Contact area of rough spheres: Large scale simulations and simple scaling laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastewka, Lars, E-mail: lars.pastewka@kit.edu; Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218; Robbins, Mark O., E-mail: mr@pha.jhu.edu
2016-05-30
We use molecular simulations to study the nonadhesive and adhesive atomic-scale contact of rough spheres with radii ranging from nanometers to micrometers over more than ten orders of magnitude in applied normal load. At the lowest loads, the interfacial mechanics is governed by the contact mechanics of the first asperity that touches. The dependence of contact area on normal force becomes linear at intermediate loads and crosses over to Hertzian at the largest loads. By combining theories for the limiting cases of nominally flat rough surfaces and smooth spheres, we provide parameter-free analytical expressions for contact area over the wholemore » range of loads. Our results establish a range of validity for common approximations that neglect curvature or roughness in modeling objects on scales from atomic force microscope tips to ball bearings.« less
Multiscaling behavior of atomic-scale friction
NASA Astrophysics Data System (ADS)
Jannesar, M.; Jamali, T.; Sadeghi, A.; Movahed, S. M. S.; Fesler, G.; Meyer, E.; Khoshnevisan, B.; Jafari, G. R.
2017-06-01
The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H =0.61 ±0.02 at a 1 σ confidence interval. Moreover, the dependence of the generalized Hurst exponent, h (q ) , on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.
Potential roughness near lithographically fabricated atom chips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krueger, P.; Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 Rue Lhomond, F-75005 Paris; Andersson, L. M.
2007-12-15
Potential roughness has been reported to severely impair experiments in magnetic microtraps. We show that these obstacles can be overcome as we measure disorder potentials that are reduced by two orders of magnitude near lithographically patterned high-quality gold layers on semiconductor atom chip substrates. The spectrum of the remaining field variations exhibits a favorable scaling. A detailed analysis of the magnetic field roughness of a 100-{mu}m-wide wire shows that these potentials stem from minute variations of the current flow caused by local properties of the wire rather than merely from rough edges. A technique for further reduction of potential roughnessmore » by several orders of magnitude based on time-orbiting magnetic fields is outlined.« less
NASA Astrophysics Data System (ADS)
Felix, T.; Cassini, F. A.; Benetoli, L. O. B.; Dotto, M. E. R.; Debacher, N. A.
2017-05-01
The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, RRMS (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91(PET) and 0.88(PEEK), β = 0.25(PET) and z = 3,64(PET).
Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength
NASA Astrophysics Data System (ADS)
Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.
2017-09-01
Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as
Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul
2017-09-12
Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.
Rough Interface Effects on N-S Proximity-Contact Systems
NASA Astrophysics Data System (ADS)
Nagato, Yasushi; Nagai, Katsuhiko
2003-03-01
We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic d
Friction of atomically stepped surfaces
NASA Astrophysics Data System (ADS)
Dikken, R. J.; Thijsse, B. J.; Nicola, L.
2017-03-01
The friction behavior of atomically stepped metal surfaces under contact loading is studied using molecular dynamics simulations. While real rough metal surfaces involve roughness at multiple length scales, the focus of this paper is on understanding friction of the smallest scale of roughness: atomic steps. To this end, periodic stepped Al surfaces with different step geometry are brought into contact and sheared at room temperature. Contact stress that continuously tries to build up during loading, is released with fluctuating stress drops during sliding, according to the typical stick-slip behavior. Stress release occurs not only through local slip, but also by means of step motion. The steps move along the contact, concurrently resulting in normal migration of the contact. The direction of migration depends on the sign of the step, i.e., its orientation with respect to the shearing direction. If the steps are of equal sign, there is a net migration of the entire contact accompanied by significant vacancy generation at room temperature. The stick-slip behavior of the stepped contacts is found to have all the characteristic of a self-organized critical state, with statistics dictated by step density. For the studied step geometries, frictional sliding is found to involve significant atomic rearrangement through which the contact roughness is drastically changed. This leads for certain step configurations to a marked transition from jerky sliding motion to smooth sliding, making the final friction stress approximately similar to that of a flat contact.
Depth resolution and preferential sputtering in depth profiling of sharp interfaces
NASA Astrophysics Data System (ADS)
Hofmann, S.; Han, Y. S.; Wang, J. Y.
2017-07-01
The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahlovy, Shahjada A.; Mahmud, S. F.; Yanagimoto, K.
The authors have conducted research regarding ripple formation on an atomically flat cleaved Si surface by low-energy Ar{sup +} ion bombardment. The cleaved atomically flat and smooth plane of a Si wafer was obtained by cutting vertically against the orientation of a Si (100) wafer. Next, the cleaved surface was sputtered by a 1 keV Ar{sup +} ion beam at ion-incidence angles of 0 deg., 60 deg., 70 deg., and 80 deg. The results confirm the successful ripple formation at ion-incidence angles of 60 deg. - 80 deg. and that the wavelength of the ripples increases with the increase ofmore » the ion-incidence angle, as well as the inverse of ion doses. The direction of the ripple also changes from perpendicular to parallel to the projection of the ion-beam direction along the surface with the increasing ion-incidence angle. The authors have also observed the dose effects on surface roughness of cleaved Si surface at the ion-incidence angle of 60 deg., where the surface roughness increases with the increased ion dose. Finally, to understand the roughening mechanism, the authors studied the scaling behavior, measured the roughness exponent {alpha}, and compared the evolution of scaling regimes with Cuerno's one-dimensional simulation results.« less
Formation and metrology of dual scale nano-morphology on SF(6) plasma etched silicon surfaces.
Boulousis, G; Constantoudis, V; Kokkoris, G; Gogolides, E
2008-06-25
Surface roughness and nano-morphology in SF(6) plasma etched silicon substrates are investigated in a helicon type plasma reactor as a function of etching time and process parameters. The plasma etched surfaces are analyzed by atomic force microscopy. It is found that dual scale nano-roughness is formatted on the silicon surface comprising an underlying nano-roughness and superimposed nano-mounds. Detailed metrological quantification is proposed for the characterization of dual scale surface morphology. As etching proceeds, the mounds become higher, fewer and wider, and the underlying nano-roughness also increases. Increase in wafer temperature leads to smoother surfaces with lower, fewer and wider nano-mounds. A mechanism based on the deposition of etch inhibiting particles during the etching process is proposed for the explanation of the experimental behavior. In addition, appropriately designed experiments are conducted, and they confirm the presence of this mechanism.
van Spengen, W Merlijn; Turq, Viviane; Frenken, Joost W M
2010-01-01
We have replaced the periodic Prandtl-Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.
Graphene thickness dependent adhesion force and its correlation to surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourzand, Hoorad; Tabib-Azar, Massood, E-mail: azar.m@utah.edu; Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112
2014-04-28
In this paper, adhesion force of graphene layers on 300 nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesionmore » force measurement results.« less
Atom chips in the real world: the effects of wire corrugation
NASA Astrophysics Data System (ADS)
Schumm, T.; Estève, J.; Figl, C.; Trebbia, J.-B.; Aussibal, C.; Nguyen, H.; Mailly, D.; Bouchoule, I.; Westbrook, C. I.; Aspect, A.
2005-02-01
We present a detailed model describing the effects of wire corrugation on the trapping potential experienced by a cloud of atoms above a current carrying micro wire. We calculate the distortion of the current distribution due to corrugation and then derive the corresponding roughness in the magnetic field above the wire. Scaling laws are derived for the roughness as a function of height above a ribbon shaped wire. We also present experimental data on micro wire traps using cold atoms which complement some previously published measurements [CITE] and which demonstrate that wire corrugation can satisfactorily explain our observations of atom cloud fragmentation above electroplated gold wires. Finally, we present measurements of the corrugation of new wires fabricated by electron beam lithography and evaporation of gold. These wires appear to be substantially smoother than electroplated wires.
Huang, Shiping
2017-11-13
The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.
Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales
NASA Astrophysics Data System (ADS)
Huang, Shiping
2017-11-01
The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.
Scaling law analysis of paraffin thin films on different surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotto, M. E. R.; Camargo, S. S. Jr.
2010-01-15
The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substratesmore » present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.« less
Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition
NASA Astrophysics Data System (ADS)
Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.
2008-03-01
Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.
Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.
NASA Astrophysics Data System (ADS)
Shindler, Joseph Daniel
X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
Trapped atom number in millimeter-scale magneto-optical traps
NASA Astrophysics Data System (ADS)
Hoth, Gregory W.; Donley, Elizabeth A.; Kitching, John
2012-06-01
For compact cold-atom instruments, it is desirable to trap a large number of atoms in a small volume to maximize the signal-to-noise ratio. In MOTs with beam diameters of a centimeter or larger, the slowing force is roughly constant versus velocity and the trapped atom number scales as d^4. For millimeter-scale MOTs formed from pyramidal reflectors, a d^6 dependence has been observed [Pollack et al., Opt. Express 17, 14109 (2009)]. A d^6 scaling is expected for small MOTs, where the slowing force is proportional to the atom velocity. For a 1 mm diameter MOT, a d^6 scaling results in 10 atoms, and the difference between a d^4 and a d^6 dependence corresponds to a factor of 1000 in atom number and a factor of 30 in the signal-to-noise ratio. We have observed >10^4 atoms in 1 mm diameter MOTs, consistent with a d^4 dependence. We are currently performing measurements for sub-mm MOTs to determine where the d^4 to d^6 crossover occurs in our system. We are also exploring MOTs based on linear polarization, which can potentially produce stronger slowing forces due to stimulated emission [Emile et al., Europhys. Lett. 20, 687 (1992)]. It may be possible to trap more atoms in small volumes with this method, since high intensities can be easily achieved.
Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale.
Eder, S J; Feldbauer, G; Bianchi, D; Cihak-Bayr, U; Betz, G; Vernes, A
2015-07-10
Using molecular dynamics, we simulate the abrasion process of an atomically rough Fe surface with multiple hard abrasive particles. By quantifying the nanoscopic wear depth in a time-resolved fashion, we show that Barwell's macroscopic wear law can be applied at the atomic scale. We find that in this multiasperity contact system, the Bowden-Tabor term, which describes the friction force as a function of the real nanoscopic contact area, can predict the kinetic friction even when wear is involved. From this the Derjaguin-Amontons-Coulomb friction law can be recovered, since we observe a linear dependence of the contact area on the applied load in accordance with Greenwood-Williamson contact mechanics.
Automated AFM for small-scale and large-scale surface profiling in CMP applications
NASA Astrophysics Data System (ADS)
Zandiatashbar, Ardavan; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il
2018-03-01
As the feature size is shrinking in the foundries, the need for inline high resolution surface profiling with versatile capabilities is increasing. One of the important areas of this need is chemical mechanical planarization (CMP) process. We introduce a new generation of atomic force profiler (AFP) using decoupled scanners design. The system is capable of providing small-scale profiling using XY scanner and large-scale profiling using sliding stage. Decoupled scanners design enables enhanced vision which helps minimizing the positioning error for locations of interest in case of highly polished dies. Non-Contact mode imaging is another feature of interest in this system which is used for surface roughness measurement, automatic defect review, and deep trench measurement. Examples of the measurements performed using the atomic force profiler are demonstrated.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2018-03-01
One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.
Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials
NASA Astrophysics Data System (ADS)
Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.
2017-12-01
Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.
Electropolishing effect on roughness metrics of ground stainless steel: a length scale study
NASA Astrophysics Data System (ADS)
Nakar, Doron; Harel, David; Hirsch, Baruch
2018-03-01
Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (<0.1 µm) to stylus and optical profilometry in the micro- and mesoscales (0.1 µm-1 mm). This paper presents an experimental length scale study of the surface texture of ground stainless steel followed by an electropolishing process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.
NASA Technical Reports Server (NTRS)
Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.
1994-01-01
A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.
Adsorption of silica colloids onto like-charged silica surfaces of different roughness
Dylla-Spears, R.; Wong, L.; Shen, N.; ...
2017-01-17
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar
The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less
Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights
NASA Astrophysics Data System (ADS)
Rasmuson, J. A.; Johnson, W. P.
2017-12-01
A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector surfaces with the greatest RMS roughness had the highest sensitivity to the placement of the contact surface. These findings highlight the need for accurate and representative AFM measurements and have important implications for future transport models.
Pezzotti, Giuseppe; Saito, Takuma; Padeletti, Giuseppina; Cossari, Pierluigi; Yamamoto, Kengo
2010-06-01
The aim of this study was to perform a surface morphology assessment with nanometer scale resolution on femoral heads made of an advanced zirconia toughened alumina (ZTA) composite. Femoral heads were characterized to a degree of statistical accuracy in the as-received state and after exposures up to 100 h in severe vapor-moist environment. Surface screening was made using an atomic force microscope (AFM). Scanning was systematically repeated on portions of surface as large as several tens of micrometers, randomly selected on the head surface, to achieve sufficient statistical reliability without lowering the nanometer-scale spatial resolution of the roughness measurement. No significant difference was found in the recorded values of surface roughness after environmental exposure (at 134 degrees C, under 2 bar), which was always comparable to that of the as-received head. Surface roughness safely lay <10 nm after environmental exposures up to 100 h, which corresponded to an exposure time in vivo of several human lifetimes (i.e., according to an experimentally derived thermal activation energy). In addition, the roughness results were significantly (about one order of magnitude) lower as compared to those recorded on femoral heads made of monolithic zirconia tested under the same conditions. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng
2017-10-01
Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.
NASA Astrophysics Data System (ADS)
Jolivet, S.; Mezghani, S.; El Mansori, M.
2016-09-01
The replication of topography has been generally restricted to optimizing material processing technologies in terms of statistical and single-scale features such as roughness. By contrast, manufactured surface topography is highly complex, irregular, and multiscale. In this work, we have demonstrated the use of multiscale analysis on replicates of surface finish to assess the precise control of the finished replica. Five commercial resins used for surface replication were compared. The topography of five standard surfaces representative of common finishing processes were acquired both directly and by a replication technique. Then, they were characterized using the ISO 25178 standard and multiscale decomposition based on a continuous wavelet transform, to compare the roughness transfer quality at different scales. Additionally, atomic force microscope force modulation mode was used in order to compare the resins’ stiffness properties. The results showed that less stiff resins are able to replicate the surface finish along a larger wavelength band. The method was then tested for non-destructive quality control of automotive gear tooth surfaces.
Influence of Si wafer thinning processes on (sub)surface defects
NASA Astrophysics Data System (ADS)
Inoue, Fumihiro; Jourdain, Anne; Peng, Lan; Phommahaxay, Alain; De Vos, Joeri; Rebibis, Kenneth June; Miller, Andy; Sleeckx, Erik; Beyne, Eric; Uedono, Akira
2017-05-01
Wafer-to-wafer three-dimensional (3D) integration with minimal Si thickness can produce interacting multiple devices with significantly scaled vertical interconnections. Realizing such a thin 3D structure, however, depends critically on the surface and subsurface of the remaining backside Si after the thinning processes. The Si (sub)surface after mechanical grinding has already been characterized fruitfully for a range of few dozen of μm. Here, we expand the characterization of Si (sub)surface to 5 μm thickness after thinning process on dielectric bonded wafers. The subsurface defects and damage layer were investigated after grinding, chemical mechanical polishing (CMP), wet etching and plasma dry etching. The (sub)surface defects were characterized using transmission microscopy, atomic force microscopy, and positron annihilation spectroscopy. Although grinding provides the fastest removal rate of Si, the surface roughness was not compatible with subsequent processing. Furthermore, mechanical damage such as dislocations and amorphous Si cannot be reduced regardless of Si thickness and thin wafer handling systems. The CMP after grinding showed excellent performance to remove this grinding damage, even though the removal amount is 1 μm. For the case of Si thinning towards 5 μm using grinding and CMP, the (sub)surface is atomic scale of roughness without vacancy. For the case of grinding + dry etch, vacancy defects were detected in subsurface around 0.5-2 μm. The finished surface after wet etch remains in the nm scale in the strain region. By inserting a CMP step in between grinding and dry etch it is possible to significantly reduce not only the roughness, but also the remaining vacancies at the subsurface. The surface of grinding + CMP + dry etching gives an equivalent mono vacancy result as to that of grinding + CMP. This combination of thinning processes allows development of extremely thin 3D integration devices with minimal roughness and vacancy surface.
NASA Astrophysics Data System (ADS)
Feng, Feng; Zhang, Xiangsong; Qu, Timing; Liu, Binbin; Huang, Junlong; Li, Jun; Xiao, Shaozhu; Han, Zhenghe; Feng, Pingfa
2018-04-01
In the fabrication of a high-temperature superconducting coated conductor, the surface roughness and texture of buffer layers can significantly affect the epitaxially grown superconductor layer. A biaxially textured MgO buffer layer fabricated by ion beam assisted deposition (IBAD) is widely used in the coated conductor manufacture due to its low thickness requirement. In our previous study, a new method called energetic particle self-assisted deposition (EPSAD), which employed only a sputtering deposition apparatus without an ion source, was proposed for fabricating biaxially textured MgO films on non-textured substrates. In this study, our aim was to investigate the deposition mechanism of EPSAD-MgO thin films. The behavior of the surface roughness (evaluated by Rq) was studied using atomic force microscopy (AFM) measurements with three scan scales, while the in-plane and out-of-plane textures were measured using X-ray diffraction (XRD). It was found that the variations of surface roughness and textures along with the increase in the thickness of EPSAD-MgO samples were very similar to those of IBAD-MgO reported in the literature, revealing the similarity of their deposition mechanisms. Moreover, fractal geometry was utilized to conduct the scaling analysis of EPSAD-MgO film's surface. Different scaling behaviors were found in two scale ranges, and the indications of the fractal properties in different scale ranges were discussed.
Friction laws at the nanoscale.
Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela
2009-02-26
Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.
Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds
NASA Astrophysics Data System (ADS)
Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh
2016-02-01
A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Alok, E-mail: alok.ranjan@us.tel.com; Wang, Mingmei; Sherpa, Sonam D.
2016-05-15
Atomic or layer by layer etching of silicon exploits temporally segregated self-limiting adsorption and material removal steps to mitigate the problems associated with continuous or quasicontinuous (pulsed) plasma processes: selectivity loss, damage, and profile control. Successful implementation of atomic layer etching requires careful choice of the plasma parameters for adsorption and desorption steps. This paper illustrates how process parameters can be arrived at through basic scaling exercises, modeling and simulation, and fundamental experimental tests of their predictions. Using chlorine and argon plasma in a radial line slot antenna plasma source as a platform, the authors illustrate how cycle time, ionmore » energy, and radical to ion ratio can be manipulated to manage the deviation from ideality when cycle times are shortened or purges are incomplete. Cell based Monte Carlo feature scale modeling is used to illustrate profile outcomes. Experimental results of atomic layer etching processes are illustrated on silicon line and space structures such that iso-dense bias and aspect ratio dependent free profiles are produced. Experimental results also illustrate the profile control margin as processes move from atomic layer to multilayer by layer etching. The consequence of not controlling contamination (e.g., oxygen) is shown to result in deposition and roughness generation.« less
NASA Astrophysics Data System (ADS)
Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.
2015-11-01
The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.
Measuring Roughnesses Of Optical Surfaces
NASA Technical Reports Server (NTRS)
Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.
1994-01-01
Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.
NASA Astrophysics Data System (ADS)
Kandel, Yudhishthir; Chandonait, Jonathan; Melvin, Lawrence S.; Marokkey, Sajan; Yan, Qiliang; Grzeskowiak, Steven; Painter, Benjamin; Denbeaux, Gregory
2017-03-01
Extreme ultraviolet (EUV) lithography at 13.5 nm stands at the crossroads of next generation patterning technology for high volume manufacturing of integrated circuits. Photo resist models that form the part of overall pattern transform model for lithography play a vital role in supporting this effort. The physics and chemistry of these resists must be understood to enable the construction of accurate models for EUV Optical Proximity Correction (OPC). In this study, we explore the possibility of improving EUV photo-resist models by directly correlating the parameters obtained from experimentally measured atomic scale physical properties; namely, the effect of interaction of EUV photons with photo acid generators in standard chemically amplified EUV photoresist, and associated electron energy loss events. Atomic scale physical properties will be inferred from the measurements carried out in Electron Resist Interaction Chamber (ERIC). This study will use measured physical parameters to establish a relationship with lithographically important properties, such as line edge roughness and CD variation. The data gathered from these measurements is used to construct OPC models of the resist.
Surface kinetic roughening caused by dental erosion: An atomic force microscopy study
NASA Astrophysics Data System (ADS)
Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco
2008-05-01
Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.
Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D
2013-01-08
We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.
Molecular transport through capillaries made with atomic-scale precision
NASA Astrophysics Data System (ADS)
Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.
2016-10-01
Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir
Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layermore » due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dylla-Spears, R.; Wong, L.; Shen, N.
Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less
Wetting Hysteresis at the Molecular Scale
NASA Technical Reports Server (NTRS)
Jin, Wei; Koplik, Joel; Banavar, Jayanth R.
1996-01-01
The motion of a fluid-fluid-solid contact line on a rough surface is well known to display hysteresis in the contact angle vs. velocity relationship. In order to understand the phenomenon at a fundamental microscopic level, we have conducted molecular dynamics computer simulations of a Wilhelmy plate experiment in which a solid surface is dipped into a liquid bath, and the force-velocity characteristics are measured. We directly observe a systematic variation of force and contact angle with velocity, which is single-valued for the case of an atomically smooth solid surface. In the microscopically rough case, however, we find (as intuitively expected) an open hysteresis loop. Further characterization of the interface dynamics is in progress.
Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.
Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja
2018-06-26
nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.
Surface wettability of an atomically heterogeneous system and the resulting intermolecular forces
NASA Astrophysics Data System (ADS)
Chatterjee, Sanghamitro; Bhattacharjee, Sudeep; Maurya, Sanjeev K.; Srinivasan, Vyas; Khare, Krishnacharya; Khandekar, Sameer
2017-06-01
We present the effect of 0.5 keV Ar+ beam irradiation on the wetting properties of metallic thin films. Observations reveal a transition from hydrophilic to hydrophobic nature at higher beam fluences which can be attributed to a reduction in net surface free energy. In this low-energy regime, ion beams do not induce significant surface roughness and chemical heterogeneity. However, they cause implantation of atomic impurities in the near surface region of the target and thus form a heterogeneous system at atomic length scales. Interestingly, the presence of implanted Ar atoms in the near surface region modifies the dispersive intermolecular interaction near the surface but induces no chemical modification due to their inert nature. On this basis, we have developed a theoretical model consistent with the experimental observations that reproduces the effective Hamaker constant with a reasonable accuracy.
Slipping and friction at the interface between two-dimensional materials
NASA Astrophysics Data System (ADS)
Sreenivas, Vijayashree Parsi; Nicholl, Ryan; Bolotin, Kirill
Friction at the macroscopic scale is primarily due to the surface roughness while at the atomic scale it is governed by commensurability and environmental conditions. Here, we investigate slipping and friction at the interface between two dissimilar two-dimensional materials, such as graphene and monolayer molybdenum disulfide. Such a system provides a powerful platform to study frictional forces at the atomic scale as chemical nature of the interface and commensurability between the layers can be varied with ease. To carry out such a study, a monolayer of e.g. graphene is exfoliated onto a flexible substrate material - polypropylene - and clamped down by evaporating titanium to avoid slippage. A monolayer of e.g. MoS2 is then transferred on top of graphene and the entire stack is strained using a four point bending apparatus. By measuring strain vs. bending via Raman spectroscopy, we detect slippage at graphene/MoS2 interface and characterize frictional forces as a function of interface parameters.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Characterizing the surface roughness of thermomechanical pulp fibers with atomic force microscopy
Rebecca Snell; Leslie H. Groom; Timothy G. Rials
2001-01-01
Loblolly pine, separated into mature and juvenile portions, was refined at various pressures (4, 8 and 12 bar). Fiber surfaces were investigated using a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). Refiner pressure had a significant effect on the fiber surefaces. SEM images showed an apparent increase in surface roughness with increased...
Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters
NASA Astrophysics Data System (ADS)
Dillinger, Sebastian; Mohrbach, Jennifer; Niedner-Schatteburg, Gereon
2017-11-01
We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5-20, m = 1 - mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.
Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee
2016-08-07
In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less
2009-04-06
samples to gauge their roughness. The study was conducted using a Dimension 3100 atomic force microscope produced by Veeco, and using tips produced...image of the sample, along with a close up of the gage section highlighting the notch. Gauge sections were 2 mm long, having 200, 160 and 100μm widths...and slots with semicircular ends which spanned 33% of the gauge widths and had a 3μm root radius. The thickness of the films was reported to be
Surface roughness analysis of fiber post conditioning processes.
Mazzitelli, C; Ferrari, M; Toledano, M; Osorio, E; Monticelli, F; Osorio, R
2008-02-01
The chemo-mechanical surface treatment of fiber posts increases their bonding properties. The combined use of atomic force and confocal microscopy allows for the assessment and quantification of the changes on surface roughness that justify this behavior. Quartz fiber posts were conditioned with different chemicals, as well as by sandblasting, and by an industrial silicate/silane coating. We analyzed post surfaces by atomic force microscopy, recording average roughness (R(a)) measurements of fibers and resin matrix. A confocal image profiler allowed for the quantitative assessment of the average superficial roughness (R(a)). Hydrofluoric acid, potassium permanganate, sodium ethoxide, and sandblasting increased post surface roughness. Modifications of the epoxy resin matrix occurred after the surface pre-treatments. Hydrofluoric acid affected the superficial texture of quartz fibers. Surface-conditioning procedures that selectively react with the epoxy-resin matrix of the fiber post enhance roughness and improve the surface area available for adhesion by creating micro-retentive spaces without affecting the post's inner structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.
2015-05-15
This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less
NASA Astrophysics Data System (ADS)
Pooja, Pathania, Y.; Ahluwalia, P. K.
2015-05-01
This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.
2007-12-12
Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The image is an average of the activity over a (roughly) 3-hour period. http://photojournal.jpl.nasa.gov/catalog/PIA10094
Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W
2010-04-01
Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.
A quantitative AFM analysis of nano-scale surface roughness in various orthodontic brackets.
Lee, Gi-Ja; Park, Ki-Ho; Park, Young-Guk; Park, Hun-Kuk
2010-10-01
In orthodontics, the surface roughnesses of orthodontic archwire and brackets affect the effectiveness of arch-guided tooth movement, corrosion behavior, and the aesthetics of orthodontic components. Atomic force microscopy (AFM) measurements were used to provide quantitative information on the surface roughness of the orthodontic material. In this study, the changes in surface roughness of various orthodontic bracket slots before and after sliding movement of archwire in vitro and in vivo were observed through the utilization of AFM. Firstly, we characterized the surface of four types of brackets slots as follows: conventional stainless steel (Succes), conventional ceramic (Perfect), self-ligating stainless steel (Damon) and self-ligating ceramic (Clippy-C) brackets. Succes) and Damon brackets showed relatively smooth surfaces, while Perfect had the roughest surface among the four types of brackets used. Secondly, after in vitro sliding test with beta titanium wire in two conventional brackets (Succes and Perfect), there were significant increases in only stainless steel bracket, Succes. Thirdly, after clinical orthodontic treatment for a maximum of 2 years, the self-ligating stainless steel bracket, Damon, showed a significant increase in surface roughness. But self-ligating ceramic brackets, Clippy-C, represented less significant changes in roughness parameters than self-ligating stainless steel ones. Based on the results of the AFM measurements, it is suggested that the self-ligating ceramic bracket has great possibility to exhibit less friction and better biocompatibility than the other tested brackets. This implies that these bracket slots will aid in the effectiveness of arch-guided tooth movement.
NASA Astrophysics Data System (ADS)
Dou, Z.
2017-12-01
In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness-induced Non-Fickian transport behaviors.
Surface Roughness of Various Diamond-Like Carbon Films
NASA Astrophysics Data System (ADS)
Liu, Dongping; Liu, Yanhong; Chen, Baoxiang
2006-11-01
Atomic force microscopy is used to estimate and compare the surface morphology of hydrogenated and hydrogen-free diamond-like carbon (DLC) films. The films were prepared by using DC magnetron sputtering of a graphite target, pulsed cathodic carbon arcs, electron cyclotron resonance (ECR), plasma source ion implantation and dielectric barrier discharge (DBD). The difference in the surface structure is presented for each method of deposition. The influences of various discharge parameters on the film surface properties are discussed based upon the experimental results. The coalescence process via the diffusion of adsorbed carbon species is responsible for the formation of hydrogen-free DLC films with rough surfaces. The films with surface roughness at an atomic level can be deposited by energetic ion impacts in a highly ionized carbon plasma. The dangling bonds created by atomic hydrogen lead to the uniform growth of hydrocarbon species at the a-C:H film surfaces of the ECR or DBD plasmas.
Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.
Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina
2014-08-12
It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.
Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces
NASA Astrophysics Data System (ADS)
Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.
2004-06-01
The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.
Scaling laws of Rydberg excitons
NASA Astrophysics Data System (ADS)
Heckötter, J.; Freitag, M.; Fröhlich, D.; Aßmann, M.; Bayer, M.; Semina, M. A.; Glazov, M. M.
2017-09-01
Rydberg atoms have attracted considerable interest due to their huge interaction among each other and with external fields. They demonstrate characteristic scaling laws in dependence on the principal quantum number n for features such as the magnetic field for level crossing or the electric field of dissociation. Recently, the observation of excitons in highly excited states has allowed studying Rydberg physics in cuprous oxide crystals. Fundamentally different insights may be expected for Rydberg excitons, as the crystal environment and associated symmetry reduction compared to vacuum give not only optical access to many more states within an exciton multiplet but also extend the Hamiltonian for describing the exciton beyond the hydrogen model. Here we study experimentally and theoretically the scaling of several parameters of Rydberg excitons with n , for some of which we indeed find laws different from those of atoms. For others we find identical scaling laws with n , even though their origin may be distinctly different from the atomic case. At zero field the energy splitting of a particular multiplet n scales as n-3 due to crystal-specific terms in the Hamiltonian, e.g., from the valence band structure. From absorption spectra in magnetic field we find for the first crossing of levels with adjacent principal quantum numbers a Br∝n-4 dependence of the resonance field strength, Br, due to the dominant paramagnetic term unlike for atoms for which the diamagnetic contribution is decisive, resulting in a Br∝n-6 dependence. By contrast, the resonance electric field strength shows a scaling as Er∝n-5 as for Rydberg atoms. Also similar to atoms with the exception of hydrogen we observe anticrossings between states belonging to multiplets with different principal quantum numbers at these resonances. The energy splittings at the avoided crossings scale roughly as n-4, again due to crystal specific features in the exciton Hamiltonian. The data also allow us to assess the susceptibility of Rydberg excitons to the external fields: The crossover field strength in magnetic field from a hydrogenlike exciton to a magnetoexciton dominated by electron and hole Landau level quantization scales as n-3. In electric field, on the other hand, we observe the exciton polarizability to scale as n7. At higher fields, the exciton ionization can be studied with ionization voltages that demonstrate an n-4 scaling law. Particularly interesting is the field dependence of the width of the absorption lines which remains constant before dissociation for high enough n , while for small n ≲12 an exponential increase is found. These results are in excellent agreement with theoretical predictions.
Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.
NASA Astrophysics Data System (ADS)
Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.
2015-12-01
The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.
Effects of Surface Nonuniformities on the Mean Transverse Energy from Photocathodes
NASA Astrophysics Data System (ADS)
Karkare, Siddharth; Bazarov, Ivan
2015-08-01
The performance of photoinjectors is limited by the lowest value of the mean transverse energy of the electrons obtained from photocathodes. The factors that influence the mean transverse energy are poorly understood. In this paper, we develop models to calculate the effect of spatial work-function variations and subnanometer-scale roughness and surface defects on the mean transverse energy. We show that these can limit the lowest value of mean transverse energy achieved and that atomically perfect surfaces will be required to further reduce the mean transverse energy obtained from photocathodes.
Yang, X I A; Meneveau, C
2017-04-13
In recent years, there has been growing interest in large-eddy simulation (LES) modelling of atmospheric boundary layers interacting with arrays of wind turbines on complex terrain. However, such terrain typically contains geometric features and roughness elements reaching down to small scales that typically cannot be resolved numerically. Thus subgrid-scale models for the unresolved features of the bottom roughness are needed for LES. Such knowledge is also required to model the effects of the ground surface 'underneath' a wind farm. Here we adapt a dynamic approach to determine subgrid-scale roughness parametrizations and apply it for the case of rough surfaces composed of cuboidal elements with broad size distributions, containing many scales. We first investigate the flow response to ground roughness of a few scales. LES with the dynamic roughness model which accounts for the drag of unresolved roughness is shown to provide resolution-independent results for the mean velocity distribution. Moreover, we develop an analytical roughness model that accounts for the sheltering effects of large-scale on small-scale roughness elements. Taking into account the shading effect, constraints from fundamental conservation laws, and assumptions of geometric self-similarity, the analytical roughness model is shown to provide analytical predictions that agree well with roughness parameters determined from LES.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Electrical and optical properties of ITO and ITO/Cr-doped ITO films
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Cesaria, M.; Luches, A.; Martino, M.; Maruccio, G.; Valerini, D.; Catalano, M.; Cola, A.; Manera, M. G.; Lomascolo, M.; Taurino, A.; Rella, R.
2010-12-01
In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spin-polarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological and electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as ˜4×10-4 Ω cm, an energy gap of ˜4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (˜0.4-0.5 nm) and resistivity (up to ˜8×10-4 Ω cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.
Rock discontinuity surface roughness variation with scale
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2017-04-01
ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We hypothesize that roughness can increase or decrease with the joint size, depending on the large scale roughness (or waviness), which is entering the roughness calculation once the discontinuity size increases. Therefore, our objective is to characterize roughness at various spatial scales, rather than at changing surface size. Firstly, the rock surface is interpolated into a grid on which a Discrete Wavelet Transform (DWT) is applied. The resulting surface components have different frequencies, or in other words, they have a certain physical scale depending on the decomposition level and input grid resolution. Secondly, the Grasselli Parameter is computed for the original and each decomposed surface. Finally, the relative roughness change is analyzed with respect to increasing roughness wavelength for four different rock samples. The scale variation depends on the sample itself and thus indicates its potential mechanical behavior. References: - Barton, N. and V. Choubey (1977). "The shear strength of rock joints in theory and practice." Rock Mechanics and Rock Engineering 10(1): 1-54. - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Tatone, B. S. A. and G. Grasselli (2009). "A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials." Review of Scientific Instruments 80(12) - Tatone, B. and G. Grasselli (2012). "An Investigation of Discontinuity Roughness Scale Dependency Using High-Resolution Surface Measurements." Rock Mechanics and Rock Engineering: 1-25.
Fractal analysis as a potential tool for surface morphology of thin films
NASA Astrophysics Data System (ADS)
Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.
2017-12-01
Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.
Pt thermal atomic layer deposition for silicon x-ray micropore optics.
Takeuchi, Kazuma; Ezoe, Yuichiro; Ishikawa, Kumi; Numazawa, Masaki; Terada, Masaru; Ishi, Daiki; Fujitani, Maiko; Sowa, Mark J; Ohashi, Takaya; Mitsuda, Kazuhisa
2018-04-20
We fabricated a silicon micropore optic using deep reactive ion etching and coated by Pt with atomic layer deposition (ALD). We confirmed that a metal/metal oxide bilayer of Al 2 O 3 ∼10 nm and Pt ∼20 nm was successfully deposited on the micropores whose width and depth are 20 μm and 300 μm, respectively. An increase of surface roughness of sidewalls of the micropores was observed with a transmission electron microscope and an atomic force microscope. X-ray reflectivity with an Al Kα line at 1.49 keV before and after the deposition was measured and compared to ray-tracing simulations. The surface roughness of the sidewalls was estimated to increase from 1.6±0.2 nm rms to 2.2±0.2 nm rms. This result is consistent with the microscope measurements. Post annealing of the Pt-coated optic at 1000°C for 2 h showed a sign of reduced surface roughness and better angular resolution. To reduce the surface roughness, possible methods such as the annealing after deposition and a plasma-enhanced ALD are discussed.
