-
Assembly and microscopic characterization of DNA origami structures.
PubMed
Scheible, Max; Jungmann, Ralf; Simmel, Friedrich C
2012-01-01
DNA origami is a revolutionary method for the assembly of molecular nanostructures from DNA with precisely defined dimensions and with an unprecedented yield. This can be utilized to arrange nanoscale components such as proteins or nanoparticles into pre-defined patterns. For applications it will now be of interest to arrange such components into functional complexes and study their geometry-dependent interactions. While commonly DNA nanostructures are characterized by atomic force microscopy or electron microscopy, these techniques often lack the time-resolution to study dynamic processes. It is therefore of considerable interest to also apply fluorescence microscopic techniques to DNA nanostructures. Of particular importance here is the utilization of novel super-resolved microscopy methods that enable imaging beyond the classical diffraction limit.
-
Direct observation of anti-phase boundaries in heteroepitaxy of GaSb thin films grown on Si(001) by transmission electron microscopy
NASA Astrophysics Data System (ADS)
Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.
2012-10-01
Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.
-
Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide
DOE PAGES
Stone, Greg; Ophus, Colin; Birol, Turan; ...
2016-08-31
Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), A n+1 B n O 3n+1 , thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Sr n+1 Ti n O 3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases.more » We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.« less
-
Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hui; Cummings, Marvin; Camino, Fernando
Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less
-
Submolecular resolution in scanning probe images of Sn-phthalocyanines on Cu(1 0 0) using metal tips
NASA Astrophysics Data System (ADS)
Buchmann, Kristof; Hauptmann, Nadine; Foster, Adam S.; Berndt, Richard
2017-10-01
Single Sn-phthalocyanine (SnPc) molecules adsorb on Cu(1 0 0) with the Sn ion above (Sn-up) or below (Sn-down) the molecular plane. Here we use a combination of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and first principles calculations to understand the adsorption configuration and origin of observed contrast of molecules in the Sn-down state. AFM with metallic tips images the pyrrole nitrogen atoms in these molecules as attractive features while STM reveals a chirality of the electronic structure of the molecules close to the Fermi level E_F, which is not observed in AFM. Using density functional theory calculations, the origin of the submolecular contrast is analysed and, while the electrostatic forces turn out to be negligible, the van der Waals interaction between the phenyl rings of SnPc and the substrate deform the molecule, push the pyrrole nitrogen atoms away from the substrate and thus induce the observed submolecular contrast. Simulated STM images reproduce the chirality of the electronic structure near E_F.
-
InSe monolayer: synthesis, structure and ultra-high second-harmonic generation
NASA Astrophysics Data System (ADS)
Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng
2018-04-01
III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.
-
Fabrication and characterization of CNT-based smart tips for synchrotron assisted STM
DOE PAGES
Yan, Hui; Cummings, Marvin; Camino, Fernando; ...
2015-08-05
Determination of chemical composition along with imaging at the atomic level provides critical information towards fundamental understanding of the surface of materials and, hence, yields the capability to design new materials by tailoring their ultimate functionalities. Synchrotron X-ray assisted scanning tunneling microscopy (SX-STM) is a promising new technique to achieve real space chemically specific atomic mapping. Chemical sensitivity of SX-STM relies on excitation of core electrons by incident X-rays when their energy is tuned to an absorption edge of a particular element. However, along with core-level electrons, photoelectrons are also excited, which yield additional current and interfere with the tunnelingmore » current. To reduce the background photoelectron current and to improve ultimate resolution of SX-STM, we have developed and fabricated multiwalled carbon nanotubes (MWCNT) based “smart tips” using plasma enhanced chemical vapor deposition and focused ion beam milling. As a result, the newly developed CNT-based smart tips, characterized step by step by scanning electron microscopy (SEM) during the fabrication process, demonstrate good performance and provide opportunity for realizing atomic chemical mapping.« less
-
Atomistic observation and simulation analysis of spatio-temporal fluctuations during radiation-induced amorphization.
