTiO3, using a novel photovoltaic device design as an effective probe. The measured lower bound of the residual polar potential is 1.0 V. Such a direct observation of the giant residual polar potential within the unit-cell-scale LaAlO3 films amounts to a definitive experimental evidence for the charge reconstruction picture, and also points to new technological significance of oxide heterostructures in photovoltaic and sensing devices with atomic-scale control. PMID:23756918
Origin of high thermoelectric performance of FeNb1−xZr/HfxSb1−ySny alloys: A first-principles study
Zhang, Xiwen; Wang, Yuanxu; Yan, Yuli; Wang, Chao; Zhang, Guangbiao; Cheng, Zhenxiang; Ren, Fengzhu; Deng, Hao; Zhang, Jihua
2016-01-01
The previous experimental work showed that Hf- or Zr-doping has remarkably improved the thermoelectric performance of FeNbSb. Here, the first-principles method was used to explore the possible reason for such phenomenon. The substitution of X (Zr/Hf) atoms at Nb sites increases effective hole-pockets, total density of states near the Fermi level (EF), and hole mobility to largely enhance electrical conductivity. It is mainly due to the shifting the EF to lower energy and the nearest Fe atoms around X atoms supplying more d-states to hybrid with X d-states at the vicinity of the EF. Moreover, we find that the X atoms indirectly affect the charge distribution around Nb atoms via their nearest Fe atoms, resulting in the reduced energy difference in the valence band edge, contributing to enhanced Seebeck coefficients. In addition, the further Bader charge analysis shows that the reason of more holes by Hf-doping than Zr in the experiment is most likely derived from Hf atoms losing less electrons and the stronger hybridization between Hf atoms and their nearest Fe atoms. Furthermore, we predict that Hf/Sn co-doping may be an effective strategy to further optimize the thermoelectric performance of half-Heusler (HH) compounds. PMID:27604826
Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun
2009-04-30
By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.
Reactions between NO/+/ and metal atoms using magnetically confined afterglows
NASA Technical Reports Server (NTRS)
Lo, H. H.; Clendenning, L. M.; Fite, W. L.
1977-01-01
A new method of studying thermal energy ion-neutral collision processes involving nongaseous neutral atoms is described. A long magnetic field produced by a solenoid in a vacuum chamber confines a thermal-energy plasma generated by photoionization of gas at very low pressure. As the plasma moves toward the end of the field, it is crossed by a metal atom beam. Ionic products of ion-atom reactions are trapped by the field and both the reactant and product ions move to the end of the magnetic field where they are detected by a quadrupole mass filter. The cross sections for charge transfer between NO(+) and Na, Mg, Ca, and Sr and that for rearrangement between NO(+) and Ca have been obtained. The charge-transfer reaction is found strongly dominant over the rearrangement reaction that forms metallic oxide ions.
NASA Astrophysics Data System (ADS)
Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawkwell, Marc Jon
2016-09-09
The MC3 code is used to perform Monte Carlo simulations in the isothermal-isobaric ensemble (constant number of particles, temperature, and pressure) on molecular crystals. The molecules within the periodic simulation cell are treated as rigid bodies, alleviating the requirement for a complex interatomic potential. Intermolecular interactions are described using generic, atom-centered pair potentials whose parameterization is taken from the literature [D. E. Williams, J. Comput. Chem., 22, 1154 (2001)] and electrostatic interactions arising from atom-centered, fixed, point partial charges. The primary uses of the MC3 code are the computation of i) the temperature and pressure dependence of lattice parameters andmore » thermal expansion coefficients, ii) tensors of elastic constants and compliances via the Parrinello and Rahman’s fluctuation formula [M. Parrinello and A. Rahman, J. Chem. Phys., 76, 2662 (1982)], and iii) the investigation of polymorphic phase transformations. The MC3 code is written in Fortran90 and requires LAPACK and BLAS linear algebra libraries to be linked during compilation. Computationally expensive loops are accelerated using OpenMP.« less
Effect of Base Sequence "Defects" on the Electrostatic Potential of Dissolved DNA
NASA Astrophysics Data System (ADS)
Adams, Scott V.; Wagner, Katrina; Kephart, Thomas S.; Edwards, Glenn
1997-11-01
An analytical model of the electrostatic potential surrounding dissolved DNA has been developed. The model consists of an all-atom, mathematically helical structure for DNA, in which the atoms are arranged in infinite lines of discrete point charges on concentric cylindrical surfaces. The surrounding solvent and counterions are treated with the Debye-Huckel approximation (Wagner et al., Biophysical Journal 73, 21-30, 1997). Variation in the electrostatic potential due to structural differences between A, B, and Z conformations and homopolymer base sequence is apparent. The most recent modification to the model exploits the principle of superposition to calculate the potential of DNA with a base sequence containing `defects.' That is, the base sequence is no longer uniform along the polymer. Differences between the potential of homopolymer DNA and the potential of DNA containing base `defects' are immediately obvious. These results may aid in understanding the role of electrostatics in base-sequence specificity exhibited by DNA-binding proteins.
Totton, Tim S; Misquitta, Alston J; Kraft, Markus
2011-11-24
In this work we assess a recently published anisotropic potential for polycyclic aromatic hydrocarbon (PAH) molecules (J. Chem. Theory Comput. 2010, 6, 683-695). Comparison to recent high-level symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) results for coronene (C(24)H(12)) demonstrate the transferability of the potential while highlighting some limitations with simple point charge descriptions of the electrostatic interaction. The potential is also shown to reproduce second virial coefficients of benzene (C(6)H(6)) with high accuracy, and this is enhanced by using a distributed multipole model for the electrostatic interaction. The graphene dimer interaction energy and the exfoliation energy of graphite have been estimated by extrapolation of PAH interaction energies. The contribution of nonlocal fluctuations in the π electron density in graphite have also been estimated which increases the exfoliation energy by 3.0 meV atom(-1) to 47.6 meV atom(-1), which compares well to recent theoretical and experimental results.
NASA Astrophysics Data System (ADS)
Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.
2014-09-01
The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.
A first-principles study of He, Xe, Kr and O incorporation in thorium carbide
NASA Astrophysics Data System (ADS)
Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.
2015-05-01
Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. Understanding the incorporation of fission products and oxygen is very important to predict the behavior of nuclear fuels. A first approach to this goal is the study of the incorporation energies and stability of these elements in the material. By means of first-principles calculations within the framework of density functional theory, we calculate the incorporation energies of He, Xe, Kr and O atoms in Th and C vacancy sites, in tetrahedral interstitials and in Schottky defects along the 〈1 1 1〉 and 〈1 0 0〉 directions. We also analyze atomic displacements, volume modifications and Bader charges. This kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. This should deal as a starting point towards the study of the complex behavior of fission products in irradiated ThC.
Recent Development of IMP LECR3 Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.M.; Zhao, H.W.; Li, J.Y.
2005-03-15
18GHz microwave has been fed to the LECR3 ion source to produce intense highly charged ion beams although this ion source was designed for 14.5GHz. Then 1.1 emA Ar8+ and 325 e{mu}A Ar11+ were obtained at 18GHz. During the source running for atomic physics experiment, some higher charge state ion beams such as Ar17+ and Ar18+ were detected and have been validated by atomic physics method. Furthermore, a few special gases, e.g. SiH4 and SF6, were tested on LECR3 ion source to produce required ion beams to satisfy the requirements of atomic physics experiments.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
Probe-based measurement of lateral single-electron transfer between individual molecules
Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard
2015-01-01
The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533
Analysis of spectra of 3s-3p and 3p-3d transitions of highly-charged copper ions
NASA Astrophysics Data System (ADS)
Su, M. G.; Min, Q.; He, S. Q.; Wu, L.; Sun, R.; Ding, X. B.; Sun, D. X.