NASA Astrophysics Data System (ADS)
Rominu, Roxana O.; Rominu, Mihai; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Pop, Daniela; Petrescu, Emanuela
2010-12-01
PURPOSE: The goal of our study was to investigate the changes in enamel surface roughess induced by the application of different chemical substances by atomic force microscopy and scanning electron microscopy. METHOD: Five sound human first upper premolar teeth were chosen for the study. The buccal surface of each tooth was treated with a different chemical agent as follows: Sample 1 - 38% phosphoric acid etching (30s) , sample 2 - no surface treatment (control sample), 3 - bleaching with 37.5 % hydrogen peroxide (according to the manufacturer's instructions), 4 - conditioning with a self-etching primer (15 s), 5 - 9.6 % hydrofluoric acid etching (30s). All samples were investigated by atomic force microscopy in a non-contact mode and by scanning electron microscopy. Several images were obtained for each sample, showing evident differences regarding enamel surface morphology. The mean surface roughness and the mean square roughness were calculated and compared. RESULTS: All chemical substances led to an increased surface roughness. Phosphoric acid led to the highest roughness while the control sample showed the lowest. Hydrofluoric acid also led to an increase in surface roughness but its effects have yet to be investigated due to its potential toxicity. CONCLUSIONS: By treating the human enamel with the above mentioned chemical compounds a negative microretentive surface is obtained, with a morphology depending on the applied substance.
Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur
2014-01-01
Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Hui; Endo, Katsuyoshi; Yamamura, Kazuya, E-mail: yamamura@upst.eng.osaka-u.ac.jp
2015-08-03
Chemical mechanical polishing (CMP) combined with atmospheric-pressure plasma pretreatment was applied to a GaN (0001) substrate. The irradiation of a CF{sub 4}-containing plasma was proven to be very useful for modifying the surface of GaN. When CMP was conducted on a plasma-irradiated surface, a modified layer of GaF{sub 3} acted as a protective layer on GaN by preventing the formation of etch pits. Within a short duration (8 min) of CMP using a commercially available CeO{sub 2} slurry, an atomically flat surface with a root mean square (rms) roughness of 0.11 nm was obtained. Moreover, etch pits, which are inevitably introduced inmore » conventional CMP, could not be observed at the dislocation sites on the polished GaN surface. It was revealed that CMP combined with the plasma pretreatment was very effective for obtaining a pit-free and atomically flat GaN surface.« less
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce; Lenczewski, Mary; Demko, Rikako
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.
Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli
2011-04-01
Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.
Current at domain walls, roughly speaking: nanoscales studies of disorder roughening and conduction
NASA Astrophysics Data System (ADS)
Paruch, Patrycja
2013-03-01
Domain walls in (multi)ferroic materials are the thin elastic interfaces separating regions with different orientations of magnetisation, electric polarisation, or spontaneous strain. Understanding their behaviour, and controlling domain size and stability, is key for their integration into applications, while fundamentally, domain walls provide an excellent model system in which the rich physics of disordered elastic interfaces can be accesses. In addition, domain walls can present novel properties, quite different from those of their parent materials, making them potentially useful as active components in future nano-devices. Here, we present our atomic force microscopy studies of ferroelectric domain walls in epitaxial Pb(Zr0.2Ti0.8)O3 and BiFeO3 thin films, in which we use piezorespose force microscopy to show unusual domain wall roughening behaviour, with very localised disorder regions in the sample leading to a complex, multi-affine scaling of the domain wall shape. We also show the effects of temperature, environmental conditions, and defects on switching dynamics and domain wall roughness. We combine these observations with parallel conductive-tip atomic force microscopy current measurements, which also show highly localised variations in conduction, and highlight the key role played by oxygen vacancies in the observed domain wall conduction.
Structure formation in Ag-X (X = Au, Cu) alloys synthesized far-from-equilibrium
NASA Astrophysics Data System (ADS)
Elofsson, V.; Almyras, G. A.; Lü, B.; Garbrecht, M.; Boyd, R. D.; Sarakinos, K.
2018-04-01
We employ sub-monolayer, pulsed Ag and Au vapor fluxes, along with deterministic growth simulations, and nanoscale probes to study structure formation in miscible Ag-Au films synthesized under far-from-equilibrium conditions. Our results show that nanoscale atomic arrangement is primarily determined by roughness build up at the film growth front, whereby larger roughness leads to increased intermixing between Ag and Au. These findings suggest a different structure formation pathway as compared to the immiscible Ag-Cu system for which the present study, in combination with previously published data, reveals that no significant roughness is developed, and the local atomic structure is predominantly determined by the tendency of Ag and Cu to phase-separate.
Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.
Poly-Gaussian model of randomly rough surface in rarefied gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksenova, Olga A.; Khalidov, Iskander A.
2014-12-09
Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less
Surface Roughness of the Moon Derived from Multi-frequency Radar Data
NASA Astrophysics Data System (ADS)
Fa, W.
2011-12-01
Surface roughness of the Moon provides important information concerning both significant questions about lunar surface processes and engineering constrains for human outposts and rover trafficabillity. Impact-related phenomena change the morphology and roughness of lunar surface, and therefore surface roughness provides clues to the formation and modification mechanisms of impact craters. Since the Apollo era, lunar surface roughness has been studied using different approaches, such as direct estimation from lunar surface digital topographic relief, and indirect analysis of Earth-based radar echo strengths. Submillimeter scale roughness at Apollo landing sites has been studied by computer stereophotogrammetry analysis of Apollo Lunar Surface Closeup Camera (ALSCC) pictures, whereas roughness at meter to kilometer scale has been studied using laser altimeter data from recent missions. Though these studies shown lunar surface roughness is scale dependent that can be described by fractal statistics, roughness at centimeter scale has not been studied yet. In this study, lunar surface roughnesses at centimeter scale are investigated using Earth-based 70 cm Arecibo radar data and miniature synthetic aperture radar (Mini-SAR) data at S- and X-band (with wavelengths 12.6 cm and 4.12 cm). Both observations and theoretical modeling show that radar echo strengths are mostly dominated by scattering from the surface and shallow buried rocks. Given the different penetration depths of radar waves at these frequencies (< 30 m for 70 cm wavelength, < 3 m at S-band, and < 1 m at X-band), radar echo strengths at S- and X-band will yield surface roughness directly, whereas radar echo at 70-cm will give an upper limit of lunar surface roughness. The integral equation method is used to model radar scattering from the rough lunar surface, and dielectric constant of regolith and surface roughness are two dominate factors. The complex dielectric constant of regolith is first estimated globally using the regolith composition and the relation among the dielectric constant, bulk density, and regolith composition. The statistical properties of lunar surface roughness are described by the root mean square (RMS) height and correlation length, which represent the vertical and horizontal scale of the roughness. The correlation length and its scale dependence are studied using the topography data from laser altimeter observations from recent lunar missions. As these two parameters are known, surface roughness (RMS slope) can be estimated by minimizing the difference between the observed and modeled radar echo strength. Surface roughness of several regions over Oceanus Procellarum and southeastern highlands on lunar nearside are studied, and preliminary results show that maira is smoother than highlands at 70 cm scale, whereas the situation turns opposite at 12 and 4 cm scale. Surface roughness of young craters is in general higher than that of maria and highlands, indicating large rock population produced during impacting process.
Impact of nanotechnology on drug delivery.
Farokhzad, Omid C; Langer, Robert
2009-01-27
Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.
The Backscattering Phase Function for a Sphere with a Two-Scale Relief of Rough Surface
NASA Astrophysics Data System (ADS)
Klass, E. V.
2017-12-01
The backscattering of light from spherical surfaces characterized by one and two-scale roughness reliefs has been investigated. The analysis is performed using the three-dimensional Monte-Carlo program POKS-RG (geometrical-optics approximation), which makes it possible to take into account the roughness of objects under study by introducing local geometries of different levels. The geometric module of the program is aimed at describing objects by equations of second-order surfaces. One-scale roughness is set as an ensemble of geometric figures (convex or concave halves of ellipsoids or cones). The two-scale roughness is modeled by convex halves of ellipsoids, with surface containing ellipsoidal pores. It is shown that a spherical surface with one-scale convex inhomogeneities has a flatter backscattering phase function than a surface with concave inhomogeneities (pores). For a sphere with two-scale roughness, the dependence of the backscattering intensity is found to be determined mostly by the lower-level inhomogeneities. The influence of roughness on the dependence of the backscattering from different spatial regions of spherical surface is analyzed.
Surface roughness: A review of its measurement at micro-/nano-scale
NASA Astrophysics Data System (ADS)
Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.
2018-01-01
The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.
Interface roughness mediated phonon relaxation rates in Si quantum dots.
NASA Astrophysics Data System (ADS)
Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib
2015-03-01
Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.
NASA Astrophysics Data System (ADS)
Luo, Hu; Guo, Meijian; Yin, Shaohui; Chen, Fengjun; Huang, Shuai; Lu, Ange; Guo, Yuanfan
2018-06-01
Zirconia ceramics is a valuable crucial material for fabricating functional components applied in aerospace, biology, precision machinery, military industry and other fields. However, the properties of its high brittleness and high hardness could seriously reduce its finishing efficiency and surface quality by conventional processing technology. In this work, we present a high efficiency and high-quality finishing process by using magnetorheological finishing (MRF), which employs the permanent magnetic yoke with straight air gap as excitation unit. The sub-nanoscale surface roughness and damage free surface can be obtained after magnetorheological finishing. The XRD results and SEM morphologies confirmed that the mechanical shear removal with ductile modes are the dominant material removal mechanism for the magnetorheological finishing of zirconia ceramic. With the developed experimental apparatus, the effects of workpiece speed, trough speed and work gap on material removal rate and surface roughness were systematically investigated. Zirconia ceramics finished to ultra-smooth surface with surface roughness less than Ra 1 nm was repeatedly achieved during the parametric experiments. Additionally, the highest material removal rate exceeded 1 mg/min when using diamond as an abrasive particle. Magnetorheological finishing promises to be an adaptable and efficient method for zirconia ceramics finishing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, Regina; Baker, Sherry L.; Windt, David L.
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less
Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R
2009-01-01
We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.
Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures
NASA Astrophysics Data System (ADS)
Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.
2014-03-01
Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.
NASA Technical Reports Server (NTRS)
Banks, Bruce; Miller, Sharon; deGroh, Kim; Chan, Amy; Sahota, Mandeep
2001-01-01
The application of a microscopic surface texture produced by ion beam sputter texturing to the surfaces of polymer implants has been shown to result in significant increases in cellular attachment compared to smooth surface implants in animal studies. A collaborative program between NASA Glenn Research Center and the Cleveland Clinic Foundation has been established to evaluate the potential for improving osteoblast attachment to surfaces that have been microscopically roughened by atomic oxygen texturing. The range of surface textures that are feasible depends upon both the texturing process and the duration of treatment. To determine whether surface texture saturates or continues to increase with treatment duration, an effort was conducted to examine the development of surface textures produced by various physical and chemical erosion processes. Both experimental tests and computational modeling were performed to explore the growth of surface texture with treatment time. Surface texturing by means of abrasive grit blasting of glass, stainless steel, and polymethylmethacry I ate surfaces was examined to measure the growth in roughness with grit blasting duration by surface profilometry measurements. Laboratory tests and computational modeling was also conducted to examine the development of texture on Aclar(R) (chlorotfifluoroethylene) and Kapton(R) polyimide, respectively. For the atomic oxygen texturing tests of Aclar(R), atomic force microscopy was used to measure the development of texture with atomic oxygen fluence. The results of all the testing and computational modeling support the premise that development of surface roughness obeys Poisson statistics. The results indicate that surface roughness does not saturate but increases as the square root of the treatment time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Man, E-mail: man.nie@helmholtz-berlin.de; Ellmer, Klaus
2014-02-28
Cu(In,Ga)S{sub 2} (CIGS) films were deposited on Mo coated soda lime glass substrates using an electron cyclotron resonance plasma enhanced one-step reactive magnetron co-sputtering process (ECR-RMS). The crystalline quality and the morphology of the Cu(In,Ga)S{sub 2} films were investigated by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray fluorescence. We also compared these CIGS films with films previously prepared without ECR assistance and find that the crystallinity of the CIGS films is correlated with the roughness evolution during deposition. Atomic force microscopy was used to measure the surface topography and to derive one-dimensional power spectral densities (1DPSD). Allmore » 1DPSD spectra of CIGS films exhibit no characteristic peak which is typical for the scaling of a self-affine surface. The growth exponent β, characterizing the roughness R{sub q} evolution during the film growth as R{sub q} ∼ d{sup β}, changes with film thickness. The root-mean-square roughness at low temperatures increases only slightly with a growth exponent β = 0.013 in the initial growth stage, while R{sub q} increases with a much higher exponent β = 0.584 when the film thickness is larger than about 270 nm. Additionally, we found that the H{sub 2}S content of the sputtering atmosphere and the Cu- to-(In + Ga) ratio has a strong influence of the morphology of the CIGS films in this one-step ECR-RMS process.« less
Structural characterization of bulk GaN crystals grown under high hydrostatic pressure
NASA Astrophysics Data System (ADS)
Liliental-Weber, Zuzanna; Kisielowski, C.; Ruvimov, S.; Chen, Y.; Washburn, J.; Grzegory, I.; Bockowski, M.; Jun, J.; Porowski, S.
1996-09-01
This paper describes TEM characterization of bulk GaN crystals grown at 1500-1800Kin the form of plates from a solution of atomic nitrogen in liquid gallium under high nitrogen pressure (up to 20 kbars). The x-ray rocking curves for these crystals were in the range of 20-30 arc-sec. The plate thickness along the c axis was about 100 times smaller than the nonpolar growth directions. A substantial difference in material quality was observed on the opposite sides of the plates normal to the c direction. On one side the surface was atomically flat, while on the other side the surface was rough, with pyramidal features up to 100 nm high. The polarity of the crystals was determined using convergent-beam electron diffraction. The results showed that, regarding the long bond between Ga and N along the c-axis, Ga atoms were found to be closer to the flat side of the crystal, while N atoms were found to be closer to the rough side. Near the rough side, within 1/10 to 1/4 of the plate thickness, there was a high density of planar defects (stacking faults and dislocation loops decorated by Ga/void precipitates). A model explaining the defect formation is proposed.
Vigolo, Paolo; Buzzo, Ottavia; Buzzo, Maurizio; Mutinelli, Sabrina
2017-02-01
Plaque control is crucial for the prevention of inflammatory periodontal disease. Hand scaling instruments have been shown to be efficient for the removal of plaque; however, routine periodontal prophylactic procedures may modify the surface profile of restorative materials. The purpose of this study was to assess in vitro the changes in roughness of alumina, zirconia, and lithium disilicate surfaces treated by two hand scaling instruments. Forty-eight alumina specimens, 48 zirconia specimens, and 48 lithium disilicate specimens, were selected. All specimens were divided into three groups of 16 each; one group for each material was considered the control group and no scaling procedures were performed; the second group of each material was exposed to scaling with steel curettes simulating standard clinical conditions; the third group of each material was exposed to scaling with titanium curettes. After scaling, the surface roughness of the specimens was evaluated with a profilometer. First, a statistical test was carried out to evaluate the difference in surface roughness before the scaling procedure of the three materials was effected (Kruskal-Wallis test). Subsequently, the effect of curette material (steel and titanium) on roughness difference and roughness ratio was analyzed throughout the entire sample and within each material group, and a nonparametric test for dependent values was conducted (Wilcoxon signed-rank test). Finally, the roughness ratios of the three material groups were compared by means of a Kruskal-Wallis test and a Wilcoxon signed-rank test. Upon completion of profilometric evaluation, representative specimens from each group were prepared for SEM evaluation to evaluate the effects of the two scaling systems on the different surfaces qualitatively. After scaling procedure, the roughness profile value increased in all disks. Classifying the full sample according to curette used, the roughness of the disks treated with a steel curette reached a higher median value than that of the titanium group. Zirconia demonstrated the least significant increase in surface roughness. The result was 3.9 times of the initial value as compared to 4.3 times for alumina and 4.6 times for lithium disilicate. Comparison of profilometer readings before and after instrumentation, carried out with different hand scaling instruments, highlighted both a statistically and clinically relevant increase in material roughness. © 2015 by the American College of Prosthodontists.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
NASA Astrophysics Data System (ADS)
Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.
2017-07-01
The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.
NASA Astrophysics Data System (ADS)
Matthews, G. Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys
2017-04-01
Soil hydrophobicity can lead to reduced soil fertility and heightened flood risk caused by increased run-off. Soil hydrophobicity is a well-known phenomenon when induced by natural events such as wildfires and anthropogenic causes including adding organic wastes or hydrocarbon contaminants. This presentation concerns a much more subtle effect - the naturally occurring changes between hydrophilic and hydrophobic states caused by periods of wetness and drought. Although subtle, they nevertheless affect vast areas of soil, and so their effects can be very significant, and are predicted to increase under climate change conditions. To understand the effect, a major interdisciplinary study has been commissioned by the UK's Natural Environment Research Council (NERC) to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. We present the key findings from the many publications currently in preparation. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces, and that these effects can be meaningfully upscaled from molecular to landscape scale. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (natural rough pasture, Wales), intermediate to severe (pasture, Wales), and subcritical (managed research grassland, Rothamsted Research, England). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were determined from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using novel separation methods which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which avoids the averaging over soil cores and particles evident in microliter goniometry, with which the results are compared, (iv) measurements at core scale using water retention and wicking experiments, and (v) the modelling and upscaling of the results from molecular to core scale using the PoreXpert void network model of dynamic wetting and Haines jumps. An explanation will also be given as to how the results will be further upscaled by incorporation into the JULES hydrological model of the UK Meteorological Office, used to predict flooding for different soil types and usage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn
Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller,more » the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.« less
Near atomically smooth alkali antimonide photocathode thin films
Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...
2017-01-24
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Near atomically smooth alkali antimonide photocathode thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun; Karkare, Siddharth; Nasiatka, James
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Surface Roughness Retrieval By Inversion Of Hapke Model: A Multi-scale Approach
NASA Astrophysics Data System (ADS)
Labarre, S.; Ferrari, C. C.; Jacquemoud, S.
2015-12-01
Surface roughness is a key property of soils that affects the various processes involved in their evolution such as solar absorption, erosion or moisture, both on Earth and other Solar System surfaces. In the 80's, B.Hapke provided an approximate analytic solution for the bidirectional reflectance distribution function (BRDF) of a particulate medium and, later on, included the effect of surface roughness as a correction factor for the BRDF of a smooth surface. The effect of roughness on the BRDF is modeled as a shadowing function of the so-called roughness parameter, which is the mean slope angle of the facets composing the surface integrated over all scales from the sub-millimeter to the kilometer scales. Hapke model is widely used in planetary sciences to retrieve the roughness parameter from observed BRDFs. Yet the physical meaning of the retrieved roughness is not clear as the scale at which it happens is not defined. This work aims at understanding the relative impact of the roughness defined at each scale to the BRDF in order to test the ability of the singly retrieved roughness parameter at describing the ground truth. We propose to perform a wavelet analysis on meter-sized digital elevation models (DEM) generated from various volcanic and sedimentary terrains at high-mm-scale spatial resolution. It consists in splitting the DEM in several spatial frequencies and in simulating the BRDF at each scale with a ray-tracing code. Also the global BRDF is simulated so that the relative contribution of each scale can be studied. Then the Hapke model is fitted to the global BRDF to retrieve the roughness parameter. We will expose and discuss the results of this study. Figure: BRDF of a'a lava DEM simulated at varying azimut (φi) and incidence angles (i), in the principal plan. The direction of the light source is given by the colored squares. Mean slope angle of the surface is 36°.
Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays
NASA Astrophysics Data System (ADS)
Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Mao, Shengchun
2015-08-01
Uniform silicon nanowires arrays (SiNWAs) were fabricated on unpolished rough silicon wafers through KOH pretreatment followed by silver-assisted chemical etching (SACE). Density functional theory (DFT) calculations were used to investigate the function of silver (Ag) at atomic scale in the etching process. Among three adsorption sites of Ag atom on Si(1 0 0) surface, Ag(T4) above the fourth-layer surface Si atoms could transfer fluorinion (F-) to adjacent Si successfully due to its stronger electrostatic attraction force between Ag(T4) and F-, smaller azimuth angle of Fsbnd Ag(T4)sbnd Si, shorter bond length of Fsbnd Si compared with Fsbnd Ag. As F- was transferred to adjacent Si by Ag(T4) one by one, the Si got away from the wafer in the form of SiF4 when it bonded with enough F- while Ag(T4) was still attached onto the Si wafer ready for next transfer. Cyclic voltammetry tests confirmed that Ag can improve the etching rate by transferring F- to Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffino, F.; Canino, A.; Grimaldi, M. G.
Very thin Au layer was deposited on Si(100) using the sputtering technique. By annealing at 873 K Au/Si nanodroplets were formed and their self-organization was induced changing the annealing time. The evolution of droplet size distribution, center-to-center distance distribution, and droplet density as a function of the annealing time at 873 K was investigated by Rutherford backscattering spectrometry, atomic force microscopy (AFM), and scanning electron microscopy. As a consequence of such study, the droplet clustering is shown to be a ripening process of hemispherical three-dimensional structures limited by the Au surface diffusion. The application of the ripening theory allowed usmore » to calculate the surface diffusion coefficient and all other parameters needed to describe the entire process. Furthermore, the AFM measurements allowed us to study the roughness evolution of the sputtered Au thin film and compare the experimental data with the dynamic scaling theories of growing interfaces.« less
SRF Cavity Surface Topography Characterization Using Replica Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Xu, M.J. Kelley, C.E. Reece
2012-07-01
To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosenmore » at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.« less
Durkan, C; Wang, N
2014-12-01
To investigate the effect of different washing regimes on the surface of human hair at the nanometre scale - comparable to the size of typical deposits left behind by commercial products. Atomic force microscopy (AFM) and related techniques. It can be directly seen that washing hair using commercial hair care products removes deposits that naturally form on the shaft, revealing the underlying structure of the hair, whereas in many cases leaving new deposits behind. The spatial distribution of these deposits is explored and quantified. The spatial distribution of the surface charge of pristine hair is mapped, and the electrical screening effect of deposits is directly observed. We also show that the roughness of the treated hair depends directly on the type of product used, with a marked difference between shampoo and conditioner. Some products leave isolated deposits behind, whereas others leave layers of material behind which wet the hair surface. Atomic force microscopy and the related techniques we have employed in a forensic approach is able to distinguish between different hair care products on the basis of the deposits they leave behind. This opens up the capability of further analysis tools to complement already existing techniques. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Power Radiated from ITER and CIT by Impurities
DOE R&D Accomplishments Database
Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.
1990-07-01
The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.
Surface quality of silicon wafer improved by hydrodynamic effect polishing
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi
2014-08-01
Differing from the traditional pad polishing, hydrodynamic effect polishing (HEP) is non-contact polishing with the wheel floated on the workpiece. A hydrodynamic lubricated film is established between the wheel and the workpiece when the wheel rotates at a certain speed in HEP. Nanoparticles mixed with deionized water are employed as the polishing slurry, and with action of the dynamic pressure, nanoparticles with high chemisorption due to the high specific surface area can easily reacted with the surface atoms forming a linkage with workpiece surface. The surface atoms are dragged away when nanoparticles are transported to separate by the flow shear stress. The development of grand scale integration put extremely high requirements on the surface quality on the silicon wafer with surface roughness at subnanometer and extremely low surface damage. In our experiment a silicon sample was processed by HEP, and the surface topography before and after polishing was observed by the atomic force microscopy. Experiment results show that plastic pits and bumpy structures on the initial surface have been removed away clearly with the removal depth of 140nm by HEP process. The processed surface roughness has been improved from 0.737nm RMS to 0.175nm RMS(10μm×10μm) and the section profile shows peaks of the process surface are almost at the same height. However, the machining ripples on the wheel surface will duplicate on the silicon surface under the action of the hydrodynamic effect. Fluid dynamic simulation demonstrated that the coarse surface on the wheel has greatly influence on the distribution of shear stress and dynamic pressure on the workpiece surface.
Jumelle, Clotilde; Hamri, Alina; Egaud, Gregory; Mauclair, Cyril; Reynaud, Stephanie; Dumas, Virginie; Pereira, Sandrine; Garcin, Thibaud; Gain, Philippe; Thuret, Gilles
2017-01-01
Corneal lamellar cutting with a blade or femtosecond laser (FSL) is commonly used during refractive surgery and corneal grafts. Surface roughness of the cutting plane influences postoperative visual acuity but is difficult to assess reliably. For the first time, we compared chromatic confocal microscopy (CCM) with scanning electron microscopy, atomic force microscopy (AFM) and focus-variation microscopy (FVM) to characterize surfaces of variable roughness after FSL cutting. The small area allowed by AFM hinders conclusive roughness analysis, especially with irregular cuts. FVM does not always differentiate between smooth and rough surfaces. Finally, CCM allows analysis of large surfaces and differentiates between surface states. PMID:29188095
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, B. S.; Rajasthan Technical University, Rawatbhata Road, Kota 324010; Singh, A.
We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surfacemore » with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.« less
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin
2016-07-27
We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.
Atomic Force Microscope (AFM) measurements and analysis on Sagem 05R0025 secondary substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Baker, S L; Robinson, J C
2006-02-22
The summary of Atomic Force Microscope (AFM) on Sagem 05R0025 secondary substrate: (1) 2 x 2 {micro}m{sup 2} and 10 x 10 {micro}m{sup 2} AFM measurements and analysis on Sagem 05R0025 secondary substrate at LLNL indicate rather uniform and extremely isotropic finish across the surface, with high-spatial frequency roughness {sigma} in the range 5.1-5.5 {angstrom} rms; (2) the marked absence of pronounced long-range polishing marks in any direction, combined with increased roughness in the very high spatial frequencies, are consistent with ion-beam polishing treatment on the surface. These observations are consistent with all earlier mirrors they measured from the samemore » vendor; and (3) all data were obtained with a Digital Instruments Dimension 5000{trademark} atomic force microscope.« less
NASA Astrophysics Data System (ADS)
Ferdous, Rifat; Rahman, Rajib; Klimeck, Gerhard
2014-03-01
Silicon quantum dots are promising candidates for solid-state quantum computing due to the long spin coherence times in silicon, arising from small spin-orbit interaction and a nearly spin free host lattice. However, the conduction band valley degeneracy adds an additional degree of freedom to the electronic structure, complicating the encoding and operation of qubits. Although the valley and the orbital indices can be uniquely identified in an ideal silicon quantum dot, atomic-scale disorder mixes valley and orbital states in realistic dots. Such valley-orbit hybridization, strongly influences the inter-dot tunnel rates.Using a full-band atomistic tight-binding method, we analyze the effect of atomic-scale interface disorder in a silicon double quantum dot. Fourier transform of the tight-binding wavefunctions helps to analyze the effect of disorder on valley-orbit hybridization. We also calculate and compare inter-dot inter-valley and intra-valley tunneling, in the presence of realistic disorder, such as interface tilt, surface roughness, alloy disorder, and interface charges. The method provides a useful way to compute electronic states in realistically disordered systems without any posteriori fitting parameters.
NASA Astrophysics Data System (ADS)
Elinski, Meagan B.; Liu, Zhuotong; Spear, Jessica C.; Batteas, James D.
2017-03-01
The use of 2D nanomaterials for controlling friction and wear at interfaces has received increased attention over the past few years due to their unique structural, thermal, electrical and mechanical properties. These materials proffer potential critical solutions to challenges in boundary lubrication across numerous platforms ranging from engines, to biomedical implants and micro- and nano-scaled machines that will play a major role in the Internet of Things. There has been significant work on a range of 2D nanomaterials, such as graphene and molybdenum disulfide (MoS2). From these studies, their frictional properties have been shown to be highly dependent on numerous factors, such as substrate structure, strain, and competing chemical interactions between the interfaces in sliding contact. Moreover, when considering real contacts in machined interfaces, these surfaces are often composed of nanoscaled asperities, whose intermittent contact dominates the tribochemical processes that result in wear. In this review we aim to capture recent work on the tribological properties of graphene and MoS2 and to discuss the impacts of surface roughness (from the atomic scale to the nanoscale) and chemical interactions at interfaces on their frictional properties, and their use in designing advanced boundary lubrication schemes.
Growth dynamics of reactive-sputtering-deposited AlN films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auger, M.A.; Vazquez, L.; Sanchez, O.
2005-06-15
We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films aremore » homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent {beta}=0.37{+-}0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent {alpha}=1.2{+-}0.2 and {beta}=0.37{+-}0.03 and coarsening exponent 1/z=0.32{+-}0.05; (ii) local exponents: {alpha}{sub loc}=1, {beta}{sub loc}=0.32{+-}0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively.« less
Mechanisms resulting in accreted ice roughness
NASA Technical Reports Server (NTRS)
Bilanin, Alan J.; Chua, Kiat
1992-01-01
Icing tests conducted on rotating cylinders in the BF Goodrich's Icing Research Facility indicate that a regular, deterministic, icing roughness pattern is typical. The roughness pattern is similar to kernels of corn on a cob for cylinders of diameter typical of a cob. An analysis is undertaken to determine the mechanisms which result in this roughness to ascertain surface scale and amplitude of roughness. Since roughness and the resulting augmentation of the convected heat transfer coefficient has been determined to most strongly control the accreted ice in ice prediction codes, the ability to predict a priori, location, amplitude and surface scale of roughness would greatly augment the capabilities of current ice accretion models.
NASA Astrophysics Data System (ADS)
Liu, Shuo; Han, Hongjun; Liu, Yanping; Wang, Baozhen
2008-10-01
To investigate the fouling characteristics of modified PES membrane in submerged Membrane Bioreactor (MBR) for domestic wastewater treatment, Atomic Force Microscope (AFM) study was conducted to analyze the microstructure characteristics of PES membrane. Surface roughness and section analysis of both virgin and fouled membrane were achieved by software of NanoScope 6.12. Compared to the virgin membrane, the average roughness (Ra), square average roughness (Rms) and ten points average roughness (Rz) of fouled membrane were increased by 100.6nm, 133.7nm and 330.7nm respectively. The section analysis results indicated that the cake layer formed and membrane pore blocked were the main causes for the increase of TMP. Micro-filtration resistance analysis was conducted to support the results of AFM analysis. It is showed that membrane resistance, cake resistance, pore blocking and irreversible fouling resistance is 0.755, 1.721 and 1.386 respectively, which contributed 20%, 44%, and 36%, respectively, to total resistance of submerged MBR (at MLSS 6000mg/L and flux 21.9L/m2Â.h). The results proved that AFM could be used to properly describe the fouling characteristics of modified PES membrane in submerged MBR through roughness and section analysis.
Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru
2018-04-01
Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, Tayyab
2016-09-22
In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) modelmore » used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also simultaneously leading to low roughness surface with high removal rates.« less
Effect of surface roughness of trench sidewalls on electrical properties in 4H-SiC trench MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Murakami, Yuki; Watanabe, Yukihiko; Onishi, Toru; Yamamoto, Kensaku; Fujiwara, Hirokazu; Ito, Takahiro
2018-04-01
The effects of the surface roughness of trench sidewalls on electrical properties have been investigated in 4H-SiC trench MOSFETs. The surface roughness of trench sidewalls was well controlled and evaluated by atomic force microscopy. The effective channel mobility at each measurement temperature was analyzed on the basis of the mobility model including optical phonon scattering. The results revealed that surface roughness scattering had a small contribution to channel mobility, and at the arithmetic average roughness in the range of 0.4-1.4 nm, there was no correlation between the experimental surface roughness and the surface roughness scattering mobility. On the other hand, the characteristics of the gate leakage current and constant current stress time-dependent dielectric breakdown tests demonstrated that surface morphology had great impact on the long-term reliability of gate oxides.
Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining
NASA Astrophysics Data System (ADS)
Qiusheng, Y.; Senkai, C.; Jisheng, P.
2015-03-01
Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.
Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V
2014-08-25
The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.
Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces.
Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; Song, Hwangjun
2010-11-01
This study investigated the surface characteristics and in vitro osteoconductivity of a titanium (Ti) surface incorporated with the magnesium ions (Mg) produced by hydrothermal treatment for future application as an endosseous implant surface. Mg-incorporated Ti oxide surfaces were produced by hydrothermal treatment using Mg-containing solution on two different microstructured surfaces--abraded minimally rough (Ma) or grit-blasted moderately rough (RBM) samples. The surface characteristics were evaluated using scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). MC3T3-E1 pre-osteoblast cell attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Ma, RBM, Mg-incorporated Ma (Mg), and Mg-incorporated grit-blasted (RBM/Mg) Ti surfaces were evaluated. Hydrothermal treatment produced an Mg-incorporated Ti oxide layer with nanoporous surface structures. Mg-incorporated surfaces showed surface morphologies and surface roughness values almost identical to those of untreated smooth or micro-rough surfaces at the micron scale. ICP-AES analysis showed Mg ions released from treated surfaces into the solution. Mg incorporation significantly increased cellular attachment (P=0 at 0.5 h, P=0.01 at 1 h) on smooth surfaces, but no differences were found on micro-rough surfaces. Mg incorporation further increased ALP activity in cells grown on both smooth and micro-rough surfaces at 7 and 14 days of culture (P=0). Real-time polymerase chain reaction analysis showed higher mRNA expressions of the osteoblast transcription factor gene (Dlx5), various integrins, and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on micro-rough (RBM) and Mg-incorporated (Mg and RBM/Mg) surfaces than those on Ma surfaces. Mg incorporation further increased the mRNA expressions of key osteoblast genes and integrins (α1, α2, α5, and β1) in cells grown on both the smooth and the micro-rough surfaces. These results indicate that an Mg-incorporated nanoporous Ti oxide surface produced by hydrothermal treatment may improve implant bone healing by enhancing the attachment and differentiation of osteoblastic cells. © 2010 John Wiley & Sons A/S.
Counterintuitive effects of substrate roughness on PDCs
NASA Astrophysics Data System (ADS)
Andrews, B. J.; Manga, M.
2012-12-01
We model dilute pyroclastic density currents (PDCs) using scaled, warm, particle-laden density currents in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. In this set of experiments, we run currents over substrates with characteristic roughness scales, hr, ranging over ~3 orders of magnitude from smooth, through 250 μm sandpaper, 0.1-, 1-, 2-, 5-, and 10 cm hemispheres. As substrate roughness increases, runout distance increases until a critical roughness height, hrc, is reached; further increases in roughness height decrease runout. The critical roughness height appears to be 0.25-0.5 htb, the thickness of the turbulent lower layer of the density currents. The dependence of runout on hr is most likely the result of increases in substrate roughness decreasing the average current velocity and converting that energy into increased turbulence intensity. Small values of hr thus result in increased runout as sedimentation is inhibited by the increased turbulence intensity. At larger values of hr current behavior is controlled by much larger decreases in average current velocity, even though sedimentation decreases. Scaling our experiments up to the size of real volcanic eruptions suggests that landscapes must have characteristic roughness hr>10 m to reduce the runout of natural PDCs, smaller roughness scales can increase runout. Comparison of relevant bulk (Reynolds number, densimetric and thermal Richardson numbers, excess buoyant thermal energy density) and turbulent (Stokes and settling numbers) between our experiments and natural dilute PDCs indicates that we are accurately modeling at least the large scale behaviors and dynamics of dilute PDCs.
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.; ...
2017-09-12
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.
D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa
2012-09-01
To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P < .05). The Ra, Rms, and Mh values were expressed as the mean ± standard deviation. Among as-received archwires, the Stainless Steel (Ra = 36.6 ± 5.8; Rms = 48 ± 7.7; Mh = 328.1 ± 64) archwire was less rough than the others (ANOVA, P < .05). The Sentalloy High Aesthetic was the roughest (Ra = 133.5 ± 10.8; Rms = 165.8 ± 9.8; Mh = 949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.
Inner-outer interactions in a turbulent boundary layer overlying complex roughness
NASA Astrophysics Data System (ADS)
Pathikonda, Gokul; Christensen, Kenneth T.
