Science.gov

Sample records for atomic short-range order

  1. Electric-field gradients used to measure atomic short range order: as a case-study

    NASA Astrophysics Data System (ADS)

    Cottenier, S.; Meersschaut, J.; Vermeire, L.; Demuynck, S.; Swinnen, B.; Rots, M.

    1999-02-01

    A scheme is presented in order to obtain complete information on atomic short range order in crystalline materials based on measuring the electric-field gradient on a probe nucleus. Limitations and possible improvements of the method are discussed. When applied to U(In0.5Sn0.5)3, short range order with In-Sn attraction is found.

  2. Charge-correlation effects in calculations of atomic short-range order in metallic alloys

    NASA Astrophysics Data System (ADS)

    Pinski, F. J.; Staunton, J. B.; Johnson, D. D.

    1998-06-01

    The ``local'' chemical environment that surrounds an atom directly influences its electronic charge density. These atomic charge correlations play an important role in describing the Coulomb and total energies for random substitutional alloys. Although the electronic structure may be well represented by a single-site theory, such as the coherent potential approximation, the electrostatic energy is not as well represented when these charge correlations are ignored. For metals, including the average effect from the charge correlation coming from only the nearest-neighbor shell has been shown to be sufficient to determine accurately the energy of formation. In this paper, we incorporate such charge correlations into the concentration-wave approach for calculating the atomic short-range order in random (substitutional) alloys. We present changes within the formalism, and apply the resulting equations to equiatomic nickel platinum. By including these effects, we obtain significantly better agreement with experimental data. In fact, particular to NiPt, a consequence of the charge correlation is a screening which cancels much of the electrostatic contribution to the energy and thus to the atomic short-range order, resulting in agreement with a picture originally outlined using only ``band-energy'' contributions.

  3. Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene

    SciTech Connect

    Willke, P.; Druga, T.; Wenderoth, M.; Amani, J. A.; Weikert, S.; Hofsäss, H.; Thakur, S.; Maiti, K.

    2014-09-15

    We perform a structural analysis of nitrogen-doped graphene on SiC(0001) prepared by ultra low-energy ion bombardment. Using scanning tunneling microscopy, we show that nitrogen atoms are incorporated almost exclusively as graphitic substitution in the graphene honeycomb lattice. With an irradiation energy of 25 eV and a fluence of approximately 5 × 10{sup 14 }cm{sup −2}, we achieve a nitrogen content of around 1%. By quantitatively comparing the position of the N-atoms in the topography measurements with simulated random distributions, we find statistically significant short-range correlations. Consequently, we are able to show that the dopants arrange preferably at lattice sites given by the 6 × 6-reconstruction of the underlying substrate. This selective incorporation is most likely triggered by adsorbate layers present during the ion bombardment. This study identifies low-energy ion irradiation as a promising method for controlled doping in epitaxial graphene.

  4. Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe-Al.

    PubMed

    Marceau, R K W; Ceguerra, A V; Breen, A J; Raabe, D; Ringer, S P

    2015-10-01

    Short-range-order (SRO) has been quantitatively evaluated in an Fe-18Al (at%) alloy using atom probe tomography (APT) data and by calculation of the generalised multicomponent short-range order (GM-SRO) parameters, which have been determined by shell-based analysis of the three-dimensional atomic positions. The accuracy of this method with respect to limited detector efficiency and spatial resolution is tested against simulated D03 ordered data. Whilst there is minimal adverse effect from limited atom probe instrument detector efficiency, the combination of this with imperfect spatial resolution has the effect of making the data appear more randomised. The value of lattice rectification of the experimental APT data prior to GM-SRO analysis is demonstrated through improved information sensitivity.

  5. The energetics and electronic origins for atomic long- and short-range order in Ni-Fe invar alloys

    SciTech Connect

    Johnson, D.D.; Shelton, W.A.

    1996-12-31

    States of magnetic and compositional order are strongly coupled in many magnetic alloys, with Ni-Fe Invar being the most celebrated example. Results of an electronic-based method that addresses compositional and magnetic disorder, as well as atomic short-range order and energetics, are discussed. This allows a system-dependent microscopic understanding of the interplay of chemical, magnetic, and displacive effects, and a direct comparison to diffuse scattering experiments. Discussion is in context of total-energy calculations for various magnetic states in chemically disordered and ordered Ni- Fe alloys, emphasizing the importance of exchange-splitting and the implication for phase stability in Ni-Fe system.

  6. Short-range order and dynamics of atoms in liquid gallium

    SciTech Connect

    Mokshin, A. V. Khusnutdinoff, R. M.; Novikov, A. G.; Blagoveshchenskii, N. M.; Puchkov, A. V.