2017-08-01
Beam-foil excited spectra in the range of 160-360 Å from highly charged copper ions were identified with the aid of the National Institute of Standards and Technology Atomic Spectra Database and theoretical calculations with Cowan and Flexible Atomic Code (FAC) calculations. Spectra arising from 3s-3p and 3p-3d transitions of Cu13+-Cu22+ ions were considered. The ion fraction at an ion beam energy of 110 MeV was estimated from the equilibrium charge distribution of the fast ion beams after passing through the solid. The corresponding simulated spectra were in good agreement with the experimental result. Our Cowan and FAC calculation results should be useful for further spectral identification and lifetime measurements of highly charged copper ions.
Conformations and charge distributions of diazocyclopropanes
NASA Astrophysics Data System (ADS)
Borges, Itamar, Jr.
Three diazo-substituted cyclopropane compounds, which have been suggested as new potential high energy compounds, were studied employing the B3LYP-DFT/6-31G(d,p) method. Geometries were optimized. Distributed multipole analysis, computed from the B3LYP-DFT/6-31G(d,p) density matrix, was used to describe the details of the molecular charge distribution of the three molecules. It was verified that electron withdrawing from the C ring atoms and charge build-up on the N atoms bonded to the ring increased with the number of diazo groups. These effects were related to increased sensitivity to impact and easiness of C bond N bond breaking in the three compounds.
Focal-surface detector for heavy ions
Erskine, John R.; Braid, Thomas H.; Stoltzfus, Joseph C.
1979-01-01
A detector of the properties of individual charged particles in a beam includes a gridded ionization chamber, a cathode, a plurality of resistive-wire proportional counters, a plurality of anode sections, and means for controlling the composition and pressure of gas in the chamber. Signals generated in response to the passage of charged particles can be processed to identify the energy of the particles, their loss of energy per unit distance in an absorber, and their angle of incidence. In conjunction with a magnetic spectrograph, the signals can be used to identify particles and their state of charge. The detector is especially useful for analyzing beams of heavy ions, defined as ions of atomic mass greater than 10 atomic mass units.
NASA Astrophysics Data System (ADS)
Philpott, Michael R.; Cimpoesu, Fanica; Kawazoe, Yoshiyuki
2008-12-01
Ab initio plane wave based all valence electron DFT calculations with geometry optimization are reported for the electronic structure of planar zigzag edged triangular shaped graphene molecules CH where the zigzag ring number m = 2, …, 15. The largest molecule C 286H 48 has a 3.8 nm side length and retains D3h symmetric geometry. The zone in the middle of the molecules, where the geometry and electronic properties resemble infinite single sheet graphite (graphene), expands with increasing ring number m, driving deviations in geometry, charge and spin to the perimeter. If a molecule is viewed as a set of nested triangular rings of carbon, then the zone where the lattice resembles an infinite sheet of graphene with CC = 142 pm, extends to the middle of the penultimate ring. The radial bonds joining the perimeter carbon atoms to the interior are long CC = 144 pm, except near the three apexes where the bonds are shorter. Isometric surfaces of the total charge density show that the two bonds joined at the apex have the highest valence charge. The perimeter CC bonds establish a simple pattern as the zigzag number increases, which shares some features with the zigzag edges in the D2h linear acenes C 4m+2H 2m+4 and the D6h hexangulenes CH6m but not the D6h symmetric annulenes (CH). The two CC bonds forming each apex are short (≈139 pm), next comes one long bond CC ≈ 142 pm and a middle region where all the CC bonds have length ≈141 pm. The homo-lumo gap declines from 0.53 eV at m = 2 to approximately 0.29 V at m = 15, the latter being larger than found for linear or hexagonal shaped graphenes with comparable edge lengths. Across the molecule the charge on the carbon atoms undergoes a small oscillation following the bipartite lattice. The magnitude of the charge in the same nested triangle decreases monotonically with the distance of the row from the center of the molecule. These systems are predicted to have spin polarized ground states with S = ½( m - 1), in accord with the theorems of Lieb for a bipartite lattice with unequal numbers of sub-lattice carbon atoms. The magnitude of the spin on the atoms increases monotonically from the center to the edges, this effect being greatest on the majority A-sub lattice atoms. The spins are delocalized, not confined to specific atoms as might result in geometries stabilized by islands of aromatic resonance. In the largest systems the magnetic non-bonding levels (NBL) occur as a narrowly distributed set of homos close to the Fermi level, separated from the lower lying valence bond manifold by a gap of about 1 eV. The NBL are a set of disjoint radical orbitals having charge only on atoms belonging to the A-lattice and this charge is concentrated on the perimeter and penultimate row atoms.
Satellite Charge Control with Lithium Ion Source and Electron Emission
1990-12-01
for the spacecraft charge control. C. THERMIONIC ELECTRON EMISSION Electrons may be emitted by surfaces at high temperature in a process, called...data in the high voltage region and 1300 to 1600 °K temperature range may be fitted to the following equation, for a 50 % lithium sample: log01 =logos...in Figure 15, is similar to a high - temperature quartz structure, yet differs from it in that half of the silicon atoms are repiaced by aluminum atoms
The pair-production channel in atomic processes
NASA Astrophysics Data System (ADS)
Belkacem, Ali; Sørensen, Allan H.
2006-06-01
Assisted by the creation of electron-positron pairs, new channels for ionization, excitation, and charge transfer open in atomic collisions when the energy is raised to relativistic values. At extreme energies these pair-production channels usually dominate the "traditional" contributions to cross sections that involve only "positive-energy" electrons. An extensive body of theoretical and experimental work has been performed over the last two decades to investigate charge-changing processes catalyzed by pair production in relativistic heavy ion collisions. We review some of these studies.
Accuracy of buffered-force QM/MM simulations of silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peguiron, Anke; Moras, Gianpietro; Colombi Ciacchi, Lucio
2015-02-14
We report comparisons between energy-based quantum mechanics/molecular mechanics (QM/MM) and buffered force-based QM/MM simulations in silica. Local quantities—such as density of states, charges, forces, and geometries—calculated with both QM/MM approaches are compared to the results of full QM simulations. We find the length scale over which forces computed using a finite QM region converge to reference values obtained in full quantum-mechanical calculations is ∼10 Å rather than the ∼5 Å previously reported for covalent materials such as silicon. Electrostatic embedding of the QM region in the surrounding classical point charges gives only a minor contribution to the force convergence. Whilemore » the energy-based approach provides accurate results in geometry optimizations of point defects, we find that the removal of large force errors at the QM/MM boundary provided by the buffered force-based scheme is necessary for accurate constrained geometry optimizations where Si–O bonds are elongated and for finite-temperature molecular dynamics simulations of crack propagation. Moreover, the buffered approach allows for more flexibility, since special-purpose QM/MM coupling terms that link QM and MM atoms are not required and the region that is treated at the QM level can be adaptively redefined during the course of a dynamical simulation.« less
Extended and Point Defects in Diamond Studied with the Aid of Various Forms of Microscopy.
Steeds; Charles; Gilmore; Butler
2000-07-01
It is shown that star disclinations can be a significant source of stress in chemical vapor deposited (CVD) diamond. This purely geometrical origin contrasts with other sources of stress that have been proposed previously. The effectiveness is demonstrated of the use of electron irradiation using a transmission electron microscope (TEM) to displace atoms from their equilibrium sites to investigate intrinsic defects and impurities in CVD diamond. After irradiation, the samples are studied by low temperature photoluminescence microscopy using UV or blue laser illumination. Results are given that are interpreted as arising from isolated <100> split self-interstitials and positively charged single vacancies. Negatively charged single vacancies can also be revealed by this technique. Nitrogen and boron impurities may also be studied similarly. In addition, a newly developed liquid gallium source scanned ion beam mass spectrometry (SIMS) instrument has been used to map out the B distribution in B doped CVD diamond specimens. The results are supported by micro-Raman spectroscopy.