PubMed
Watanabe, Seiichi; Hoshino, Misaki; Koike, Takuto; Suda, Takanori; Ohnuki, Soumei; Takahashi, Heishichirou; Lam, Nighi Q
2003-01-01
We performed a dynamical-atomistic study of radiation-induced amorphization in the NiTi intermetallic compound using in situ high-resolution high-voltage electron microscopy and molecular dynamics simulations in connection with image simulation. Spatio-temporal fluctuations as non-equilibrium fluctuations in an energy-dissipative system, due to transient atom-cluster formation during amorphization, were revealed by the present spatial autocorrelation analysis.
-
Single Molecule Science for Personalized Nanomedicine: Atomic Force Microscopy of Biopolymer-Protein Interactions
NASA Astrophysics Data System (ADS)
Hsueh, Carlin
Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an interaction that can provide scientists with a better understanding of debilitating neurological diseases, such as Alzheimer's and Down Syndrome at the molecular level. These observations provide extraordinary access to the subtle signs and behavior indicating early onset of disease in cells and tissues and to the dynamics of disease development and treatment.
-
Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe.
PubMed
Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi
2018-04-26
Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.
-
Breaking resolution limits in ultrafast electron diffraction and microscopy
PubMed Central
Baum, Peter; Zewail, Ahmed H.
2006-01-01
Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100–200 keV for microscopy, corresponding to speeds of 33–70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions. PMID:17056711
-
Scanning tunneling microscopy studies of diamond films and optoelectronic materials
NASA Technical Reports Server (NTRS)
Perez, Jose M.
1993-01-01
In this report, we report on progress achieved from 12/1/92 to 10/1/93 under the grant entitled 'Scanning Tunneling Microscopy Studies of Diamond Films and Optoelectronic Materials'. We have set-up a chemical vapor deposition (CVD) diamond film growth system and a Raman spectroscopy system to study the nucleation and growth of diamond films with atomic resolution using scanning tunneling microscopy (STM). A unique feature of the diamond film growth system is that diamond films can be transferred directly to the ultrahigh vacuum (UHV) chamber of a scanning tunneling microscope without contaminating the films by exposure to air. The University of North Texas (UNT) provided $20,000 this year as matching funds for the NASA grant to purchase the diamond growth system. In addition, UNT provided a Coherent Innova 90S Argon ion laser, a Spex 1404 double spectrometer, and a Newport optical table costing $90,000 to set-up the Raman spectroscopy system. The CVD diamond growth system and Raman spectroscopy system will be used to grow and characterize diamond films with atomic resolution using STM as described in our proposal. One full-time graduate student and one full-time undergraduate student are supported under this grant. In addition, several graduate and undergraduate students were supported during the summer to assist in setting-up the diamond growth and Raman spectroscopy systems. We have obtained research results concerning STM of the structural and electronic properties of CVD grown diamond films, and STM and scanning tunneling spectroscopy of carbon nanotubes. In collaboration with the transmission electron microscopy (TEM) group at UNT, we have also obtained results concerning the optoelectronic material siloxene. These results were published in refereed scientific journals, submitted for publication, and presented as invited and contributed talks at scientific conferences.
-
Atomic resolved phase map of monolayer MoS2 retrieved by spherical aberration-corrected transport of intensity equation.
PubMed
Zhang, Xiaobin; Oshima, Yoshifumi
2016-10-01
An atomic resolution phase map, which enables us to observe charge distribution or magnetic properties at an atomic scale, has been pointed out to be retrieved by transport of intensity equation (TIE) when taking two atomic-resolved transmission electron microscope (TEM) images of small defocus difference. In this work, we firstly obtained the atomic-resolved phase maps of an exfoliated molybdenum disulfide sheet using spherical aberration-corrected transmission electron microscope. We successfully observed 60° grain boundary of mechanically exfoliated monolayer molybdenum disulfide sheet. The relative phase shift of a single molybdenum atomic column to the column consisting of two sulfur atoms was obtained to be about 0.01 rad on average, which was about half lower than the simulated TIE phase map, indicating that the individual atomic sites can be distinguished qualitatively. The appropriate condition for retrieving atomic-resolved TIE phase maps was briefly discussed. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
-
Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
-
Towards atomically precise manipulation of 2D nanostructures in the electron microscope
NASA Astrophysics Data System (ADS)
Susi, Toma; Kepaptsoglou, Demie; Lin, Yung-Chang; Ramasse, Quentin M.; Meyer, Jannik C.; Suenaga, Kazu; Kotakoski, Jani
2017-12-01
Despite decades of research, the ultimate goal of nanotechnology—top-down manipulation of individual atoms—has been directly achieved with only one technique: scanning probe microscopy. In this review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Ångström-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.