    2015-11-15

    The features of the microscopic structure, as well as one-particle and collective dynamics of liquid gallium in the temperature range from T = 313 to 1273 K, are studied on the p = 1.0 atm isobar. Detailed analysis of the data on diffraction of neutrons and X-rays, as well as the results of atomic dynamics simulation, lead to some conclusions about the structure. In particular, for preset conditions, gallium is in the equilibrium liquid phase showing no features of any stable local crystalline clusters. The pronounced asymmetry of the principle peak of the static structure factor and the characteristic “shoulder” in its right-hand part appearing at temperatures close to the melting point, which are clearly observed in the diffraction data, are due to the fact that the arrangement of the nearest neighbors of an arbitrary atom in the system is estimated statistically from the range of correlation length values and not by a single value as in the case of simple liquids. Compactly located dimers with a very short bond make a significant contribution to the statistics of nearest neighbors. The temperature dependence of the self-diffusion coefficient calculated from atomic dynamics simulation agrees well with the results obtained from experimental spectra of the incoherent scattering function. Interpolation of the temperature dependence of the self-diffusion coefficient on a logarithmic scale reveals two linear regions with a transition temperature of about 600 K. The spectra of the dynamic structure factor and spectral densities of the local current calculated by simulating the atomic dynamics indicate the existence of acoustic vibrations with longitudinal and transverse polarizations in liquid gallium, which is confirmed by experimental data on inelastic scattering of neutrons and X-rays. It is found that the vibrational density of states is completely reproduced by the generalized Debye model, which makes it possible to decompose the total vibrational motion into

  7. Neutron scattering studies of short-range order and atomic displacements in a null-matrix nickel-62 platinum crystal

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose Abelardo

    The best known exception to the Heine-Samson and Bieber-Gautier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, where the phase diagram is similar to the CuAu system. Using the Disk Chopper Spectrometer (DCS) at NIST, we have investigated a Null-Matrix Crystal 62 Ni0.52Pt0.48, (62 Ni has a negative scattering length, nearly equal in magnitude to Pt). Its composition has therefore been chosen whereby all effects depending on the average lattice scattering vanish. The only remaining contributions to the diffuse scattering are the Short Range Order (SRO) and Size Effect (SE) terms, to be discussed within. Such data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtained the Effective Pair Interactions (EPI) between the several neighbors in the alloy. The results can be used to model the alloy in the context of electronic theory of alloy phase stability, including an evaluation of the potentially important aspect of charge transfer and ionicity.

  8. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  9. Neutron scattering studies of short-range order, atomic displacements, and effective pair interactions in a null-matrix Ni0.5262Pt0.48 crystal

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Moss, S. C.; Robertson, J. L.; Copley, J. R. D.; Neumann, D. A.; Major, J.

    2006-09-01

    The best known exception to the Heine-Sampson and Bieber-Gauthier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, whose phase diagram is similar to that of the CuAu system. Using neutron scattering we have investigated the local atomic order in a null-matrix Ni0.5262Pt0.48 single crystal. In a null-matrix alloy, the isotopic composition is adjusted so that the average neutron scattering length vanishes ( Ni62 has a negative scattering length nearly equal in magnitude to that of Pt). Consequently, all contributions to the total scattering depending on the average lattice are suppressed. The only remaining components of the elastic scattering are the short-range order (SRO) and size effect terms. These data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtain the effective pair interactions (EPIs) between near neighbors in the alloy. The results can be used by theorists to model the alloy in the context of the electronic theory of alloy phase stability, including a preliminary evaluation of the local species-dependent displacements. Our maps of V(q) , the Fourier transform of the EPIs, show very similar shapes in the experimental and reconstructed data. This is of importance when comparing to electronic structure calculations.

  10. Atomic and electronic structures of (GaN)1-x(ZnO)x alloys: the role of short-range order

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Allen, Philip

    2015-03-01

    (GaN)1-x(ZnO)x solid solution is a promising photocatalyst for efficient water splitting under visible illumination. For theoretical modeling, the special quasirandom structure (SQS) method which assumes random site occupancy is widely used. We have previously shown, with density-functional theory (DFT) total energy calculations, cluster expansion, and Monte Carlo simulations, that short-range order (SRO) is significant due to the non-isovalency. Thus it is desirable to include SRO in the construction of supercells. Inspired by the SQS method, we construct the ``special quasi-ordered structure'' (SQoS) supercells. Subsequent DFT calculations show that the atomic and electronic structures of SQS and SQoS alloys differ significantly. The SRO and (x,T) dependence of the valence band maximum stem mainly from the anti-bonding hybrids of N2p and Zn3d states. This suggests the possibility of engineering the band gap by tuning SRO. We also explore bond length distribution and bond angle variation over the composition-temperature (x,T) phase space using bond valence method (BVM). The validity of our BVM model is tested by DFT total energy calculations. Supported by DOE Grant No. DE-FG02-08ER46550.