2017-04-01
Hot-wire measurements were performed in a zero-pressure-gradient turbulent boundary layer overlying both a smooth and a rough wall for the purpose of investigating the details of inner-outer flow interactions. The roughness considered embodies a broad range of topographical scales arranged in an irregular manner and reflects the topographical complexity often encountered in practical flow systems. Single-probe point-wise measurements with a traversing probe were made at two different regions of the rough-wall flow, which was previously shown to be heterogeneous in the spanwise direction, to investigate the distribution of streamwise turbulent kinetic energy and large scale-small scale interactions. In addition, two-probe simultaneous measurements were conducted enabling investigation of inner-outer interactions, wherein the large scales were independently sampled in the outer layer. Roughness-induced changes to the near-wall behavior were investigated, particularly by contrasting the amplitude and frequency modulation effects of inner-outer interactions in the rough-wall flow with well-established smooth-wall flow phenomena. It was observed that the rough-wall flow exhibits both amplitude and frequency modulation features close to the wall in a manner very similar to smooth-wall flow, though the correlated nature of these effects was found to be more intense in the rough-wall flow. In particular, frequency modulation was found to illuminate these enhanced modulation effects in the rough-wall flow. The two-probe measurements helped in evaluating the suitability of the interaction-schematic recently proposed by Baars et al., Exp. Fluids 56, 1 (2015), 10.1007/s00348-014-1876-4 for rough-wall flows. This model was found to be suitable for the rough-wall flow considered herein, and it was found that frequency modulation is a "cleaner" measure of the inner-outer modulation interactions for this rough-wall flow.
Yoon, Hyung-In; Noh, Hyo-Mi; Park, Eun-Jin
2017-06-01
This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, P <.05). The zirconia showed the most increase in roughness after scaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, P <.05). Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.
Noh, Hyo-Mi
2017-01-01
PURPOSE This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, P<.05). The zirconia showed the most increase in roughness after scaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, P<.05). CONCLUSION Ultrasonic scaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate. PMID:28680550
Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen
NASA Technical Reports Server (NTRS)
Raack, Taylor
2004-01-01
Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.
Wall roughness induces asymptotic ultimate turbulence
NASA Astrophysics Data System (ADS)
Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-04-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.
Surface roughness retrieval by inversion of the Hapke model: A multiscale approach
NASA Astrophysics Data System (ADS)
Labarre, S.; Ferrari, C.; Jacquemoud, S.
2017-07-01
Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.
Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-01-01
We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.
Shear Stress Partitioning in Large Patches of Roughness in the Atmospheric Inertial Sublayer
NASA Technical Reports Server (NTRS)
Gillies, John A.; Nickling, William G.; King, James
2007-01-01
Drag partition measurements were made in the atmospheric inertial sublayer for six roughness configurations made up of solid elements in staggered arrays of different roughness densities. The roughness was in the form of a patch within a large open area and in the shape of an equilateral triangle with 60 m long sides. Measurements were obtained of the total shear stress (tau) acting on the surfaces, the surface shear stress on the ground between the elements (tau(sub S)) and the drag force on the elements for each roughness array. The measurements indicated that tau(sub S) quickly reduced near the leading edge of the roughness compared with tau, and a tau(sub S) minimum occurs at a normalized distance (x/h, where h is element height) of approx. -42 (downwind of the roughness leading edge is negative), then recovers to a relatively stable value. The location of the minimum appears to scale with element height and not roughness density. The force on the elements decreases exponentially with normalized downwind distance and this rate of change scales with the roughness density, with the rate of change increasing as roughness density increases. Average tau(sub S): tau values for the six roughness surfaces scale predictably as a function of roughness density and in accordance with a shear stress partitioning model. The shear stress partitioning model performed very well in predicting the amount of surface shear stress, given knowledge of the stated input parameters for these patches of roughness. As the shear stress partitioning relationship within the roughness appears to come into equilibrium faster for smaller roughness element sizes it would also appear the shear stress partitioning model can be applied with confidence for smaller patches of smaller roughness elements than those used in this experiment.
Application of atomic force microscopy to the study of natural and model soil particles.
Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J
2008-09-01
The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with previous macroscopic determination of the proportions of organic material chemically extracted from bulk samples of the soils from which specimen particles were drawn. Interaction forces were measured between atomic force microscopy cantilever tips (Si(3)N(4)) and natural soil and model surfaces. Adhesion forces at humic acid free specimen surfaces (Av. 20.0 nN), which are primarily hydrophilic and whose interactions are subject to a significant contribution from the capillary forces, were found to be larger than those of specimen surfaces with adsorbed humic acid (Av. 6.5 nN). This suggests that adsorbed humic acid increased surface hydrophobicity. The magnitude and distribution of adhesion forces between atomic force microscopy tips and the natural particle surfaces was affected by both local surface roughness and the presence of adsorbed organic material. The present study has correlated nanoscale measurements with established macroscale methods of soil study. Thus, the research demonstrates that atomic force microscopy is an important addition to soil science that permits a multiscale analysis of the multifactorial phenomena of soil hydrophobicity and wetting.
NASA Astrophysics Data System (ADS)
Krim, Jacqueline; Acharya, Biplav; Chestnut, Melanie; Marek, Antonin; Shendarova, Olga; Smirnov, Alex
The addition of nanoparticles to conventional automotive lubricants is known in many cases to result in increased energy efficiency, but the atomic scale mechanisms leading to the increased efficiency are yet to be established. To explore this issue, we studied surface uptake and nanotribological properties of nanoparticle suspensions of diamond, Al2O3 and SiO2 dispersed in water and/or oil (PAO6) in real time by means of an in situ Quartz Crystal Microbalance (QCM) technique, with a focus on the impact of the suspension on the surface roughness and texture of the QCM electrode and how the results compared to macroscopic reductions in friction and increased energy efficiency for the same materials' combinations. The frequency and dissipative properties (mechanical resistance) of QCM's with both gold and nickel surface electrodes were first studied for immersed samples upon addition of the nanoparticles. Nanodiamonds resulted in an increased mechanical resistance while the addition of Al2O3 and SiO2 nanoparticles resulted in a decreased resistance, indicating a reduced resistance of the fluid to the motion of the QCM. Atomic Force Microscope (AFM) measurements were then performed on the QCM electrodes after exposure to the suspensions, to explore potential polishing and/or roughening effects. The results are closely linked to the macroscopic friction and wear attributes. Work supported by NSF.
NASA Astrophysics Data System (ADS)
Yang, Xiang I. A.; Meneveau, Charles
2016-01-01
The technique by Lund et al. to generate turbulent inflow for simulations of developing boundary layers over smooth flat plates is extended to the case of surfaces with roughness elements. In the Lund et al. method, turbulent velocities on a sampling plane are rescaled and recycled back to the inlet as inflow boundary condition. To rescale mean and fluctuating velocities, appropriate length scales need be identified and for smooth surfaces, the viscous scale lν = ν/uτ (where ν is the kinematic viscosity and uτ is the friction velocity) is employed for the inner layer. Different from smooth surfaces, in rough wall boundary layers the length scale of the inner layer, i.e. the roughness sub-layer scale ld, must be determined by the geometric details of the surface roughness elements and the flow around them. In the proposed approach, it is determined by diagnosing dispersive stresses that quantify the spatial inhomogeneity caused by the roughness elements in the flow. The scale ld is used for rescaling in the inner layer, and the boundary layer thickness δ is used in the outer region. Both parts are then combined for recycling using a blending function. Unlike the blending function proposed by Lund et al. which transitions from the inner layer to the outer layer at approximately 0.2δ, here the location of blending is shifted upwards to enable simulations of very rough surfaces in which the roughness length may exceed the height of 0.2δ assumed in the traditional method. The extended rescaling-recycling method is tested in large eddy simulation of flow over surfaces with various types of roughness element shapes.
Influences of roughness on the inertial mechanism of turbulent boundary-layer scale separation
NASA Astrophysics Data System (ADS)
Ebner, Rachel
Measurements and scaling analyses are conducted to clarify the combined effects of roughness and Reynolds number on momentum transport in the rough-wall zero pressure gradient turbulent boundary layer. A series of multi-sensor hot-wire experiments are presented that cover nearly a decade in Reynolds number and nearly three decades in the inner-normalized sand grain roughness. This dissertation utilizes the difference between two velocity-vorticity correlations to represent the turbulent inertia term in the statement of the mean dynamics for turbulent boundary layer flow. Analyses focus on the first term on the right hand side of the equation, because it is physically affiliated with change-of-scale effects (Tennekes and Lumley, 1972). Similarity analysis, streamwise correlations, and spectral methods are performed to elucidate the scaling behaviors of the turbulent inertia term relative to the mean dynamics. The present results reveal complex behaviors in the long-time statistics of the velocity-vorticity correlation that exhibit both Reynolds number and roughness dependencies. The results broadly support the combined roughness-Reynolds number description provided by Mehdi et al, (2013).
Scale growth of structures in the turbulent boundary layer with a rod-roughened wall
NASA Astrophysics Data System (ADS)
Lee, Jin; Kim, Jung Hoon; Lee, Jae Hwa
2016-01-01
Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.
On-the-fly transition search and applications to temperature-accelerated dynamics
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Amar, Jacques
2015-03-01
Temperature-accelerated dynamics (TAD) is a powerful method to study non-equilibrium processes and has been providing surprising insights for a variety of systems. While serial TAD simulations have been limited by the roughly N3 increase in the computational cost as a function of the number of atoms N in the system, recently we have shown that by carrying out parallel TAD simulations which combine spatial decomposition with our semi-rigorous synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in improving the scaling of serial TAD by combining the use of on-the-fly transition searching with our previously developed localized saddle-point method. We demonstrate improved performance for the cases of Ag/Ag(100) annealing and Cu/Cu(100) growth. Supported by NSF DMR-1410840.
Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability
NASA Astrophysics Data System (ADS)
Necula, B. S.; Apachitei, I.; Fratila-Apachitei, L. E.; van Langelaan, E. J.; Duszczyk, J.
2013-05-01
This study aimed at producing a multifunctional layer with micro/nano-interconnected porosity and antibacterial capability on a rough macro-porous plasma sprayed titanium surface using the plasma electrolytic oxidation process. The layers were electrochemically formed in electrolytes based on calcium acetate and calcium glycerophosphate salts bearing dispersed Ag nanoparticles. They were characterized with respect to surface morphology and chemical composition using a scanning electron microscope equipped with the energy dispersive spectroscopy and back scattering detectors. Scanning electron microscopy images showed the formation of a micro/nano-scale porous layer, comprised of TiO2 bearing Ca and P species and Ag nanoparticles, following accurately the surface topography of the plasma sprayed titanium coating. The Ca/P atomic ratio was found to be close to that of bone apatite. Ag nanoparticles were incorporated on both on top and inside the porous structure of the TiO2 layer.
Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2009-06-01
Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.
In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope
González-Jorge, Higinio; Alvarez-Valado, Victor; Valencia, Jose Luis; Torres, Soledad
2010-01-01
Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production. PMID:22319338
In situ roughness measurements for the solar cell industry using an atomic force microscope.
González-Jorge, Higinio; Alvarez-Valado, Victor; Valencia, Jose Luis; Torres, Soledad
2010-01-01
Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.
Ultrastructural investigation of intact orbital implant surfaces using atomic force microscopy.
Choi, Samjin; Lee, Seung Jun; Shin, Jae-Ho; Cheong, Youjin; Lee, Hui-Jae; Paek, Joo Hee; Kim, Jae Sik; Jin, Kyung-Hyun; Park, Hun-Kuk
2011-01-01
This study examined the surface nanostructures of three orbital implants: nonporous poly(methyl methacrylate) (PMMA), porous aluminum oxide and porous polyethylene. The morphological characteristics of the orbital implants surfaces were observed by atomic force microscopy (AFM). The AFM topography, phase shift and deflection images of the intact implant samples were obtained. The surface of the nonporous PMMA implant showed severe scratches and debris. The surface of the aluminum oxide implant showed a porous structure with varying densities and sizes. The PMMA implant showed nodule nanostructures, 215.56 ± 52.34 nm in size, and the aluminum oxide implant showed crystal structures, 730.22 ± 341.02 nm in size. The nonporous PMMA implant showed the lowest roughness compared with other implant biomaterials, followed by the porous aluminum oxide implant. The porous polyethylene implant showed the highest roughness and severe surface irregularities. Overall, the surface roughness of orbital implants might be associated with the rate of complications and cell adhesion. Copyright © 2011 Wiley Periodicals, Inc.
Tantalum films with well-controlled roughness grown by oblique incidence deposition
NASA Astrophysics Data System (ADS)
Rechendorff, K.; Hovgaard, M. B.; Chevallier, J.; Foss, M.; Besenbacher, F.
2005-08-01
We have investigated how tantalum films with well-controlled surface roughness can be grown by e-gun evaporation with oblique angle of incidence between the evaporation flux and the surface normal. Due to a more pronounced shadowing effect the root-mean-square roughness increases from about 2 to 33 nm as grazing incidence is approached. The exponent, characterizing the scaling of the root-mean-square roughness with length scale (α), varies from 0.75 to 0.93, and a clear correlation is found between the angle of incidence and root-mean-square roughness.
NASA Astrophysics Data System (ADS)
Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François
2008-03-01
Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.
Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon
2015-01-01
Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317
Roughness, resistance, and dispersion: Relationships in small streams
NASA Astrophysics Data System (ADS)
Noss, Christian; Lorke, Andreas
2016-04-01
Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.
Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale
NASA Astrophysics Data System (ADS)
Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm
2016-11-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.
Hydraulic Roughness and Flow Resistance in a Subglacial Conduit
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.
2017-12-01
The hydraulic roughness significantly affects the flow resistance in real subglacial conduits, but has been poorly understood. To address this knowledge gap, this paper first proposes a procedure to define and quantify the geometry roughness, and then relates such a geometry roughness to the hydraulic roughness based on a series of computational fluid dynamics (CFD) simulations. The results indicate that by using the 2nd order structure function, the roughness field can be well quantified by the powers of the scaling-law, the vertical and horizontal length scales of the structure functions. The vertical length scale can be further chosen as the standard deviation of the roughness field σr. The friction factors calculated from either total drag force or the linear decreasing pressure agree very well with those calculated from traditional rough pipe theories when the equivalent hydraulic roughness height is corrected as ks = (1.1 ˜ 1.5)σr. This result means that the fully rough pipe resistance formula λ = [2 log(D0/2ks) + 1.74]-2, and the Moody diagram are still valid for the friction factor estimation in subglacial conduits when σr /D0<18% and ks/D0<22%. The results further show that when a proper hydraulic roughness is determined, the total flow resistance corresponding to the given hydraulic roughness height can be accurately modelled by using a rough wall function. This suggests that the flow resistance for the longer realistic subglacial conduits with large sinuosity and cross-sectional variations may be correctly predicted by CFD simulations. The results also show that the friction factors from CFD modeling are much larger than those determined from traditional rough pipe theories when σr /D0>20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Yunpeng; Sawin, Herbert H.
The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO{sub 2}), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followedmore » the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide.« less
NASA Astrophysics Data System (ADS)
Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian
2018-01-01
As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.
Multiscale contact mechanics model for RF-MEMS switches with quantified uncertainties
NASA Astrophysics Data System (ADS)
Kim, Hojin; Huda Shaik, Nurul; Xu, Xin; Raman, Arvind; Strachan, Alejandro
2013-12-01
We introduce a multiscale model for contact mechanics between rough surfaces and apply it to characterize the force-displacement relationship for a metal-dielectric contact relevant for radio frequency micro-electromechanicl system (MEMS) switches. We propose a mesoscale model to describe the history-dependent force-displacement relationships in terms of the surface roughness, the long-range attractive interaction between the two surfaces, and the repulsive interaction between contacting asperities (including elastic and plastic deformation). The inputs to this model are the experimentally determined surface topography and the Hamaker constant as well as the mechanical response of individual asperities obtained from density functional theory calculations and large-scale molecular dynamics simulations. The model captures non-trivial processes including the hysteresis during loading and unloading due to plastic deformation, yet it is computationally efficient enough to enable extensive uncertainty quantification and sensitivity analysis. We quantify how uncertainties and variability in the input parameters, both experimental and theoretical, affect the force-displacement curves during approach and retraction. In addition, a sensitivity analysis quantifies the relative importance of the various input quantities for the prediction of force-displacement during contact closing and opening. The resulting force-displacement curves with quantified uncertainties can be directly used in device-level simulations of micro-switches and enable the incorporation of atomic and mesoscale phenomena in predictive device-scale simulations.
Yılmaz, K; Uslu, G; Özyürek, T
2018-02-13
To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P < 0.05). The highest Ra and RMS values were observed in the HyFlex CM and HyFlex EDM files that were subjected to 10 cycles of autoclave sterilization (P < 0.05). The surface roughness values of the HyFlex CM group showed a significant increase after ten autoclave cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P < 0.05). Although the initial surface roughness values of the HyFlex EDM files were lower than those of the HyFlex CM files, the surface roughness values of the EDM files showed a statistically significant increase after 5 cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.
NASA Astrophysics Data System (ADS)
Labarre, Sébastien; Jacquemoud, Stéphane; Ferrari, Cécile; Delorme, Arthur; Rupnik, Ewelina; Derrien, Allan; Pierrot-Deseilligny, Marc; Grandin, Raphaël; Jalludin, Mohamed
2017-04-01
Surface roughness is a key parameter in soil physics which controls many surface processes at a wide range of scales: microscopic and mesoscopic scales from 10 μm to 1 cm (soil particles or regolith), macroscopic scale from 1 cm to 1 m (clods, aggregates of rock or ice, micro-fractures or lava flows), and topographic scale from 1 m to several kilometers (faults, hills, craters or mountains). While it is recognized that surface roughness is strongly scale-dependent, it is often expressed as an integrated parameter (root-mean-square height, correlation length, tortuosity index), which does not address the full range of spatial features present on the surface. In particular, the Hapke roughness parameter is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the microscopic to the macroscopic scales. Yet its physical meaning is still a question at issue, as the scale at which it occurs is undefined in the model. Photogrammetry has been shown to be an inexpensive and powerful method for topography reconstruction from optical data. We took advantage of a series of 21 Pléiades-1B images (video acquisition mode) to build a global digital elevation model (DEM) over the Asal-Ghoubbet rift, Republic of Djibouti. Additionally, we acquired close range data with a quadcopter equipped with a HD camera. Topography at four scales is available: 1 m with the satellite images (694 km), 1 cm with the drone flying at medium altitude ( 100 m), 1 mm with the drone flying at low altitude ( 10 m), and <1 mm with the handheld camera ( 1.5 m). We have defined twenty-two sites, 20 × 30 m in dimension, corresponding to a wide range of volcanic and sedimentary terrains, from regolith-like structures to very rough lava flows, over which DEMs have been generated at two or more resolutions. In order to investigate the contribution of each scale to the integrated roughness and to test the ability of the Hapke model to retrieve a roughness parameter that depicts well the ground truth, we applied two multiscale methods: fractal analysis and wavelet transform. The latter allows splitting the frequency band of a signal in several sub-bands, each of which corresponding to a spatial scale. By analyzing data acquired at Piton de la Fournaise Volcano, Réunion island, we showed that wavelet transform is a very powerful tool for characterizing roughness regimes over scales and that sub-centimeter surface features mostly explain the integrated roughness for meter-sized surfaces (Labarre et al., 2017, Icarus). This has to be confirmed on Djibouti terrains, for which we have a broader range of resolutions and larger areas.
Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-12-01
We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.
Surface roughness manifestations of deep-seated landslide processes
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Lamb, M. P.
2012-12-01
In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.
Böhm, Stanislav; Exner, Otto
2004-02-01
The geometrical parameters of molecules of 2-substituted 2-methylpropanes and 1-substituted bicyclo[2.2.2]octanes were calculated at the B3LYP/6-311+G(d,p) level. They agreed reasonably well with the mean crystallographic values retrieved from the Cambridge Structural Database for a set of diverse non-cyclic structures with a tertiary C atom. The angle deformations at this C atom produced by the immediately bonded substituent are also closely related to those observed previously in benzene mono derivatives (either as calculated or as derived from crystallographic data). The calculated geometrical parameters were used to test the classical Walsh rule: It is evidently true that an electron-attracting substituent increases the proportion of C-atom p-electrons in the bond to the substituent and leaves more s-electrons to the remaining bonds; as a consequence the C-C-C angles at a tertiary carbon are widened and the C-C bonds shortened. However, this rule describes only part of the reality since the bond angles and lengths are controlled by other factors as well, for instance by steric crowding. Another imperfection of the Walsh rule is that the sequence of substituents does not correspond to their electronegativities, as measured by any known scale; more probably it is connected with the inductive effect, but then only very roughly.
USDA-ARS?s Scientific Manuscript database
This paper explores the scales and characteristics of form roughness along the outer banks of two bends on a large meandering river through investigation of irregularities in bank contours and local topographic variability on the bank face. The analysis also examines how roughness varies over the ve...
Morphological Properties of Siloxane-Hydrogel Contact Lens Surfaces.
Stach, Sebastian; Ţălu, Ştefan; Trabattoni, Silvia; Tavazzi, Silvia; Głuchaczka, Alicja; Siek, Patrycja; Zając, Joanna; Giovanzana, Stefano
2017-04-01
The aim of this study was to quantitatively characterize the micromorphology of contact lens (CL) surfaces using atomic force microscopy (AFM) and multifractal analysis. AFM and multifractal analysis were used to characterize the topography of new and worn siloxane-hydrogel CLs made of Filcon V (I FDA group). CL surface roughness was studied by AFM in intermittent-contact mode, in air, on square areas of 25 and 100 μm 2 , by using a Nanoscope V MultiMode (Bruker). Detailed surface characterization of the surface topography was obtained using statistical parameters of 3-D (three-dimensional) surface roughness, in accordance with ISO 25178-2: 2012. Before wear, the surface was found to be characterized by out-of-plane and sharp structures, whilst after a wear of 8 h, two typical morphologies were observed. One morphology (sharp type) has a similar aspect as the unworn CLs and the other morphology (smooth type) is characterized by troughs and bumpy structures. The analysis of the AFM images revealed a multifractal geometry. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of CL surface geometry at nanometer scale. Surface statistical parameters deduced by multifractal analysis can be used to assess the CL micromorphology and can be used by manufacturers in developing CLs with improved surface characteristics. These parameters can also be used in understanding the tribological interactions of the back surface of the CL with the corneal surface and the front surface of the CL with the under-surface of the eyelid (friction, wear, and micro-elastohydrodynamic lubrication at a nanometer scale).
A Mathematical Approach in Evaluating Biotechnology Attitude Scale: Rough Set Data Analysis
ERIC Educational Resources Information Center
Narli, Serkan; Sinan, Olcay
2011-01-01
Individuals' thoughts and attitudes towards biotechnology have been investigated in many countries. A Likert-type scale is the most commonly used scale to measure attitude. However, the weak side of a likert-type scale is that different responses may produce the same score. The Rough set method has been regarded to address this shortcoming. A…
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.
2016-12-01
The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture ceases to be sensible. Finally, the effect of fault geometry on ground-motions, in the near-field, is considered. Our simulations feature a classical linear slip weakening on the fault and a viscoplastic constitutive model off the fault. The benefits of using a more elaborate fast velocity-weakening friction law will also be considered.
Surface Modification of Plastic Substrates Using Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.
2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces
NASA Astrophysics Data System (ADS)
Mutta, Geeta Rani; Carapezzi, Stefania
2018-07-01
The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.
NASA Astrophysics Data System (ADS)
Conti, J.; De Coninck, J.; Ghazzal, M. N.
2018-04-01
The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-01-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159
NASA Astrophysics Data System (ADS)
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-12-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
NASA Astrophysics Data System (ADS)
Martin, A. C. H.; Boutin, J.; Hauser, D.; Dinnat, E. P.
2014-08-01
The impact of the ocean surface roughness on the ocean L-band emissivity is investigated using simultaneous airborne measurements from an L-band radiometer (CAROLS) and from a C-band scatterometer (STORM) acquired in the Gulf of Biscay (off-the French Atlantic coasts) in November 2010. Two synergetic approaches are used to investigate the impact of surface roughness on the L-band brightness temperature (Tb). First, wind derived from the scatterometer measurements is used to analyze the roughness contribution to Tb as a function of wind and compare it with the one simulated by SMOS and Aquarius roughness models. Then residuals from this mean relationship are analyzed in terms of mean square slope derived from the STORM instrument. We show improvement of new radiometric roughness models derived from SMOS and Aquarius satellite measurements in comparison with prelaunch models. Influence of wind azimuth on Tb could not be evidenced from our data set. However, we point out the importance of taking into account large roughness scales (>20 cm) in addition to small roughness scale (5 cm) rapidly affected by wind to interpret radiometric measurements far from nadir. This was made possible thanks to simultaneous estimates of large and small roughness scales using STORM at small (7-16°) and large (30°) incidence angles.
Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows
NASA Technical Reports Server (NTRS)
Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy
2015-01-01
To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.
NASA Astrophysics Data System (ADS)
Sriraman, Saravanapriyan; Aydil, Eray S.; Maroudas, Dimitrios
2002-07-01
Growth of hydrogenated amorphous silicon films (a-Si:H) on an initial H-terminated Si(001)(2 x1) substrate at T=500 K was studied through molecular-dynamics (MD) simulations of repeated impingement of SiH radicals to elucidate the effects of reactive minority species on the structural quality of the deposited films. The important reactions contributing to film growth were identified through detailed visualization of radical-surface interaction trajectories. These reactions include (i) insertion of SiH into Si-Si bonds, (ii) adsorption onto surface dangling bonds, (iii) surface H abstraction by impinging SiH radicals through an Eley-Rideal mechanism, (iv) surface adsorption by penetration into subsurface layers or dissociation leading to interstitial atomic hydrogen, (v) desorption of interstitial hydrogen into the gas phase, (vi) formation of higher surface hydrides through the exchange of hydrogen, and (vii) dangling-bond-mediated dissociation of surface hydrides into monohydrides. The MD simulations of a-Si:H film growth predict an overall surface reaction probability of 95% for the SiH radical that is in good agreement with experimental measurements. Structural and chemical characterization of the deposited films was based on the detailed analysis of evolution of the films' structure, surface morphology and roughness, surface reactivity, and surface composition. The analysis revealed that the deposited films exhibit high dangling bond densities and rough surface morphologies. In addition, the films are abundant in voids and columnar structures that are detrimental to producing device-quality a-Si:H thin films.
Lunar terrain mapping and relative-roughness analysis
NASA Technical Reports Server (NTRS)
Rowan, L. C.; Mccauley, J. F.; Holm, E. A.
1971-01-01
Terrain maps of the equatorial zone were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings, as well as for Ranger and Lunar Orbiter photographs. Lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative roughness characteristics. For some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.
Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon
2015-01-01
The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Cawkwell, F. G.; Burgess, D. O.; Sharp, M. J.; Demuth, M.
2004-12-01
Snow and ice surface roughness affect the backscatter of the pulse emitted by a radar altimeter, and hence the accuracy of the surface elevation calculated from the waveform echo, but the influence of surface roughness has not been quantified. As part of the CryoSat calibration/validation field campaigns on the Devon Ice Cap in 2004, surface roughness measurements were made at 0.1-7km intervals along a 48km transect from near the summit to the southern margin. Measurements were made at the decimetre scale by surveying and at the centimetre scale using digital photography. The data collected were subjected to wavelet analysis to define characteristic roughness wavelengths, and the fractal dimension associated with each of these was calculated using the semi-variogram method. Vario functions were calculated for the photographic data. The survey results show that wavelength scales depend on orientation and distance from the ice cap summit, the fractal dimension depends on the wavelength scale and the orientation, and both are significantly affected by storm events. Profiles aligned with the easterly prevailing wind direction, and thus perpendicular to the predicted satellite track, proved to be more sensitive to meteorological events than those normal to the dominant winds. Wavelet and fractal analysis of the photographic data was less conclusive, potentially due to the `noisier' nature of the data at this scale, where `noise' is actually the superimposition of small scale wavelengths onto larger ones. Vario analysis showed the characteristic wavelengths at the centimetre scale to increase with distance from the summit, although the abrading effect of storm events caused a decrease in wavelength. The amplitude of the roughness also increases with distance from the summit, although following a period of calm this value is significantly decreased along the transect. Orientation with respect to the prevailing wind direction is also a significant factor. Analysis of the return waveforms acquired by an airborne radar altimeter concurrently with ground data will allow the impact of the different roughness scales and orientations to be assessed.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei
2015-11-01
The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Scaling law governing the roughness of the swash edge line
NASA Astrophysics Data System (ADS)
Bormashenko, E.; Musin, A.; Grynyov, R.
2014-09-01
The paper is devoted to the analysis of the shape of the swash edge line. Formation of the swash boundary is treated as an interfacial phenomenon. The simplest quantitative characteristic of the roughness of interface is its width w, defined as the root-mean-square fluctuation around the average position. For rough interfaces, the scaling with size of the system L is observed in the form w(L)~Lζ. The concept of scaling supplies a simple framework for classifying interfaces. It is suggested that the fine structure of the swash boundary results from the combined action of the pinning force applied by random defects of the beach and elasticity of distorted swash boundary. The roughness of the swash front was studied at the Mediterranean Sea coast for uprush and backwash flows. Value of exponent ζ for receding swash front line was 0.64 +/- 0.02, when in the case of advancing swash the value 0.73 +/- 0.03 was calculated. The scaling exponent established for the receding phase of the swash is very close to the values of the exponent established for the roughness of the triple line for water droplets deposited on rough surfaces, crack propagation front in Plexiglas, and for the motion of a magnetic domain walls.
NASA Astrophysics Data System (ADS)
Kane, D. M.; Naidoo, N.; Staib, G. R.
2010-10-01
Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.
Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry
2010-01-01
The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH = 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.
Resistivity scaling due to electron surface scattering in thin metal layers
NASA Astrophysics Data System (ADS)
Zhou, Tianji; Gall, Daniel
2018-04-01
The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .
Matsumoto, Takao; Ishikawa, Ryo; Tohei, Tetsuya; Kimura, Hideo; Yao, Qiwen; Zhao, Hongyang; Wang, Xiaolin; Chen, Dapeng; Cheng, Zhenxiang; Shibata, Naoya; Ikuhara, Yuichi
2013-10-09
A state-of-the-art spherical aberration-corrected STEM was fully utilized to directly visualize the multiferroic domain structure in a hexagonal YMnO3 single crystal at atomic scale. With the aid of multivariate statistical analysis (MSA), we obtained unbiased and quantitative maps of ferroelectric domain structures with atomic resolution. Such a statistical image analysis of the transition region between opposite polarizations has confirmed atomically sharp transitions of ferroelectric polarization both in antiparallel (uncharged) and tail-to-tail 180° (charged) domain boundaries. Through the analysis, a correlated subatomic image shift of Mn-O layers with that of Y layers, exhibiting a double-arc shape of reversed curvatures, have been elucidated. The amount of image shift in Mn-O layers along the c-axis is statistically significant as small as 0.016 nm, roughly one-third of the evident image shift of 0.048 nm in Y layers. Interestingly, a careful analysis has shown that such a subatomic image shift in Mn-O layers vanishes at the tail-to-tail 180° domain boundaries. Furthermore, taking advantage of the annular bright field (ABF) imaging technique combined with MSA, the tilting of MnO5 bipyramids, the very core mechanism of multiferroicity of the material, is evaluated.
NASA Astrophysics Data System (ADS)
Ono, Kouichi; Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji
2017-10-01
Atomic- or nanometer-scale roughness on feature surfaces has become an important issue to be resolved in the fabrication of nanoscale devices in industry. Moreover, in some cases, smoothing of initially rough surfaces is required for planarization of film surfaces, and controlled surface roughening is required for maskless fabrication of organized nanostructures on surfaces. An understanding, under what conditions plasma etching results in surface roughening and/or smoothing and what are the mechanisms concerned, is of great technological as well as fundamental interest. In this article, we review recent developments in the experimental and numerical study of the formation and evolution of surface roughness (or surface morphology evolution such as roughening, smoothing, and ripple formation) during plasma etching of Si, with emphasis being placed on a deeper understanding of the mechanisms or plasma-surface interactions that are responsible for. Starting with an overview of the experimental and theoretical/numerical aspects concerned, selected relevant mechanisms are illustrated and discussed primarily on the basis of systematic/mechanistic studies of Si etching in Cl-based plasmas, including noise (or stochastic roughening), geometrical shadowing, surface reemission of etchants, micromasking by etch inhibitors, and ion scattering/chanelling. A comparison of experiments (etching and plasma diagnostics) and numerical simulations (Monte Carlo and classical molecular dynamics) indicates a crucial role of the ion scattering or reflection from microscopically roughened feature surfaces on incidence in the evolution of surface roughness (and ripples) during plasma etching; in effect, the smoothing/non-roughening condition is characterized by reduced effects of the ion reflection, and the roughening-smoothing transition results from reduced ion reflections caused by a change in the predominant ion flux due to that in plasma conditions. Smoothing of initially rough surfaces as well as non-roughening of initially planar surfaces during etching (normal ion incidence) and formation of surface ripples by plasma etching (off-normal ion incidence) are also presented and discussed in this context.
NASA Astrophysics Data System (ADS)
Dodson, Z.; Ward, D.
2017-12-01
Topographic roughness is an essential control on the basal movement of temperate glaciers. Glaciers move by regelation over small-scale roughness and by enhanced ice deformation over large-scale roughness. There is a transitional wavelength of 0.1 to 1 m that has the most resistance to basal sliding. Preexisting fractures in bedrock are known to affect the rate and spatial pattern of glacial erosion. However, few studies have quantified the relationship between fractures and bed roughness at various scales or shown how these features change downvalley and on different bedrock types. Here, we present results that relate fracture pattern and micro-roughness of glaciated surfaces in the Teton Range of Wyoming. The study area includes Alaska Basin and Darby Canyon, which are adjacent valleys on the western side of the range. The valley floor of Alaska Basin is quartz monzonite, while that of Darby Canyon is dolomite. Both exhibit regional fractures, however, unlike the quartz monzonite, the dolomite has joints associated with bedding planes that dip roughly parallel to the valley floor. In satellite imagery, it is evident that the large-scale roughness in the valleys differ, with Darby Canyon having a smooth bed relative to the bumpy bed in Alaska Basin. Our aim is to quantify the small-scale roughness at cm-level resolution using Structure-from-Motion (SfM) photogrammetry. Our hypothesis is that the roughness will differ between the valleys and be related to fracture spacing within each rock type. We will test this using a Fourier spectral analysis of high-resolution DEMs made by SfM to identify the dominant wavelengths present in the previously glaciated surfaces, paired with field measurements of fracture spacing and orientation. If rock type is the main control in bed roughness, we predict that the dominant low-frequency wavelength will be similar to the spacing of major regional fractures, and the high-frequency spectral modes will be similar to the spacing of smaller local fractures. Alternatively, if the results show that the dominant wavelengths differ from the pattern of fractures or change with position downvalley in one or both of the valleys, then this implies that the glacier properties, such as flow rate and thickness, are what modulate bedrock erosion and fractures are less significant to morphology evolution.
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Iwasaki, Yoh; Ushioda, Sukekatsu
2003-10-01
The magnetic domain structures of Fe thin films on two-dimensionally arranged land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area under magnetization reversal. The surface roughness measured by atomic force microscopy (AFM) was greater on the land area than on the groove area. The roughness-induced high-coercivity on the land prevented the reversed magnetic domain on the groove from spreading over the land in the initial magnetization reversal. This result indicates that surface roughness is an important factor in domain size control of thin magnetic films.
NASA Astrophysics Data System (ADS)
Grass, A. J.; Stuart, R. J.; Mansour-Tehrani, M.