Spectroscopic and crystal-field analysis of new Yb-doped laser materials
NASA Astrophysics Data System (ADS)
Haumesser, Paul-Henri; Gaumé, Romain; Viana, Bruno; Antic-Fidancev, Elisabeth; Vivien, Daniel
2001-06-01
Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca3Y2(BO3)4 (CYB), Ca3Gd2(BO3)4 (CaGB), Sr3Y(BO3)3 (SrYBO), Ba3Lu(BO3)3 (BLuB), Y2SiO5 (YSO), Ca2Al2SiO7 (CAS) and SrY4(SiO4)3O (SYS). The 2F7/2 splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach.
Effects of Acids, Bases, and Heteroatoms on Proximal Radial Distribution Functions for Proteins
Nguyen, Bao Linh; Pettitt, B. Montgomery
2015-01-01
The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations. PMID:26388706
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-02-01
Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Bezanilla, Alejandro
By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modifiedmore » phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, H.-C.; Ahn, S. J.; Kim, H. W.
2016-08-22
Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalatedmore » at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.« less
NASA Astrophysics Data System (ADS)
Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-04-01
Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.
Stetskiv, Andrij; Rozdzynska-Kielbik, Beata; Misztal, Renata; Pavlyuk, Volodymyr
2015-06-01
A ternary hexaerbium triacontacobalt enneakaidecasilicide, ErCo5Si(3.17), crystallizes as a combination of disordered variants of the hexagonal UCo5Si3 (P6₃/m) and Yb6Co30P19 (P6) structure types and is closely related to the Sc6Co30Si19 and Ce6Rh30Si19 types. The Er, Co and three of the Si atoms occupy sites of m.. symmetry and a fourth Si atom occupies a site of -6.. symmetry. The environment of the Er atom is a 21-vertex pseudo-Frank-Kasper polyhedron. Trigonal prismatic coordination is observed for the Si atoms. The Co atoms are enclosed in heavily deformed cuboctahedra and 11-vertex polyhedra. Crystallochemistry analysis and the data from electronic structure calculations (TB-LMTO-ASA) suggest that the Er atoms form positively charged cations which compensate the negative charge of the [Co12Si9](m-) polyanions.
Generation and acceleration of neutral atoms in intense laser plasma experiments
NASA Astrophysics Data System (ADS)
Tata, Sheroy; Mondal, Angana; Sarkar, Shobhik; Ved, Yash; Lad, Amit D.; Pasley, John; Colgan, James; Krishnamurthy, M.
2017-10-01
The interaction of a high intensity (>=1018 W/cm2), high contrast (>=109), ultra-short (30fs) laser with solid targets generates a highly dense hot plasma. The quasi-static electric fields in such plasmas are well known for ion acceleration via the target normal sheath acceleration process. Under such conditions charge reduction to generate fast neutral atoms is almost inhibited. Improvised Thomson parabola spectrometry with improved signal to noise ratio has enabled us to measure the signals of fast neutral atoms and negative ions having energies in excess of tens of keV. A study on the neutralization of accelerated protons in plasma shows that the neutral atom to all particle ratio rises sharply from a few percent at the highest detectable energy to 50 % at 15 keV. Using usual charge transfer reactions the generation of neutral atoms can not be explained, thus we conjecture that the neutralization of the accelerated ions is not from the hot dense region of the plasma but neutral atom formation takes place by co-propagating ions with low energy electrons enhancing the effective neutral ratio.
Tu, Yiyou; Plotnikov, Elizaveta Y; Seidman, David N
2015-04-01
This study investigates the effects of the charge-state ratio of evaporated ions on the accuracy of local-electrode atom-probe (LEAP) tomographic compositional and structural analyses, which employs a picosecond ultraviolet pulsed laser. Experimental results demonstrate that the charge-state ratio is a better indicator of the best atom-probe tomography (APT) experimental conditions compared with laser pulse energy. The thermal tails in the mass spectra decrease significantly, and the mass resolving power (m/Δm) increases by 87.5 and 185.7% at full-width half-maximum and full-width tenth-maximum, respectively, as the laser pulse energy is increased from 5 to 30 pJ/pulse. The measured composition of this alloy depends on the charge-state ratio of the evaporated ions, and the most accurate composition is obtained when Ni2+/Ni+ is in the range of 0.3-20. The γ(f.c.c.)/γ'(L12) interface is quantitatively more diffuse when determined from the measured concentration profiles for higher laser pulse energies. Conclusions of the APT compositional and structural analyses utilizing the same suitable charge-state ratio are more comparable than those collected with the same laser pulse energy.
The role of charge-exchange cross-section for pickup protons and neutrals in the inner heliosheath
NASA Astrophysics Data System (ADS)
Chalov, S. V.
2018-06-01
The process of deceleration of the solar wind downstream of the termination shock is studied on the basis of a one-dimensional multi-component model. It is assumed that the solar wind consists of thermal protons, electrons and interstellar pickup protons. The protons interact with interstellar hydrogen atoms by charge-exchange. Two cases are considered. In the first one, the charge-exchange cross-section for thermal protons and hydrogen atoms is the same as for pickup protons and atoms. Under this condition, there is a strong dependence of the solar wind velocity on the downstream temperature of pickup protons. When the proton temperature is close to 10 keV, the change in the velocity with the distance from the termination shock is similar to that measured on the Voyager 1 spacecraft: linear velocity decrease is accompanied by an extended transition region with near-zero velocity. However, with a more careful approach to the choice of the charge-exchange cross-section, the situation changes dramatically. The strong dependence of the solar wind speed on the pickup proton temperature disappears and the transition region in the heliosheath disappears as well, at least at reasonable distances from the TS.
He, Chao-Ni; Huang, Wei-Qing; Xu, Liang; Yang, Yin-Cai; Zhou, Bing-Xin; Huang, Gui-Fang; Peng, P.; Liu, Wu-Ming
2016-01-01
The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, demonstrating that the band gap, near-gap electronic structure and interface charge transfer of the doped GR/Ag3PO4(100) composite can be tuned by the dopants. Interestingly, the doping atom and C atoms bonded to dopant become active sites for photocatalysis because they are positively or negatively charged due to the charge redistribution caused by interaction. The dopants can enhance the visible light absorption and photoinduced electron transfer. We propose that the N atom may be one of the most appropriate dopants for the GR/Ag3PO4 photocatalyst. This work can rationalize the available experimental results about N-doped GR-semiconductor composites, and enriches our understanding on the dopant effects in the doped GR-based composites for developing high-performance photocatalysts. PMID:26923338
lee, Lee-Peng; Tidor, Bruce
2001-01-01
Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (Kd ∼ 10−14 M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins. PMID:11266622
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P
2017-06-13
We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.
Zhang, Wenqiang; Cheng, Chuan; Fang, Peilin; Tang, Bin; Zhang, Jindou; Huang, Guoming; Cong, Xin; Zhang, Bao; Ji, Xiao; Miao, Ling
2016-02-14
Nowadays, MXenes have received extensive concern as a prominent electrode material of electrochemical capacitors. As two important factors to the capacitance, the influence of the intrinsical terminations (F, O and OH) and coordination atoms (C and N) is investigated using first-principles calculations. According to the density of states aligned with the standard hydrogen electrode, it turns out that a Ti3CNO2 monolayer is proven to show an obvious pseudocapacitive behavior, while the bare, F and OH terminated Ti3CN monolayers may only present electrochemical double layer characters in an aqueous electrolyte. Moreover, the illustration of molecular orbitals over the Fermi level are mainly contributed by the d-orbitals of Ti atoms coordinated with O and N atoms, indicating that the redox pseudocapacitance of the Ti3CNO2 monolayer is promoted by the coordination N atoms. Then the superiority of N bonded Ti atoms in accepting charges can be visualized through the charge population. Further, the larger ratio of C/N in the coordination environment of Ti atoms indicates that more electrons can be stored. Our investigation can give an instructional advice in the MXenes-electrode production.
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Chernysheva, L. V.
2018-01-01
We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.
Raggi, G.; Besley, E.; Stace, A. J.