  11. Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadbyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2004-01-01

    New short-range order data are presented for equilibrium and undercooled liquids of Ti and Ni. These were obtained from in-situ synchrotron x-ray diffraction measurements of electrostatically-levitated droplets. While the short-range order of liquid Ni is icosahedral, consistent with Frank's hypothesis, significantly distorted icosahedral order is observed in liquid Ti. This is the first experimental observation of distorted icosahedral short-range order in any liquid. although this has been predicted by theoretical studies on atomic clusters.

  12. Difference in Icosahedral Short-Range Order in Early and Late Transition Metals Liquids

    NASA Technical Reports Server (NTRS)

    Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.

    2003-01-01

    New short-range order data are presented for equilibrium and undercooled liquids of Ti and Ni. These were obtained from in-situ synchrotron x-ray diffraction measurements of electrostatically-levitated droplets. While the short-range order of liquid Ni is icosahedral, consistent with Frank's hypothesis, significantly distorted icosahedral order is observed in liquid Ti. This is the first experimental observation of distorted icosahedral short-range order in any liquid, although this has been predicted by theoretical studies on atomic clusters.

  13. Amorphous photonic crystals with only short-range order.

    PubMed

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-01

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications.

  14. a Study of Short-Range Order in Disordered Alloys

    NASA Astrophysics Data System (ADS)

    Clark, John

    In this thesis, I present a study of the short -range order in disordered binary metallic alloys. The objective is to determine the electronic origins of the particular ordering mechanism of each alloy studied. I analyze my calculations of the linear response to spatial variations, in terms of the disordered alloys' electronic structure, which can indicate a specific ordering mechanism of the system. Therefore, calculations of the short-range order parameters in the disordered state, which are related to the correlation functions, can reflect the alloys' propensity to order into a specific crystal structure. The ab initio calculations, based on a concentration wave approach, is formulated in terms of the electronic grand potential of the random alloy. A mean-field, density functional description, incorporated into multiple scattering theory (the Korringa -Kohn-Rostoker Coherent-Potential-Approximation), is employed to describe the derivatives of the electronic grand potential necessary to define the correlation functions. The disordered alloys studied were CuPt, CuPd, CuNi, NiPt, CuAu and Cu_3Au. All of these alloys are face-centered-cubic in the disordered state. Calculations of the response function of disordered CuPt are reported. The unique Ll_1 ordering mechanism of this binary alloy was traced to a novel Fermi-surface nesting feature in its electronic structure. Similar calculations of disordered CuAu confirm experimental evidence of the Ll_0 ordering mechanism involved in CuAu. Results are also presented on calculations of Cu_3Au, CuPd, CuNi, and NiPt that illustrate the different experimentally seen ordering and clustering phenomena.

  15. Chemical Short-Range Order in Selenide and Telluride Glasses.

    PubMed

    Pethes, Ildikó; Chahal, Radwan; Nazabal, Virginie; Prestipino, Carmelo; Trapananti, Angela; Michalik, Stefan; Jóvári, Pál

    2016-09-01

    The structure of Ge20SbxSe80-x (x = 5, 15, 20) glasses was investigated by neutron diffraction, X-ray diffraction, and extended X-ray fine structure measurements at the Ge, Sb, and Se K-edges. For each composition, large-scale structural models were obtained by fitting simultaneously the experimental data sets in the framework of the reverse Monte Carlo simulation technique. It was found that the structures of these glasses can be described mostly by the chemically ordered network model. Ge-Se and Sb-Se bonds are preferred; Se-Se bonds in the Se-poor composition (x = 20) and M-M (M = Ge, Sb) bonds in strongly Se-rich glass (x = 5) are not needed. The quality of the fits was significantly improved by introducing Ge-Ge bonding in the nearly stoichiometric composition (x = 15), showing a violation of chemical ordering. The structure of Ge20SbxSe80-x was compared to that of several glasses from the three analogous systems (Ge-As-Se, Ge-As-Te, Ge-Sb-Te), and it was found that chemical short-range order becomes more pronounced upon substituting As with Sb and Se with Te. Ge-As-Se glasses behave as random covalent networks over a very broad composition range. Chemical short-range order and disorder coexist in both Te-rich and Te-poor Ge-As-Te glasses, whereas amorphous Ge14Sb29Te57 and Ge22Sb22Te56 are governed by strict chemical preferences. PMID:27479758