-
Use of scanning near-field optical microscope with an aperture probe for detection of luminescent nanodiamonds
NASA Astrophysics Data System (ADS)
Shershulin, V. A.; Samoylenko, S. R.; Shenderova, O. A.; Konov, V. I.; Vlasov, I. I.
2017-02-01
The suitability of scanning near-field optical microscopy (SNOM) to image photoluminescent diamond nanoparticles with nanoscale resolution is demonstrated. Isolated diamond nanocrystals with an average size of 100 nm, containing negatively charged nitrogen-vacancy (NV-) centers, were chosen as tested material. The NV- luminescence was stimulated by continuous 532 nm laser light. Sizes of analyzed crystallites were monitored by an atomic force microscope. The lateral resolution of the order of 100 nm was reached in SNOM imaging of diamond nanoparticles using 150 nm square aperture of the probe.
-
Wave field restoration using three-dimensional Fourier filtering method.
PubMed
Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R
2001-11-01
A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.
-
Future of Electron Scattering and Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Ernest; Stemmer, Susanne; Zheng, Haimei
2014-02-25
The ability to correlate the atomic- and nanoscale-structure of condensed matter with physical properties (e.g., mechanical, electrical, catalytic, and optical) and functionality forms the core of many disciplines. Directing and controlling materials at the quantum-, atomic-, and molecular-levels creates enormous challenges and opportunities across a wide spectrum of critical technologies, including those involving the generation and use of energy. The workshop identified next generation electron scattering and diffraction instruments that are uniquely positioned to address these grand challenges. The workshop participants identified four key areas where the next generation of such instrumentation would have major impact: A – Multidimensional Visualizationmore » of Real Materials B – Atomic-scale Molecular Processes C – Photonic Control of Emergence in Quantum Materials D – Evolving Interfaces, Nucleation, and Mass Transport Real materials are comprised of complex three-dimensional arrangements of atoms and defects that directly determine their potential for energy applications. Understanding real materials requires new capabilities for three-dimensional atomic scale tomography and spectroscopy of atomic and electronic structures with unprecedented sensitivity, and with simultaneous spatial and energy resolution. Many molecules are able to selectively and efficiently convert sunlight into other forms of energy, like heat and electric current, or store it in altered chemical bonds. Understanding and controlling such process at the atomic scale require unprecedented time resolution. One of the grand challenges in condensed matter physics is to understand, and ultimately control, emergent phenomena in novel quantum materials that necessitate developing a new generation of instruments that probe the interplay among spin, charge, orbital, and lattice degrees of freedom with intrinsic time- and length-scale resolutions. Molecules and soft matter require imaging and spectroscopy with high spatial resolution without damaging their structure. The strong interaction of electrons with matter allows high-energy electron pulses to gather structural information before a sample is damaged. Electron ScatteringImaging, diffraction, and spectroscopy are the fundamental capabilities of electron-scattering instruments. The DOE BES-funded TEAM (Transmission Electron Aberration-corrected Microscope) project achieved unprecedented sub-atomic spatial resolution in imaging through aberration-corrected transmission electron microscopy. To further advance electron scattering techniques that directly enable groundbreaking science, instrumentation must advance beyond traditional two-dimensional imaging. Advances in temporal resolution, recording the full phase and energy spaces, and improved spatial resolution constitute a new frontier in electron microscopy, and will directly address the BES Grand Challenges, such as to “control the emergent properties that arise from the complex correlations of atomic and electronic constituents” and the “hidden states” “very far away from equilibrium”. Ultrafast methods, such as the pump-probe approach, enable pathways toward understanding, and ultimately controlling, the chemical dynamics of molecular systems and the evolution of complexity in mesoscale and nanoscale systems. Central to understanding how to synthesize and exploit functional materials is having the ability to apply external stimuli (such as heat, light, a reactive flux, and an electrical bias) and to observe