2016-01-01
Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4]+ isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501967
The study of structures and properties of PdnHm(n=1-10, m=1,2) clusters by density functional theory
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Chen, Guo-Xiang; Zhang, Jian-Min; Wu, Hua
2018-04-01
The geometrical evolution, local relative stability, magnetism and charge transfer characteristics of PdnHm(n = 1-10, m = 1,2) have been systematically calculated by using density functional theory. The studied results show that the most stable geometries of PdnH and PdnH2 (n = 1-10) can be got by doping one or two H atoms on the sides of Pdn clusters except Pd6H and Pd6H2. It is found that doping one or two H atoms on Pdn clusters cannot change the basic framework of Pdn. The analysis of stability shows that Pd2H, Pd4H, Pd7H, Pd2H2, Pd4H2 and Pd7H2 clusters have higher local relative stability than neighboring clusters. The analysis of magnetic properties demonstrates that absorption of hydrogen atoms decreases the average atomic magnetic moments compared with pure Pdn clusters. More charges transfer from H atoms to Pd atoms for Pd6H and Pd6H2 clusters, demonstrating the adsorption of hydrogen atoms change from side adsorption to surface adsorption.
Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction
NASA Astrophysics Data System (ADS)
Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats
2012-08-01
We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.
Development of Charge Drain Coatings: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.
2017-01-17
The primary goal of this CRADA project was to develop and optimize tunable resistive coatings prepared by atomic layer deposition (ALD) for use as charge-drain coatings on the KLA-Tencor digital pattern generators (DPGs).
7 CFR 51.45 - Fees and charges at shipping point areas.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Fees and charges at shipping point areas. 51.45 Section 51.45 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE... Shipping Point Areas § 51.45 Fees and charges at shipping point areas. Fees for inspection performed under...
7 CFR 51.45 - Fees and charges at shipping point areas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Fees and charges at shipping point areas. 51.45 Section 51.45 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE... Shipping Point Areas § 51.45 Fees and charges at shipping point areas. Fees for inspection performed under...
Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching
NASA Astrophysics Data System (ADS)
Kwamen, C.; Rössle, M.; Reinhardt, M.; Leitenberger, W.; Zamponi, F.; Alexe, M.; Bargheer, M.
2017-10-01
Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domain walls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb (Zr0.2Ti0.8) O3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the R C time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.
Luis, Daniel Porfirio; García-González, Alcione; Saint-Martin, Humberto
2016-01-01
Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest. PMID:27240339
Oxygen Migration and Local Structural Changes with Schottky Defects in Pure Zirconium Oxide Crystals
NASA Astrophysics Data System (ADS)
Terada, Yayoi; Mohri, Tetsuo
2018-05-01
By employing the Buckingham potential, we performed classical molecular-dynamics computer simulations at constant pressure and temperature for a pure ZrO2 crystal without any vacancies and for a pure ZrO2 crystal containing zirconium vacancies and oxygen vacancies. We examined the positions of atoms and vacancies in the steady state, and we investigated the migration behavior of atoms and the local structure of vacancies of the pure ZrO2 crystal. We found that Schottky defects (aggregates consisting of one zirconium vacancy with an effective charge of -4 and two oxygen vacancies each with an effective charge of +2 to maintain charge neutrality) are the main defects formed in the steady state in cubic ZrO2, and that oxygen migration occurs through a mechanism involving vacancies on the oxygen sublattice near such defects. We also found that several oxygen atoms near each defect are displaced far from the sublattice site and induce oxygen migration.
Charge-state distribution of Li ions from the β decay of laser-trapped He 6 atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R.; Leredde, A.; Bagdasarova, Y.
The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β-ν angular correlation with improved precision. Also, beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Li n+ ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1s2s, 3S 1) and (1s2p, 3P 2) states confinedmore » by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. Finally, we find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.« less
Aquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethylidenediphophonato-κ2 O,O′]zinc(II) dihydrate
Freire, Eleonora; Vega, Daniel R.
2009-01-01
In the title complex, [Zn(C5H9NO7P2)2(H2O)]·2H2O, the zinc atom is coordinated by two zoledronate anions [zoledronate = (2-(1-imidazole)-1-hydroxy-1,1′-ethylidenediphophonate)] and one water molecule. The coordination number is 5. There is one half-molecule in the asymmetric unit, the zinc atom being located on a twofold rotation axis passing through the metal centre and the coordinating water O atom. The anion exists as a zwitterion with an overall charge of −1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge. Intermolecular O—H⋯O hydrogen bonds link the molecules. An N—H⋯O interaction is also present. PMID:21578165
A compact source for bunches of singly charged atomic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murböck, T.; Birkl, G.; Schmidt, S.
2016-04-15
We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10{sup 6} Mg{sup +}more » ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg{sup +} ions for sympathetic cooling of highly charged ions by laser-cooled {sup 24}Mg{sup +}.« less
Charge-state distribution of Li ions from the β decay of laser-trapped He 6 atoms
Hong, R.; Leredde, A.; Bagdasarova, Y.; ...
2017-11-13
The accurate determination of atomic final states following nuclear β decay plays an important role in several experiments. In particular, the charge state distributions of ions following nuclear β decay are important for determinations of the β-ν angular correlation with improved precision. Also, beyond the hydrogenic cases, the decay of neutral 6He presents the simplest case. Our measurement aims at providing benchmarks to test theoretical calculations. The kinematics of Li n+ ions produced following the β decay of 6He within an electric field were measured using 6He atoms in the metastable (1s2s, 3S 1) and (1s2p, 3P 2) states confinedmore » by a magneto-optical trap. The electron shakeoff probabilities were deduced, including their dependence on ion energy. Finally, we find significant discrepancies on the fractions of Li ions in the different charge states with respect to a recent calculation.« less
Gupta, Ujjwal; Reber, Arthur C; Clayborne, Penee A; Melko, Joshua J; Khanna, Shiv N; Castleman, A W
2008-12-01
Synergistic studies of bismuth doped tin clusters combining photoelectron spectra with first principles theoretical investigations establish that highly charged Zintl ions, observed in the condensed phase, can be stabilized as isolated gas phase clusters through atomic substitution that preserves the overall electron count but reduces the net charge and thereby avoids instability because of coulomb repulsion. Mass spectrometry studies reveal that Sn(8)Bi(-), Sn(7)Bi(2)(-), and Sn(6)Bi(3)(-) exhibit higher abundances than neighboring species, and photoelectron spectroscopy show that all of these heteroatomic gas phase Zintl analogues (GPZAs) have high adiabatic electron detachment energies. Sn(6)Bi(3)(-) is found to be a particularly stable cluster, having a large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. Theoretical calculations demonstrate that the Sn(6)Bi(3)(-) cluster is isoelectronic with the well know Sn(9)(-4) Zintl ion; however, the fluxionality reported for Sn(9)(-4) is suppressed by substituting Sn atoms with Bi atoms. Thus, while the electronic stability of the clusters is dominated by electron count, the size and position of the atoms affects the dynamics of the cluster as well. Substitution with Bi enlarges the cage compared with Sn(9)(-4) making it favorable for endohedral doping, findings which suggest that these cages may find use for building blocks of cluster assembled materials.
Density functional theory calculations on transition metal atoms adsorbed on graphene monolayers
NASA Astrophysics Data System (ADS)
Dimakis, Nicholas; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin
2017-11-01
Transition metal atom adsorption on graphene monolayers has been elucidated using periodic density functional theory under hybrid and generalized gradient approximation functionals. More specifically, we examined the adsorption of Cu, Fe, Zn, Ru, and Os on graphene monolayers by calculating, among others, the electronic density-of-states spectra of the adatom-graphene system and the overlap populations of the adatom with the nearest adsorbing graphene carbon atoms. These calculations reveal that Cu form primarily covalent bonds with graphene atoms via strong hybridization between the adatom orbitals and the sp band of the graphene substrate, whereas the interaction of the Ru and Os with graphene also contain ionic parts. Although the interaction of Fe with graphene atoms is mostly covalent, some charge transfer to graphene is also observed. The interaction of Zn with graphene is weak. Mulliken population analysis and charge contour maps are used to elucidate charge transfers between the adatom and the substrate. The adsorption strength is correlated with the metal adsorption energy and the height of the metal adatom from the graphene plane for the geometrically optimized adatom-graphene system. Our analysis shows that show that metal adsorption strength follows the adatom trend Ru ≈ Os > Fe > Cu > Zn, as verified by corresponding changes in the adsorption energies. The increased metal-carbon orbital overlap for the Ru relative to Os adatom is attributed to hybridization defects.