  16. Voronoi analysis of the short-range atomic structure in iron and iron-carbon melts

    NASA Astrophysics Data System (ADS)

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-01

    In this work, we simulated the atomic structure of liquid iron and iron-carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short-range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  17. Short-range correlations in dilute atomic Fermi gases with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Yu, Zhenhua

    2012-04-01

    We study the short-range correlation strength of three-dimensional spin-half dilute atomic Fermi gases with spin-orbit coupling. The interatomic interaction is modeled by the contact pseudopotential. In the high-temperature limit, we derive the expression for the second-order virial expansion of the thermodynamic potential via the ladder diagrams. We further evaluate the second-order virial expansion in the limit that the spin-orbit coupling constants are small and find that the correlation strength between the fermions increases as the fourth power of the spin-orbit coupling constants. At zero temperature, we consider the cases in which there are symmetric spin-orbit couplings in two or three directions. In such cases, there is always a two-body bound state of zero net momentum. In the limit that the average interparticle distance is much larger than the dimension of the two-body bound state, the system primarily consists of condensed bosonic molecules that fermions pair to form; we find that the correlation strength also becomes bigger compared to that in the absence of spin-orbit coupling. Our results indicate that generic spin-orbit coupling enhances the short-range correlations of the Fermi gases. Measurement of such enhancement by photoassociation experiment is also discussed.

  18. Stationary and nonstationary absorption in lead silicate glasses with short-range order inversion

    NASA Astrophysics Data System (ADS)

    Zatsepin, A. F.; Kukharenko, A. I.; Zatsepin, D. A.; Shchapova, Yu. V.; Yakovlev, V. Yu.; Cholakh, S. O.; Zhidkov, I. S.

    2011-02-01

    The methods of stationary and pulsed absorption spectroscopy were used to study the optical properties of xPbO·(1- x)SiO 2 glasses produced by cooling of a molten mixture of chemically pure oxides. The spectral dependence of the absorption in the range of the short-wavelength edge obeys the Urbach rule. As the PbO concentration increases, a red shift of the optical transparency cutoff is observed. At x = 0.45-0.50 the amorphous matrix undergoes a structural inversion, which is due to a transition from a silicate to a lead-oxygen glass-forming network. This transition shows up as an abrupt change in the type of optical transitions, the width of the optical gap Eg, and the Urbach energy EU. The short-range order inversion in the glass is accompanied by an increase in the atomic correlation radius R0 characterizing the size of the medium-range order in the system. It was found empirically that R0 has a linear relationship with a continuum-disorder parameter EU. It was found that pulsed electron irradiation produces short-lived color centers, which absorb at 1.65 and 2.30 eV. The relaxation of unstable absorption centers is characterized by microsecond kinetics. The nature of unstable absorption centers and their relationship with a short-range order inversion and the structure function of lead atoms have been discussed. The kinetic dependences have been interpreted in the context of a mechanism responsible for diffusion-controlled tunneling recombination of radiation-induced electronic and hole states of the matrix.

  19. Short-range order and near-field effects on optical scattering and structural coloration

    SciTech Connect

    Liew, S.F.; Forster, J.; Noh, H.; Schreck, C.F.; Saranathan, V.; Lu, X.; Yang, L.; Prum, Richard O.; O’Hern, C.S.; Dufresne, E.R.; Cao, H.

    2012-03-26

    We have investigated wavelength-dependent light scattering in biomimetic structures with short-range order. Coherent backscattering experiments are performed to measure the transport mean free path over a wide wavelength range. Overall scattering strength is reduced significantly due to short-range order and near-field effects. Our analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation.

  20. Short-range Order and Near-field Effects on Optical Scattering and Structural Coloration

    SciTech Connect

    S Liew; J Forster; H Noh; C Schreck; V Saranathan; X Lu; L Yang; E Dufresne; H Cao; et al.

    2011-12-31

    We have investigated wavelength-dependent light scattering in biomimetic structures with short-range order. Coherent backscattering experiments are performed to measure the transport mean free path over a wide wavelength range. Overall scattering strength is reduced significantly due to short-range order and near-field effects. Our analysis explains why single scattering of light is dominant over multiple scattering in similar biological structures and is responsible for color generation.