1991-01-01
The current status of knowledge regarding coherent vortical structures in turbulent boundary layers and their role in turbulence generation are reviewed. The investigations reported in the study concentrate attention on rough-wall flows prevailing in the geophysical environment and include an experiment determining the three-dimensional form of the turbulence structures linked to the ejection and inrush events observed over rough walls and an experiment concerned with measuring the actual spanwise scale of the near-wall structures for boundary conditions ranging from hydrodynamically smooth to fully rough. It is demonstrated that horseshoe vortical structures are present and play an important role in rough-wall flows and they increase in scale with increasing wall distance, while a dominant spanwise wavelength occurs in the instantaneous cross-flow distribution of streamwise velocity close to the rough wall.
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Banks, B. A.; Lenczewski, M.; Demko, R.
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.
Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California
NASA Technical Reports Server (NTRS)
Farr, Tom G.
1992-01-01
Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.
Various remote sensing approaches to understanding roughness in the marginal ice zone
NASA Astrophysics Data System (ADS)
Gupta, Mukesh
Multi-platform based measurement approaches to understanding complex marginal ice zone (MIZ) are suggested in this paper. Physical roughness measurements using ship- and helicopter-based laser systems combined with ship-based active microwave backscattering (C-band polarimetric coherences) and dual-polarized passive microwave emission (polarization ratio, PR and spectral gradient ratios, GR at 37 and 89 GHz) are presented to study diverse sea ice types found in the MIZ. Autocorrelation functions are investigated for different sea ice roughness types. Small-scale roughness classes were discriminated using data from a ship-based laser profiler. The polarimetric coherence parameter ρHHVH , is not found to exhibit any observable sensitivity to the surface roughness for all incidence angles. Rubble-ridges, pancake ice, snow-covered frost flowers, and dense frost flowers exhibit separable signatures using GR-H and GR-V at >70° incidence angles. This paper diagnosed changes in sea ice roughness on a spatial scale of ∼0.1-4000 m and on a temporal scale of ∼1-240 days (ice freeze-up to summer melt). The coupling of MIZ wave roughness and aerodynamic roughness in conjunction with microwave emission and backscattering are future avenues of research. Additionally, the integration of various datasets into thermodynamic evolution model of sea ice will open pathways to successful development of inversion models of MIZ behavior.
Characterization of the motion of membrane proteins using high-speed atomic force microscopy
NASA Astrophysics Data System (ADS)
Casuso, Ignacio; Khao, Jonathan; Chami, Mohamed; Paul-Gilloteaux, Perrine; Husain, Mohamed; Duneau, Jean-Pierre; Stahlberg, Henning; Sturgis, James N.; Scheuring, Simon
2012-08-01
For cells to function properly, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein-protein and protein-lipid interactions. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein-protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-09-01
Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.
Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David
2014-01-01
Background Limbal ring (also known as ‘circle’) contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or ‘enclosed’ within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of ‘circle’ contact lenses. Methods Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. Results SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. Conclusions SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. PMID:24689948
NASA Astrophysics Data System (ADS)
Weilnboeck, F.; Fox-Lyon, N.; Oehrlein, G. S.; Doerner, R. P.
2010-02-01
A profound influence of monolayer tungsten coverage of hard carbon films on the evolution of carbon surface erosion behaviour, surface chemistry and morphology in D2 plasma has been established by real-time ellipsometry, x-ray photoelectron spectroscopy and atomic force microscopy measurements. The erosion of tungsten-covered carbon showed two distinct stages of plasma material interactions: rapid tungsten removal during the initial erosion period and steady-state amorphous carbon removal accompanied by large-scale surface roughness development. The initial removal of tungsten takes place at a rate that significantly exceeds typical sputter yields at the ion energies used here and is attributed to elimination of weakly bonded tungsten from the surface. The tungsten remaining on the a-C : H film surface causes surface roughness development of the eroding carbon surface by a masking effect, and simultaneously leads to a seven fold reduction of the steady-state carbon erosion rate for long plasma surface interaction times (~100 s). Results presented are of direct relevance for material transport and re-deposition, and the interaction of those films with plasma in the divertor region and on mirror surfaces of fusion devices.
Chen, Jianrong; Mei, Rongwu; Shen, Liguo; Ding, Linxian; He, Yiming; Lin, Hongjun; Hong, Huachang
2015-03-01
The interfacial interactions between a foulant particle and rough membrane surface in a submerged membrane bioreactor (MBR) were quantitatively assessed by using a new-developed method. It was found that the profile of total interaction versus separation distance was complicated. There were an energy barrier and two negative energy ranges in the profile. Further analysis showed that roughness scale significantly affected the strength and properties of interfacial interactions. It was revealed that there existed a critical range of roughness scale within which the total energy in the separation distance ranged from 0 to several nanometers was continually repulsive. Decrease in foulant size would increase the strength of specific interaction energy, but did not change the existence of a critical roughness scale range. These findings suggested the possibility to "tailor" membrane surface morphology for membrane fouling mitigation, and thus gave significant implications for membrane selection and fabrication in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ground-motion signature of dynamic ruptures on rough faults
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.
2016-04-01
Natural earthquakes occur on faults characterized by large-scale segmentation and small-scale roughness. This multi-scale geometrical complexity controls the dynamic rupture process, and hence strongly affects the radiated seismic waves and near-field shaking. For a fault system with given segmentation, the question arises what are the conditions for producing large-magnitude multi-segment ruptures, as opposed to smaller single-segment events. Similarly, for variable degrees of roughness, ruptures may be arrested prematurely or may break the entire fault. In addition, fault roughness induces rupture incoherence that determines the level of high-frequency radiation. Using HPC-enabled dynamic-rupture simulations, we generate physically self-consistent rough-fault earthquake scenarios (M~6.8) and their associated near-source seismic radiation. Because these computations are too expensive to be conducted routinely for simulation-based seismic hazard assessment, we thrive to develop an effective pseudo-dynamic source characterization that produces (almost) the same ground-motion characteristics. Therefore, we examine how variable degrees of fault roughness affect rupture properties and the seismic wavefield, and develop a planar-fault kinematic source representation that emulates the observed dynamic behaviour. We propose an effective workflow for improved pseudo-dynamic source modelling that incorporates rough-fault effects and its associated high-frequency radiation in broadband ground-motion computation for simulation-based seismic hazard assessment.
Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.
Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi
2012-06-01
The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang
2015-04-01
The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu 40Zr 51Al 9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at T x ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (T m ~ 900K),more » and the crossover temperature is roughly twice of the glass-transition temperature (T g). Below T x, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below T x and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.
2017-05-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.
On universality of scaling law describing roughness of triple line.
Bormashenko, Edward; Musin, Albina; Whyman, Gene; Barkay, Zahava; Zinigrad, Michael
2015-01-01
The fine structure of the three-phase (triple) line was studied for different liquids, various topographies of micro-rough substrates and various wetting regimes. Wetting of porous and pillar-based micro-scaled polymer surfaces was investigated. The triple line was visualized with the environmental scanning electron microscope and scanning electron microscope for the "frozen" triple lines. The value of the roughness exponent ζ for water (ice)/rough polymer systems was located within 0.55-0.63. For epoxy glue/rough polymer systems somewhat lower values of the exponent, 0.42 < ζ < 0.54, were established. The obtained values of ζ were close for the Cassie and Wenzel wetting regimes, different liquids, and different substrates' topographies. Thus, the above values of the exponent are to a great extent universal. The switch of the exponent, when the roughness size approaches to the correlation length of the defects, is also universal.
Probing the microscopic corrugation of liquid surfaces with gas-liquid collisions
NASA Technical Reports Server (NTRS)
King, Mackenzie E.; Nathanson, Gilbert M.; Hanning-Lee, Mark A.; Minton, Timothy K.
1993-01-01
We have measured the directions and velocities of Ne, Ar, and Xe atoms scattering from perfluorinated ether and hydrocarbon liquids to probe the relationship between the microscopic roughness of liquid surfaces and gas-liquid collision dynamics. Impulsive energy transfer is governed by the angle of deflection: head-on encounters deposit more energy than grazing collisions. Many atoms scatter in the forward direction, particularly at glancing incidence. These results imply that the incoming atoms recoil locally from protruding C-H and C-F groups in hard spherelike collisions.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki
2016-09-01
Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.
NASA Astrophysics Data System (ADS)
Marras, S.; Suckale, J.; Eguzkitza, B.; Houzeaux, G.; Vázquez, M.; Lesage, A. C.
2016-12-01
The propagation of tsunamis in the open ocean has been studied in detail with many excellent numerical approaches available to researchers. Our understanding of the processes that govern the onshore propagation of tsunamis is less advanced. Yet, the reach of tsunamis on land is an important predictor of the damage associated with a given event, highlighting the need to investigate the factors that govern tsunami propagation onshore. In this study, we specifically focus on understanding the effect of bottom roughness at a variety of scales. The term roughness is to be understood broadly, as it represents scales ranging from small features like rocks, to vegetation, up to the size of larger structures and topography. In this poster, we link applied mathematics, computational fluid dynamics, and tsunami physics to analyze the small scales features of coastal hydrodynamics and the effect of roughness on the motion of tsunamis as they run up a sloping beach and propagate inland. We solve the three-dimensional Navier-Stokes equations of incompressible flows with free surface, which is tracked by a level set function in combination with an accurate re-distancing scheme. We discretize the equations via linear finite elements for space approximation and fully implicit time integration. Stabilization is achieved via the variational multiscale method whereas the subgrid scales for our large eddy simulations are modeled using a dynamically adaptive Smagorinsky eddy viscosity. As the geometrical characteristics of roughness in this study vary greatly across different scales, we implement a scale-dependent representation of the roughness elements. We model the smallest sub-grid scale roughness features by the use of a properly defined law of the wall. Furthermore, we utilize a Manning formula to compute the shear stress at the boundary. As the geometrical scales become larger, we resolve the geometry explicitly and compute the effective volume drag introduced by large scale immersed bodies. This study is a necessary step to verify and validate our model before proceeding further into the simulation of sediment transport in turbulent free surface flows. The simulation of such problems requires a space and time-dependent viscosity to model the effect of solid bodies transported by the incoming flow on onshore tsunami propagation.
A short cut for scaling aerial photos
Earl J. Rogers
1948-01-01
Aerial photos are a handy tool for the forester. They furnish forest data quickly. But when the photo is used as a map, care is necessary - especially in rough country. In flat country photo scales are quite uniform and distances can be measured accurately. But in rough country photo scale varies with changes in elevation, and it is more difficult to measure distances...
Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces
NASA Astrophysics Data System (ADS)
Thakkar, Manan; Busse, Angela; Sandham, Neil
2017-02-01
Rough surfaces are usually characterised by a single equivalent sand-grain roughness height scale that typically needs to be determined from laboratory experiments. Recently, this method has been complemented by a direct numerical simulation approach, whereby representative surfaces can be scanned and the roughness effects computed over a range of Reynolds number. This development raises the prospect over the coming years of having enough data for different types of rough surfaces to be able to relate surface characteristics to roughness effects, such as the roughness function that quantifies the downward displacement of the logarithmic law of the wall. In the present contribution, we use simulation data for 17 irregular surfaces at the same friction Reynolds number, for which they are in the transitionally rough regime. All surfaces are scaled to the same physical roughness height. Mean streamwise velocity profiles show a wide range of roughness function values, while the velocity defect profiles show a good collapse. Profile peaks of the turbulent kinetic energy also vary depending on the surface. We then consider which surface properties are important and how new properties can be incorporated into an empirical model, the accuracy of which can then be tested. Optimised models with several roughness parameters are systematically developed for the roughness function and profile peak turbulent kinetic energy. In determining the roughness function, besides the known parameters of solidity (or frontal area ratio) and skewness, it is shown that the streamwise correlation length and the root-mean-square roughness height are also significant. The peak turbulent kinetic energy is determined by the skewness and root-mean-square roughness height, along with the mean forward-facing surface angle and spanwise effective slope. The results suggest feasibility of relating rough-wall flow properties (throughout the range from hydrodynamically smooth to fully rough) to surface parameters.
Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry
2010-01-01
The effect of a relative humidity (RH) in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells. PMID:20652040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, C.; Nguyen Thanh, T.; Almosni, S.
We have investigated the influence of the surface roughness on nitrogen incorporation during the molecular beam epitaxy of diluted nitrides, independently of the other growth parameters. GaPN/GaP layers grown simultaneously on surfaces displaying different roughnesses reveal a large difference in nitrogen incorporation despite the same growth temperature and growth rate. The same difference is found on quasi-lattice-matched GaAsPN demonstrating that the phenomenon is not related to any strain-induced mechanisms. The tendency is clearly confirmed when varying the growth conditions. As a direct consequence, the incorporation of substitutional nitrogen near the atomic step edges is found to be 6.7 times moremore » probable than the in-plane nitrogen incorporation. The formation of N-N{sub i} clusters and their stability on the surface is discussed.« less
A two-scale roughness model for the gloss of coated paper
NASA Astrophysics Data System (ADS)
Elton, N. J.
2008-08-01
A model for gloss is developed for surfaces with two-scale random roughness where one scale lies in the wavelength region (microroughness) and the other in the geometrical optics limit (macroroughness). A number of important industrial materials such as coated and printed paper and some paints exhibit such two-scale rough surfaces. Scalar Kirchhoff theory is used to describe scattering in the wavelength region and a facet model used for roughness features much greater than the wavelength. Simple analytical expressions are presented for the gloss of surfaces with Gaussian, modified and intermediate Lorentzian distributions of surface slopes, valid for gloss at high angle of incidence. In the model, gloss depends only on refractive index, rms microroughness amplitude and the FWHM of the surface slope distribution, all of which may be obtained experimentally. Model predictions are compared with experimental results for a range of coated papers and gloss standards, and found to be in fair agreement within model limitations.
NASA Astrophysics Data System (ADS)
Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong
2017-07-01
In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.
Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching
2016-01-01
Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.
Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method
NASA Astrophysics Data System (ADS)
Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.
2018-06-01
During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.
NASA Astrophysics Data System (ADS)
Chen, Y.; Liu, X.; Mankoff, K. D.; Gulley, J. D.
2016-12-01
The surfaces of subglacial conduits are very complex, coupling multi-scale roughness, large sinuosity, and cross-sectional variations together. Those features significantly affect the friction law and drainage efficiency inside the conduit by altering velocity and pressure distributions, thus posing considerable influences on the dynamic development of the conduit. Parameterizing the above surface features is a first step towards understanding their hydraulic influences. A Matlab package is developed to extract the roughness field, the conduit centerline, and associated area and curvature data from the conduit surface, acquired from 3D scanning. By using those data, the characteristic vertical and horizontal roughness scales are then estimated based on the structure functions. The centerline sinuosities, defined through three concepts, i.e., the traditional definition of a fluvial river, entropy-based sinuosity, and curvature-based sinuosity, are also calculated and compared. The cross-sectional area and equivalent circular diameter along the centerline are also calculated. Among those features, the roughness is especially important due to its pivotal role in determining the wall friction, and thus an estimation of the equivalent roughness height is of great importance. To achieve such a goal, the original conduit is firstly simplified into a straight smooth pipe with the same volume and centerline length, and the roughness field obtained above is then reconstructed into the simplified pipe. An OpenFOAM-based Large-eddy-simulation (LES) is then performed based on the reconstructed pipe. Considering that the Reynolds number is of the order 106, and the relative roughness is larger than 5% for 60% of the conduit, we test the validity of the resistance law for completely rough pipe. The friction factor is calculated based on the pressure drop and mean velocity in the simulation. Working together, the equivalent roughness height can be calculated. However, whether the assumption is applicable for the current case, i.e., high relative roughness, is a question. Two other roughness heights, i.e., the vertical roughness scale based on structure functions and viscous sublayer thickness determined from the wall boundary layer are also calculated and compared with the equivalent roughness height.
Origin of the scaling laws of sediment transport
NASA Astrophysics Data System (ADS)
Ali, Sk Zeeshan; Dey, Subhasish
2017-01-01
In this paper, we discover the origin of the scaling laws of sediment transport under turbulent flow over a sediment bed, for the first time, from the perspective of the phenomenological theory of turbulence. The results reveal that for the incipient motion of sediment particles, the densimetric Froude number obeys the `(1 + σ)/4' scaling law with the relative roughness (ratio of particle diameter to approach flow depth), where σ is the spectral exponent of turbulent energy spectrum. However, for the bedforms, the densimetric Froude number obeys a `(1 + σ)/6' scaling law with the relative roughness in the enstrophy inertial range and the energy inertial range. For the bedload flux, the bedload transport intensity obeys the `3/2' and `(1 + σ)/4' scaling laws with the transport stage parameter and the relative roughness, respectively. For the suspended load flux, the non-dimensional suspended sediment concentration obeys the `-Z ' scaling law with the non-dimensional vertical distance within the wall shear layer, where Z is the Rouse number. For the scour in contracted streams, the non-dimensional scour depth obeys the `4/(3 - σ)', `-4/(3 - σ)' and `-(1 + σ)/(3 - σ)' scaling laws with the densimetric Froude number, the channel contraction ratio (ratio of contracted channel width to approach channel width) and the relative roughness, respectively.
Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.
Gulam Razul, M S; Hendry, J G; Kusalik, P G
2005-11-22
In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.
Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator
Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W.
2017-01-01
The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler. PMID:28294990
NASA Astrophysics Data System (ADS)
Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.
2015-09-01
Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.
NASA Astrophysics Data System (ADS)
Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju
2017-01-01
In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.
Simple model of surface roughness for binary collision sputtering simulations
NASA Astrophysics Data System (ADS)
Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew
2017-02-01
It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.
Manufacture and calibration of optical supersmooth roughness artifacts for intercomparisons
NASA Astrophysics Data System (ADS)
Ringel, Gabriele A.; Kratz, Frank; Schmitt, Dirk-Roger; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.
1995-09-01
Intercomparison roughness measurements have been carried out on supersmooth artifacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using the optical heterodyne profiler Z5500 (Zygo), a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), and an Atomic Force Microscope (Park Scientific Instruments) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelengths for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that the applied superpolishing techniques yield supersmooth artifacts which can be used for more intercomparisons. More than 100 samples were investigated. Criteria were developed to select artifacts from the sample stock.
Multi-scale roughness spectra of Mount St. Helens debris flows
NASA Technical Reports Server (NTRS)
Austin, Richard T.; England, Anthony W.
1993-01-01
A roughness spectrum allows surface structure to be interpreted as a sum of sinusoidal components with differing wavelengths. Knowledge of the roughness spectrum gives insight into the mechanisms responsible for electromagnetic scattering at a given wavelength. Measured spectra from 10-year-old primary debris flow surfaces at Mount St. Helens conform to a power-law spectral model, suggesting that these surfaces are scaling over the measured range of spatial frequencies. Measured spectra from water-deposited surfaces deviate from this model.
Analysis of leaf surfaces using scanning ion conductance microscopy.
Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J
2015-05-01
Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J
2012-11-30
This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Novel MRF fluid for ultra-low roughness optical surfaces
NASA Astrophysics Data System (ADS)
Dumas, Paul; McFee, Charles
2014-08-01
Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.
Ding, Yong; Xu, Sheng; Zhang, Yue; Wang, Aurelia C; Wang, Melissa H; Xiu, Yonghao; Wong, Ching Ping; Wang, Zhong Lin
2008-09-03
Although butterfly wings and water strider legs have an anti-wetting property, their working conditions are quite different. Water striders, for example, live in a wet environment and their legs need to support their weight and bear the high pressure during motion. In this work, we have focused on the importance of the surface geometrical structures in determining their performance. We have applied an atomic layer deposition technique to coat the surfaces of both butterfly wings and water strider legs with a uniform 30 nm thick hydrophilic Al(2)O(3) film. By keeping the surface material the same, we have studied the effect of different surface roughness/structure on their hydrophobic property. After the surface coating, the butterfly wings changed to become hydrophilic, while the water strider legs still remained super-hydrophobic. We suggest that the super-hydrophobic property of the water strider is due to the special shape of the long inclining spindly cone-shaped setae at the surface. The roughness in the surface can enhance the natural tendency to be hydrophobic or hydrophilic, while the roughness in the normal direction of the surface is favorable for forming a composite interface.
An in vitro atomic force microscopic study of commercially available dental luting materials.
Djordje, Antonijevic; Denis, Brajkovic; Nenadovic, Milos; Petar, Milovanovic; Marija, Djuric; Zlatko, Rakocevic
2013-09-01
The aim of this in vitro study was to compare the surface roughness parameters of four different types of dental luting agents used for cementation of implant restorations. Five specimens (8 mm high and 1 mm thick) of each cement were made using metal ring steelless molds. Atomic Force Microscope was employed to analyze different surface texture parameters of the materials. Bearing ratio analysis was used to calculate the potential microgap size between the cement and implant material and to calculate the depth of the valleys on the cement surface, while power spectral density (PSD) measurements were performed to measure the percentage of the surface prone to bacterial adhesion. Glass ionomer cement showed significantly lower value of average surface roughness then the other groups of the materials (P < 0.05) which was in line with the results of Bearing ratio analysis. On the other side, PSD analysis showed that zinc phosphate cement experience the lowest percentage of the surface which promote bacterial colonization. Glas ionomer cements present the surface roughness parameters that are less favorable for bacterial adhesion than that of zinc phosphate, resin-modified glass ionomer and resin cements. Copyright © 2013 Wiley Periodicals, Inc.
Roadmap of ultrafast x-ray atomic and molecular physics
NASA Astrophysics Data System (ADS)
Young, Linda; Ueda, Kiyoshi; Gühr, Markus; Bucksbaum, Philip H.; Simon, Marc; Mukamel, Shaul; Rohringer, Nina; Prince, Kevin C.; Masciovecchio, Claudio; Meyer, Michael; Rudenko, Artem; Rolles, Daniel; Bostedt, Christoph; Fuchs, Matthias; Reis, David A.; Santra, Robin; Kapteyn, Henry; Murnane, Margaret; Ibrahim, Heide; Légaré, François; Vrakking, Marc; Isinger, Marcus; Kroon, David; Gisselbrecht, Mathieu; L'Huillier, Anne; Wörner, Hans Jakob; Leone, Stephen R.
2018-02-01
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ˜1 Ångstrom, and HHG provides unprecedented time resolution (˜50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ˜280 eV (44 Ångstroms) and the bond length in methane of ˜1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.
The evolution of slip surface roughness during earthquake propagation in carbonate faults
NASA Astrophysics Data System (ADS)
Zhu, B.; De Paola, N.; Llewellin, E. W.; Holdsworth, R.
2014-12-01
Slip surface roughness is understood to control the dynamics of earthquake propagation. Quantifying the micro- and nano-scale roughness of slip surfaces can give insight into the grain-scale processes controlling the strength of faults during earthquake propagation. Friction experiments were performed on fine-grained calcite gouges, at speed 1 ms-1, normal stress 18 MPa, displacements 0.009-1.46 m, and room temperature and humidity. Results show a two stage-evolution (S1-2) of the fault strength, with an initial increase up to peak value 0.82 (S1), followed by a sudden decrease to a low, steady-state value 0.18 (S2). Samples retrieved at the end of S1 show the development of a cohesive slip zone (SZ), made of micron-scale, angular clasts formed by brittle fracturing and cataclasis. The SZ of samples deformed up to S2, is composed of nanograin aggregates which exhibit polygonal grain boundaries indicating high temperature grain boundary sliding creep deformation. In both cases, the SZ is bounded by a sharply defined slip surface. The 3-D geometry of seven experimental slip surfaces (40μm×40μm) has been reconstructed by digital processing of sets of 1800 images of SZ cross sections acquired at 20 nm intervals perpendicular to the slip direction, using a slicing (Focussed Ion Beam) and viewing (Field Emission Scanning Electron Microscope) technique. Spectrum power density analyses show that nano- and micron-scale slip surface roughness is anisotropic for both S1 and S2 slip surfaces. At the nano- and micron-scale, root mean square values decrease with length for S1 slip surfaces, but only slightly for S2 surfaces, and are anisotropic in the slip-normal and slip-parallel directions. The anisotropy is reduced at the nano-scale, although S2 slip surfaces are still smoother parallel to slip than normal to slip. Hurst exponents vary through scales, and are anisotropic in the directions parallel and normal to slip. Variable Hurst exponents indicate that slip surface roughness is scale-dependent with anisotropic, not self-affine behaviour at the micro/nano-scale, in contrast to the self-affine behaviour inferred at the mm to km scales. Dynamic weakening and creep deformation, observed during S2, coincide with an evolution towards less anisotropic and scale-dependent slip surface roughness at the nanoscale.
NASA Astrophysics Data System (ADS)
Brasseur, James; Paes, Paulo; Chamecki, Marcelo
2017-11-01
Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Low Earth orbital atomic oxygen micrometeoroid, and debris interactions with photovoltaic arrays
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.
1991-01-01
Polyimide Kapton solar array blankets can be protected from atomic oxygen in low earth orbit if SiO sub x thin film coatings are applied to their surfaces. The useful lifetime of a blanket protected in this manner strongly depends on the number and size of defects in the protective coatings. Atomic oxygen degradation is dominated by undercutting at defects in protective coatings caused by substrate roughness and processing rather than micrometeoroid or debris impacts. Recent findings from the Long Duration Exposure Facility (LDEF) and ground based studies show that interactions between atomic oxygen and silicones may cause grazing and contamination problems which may lead to solar array degradation.
Compact Laser System for Field Deployable Ultracold Atom Sensors
NASA Astrophysics Data System (ADS)
Pino, Juan; Luey, Ben; Anderson, Mike
2013-05-01
As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA
a Comparison of Uav and Tls Data for Soil Roughness Assessment
NASA Astrophysics Data System (ADS)
Milenković, M.; Karel, W.; Ressl, C.; Pfeifer, N.
2016-06-01
Soil roughness represents fine-scale surface geometry which figures in many geophysical models. While static photogrammetric techniques (terrestrial images and laser scanning) have been recently proposed as a new source for deriving roughness heights, there is still need to overcome acquisition scale and viewing geometry issues. By contrast to the static techniques, images taken from unmanned aerial vehicles (UAV) can maintain near-nadir looking geometry over scales of several agricultural fields. This paper presents a pilot study on high-resolution, soil roughness reconstruction and assessment from UAV images over an agricultural plot. As a reference method, terrestrial laser scanning (TLS) was applied on a 10 m x 1.5 m subplot. The UAV images were self-calibrated and oriented within a bundle adjustment, and processed further up to a dense-matched digital surface model (DSM). The analysis of the UAV- and TLS-DSMs were performed in the spatial domain based on the surface autocorrelation function and the correlation length, and in the frequency domain based on the roughness spectrum and the surface fractal dimension (spectral slope). The TLS- and UAV-DSM differences were found to be under ±1 cm, while the UAV DSM showed a systematic pattern below this scale, which was explained by weakly tied sub-blocks of the bundle block. The results also confirmed that the existing TLS methods leads to roughness assessment up to 5 mm resolution. However, for our UAV data, this was not possible to achieve, though it was shown that for spatial scales of 12 cm and larger, both methods appear to be usable. Additionally, this paper suggests a method to propagate measurement errors to the correlation length.
Development and Validation of a Photonumeric Scale for Evaluation of Facial Skin Texture
Carruthers, Alastair; Hardas, Bhushan; Murphy, Diane K.; Carruthers, Jean; Jones, Derek; Sykes, Jonathan M.; Creutz, Lela; Marx, Ann; Dill, Sara
2016-01-01
BACKGROUND A validated scale is needed for objective and reproducible comparisons of facial skin roughness before and after aesthetic treatment in practice and in clinical studies. OBJECTIVE To describe the development and validation of the 5-point photonumeric Allergan Skin Roughness Scale. METHODS The scale was developed to include an assessment guide, verbal descriptors, morphed images, and real subject images for each grade. The clinical significance of a 1-point score difference was evaluated in a review of image pairs representing varying differences in severity. Interrater and intrarater reliability was evaluated in a live-subject validation study (N = 290) completed during 2 sessions occurring 3 weeks apart. RESULTS A score difference of ≥1 point was shown to reflect a clinically meaningful difference (mean [95% confidence interval] absolute score difference 1.09 [0.96–1.23] for clinically different image pairs and 0.53 [0.38–0.67] for not clinically different pairs). Intrarater agreement between the 2 validation sessions was almost perfect (weighted kappa = 0.83). Interrater agreement was almost perfect during the second rating session (0.81, primary end point). CONCLUSION The Allergan Skin Roughness Scale is a validated and reliable scale for physician rating of midface skin roughness. PMID:27661744
A spatial picture of the synthetic large-scale motion from dynamic roughness
NASA Astrophysics Data System (ADS)
Huynh, David; McKeon, Beverley
2017-11-01
Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Phillips, M.; Wilson, N. R.
2013-06-01
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.
Roughness configuration matters for aeolian sediment flux
USDA-ARS?s Scientific Manuscript database
The parameterisation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Roughness effects are typically represented by bulk drag-partitioning schemes that scale the threshold friction velocity (u*t) for soil entrainment by the ratio of s...
Cleaning of optical surfaces by capacitively coupled RF discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, P. K., E-mail: praveenyadav@rrcat.gov.in; Rai, S. K.; Nayak, M.
2014-04-24
In this paper, we report cleaning of carbon capped molybdenum (Mo) thin film by in-house developed radio frequency (RF) plasma reactor, at different powers and exposure time. Carbon capped Mo films were exposed to oxygen plasma for different durations at three different power settings, at a constant pressure. After each exposure, the thickness of the carbon layer and the roughness of the film were determined by hard x-ray reflectivity measurements. It was observed that most of the carbon film got removed in first 15 minutes exposure. A high density layer formed on top of the Mo film was also observedmore » and it was noted that this layer cannot be removed by successive exposures at different powers. A significant improvement in interface roughness with a slight improvement in top film roughness was observed. The surface roughness of the exposed and unexposed samples was also confirmed by atomic force microscopy measurements.« less
Two photon excitation of atomic oxygen
NASA Technical Reports Server (NTRS)
Pindzola, M. S.
1977-01-01
A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.
Lunar terrain mapping and relative-roughness analysis
Rowan, Lawrence C.; McCauley, John F.; Holm, Esther A.
1971-01-01
Terrain maps of the equatorial zone (long 70° E.-70° W. and lat 10° N-10° S.) were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings as well as for Ranger and Lunar Orbiter photographs. The techniques that were developed as a result of this effort can be applied to future planetary exploration. By using the best available earth-based observational data and photographs 1:1,000,000-scale and U.S. Geological Survey lunar geologic maps and U.S. Air Force Aeronautical Chart and Information Center LAC charts, lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative-roughness characteristics. Approximately 150,000 east-west slope measurements made by a photometric technique (photoclinometry) in 51 sample areas indicate that algebraic slope-frequency distributions are Gaussian, and so arithmetic means and standard deviations accurately describe the distribution functions. The algebraic slope-component frequency distributions are particularly useful for rapidly determining relative roughness of terrain. The statistical parameters that best describe relative roughness are the absolute arithmetic mean, the algebraic standard deviation, and the percentage of slope reversal. Statistically derived relative-relief parameters are desirable supplementary measures of relative roughness in the terrae. Extrapolation of relative roughness for the maria was demonstrated using Ranger VII slope-component data and regional maria slope data, as well as the data reported here. It appears that, for some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.
Helicopter rotor noise investigation during ice accretion
NASA Astrophysics Data System (ADS)
Cheng, Baofeng
An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.
NASA Astrophysics Data System (ADS)
Saito, Namiko
Studies in turbulence often focus on two flow conditions, both of which occur frequently in real-world flows and are sought-after for their value in advancing turbulence theory. These are the high Reynolds number regime and the effect of wall surface roughness. In this dissertation, a Large-Eddy Simulation (LES) recreates both conditions over a wide range of Reynolds numbers Retau = O(102) - O(108) and accounts for roughness by locally modeling the statistical effects of near-wall anisotropic fine scales in a thin layer immediately above the rough surface. A subgrid, roughness-corrected wall model is introduced to dynamically transmit this modeled information from the wall to the outer LES, which uses a stretched-vortex subgrid-scale model operating in the bulk of the flow. Of primary interest is the Reynolds number and roughness dependence of these flows in terms of first and second order statistics. The LES is first applied to a fully turbulent uniformly-smooth/rough channel flow to capture the flow dynamics over smooth, transitionally rough and fully rough regimes. Results include a Moody-like diagram for the wall averaged friction factor, believed to be the first of its kind obtained from LES. Confirmation is found for experimentally observed logarithmic behavior in the normalized stream-wise turbulent intensities. Tight logarithmic collapse, scaled on the wall friction velocity, is found for smooth-wall flows when Re tau ≥ O(106) and in fully rough cases. Since the wall model operates locally and dynamically, the framework is used to investigate non-uniform roughness distribution cases in a channel, where the flow adjustments to sudden surface changes are investigated. Recovery of mean quantities and turbulent statistics after transitions are discussed qualitatively and quantitatively at various roughness and Reynolds number levels. The internal boundary layer, which is defined as the border between the flow affected by the new surface condition and the unaffected part, is computed, and a collapse of the profiles on a length scale containing the logarithm of friction Reynolds number is presented. Finally, we turn to the possibility of expanding the present framework to accommodate more general geometries. As a first step, the whole LES framework is modified for use in the curvilinear geometry of a fully-developed turbulent pipe flow, with implementation carried out in a spectral element solver capable of handling complex wall profiles. The friction factors have shown favorable agreement with the superpipe data, and the LES estimates of the Karman constant and additive constant of the log-law closely match values obtained from experiment.
Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr
NASA Astrophysics Data System (ADS)
Abou-Saleh, A.; Karim, E. T.; Maurice, C.; Reynaud, S.; Pigeon, F.; Garrelie, F.; Zhigilei, L. V.; Colombier, J. P.
2018-04-01
Interaction of ultrafast laser pulses with metal surfaces in the spallation regime can result in the formation of anisotropic nanoscale surface morphology commonly referred to as laser-induced periodic surface structures (LIPSS) or ripples. The surface structures generated by a single pulse irradiation of monocrystalline Cr samples are investigated experimentally and computationally for laser fluences that produce high spatial frequency nanostructures in the multi-pulse irradiation regime. Electron microscopy reveals distinct response of samples with different crystallographic surface orientations, with (100) surfaces exhibiting the formation of more refined nanostructure by a single pulse irradiation and a more pronounced LIPSS after two laser pulses as compared to (110) surfaces. A large-scale molecular dynamics simulation of laser interaction with a (100) Cr target provides detailed information on processes responsible for spallation of a liquid layer, redistribution of molten material, and rapid resolidification of the target. The nanoscale roughness of the resolidified surface predicted in the simulation features elongated frozen nanospikes, nanorims and nanocavities with dimensions and surface density similar to those in the surface morphology observed for (100) Cr target with atomic force microscopy. The results of the simulation suggest that the types, sizes and dimensions of the nanoscale surface features are defined by the competition between the evolution of transient liquid structures generated in the spallation process and the rapid resolidification of the surface region of the target. The spallation-induced roughness is likely to play a key role in triggering the generation of high-frequency LIPSS upon irradiation by multiple laser pulses.