NASA Astrophysics Data System (ADS)
Phillips, Patrick J.; Rui, Xue; Georgescu, Alexandru B.; Disa, Ankit S.; Longo, Paolo; Okunishi, Eiji; Walker, Fred; Ahn, Charles H.; Ismail-Beigi, Sohrab; Klie, Robert F.
2017-05-01
Epitaxial strain, layer confinement, and inversion symmetry breaking have emerged as powerful new approaches to control the electronic and atomic-scale structural properties of complex metal oxides. Trivalent rare-earth (RE) nickelate R E NiO3 heterostructures have been shown to be exemplars since the orbital occupancy, degeneracy, and, consequently, electronic/magnetic properties can be altered as a function of epitaxial strain, layer thickness, and superlattice structure. One recent example is the tricomponent LaTiO3-LaNiO3-LaAlO3 superlattice which exhibits charge transfer and orbital polarization as the result of its interfacial dipole electric field. A crucial step towards control of these parameters for future electronic and magnetic device applications is to develop an understanding of both the magnitude and range of the octahedral network's response towards interfacial strain and electric fields. An approach that provides atomic-scale resolution and sensitivity towards the local octahedral distortions and orbital occupancy is therefore required. Here, we employ atomic-resolution imaging coupled with electron spectroscopies and first-principles theory to examine the role of interfacial charge transfer and symmetry breaking in a tricomponent nickelate superlattice system. We find that nearly complete charge transfer occurs between the LaTiO3 and LaNiO3 layers, resulting in a mixed Ni2 +/Ni3 + valence state. We further demonstrate that this charge transfer is highly localized with a range of about 1 unit cell within the LaNiO3 layers. We also show how Wannier-function-based electron counting provides a simple physical picture of the electron distribution that connects directly with formal valence charges. The results presented here provide important feedback to synthesis efforts aimed at stabilizing new electronic phases that are not accessible by conventional bulk or epitaxial film approaches.
IBEX-lo Sky Maps of Secondary Interstellar Neutrals Helium and Oxygen
NASA Astrophysics Data System (ADS)
Kucharek, H.; Isenberg, P. A.; Jeewoo, P.; Kubiak, M. A.; Bzowski, M.
2017-12-01
There are several populations of heliospheric energetic neutral atoms (ENAs) generated at the various heliospheric interfaces, the inner heliosheath, outer heliosheath (OHS), and the termination shock (TS). Depending on where and how these ENAs are generated, they belong to different energy regimes. While interstellar neutral (ISN) particles flow through the heliospheric boundary is mostly unimpeded, a substantial fraction of ISN H and O is filtered through charge exchange with ambient plasma ions before reaching the TS. Secondary ISN atoms are generated by the charge exchange reaction between primary ISN atoms and interstellar ions in the outer heliosheath, forming walls of H and O in front of the heliopause (HP). The flowing interstellar plasma encounters the heliopause as an obstacle, which deflects the flow. Thus, secondary neutrals measured at 1 AU carry information about the deflected interstellar plasma and the shape of the heliopause that causes the deflection. Due to very different magnitudes of charge exchange cross sections, the main source of the secondary He is charge exchange with the OHS He+, while that of the secondary O is the charge exchange between interstellar O+ and the OHS H. Therefore, the oxygen results are drastically different from those of helium. Interstellar O+ ions behave in principle like the He+ particles with an over-density due to the plasma deceleration. The high density decelerated oxygen ions just upwind of the heliopause encounter an over-density in neutral hydrogen, the hydrogen wall, allowing frequent charge exchange that produce slow neutral oxygen atoms forming the oxygen wall. Thus, the distribution in the sky maps of secondary He and O carries information on the shape as well as the structures in front of it. To investigate the secondary component of the interstellar neutral in detail we have distinguish between the two secondary component's. We engaged theory and simulations for the primary and secondary components to determine differences of between measurements and model predicted data.
NASA Technical Reports Server (NTRS)
2008-01-01
Even though comets are basically giant dirty snowballs, a few years ago they surprised astronomers by emitting X-radiation. These X-rays are not produced by multi-million degree gas (as is often the case) but rather by a process called 'charge exchange'. In this process, ionized atoms (which have lost one or more electrons) which are carried within the solar wind collide with neutral atoms in the comet's coma. The solar wind ion can collide with and capture an electron from the neutral comet atom, and in doing so some of the energy of the collision is observed in the form of X-rays. This produces a glow of X-rays on the sunward side of the comet's atmosphere. Charge exchange can occur in a variety of astrophysical settings, and cometary charge exchange provides astronomers a means to study this process up close. The image above is a pretty picture of comet 73P/Schwassmann-Wachmann 3 passing by the Ring Nebula. This image was obtained by the ultraviolet and optical telescope (UVOT) on the Swift gamma-ray burst hunter. The UVOT observations help astronomers to study the structure and chemistry of the comet, while Swift's X-ray Telescope (XRT) simultaneously monitors the charge exchange process. Comet 73P/Schwassmann-Wachmann 3 is currently in the process of breaking up, and the UVOT observations show important details of how this breakup is occurring.
Mechanisms of boron diffusion in silicon and germanium
NASA Astrophysics Data System (ADS)
Mirabella, S.; De Salvador, D.; Napolitani, E.; Bruno, E.; Priolo, F.
2013-01-01
B migration in Si and Ge matrices raised a vast attention because of its influence on the production of confined, highly p-doped regions, as required by the miniaturization trend. In this scenario, the diffusion of B atoms can take place under severe conditions, often concomitant, such as very large concentration gradients, non-equilibrium point defect density, amorphous-crystalline transition, extrinsic doping level, co-doping, B clusters formation and dissolution, ultra-short high-temperature annealing. In this paper, we review a large amount of experimental work and present our current understanding of the B diffusion mechanism, disentangling concomitant effects and describing the underlying physics. Whatever the matrix, B migration in amorphous (α-) or crystalline (c-) Si, or c-Ge is revealed to be an indirect process, activated by point defects of the hosting medium. In α-Si in the 450-650 °C range, B diffusivity is 5 orders of magnitude higher than in c-Si, with a transient longer than the typical amorphous relaxation time. A quick B precipitation is also evidenced for concentrations larger than 2 × 1020 B/cm3. B migration in α-Si occurs with the creation of a metastable mobile B, jumping between adjacent sites, stimulated by dangling bonds of α-Si whose density is enhanced by B itself (larger B density causes higher B diffusivity). Similar activation energies for migration of B atoms (3.0 eV) and of dangling bonds (2.6 eV) have been extracted. In c-Si, B diffusion is largely affected by the Fermi level position, occurring through the interaction between the negatively charged substitutional B and a self-interstitial (I) in the neutral or doubly positively charged state, if under intrinsic or extrinsic (p-type doping) conditions, respectively. After charge exchanges, the migrating, uncharged BI pair is formed. Under high n-type doping conditions, B diffusion occurs also through the negatively charged BI pair, even if the migration is depressed by Coulomb pairing with n-type dopants. The interplay between B clustering and migration is also modeled, since B diffusion is greatly affected by precipitation. Small (below 1 nm) and relatively large (5-10 nm in size) BI clusters have been identified with different energy barriers for thermal dissolution (3.6 or 4.8 eV, respectively). In c-Ge, B motion is by far less evident than in c-Si, even if the migration mechanism is revealed to be similarly assisted by Is. If Is density is increased well above the equilibrium (as during ion irradiation), B diffusion occurs up to quite large extents and also at relatively low temperatures, disclosing the underlying mechanism. The lower B diffusivity and the larger activation barrier (4.65 eV, rather than 3.45 eV in c-Si) can be explained by the intrinsic shortage of Is in Ge and by their large formation energy. B diffusion can be strongly enhanced with a proper point defect engineering, as achieved with embedded GeO2 nanoclusters, causing at 650 °C a large Is supersaturation. These aspects of B diffusion are presented and discussed, modeling the key role of point defects in the two different matrices.