  1. Simultaneous occurrence of multiferroism and short-range magnetic order in DyFeO3

    DOE PAGES

    Wang, Jinchen; Liu, Juanjuan; Sheng, Jieming; Luo, Wei; Ye, Feng; Zhao, Zhiying; Sun, Xuefeng; Danilkin, Sergey A.; Deng, Guochu; Bao, Wei

    2016-04-06

    In this paper, we present a combined neutron scattering and magnetization study on the multiferroic DyFeO3, which shows a very strong magnetoelectric effect. Applying magnetic field along the c axis, the weak ferromagnetic order of the Fe ions is quickly recovered from a spin reorientation transition, and the long-range antiferromagnetic order of Dy becomes a short-range one. We found that the short-range order concurs with the multiferroic phase and is responsible for its sizable hysteresis. In conclusion, our H-T phase diagram suggests that the strong magnetoelectric effect in DyFeO3 has to be understood with not only the weak ferromagnetism ofmore » Fe but also the short-range antiferromagnetic order of Dy.« less

  2. Double scattering of light from Biophotonic Nanostructures with short-range order

    SciTech Connect

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  3. Short-range order and its effects on electrons in (GaN)(1 - x)(ZnO)x alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Pedroza, Luana; Misch, Carissa; Fernandez-Serra, Maria; Allen, Philip

    2014-03-01

    Prior work by Li et al. gives ``cluster expansion'' parameters for (GaN)(1 - x)(ZnO)x alloys. From these, by Monte-Carlo calculations, large representative unit cells can be generated at any chosen temperature. We choose mainly T=1200K, typical of the temperature at which experimental samples fall out of equilibrium. The atoms are distributed on the wurtzite anion and cation sublattices with significant short-range order. A periodic supercell with 432 atoms is chosen as a compromise between accurate self-averaging and fully self-consistent and relaxed density-functional (DFT) computation. Composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. Entropy is related to the SRO parameters. DFT relaxation finds significant bond-length alterations. Typical Zn-O distances are larger by 10 % than Ga-N distances in the alloy, even though in pure ZnO and GaN, bond lengths are nearly equal. Electronic properties of the alloys, and in particular, the influences of short-range order and bond-length fluctuations, will be discussed. Supported by DOE Grant No. DE-FG02-08ER46550 (PBA) and DE-FG02-09ER16052 (MFS). Computer resources came from the BNL CFN under DOE Contract DE-AC02-98CH10886.

  4. A Biaxial Banana Liquid Crystal Phase with Short-range Layer Ordering

    NASA Astrophysics Data System (ADS)

    Shen, Yongqiang; Gong, Tao; Chen, Dong; Shao, Renfan; Zhu, Chenhui; Glaser, Matthew; Maclennan, Joseph; Walba, David; Clark, Noel

    2012-02-01

    W623, a single-tail, bent-core molecule with a polar termination on one end and a siloxane-terminated tail on the other, exhibits a ferroelectric, orthorhombic, fluid smectic liquid crystal phase, the SmAPF. Powder x-ray diffraction (XRD) measurements reveal an exotic structural transition on cooling from the SmAPF to a SmX phase, in which resolution-limited fluid smectic layering reflections give way to four much broader peaks, indicating short-range layer ordering. This behavior points to the kind of internal frustration that gives rise to our recently discovered helical nanofilament phases. We have performed two-dimensional XRD on aligned samples and discovered that one of the four peaks is from the in-plane order. Freeze-fracture transmission electron microscope (FFTEM) measurements confirm that there is two-dimensional short-range order in the SmX phase, with one periodicity in the layer plane and another normal to the layers. The in-plane periodicity can be measured directly from the packing of fibrils to be about 8 nm, consistent with the in-plane x-ray reflection peak. We will present depolarized transmission light microscopy, high-resolution XRD, and FFTEM studies of pure W623, and of mixtures of W623 with the calamitic liquid crystal 8CB.

  5. Majorana modes in single channel cold atomic gases with short-ranged attractive interactions

    NASA Astrophysics Data System (ADS)

    Sau, Jay; Li, Xiaopeng

    2015-03-01

    Majorana modes have been predicted to exist in topological superfluids that generated by a combination of spin-orbit coupling and short-ranged attractive interactions. One dimensional superfluids with intrinsic interactions, however, present a precarious competition between phase fluctuations and topological superfluidity. Previously, it has been argued that the Majorana nature survives with some modification in multi-channel and proximity-induced superfluidity in systems of ultra-cold atoms. This discussion is more subtle in the single channel case because the universal properties of one dimensional fermions with attractive interactions are known to be described by a simple Luttinger liquid in the low-energy limit. In this talk, we will discuss the properties of Galilean invariant one dimensional fermi gases with attractive interactions and show how they display properties consistent with both being a topological (or non-topological) superfluid and a Luttinger liquid. Condensed Matter Theory Center and Joint Quantum Institute at the University of Maryland.