Supersonic turbulent boundary layers with periodic mechanical non-equilibrium
NASA Astrophysics Data System (ADS)
Ekoto, Isaac Wesley
Previous studies have shown that favorable pressure gradients reduce the turbulence levels and length scales in supersonic flow. Wall roughness has been shown to reduce the large-scales in wall bounded flow. Based on these previous observations new questions have been raised. The fundamental questions this dissertation addressed are: (1) What are the effects of wall topology with sharp versus blunt leading edges? and (2) Is it possible that a further reduction of turbulent scales can occur if surface roughness and favorable pressure gradients are combined? To answer these questions and to enhance the current experimental database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties along with surface and flow visualizations of a high-speed (M = 2.86), high Reynolds number (Retheta ≈ 60,000) supersonic turbulent boundary layer distorted by curvature-induced favorable pressure gradients and large-scale ( k+s ≈ 300) uniform surface roughness. Nine models were tested at three separate locations. Three pressure gradient models strengths (a nominally zero, a weak, and a strong favorable pressure gradient) and three roughness topologies (aerodynamically smooth, square, and diamond shaped roughness elements) were used. Highly resolved planar measurements of mean and fluctuating velocity components were accomplished using particle image velocimetry. Stagnation pressure profiles were acquired with a traversing Pitot probe. Surface pressure distributions were characterized using pressure sensitive paint. Finally flow visualization was accomplished using schlieren photographs. Roughness topology had a significant effect on the boundary layer mean and turbulent properties due to shock boundary layer interactions. Favorable pressure gradients had the expected stabilizing effect on turbulent properties, but the improvements were less significant for models with surface roughness near the wall due to increased tendency towards flow separation. It was documented that proper roughness selection coupled with a sufficiently strong favorable pressure gradient produced regions of "negative" production in the transport of turbulent stress. This led to localized areas of significant turbulence stress reduction. With proper roughness selection and sufficient favorable pressure gradient strength, it is believed that localized relaminarization of the boundary layer is possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewald, E; Kozioziemski, B; Moody, J
2008-06-26
We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close tomore » that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.« less
Pattern optimizing verification of self-align quadruple patterning
NASA Astrophysics Data System (ADS)
Yamato, Masatoshi; Yamada, Kazuki; Oyama, Kenichi; Hara, Arisa; Natori, Sakurako; Yamauchi, Shouhei; Koike, Kyohei; Yaegashi, Hidetami
2017-03-01
Lithographic scaling continues to advance by extending the life of 193nm immersion technology, and spacer-type multi-patterning is undeniably the driving force behind this trend. Multi-patterning techniques such as self-aligned double patterning (SADP) and self-aligned quadruple patterning (SAQP) have come to be used in memory devices, and they have also been adopted in logic devices to create constituent patterns in the formation of 1D layout designs. Multi-patterning has consequently become an indispensible technology in the fabrication of all advanced devices. In general, items that must be managed when using multi-patterning include critical dimension uniformity (CDU), line edge roughness (LER), and line width roughness (LWR). Recently, moreover, there has been increasing focus on judging and managing pattern resolution performance from a more detailed perspective and on making a right/wrong judgment from the perspective of edge placement error (EPE). To begin with, pattern resolution performance in spacer-type multi-patterning is affected by the process accuracy of the core (mandrel) pattern. Improving the controllability of CD and LER of the mandrel is most important, and to reduce LER, an appropriate smoothing technique should be carefully selected. In addition, the atomic layer deposition (ALD) technique is generally used to meet the need for high accuracy in forming the spacer film. Advances in scaling are accompanied by stricter requirements in the controllability of fine processing. In this paper, we first describe our efforts in improving controllability by selecting the most appropriate materials for the mandrel pattern and spacer film. Then, based on the materials selected, we present experimental results on a technique for improving etching selectivity.
NASA Astrophysics Data System (ADS)
Ludewig, P.; Reinhard, S.; Jandieri, K.; Wegele, T.; Beyer, A.; Tapfer, L.; Volz, K.; Stolz, W.
2016-03-01
High-quality, pseudomorphically strained Ga(NAsP)/(BGa)(AsP)-multiple quantum well heterostructures (MQWH) have been deposited on exactly oriented (001) Si-substrate by metal organic vapour phase epitaxy (MOVPE) in a wide temperature range between 525 °C and 700 °C. The individual atomic incorporation efficiencies, growth rates as well as nanoscale material properties have been clarified by applying detailed high-resolution X-ray diffraction (HR-XRD), photoluminescence (PL) spectroscopy and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) studies. An almost constant N-incorporation efficiency is obtained for a wide growth temperature range from 550 °C up to 650 °C. The P-incorporation is steadily increasing with increasing growth temperature reaching values at high temperatures in excess of the applied gas phase ratio. While the lower interface from the binary GaP- to the quaternary Ga(NAsP)-material system is very sharp, the upper interface is significantly rougher with a roughness scale of ±0.43 nm in quantum well thickness variation at a growth temperature of 525 °C. This roughness scale increases steadily with increasing growth temperature. No indication of any phase separation effects is detected in the Ga(NAsP)-material system even at the highest growth temperature of 700 °C. The obtained experimental results are briefly discussed with respect to the anticipated metastable character of the novel dilute-nitride Ga(NAsP)-material system grown lattice-matched to (001) Si-substrate.
Al-khattawi, Ali; Alyami, Hamad; Townsend, Bill; Ma, Xianghong; Mohammed, Afzal R.
2014-01-01
The work investigates the adhesive/cohesive molecular and physical interactions together with nanoscopic features of commonly used orally disintegrating tablet (ODT) excipients microcrystalline cellulose (MCC) and D-mannitol. This helps to elucidate the underlying physico-chemical and mechanical mechanisms responsible for powder densification and optimum product functionality. Atomic force microscopy (AFM) contact mode analysis was performed to measure nano-adhesion forces and surface energies between excipient-drug particles (6-10 different particles per each pair). Moreover, surface topography images (100 nm2–10 µm2) and roughness data were acquired from AFM tapping mode. AFM data were related to ODT macro/microscopic properties obtained from SEM, FTIR, XRD, thermal analysis using DSC and TGA, disintegration testing, Heckel and tabletability profiles. The study results showed a good association between the adhesive molecular and physical forces of paired particles and the resultant densification mechanisms responsible for mechanical strength of tablets. MCC micro roughness was 3 times that of D-mannitol which explains the high hardness of MCC ODTs due to mechanical interlocking. Hydrogen bonding between MCC particles could not be established from both AFM and FTIR solid state investigation. On the contrary, D-mannitol produced fragile ODTs due to fragmentation of surface crystallites during compression attained from its weak crystal structure. Furthermore, AFM analysis has shown the presence of extensive micro fibril structures inhabiting nano pores which further supports the use of MCC as a disintegrant. Overall, excipients (and model drugs) showed mechanistic behaviour on the nano/micro scale that could be related to the functionality of materials on the macro scale. PMID:25025427
Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric
2008-07-01
We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.
Writing silica structures in liquid with scanning transmission electron microscopy.
van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M
2015-02-04
Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials for Hypersonic Flight
2011-11-01
temperatures exceed 2500 K . as they have here. E. Evidence of Volatilization Emission spectroscopy of electronically excited B , Si, and W atoms...specimens. After roughly 30 seconds around 2660 K , the surface temperature of sample 3.3 decays steadily, and the B , Si, and W atom emissions follow...175-189. 51Roine, A., HSC Chemistry for Windows, Version 5.11. Outokumpu Research Oy, Pori, Finland, (2006). 52Hirsch, K ., Roth, B ., Altmann, I
Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.
2004-07-13
A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Carbon nanotube oscillator surface profiling device and method of use
Popescu, Adrian [Tampa, FL; Woods, Lilia M [Tampa, FL; Bondarev, Igor V [Fuquay Varina, NC
2011-11-15
The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.
Photoinduced Changes in Ge-Doped Flame Hydrolysis Silica Glass Films
NASA Astrophysics Data System (ADS)
Zhang, Letian; Xie, Wenfa; Wang, Jian; Li, Aiwu; Xing, Hua; Zheng, Wei; Qian, Ying; Zhang, Jian; Zhang, Yushu
2003-12-01
The influence on the structural and optical properties of Ge-doped flame hydrolysis silica glass films of KrF excimer laser irradiation was investigated. A maximum refractive index change of about 3.41× 10-3 is obtained at approximately 1550 nm after 10 min irradiation. The irradiation process and roughness of the films were analyzed by atomic force microscopy (AFM). As irradiation time increased, the density of the films increased, resulting in decreases in the surface roughness and increases in the refractive index of the films.
Dislocation-driven growth of two-dimensional lateral quantum-well superlattices
Chen, Jianyi; Li, Dongdong
2018-01-01
The advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width. PMID:29740600
Nanoscale thin film growth of Au on Si(111)-7 × 7 surface by pulsed laser deposition method
NASA Astrophysics Data System (ADS)
Yokotani, Atsushi; Kameyama, Akihiro; Nakayoshi, Kohei; Matsunaga, Yuta
2017-03-01
To obtain important information for fabricating atomic-scale Au thin films that are used for biosensors, we have observed the morphology of Au particles adsorbed on a Si(111)-7 × 7 surface, which is supposed to be the initial stage of Au atomistic thin film formation. Au particles were adsorbed on the clean Si surface using a PLD method, and the adsorbed particles were observed using a scanning tunneling microscope. As the number of laser shots was increased in the PLD method, the size of the adsorbed particle became larger. The larger particles seemed to form clusters, which are aggregations of particles in which each particle is distinguished, so we call this type of cluster a film-shaped cluster. In this work, we have mainly analyzed this type of cluster. As a result the film-shaped clusters were found to have a structure of nearly monoatomic layers. The particles in the clusters were gathered closely in roughly a 3-fold structure with an inter particle distance of 0.864 nm. We propose a model for the cluster structure by modifying Au(111) face so that each observed particle consists of three Au atoms.
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
Surface roughness effects on turbulent Couette flow
NASA Astrophysics Data System (ADS)
Lee, Young Mo; Lee, Jae Hwa
2017-11-01
Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Tian, Guilhem Ribeill, Chen Xu, Charles E. Reece, Michael J. Kelley
2011-03-01
As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. Amore » more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.« less
NASA Astrophysics Data System (ADS)
Anderson, William; Meneveau, Charles
2010-05-01
A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2010-06-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Furthermore, retrieval of soil moisture using AIEM-like models is a classic example of the underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to directly obtain surface roughness information along with soil moisture from multi-angular ASAR images. The method first used a semi-empirical relationship that connects the roughness slope (Zs) and the difference in backscattering coefficient (Δσ) from ASAR data in different incidence angles, in combination with an optimal calibration form consisting of two roughness parameters (the standard deviation of surface height and the correlation length), to estimate the roughness parameters. The deduced surface roughness was then used in the AIEM model for the retrieval of soil moisture. An evaluation of the proposed method was performed in a grassland site in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It has demonstrated that the method is feasible to achieve reliable estimation of soil water content. The key challenge to surface soil moisture retrieval is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
Numerical simulations of quantum devices
NASA Astrophysics Data System (ADS)
Sandu, Titus
This work has been motivated by the tremendous effort toward the next generation of electron devices that will replace the present CMOS (Complementary Metal Oxide Semiconductor). Non-equilibrium Green's function formalism (NEGF) and empirical tight-binding (ETB) methods have been utilized in this dissertation. We studied the transport properties of Si/SiO2 resonant tunneling diodes (RTDs) by employing NEGF. We analyzed the physics of electron transport in Si/SiO2 RTDs and provided some guidelines for the fabrication of such devices by considering the effect of interface roughness scattering. Atomic scale roughness is shown to be acceptable. As the island size of the roughness increases, the peak-to-valley ratio degrades to less than 5 for 1 nm roughness and less than 2 for 2 nm roughness. By the ETB method we calculated electronic and optical properties of the relatively new Si/BeSe0.41Te0.59 system, more precisely Si/BeSe0.41Te0.59 [001] superlattices (SLs). Two interface bands were found in the band gap of bulk silicon. They were related to the polar Si/BeSe0.41Te0.59 interface. In addition, numerical calculations showed that the optical gap is close to the fundamental gap of bulk Si and the transitions are optically allowed. Two more aspects have been studied with NEGF: intrinsic bistability and off-zone center current flow of electrons in the RTD. We showed that broadening of the quasi-bound state in the emitter by scattering reduces intrinsic bistability. So far in different theoretical papers dealing with intrinsic bistability, only the scattering in the well has been considered. Finally, we demonstrated that scattering induces off-zone center current flow of electrons in RTDs. In RTDs electrons usually have a zone-center current flow. This is due to the coherent transport for which Tsu-Esaki formula is valid. On the contrary, holes have off-zone-center current flow. We show that, generally, carrier current flow is off-center, which means that the hole behavior is extended to electrons and is related to the breakdown of the Tsu-Esaki formula. Oblique flow is due to incoherent scattering represented by interface roughness and acoustic phonons. This is a quite new result and has been recently seen experimentally for hole transport.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2007-07-01
The surface modification of a plastic substrate by atomic hydrogen annealing (AHA) was investigated for flexible displays. In this method, the plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. Both surface roughness and contact angle of water droplet on poly(ethylene naphthalate) (PEN) substrates were increased by AHA. The surface of a PEN substrate was reduced by atomic hydrogen without optical transmittance degradation. In addition, the properties of a silicon nitride (SiNx) film deposited on a PEN substrate were changed by AHA, and the adhesion between the SiNx film and the PEN substrate was excellent for application to flexible displays.
Ethyl 2-[(carbamothioyl-amino)-imino]-propano-ate.
Corrêa, Charlane C; Graúdo, José Eugênio J C; de Oliveira, Luiz Fernando C; de Almeida, Mauro V; Diniz, Renata
2011-08-01
The title compound, C(6)H(11)N(3)O(2)S, consists of a roughly planar mol-ecule (r.m.s deviation from planarity = 0.077 Å for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent inter-nal N-H⋯N hydrogen bond donated by the amino group. In the crystal, mol-ecules are arranged in undulating layers parallel to (010). The mol-ecules are linked via inter-molecular amino-carboxyl N-H⋯O hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by N(carbazone)-H⋯S and C-H⋯S inter-actions, forming infinite sheets.
Modeling of normal contact of elastic bodies with surface relief taken into account
NASA Astrophysics Data System (ADS)
Goryacheva, I. G.; Tsukanov, I. Yu
2018-04-01
An approach to account the surface relief in normal contact problems for rough bodies on the basis of an additional displacement function for asperities is considered. The method and analytic expressions for calculating the additional displacement function for one-scale and two-scale wavy relief are presented. The influence of the microrelief geometric parameters, including the number of scales and asperities density, on additional displacements of the rough layer is analyzed.
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.
2017-09-01
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
Roughness of stylolites: implications of 3D high resolution topography measurements.
Schmittbuhl, J; Renard, F; Gratier, J P; Toussaint, R
2004-12-03
Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is zeta(1) approximately 0.5 and very different from that at small scales where zeta(2) approximately 1.2. A crossover length scale at around L(c)=1 mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.
Metal substrates with nanometer scale surface roughness for flexible electronics
NASA Astrophysics Data System (ADS)
Lee, Jong-Lam; Kim, Kisoo
2012-09-01
In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra < 1 nm) using a surface roughness transfer method without any polishing or planarization process. Ag film (8 inch, Ra = 0.57 nm) and an INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
Aims: To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. Materials and Methods: The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. Results: The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. Conclusions: The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse. PMID:26069408
Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar
2015-01-01
To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P < 0.01). The surface roughness increased sharply for Mtwo when compared to ProTaper, though ProTaper had a rougher surface initially. The study confirmed that the irregularities present on the surface of the file became more prominent with multiple autoclave cycles, a fact that should be kept in mind during their reuse.
Grundlingh, A A; Grossman, E S; Shrivastava, S; Witcomb, M J
2013-10-01
This study compared digital and visual colour tooth colour assessment methods in a sample of 99 teeth consisting of incisors, canines and pre-molars. The teeth were equally divided between Control, Ozicure Oxygen Activator bleach and Opalescence Quick bleach and subjected to three treatments. Colour readings were recorded at nine intervals by two assessment methods, VITA Easyshade and VITAPAN 3D MASTER TOOTH GUIDE, giving a total of 1782 colour readings. Descriptive and statistical analysis was undertaken using a GLM test for Analysis of Variance for a Fractional Design set at a significance of P < 0.05. Atomic force micros copy was used to examine treated ename surfaces and establish surface roughness. Visual tooth colour assessment showed significance for the independent variables of treatment, number of treatments, tooth type and the combination tooth type and treatment. Digital colour assessment indicated treatment and tooth type to be of significance in tooth colour change. Poor agreement was found between visual and digital colour assessment methods for Control and Ozicure Oxygen Activator treatments. Surface roughness values increased two-fold for Opalescence Quick specimens over the two other treatments, implying that increased light scattering improved digital colour reading. Both digital and visual colour matching methods should be used in tooth bleaching studies to complement each other and to compensate for deficiencies.
Poncin-Epaillard, F; Herry, J M; Marmey, P; Legeay, G; Debarnot, D; Bellon-Fontaine, M N
2013-04-01
Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF4 plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Copyright © 2012 Elsevier B.V. All rights reserved.
Resistivity scaling and electron relaxation times in metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less
Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene
2011-11-01
The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.
The Challenges of Plasma Modeling: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Foster, A. R.; Smith, R. K.; Brickhouse, N. S.; Kallman, T. R.; Witthoeft, M. C.
2010-12-01
Successfully modeling X-ray emission from astrophysical plasmas requires a wide range of atomic data to be rapidly accessible by modeling codes, enabling calculation of synthetic spectra for fitting with observations. Over many years the astrophysical databases have roughly kept pace with the advances in detector and spectrometer technology. We outline here the basic atomic processes contributing to the emission from different types of plasmas and briefly touch on the difference between the methods used to calculate this data. We then discuss in more detail the different issues addressed by atomic databases in regards to what data to store and how to make it accessible. Finally, the question of the effect of uncertainties in atomic data is explored, as a reminder to observers that atomic data is not known to infinite precision, and should not be treated as such.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2007-06-01
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. For the substrate, surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. AHA was useful for pretreatment before film deposition on a plastic substrate because the changes in surface state relate to adhesion improvement. It is concluded that this method is a promising technique for preparing high-performance plastic substrates at low temperatures.
Epi-cleaning of Ge/GeSn heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.
2015-01-28
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.
Epi-cleaning of Ge/GeSn heterostructures
NASA Astrophysics Data System (ADS)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A.; Wirths, S.; Buca, D.; Zaumseil, P.; Schroeder, T.; Capellini, G.
2015-01-01
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100-300 °C range.
John M. Buffington; David R. Montgomery; Harvey M. Greenberg
2004-01-01
A general framework is presented for examining the effects of channel type and associated hydraulic roughness on salmonid spawning-gravel availability in mountain catchments. Digital elevation models are coupled with grain-size predictions to provide basin-scale assessments of the potential extent and spatial pattern of spawning gravels. To demonstrate both the model...
The scaling issue: scientific opportunities
NASA Astrophysics Data System (ADS)
Orbach, Raymond L.
2009-07-01
A brief history of the Leadership Computing Facility (LCF) initiative is presented, along with the importance of SciDAC to the initiative. The initiative led to the initiation of the Innovative and Novel Computational Impact on Theory and Experiment program (INCITE), open to all researchers in the US and abroad, and based solely on scientific merit through peer review, awarding sizeable allocations (typically millions of processor-hours per project). The development of the nation's LCFs has enabled available INCITE processor-hours to double roughly every eight months since its inception in 2004. The 'top ten' LCF accomplishments in 2009 illustrate the breadth of the scientific program, while the 75 million processor hours allocated to American business since 2006 highlight INCITE contributions to US competitiveness. The extrapolation of INCITE processor hours into the future brings new possibilities for many 'classic' scaling problems. Complex systems and atomic displacements to cracks are but two examples. However, even with increasing computational speeds, the development of theory, numerical representations, algorithms, and efficient implementation are required for substantial success, exhibiting the crucial role that SciDAC will play.
Theoretical Issues Involving Traps for Neutral Spin-Polarized Atoms.
1984-11-15
U. S. and he has promised to send us his potential curve calculation when he returns to France. In the meantime, we have adopted a Lennard - Jones ...4He for cooling initially because temperatures -1.5 K can be readily achieved with high cooling power by pumping on liquid helium and because 4He is...3 " . He (which is roughly half the vapor pressure of liquid helium at 1.5 K)), each K atom undergoes a very large number of collisions (-10 8/sec
Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.
2018-01-01
In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.
Tekçe, Neslihan; Pala, Kansad; Demirci, Mustafa; Tuncer, Safa
2016-11-01
To evaluate changes in surface characteristics of two different resin composites after 1 year of water storage using a profilometer, Vickers hardness, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A total of 46 composite disk specimens (10 mm in diameter and 2 mm thick) were fabricated using Clearfil Majesty Esthetic and Clearfil Majesty Posterior (Kuraray Medical Co, Tokyo, Japan). Ten specimens from each composite were used for surface roughness and microhardness tests (n = 10). For each composite, scanning electron microscope (SEM, n = 2) and atomic force microscope (AFM, n = 1) images were obtained after 24 h and 1 year of water storage. The data were analyzed using two-way analysis of variance and a post-hoc Bonferroni test. Microhardness values of Clearfil Majesty Esthetic decreased significantly (78.15-63.74, p = 0.015) and surface roughness values did not change after 1 year of water storage (0.36-0.39, p = 0.464). Clearfil Majesty Posterior microhardness values were quite stable (138.74-137.25, p = 0.784), and surface roughness values increased significantly (0.39-0.48, p = 0.028) over 1 year. One year of water storage caused microhardness values for Clearfil Majesty Esthetic to decrease and the surface roughness of Clearfil Majesty Posterior increased. AFM and SEM images demonstrated surface detoration of the materials after 1 year and ensured similar results with the quantitative test methods. SCANNING 38:694-700, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Refurbishing of carbon contaminated pre-mirror of reflectivity beam line at Indus-1
NASA Astrophysics Data System (ADS)
Yadav, P. K.; Kumar, M.; Gupta, R. K.; Sinha, M.; Patel, H. S.; Modi, M. H.
2018-04-01
In recent days optics contamination and its refurbishing is a serious issue for synchrotron radiation beam line community. Here we refurbished a carbon contaminated mirror by Ar and O2 gas mixed (1:1) radio frequency plasma. For structural analysis pre and post characterization of the mirror was done by Soft X-ray reflectivity (SXRR), Raman Spectroscopy (RS) and Atomic force microscopy (AFM). Before refurbishing mirror, a low density graphitic carbon layer of thickness 400 Å with surface roughness about 55 Å and Au surface roughness 14Å was estimated by SXRR. After one hour RF plasma exposure it is observed by SXRR and Raman spectroscopy that carbon layer is completely removed. The AFM and SXRR results show that roughness of Au surface not increase after plasma exposure.
Progress towards a cesium atomic fountain clock
NASA Astrophysics Data System (ADS)
Klipstein, William M.; Raithel, Georg A.; Rolston, Steven L.; Phillips, William D.; Ekstrom, Christopher R.
1997-04-01
We have been developing a fountain of laser--cooled cesium atoms for use as an atomic clock. Our design largely follows that of the fountain built at LPTF in Paris. In our fountain, chirp--slowed atoms are first collected in a Magneto--Optic Trap (MOT) and then cooled to a few μK in optical molasses. The cooled atoms are then launched vertically into a "moving molasses" by shifting the frequencies of the vertical cooling beams. The atoms then travel through a microwave cavity tuned to the 9.2 GHz cesium hyperfine frequency for a first Ramsey pulse. After roughly 0.5 seconds of free flight under the influence of gravity, the atoms fall back through the microwave cavity and into an optical state--detection region which detects the number of atoms making the F=3 arrow F=4 transition. The increased Ramsey interaction time improves the short--time precision as compared to traditional atomic beam experiments, while many systematic shifts which limit the accuracy of an atomic beam clock are reduced by the low atomic velocity and the retrace of the atomic trajectory through the microwave cavity. We will discuss the progress towards a working fountain being assembled in our laboratory.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
The surface roughness of (433) Eros as measured by thermal-infrared beaming
NASA Astrophysics Data System (ADS)
Rozitis, B.
2017-01-01
In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (I.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (I.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.
Atomic-Scale Factors of Combustion Nanocatalysts
2014-03-27
AFRL-OSR-VA-TR-2014-0122 ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS Uzi Landman GEORGIA TECH RESEARCH CORPORATION Final Report 05/19/2014...Prescribed by ANSI Std. Z39.18 27-03-2014 Final 01-06-2008 - 31-12-2013 MURI 08) - ATOMIC- SCALE PRINCIPLES OF COMBUSTION NANOCATALYSIS N/A FA9550-08...of predictive capabilities, addressing the creation, characterization, atomic- scale manipulations, and control of nanometer- scale catalytic systems
Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Merve, E-mail: mervegunnar@iyte.edu.tr; Bilgilisoy, Elif; Arı, Ozan
Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, or phase angle, ψ) and atomic force microscopy (AFM) roughness. and ψ values at 3.31 eV, which corresponds to E{sub 1}more » critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data ( and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.« less
Roughness transitions of diamond(100) induced by hydrogen-plasma treatment
NASA Astrophysics Data System (ADS)
Koslowski, B.; Strobel, S.; Wenig, M. J.; Ziemann, P.
To investigate the influence of hydrogen-plasma treatment on diamond(100) surfaces, heavily boron (B)-doped HPHT diamond crystals were mechanically and chemo-mechanically polished, and exposed to a microwave-assisted hydrogen plasma on a time scale of several minutes. The resulting surface morphology was analyzed on macroscopic scales by stylus profilometry (PFM) and on microscopic scales by STM and AFM. The polished samples have a roughness of typically 100 pmrms (PFM), with no obvious anisotropic structures at the surface. After exposure of the B-doped diamond(100) to the H-plasma, the roughness increases dramatically, and pronounced anisotropic structures appear, these being closely aligned with the crystallographic axis' and planes. An exposure for 3 minutes to the plasma leads to an increase of the roughness to 2-4 nmrms (STM), and a `brick-wall' pattern appears, formed by weak cusps running along <110>. Very frequently, the cusps are replaced by `negative' pyramids that are bordered by {11X} facets. After an exposure of an additional 5 minutes, the surface roughness of the B-doped samples increases further to 20-40 nmrms (STM), and frequently exhibits a regular pattern with structures at a characteristic length scale of about 100 nm. Those structures are aligned approximately with <110> and they are faceted with faces of approximately {XX1}. These results will be discussed in terms of strain relaxation, similar to the surface roughening observed on SiGe/Si and anisotropic etching.
Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences
Kean, J.W.; Smith, J.D.
2006-01-01
Small-scale topographic features are commonly found on the boundaries of natural rivers, streams, and floodplains. A simple method for determining the form drag on these features is presented, and the results of this model are compared to laboratory measurements. The roughness elements are modeled as Gaussian-shaped features defined in terms of three parameters: a protrusion height, H; a streamwise length scale, ??; and a spacing between crests, ??. This shape is shown to be a good approximation to a wide variety of natural topographic bank features. The form drag on an individual roughness element embedded in a series of identical elements is determined using the drag coefficient of the individual element and a reference velocity that includes the effects of roughness elements further upstream. In addition to calculating the drag on each element, the model determines the spatially averaged total stress, skin friction stress, and roughness height of the boundary. The effects of bank roughness on patterns of velocity and boundary shear stress are determined by combining the form drag model with a channel flow model. The combined model shows that drag on small-scale topographic features substantially alters the near-bank flow field. These methods can be used to improve predictions of flow resistance in rivers and to form the basis for fully predictive (no empirically adjusted parameters) channel flow models. They also provide a foundation for calculating the near-bank boundary shear stress fields necessary for determining rates of sediment transport and lateral erosion.
Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales
NASA Astrophysics Data System (ADS)
Dongare, Avinash M.
2014-12-01
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.
Geometry and Reynolds-Number Scaling on an Iced Business-Jet Wing
NASA Technical Reports Server (NTRS)
Lee, Sam; Ratvasky, Thomas P.; Thacker, Michael; Barnhart, Billy P.
2005-01-01
A study was conducted to develop a method to scale the effect of ice accretion on a full-scale business jet wing model to a 1/12-scale model at greatly reduced Reynolds number. Full-scale, 5/12-scale, and 1/12-scale models of identical airfoil section were used in this study. Three types of ice accretion were studied: 22.5-minute ice protection system failure shape, 2-minute initial ice roughness, and a runback shape that forms downstream of a thermal anti-ice system. The results showed that the 22.5-minute failure shape could be scaled from full-scale to 1/12-scale through simple geometric scaling. The 2-minute roughness shape could be scaled by choosing an appropriate grit size. The runback ice shape exhibited greater Reynolds number effects and could not be scaled by simple geometric scaling of the ice shape.
Lunar textural analysis based on WAC-derived kilometer-scale roughness and entropy maps
NASA Astrophysics Data System (ADS)
Li, Bo; Wang, XueQiang; Zhang, Jiang; Chen, Jian; Ling, Zongcheng
2016-06-01
In general, textures are thought to be some complicated repeated patterns formed by elements, or primitives which are sorted in certain rules. Lunar surfaces record the interactions between its outside environment and itself, thus, based on high-resolution DEM model or image data, there are some topographic features which have different roughness and entropy values or signatures on lunar surfaces. Textures of lunar surfaces can help us to concentrate on typical topographic and photometric variations and reveal the relationships between obvious features (craters, impact basins, sinuous rilles (SRs) and ridges) with resurfacing processes on the Moon. In this paper, the term surface roughness is an expression of the variability of a topographic or photometric surface at kilometer scale, and the term entropy can characterize the variability inherent in a geological and topographic unit and evaluate the uncertainty of predictions made by a given geological process. We use the statistical moments of gray-level histograms in different-sized neighborhoods (e.g., 3, 5, 10, 20, 40 and 80 pixels) to compute the kilometer-scale roughness and entropy values, using the mosaic image from 70°N to 70°S obtained by Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC). Large roughness and entropy signatures were only found in the larger scale maps, while the smallest 3-pixel scale map had more disorderly and unsystematic textures. According to the entropy values in 10-pixel scale entropy map, we made a frequency curve and categorized lunar surfaces into three types, shadow effects, maria and highlands. A 2D scatter plot of entropy versus roughness values was produced and we found that there were two point clusters corresponding to the highlands and maria, respectively. In the last, we compared the topographic and photometric signatures derived from Lunar Orbiter Laser Altimeter (LOLA) data and WAC mosaic image. On the lunar surfaces, the ridges have obvious multilevel topographic textures which are sensitive to the topographic changes, while the ejecta deposits of fresh craters appear obvious photometric textures which are sensitive to the brightness variations.
NASA Technical Reports Server (NTRS)
Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.
2017-01-01
We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.
Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
Lu, Jia; Zhou, Huaichun
2017-07-01
The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.
Scale resolving computation of submerged wall jets on flat wall with different roughness heights
NASA Astrophysics Data System (ADS)
Paik, Joongcheol; Bombardelli, Fabian
2014-11-01
Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.
NASA Astrophysics Data System (ADS)
Latorre, Carmen; Bhushan, Bharat
2005-07-01
Tribological properties are useful in the study of human hair and other biological materials. Major sources of investigation for conditioner treated hair includes localization of conditioner, mechanisms related to changes in surface roughness, friction, and adhesion on the nanoscale due to conditioner agents, and how the products change the microstructure of the cuticle. The paper presents nanotribological studies investigating surface roughness, friction, and adhesion using atomic force/friction force microscopy (AFM/FFM). Test samples include virgin and chemically damaged hair, both with and without commercial conditioner treatment, as well as chemically damaged hair with experimental conditioner treatments. Friction force mapping provides insight into the localized change in friction caused by the application of hair care materials. Adhesive force maps to study adhesion on the cuticle surface provide information about localization and distribution of conditioner as well. A discussion is presented on these properties of hair as a function of relative humidity, temperature, durability, and conditioning treatments.
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Honda, Hiroshi; Kuroda, Seiji; Araki, Hiroshi; Murakami, Hideyuki; Watanabe, Makoto; Sakka, Yoshio
2016-12-01
Effects of the ceramic powder size used for suspension as well as several processing parameters in suspension plasma spraying of YSZ were investigated experimentally, aiming to fabricate highly segmented microstructures for thermal barrier coating (TBC) applications. Particle image velocimetry (PIV) was used to observe the atomization process and the velocity distribution of atomized droplets and ceramic particles travelling toward the substrates. The tested parameters included the secondary plasma gas (He versus H2), suspension injection flow rate, and substrate surface roughness. Results indicated that a plasma jet with a relatively higher content of He or H2 as the secondary plasma gas was critical to produce highly segmented YSZ TBCs with a crack density up to 12 cracks/mm. The optimized suspension flow rate played an important role to realize coatings with a reduced porosity level and improved adhesion. An increased powder size and higher operation power level were beneficial for the formation of highly segmented coatings onto substrates with a wider range of surface roughness.
NASA Astrophysics Data System (ADS)
Elzbieciak-Wodka, Magdalena; Popescu, Mihail N.; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal
2014-03-01
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10-21 J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
NASA Astrophysics Data System (ADS)
Li, Jie; Guo, LiXin; He, Qiong; Wei, Bing
2012-10-01
An iterative strategy combining Kirchhoff approximation^(KA) with the hybrid finite element-boundary integral (FE-BI) method is presented in this paper to study the interactions between the inhomogeneous object and the underlying rough surface. KA is applied to study scattering from underlying rough surfaces, whereas FE-BI deals with scattering from the above target. Both two methods use updated excitation sources. Huygens equivalence principle and an iterative strategy are employed to consider the multi-scattering effects. This hybrid FE-BI-KA scheme is an improved and generalized version of previous hybrid Kirchhoff approximation-method of moments (KA-MoM). This newly presented hybrid method has the following advantages: (1) the feasibility of modeling multi-scale scattering problems (large scale underlying surface and small scale target); (2) low memory requirement as in hybrid KA-MoM; (3) the ability to deal with scattering from inhomogeneous (including coated or layered) scatterers above rough surfaces. The numerical results are given to evaluate the accuracy of the multi-hybrid technique; the computing time and memory requirements consumed in specific numerical simulation of FE-BI-KA are compared with those of MoM. The convergence performance is analyzed by studying the iteration number variation caused by related parameters. Then bistatic scattering from inhomogeneous object of different configurations above dielectric Gaussian rough surface is calculated and the influences of dielectric compositions and surface roughness on the scattering pattern are discussed.
Ethyl 2-[(carbamothioylamino)imino]propanoate
Corrêa, Charlane C.; Graúdo, José Eugênio J.C.; de Oliveira, Luiz Fernando C.; de Almeida, Mauro V.; Diniz, Renata
2011-01-01
The title compound, C6H11N3O2S, consists of a roughly planar molecule (r.m.s deviation from planarity = 0.077 Å for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent internal N—H⋯N hydrogen bond donated by the amino group. In the crystal, molecules are arranged in undulating layers parallel to (010). The molecules are linked via intermolecular amino–carboxyl N—H⋯O hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by Ncarbazone—H⋯S and C—H⋯S interactions, forming infinite sheets. PMID:22091006
Wire Roughness Assessment of 0.016'' × 0.022'' the Technique Lingual Orthodontics.
Facchini, Fátima Mm; Filho, Mario Vedovello; Vedovello, Silvia As; Cotrim, Flávio A; Cotrim-Ferreira, Andrຟa; Tubel, Carlos Am
2017-04-01
To evaluate the difference in surface roughness of stainless steel archwires of different commercial brands used in lingual orthodontics. Precontoured arches measuring 0.016'' × 0.022'' were selected of the following brands: Tecnident, Adenta, G&H, Highland Metals Inc., Ormco, Incognito, and Ebraces. Quantitative evaluation of the surface roughness of archwires was performed by means of an atomic force microscope in contact mode. Three surface readouts were taken of each sample, analyzing areas of 20 × 20 μm. Each scan of the samples produced a readout of 512 lines, generating three-dimensional images of the wires. The analysis of variance statistical test was applied to prove significant variables (p > 0.05), with H 0 being rejected and H 1 accepted. The Incognito brand showed the lowest surface roughness. The archwires of brands Adenta, Tecnident, Highland, and Ormco showed similar values among them, and all close to these obtained by the Incognito brand. The archwires of the Ebraces brand showed the highest surface roughness, with values being close to those of the G&H Brand. There was a statistical difference in surface roughness of orthodontic archwires among the brands studied. Companies should pay attention to the quality control of their materials, as these may directly affect the quality of orthodontic treatment.
Reducing the surface roughness beyond the pulsed-laser-deposition limit.
Vasco, E; Polop, C; Sacedón, J L
2009-10-01
Here, we outline the theoretical fundamentals of a promising growth kinetics of films from the vapor phase, in which pulsed fluxes are combined with temperature transients to enable short-range surface relaxations (e.g., species rearrangements) and to inhibit long-range relaxations (atomic exchange between species). A group of physical techniques (fully pulsed thermal and/or laser depositions) based on this kinetics is developed that can be used to prepare films with roughnesses even lower than those obtained with pulsed-laser deposition, which is the physical vapor-phase deposition technique that has produced the flattest films reported so far.