Development of high energy density electrical double layer capacitors
NASA Astrophysics Data System (ADS)
Devarajan, Thamarai selvi
Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction potential at 1mA/cm 2. A brief study on non-polar co-solvents for EDLC was studied. Among the solvents studied, fluorinated solvents had low melting point and viscosity due to incorporation of asymmetry. However, because of low dielectric constant, TEABF4 is insoluble and had to be mixed with other solvents. The mixed fluorinated solvents had slightly higher voltage window due to decreased donicity of lone pairs of electrons. The second approach to increasing energy density is to increase capacitance. Capacitance is mainly dependent on surface area and porosity of electrodes. Nanostructured materials which can offer multiple charge storage are currently of interest. Hence, novel NiSi nanotubes were studied as electrodes for supercapacitor applications. Silicon material has high capacity and these inert electrodes can enable higher capacitance by controlling the porosity and functional groups in specific electrolytes. The Silicon wafers were made porous by anodization using hydrofluoric acid. In order to improve the conductivity, the porous silicon was doped, then plated with Ni using electroless plating method and annealed to form nickel mono silicide. Gold was deposited on the back side of the electrode to enhance conductivity. Our porous NiSi electrodes gave capacitance of about 1185muF /cm2 in 0.5 M H 2SO4. Further investigation of oxide formation and modification of functional groups will help achieve higher capacitance.
NASA Astrophysics Data System (ADS)
Brigitte Neuland, Maike; Allenbach, Marc; Föhn, Martina; Wurz, Peter
2017-04-01
The detection of energetic neutral atoms is a substantial requirement on every space mission mapping particle populations of a planetary magnetosphere or plasma of the interstellar medium. For imaging neutrals, these first have to be ionised. Regarding the constraints of weight, volume and power consumption, the technique of surface ionisation complies with all specifications of a space mission. Particularly low energy neutral atoms, which cannot be ionised by passing through a foil, are ionised by scattering on a charge state conversion surface [1]. Since more than 30 years intense research work is done to find and optimise suitable materials for use as charge state conversion surfaces for space application. Crucial parameters are the ionisation efficiency of the surface material and the scattering properties. Regarding these parameters, diamond-like carbon was proven advantageously: While efficiently ionising incoming neutral atoms, diamond stands out by its durability and chemical inertness [2]. In the IBEX-Lo sensor, a diamond-like carbon surface is used for ionisation of neutral atoms. Building on the successes of the IBEX mission [3], the follow up mission IMAP (InterstellarMApping Probe) will take up to further explore the boundaries of the heliosphere. The IMAP mission is planned to map neutral atoms in a larger energy range and with a distinct better angular resolution and sensitivity than IBEX [4]. The aspired performance of the IMAP sensors implies also for charge state conversion surfaces with improved characteristics. We investigated samples of diamond-like carbon, manufactured by the chemical vapour deposition (CVD) method, regarding their ionisation efficiency, scattering and reflexion properties. Experiments were carried out at the ILENA facility at the University of Bern [5] with hydrogen and oxygen atoms, which are the species of main interest in magnetospheric research [1]. We compare the results of earlier investigations of a metallised CVD sample [6] to our latest measurements of a Boron-doped CVD diamond sample. We additionally measured the B-concentration in the sample to prove our predictions of the B-concentration needed to reach sufficient conductibility for the sample not getting electrostatically charged during instrument operation. The results of narrower scattering cones and higher ionisation efficiency show that diamond-like carbon still is the preferred material for charge state conversion surfaces and that new surface technologies offer improved diamond conversion surfaces with different properties and hence the possibility for improvement of the performance of neutral atom imaging instruments. References: [1] P. Wurz, Detection of Energetic Neutral Atoms, in The Outer Heliosphere: Beyond the Planets, Copernicus Gesellschaft e.V., Katlenburg-Lindau, Germany, 2000, p. 251-288. [2] P. Wurz, R. Schletti, M.R. Aellig, Surf. Sci. 373(1997), 56-66. [3] D.J. McComas et al., Geophys. Res. Lett. 38(2011), L18101. [4] N.A. Schwadron et al., J. of Phys.. Conf. Series 767(2016): 012025 [5] P. Wahlström, J.A. Scheer, A. Riedo, P. Wurz and M. Wieser, J. Spacecr. Rockets 50 (2013): 402-410. [6] M.B. Neuland, J.A. Scheer, A. Riedo and P. Wurz, Appl. Surf. Sci. 313(2014):293-303.
NASA Astrophysics Data System (ADS)
Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar
2016-01-01
The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.
NASA Astrophysics Data System (ADS)
Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.
2014-05-01
We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.
Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign
NASA Astrophysics Data System (ADS)
Sliwoski, Gregory; Mendenhall, Jeffrey; Meiler, Jens
2016-03-01
Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance.
Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu
2015-01-01
The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809
Plasmon excitations in doped square-lattice atomic clusters
NASA Astrophysics Data System (ADS)
Wang, Yaxin; Yu, Ya-Bin
2017-12-01
Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).
Scattered Ion Energetics for H atoms Impinging a Copper Surface
NASA Astrophysics Data System (ADS)
Defazio, J. N.; Stephen, T. M.; Peko, B. L.
2002-05-01
The energy loss and charge state of atomic hydrogen scattered from surfaces is important in a broad range of scientific endeavors. These include the charging of spacecraft, the detection of low energy neutrals in the space environment, energy transfer from magnetically confined plasmas and the modeling of low energy electric discharges. Measurements of scattered ions resulting from low energy (20 - 1000 eV) atomic hydrogen impacting a copper surface have been accomplished. Differential energy distributions and yields for H- and H+ resulting from these collisions are presented. The data show that the energy distributions develop a universal dependence, when scaled by the incident energy. These results are compared with studies involving incident hydrogen ions. For incident energies less than 100eV, there are obvious differences in the scattered ion energy distributions resulting from impacting atoms when compared to those resulting from ions.
Hα line shape in front of the limiter in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group
1999-11-01
The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.
NASA Astrophysics Data System (ADS)
Grisham, L. R.
2001-05-01
Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams, which could reduce plasma complications far from the target, but which would impose more stringent limitations upon chamber pressure and repetition rate.
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
NASA Astrophysics Data System (ADS)
Rulis, Paul; Yao, Hongzhi; Ouyang, Lizhi; Ching, W. Y.