  6. Intermediate- and short-range order in phosphorus-selenium glasses

    SciTech Connect

    Bytchkov, Aleksei; Hennet, Louis; Price, David L.; Miloshova, Mariana; Bychkov, Eugene; Kohara, Shinji

    2011-04-01

    State-of-the-art neutron and x-ray diffraction measurements have been performed to provide a definitive picture of the intermediate- and short-range structures of P{sub x}Se{sub 1-x} glasses spanning two glass regions, x 0.025-0.54 and 0.64-0.84. Liquid P{sub 4}Se{sub 3} and amorphous red P and Se were also measured. Detailed information was obtained about the development with increasing phosphorous concentration of intermediate-range order on the length scale {approx}6 A ring , based on the behavior of the first sharp diffraction peak. Attention is also paid to the feature in the structure factor at 7.5 A ring {sup -1}, identified in earlier numerical simulations, provides further evidence of the existence of molecular units. The real-space transforms yield a reliable statistical picture of the changing short-range order as x increases, using the information about types and concentrations of local structural units provided by previous NMR measurements to interpret the trends observed.

  7. Effect of smectic short-range order on the discontinuous anchoring transition in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sai, D. Venkata; Kumar, T. Arun; Haase, W.; Roy, Arun; Dhara, Surajit

    2014-07-01

    We report studies on the temperature dependent alignment behavior of a homologous series of trans, trans- 4, 4'-dialkyl-(1α,1' α-bicyclohexyl)-4β-carbonitrile (CCNs) on a perfluoropolymer coated cells. Among six compounds in the series, one (CCN-35) has only nematic phase and the remaining five have either smectic-A or smectic-B in addition to the nematic phase. We simultaneously performed temperature dependent dielectric measurements and optical polarising microscope observation. It is found that except for CCN-35 and CCN-73, the remaining four compounds exhibit discontinuous anchoring transition from planar to homeotropic and vice versa with increasing thermal hysteresis. We developed a simple theory taking into account the effect of smectic short-range order at the substrates to explain the experimental observations.

  8. Effect of smectic short-range order on the discontinuous anchoring transition in nematic liquid crystals.

    PubMed

    Sai, D Venkata; Kumar, T Arun; Haase, W; Roy, Arun; Dhara, Surajit

    2014-07-28

    We report studies on the temperature dependent alignment behavior of a homologous series of trans, trans- 4, 4'-dialkyl-(1α,1' α-bicyclohexyl)-4β-carbonitrile (CCNs) on a perfluoropolymer coated cells. Among six compounds in the series, one (CCN-35) has only nematic phase and the remaining five have either smectic-A or smectic-B in addition to the nematic phase. We simultaneously performed temperature dependent dielectric measurements and optical polarising microscope observation. It is found that except for CCN-35 and CCN-73, the remaining four compounds exhibit discontinuous anchoring transition from planar to homeotropic and vice versa with increasing thermal hysteresis. We developed a simple theory taking into account the effect of smectic short-range order at the substrates to explain the experimental observations. PMID:25084936

  9. Experimental assessment of the extent of orientational short-range order in liquids

    NASA Astrophysics Data System (ADS)

    Pardo, L. C.; Veglio, N.; Bermejo, F. J.; Tamarit, J. Ll.; Cuello, G. J.

    2005-07-01

    The spatial extent of orientational short-range order in liquid and rotationally disordered phases of two halogen-substituted methanes are examined by means of neutron diffraction. The pair distribution functions measured within the liquids are compared to those corresponding to the rotator-phase crytals where the separation between orientational and positional correlations is enabled by the presence of time-averaged fcc lattices. The two condensed systems under scrutiny comprise a material devoid (CCl4) and another [C(CD3)3Cl] having a relatively strong molecular dipole moment. Our results show orientational correlations to be confined below the second coordination sphere. Furthermore, contrary to what could be expected, angular correlations within the nonpolar material are of comparable strength to those present within the polar C(CD3)3Cl .

  10. Effect of smectic short-range order on the discontinuous anchoring transition in nematic liquid crystals.

    PubMed

    Sai, D Venkata; Kumar, T Arun; Haase, W; Roy, Arun; Dhara, Surajit

    2014-07-28

    We report studies on the temperature dependent alignment behavior of a homologous series of trans, trans- 4, 4'-dialkyl-(1α,1' α-bicyclohexyl)-4β-carbonitrile (CCNs) on a perfluoropolymer coated cells. Among six compounds in the series, one (CCN-35) has only nematic phase and the remaining five have either smectic-A or smectic-B in addition to the nematic phase. We simultaneously performed temperature dependent dielectric measurements and optical polarising microscope observation. It is found that except for CCN-35 and CCN-73, the remaining four compounds exhibit discontinuous anchoring transition from planar to homeotropic and vice versa with increasing thermal hysteresis. We developed a simple theory taking into account the effect of smectic short-range order at the substrates to explain the experimental observations.