Fabrication and characterization of optical super-smooth surfaces
NASA Astrophysics Data System (ADS)
Schmitt, Dirk-Roger; Kratz, Frank; Ringel, Gabriele A.; Mangelsdorf, Juergen; Creuzet, Francois; Garratt, John D.
1995-08-01
Intercomparison roughness measurements have been carried out at supersmooth artefacts fabricated from BK7, fused silica, and Zerodur. The surface parameters were determined using a special prototype of the mechanical profiler Nanostep (Rank Taylor Hobson), the Optical Heterodyne Profiler Z5500 (Zygo), and an Atomic Force Microscope (Park Scientific) with an improved acquisition technique. The intercomparison was performed after the range of collected spatial wavelength for each instrument was adjusted using digital filtering techniques. It is demonstrated for different roughness ranges that are applied superpolishing techniques yield supersmooth artefacts which can be used for more intercomparisons.
Thickness-dependence of optical constants for Ta2O5 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao
2012-09-01
An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.
Utility of reactively sputtered CuN{sub x} films in spintronics devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Yeyu; Persson, J.; NanOsc AB, Electrum 205, 164 40 Kista
2012-04-01
We have studied nitrified copper (CuN{sub x}) thin films grown by reactive sputtering in the context of spintronic devices. The Ar-to-N{sub 2} flow ratio enables tunability of the electrical resistivity and surface roughness of the CuN{sub x} films, with the former increasing to nearly 20 times that of Cu, and the latter reduced to the atomic scale. Incorporating this into a Ta/CuN{sub x}/Ta seed stack for spin valves improves the current-in-plane (CIP) magnetoresistance; maximum magnetoresistance results with CuN{sub x} seed layer and Cu interlayer. Finally, finite element modeling results are presented that suggest the use of CuN{sub x} in nanocontactmore » spin torque oscillators can enhance current densities by limiting the current spread through the device. This may positively impact threshold currents, power requirements, and device reliability.« less
Atomic-scaled characterization of graphene PN junctions
NASA Astrophysics Data System (ADS)
Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.
Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.
Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Snyder, Aaron; Miller, Sharon K.; Demko, Rikako
2002-01-01
Hydrocarbon based polymers that are exposed to atomic oxygen in low Earth orbit are slowly oxidized which results in recession of their surface. Atomic oxygen protective coatings have been developed which are both durable to atomic oxygen and effective in protecting underlying polymers. However, scratches, pin window defects, polymer surface roughness and protective coating layer configuration can result in erosion and potential failure of protected thin polymer films even though the coatings are themselves atomic oxygen durable. This paper will present issues that cause protective coatings to become ineffective in some cases yet effective in others due to the details of their specific application. Observed in-space examples of failed and successfully protected materials using identical protective thin films will be discussed and analyzed. Proposed approaches to prevent the failures that have been observed will also be presented.
The influence of surface roughness on volatile transport on the Moon
NASA Astrophysics Data System (ADS)
Prem, P.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.
2018-01-01
The Moon and other virtually airless bodies provide distinctive environments for the transport and sequestration of water and other volatiles delivered to their surfaces by various sources. In this work, we conduct Monte Carlo simulations of water vapor transport on the Moon to investigate the role of small-scale roughness (unresolved by orbital measurements) in the migration and cold-trapping of volatiles. Observations indicate that surface roughness, combined with the insulating nature of lunar regolith and the absence of significant exospheric heat flow, can cause large variations in temperature over very small scales. Surface temperature has a strong influence on the residence time of migrating water molecules on the lunar surface, which in turn affects the rate and magnitude of volatile transport to permanently shadowed craters (cold traps) near the lunar poles, as well as exospheric structure and the susceptibility of migrating molecules to photodestruction. Here, we develop a stochastic rough surface temperature model suitable for simulations of volatile transport on a global scale, and compare the results of Monte Carlo simulations of volatile transport with and without the surface roughness model. We find that including small-scale temperature variations and shadowing leads to a slight increase in cold-trapping at the lunar poles, accompanied by a slight decrease in photodestruction. Exospheric structure is altered only slightly, primarily at the dawn terminator. We also examine the sensitivity of our results to the temperature of small-scale shadows, and the energetics of water molecule desorption from the lunar regolith - two factors that remain to be definitively constrained by other methods - and find that both these factors affect the rate at which cold trap capture and photodissociation occur, as well as exospheric density and longevity.
Ice Accretion Roughness Measurements and Modeling
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching; Broeren, Andy P.; Lee, Sam
2017-01-01
Roughness on aircraft ice accretions is very important to the overall ice accretion process and to the resulting degradation in aircraft aerodynamic performance. Roughness enhances the local convection leading to more rapid ice accumulation rates, and roughness generates local flow perturbations that lead to higher skin friction. This paper presents 1) a review of the developments in ice shape three-dimensional laser scanning developed at NASA Glenn, 2) a review of the approach of McClain and Kreeger employed to characterize ice roughness evolution on an airfoil surface, and 3) a review of the experimental efforts that have been performed over the last five years to characterize, scale, and model ice roughness evolution physics.
Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graak, Pinki; Devi, Ranjna; Kumar, Dinesh
2016-05-06
Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.
Soil hydrophobicity - relating effects at atomic, molecular, core and national scales
NASA Astrophysics Data System (ADS)
Matthews, Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys
2016-04-01
The detrimental impacts of soil hydrophobicity include increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate flood risk associated with more extreme drought and precipitation events predicted with UK climate change scenarios. The UK's Natural Environment Research Council (NERC) has therefore funded a major research programme to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. This presentation gives an overview of the findings to date. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were measured from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using a novel separation method which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which avoids the averaging over soil cores and particles evident in microliter goniometry, with which the results are compared, (iv) measurements at core scale using water retention and wicking experiments, and (v) the interpretation, integration and upscaling of the results using a development of the PoreXpert void network model, a significant advance on the Van Genuchten approach. An explanation will also be given as to how the results will be incorporated into the JULES hydrological model of the UK Meteorological Office, used to predict flooding for different soil types and usage.
Pauling, Linus
1989-01-01
A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092
Pauling, L
1989-12-01
A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.
2012-09-18
Smooth scaling of valence electronic properties in fullerenes: from one carbon atom , to C60, to graphene Greyson R. Lewis,1 William E. Bunting,1...pacitance scaling lines of the fullerenes. Lastly, it is found that points representing the carbon atom and the graphene limit lie on scaling lines for...icosahedral fullerenes, so their quantum capacitances and their detachment energies scale smoothly from one C atom , through C60, to graphene. I
NASA Astrophysics Data System (ADS)
Bedford, D.
2012-12-01
We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates are moderate. Infiltration augmentation is greatest in microtopographic depressions and flow threads. These results show that some vegetation-landform settings are efficient at trapping and concentrating the primary limiting resource, and demonstrate the importance of micro-scale soil characteristics for the ecohydrologic function of semi-arid environments. Since other essential attributes for plant ecosystems, such as nutrients, likely co-vary with water availability, further research is needed to elucidate ecosystem dynamics that may lead to self-organized behavior and determine thresholds for ecosystem stability.
Maji, Debashis; Das, Soumen
2018-03-01
Crack free electrically continuous metal thin films over soft elastomeric substrates play an integral part in realization of modern day flexible bioelectronics and biosensors. Under nonoptimized deposition conditions, delamination, and/or cracking of the top film as well as the underlying soft substrate hinders optimal performance of these devices. Hence it is very important to understand and control not only the various deposition factors like power, time, or deposition pressure but also investigate the various interfacial physics playing a critical role in assuring thin film adhesion and substrate compliancy. In the present study, various nanomechanical information of the underlying substrate, namely, crack profile, average roughness, Young's modulus, and adhesion force were studied for uncracked and cracked polydimethylsiloxane (PDMS) surfaces along with pristine and conventional plasma treated PDMS samples as control. Quantification of the above parameters were done using three-dimensional surface profiler, scanning electron microscopy, nanoindentation, and atomic force microscopy techniques to elucidate the modulus range, average roughness, and adhesion force. Comparative analysis with control revealed remarkable similarity between increased modulus values, increased surface roughness, and reduced adhesion force accounting for reduced substrate compliancy and resulting in film cracking or buckling which are critical for development of various bioflexible devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 725-737, 2018. © 2017 Wiley Periodicals, Inc.
Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization
Ewais, Ola H.; Al Abbassy, Fayza; Ghoneim, Mona M.; Aboushelib, Moustafa N.
2014-01-01
Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE), fusion sputtering (FS), and low pressure particle abrasion (LPPA). The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness) received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α = 0.05). Results. There were significant differences between all groups regarding surface roughness (F = 1678, P < 0.001), porosity (F = 3278, P < 0.001), and hardness (F = 1106.158, P < 0.001). Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered. PMID:25349610
Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry
NASA Astrophysics Data System (ADS)
Squire, D. T.; Morrill-Winter, C.; Hutchins, N.; Marusic, I.; Schultz, M. P.; Klewicki, J. C.
2016-10-01
Two particle image velocimetry arrangements are used to make true spatial comparisons between smooth- and rough-wall boundary layers at high Reynolds numbers across a very wide range of streamwise scales. Together, the arrangements resolve scales ranging from motions on the order of the Kolmogorov microscale to those longer than twice the boundary layer thickness. The rough-wall experiments were obtained above a continuous sandpaper sheet, identical to that used by Squire et al. [J. Fluid Mech. 795, 210 (2016), 10.1017/jfm.2016.196], and cover a range of friction and equivalent sand-grain roughness Reynolds numbers (12 000 ≲δ+≲ 18000, 62 ≲ks+≲104 ). The smooth-wall experiments comprise new and previously published data spanning 6500 ≲δ+≲17 000 . Flow statistics from all experiments show similar Reynolds number trends and behaviors to recent, well-resolved hot-wire anemometry measurements above the same rough surface. Comparisons, at matched δ+, between smooth- and rough-wall two-point correlation maps and two-point magnitude-squared coherence maps demonstrate that spatially the outer region of the boundary layer is the same between the two flows. This is apparently true even at wall-normal locations where the total (inner-normalized) energy differs between the smooth and rough wall. Generally, the present results provide strong support for Townsend's [The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, 1956), Vol. 1] wall-similarity hypothesis in high Reynolds number fully rough boundary layer flows.
Harris, Michael J; Woo, Hyung-June
2008-11-01
Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.
NASA Astrophysics Data System (ADS)
Durand, Olivier; Soulard, Laurent
2015-06-01
The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics (MD) simulations. A generic 3D tin crystal with a sinusoidal free surface roughness is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, 2D sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, within which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model reproduces quantitatively experimental profiles and may help in their analysis.
Non-Porod scattering and non-integer scaling of resistance in rough films
NASA Astrophysics Data System (ADS)
Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay
2017-04-01
In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr
Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that themore » Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.« less
Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe
NASA Astrophysics Data System (ADS)
Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.
2017-04-01
A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeong-Du; Moon, Chan-Hong
1995-12-31
Ultraprecision metal cutting (UPMC) technology which makes possible submicrometer form accuracy and manometer roughness is developed to reach the 1nm nominal (undeformed) thickness of cut. At this thickness level, a few of atom`s layers should be considered. In this paper using the Molecuar Dynamics simulation, the phenomena of microcutting with a subnanometer chip thickness, the cutting mechanism for tool edge configuration to consider the sharp edge and round edge tool, the cut material and cutting speed are evaluated. Cutting mechanism of subnanometer depth of cut is evaluated.
Innovative potential of plasma technology
NASA Astrophysics Data System (ADS)
Budaev, V. P.
2017-11-01
The review summarizes recent experimental observations of materials exposed to extreme hot plasma loads in fusion devices and plasma facilities with high-temperature plasma. Plasma load on the material in such devices lead to the stochastic clustering and fractal growth of the surface on scales from tens of nanometers to hundreds of micrometers forming statistical self-similarity of the surface roughness with extremely high specific area. Statistical characteristics of hierarchical granularity and scale invariance of such materials surface qualitatively differ from the properties of the roughness of the ordinary Brownian surface which provides a potential of innovative plasma technologies for synthesis of new nanostructured materials with programmed roughness properties, for hypersonic technologies, for biotechnology and biomedical applications.
The Long Range Persistence of Wakes Behind a Row of Roughness Elements
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Sescu, Adrian; Duck, Peter W.; Choudhari, Meelan
2010-01-01
We consider a periodic array of relatively small roughness elements whose spanwise separation is of the order of the local boundary-layer thickness and construct a local asymptotic high-Reynolds-number solution that is valid in the vicinity of the roughness. The resulting flow decays on the very short streamwise length scale of the roughness, but the solution eventually becomes invalid at large downstream distances and a new solution has to be constructed in the downstream region. This latter result shows that the roughness-generated wakes can persist over very long streamwise distances, which are much longer than the distance between the roughness elements and the leading edge. Detailed numerical results are given for the far wake structure.
Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching
2017-01-01
Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.
NASA Astrophysics Data System (ADS)
Xie, Yichao; Xia, Keqing
2016-11-01
We present measurements of the temperature fluctuations σT and of the Reynolds number Re in turbulent Rayleigh-Bénard convection in cylindrical cell with pyramid-shaped rough top and bottom plates. To study the effects of roughness size, we varied a roughness parameter λ, defined as a single roughness height h (kept at a constant of 8 mm) over its base width d, from 0.5 to 4.0. Fluorinert Liquid FC-770 was used as the working fluid with the Rayleigh number Ra varying from 4.49 × 109 to 9.94 × 1010 and Prandtl number Pr kept at 23.34. It is found that σT in both cell center and sidewall increases dramatically with λ. The scaling exponent of the normalized σT with respect to Ra increases from -0.16 to -0.09 at cell center and -0.23 to -0.08 near sidewall when λ is increased from 0.5 to 4.0. The Reynolds number Re based on the circulation time of the large-scale circulation (LSC) also increases with λ, suggesting a faster LSC. The scaling exponent of Re with respect to Ra increases from 0.47 to 0.55 with λ increased from 0.5 to 4.0. The study reveals that the flow and temperature fluctuations are very sensitive to the perturbation induced by rough plate with vary λ. This work is supported by the Hong Kong Research Grant Council under Grant Number N_CUHK437/15.
Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).
Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.
Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori
2015-11-01
This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P < 0.05). The pulse repetition rate of the Er:YAG laser did not affect roughness of dental enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.
Effect of different surface treatments on roughness of IPS Empress 2 ceramic.
Kara, Haluk Baris; Dilber, Erhan; Koc, Ozlem; Ozturk, A Nilgun; Bulbul, Mehmet
2012-03-01
The aim of this study was to evaluate the influence of different surface treatments (air abrasion, acid etching, laser irradiation) on the surface roughness of a lithium-disilicate-based core ceramic. A total of 40 discs of lithium disilicate-based core ceramic (IPS Empress 2; Ivoclar Vivadent, Schaan, Liechtenstein) were prepared (10 mm in diameter and 1 mm in thickness) according to the manufacturer's instructions. Specimens were divided into four groups (n = 10), and the following treatments were applied: air abrasion with alumina particles (50 μm), acid etching with 5% hydrofluoric acid, Nd:YAG laser irradiation (1 mm distance, 100 mJ, 20 Hz, 2 W) and Er:YAG laser irradiation (1 mm distance, 500 mJ, 20 Hz, 10 W). Following determination of surface roughness (R(a)) by profilometry, specimens were examined with atomic force microscopy. The data were analysed by one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). One-way ANOVA indicated that surface roughness following air abrasion was significantly different from the surface roughness following laser irradiation and acid etching (P < 0.001). The Tukey HSD test indicated that the air abrasion group had a significantly higher mean value of roughness (P < 0.05) than the other groups. No significant difference was found between the acid etching and laser irradiation (both Er:YAG and Nd:YAG) groups (P > 0.05). Air abrasion increased surface roughness of lithium disilicate-based core ceramic surfaces more effectively than acid-etching and laser irradiation.
Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field
2008-09-30
Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as
Dislocation-driven growth of two-dimensional lateral quantum-well superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi
Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less
Dislocation-driven growth of two-dimensional lateral quantum-well superlattices
Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi; ...
2018-03-23
Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less
Multiscale approach to the determination of the photoactive yellow protein signaling state ensemble.
A Rohrdanz, Mary; Zheng, Wenwei; Lambeth, Bradley; Vreede, Jocelyne; Clementi, Cecilia
2014-10-01
The nature of the optical cycle of photoactive yellow protein (PYP) makes its elucidation challenging for both experiment and theory. The long transition times render conventional simulation methods ineffective, and yet the short signaling-state lifetime makes experimental data difficult to obtain and interpret. Here, through an innovative combination of computational methods, a prediction and analysis of the biological signaling state of PYP is presented. Coarse-grained modeling and locally scaled diffusion map are first used to obtain a rough bird's-eye view of the free energy landscape of photo-activated PYP. Then all-atom reconstruction, followed by an enhanced sampling scheme; diffusion map-directed-molecular dynamics are used to focus in on the signaling-state region of configuration space and obtain an ensemble of signaling state structures. To the best of our knowledge, this is the first time an all-atom reconstruction from a coarse grained model has been performed in a relatively unexplored region of molecular configuration space. We compare our signaling state prediction with previous computational and more recent experimental results, and the comparison is favorable, which validates the method presented. This approach provides additional insight to understand the PYP photo cycle, and can be applied to other systems for which more direct methods are impractical.
Copper atomic-scale transistors.
Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.
NASA Astrophysics Data System (ADS)
Young, D. A.; Grima, C.; Greenbaum, J. S.; Beem, L.; Cavitte, M. G.; Quartini, E.; Kempf, S. D.; Roberts, J. L.; Siegert, M. J.; Ritz, C.; Blankenship, D. D.
2017-12-01
Over the last twenty five years, extensive ice penetrating radar (IPR) coverage of Antarctica has been obtained, at lines spacings down to 1 km in some cases. However, many glacial processes occur at finer scales, so infering likely landscape parameters is required for a useful interpolation between lines. Profile roughness is also important for understanding the uncertainties inherent in IPR observations. Subglacial roughness has also been used to infer large scale bed rock properties and history. Similar work has been conducted on a regional basis with complilations of data from the 1970's and more recent local studies. Here we present a compilation of IPR-derived profile roughness data covering three great basins of Antarctica: the Byrd Subglacial Basin in West Antarctica, and the Wilkes Subglacial Basin and Aurora Subglacial Basins in East Antarctica; and treat these data using root mean squared deviation (RMSD). Coverage is provied by a range of IPR systems with varying vintages with differing instrument and processing parameters; we present approaches to account for the differences between these systems. We use RMSD, a tool commonly used in planetary investigations, to investigate the self-affine behaviour of the bed at kilometer scales and extract fractal parameters from the data to predict roughness and uncertainties in ice thickness measurement. Lastly, we apply a sensor model to a range of bare-earth terrestrial digital elevation models to futher understand the impact of the sensor model on the inference of subglacial topography and roughness, and to the first order analogies for the lithology of the substrate. This map of roughness, at scales between the pulse limited radar footprint and typical line spacings, provides an understanding of the distribution of Paleogene subglacial sediments, insight in to the distribution of uncertainties and a potential basal properties mask for ice sheet models. A particular goal of this map is to provide insight into required IPR coverage needs for site selection for old ice and subglacial samples for subglacial access systems like US-RAID and SUBGLACIOR.
Irregular wall roughness in turbulent Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Berghout, Pieter; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef; Stevens, Richard
2017-11-01
Many wall bounded flows in nature, engineering and transport are affected by surface roughness. Often, this has adverse effects, e.g. drag increase leading to higher energy costs. A major difficulty is the infinite number of roughness geometries, which makes it impossible to systematically investigate all possibilities. Here we present Direct Numerical Simulations (DNS) of turbulent Taylor-Couette flow. We focus on the transitionally rough regime, in which both viscous and pressure forces contribute to the total wall stress. We investigate the effect of the mean roughness height and the effective slope on the roughness function, ΔU+ . Also, we present simulations of varying Ta (Re) numbers for a constant mean roughness height (kmean+). Alongside, we show the behavior of the large scale structures (e.g. plume ejection, Taylor rolls) and flow structures in the vicinity of the wall.
Estimating small-scale roughness of a rock joint using TLS data
NASA Astrophysics Data System (ADS)
Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh
2016-04-01
Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface) is approximately normal. Standard deviation of differences on average slightly increases with the noise level, but is strongly dependent on the analysis direction. As proved by different researches within the field of signal, image and also TLS data processing, noise can be, to a certain extent, removed by a post-processing step called denoising. In this research, four denoising methods, namely discrete WT (DWT) and stationary WT (SWT), and classic NLM (NLM) and probabilistic NLM (PNLM), were used on noisy ATOS data. Results were compared based on the (i) height and (ii) roughness differences between denoised surfaces and reference ATOS surface, (iii) the peak signal-to-noise ratio (PSNR) and (iv) the visual check of denoised surface. Increased PSNRs and reduced roughness differences prove the importance of the TLS data denoising procedure. In case of SWT, NLM and PNLM the surface is mostly over smoothed, whereas in case of DWT some noise remains. References: - Grasselli, G. (2001). Shear strength of rock joints based on quantified surface description. École Polytechnique Fédérale de Lausanne. Lausanne, EPFL. - Sturzenegger, M. and D. Stead (2009). "Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts." Engineering Geology 106(3-4): 163-182.
NASA Astrophysics Data System (ADS)
Lanka, Karthikeyan; Pan, Ming; Konings, Alexandra; Piles, María; D, Nagesh Kumar; Wood, Eric
2017-04-01
Traditionally, passive microwave retrieval algorithms such as Land Parameter Retrieval Model (LPRM) estimate simultaneously soil moisture and Vegetation Optical Depth (VOD) using brightness temperature (Tb) data. The algorithm requires a surface roughness parameter which - despite implications - is generally assumed to be constant at global scale. Due to inherent noise in the satellite data and retrieval algorithm, the VOD retrievals are usually observed to be highly fluctuating at daily scale which may not occur in reality. Such noisy VOD retrievals along with spatially invariable roughness parameter may affect the quality of soil moisture retrievals. The current work aims to smoothen the VOD retrievals (with an assumption that VOD remains constant over a period of time) and simultaneously generate, for the first time, global surface roughness map using multiple descending X-band Tb observations of AMSR-E. The methodology utilizes Tb values under a moving-time-window-setup to estimate concurrently the soil moisture of each day and a constant VOD in the window. Prior to this step, surface roughness parameter is estimated using the complete time series of Tb record. Upon carrying out the necessary sensitivity analysis, the smoothened VOD along with soil moisture retrievals is generated for the 10-year duration of AMSR-E (2002-2011) with a 7-day moving window using the LPRM framework. The spatial patterns of resulted global VOD maps are in coherence with vegetation biomass and climate conditions. The VOD results also exhibit a smoothening effect in terms of lower values of standard deviation. This is also evident from time series comparison of VOD and LPRM VOD retrievals without optimization over moving windows at several grid locations across the globe. The global surface roughness map also exhibited spatial patterns that are strongly influenced by topography and land use conditions. Some of the noticeable features include high roughness over mountainous regions and heavily vegetated tropical rainforests, low roughness in desert areas and moderate roughness value over higher latitudes. The new datasets of VOD and surface roughness can help improving the quality of soil moisture retrievals. Also, the methodology proposed is generic by nature and can be implemented over currently operating AMSR2, SMOS, and SMAP soil moisture missions.
Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong
2018-04-01
A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ulrich, Thomas; Gabriel, Alice-Agnes
2017-04-01
Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial stress conditions on a planar fault, is demonstrated. Furthermore, we show that rupture extend, rupture front coherency and rupture speed are highly dependent on the initial amplitude of stress acting on the fault, defined by the normalized prestress factor R, the ratio of the potential stress drop over the breakdown stress drop. The effects of fault complexity are particularly pronounced for lower R. By low-pass filtering a rough fault at several cut-off wavelengths, we then try to capture rupture complexity using a simplified fault geometry. We find that equivalent source dynamics can only be obtained using a scarcely filtered fault associated with a reduced stress level. To investigate the wavelength-dependent roughness effect, the fault geometry is bandpass-filtered over several spectral ranges. We show that geometric fluctuations cause rupture velocity fluctuations of similar length scale. The impact of fault geometry is especially pronounced when the rupture front velocity is near supershear. Roughness fluctuations significantly smaller than the rupture front characteristic dimension (cohesive zone size) affect only macroscopic rupture properties, thus, posing a minimum length scale limiting the required resolution of 3D fault complexity. Lastly, the effect of fault curvature and roughness on the simulated ground-motions is assessed. Despite employing a simple linear slip weakening friction law, the simulated ground-motions compare well with estimates from ground motions prediction equations, even at relatively high frequencies.
Mars radar clutter and surface roughness characteristics from MARSIS data
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.; Schroeder, Dustin M.; Whitten, Jennifer L.
2018-01-01
Radar sounder studies of icy, sedimentary, and volcanic settings can be affected by reflections from surface topography surrounding the sensor nadir location. These off-nadir ;clutter; returns appear at similar time delays to subsurface echoes and complicate geologic interpretation. Additionally, broadening of the radar echo in delay by surface returns sets a limit on the detectability of subsurface interfaces. We use MARSIS 4 MHz data to study variations in the nadir and off-nadir clutter echoes, from about 300 km to 1000 km altitude, R, for a wide range of surface roughness. This analysis uses a new method of characterizing ionospheric attenuation to merge observations over a range of solar zenith angle and date. Mirror-like reflections should scale as R-2, but the observed 4 MHz nadir echoes often decline by a somewhat smaller power-law factor because MARSIS on-board processing increases the number of summed pulses with altitude. Prior predictions of the contributions from clutter suggest a steeper decline with R than the nadir echoes, but in very rough areas the ratio of off-nadir returns to nadir echoes shows instead an increase of about R1/2 with altitude. This is likely due in part to an increase in backscatter from the surface as the radar incidence angle at some round-trip time delay declines with increasing R. It is possible that nadir and clutter echo properties in other planetary sounding observations, including RIME and REASON flyby data for Europa, will vary in the same way with altitude, but there may be differences in the nature and scale of target roughness (e.g., icy versus rocky surfaces). We present global maps of the ionosphere- and altitude-corrected nadir echo strength, and of a ;clutter; parameter based on the ratio of off-nadir to nadir echoes. The clutter map offers a view of surface roughness at ∼75 m length scale, bridging the spatial-scale gap between SHARAD roughness estimates and MOLA-derived parameters.
Steps wandering on the lysozyme and KDP crystals during growth in solution
NASA Astrophysics Data System (ADS)
Rashkovich, L. N.; Chernevich, T. G.; Gvozdev, N. V.; Shustin, O. A.; Yaminsky, I. V.
2001-10-01
We have applied atomic force microscopy for the study in solution of time evolution of step roughness on the crystal faces with high (pottasium dihydrophosphate: KDP) and low (lysozyme) density of kinks. It was found that the roughness increases with time revealing the time dependence as t1/4. Step velocity does not depend upon distance between steps, that is why the experimental data were interpreted on the basis of Voronkov theory, which assume, that the attachment and detachment of building units in the kinks is major limitation for crystal growth. In the frame of this theoretical model the calculation of material parameters is performed.
Compressibility of porous TiO2 nanoparticle coating on paperboard
2013-01-01
Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS 61.46.-w; 68.08.Bc; 81.07.-b PMID:24160373
Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios
NASA Astrophysics Data System (ADS)
Penuela Fernandez, A.; Javaux, M.; Bielders, C.
2013-12-01
Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.
NASA Astrophysics Data System (ADS)
Jegert, Gunther; Kersch, Alfred; Weinreich, Wenke; Lugli, Paolo
2011-01-01
In this paper, we investigate the influence of electrode roughness on the leakage current in TiN/high-κ ZrO2/TiN (TZT) thin-film capacitors which are used in dynamic random access memory cells. Based on a microscopic transport model, which is expanded to incorporate electrode roughness, we assess the ultimate scaling potential of TZT capacitors in terms of equivalent oxide thickness, film smoothness, thickness fluctuations, defect density and distribution, and conduction band offset (CBO). The model is based on three-dimensional, fully self-consistent, kinetic Monte Carlo transport simulations. Tunneling transport in the bandgap of the dielectric is treated, which includes defect-assisted transport mechanisms. Electrode roughness is described in the framework of fractal geometry. While the short-range roughness of the electrodes is found not to influence significantly the leakage current, thickness fluctuations of the dielectric have a major impact. For thinner dielectric films they cause a transformation of the dominant transport mechanism from Poole-Frenkel conduction to trap-assisted tunneling. Consequently, the sensitivity of the leakage current on electrode roughness drastically increases on downscaling. Based on the simulations, optimization of the CBO is suggested as the most viable strategy to extend the scalability of TZT capacitors over the next chip generations.
Flow over a Biomimetic Surface Roughness Microgeometry
NASA Astrophysics Data System (ADS)
Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew
2006-11-01
Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.
Rough Set Approach to Incomplete Multiscale Information System
Yang, Xibei; Qi, Yong; Yu, Dongjun; Yu, Hualong; Song, Xiaoning; Yang, Jingyu
2014-01-01
Multiscale information system is a new knowledge representation system for expressing the knowledge with different levels of granulations. In this paper, by considering the unknown values, which can be seen everywhere in real world applications, the incomplete multiscale information system is firstly investigated. The descriptor technique is employed to construct rough sets at different scales for analyzing the hierarchically structured data. The problem of unravelling decision rules at different scales is also addressed. Finally, the reduct descriptors are formulated to simplify decision rules, which can be derived from different scales. Some numerical examples are employed to substantiate the conceptual arguments. PMID:25276852
NASA Astrophysics Data System (ADS)
Tejasvi, Ravi; Basu, Suddhasatwa
2017-12-01
A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.
Fractal characterization and wettability of ion treated silicon surfaces
NASA Astrophysics Data System (ADS)
Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.
2017-02-01
Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.
Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy
NASA Astrophysics Data System (ADS)
Tomacheski, Daiane; Pittol, Michele; Simões, Douglas Naue; Ribeiro, Vanda Ferreira; Santana, Ruth Marlene Campomanes
2017-05-01
The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.
Fabrication of transparent superhydrophobic polytetrafluoroethylene coating
NASA Astrophysics Data System (ADS)
Alawajji, Raad A.; Kannarpady, Ganesh K.; Biris, Alexandru S.
2018-06-01
Polytetrafluoroethylene (PTFE) thin films were successfully deposited on glass substrates using pulsed laser deposition, with deposition times ranging from 30 to 120 minutes (min). The surface roughness of the films increased as deposition time increased, with micro/nanoscale roughness developing when deposition time increased over 60 min. This roughness made the surface superhydrophobic, having a contact angle of about 151.6°±1. UV-vis spectroscopic analysis of the PTFE films revealed that they were highly transparent, up to ∼90% in visible and near-infrared ranges. Furthermore, when the deposition time was increased-which increased the films' thickness-the films were able to absorb 80-90% of ultraviolet light in the wavelength range <300 nm. The researchers used an x-ray photoelectron spectrometer to find the chemical and elemental composition of the films' surfaces. Atomic force microscopy was used to determine the effect of surface roughness on the films' hydrophobicity. The fabricated superhydrophobic films have many potential practical uses, from self-cleaning materials to solar cell panel coatings. Additionally, the low dielectric properties of PTFE make the films' ideal for communication antenna coatings and similar applications.
The Chip-Scale Atomic Clock - Recent Development Progress
2004-09-01
35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in
Delocalization via Sliding in Solid 4He: Is It Plausible?
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2010-02-01
The modified Debye approach was used to calculate the Gibbs free energy for solid 4He and energetic profiles for different atomic displacements with respect to an equilibrium lattice. Atoms interact via the applied Aziz potential. We have found that individual atomic displacements may hardly give rise to any delocalization because of huge barriers but cooperative plane sliding is highly plausible especially in the intermediate phase, which was found to be more favorable than hcp for small cluster sizes. In the latter case the roughness of the potential profile is less than one kelvin. In some particular sliding cases the energy levels in the nearest wells nearly coincide that is a well-known precursor for the delocalization effect.
Small-Scale Surf Zone Geometric Roughness
2017-12-01
and an image of the tie points can be seen (Figure 6). 23 Figure 6. Screen Shot of Alignment Process On the left side is the workspace which...rest of the points, producing the 3D surface. 24 Figure 7. Screen Shot of Dense Cloud Process On the left side is the workspace which...maximum 200 words) Measurements of small-scale (O(mm)) geometric roughness (kf) associated with breaking wave foam were obtained within the surf zone on
NASA Astrophysics Data System (ADS)
Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.
2012-12-01
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.
SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
Kazemi, Ehsan; Nichols, Andrew; Tait, Simon; Shao, Songdong
2017-01-10
A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth-limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier-Stokes equations is solved, in which a drag-based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub-particle-scale model is applied to account for the effect of turbulence. The sub-particle-scale model is constructed based on the mixing-length assumption rather than the standard Smagorinsky approach to compute the eddy-viscosity. A robust in/out-flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.
Copper atomic-scale transistors
Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen
2017-01-01
We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242
Sustaining dry surfaces under water
Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.
2015-01-01
Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732
Multiple scattering in the remote sensing of natural surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wen-Hao; Weeks, R.; Gillespie, A.R.
1996-07-01
Radiosity models predict the amount of light scattered many times (multiple scattering) among scene elements in addition to light interacting with a surface only once (direct reflectance). Such models are little used in remote sensing studies because they require accurate digital terrain models and, typically, large amounts of computer time. We have developed a practical radiosity model that runs relatively quickly within suitable accuracy limits, and have used it to explore problems caused by multiple-scattering in image calibration, terrain correction, and surface roughness estimation for optical images. We applied the radiosity model to real topographic surfaces sampled at two verymore » different spatial scales: 30 m (rugged mountains) and 1 cm (cobbles and gravel on an alluvial fan). The magnitude of the multiple-scattering (MS) effect varies with solar illumination geometry, surface reflectivity, sky illumination and surface roughness. At the coarse scale, for typical illumination geometries, as much as 20% of the image can be significantly affected (>5%) by MS, which can account for as much as {approximately}10% of the radiance from sunlit slopes, and much more for shadowed slopes, otherwise illuminated only by skylight. At the fine scale, radiance from as much as 30-40% of the scene can have a significant MS component, and the MS contribution is locally as high as {approximately}70%, although integrating to the meter scale reduces this limit to {approximately}10%. Because the amount of MS increases with reflectivity as well as roughness, MS effects will distort the shape of reflectance spectra as well as changing their overall amplitude. The change is proportional to surface roughness. Our results have significant implications for determining reflectivity and surface roughness in remote sensing.« less
Micro/Nanofibre Optical Sensors: Challenges and Prospects
Tong, Limin
2018-01-01
Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.
DOE Award No. FG02-93ER14331 Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartynski, Robert
We have studyed new aspects of the relationships between nanoscale surface features and heterogeneous catalysis or electrocatalysis. We concentrate on atomically rough and morphologically unstable surfaces of catalytic metal single crystals (Re, Ru, Ir) that undergo nanoscale faceting when interacting with strongly adsorbed species (e.g. O, N, C) at elevated temperatures.
Fabrication of GaN doped ZnO nanocrystallines by laser ablation.
Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T
2008-08-01
Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.
Spin precession experiments for light axionic dark matter
NASA Astrophysics Data System (ADS)
Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas
2018-03-01
Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.
NASA Astrophysics Data System (ADS)
Bhatt, Rinkesh; Bisen, D. S.; Bajpai, R.; Bajpai, A. K.