2007-12-01
Fluorapatite (FAP) and hydroxyapatite (HAP) are two very important bioceramic crystals. The (001) surfaces of FAP and HAP crystals are studied by ab initio density functional calculations using a supercell slab geometry. It is shown that in both crystals, the O-terminated (001) surface is more stable with calculated surface energies of 0.865 and 0.871J/m2 for FAP and HAP, respectively. In FAP, the two surfaces are symmetric. In HAP, the orientation of the OH group along the c axis reduces the symmetry such that the top and bottom surfaces are no longer symmetric. It is revealed that the atoms near the surface and subsurface are significantly relaxed especially in the case of HAP. The largest relaxations occurred via the lateral movements of the O ions at the subsurface level. The electronic structures of the surface models in the form of layer-by-layer resolved partial density of states for all the atoms show systematic variation from the surface region toward the bulk region. The calculated Mulliken effective charge on each type of atom and the bond order values between cations (Ca, P) and anions (O, F) show different charge transfers and bond strength variations from the bulk crystal values. Electron charge density calculations show that the surfaces of both FAP and HAP crystals are mostly positively charged due to the presence of Ca ions at the surface. The positively charged surfaces have implications for the absorption on apatite surfaces of water and other organic molecules in an aqueous environment which are an important part of its bioactivity. The x-ray absorption near-edge structure (XANES) spectra ( Ca-K , O-K , F-K , P-K , and P-L3 edges) of both the surface models and the bulk crystals are calculated and compared. The calculations use a supercell approach which takes into account the electron-core-hole interaction. It is shown that the site-specific XANES spectra show significant differences between atoms near the surface and in the bulk and are very sensitive to the local atomic environment of each atom. This information will be very valuable for characterizing the apatite materials and in the interpretation of experimental data. Comparisons of several sets of experimental data with the weighted sums of the calculated spectra at different sites for the same element show very good agreement.
Mg line formation in late-type stellar atmospheres. I. The model atom
NASA Astrophysics Data System (ADS)
Osorio, Y.; Barklem, P. S.; Lind, K.; Belyaev, A. K.; Spielfiedel, A.; Guitou, M.; Feautrier, N.
2015-07-01
Context. Magnesium is an element of significant astrophysical importance, often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from local thermodynamic equilibrium (LTE). The importance of Mg , together with the unique range of spectral features in late-type stars probing different parts of the atom, as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. Previous non-LTE modelling of spectral line formation has, however, been subject to uncertainties due to lack of accurate data for inelastic collisions with electrons and hydrogen atoms. Aims: In this paper we build and test a Mg model atom for spectral line formation in late-type stars with new or recent inelastic collision data and no associated free parameters. We aim to reduce these uncertainties and thereby improve the accuracy of Mg non-LTE modelling in late-type stars. Methods: For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Hydrogen collision data, including charge transfer processes, were taken from recent calculations by some of us. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. This model was then employed in the context of standard non-LTE modelling in 1D (including average 3D) model atmospheres in a small set of stellar atmosphere models. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. Results: The modelled spectra agree well with observed spectra from benchmark stars, showing much better agreement with line profile shapes than with LTE modelling. The line-to-line scatter in the derived abundances shows some improvements compared to LTE (where the cores of strong lines must often be ignored), particularly when coupled with averaged 3D models. The observed Mg emission features at 7 and 12 μm in the spectra of the Sun and Arcturus, which are sensitive to the collision data, are reasonably well reproduced. Charge transfer with H is generally important as a thermalising mechanism in dwarfs, but less so in giants. Excitation due to collisions with H is found to be quite important in both giants and dwarfs. The R-matrix calculations for electron collisions also lead to significant differences compared to when approximate formulas are employed. The modelling predicts non-LTE abundance corrections ΔA(Mg )NLTE-LTE in dwarfs, both solar metallicity and metal-poor, to be very small (of order 0.01 dex), even smaller than found in previous studies. In giants, corrections vary greatly between lines, but can be as large as 0.4 dex. Conclusions: Our results emphasise the need for accurate data of Mg collisions with both electrons and H atoms for precise non-LTE predictions of stellar spectra, but demonstrate that such data can be calculated and that ab initio non-LTE modelling without resort to free parameters is possible. In contrast to Li and Na, where only the introduction of charge transfer processes has led to differences with respect to earlier non-LTE modelling, the more complex case of Mg finds changes due to improvements in the data for collisional excitation by electrons and hydrogen atoms, as well as due to the charge transfer processes. Grids of departure coefficients and abundance corrections for a range of stellar parameters are planned for a forthcoming paper.
Energy levels for Ac-212 (Actinium-212)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope Ac-212 (actinium, atomic number Z = 89, mass number A = 212).
Efficient approach to obtain free energy gradient using QM/MM MD simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asada, Toshio; Koseki, Shiro; The Research Institute for Molecular Electronic Devices
2015-12-31
The efficient computational approach denoted as charge and atom dipole response kernel (CDRK) model to consider polarization effects of the quantum mechanical (QM) region is described using the charge response and the atom dipole response kernels for free energy gradient (FEG) calculations in the quantum mechanical/molecular mechanical (QM/MM) method. CDRK model can reasonably reproduce energies and also energy gradients of QM and MM atoms obtained by expensive QM/MM calculations in a drastically reduced computational time. This model is applied on the acylation reaction in hydrated trypsin-BPTI complex to optimize the reaction path on the free energy surface by means ofmore » FEG and the nudged elastic band (NEB) method.« less
Interfacial charge-transfer transitions in a TiO2-benzenedithiol complex with Ti-S-C linkages.
Fujisawa, Jun-ichi; Muroga, Ryuki; Hanaya, Minoru
2015-11-28
Interfacial charge-transfer (ICT) transitions between organic materials and inorganic semiconductors are a new mechanism for light absorption at organic-semiconductor interfaces. ICT transitions cause one-step interfacial charge separation without loss of energy. This feature is potentially useful to realize efficient organic-inorganic hybrid solar cells. ICT transitions have been examined by employing titanium dioxide (TiO2) nanoparticles chemisorbed with π-conjugated molecules via Ti-O-C linkages. Here, we report ICT transitions in a TiO2 and 1,2-benzenedithiol (BDT) complex with Ti-S-C linkages. BDT adsorbs on TiO2 by the bridging bidentate coordination of the sulfur atoms to surface titanium atoms. The TiO2-BDT complex shows ICT transitions from the BDT moiety to the conduction band of TiO2 in the visible region. The ICT transitions occur by orbital overlaps between the d orbitals of the surface titanium atoms and the π orbitals of the benzene ring. Our density-functional-theory (DFT) analysis reveals that the 3p valence orbitals of the sulfur bridging atoms contribute to more than 50% of the highest occupied molecular orbital (HOMO) and the 3d-3p(sulfur)-π interaction via the Ti-S-C linkage enhances the electronic mixing between the titanium atoms and the benzene moiety as compared to the 3d-2p(oxygen)-πvia the Ti-O-C linkage. This result indicates the important role of the heavier-atom linkers for strong organic-inorganic electronic couplings.
Molecular emulsions: from charge order to domain order.
Perera, Aurélien
2017-10-25
Aqueous mixtures of small molecules, such as lower n-alkanols for example, are known to be micro-segregated, with domains in the nano-meter range. One consequence of this micro-segregation would be the existence of long range domain-domain oscillatory correlations in the various atom-atom pair correlation functions, and subsequent pre-peaks in the corresponding atom-atom structure factors, in the q-vector range corresponding to nano-sized domains. However, no such pre-peak have ever been observed in the large corpus of radiation scattering data published so far on aqueous mixtures of small n-alkanols. By using large scale simulations of aqueous-1propanol mixtures, it is shown herein that the origin for the absence of scattering pre-peak resides in the exact cancellation of the contributions of the various atom-atom correlation pre-peaks to the total scattered intensity. The mechanism for this cancellation is due to the differences in the long range oscillatory behaviour of the correlations (beyond 1 nm), which are exactly out-of-phase between same species and cross species. This is similar to the charge order observed in ionic melts, but differs from room temperature ionic liquids, where the segregation is between charged and neutral groups, instead of species segregation. The consequences of such cancellation in the experimental scattering data are examined, in relation to the possibility of detecting micro-segregation through such methods. In the particular case of aqueous-1propanol mixtures, it is shown the X-ray scattering leads an exact cancellation, while this cancellation in neutron scattering is seen to depend on the deuteration ratio between solvent and solute.
Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.
2017-01-16
Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order ofmore » $$1{{k}_{\\text{B}}}T$$ . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.« less
Simultaneous measurement of triboelectrification and triboluminescence of crystalline materials
NASA Astrophysics Data System (ADS)
Collins, Adam L.; Camara, Carlos G.; Van Cleve, Eli; Putterman, Seth J.