  11. High-Energy X-Ray Study of Short Range Order and Phase Transformations in Ti-V

    NASA Astrophysics Data System (ADS)

    Ramsteiner, Ingo; Schoeps, Andreas; Reichert, Harald; Dosch, Helmut

    2006-03-01

    Phase transformations, especially precipitation processes, are a key factor in alloy design. Understanding these processes in the framework of statistical thermodynamics requires knowledge about the atomic interaction potentials between the alloy constituents. Experimentally, these parameters can be accessed via the diffuse x-ray scattering caused by the configurational short range order and lattice distortions. We employ a bulk sensitive high energy technique to study both phenomena simultaneously in situ, probing macroscopic single crystals in transmission geometry. The data recorded by a 2D detector reveal Bragg reflections from the precipitates superimposed on the diffuse scattering of the matrix. We present a detailed study of bcc Ti-V, a typical titanium β-alloy. The diffuse scattering is mainly due to lattice distortions induced by the atomic size mismatch. Depending on the annealing temperature, growth and dissolution of hcp α-Ti precipitates and minute fractions of TiC are observed. HRTEM experiments have been conducted to complement our results.

  12. Short range smectic order driving long range nematic order: example of cuprates

    PubMed Central

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; Bansil, A.

    2016-01-01

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. A variety of experimental results are shown to be consistent with our theoretical predictions. PMID:26813579

  13. Short range smectic order driving long range nematic order: Example of cuprates

    DOE PAGES

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; Bansil, A.

    2016-01-27

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  14. Short range smectic order driving long range nematic order: example of cuprates.

    PubMed

    Markiewicz, R S; Lorenzana, J; Seibold, G; Bansil, A

    2016-01-27

    We present a model for describing the combined presence of nematic and 'smectic' or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a 'Pomeranchuk wave'. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. A variety of experimental results are shown to be consistent with our theoretical predictions.

  15. Reformation Capability of Short-Range Order and Their Medium-Range Connections Regulates Deformability of Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Li, Congling; Wei, Yujie; Shi, Xinghua

    2015-07-01

    Metallic glasses (MGs) typically have high yield strength while low ductility, and the latter is commonly considered as the Achilles’ heel of MGs. Elucidate the mechanism for such low ductility becomes the research focus of this field. With molecular level simulations, we show the degree of short-range order (SRO) of atomic structure for brittle Fe-based glass decreases dramatically during the stretch, while mild change occurs in ductile Zr-based glass. The reformation capability for SRO and their medium-range connections is found to be the primary characteristics to differentiate the deformability between the two metallic glasses. We suspect that, in addition to the strength of networks formed by SRO structure, the reformation capability to reform SRO networks also plays the key role in regulating the ductility in metallic glasses. Our study provides important insights into the understanding about the mechanisms accounting for ductility or brittleness of bulk metallic glasses.

  16. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    NASA Astrophysics Data System (ADS)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  17. Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals

    NASA Astrophysics Data System (ADS)

    Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui

    2016-10-01

    Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.

  18. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    SciTech Connect

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-11-15

    The local atomic structure of the Fe{sub 80}B{sub 20}, Fe{sub 70}Nb{sub 10}B{sub 20} and Fe{sub 62}Nb{sub 8}B{sub 30} glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe{sub 3}B, Fe{sub 23}B{sub 6} and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe{sub 80}B{sub 20} (b), Fe{sub 70}Nb{sub 10}B{sub 20} (c) and Fe{sub 62}Nb{sub 8}B{sub 30} (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed.

  19. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Morris, R. V.; Golden, D. C.

    2011-12-01

    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the Mössbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be

  20. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be

  1. Role of Short-Range Order and Hyperuniformity in the Formation of Band Gaps in Disordered Photonic Materials

    NASA Astrophysics Data System (ADS)

    Froufe-Pérez, Luis S.; Engel, Michael; Damasceno, Pablo F.; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C.; Scheffold, Frank

    2016-07-01

    We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.

  2. Chemical short-range order in dense random packed models. [Ni/sub 35/Ti/sub 65/; Ni/sub 35/Zr/sub 65/

    SciTech Connect

    Saw, C.K.; Schwarz, R.B.