2017-04-01
In the present communication, binary blends of poly (vinyl alcohol) (PVA) and chitosan (CS) were prepared by solution cast method and the roughness parameters of PVA, native CS and CS-PVA blend films were determined using atomic force microscopy (AFM). Moreover, the changes in the morphology of the samples were also investigated after irradiation of gamma rays at absorbed dose of 1 Mrad and 10 Mrad for the scanning areas of 5×5 μm2, 10×10 μm2 and 20×20 μm2. Amplitude, statistical and spatial parameters, including line, 3D and 2D image profiles of the experimental surfaces were examined and compared to un-irradiated samples. For gamma irradiated CS-PVA blends the larger waviness over the surface was found as compared to un-irradiated CS-PVA blends but the values of average roughness for both the films were found almost same. The coefficient of skewness was positive for gamma irradiated CS-PVA blends which revealed the presence of more peaks than valleys on the blend surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. Thismore » value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.« less
NASA Astrophysics Data System (ADS)
Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin
2014-03-01
Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting
Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less
Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls
NASA Astrophysics Data System (ADS)
Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew
2017-11-01
The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.
NASA Astrophysics Data System (ADS)
Okyay, U.; Glennie, C. L.; Khan, S.
2017-12-01
Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.
Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao
2017-08-01
Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2013-12-01
Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.
Observation of coherent backscattering of light in ultracold ^85Rb
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2002-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and our measurements of atomic coherent backscattering. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider scattering orders up to 8 and a Gaussian atom distribution in the MOT. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes.
The evolving quality of frictional contact with graphene.
Li, Suzhi; Li, Qunyang; Carpick, Robert W; Gumbsch, Peter; Liu, Xin Z; Ding, Xiangdong; Sun, Jun; Li, Ju
2016-11-24
Graphite and other lamellar materials are used as dry lubricants for macroscale metallic sliding components and high-pressure contacts. It has been shown experimentally that monolayer graphene exhibits higher friction than multilayer graphene and graphite, and that this friction increases with continued sliding, but the mechanism behind this remains subject to debate. It has long been conjectured that the true contact area between two rough bodies controls interfacial friction. The true contact area, defined for example by the number of atoms within the range of interatomic forces, is difficult to visualize directly but characterizes the quantity of contact. However, there is emerging evidence that, for a given pair of materials, the quality of the contact can change, and that this can also strongly affect interfacial friction. Recently, it has been found that the frictional behaviour of two-dimensional materials exhibits traits unlike those of conventional bulk materials. This includes the abovementioned finding that for few-layer two-dimensional materials the static friction force gradually strengthens for a few initial atomic periods before reaching a constant value. Such transient behaviour, and the associated enhancement of steady-state friction, diminishes as the number of two-dimensional layers increases, and was observed only when the two-dimensional material was loosely adhering to a substrate. This layer-dependent transient phenomenon has not been captured by any simulations. Here, using atomistic simulations, we reproduce the experimental observations of layer-dependent friction and transient frictional strengthening on graphene. Atomic force analysis reveals that the evolution of static friction is a manifestation of the natural tendency for thinner and less-constrained graphene to re-adjust its configuration as a direct consequence of its greater flexibility. That is, the tip atoms become more strongly pinned, and show greater synchrony in their stick-slip behaviour. While the quantity of atomic-scale contacts (true contact area) evolves, the quality (in this case, the local pinning state of individual atoms and the overall commensurability) also evolves in frictional sliding on graphene. Moreover, the effects can be tuned by pre-wrinkling. The evolving contact quality is critical for explaining the time-dependent friction of configurationally flexible interfaces.
Roughness evolution in dewetted Ag and Pt nanoscale films
NASA Astrophysics Data System (ADS)
Ruffino, F.; Grimaldi, M. G.
2018-01-01
The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.
Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment
NASA Astrophysics Data System (ADS)
Zahid, A.; Dai, B.; Hong, R.; Zhang, D.
2017-10-01
In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.
Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces
Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo
2013-01-01
We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2001-11-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.
2001-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
Absolute marine gravimetry with matter-wave interferometry.
Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F
2018-02-12
Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5 m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.
NASA Astrophysics Data System (ADS)
Gupta, Nitant; Sasikala, S.; Mahadik, D. B.; Rao, A. V.; Barshilia, Harish C.
2012-10-01
A novel method to fabricate multifunctional indium tin oxide (ITO) coatings is discussed. Superhydrophobic ITO coatings are fabricated by radio frequency balanced magnetron sputter deposition of indium-tin alloy on glass substrates followed by complete oxidation of the samples in air. The chemical nature and structure of the coatings are verified by X-ray diffraction, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. Field emission scanning electron microscopic studies of the coatings display rod-like and blob-like microstructures, together with fractal-like nanostructures infused on top. Microscale roughness of the ITO coatings is measured by three-dimensional profilometry and is found to be in the range of 0.1-3 μm. Thus the presence of micro- and nano- sized structures result in dual-scale roughness. The variation in the contact angle with the deposition time is studied using a contact angle goniometer. High water contact angles (>160°) and low contact angle hysteresis (5°) are obtained at an optimum microscale roughness. The ITO coatings also exhibit other functional properties, such as low sheet resistance and semi-transparent behaviour in the visible region. The loss in the transparency of the ITO coatings is attributed to the presence of higher scale of roughness. The photoluminescence measurements show large photoemission in the visible region. It is expected that further improvements in the multifunctional properties of transparent conducting oxides will open new frontiers in designing novel materials with exotic properties.
Atomic-scale reversibility in sheared glasses
NASA Astrophysics Data System (ADS)
Fan, Meng; Wang, Minglei; Liu, Yanhui; Schroers, Jan; Shattuck, Mark; O'Hern, Corey
Systems become irreversible on a macroscopic scale when they are sheared beyond the yield strain and begin flowing. Using computer simulations of oscillatory shear, we investigate atomic scale reversibility. We employ molecular dynamics simulations to cool binary Lennard-Jones liquids to zero temperature over a wide range of cooling rates. We then apply oscillatory quasistatic shear at constant pressure to the zero-temperature glasses and identify neighbor-switching atomic rearrangement events. We determine the critical strain γ*, beyond which atoms in the system do not return to their original positions upon reversing the strain. We show that for more slowly cooled glasses, the average potential energy is lower and the typical size of atomic rearrangements is smaller, which correlates with larger γ*. Finally, we connect atomic- and macro-scale reversibility by determining the number of and correlations between the atomic rearrangements that occur as the system reaches the yield strain.
A kilobyte rewritable atomic memory
NASA Astrophysics Data System (ADS)
Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander
The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Technical Reports Server (NTRS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-01-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Effects on optical systems from interactions with oxygen atoms in low earth orbits
NASA Astrophysics Data System (ADS)
Peters, P. N.; Swann, J. T.; Gregory, J. C.
1986-04-01
Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.
Świetlicka, Izabela; Muszyński, Siemowit; Tomaszewska, Ewa; Dobrowolski, Piotr; Kwaśniewska, Anita; Świetlicki, Michał; Skic, Anna; Gołacki, Krzysztof
2016-10-01
The aim of this research was to check the effect of the prenatally administered β-hydroxy β-methylbutyrate (HMB) on the development of enamel surface of the spiny mice offspring. The spiny mice dams were randomly assigned into three groups: control group (not supplemented with HMB) and two experimental groups in which powdered HMB was given at the daily dosage of 0.2g/kg of body weight (group I) and 0.02g/kg of body weight (group II) during the last period of gestation. Newborn pups were euthanized by CO 2 inhalation. The morphology of incisor teeth was analysed using atomic force microscopy (AFM) in semi-contact mode in the height, magnitude and phase domains. Height images became a basis for determination of surface roughness parameters. Conducted study indicated that maternal HMB administration markedly influences enamel development. Enamel of offspring's teeth in both experimental groups was characterized by significantly smaller values of indices describing surface roughness and profile. HMB supplementation influenced the calculated parameters regardless of the diet type and offspring sex, however higher dose of HMB caused stronger changes in enamel surface's physical properties and could be observed in higher intensity in the male group. HMB administration caused reduction in the irregularities of enamel surface, thereby possibly reducing the probability of bacteria adhesion and caries development. These observations may serve to improve nutrition and supplementation of animals and could be a lead for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yen, Tsu-Hsu
2015-12-01
Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.
NASA Astrophysics Data System (ADS)
Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.
2018-01-01
Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.
NASA Astrophysics Data System (ADS)
Vogler, Daniel; Walsh, Stuart D. C.; Bayer, Peter; Amann, Florian
2017-11-01
This work studies the roughness characteristics of fracture surfaces from a crystalline rock by analyzing differences in surface roughness between fractures of various types and sizes. We compare the surface properties of natural fractures sampled in situ and artificial (i.e., man-made) fractures created in the same source rock under laboratory conditions. The topography of the various fracture types is compared and characterized using a range of different measures of surface roughness. Both natural and artificial, and tensile and shear fractures are considered, along with the effects of specimen size on both the geometry of the fracture and its surface characterization. The analysis shows that fracture characteristics are substantially different between natural shear and artificial tensile fractures, while natural tensile fracture often spans the whole result domain of the two other fracture types. Specimen size effects are also evident, not only as scale sensitivity in the roughness metrics, but also as a by-product of the physical processes used to generate the fractures. Results from fractures generated with Brazilian tests show that fracture roughness at small scales differentiates fractures from different specimen sizes and stresses at failure.
NASA Astrophysics Data System (ADS)
Xiu, Yonghao
In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on our understanding of the roughness effect on superhydrophobicity (both contact angle and hysteresis), structured surfaces from polybutadiene, polyurethane, silica, and Si etc. were successfully prepared. For engineering applications of superhydrophobic surfaces, stability issues regarding UV, mechanical robustness and humid environment need to be investigated. Among these factors, UV stability is the first one to be studied. However, most polymer surfaces we prepared failed the purpose. Silica surfaces with excellent UV stability were prepared. This method consists of preparation of rough silica surfaces, thermal treatment and the following surface hydrophobization by fluoroalkyl silane treatment. Fluoroalkyl groups are UV stable and the underlying species are silica which is also UV stable (UV transparent). UV stability on the surface currently is 5,500 h according the standard test method of ASTM D 4329. No degradation on surface superhydrophobicity was observed. New methods for preparing superhydrophobic and transparent silica surfaces were investigated using urea-choline chloride eutectic liquid to generate fine roughness and reduce the cost for preparation of surface structures. Another possible application for self-cleaning in photovoltaic panels was investigated on Si surfaces by construction of the two-scale rough structures followed by fluoroalkyl silane treatment. Metal (Au) assisted etching was employed to fabricate nanostructures on micrometer pyramid surfaces. The light reflection on the prepared surfaces was investigated. After surface texturing using KOH etching for micrometer pyramids and the following nanostructure using metal assisted etching, surface light reflection reduced to a minimum value which shows that this surface texturing technique is highly promising for improving the photovoltaic efficiency while imparting photovoltaics the self-cleaning feature. This surface is also expected to be UV stable due to the same fluoroalkyl silane used. Regarding the mechanical robustness, epoxy-silica superhydrophobic surfaces were prepared by O2 plasma etching to generate enough surface roughness of silica spheres followed by fluoroalkyl silane treatment. A robustness test method was proposed and the test results showed that the surface is among the most robust surfaces for the superhydrophobic surfaces we prepared and currently reported in literature.
Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction.
Jiao, Xingchen; Li, Xiaodong; Jin, Xiuyu; Sun, Yongfu; Xu, Jiaqi; Liang, Liang; Ju, Huanxin; Zhu, Junfa; Pan, Yang; Yan, Wensheng; Lin, Yue; Xie, Yi
2017-12-13
Unraveling the role of surface oxide on affecting its native metal disulfide's CO 2 photoreduction remains a grand challenge. Herein, we initially construct metal disulfide atomic layers and hence deliberately create oxidized domains on their surfaces. As an example, SnS 2 atomic layers with different oxidation degrees are successfully synthesized. In situ Fourier transform infrared spectroscopy spectra disclose the COOH* radical is the main intermediate, whereas density-functional-theory calculations reveal the COOH* formation is the rate-limiting step. The locally oxidized domains could serve as the highly catalytically active sites, which not only benefit for charge-carrier separation kinetics, verified by surface photovoltage spectra, but also result in electron localization on Sn atoms near the O atoms, thus lowering the activation energy barrier through stabilizing the COOH* intermediates. As a result, the mildly oxidized SnS 2 atomic layers exhibit the carbon monoxide formation rate of 12.28 μmol g -1 h -1 , roughly 2.3 and 2.6 times higher than those of the poorly oxidized SnS 2 atomic layers and the SnS 2 atomic layers under visible-light illumination. This work uncovers atomic-level insights into the correlation between oxidized sulfides and CO 2 reduction property, paving a new way for obtaining high-efficiency CO 2 photoreduction performances.
Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J
2016-12-01
Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical properties of scaffolds, 3D printed scaffolds have shortcomings such as limited mimicking of the nanoscale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nanoscale roughness and chemical composition of a 3D printed scaffold surface. The results indicated that using CAP surface modification could achieve a positive change of roughness and surface chemistry. Results showed that both hydrophilicity and nanoscale roughness changes to these scaffolds after CAP treatment played an important role in enhancing bone cell and mesenchymal stem cell attachment and functions. More importantly, this technique could be used for many 3D printed polymer-based biomaterials to improve their properties for numerous applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Young, Duncan; Blankeship, Donald; Beem, Lucas; Cavitte, Marie; Quartini, Enrica; Lindzey, Laura; Jackson, Charles; Roberts, Jason; Ritz, Catherine; Siegert, Martin; Greenbaum, Jamin; Frederick, Bruce
2017-04-01
The roughness of subglacial interfaces (as measured by airborne radar echo sounding) at length scales between profile line spacing and the footprint of the instrument is a key, but complex, signature of glacial and geomorphic processes, material lithology and integrated history at the bed of ice sheets. Subglacial roughness is also intertwined with assessments of ice thickness uncertainty using radar echo sounding, the utility of interpolation methodologies, and a key aspect of subglacial assess strategies. Here we present an assessment of subglacial roughness estimation in both West and East Antarctica, and compare this to exposed subglacial terrains. We will use recent high resolution aerogeophysical surveys to examine what variations in roughness are a fingerprint for, assess the limits of ice thickness uncertainty quantification and compare strategies for roughness assessment and utilization.
Characterizing low-Z erosion and deposition in the DIII-D divertor using aluminum
Chrobak, Chris P.; Doerner, R. P.; Stangeby, Peter C.; ...
2017-01-28
Here, we present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ~100nm thick were applied to ideal (smooth) and realistic (rough) surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition and re-erosion in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non spectroscopic measurements. The gross Al erosion yield estimated from both Hemore » and D plasma exposures was ~40-70% of the expected erosion yield based on theoretical physical sputtering yields. However, the multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration, was found to be influenced by the surface roughness and/or porosity. On rough surfaces, the fraction of the eroded Al coating found redeposited outside the original coating area was 25x higher than on smooth surfaces. The amount of Al found redeposited on the rough substrate was in fact proportional to the net eroded Al, suggesting an accumulation of deposited Al in surface pores and other areas shadowed from re-erosion. In order to determine the fraction and distribution of eroded Al returning to the surface, a simple model for erosion and redeposition was developed and fitted to the measurements. The model presented here reproduces many of the observed results in these experiments by using theoretically calculated sputtering yields, calculating surface composition changes and erosion rates in time, assuming a spatial distribution function for redepositing atoms, and accounting for deposit trapping in pores. The results of the model fits reveal that total redeposition fraction increases with higher plasma temperature (~30% for 15-18eV plasmas, and ~45% for 25-30eV plasmas), and that 50% of the atoms redepositing on rough surfaces accumulated in shadowed areas.« less
Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.
Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T
2015-03-13
Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.
Atomic-Scale Lightning Rod Effect in Plasmonic Picocavities: A Classical View to a Quantum Effect.
Urbieta, Mattin; Barbry, Marc; Zhang, Yao; Koval, Peter; Sánchez-Portal, Daniel; Zabala, Nerea; Aizpurua, Javier
2018-01-23
Plasmonic gaps are known to produce nanoscale localization and enhancement of optical fields, providing small effective mode volumes of about a few hundred nm 3 . Atomistic quantum calculations based on time-dependent density functional theory reveal the effect of subnanometric localization of electromagnetic fields due to the presence of atomic-scale features at the interfaces of plasmonic gaps. Using a classical model, we explain this as a nonresonant lightning rod effect at the atomic scale that produces an extra enhancement over that of the plasmonic background. The near-field distribution of atomic-scale hot spots around atomic features is robust against dynamical screening and spill-out effects and follows the potential landscape determined by the electron density around the atomic sites. A detailed comparison of the field distribution around atomic hot spots from full quantum atomistic calculations and from the local classical approach considering the geometrical profile of the atoms' electronic density validates the use of a classical framework to determine the effective mode volume in these extreme subnanometric optical cavities. This finding is of practical importance for the community of surface-enhanced molecular spectroscopy and quantum nanophotonics, as it provides an adequate description of the local electromagnetic fields around atomic-scale features with use of simplified classical methods.
2011-09-01
and Imaging Framework First, the parallelized 3-D FDTD algorithm is applied to simulate composite scattering from targets in a rough ground...solver as pertinent to forward-looking radar sensing , the effects of surface clutter on multistatic target imaging are illustrated with large-scale...Full-wave Characterization of Rough Terrain Surface Effects for Forward-looking Radar Applications: A Scattering and Imaging Study from the
NASA Astrophysics Data System (ADS)
Wang, S. G.; Li, X.; Han, X. J.; Jin, R.
2011-05-01
Radar remote sensing has demonstrated its applicability to the retrieval of basin-scale soil moisture. The mechanism of radar backscattering from soils is complicated and strongly influenced by surface roughness. Additionally, retrieval of soil moisture using AIEM (advanced integrated equation model)-like models is a classic example of underdetermined problem due to a lack of credible known soil roughness distributions at a regional scale. Characterization of this roughness is therefore crucial for an accurate derivation of soil moisture based on backscattering models. This study aims to simultaneously obtain surface roughness parameters (standard deviation of surface height σ and correlation length cl) along with soil moisture from multi-angular ASAR images by using a two-step retrieval scheme based on the AIEM. The method firstly used a semi-empirical relationship that relates the roughness slope, Zs (Zs = σ2/cl) and the difference in backscattering coefficient (Δσ) from two ASAR images acquired with different incidence angles. Meanwhile, by using an experimental statistical relationship between σ and cl, both these parameters can be estimated. Then, the deduced roughness parameters were used for the retrieval of soil moisture in association with the AIEM. An evaluation of the proposed method was performed in an experimental area in the middle stream of the Heihe River Basin, where the Watershed Allied Telemetry Experimental Research (WATER) was taken place. It is demonstrated that the proposed method is feasible to achieve reliable estimation of soil water content. The key challenge is the presence of vegetation cover, which significantly impacts the estimates of surface roughness and soil moisture.
A Study of the Mean Force Structure of Rough-Wall Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Klewicki, Joseph
2011-11-01
Analysis of existing data by Mehdi, Klewicki & White [Physica D 239(2010)] provides evidence that the traditional classifications do not fully account for the combined effects of roughness and Reynolds number. We continue to explore this further, and in the present talk report on experiments that used 24-grit sandpaper and pea gravel for roughness over an 8m fetch. Two-component LDV measurements are used to acquire well-resolved mean velocity and Reynolds stress profiles over a modest range of Reynolds numbers. These data are used to estimate the terms in the appropriate mean statement of dynamics, which directly reveals the operative time-averaged balance of forces. The present results further reinforce the previous observation that the mean viscous force retains dominant order above (and often well-above) the roughness elements. Force balance data are shown to be usefully organized relative to the length scale that defines the region from the wall to where the leading order mean dynamics are described by a balance between mean advection and the mean effect of turbulent inertia. In the smooth-wall flow, this length scale is only a function of Reynolds number. In rough-wall flows, the data indicate it to be a function of roughness and Reynolds number. The support of the ONR (N000140810836, grant monitor Ronald Joslin) is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Blumberg, Dan G.; Greeley, Ronald
1992-01-01
The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.
NASA Astrophysics Data System (ADS)
Monnet, Jean-Matthieu; Bourrier, Franck; Milenkovic, Milutin
2017-04-01
Advances in numerical simulation and analysis of real-size field experiments have supported the development of process-based rockfall simulation models. Availability of high resolution remote sensing data and high-performance computing now make it possible to implement them for operational applications, e.g. risk zoning and protection structure design. One key parameter regarding rock propagation is the surface roughness, sometimes defined as the variation in height perpendicular to the slope (Pfeiffer and Bowen, 1989). Roughness-related input parameters for rockfall models are usually determined by experts on the field. In the RockyFor3D model (Dorren, 2015), three values related to the distribution of obstacles (deposited rocks, stumps, fallen trees,... as seen from the incoming rock) relatively to the average slope are estimated. The use of high resolution digital terrain models (DTMs) questions both the scale usually adopted by experts for roughness assessment and the relevance of modeling hypotheses regarding the rock / ground interaction. Indeed, experts interpret the surrounding terrain as obstacles or ground depending on the overall visibility and on the nature of objects. Digital models represent the terrain with a certain amount of smoothing, depending on the sensor capacities. Besides, the rock rebound on the ground is modeled by changes in the velocities of the gravity center of the block due to impact. Thus, the use of a DTM with resolution smaller than the block size might have little relevance while increasing computational burden. The objective of this work is to investigate the issue of scale relevance with simulations based on RockyFor3D in order to derive guidelines for roughness estimation by field experts. First a sensitivity analysis is performed to identify the combinations of parameters (slope, soil roughness parameter, rock size) where the roughness values have a critical effect on rock propagation on a regular hillside. Second, a more complex hillside is simulated by combining three components: a) a global trend (planar surface), b) local systematic components (sine waves), c) random roughness (Gaussian, zero-mean noise). The parameters for simulating these components are estimated for three typical scenarios of rockfall terrains: soft soil, fine scree and coarse scree, based on expert knowledge and available airborne and terrestrial laser scanning data. For each scenario, the reference terrain is created and used to compute input data for RockyFor3D simulations at different scales, i.e. DTMs with resolutions from 0.5 m to 20 m and associated roughness parameters. Subsequent analysis mainly focuses on the sensitivity of simulations both in terms of run-out envelope and kinetic energy distribution. Guidelines drawn from the results are expected to help experts handle the scale issue while integrating remote sensing data and field measurements of roughness in rockfall simulations.
Crack surface roughness in three-dimensional random fuse networks
NASA Astrophysics Data System (ADS)
Nukala, Phani Kumar V. V.; Zapperi, Stefano; Šimunović, Srđan
2006-08-01
Using large system sizes with extensive statistical sampling, we analyze the scaling properties of crack roughness and damage profiles in the three-dimensional random fuse model. The analysis of damage profiles indicates that damage accumulates in a diffusive manner up to the peak load, and localization sets in abruptly at the peak load, starting from a uniform damage landscape. The global crack width scales as Wtilde L0.5 and is consistent with the scaling of localization length ξ˜L0.5 used in the data collapse of damage profiles in the postpeak regime. This consistency between the global crack roughness exponent and the postpeak damage profile localization length supports the idea that the postpeak damage profile is predominantly due to the localization produced by the catastrophic failure, which at the same time results in the formation of the final crack. Finally, the crack width distributions can be collapsed for different system sizes and follow a log-normal distribution.
Dynamic evolution of interface roughness during friction and wear processes.
Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L
2014-01-01
Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
Long-wavelength microinstabilities in toroidal plasmas*
NASA Astrophysics Data System (ADS)
Tang, W. M.; Rewoldt, G.
1993-07-01
Realistic kinetic toroidal eigenmode calculations have been carried out to support a proper assessment of the influence of long-wavelength microturbulence on transport in tokamak plasmas. In order to efficiently evaluate large-scale kinetic behavior extending over many rational surfaces, significant improvements have been made to a toroidal finite element code used to analyze the fully two-dimensional (r,θ) mode structures of trapped-ion and toroidal ion temperature gradient (ITG) instabilities. It is found that even at very long wavelengths, these eigenmodes exhibit a strong ballooning character with the associated radial structure relatively insensitive to ion Landau damping at the rational surfaces. In contrast to the long-accepted picture that the radial extent of trapped-ion instabilities is characterized by the ion-gyroradius-scale associated with strong localization between adjacent rational surfaces, present results demonstrate that under realistic conditions, the actual scale is governed by the large-scale variations in the equilibrium gradients. Applications to recent measurements of fluctuation properties in Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 29] L-mode plasmas indicate that the theoretical trends appear consistent with spectral characteristics as well as rough heuristic estimates of the transport level. Benchmarking calculations in support of the development of a three-dimensional toroidal gyrokinetic code indicate reasonable agreement with respect to both the properties of the eigenfunctions and the magnitude of the eigenvalues during the linear phase of the simulations of toroidal ITG instabilities.
Tomita, Y; Matsuura, T; Kodama, T
2015-01-01
Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s
2-Amino-5-chloro-pyrimidin-1-ium hydrogen maleate.
Fun, Hoong-Kun; Hemamalini, Madhukar; Rajakannan, Venkatachalam
2012-01-01
In the title salt, C(4)H(5)ClN(3) (+)·C(4)H(3)O(4) (-), the 2-amino-5-chloro-pyrimidinium cation is protonated at one of its pyrimidine N atoms. In the roughly planar (r.m.s. deviation = 0.026 Å) hydrogen malate anion, an intra-molecular O-H⋯O hydrogen bond generates an S(7) ring. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds, forming an R(2) (2)(8) ring motif. The ion pairs are connected via further N-H⋯O hydrogen bonds and a short C-H⋯O inter-action, forming layers lying parallel to the bc plane.
Advertising the atom: federal promotion of nuclear power, 1953-1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.
The public relations strategies of the Atomic Energy Commission (AEC) and the nuclear power industry reveal both public and official perceptions of nuclear power and the social uses of technology in general during the first 15 years after passage of the Atomic Energy Act of 1954. The relation between nuclear promotion and regulation also helps explain the environmental crisis of the 1969-1984 years. Project Plowshare coincides roughly with the early promotional years, and provides a case study of the relation of regulatory standards to promotion in AEC policymaking. The author examines the environmentalists challenge to nuclear power that emerged inmore » 1969 alongside government and industry response. He concludes with an assessment of the present state of federal nuclear power policy and of the nuclear power industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borthakur, Sanchayeeta; Heckman, Timothy; Tumlinson, Jason
We present a study exploring the nature and properties of the circumgalactic medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the H i 21 cm line. Our sample includes 45 low-z (0.026–0.049) galaxies from the GALEX Arecibo SDSS Survey (Galaxy Evolution Explorer/Arecibo/Sloan Digital Sky Survey). Their CGM was probed via absorption in the spectra of background quasi-stellar objects at impact parameters of 63–231 kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Lyα absorption lines) in the CGMmore » of 92% of the galaxies. We find that the radial profile of the CGM as traced by the Lyα equivalent width can be fit as an exponential with a scale length of roughly the virial radius of the dark matter halo. We found no correlation between the orientation of the sightline relative to the galaxy’s major axis and the Lyα equivalent width. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the ISM. We find a strong correlation (99.8% confidence) between the gas fraction (M(H i)/M{sub ⋆}) and the impact-parameter-corrected Lyα equivalent width. This is stronger than the analogous correlation between corrected Lyα equivalent width and specific star formation rate (SFR)/M{sub ⋆} (97.5% confidence). These results imply a physical connection between the H i disk and the CGM, which is on scales an order of magnitude larger. This is consistent with the picture in which the H i disk is nourished by accretion of gas from the CGM.« less
Plasma surface figuring of large optical components
NASA Astrophysics Data System (ADS)
Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.
2012-04-01
Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.
Surface roughness evaluation on mandrels and mirror shells for future X-ray telescopes
NASA Astrophysics Data System (ADS)
Sironi, Giorgia; Spiga, D.
2008-07-01
More X-ray missions that will be operating in near future, like particular SIMBOL-X, e-Rosita, Con-X/HXT, SVOM/XIAO and Polar-X, will be based on focusing optics manufactured by means of the Ni electroforming replication technique. This production method has already been successfully exploited for SAX, XMM and Swift-XRT. Optical surfaces for X-ray reflection have to be as smooth as possible also at high spatial frequencies. Hence it will be crucial to take under control microroughness in order to reduce the scattering effects. A high rms microroughness would cause the degradation of the angular resolution and loss of effective area. Stringent requirements have therefore to be fixed for mirror shells surface roughness depending on the specific energy range investigated, and roughness evolution has to be carefully monitored during the subsequent steps of the mirror-shells realization. This means to study the roughness evolution in the chain mandrel, mirror shells, multilayer deposition and also the degradation of mandrel roughness following iterated replicas. Such a study allows inferring which phases of production are the major responsible of the roughness growth and could help to find solutions optimizing the involved processes. The exposed study is carried out in the context of the technological consolidation related to SIMBOL-X, along with a systematic metrological study of mandrels and mirror shells. To monitor the roughness increase following each replica, a multiinstrumental approach was adopted: microprofiles were analysed by means of their Power Spectral Density (PSD) in the spatial frequency range 1000-0.01 μm. This enables the direct comparison of roughness data taken with instruments characterized by different operative ranges of frequencies, and in particular optical interferometers and Atomic Force Microscopes. The performed analysis allowed us to set realistic specifications on the mandrel roughness to be achieved, and to suggest a limit for the maximum number of a replica a mandrel can undergo before being refurbished.
Characterization of self-affinity in the global regime
NASA Astrophysics Data System (ADS)
Neimark, Alexander V.
1994-11-01
Methods for characterization of self-affine surfaces and measurements of their roughness exponents H are developed. It is shown that for smoothed surfaces, which underwent particular coarse graining or averaging of the small-scale fluctuations, the excess surface area Sex and the mean square root radius of curvature ac are related by two distinct asymptotic power laws if ac is well below or well above a certain crossover scale acr. In the local regime of self-affinity, when ac<
Smoothing of Fault Slip Surfaces by Scale Invariant Wear
NASA Astrophysics Data System (ADS)
Dascher-Cousineau, K.; Kirkpatrick, J. D.
2017-12-01
Fault slip surface roughness plays a determining role in the overall strength, friction, and dynamic behavior of fault systems. Previous wear models and field observations suggest that roughness decreases with increasing displacement. However, measurements have yet to isolate the effect of displacement from other possible controls, such as lithology or tectonic setting. In an effort to understand the effect of displacement, we present comprehensive qualitative and quantitative description of the evolution of fault slip surfaces in and around the San-Rafael Desert, S.E. Utah, United States. In the study area, faults accommodated regional extension at shallow (1 to 3 km) depth and are hosted in the massive, well-sorted, high-porosity Navajo and Entrada sandstones. Existing displacement profiles along with tight displacement controls readily measureable in the field, combined with uniform lithology and tectonic history, allowed us to isolate for the effect of displacement during the embryonic stages of faulting (0 to 60 m in displacement). Our field observations indicate a clear compositional and morphological progression from isolated joints or deformation bands towards smooth, continuous, and mirror-like fault slip surfaces with increasing displacement. We scanned pristine slip surfaces with a white light interferometer, a laser scanner, and a ground-based LiDAR. We produce and analyses more than 120 individual scans of fault slip surfaces. Results for the surfaces with the best displacement constraints indicate that roughness as defined by the power spectral density at any given length scale decreases with displacement according to a power law with an exponent of -1. Roughness measurements associated with only maximum constraints on displacements corroborate this result. Moreover, maximum roughness for any given fault is bounded by a primordial roughness corresponding to that of joint surfaces and deformation band edges. Building upon these results, we propose a multi-scale wear model to explain the evolution of faults with displacement. We suggest that together, asperity failure as a scale invariant process, and the stochastic strength of host rocks are consistent with qualitative and quantitative observational constraints made in this study.
Rheological State Diagrams for Rough Colloids in Shear Flow.
Hsiao, Lilian C; Jamali, Safa; Glynos, Emmanouil; Green, Peter F; Larson, Ronald G; Solomon, Michael J
2017-10-13
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
Rheological State Diagrams for Rough Colloids in Shear Flow
NASA Astrophysics Data System (ADS)
Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.
2017-10-01
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
NASA Astrophysics Data System (ADS)
Berkels, Benjamin; Wirth, Benedikt
2017-09-01
Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Existence of minimizers and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data.
A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis
Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge
2015-01-01
Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability. PMID:26585247
Structural characterization of Papilio kotzebuea (Eschscholtz 1821) butterfly wings
NASA Astrophysics Data System (ADS)
Sackey, J.; Nuru, Z. Y.; Berthier, S.; Maaza, M.
2018-05-01
The `plain black' forewings and black with `red spot' hindwings of the Papilio kotzebuea (Eschscholtz, 1821) were characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive x-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM), Fourier transform Infrared spectroscopy (FT-IR), UV-Vis spectrophometer and NIRQuest spectrometer. SEM images showed that the two sections of wings have different structures. The black with `red spot' hindwings have `hair-like' structures attached to the ridges and connected to the lamellae. On the contrary, the `plain black' forewings have holes that separate the ridges. AFM analysis unveiled that the `plain black' forewings have higher average surfaces roughness values as compared with the black with `red spot' hindwing. EDS and FT-IR results confirmed the presence of naturally hydrophobic materials on the wings. The `plain black' forewing exhibited strong absorptance (97%) throughout the solar spectrum range, which is attributed to the high melanin concentration as well as to the presence of holes in the scales. Biomimicking this wing could serves as equivalent solar absorber material.
Dey, Tania; Naughton, Daragh
2017-05-01
Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.
Atomic-scale sensing of the magnetic dipolar field from single atoms
NASA Astrophysics Data System (ADS)
Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; MacDonald, Andrew J.; Natterer, Fabian D.; Yang, Kai; Willke, Philip; Lutz, Christopher P.; Heinrich, Andreas J.
2017-05-01
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r-3.01±0.04). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.
Directional bottom roughness associated with waves, currents, and ripples
Sherwood, Christopher R.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
Roughness lengths are used in wave-current bottom boundary layer models to parameterize drag associated with grain roughness, the effect of saltating grains during sediment transport, and small-scale bottom topography (ripples and biogenic features). We made field measurements of flow parameters and recorded sonar images of ripples at the boundary of a sorted-bedform at ~12-m depth on the inner shelf for a range of wave and current conditions over two months. We compared estimates of apparent bottom roughness inferred from the flow measurements with bottom roughness calculated using ripple geometry and the Madsen (1994) one-dimensional (vertical) wave-current bottom boundary layer model. One result of these comparisons was that the model over predicted roughness of flow from the dormant large ripples when waves were small. We developed a correction to the ripple-roughness model that incorporates an apparent ripple wavelength related to the combined wave-current flow direction. This correction provides a slight improvement for low-wave conditions, but does not address several other differences between observations and the modeled roughness.
2017-11-09
to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a long-term effort...devices, our goal is to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a... correlate the change in transport with the atomic structure of hydrogen-doped graphene, we subsequently use the STM to investigate the graphene
NASA Astrophysics Data System (ADS)
Bitenc, M.; Kieffer, D. S.; Khoshelham, K.
2015-08-01
The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.
NASA Astrophysics Data System (ADS)
Bai, H. L.; Kevin, Hutchins, N.; Monty, J. P.
2018-05-01
Turbulence modifications over a rough wall with spanwise-varying roughness are investigated at a moderate Reynolds number Reτ ≈ 2000 (or Reθ ≈ 6400), using particle image velocimetry (PIV) and hotwire anemometry. The rough wall is comprised of spanwise-alternating longitudinal sandpaper strips of two different roughness heights. The ratio of high- and low-roughness heights is 8, and the ratio of high- and low-roughness strip width is 0.5. PIV measurements are conducted in a wall-parallel plane located in the logarithmic region, while hotwire measurements are made throughout the entire boundary layer in a cross-stream plane. In a time-average sense, large-scale counter-rotating roll-modes are observed in the cross-stream plane over the rough wall, with downwash and upwash common-flows displayed over the high- and low-roughness strips, respectively. Meanwhile, elevated and reduced streamwise velocities occur over the high- and low-roughness strips, respectively. Significant modifications in the distributions of mean vorticities and Reynolds stresses are observed, exhibiting features of spatial preference. Furthermore, spatial correlations and conditional average analyses are performed to examine the alterations of turbulence structures over the rough wall, revealing that the time-invariant structures observed are resultant from the time-average process of instantaneous turbulent events that occur mostly and preferentially in space.