the resulting dynamic process in situ and in operando, and under the appropriate environment (e.g., not limited to UHV conditions). To enable revolutionary advances in electron scattering and science, the participants of the workshop recommended three major new instrumental developments: A. Atomic-Resolution Multi-Dimensional Transmission Electron Microscope: This instrument would provide quantitative information over the entire real space, momentum space, and energy space for visualizing dopants, interstitials, and light elements; for imaging localized vibrational modes and the motion of charged particles and vacancies; for correlating lattice, spin, orbital, and charge; and for determining the structure and molecular chemistry of organic and soft matter. The instrument will be uniquely suited to answer fundamental questions in condensed matter physics that require understanding the physical and electronic structure at the atomic scale. Key developments include stable cryogenic capabilities that will allow access to emergent electronic phases, as well as hard/soft interfaces and radiation- sensitive materials. B. Ultrafast Electron Diffraction and Microscopy Instrument: This instrument would be capable of nano-diffraction with 10 fs temporal resolution in stroboscopic mode, and better than 100 fs temporal resolution in single shot mode. The instrument would also achieve single- shot real-space imaging with a spatial/temporal resolution of 10 nm/10 ps, representing a thousand fold improvement over current microscopes. Such a capability would be complementary to x-ray free electron lasers due to the difference in the nature of electron and x-ray scattering, enabling space-time mapping of lattice vibrations and energy transport, facilitating the understanding of molecular dynamics of chemical reactions, the photonic control of emergence in quantum materials, and the dynamics of mesoscopic materials. C. Lab-In-Gap Dynamic Microscope: This instrument would enable quantitative measurements of materials structure, composition, and bonding evolution in technologically relevant environments, including liquids, gases and plasmas, thereby assuring the understanding of structure function relationship at the atomic scale with up to nanosecond temporal resolution. This instrument would employ a versatile, modular sample stage and holder geometry to allow the multi-modal (e.g., optical, thermal, mechanical, electrical, and electrochemical) probing of materials’ functionality in situ and in operando. The electron optics encompasses a pole piece that can accommodate the new stage, differential pumping, detectors, aberration correctors, and other electron optical elements for measurement of materials dynamics. To realize the proposed instruments in a timely fashion, BES should aggressively support research and development of complementary and enabling instruments, including new electron sources, advanced electron optics, new tunable specimen pumps and sample stages, and new detectors. The proposed instruments would have transformative impact on physics, chemistry, materials science, engineering« less
-
Surface characterization of InP trenches embedded in oxide using scanning probe microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannarino, Manuel, E-mail: manuel.mannarino@imec.be, E-mail: manuelmannarino@gmail.com; Chintala, Ravi; Vandervorst, Wilfried
2015-12-14
Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of differentmore » chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.« less
-
Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.
PubMed
Grimm, Jonathan B; Klein, Teresa; Kopek, Benjamin G; Shtengel, Gleb; Hess, Harald F; Sauer, Markus; Lavis, Luke D
2016-01-26
The rhodamine system is a flexible framework for building small-molecule fluorescent probes. Changing N-substitution patterns and replacing the xanthene oxygen with a dimethylsilicon moiety can shift the absorption and fluorescence emission maxima of rhodamine dyes to longer wavelengths. Acylation of the rhodamine nitrogen atoms forces the molecule to adopt a nonfluorescent lactone form, providing a convenient method to make fluorogenic compounds. Herein, we take advantage of all of these structural manipulations and describe a novel photoactivatable fluorophore based on a Si-containing analogue of Q-rhodamine. This probe is the first example of a "caged" Si-rhodamine, exhibits higher photon counts compared to established localization microscopy dyes, and is sufficiently red-shifted to allow multicolor imaging. The dye is a useful label for super-resolution imaging and constitutes a new scaffold for far-red fluorogenic molecules. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.