2018-01-01
Triboelectrification has been studied for over 2500 years, yet there is still a lack of fundamental understanding as to its origin. Given its utility in areas such as xerography, powder spray painting, and energy harvesting, many devices have been made to investigate triboelectrification at many length-scales, though few seek to additionally make use of triboluminescence: the emission of electromagnetic radiation immediately following a charge separation event. As devices for measuring triboelectrification became smaller and smaller, now measuring down to the atomic scale with atomic force microscope based designs, an appreciation for the collective and multi-scale nature of triboelectrification has perhaps abated. Consider that the energy required to move a unit charge is very large compared to a van der Waals interaction, yet peeling Scotch tape (whose adhesion is derived from van der Waals forces) can provide strong enough energy-focusing to generate X-ray emission. This paper presents a device to press approximately cm-sized materials together in a vacuum, with in situ alignment. Residual surface charge, force, and position and X-ray, visible light, and RF emission are measured for single crystal samples. Charge is therefore tracked throughout the charging and discharging processes, resulting in a more complete picture of triboelectrification, with controllable and measurable environmental influence. Macroscale charging is directly measured, whilst triboluminescence, originating in atomic-scale processes, probes the microscale. The apparatus was built with the goal of obtaining an ab initio-level explanation of triboelectrification for well-defined materials, at the micro- and macro-scale, which has eluded scientists for millennia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.
Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order ofmore » $$1{{k}_{\\text{B}}}T$$ . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.« less
2015-01-01
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide–water and peptide–membrane interactions allow prediction of free energy minima at the bilayer–water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are −2.51, −4.28, and −5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are −0.83, −3.33, and −3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations. PMID:25290376
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep
2014-10-16
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
Thermal-energy reactions of O2(2+) ions with O2, N2, CO2, NO, and Ne
NASA Technical Reports Server (NTRS)
Chatterjee, B. K.; Johnson, R.
1989-01-01
The paper presents results of drift-tube mass-spectrometer studies of the reactivity of doubly charged molecular oxygen ions with several molecules and neon atoms. Thermal-energ rate coefficients for the reactions with the molecular reactants were found to be large, close to the limiting Langevin rates. Charge transfer with neon atoms was observed, but the measured rate coefficient was only a small fraction of the Langevin rate. It is concluded that the measured rate constants for the reactions considereed refer to vibrationally excited ions.
Lattice distortion and electron charge redistribution induced by defects in graphene
Zhang, Wei; Lu, Wen -Cai; Zhang, Hong -Xing; ...
2016-09-14
Lattice distortion and electronic charge localization induced by vacancy and embedded-atom defects in graphene were studied by tight-binding (TB) calculations using the recently developed three-center TB potential model. We showed that the formation energies of the defects are strongly correlated with the number of dangling bonds and number of embedded atoms, as well as the magnitude of the graphene lattice distortion induced by the defects. Lastly, we also showed that the defects introduce localized electronic states in the graphene which would affect the electron transport properties of graphene.
The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.
Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr
2010-07-28
Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.
Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs
NASA Technical Reports Server (NTRS)
Lauenstein, J.-M.; Goldsman, N.; Liu, S.; Titus, J.; Ladbury, R. L.; Kim, H. S.; Phan, A. M.; Zafrani, M.; Sherman, P.
2011-01-01
The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure is experimentally investigated.
NASA Astrophysics Data System (ADS)
Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli
2018-04-01
Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.
Isolating and moving single atoms using silicon nanocrystals
Carroll, Malcolm S.
2010-09-07
A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.
Zhang, Qing; Beard, Daniel A; Schlick, Tamar
2003-12-01
Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK minimizer) is efficient and does not depend on the initial assigned values, and that the residual is acceptable when the distance to the model surface is close to, or larger than, the Debye length. We illustrate applications of DiSCO's model-building procedure to chromatin folding and supercoiled DNA bound to Hin and Fis proteins. DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale models are appropriate, to yield a resolution between the all-atom representative and the polymer level. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 2063-2074, 2003
Quantized conductance operation near a single-atom point contact in a polymer-based atomic switch
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Muruganathan, Manoharan; Tsuruoka, Tohru; Mizuta, Hiroshi; Aono, Masakazu
2017-06-01
Highly-controlled conductance quantization is achieved near a single-atom point contact in a redox-based atomic switch device, in which a poly(ethylene oxide) (PEO) film is sandwiched between Ag and Pt electrodes. Current-voltage measurements revealed reproducible quantized conductance of ˜1G 0 for more than 102 continuous voltage sweep cycles under a specific condition, indicating the formation of a well-defined single-atom point contact of Ag in the PEO matrix. The device exhibited a conductance state distribution centered at 1G 0, with distinct half-integer multiples of G 0 and small fractional variations. First-principles density functional theory simulations showed that the experimental observations could be explained by the existence of a tunneling gap and the structural rearrangement of an atomic point contact.
NASA Astrophysics Data System (ADS)
Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki
2018-01-01
We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.
Mann, Karlheinz; Siedler, Frank; Treccani, Laura; Heinemann, Fabian; Fritz, Monika
2007-01-01
We have isolated a 4.785 Da protein from the nacreous layer of the sea snail Haliotis laevigata (greenlip abalone) shell after demineralization with acetic acid. The sequence of 41 amino acids was determined by Edman degradation supported by mass spectrometry. The most abundant amino acids were cysteine (19.5%), histidine (17%), and arginine (14.6%). The positively charged amino acids were almost counterbalanced by negatively charged ones resulting in a calculated isoelectric point of 7.86. Atomic-force microscopy studies of the interaction of the protein with calcite surfaces in supersaturated calcium carbonate solution or calcium chloride solution showed that the protein bound specifically to calcite steps, inhibiting further crystal growth at these sites in carbonate solution and preventing crystal dissolution when carbonate was substituted with chloride. Therefore this protein was named perlinhibin. X-ray diffraction investigation of the crystal after atomic-force microscopy growth experiments showed that the formation of aragonite was induced on the calcite substrate around holes caused by perlinhibin crystal-growth inhibition. The strong interaction of the protein with calcium carbonate was also shown by vapor diffusion crystallization. In the presence of the protein, the crystal surfaces were covered with holes due to protein binding and local inhibition of crystal growth. In addition to perlinhibin, we isolated and sequenced a perlinhibin-related protein, indicating that perlinhibin may be a member of a family of closely related proteins. PMID:17496038
Attractive Interactions between Heteroallenes and the Cucurbituril Portal.
Reany, Ofer; Li, Amanda; Yefet, Maayan; Gilson, Michael K; Keinan, Ehud
2017-06-21
In this paper, we report on the noteworthy attractive interaction between organic azides and the portal carbonyls of cucurbiturils. Five homologous bis-α,ω-azidoethylammonium alkanes were prepared, where the number of methylene groups between the ammonium groups ranges from 4 to 8. Their interactions with cucurbit[6]uril were studied by NMR spectroscopy, IR spectroscopy, X-ray crystallography, and computational methods. Remarkably, while the distance between the portal plane and most atoms at the guest end groups increases progressively with the molecular size, the β-nitrogen atoms maintain a constant distance from the portal plane in all homologues, pointing at a strong attractive interaction between the azide group and the portal. Both crystallography and NMR support a specific electrostatic interaction between the carbonyl and the azide β-nitrogen, which stabilizes the canonical resonance form with positive charge on the β-nitrogen and negative charge on the γ-nitrogen. Quantum computational analyses strongly support electrostatics, in the form of orthogonal dipole-dipole interaction, as the main driver for this attraction. The alternative mechanism of n → π* orbital delocalization does not seem to play a significant role in this interaction. The computational studies also indicate that the interaction is not limited to azides, but generalizes to other isoelectronic heteroallene functions, such as isocyanate and isothiocyanate. This essentially unexploited attractive interaction could be more broadly utilized as a tool not only in relation to cucurbituril chemistry, but also for the design of novel supramolecular architectures.