Shahrousvand, Mohsen; Sadeghi, Gity Mir Mohamad; Shahrousvand, Ehsan; Ghollasi, Marzieh; Salimi, Ali
2017-08-01
All of the cells' interactions are done through their surfaces. Evaluation of surface physicochemical scaffolds along with other factors is important and determines the fate of stem cells. In this work, biodegradable and biocompatible polyester/polyether based polyurethanes (PUs) were synthesized by polycaprolactone diol (PCL) and poly (tetra methylene ether) glycol (PTMEG) as the soft segment. To assess better the impact of surface parameters such as stiffness and roughness effects on osteogenic differentiation of the human mesenchymal stem cell (hMSC), the dimension effect of substrates was eliminated and two-dimensional membranes were produced by synthesized polyurethane. Surface and bulk properties of prepared 2D membranes such as surface chemistry, roughness, stiffness and tensile behavior were evaluated by Attenuated total reflectance Fourier transform infrared (ATR-FTIR), atomic force microscopy (AFM) and tensile behavior. The prepared 2D PU films had suitable hydrophilicity, biodegradability, water absorption, surface roughness and bulk strength. The hMSCs showed greater osteogenesis expression in PU substrates with more roughness and stiffness than others. The results demonstrated that surface parameters along with other differentiation cues have a synergistic effect on stem cells fates. Copyright © 2017 Elsevier B.V. All rights reserved.
Direct observation of atomic-scale origins of local dissolution in Al-Cu-Mg alloys
Zhang, B.; Wang, J.; Wu, B.; Oguzie, E. E.; Luo, K.; Ma, X. L.
2016-01-01
Atomistic chemical inhomogeneities are anticipated to induce dissimilarities in surface potentials, which control corrosion initiation of alloys at the atomic scale. Precise understanding of corrosion is therefore hampered by lack of definite information describing how atomistic heterogeneities regulate the process. Here, using high-angle annular dark-field (HAADF) scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS) techniques, we systematically analyzed the Al20Cu2Mn3 second phase of 2024Al and successfully observed that atomic-scale segregation of Cu at defect sites induced preferential dissolution of the adjacent zones. We define an “atomic-scale galvanic cell”, composed of zones rich in Cu and its surrounding matrix. Our findings provide vital information linking atomic-scale microstructure and pitting mechanism, particularly for Al-Cu-Mg alloys. The resolution achieved also enables understanding of dealloying mechanisms and further streamlines our comprehension of the concept of general corrosion. PMID:28000750
The internal boundary layer — A review
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1990-03-01
A review is given of relevant work on the internal boundary layer (IBL) associated with: (i) Small-scale flow in neutral conditions across an abrupt change in surface roughness, (ii) Small-scale flow in non-neutral conditions across an abrupt change in surface roughness, temperature or heat/moisture flux, (iii) Mesoscale flow, with emphasis on flow across the coastline for both convective and stably stratified conditions. The major theme in all cases is on the downstream, modified profile form (wind and temperature), and on the growth relations for IBL depth.
Studies of the Combined Effects of Roughness and Reynolds Number in Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Mehdi, Faraz; Klewicki, Joseph
2010-11-01
Mehdi, Klewicki & White [Physica D 239(2010)] provide evidence from existing studies that the prevalent scheme for classifying roughness regimes is likely to be incomplete. To further pursue these findings, more data are required, and for this purpose, additional rough-wall experiments are being performed. We report on our studies of the combined roughness-Reynolds number problem conducted in a 8m long wind-tunnel. The roughness considered is the randomly distributed type and introduced in the form of 24-grit sandpaper and pea gravel. The primary measurement tool is two-component LDV. The basis of the analysis is the mean equation of dynamics. In this regard, the length scale defining where the mean dynamics become dominated by inertia is of central importance.
Characteristics of secondary flows in rough-wall turbulent boundary layers
NASA Astrophysics Data System (ADS)
Vanderwel, Christina; Ganapathisubramani, Bharathram
2015-11-01
Large-scale secondary motions consisting of counter-rotating vortices and low- and high-momentum pathways can form in boundary layers that develop over rough surfaces. We experimentally investigated the sensitivity of these secondary motions to spanwise arrangement of the roughness by studying the flow over streamwise-aligned rows of elevated roughness with systematically-varied spacing. The roughness is created with LEGO blocks mounted along the floor of the wind tunnel and Stereo-PIV is used to measure the velocity field in a cross-plane. Results show that the secondary flows are strongest when the spanwise spacing of the surface topology is comparable with the boundary layer thickness. We discuss how these results are relevant to flows over arbitrary topologies and how these secondary motions influence the Reynolds stress distribution in the boundary layer.
Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations
Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F.; ...
2016-03-04
Chemical imaging at the atomic-scale provides a useful real-space approach to chemically investigate solid crystal structures, and has been recently demonstrated in aberration corrected scanning transmission electron microscopy (STEM). Atomic-scale chemical imaging by STEM using energy-dispersive X-ray spectroscopy (EDS) offers easy data interpretation with a one-to-one correspondence between image and structure but has a severe shortcoming due to the poor efficiency of X-ray generation and collection. As a result, it requires a long acquisition time of typical > few 100 seconds, limiting its potential applications. Here we describe the development of an atomic-scale STEM EDS chemical imaging technique that cutsmore » the acquisition time to one or a few seconds, efficiently reducing the acquisition time by more than 100 times. This method was demonstrated using LaAlO 3 (LAO) as a model crystal. Applying this method to the study of phase transformation induced by electron-beam radiation in a layered lithium transition-metal (TM) oxide, i.e., Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO), a cathode materials for lithium-ion batteries, we obtained a time-series of the atomic-scale chemical imaging, showing the transformation progressing by preferably jumping of Ni atoms from the TM layers into the Li-layers. The new capability offers an opportunity for temporal, atomic-scale chemical mapping of crystal structures for the investigation of materials susceptible to electron irradiation as well as phase transformation and dynamics at the atomic-scale.« less
Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles.
Song, Bo; Zhou, Yi; Schönherr, Holger
2016-11-01
The formation of self-assembled monolayers (SAMs) of binary mixtures of 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on ultraflat template-stripped gold (TSG) surfaces was systematically investigated to clarify the assembly behavior, composition, and degree of possible phase segregation in light of atomic force microscopy (AFM) studies of surface nanobubbles on these substrates. The data for SAMs on TSG were compared to those obtained by adsorption on rough evaporated gold, as reported in a previous study. Quartz crystal microbalance and surface plasmon resonance data acquired in situ on TSG indicate that similar to SAM formation on conventional evaporated gold substrates ODT and MHDA form monolayers and bilayers, respectively. The second layer on MHDA, whose formation is attributed to hydrogen bonding, can be easily removed by adequate rinsing with water. The favorable agreement of the grazing incidence reflection Fourier transform infrared (GIR FTIR) spectroscopy and contact angle data analyzed with the Israelachvili-Gee model suggests that the binary SAMs do not segregate laterally. This conclusion is fully validated by high-resolution friction force AFM observations down to a length scale of 8-10 nm, which is much smaller than the typical observed surface nanobubble radii. Finally, correspondingly functionalized TSG substrates are shown to be valuable supports for studying surface nanobubbles by AFM in water and for addressing the relation between surface functionality and nanobubble formation and properties.
A kilobyte rewritable atomic memory
NASA Astrophysics Data System (ADS)
Kalff, F. E.; Rebergen, M. P.; Fahrenfort, E.; Girovsky, J.; Toskovic, R.; Lado, J. L.; Fernández-Rossier, J.; Otte, A. F.
2016-11-01
The advent of devices based on single dopants, such as the single-atom transistor, the single-spin magnetometer and the single-atom memory, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy provides ways to store data in atoms, encoded either into their charge state, magnetization state or lattice position. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.
Generalizing roughness: experiments with flow-oriented roughness
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano
2015-04-01
Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.
Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Cantrell, Gidget
1994-01-01
Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Crago, Richard
1994-01-01
Parameterizations of the frontal area index and canopy area index of natural or randomly distributed plants are developed, and applied to the estimation of local aerodynamic roughness using satellite imagery. The formulas are expressed in terms of the subpixel fractional vegetation cover and one non-dimensional geometric parameter that characterizes the plant's shape. Geometrically similar plants and Poisson distributed plant centers are assumed. An appropriate averaging technique to extend satellite pixel-scale estimates to larger scales is provided. ne parameterization is applied to the estimation of aerodynamic roughness using satellite imagery for a 2.3 sq km coniferous portion of the Landes Forest near Lubbon, France, during the 1986 HAPEX-Mobilhy Experiment. The canopy area index is estimated first for each pixel in the scene based on previous estimates of fractional cover obtained using Landsat Thematic Mapper imagery. Next, the results are incorporated into Raupach's (1992, 1994) analytical formulas for momentum roughness and zero-plane displacement height. The estimates compare reasonably well to reference values determined from measurements taken during the experiment and to published literature values. The approach offers the potential for estimating regionally variable, vegetation aerodynamic roughness lengths over natural regions using satellite imagery when there exists only limited knowledge of the vegetated surface.
McLucas, E; Moran, M T; Rochev, Y; Carroll, W M; Smith, T J
2006-01-01
The surface properties of vascular devices dictate the initial postimplantation reactions that occur and thus the efficacy of the implantation procedure. Over the last number of years, a number of different stent designs have emerged and stents are generally polished to a mirror finish during the manufacturing procedure. This study sought to investigate the effect of stainless steel surface roughness on endothelial cell gene expression using an appropriate cell culture in vitro assay system. Stainless steel discs were roughened by shot blasting or polished by mechanical polishing. The surface roughness of the treated and untreated discs was determined by atomic force microscopy (AFM). Cells were seeded on collagen type 1 gels and left to attach for 24 h. Stainless steel discs of varying roughness were then placed in contact with the cells and incubated for 24 h. RNA extractions and quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was then performed to determine the expression levels of candidate genes in the treated cells compared to suitable control cells. E-selectin and vascular cellular adhesion molecule (VCAM-1) were found to be significantly up-regulated in cells incubated with polished and roughened samples, indicating endothelial cell activation and inflammation. This study indicates that the surface roughness of stainless steel is an important surface property in the development of vascular stents.
High-speed microprobe for roughness measurements in high-aspect-ratio microstructures
NASA Astrophysics Data System (ADS)
Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas
2017-03-01
Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s-1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s-1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.
Ethanol wet-bonding technique sensitivity assessed by AFM.
Osorio, E; Toledano, M; Aguilera, F S; Tay, F R; Osorio, R
2010-11-01
In ethanol wet bonding, water is replaced by ethanol to maintain dehydrated collagen matrices in an extended state to facilitate resin infiltration. Since short ethanol dehydration protocols may be ineffective, this study tested the null hypothesis that there are no differences in ethanol dehydration protocols for maintaining the surface roughness, fibril diameter, and interfibrillar spaces of acid-etched dentin. Polished human dentin surfaces were etched with phosphoric acid and water-rinsed. Tested protocols were: (1) water-rinse (control); (2) 100% ethanol-rinse (1-min); (3) 100% ethanol-rinse (5-min); and (4) progressive ethanol replacement (50-100%). Surface roughness, fibril diameter, and interfibrillar spaces were determined with atomic force microscopy and analyzed by one-way analysis of variance and the Student-Newman-Keuls test (α = 0.05). Dentin roughness and fibril diameter significantly decreased when 100% ethanol (1-5 min) was used for rinsing (p < 0.001). Absolute ethanol produced collapse and shrinkage of collagen fibrils. Ascending ethanol concentrations did not collapse the matrix and shrank the fibrils less than absolute ethanol-rinses.
Dependence of the surface roughness of MAPLE-deposited films on the solvent parameters
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Leggieri, G.; Martino, M.; Vantaggiato, A.; Valerini, D.; Cretì, A.; Lomascolo, M.; Manera, M. G.; Rella, R.; Anni, M.
2010-12-01
Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran—THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70±20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.
NASA Astrophysics Data System (ADS)
Timilsina, Rajendra; Termaath, Stephanie
The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.
Valencia, Germán Ayala; Luciano, Carla Giovana; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José
2018-02-01
The aim of this research was to study the effects of laponite concentrations on some properties of nano-biocomposite films based on cassava starch, focusing mainly the relation between the properties of the surface microstructure and roughness, water contact angle and gloss. Nano-biocomposite films were produced by casting. We analyzed gloss, color, opacity, water contact angle, crystallinity by X-ray diffraction, and microstructure by scanning electron microscopy and atomic force microscopy. Texture parameters (energy, entropy and fractal dimension) were extracted from micrographs. We observed a great impact of laponite in the morphology of nano-biocomposite films. Texture parameters correlated with surface heterogeneity and roughness. Finally, surface roughness affected the surface hydrophilicity of nano-biocomposite films. Laponite platelets were exfoliated and/or intercalated with amylose and amylopectin chains. This research reports new information on the effects of laponite concentrations on the morphological, optical and wetting properties of nano-biocomposite films aiming future industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannix, A. J.; Zhou, X. -F.; Kiraly, B.
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Chi; Aldosary, Mohammed; Jiang, Zilong
A layer-by-layer epitaxial growth up to 227 atomic layers of ferrimagnetic insulator yttrium iron garnet (YIG) thin films is achieved on (110)-oriented gadolinium gallium garnet substrates using pulsed laser deposition. Atomically smooth terraces are observed on YIG films up to 100 nm in thickness. The root-mean-square roughness is as low as 0.067 nm. The easy-axis lies in the film plane, indicating the dominance of shape anisotropy. For (110)-YIG films, there is well-defined two-fold in-plane anisotropy, with the easiest axis directed along [001]. The Gilbert damping constant is determined to be 1.0 × 10{sup −4} for 100 nm thick films.
Inorganic resist materials based on zirconium phosphonate for atomic force microscope lithography
NASA Astrophysics Data System (ADS)
Kang, Mankyu; Kim, Seonae; Jung, JinHyuck; Kim, Heebom; Shin, Inkyun; Jeon, Chanuk; Lee, Haiwon
2014-03-01
New inorganic resist materials based on metal complexes were investigated for atomic force microscope (AFM) lithography. Phosphoric acids are good for self-assembly because of their strong binding energy. In this work, zirconium phosphonate system are newly synthesized for spin-coatable materials in aqueous solutions and leads to negative tone pattern for improving line edge roughness. Low electron exposure by AFM lithography could generate a pattern by electrochemical reaction and cross-linking of metal-oxo complexes. It has been reported that the minimum pattern results are affected by lithographic speed, and the applied voltage between a tip and a substrate.
2006-07-02
A s c c s r t h s l © K 1 b c A a e t s C t o 0 d Sensors and Actuators A 135 (2007) 262–272 Alternative dielectric films for rf MEMS capacitive...Zn concentrations in the alloy films , which was lower than expected. Atomic force microscopy images evealed an average surface roughness of 0.27 nm...that was independent of deposition temperature and film composition. The dielectric constants of he Al2O3/ZnO ALD alloys films were calculated to be
Down to the roughness scale assessment of piston-ring/liner contacts
NASA Astrophysics Data System (ADS)
Checo, H. M.; Jaramillo, A.; Ausas, R. F.; Jai, M.; Buscaglia, G. C.
2017-02-01
The effects of surface roughness in hydrodynamic bearings been accounted for through several approaches, the most widely used being averaging or stochastic techniques. With these the surface is not treated “as it is”, but by means of an assumed probability distribution for the roughness. The so called direct, deterministic or measured-surface simulation) solve the lubrication problem with realistic surfaces down to the roughness scale. This leads to expensive computational problems. Most researchers have tackled this problem considering non-moving surfaces and neglecting the ring dynamics to reduce the computational burden. What is proposed here is to solve the fully-deterministic simulation both in space and in time, so that the actual movement of the surfaces and the rings dynamics are taken into account. This simulation is much more complex than previous ones, as it is intrinsically transient. The feasibility of these fully-deterministic simulations is illustrated two cases: fully deterministic simulation of liner surfaces with diverse finishings (honed and coated bores) with constant piston velocity and load on the ring and also in real engine conditions.
Discrete space charge affected field emission: Flat and hemisphere emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin
Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less
Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven
2009-11-01
An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).
Radar characteristics of Viking 1 landing sites
Tyler, G.L.; Campbell, D.B.; Downs, G.S.; Green, R.R.; Moore, H.J.
1976-01-01
Radar observations of Mars at centimeter wavelengths in May, June, and July 1976 provided estimates of surface roughness and reflectivity in three potential landing areas for Viking 1. Surface roughness is characterized by the distribution of surface landing slopes or tilts on lateral scales of the order of 1 to 10 meters; measurements of surface reflectivity are indicators of bulk surface density in the uppermost few centimeters. By these measures, the Viking 1 landing site at 47.5??W, 22.4??N is rougher than the martian average, although it may be near the martian average for elevations accessible to Viking, and is estimated to be near the Mars average in reflectivity. The AINW site at the center of Chryse Planitia, 43.5??W, 23.4??N, may be an area of anomalous radar characteristics, indicative of extreme, small-scale roughness, very low surface density, or a combination of these two characteristics. Low signal-to-noise ratio observations of the original Chryse site at 34??W, 19.5??N indicate that that area is at least twice as rough as the Mars average.
A stochastic two-scale model for pressure-driven flow between rough surfaces
Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas
2016-01-01
Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975
Can high resolution topographic surveys provide reliable grain size estimates?
NASA Astrophysics Data System (ADS)
Pearson, Eleanor; Smith, Mark; Klaar, Megan; Brown, Lee
2017-04-01
High resolution topographic surveys contain a wealth of information that is not always exploited in the generation of Digital Elevation Models (DEMs). In particular, several authors have related sub-grid scale topographic variability (or 'surface roughness') to particle grain size by deriving empirical relationships between the two. Such relationships would permit rapid analysis of the spatial distribution of grain size over entire river reaches, providing data to drive distributed hydraulic models and revolutionising monitoring of river restoration projects. However, comparison of previous roughness-grain-size relationships shows substantial variability between field sites and do not take into account differences in patch-scale facies. This study explains this variability by identifying the factors that influence roughness-grain-size relationships. Using 275 laboratory and field-based Structure-from-Motion (SfM) surveys, we investigate the influence of: inherent survey error; irregularity of natural gravels; particle shape; grain packing structure; sorting; and form roughness on roughness-grain-size relationships. A suite of empirical relationships is presented in the form of a decision tree which improves estimations of grain size. Results indicate that the survey technique itself is capable of providing accurate grain size estimates. By accounting for differences in patch facies, R2 was seen to improve from 0.769 to R2 > 0.9 for certain facies. However, at present, the method is unsuitable for poorly sorted gravel patches. In future, a combination of a surface roughness proxy with photosieving techniques using SfM-derived orthophotos may offer improvements on using either technique individually.
Structure of turbulent flow over regular arrays of cubical roughness
NASA Astrophysics Data System (ADS)
Coceal, O.; Dobre, A.; Thomas, T. G.; Belcher, S. E.
The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.
NASA Astrophysics Data System (ADS)
Ikeno, Rimon; Mita, Yoshio; Asada, Kunihiro
2017-04-01
High-throughput electron-beam lithography (EBL) by character projection (CP) and variable-shaped beam (VSB) methods is a promising technique for low-to-medium volume device fabrication with regularly arranged layouts, such as standard-cell logics and memory arrays. However, non-VLSI applications like MEMS and MOEMS may not fully utilize the benefits of CP method due to their wide variety of layout figures including curved and oblique edges. In addition, the stepwise shapes that appear on such irregular edges by VSB exposure often result in intolerable edge roughness, which may degrade performances of the fabricated devices. In our former study, we proposed a general EBL methodology for such applications utilizing a combination of CP and VSB methods, and demonstrated its capabilities in electron beam (EB) shot reduction and edge-quality improvement by using a leading-edge EB exposure tool, ADVANTEST F7000S-VD02, and high-resolution Hydrogen Silsesquioxane resist. Both scanning electron microscope and atomic force microscope observations were used to analyze quality of the resist edge profiles to determine the influence of the control parameters used in the exposure-data preparation process. In this study, we carried out detailed analysis of the captured edge profiles utilizing Fourier analysis, and successfully distinguish the systematic undulation by the exposed CP character profiles from random roughness components. Such capability of precise edge-roughness analysis is useful to our EBL methodology to maintain both the line-edge quality and the exposure throughput by optimizing the control parameters in the layout data conversion.
NASA Astrophysics Data System (ADS)
Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha
2016-08-01
In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.
A polarization converting device for an interfering enhanced CPT atomic clock.
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
A polarization converting device for an interfering enhanced CPT atomic clock
NASA Astrophysics Data System (ADS)
Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong
2017-11-01
With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.
Internal tide generation by abyssal hills using analytical theory
NASA Astrophysics Data System (ADS)
Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.
2013-11-01
Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klesko, Joseph P.; Bellow, James A.; Saly, Mark J.
The atomic layer deposition (ALD) of films with the approximate compositions Mn{sub 3}(BO{sub 3}){sub 2} and CoB{sub 2}O{sub 4} is described using MnTp{sub 2} or CoTp{sub 2} [Tp = tris(pyrazolyl)borate] with ozone. The solid state decomposition temperatures of MnTp{sub 2} and CoTp{sub 2} are ∼370 and ∼340 °C, respectively. Preparative-scale sublimations of MnTp{sub 2} and CoTp{sub 2} at 210 °C/0.05 Torr afforded >99% recoveries with <0.1% nonvolatile residues. Self-limited ALD growth was demonstrated at 325 °C for MnTp{sub 2} or CoTp{sub 2} with ozone as the coreactant. The growth rate for the manganese borate process was 0.19 Å/cycle within the ALD window of 300–350 °C. The growth ratemore » for the cobalt borate process was 0.39–0.42 Å/cycle at 325 °C. X-ray diffraction of the as-deposited films indicated that they were amorphous. Atomic force microscopy of 35–36 nm thick manganese borate films grown within the 300–350 °C ALD window showed root mean square surface roughnesses of 0.4–0.6 nm. Film stoichiometries were assessed by x-ray photoelectron spectroscopy and time of flight-elastic recoil detection analysis. The differing film stoichiometries obtained from the very similar precursors MnTp{sub 2} and CoTp{sub 2} are proposed to arise from the oxidizing ability of the intermediate high valent manganese oxide layers and lack thereof for cobalt.« less
An open source digital servo for atomic, molecular, and optical physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J.
2015-12-15
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of themore » laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.« less
An open source digital servo for atomic, molecular, and optical physics experiments.
Leibrandt, D R; Heidecker, J
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
NASA Astrophysics Data System (ADS)
Leibrandt, D. R.; Heidecker, J.
2015-12-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.
An open source digital servo for atomic, molecular, and optical physics experiments
Leibrandt, D. R.; Heidecker, J.
2016-01-01
We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014
Platinum clusters with precise numbers of atoms for preparative-scale catalysis.
Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa
2017-09-25
Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.
Surface smoothening effects on growth of diamond films
NASA Astrophysics Data System (ADS)
Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava
2018-04-01
We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.
Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA
NASA Astrophysics Data System (ADS)
Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.
2017-12-01
Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new pseudo-dynamic rupture modeling approach for computing broadband ground-motion time-histories for simulation-based PSHA
A simple atomic-level hydrophobicity scale reveals protein interfacial structure.
Kapcha, Lauren H; Rossky, Peter J
2014-01-23
Many amino acid residue hydrophobicity scales have been created in an effort to better understand and rapidly characterize water-protein interactions based only on protein structure and sequence. There is surprisingly low consistency in the ranking of residue hydrophobicity between scales, and their ability to provide insightful characterization varies substantially across subject proteins. All current scales characterize hydrophobicity based on entire amino acid residue units. We introduce a simple binary but atomic-level hydrophobicity scale that allows for the classification of polar and non-polar moieties within single residues, including backbone atoms. This simple scale is first shown to capture the anticipated hydrophobic character for those whole residues that align in classification among most scales. Examination of a set of protein binding interfaces establishes good agreement between residue-based and atomic-level descriptions of hydrophobicity for five residues, while the remaining residues produce discrepancies. We then show that the atomistic scale properly classifies the hydrophobicity of functionally important regions where residue-based scales fail. To illustrate the utility of the new approach, we show that the atomic-level scale rationalizes the hydration of two hydrophobic pockets and the presence of a void in a third pocket within a single protein and that it appropriately classifies all of the functionally important hydrophilic sites within two otherwise hydrophobic pores. We suggest that an atomic level of detail is, in general, necessary for the reliable depiction of hydrophobicity for all protein surfaces. The present formulation can be implemented simply in a manner no more complex than current residue-based approaches. © 2013.
Roadmap of ultrafast x-ray atomic and molecular physics
Young, Linda; Ueda, Kiyoshi; Gühr, Markus; ...
2018-01-09
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10 20 W cm -2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scalesmore » can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here in this paper, we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.« less
Roadmap of ultrafast x-ray atomic and molecular physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Linda; Ueda, Kiyoshi; Gühr, Markus
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10 20 W cm -2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scalesmore » can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here in this paper, we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.« less
Neutral sodium atoms extraction by micrometeoroid impacts on the surface of Mercury
NASA Astrophysics Data System (ADS)
Cremonese, G.; Orsini, S.; Capria, M. T.; Milillo, A.; Mura, A.; Mangano, V.; Carbognani, A.
2003-04-01
The Mercury's exosphere is more dependent on the micrometeoroid impacts than the lunar exosphere and we have applied an order-to-magnitude calculation on the physical conditions of the sodium atoms during these events. This calculation shows the different ionization degree of sodium atoms depending on the meteoroid impact velocity and the related emission enhancements we may have observing the exosphere. We have applied the same calculation to the visible and UV doublets showing the large difference, a factor 5, between the two emission intensities only taking into account the same micrometeoroids contribution. Furthermore we provide a rough estimate for the impact magnitude in sodium light if we observe the night side of the Mercury's surface from the orbit of the ESA mission BepiColombo. Assuming a specific energy distribution of the emitted neutrals, we simulate the characteristics of the low-energy neutral atom fluxes as observable by the SERENA/ELENA instrument proposed on board the ESA BepiColombo Planetary Orbiter.
Clustering on Magnesium Surfaces - Formation and Diffusion Energies.
Chu, Haijian; Huang, Hanchen; Wang, Jian
2017-07-12
The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.
NASA Astrophysics Data System (ADS)
Hosomi, Daiki; Miyachi, Yuta; Egawa, Takashi; Miyoshi, Makoto
2018-04-01
We attempted to improve the mobility of InAlN/AlGaN two-dimensional electron gas (2DEG) heterostructures by achieving an atomically smooth heterointerface in metalorganic chemical vapor deposition processes. In the result, it was confirmed that the high-growth-rate AlGaN layer was very effective to improve the surface morphology. The atomically smooth surface morphology with a root-mean-square roughness of 0.26 nm was achieved for an Al0.15Ga0.85N layer under the growth rate of approximately 6 µm/h. Furthermore, nearly lattice-matched In0.17Al0.83N/Al0.15Ga0.85N 2DEG heterostructures with the atomically smooth heterointerface exhibited a 2DEG mobility of 242 cm2 V-1 s-1 with a 2DEG density of 2.6 × 1013/cm2, which was approximately 1.5 times larger than the mobility in a sample grown under original conditions.
ERIC Educational Resources Information Center
Teo, Boon K.; Li, Wai-Kee
2011-01-01
This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…
NASA Astrophysics Data System (ADS)
Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.
1988-01-01
Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.
Phase-relationships between scales in the perturbed turbulent boundary layer
NASA Astrophysics Data System (ADS)
Jacobi, I.; McKeon, B. J.
2017-12-01
The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.
Estimation of effective aerodynamic roughness with altimeter measurements
NASA Technical Reports Server (NTRS)
Menenti, M.; Ritchie, J. C.
1992-01-01
A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.
This document presents summary data on the results of various treatability studies (bench and pilot scale), conducted at three different sites where soils were contaminated with dioxins or PCBs. The synopsis is meant to show rough performance levels under a variety of differen...
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
Feedback effect of base roughness on particle size segregation in bidisperse granular avalanche
NASA Astrophysics Data System (ADS)
Jing, L.; Kwok, F.
2017-12-01
Particle size segregation in a geophysical flow interplays with base roughness, leading to rich behaviors such as bouldery front formation and fingering instability. The interplay originates mainly from the fact that larger particles slip more easily on a slope, the slip affects the progress of segregation, and segregation changes the size of particles contacting the slope. Recent studies show that slip velocity scales with geometric roughness (which involves both the size and spacing of base particles), and the roughness becomes a function of time during segregation. However, at least two questions remain unanswered: 1) In addition to geometric roughness, what is the role of mechanical parameters at boundaries? 2) To what extent the findings from steady flows are valid in a transient system, which is more common in actual geophysical flows? Here we study two configurations using the discrete element method, the first being a steady flow with periodic boundaries, where we vary the size, spatial arrangement, and contact parameters of base particles. The second consists in dambreak-type bidisperse granular avalanches over inclined planes, where the degree of segregation, base roughness, flow thickness, and base velocity are measured locally as the flow evolves. We found that: 1) On a frictional plane in the absence of geometric roughness, the friction parameter μ controls the amount of basal slip. A lower μ leads to a slower segregation. 2) On a bumpy base with low geometric roughness (where slip still occurs), the effect of μ becomes marginal, while the coefficient of restitution e controls the slip velocity; this indicates the significance of normal collision in the working mechanism of a bumpy base. Upon sliding, large particles near the base may exhibit an ordered state where shear is poorly developed, which delays the onset of segregation. 3) Both μ and e have no influence when the geometric roughness is sufficient to sustain a nonslip condition. Our results suggest the feedback effect of base roughness on segregation, which has a theoretical significance in the boundary treatment when modeling geophysical flows. The study also shows the possibility to establish a universal scaling law correlating slip velocity, base roughness, and the degree of segregation in both steady and unsteady flows.
Origin of the transition voltage in gold-vacuum-gold atomic junctions.
Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin
2013-01-18
The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.
Hossam, A Eid; Rafi, A Togoo; Ahmed, A Saleh; Sumanth, Phani Cr
2013-06-01
This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19.
Hossam, A. Eid; Rafi, A. Togoo; Ahmed, A Saleh; Sumanth, Phani CR
2013-01-01
Background: This is an in vitro study to investigate the effects of ultrasonic scaling on the surface roughness and quantitative bacterial count on four different types of commonly used composite restorative materials for class V cavities. Materials & Methods: Nanofilled, hybrid, silorane and flowable composites were tested. Forty extracted teeth served as specimen and were divided into 4 groups of 10 specimens, with each group receiving a different treatment and were examined by a Field emission scanning electron microscope. Bacterial suspension was then added to the pellicle-coated specimens, and then bacterial adhesion was analyzed by using image analyzing program. Results: Flowable and silorane-based composites showed considerably smoother surfaces and lesser bacterial count in comparison to other types, proving that bacterial adhesion is directly proportional to surface roughness. Conclusion: The use of ultrasonic scalers affects the surfaces of composite restorative materials. Routine periodontal scaling should be carried out very carefully, and polishing of the scaled surfaces may overcome the alterations in roughness, thus preventing secondary caries, surface staining, plaque accumulation and subsequent periodontal inflammation. How to cite this article: Eid H A, Togoo R A, Saleh A A, Sumanth C R. Surface Topography of Composite Restorative Materials following Ultrasonic Scaling and its Impact on Bacterial Plaque Accumulation. An In-Vitro SEM Study. J Int Oral Health 2013; 5(3):13-19. PMID:24155597
Meter-scale slopes of candidate MER landing sites from point photoclinometry
Beyer, R.A.; McEwen, A.S.; Kirk, R.L.
2003-01-01
Photoclinometry was used to analyze the small-scale roughness of areas that fall within the proposed Mars Exploration Rover (MER) 2003 landing ellipses. The landing ellipses presented in this study were those in Athabasca Valles, Elysium Planitia, Eos Chasma, Gusev Crater, Isidis Planitia, Melas Chasma, and Meridiani Planum. We were able to constrain surface slopes on length scales comparable to the image resolution (1.5 to 12 m/pixel). The MER 2003 mission has various engineering constraints that each candidate landing ellipse must satisfy. These constraints indicate that the statistical slope values at 5 m baselines are an important criterion. We used our technique to constrain maximum surface slopes across large swaths of each image, and built up slope statistics for the images in each landing ellipse. We are confident that all MER 2003 landing site ellipses in this study, with the exception of the Melas Chasma ellipse, are within the small-scale roughness constraints. Our results have provided input into the landing hazard assessment process. In addition to evaluating the safety of the landing sites, our mapping of small-scale roughnesses can also be used to better define and map morphologic units. The morphology of a surface is characterized by the slope distribution and magnitude of slopes. In looking at how slopes are distributed, we can better define landforms and determine the boundaries of morphologic units. Copyright 2003 by the American Geophysical Union.
A modular approach to detection and identification of defects in rough lumber
Sang Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2001-01-01
This paper describes a prototype scanning system that can automatically identify several important defects on rough hardwood lumber. The scanning system utilizes 3 laser sources and an embedded-processor camera to capture and analyze profile and gray-scale images. The modular approach combines the detection of wane (the curved sides of a board, possibly containing...
Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D
2009-07-21
Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.
Computational approach on PEB process in EUV resist: multi-scale simulation
NASA Astrophysics Data System (ADS)
Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo
2017-03-01
For decades, downsizing has been a key issue for high performance and low cost of semiconductor, and extreme ultraviolet lithography is one of the promising candidates to achieve the goal. As a predominant process in extreme ultraviolet lithography on determining resolution and sensitivity, post exposure bake has been mainly studied by experimental groups, but development of its photoresist is at the breaking point because of the lack of unveiled mechanism during the process. Herein, we provide theoretical approach to investigate underlying mechanism on the post exposure bake process in chemically amplified resist, and it covers three important reactions during the process: acid generation by photo-acid generator dissociation, acid diffusion, and deprotection. Density functional theory calculation (quantum mechanical simulation) was conducted to quantitatively predict activation energy and probability of the chemical reactions, and they were applied to molecular dynamics simulation for constructing reliable computational model. Then, overall chemical reactions were simulated in the molecular dynamics unit cell, and final configuration of the photoresist was used to predict the line edge roughness. The presented multiscale model unifies the phenomena of both quantum and atomic scales during the post exposure bake process, and it will be helpful to understand critical factors affecting the performance of the resulting photoresist and design the next-generation material.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations
NASA Technical Reports Server (NTRS)
Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome
2016-01-01
The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multidirectional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1- month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extra-tropics, the roughness parameter is inferred but 74% of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.
Lava flow topographic measurements for radar data interpretation
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Garvin, James B.
1993-01-01
Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.
Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.
Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min
2016-04-13
Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.
Piezoelectricity of green carp scales
NASA Astrophysics Data System (ADS)
Jiang, H. Y.; Yen, F.; Huang, C. W.; Mei, R. B.; Chen, L.
2017-04-01
Piezoelectricity takes part in multiple important functions and processes in biomaterials often vital to the survival of organisms. Here, we investigate the piezoelectric properties of fish scales of green carp by directly examining their morphology at nanometer levels. Two types of regions are found to comprise the scales, a smooth one and a rough one. The smooth region is comprised of a ridge and trough pattern and the rough region characterized by a flat base with an elevated mosaic of crescents. Piezoelectricity is found on the ridges and base regions of the scales. From clear distinctions between the composition of the inner and outer surfaces of the scales, we identify the piezoelectricity to originate from the presence of hydroxyapatite which only exists on the surface of the fish scales. Our findings reveal a different mechanism of how green carp are sensitive to their surroundings and should be helpful to studies related to the electromechanical properties of marine life and the development of bio-inspired materials.
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thermodynamics of rough colloidal surfaces
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Halsey, Thomas C.; Leibig, Michael
1991-03-01
In Debye-Hückel theory, the free energy of an electric double layer near a colloidal (or any other) surface can be related to the statistics of random walks near that surface. We present a numerical method based on this correspondence for the calculation of the double-layer free energy for an arbitrary charged or conducting surface. For self-similar surfaces, we propose a scaling law for the behavior of the free energy as a function of the screening length and the surface dimension. This scaling law is verified by numerical computation. Capacitance measurements on rough surfaces of, e.g., colloids can test these predictions.