    1987-01-01

    A dense random packed model of an amorphous alloy was used to calculate the total and partial reduced radial distribution functions, the Bhathia-Thorton number-concentration fluctuations, and the number-concentration interference functions. The model was applied to amorphous Ni/sub 35/Ti/sub 65/ using atomic radii of 1.10 and 1.58 A/sup -1/ for nickel and zirconium, respectively. Chemical short-range order was included in the model by permuting nickel-zirconium nearest-neighbors atoms pairs in response to a decrease in the alloy's enthalpy. The permutations were found to decrease in the Warren-Cowley order parameter from zero to -0.38. The increase in chemical short range order is accompanied by the appearance of a peak in the partial interference function I/sub Ni-Ni/(K) at K = 1.9 A/sup -1/. The increase in chemical short range order and the prepeak in I/sub Ni-Ni/(K) are tentatively attributed to the formation of double tetrahedra with three zirconium atoms at the base and two nickel atoms at the apexes. 18 refs., 5 figs.

  3. Quantitative description of short-range order and its influence on the electronic structure in Ag-Pd alloys

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Marmodoro, A.; Ernst, A.; Hergert, W.; Dahl, J.; Lång, J.; Laukkanen, P.; Punkkinen, M. P. J.; Kokko, K.

    2016-08-01

    We investigate the effect of short-range order (SRO) on the electronic structure in alloys from the theoretical point of view using density of states (DOS) data. In particular, the interaction between the atoms at different lattice sites is affected by chemical disorder, which in turn is reflected in the fine structure of the DOS and, hence, in the outcome of spectroscopic measurements. We aim at quantifying the degree of potential SRO with a proper parameter. The theoretical modeling is done with the Korringa–Kohn–Rostoker Green’s function method. Therein, the extended multi-sublattice non-local coherent potential approximation is used to include SRO. As a model system, we use the binary solid solution Ag c Pd1‑c at three representative concentrations c  =  0.25, 0.5 and 0.75. The degree of SRO is varied from local ordering to local segregation through an intermediate completely uncorrelated state. We observe some pronounced features, which change over the whole energy range of the valence bands as a function of SRO in the alloy. These spectral variations should be traceable in modern photoemission experiments.

  4. Quantitative description of short-range order and its influence on the electronic structure in Ag-Pd alloys

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Marmodoro, A.; Ernst, A.; Hergert, W.; Dahl, J.; Lång, J.; Laukkanen, P.; Punkkinen, M. P. J.; Kokko, K.

    2016-08-01

    We investigate the effect of short-range order (SRO) on the electronic structure in alloys from the theoretical point of view using density of states (DOS) data. In particular, the interaction between the atoms at different lattice sites is affected by chemical disorder, which in turn is reflected in the fine structure of the DOS and, hence, in the outcome of spectroscopic measurements. We aim at quantifying the degree of potential SRO with a proper parameter. The theoretical modeling is done with the Korringa-Kohn-Rostoker Green’s function method. Therein, the extended multi-sublattice non-local coherent potential approximation is used to include SRO. As a model system, we use the binary solid solution Ag c Pd1-c at three representative concentrations c  =  0.25, 0.5 and 0.75. The degree of SRO is varied from local ordering to local segregation through an intermediate completely uncorrelated state. We observe some pronounced features, which change over the whole energy range of the valence bands as a function of SRO in the alloy. These spectral variations should be traceable in modern photoemission experiments.

  5. Short-Range Order of Mesomorphic Phase of a Semi-crystalline Polymer by Solid-State NMR: Isotactic Polypropylene

    NASA Astrophysics Data System (ADS)

    Yuan, Shichen; Miyoshi, Toshikazu

    2015-03-01

    Mesophase is intermediate phase between crystalline and melt state. Characterization of short-range structures of disordered mesomorphic phase without long-range order is challenging issue in polymer characterization. The short range order was considered same as α or β i PP, or neither. In this work, a new strategy using 13C-13C through space interactions as well as molecular dynamics based on chemical shift anisotropy (CSA) re-orientation is proposed for evaluating short-range order of mesophase of isotactic-polypropylene (iPP). 13C-13C double quantum (DQ) build up curves of 13C 15 percent CH3 selectively labeled iPP and spin dynamics simulations elucidate that local packing structures in mesophase is very close to that in β phase. Moreover, exchange NMR proves that the crystalline chains perform large amplitude motions in all α, β, and mesophase. The correlation time of overall dynamics of stems in mesophase follows the same Arrhenius line with that of β phase but is largely deviated from the Arrhenius line of the α phase. Through the obtained results, it is concluded that short-range order in mesophase is exceedingly close or same to those in β phase. This work was financially supported by the National Science Foundation (Grant No. DMR-1105829) and by UA startup funds.

  6. The impact of short-range forces on high-energy atom collisions in displacement cascades

    NASA Astrophysics Data System (ADS)

    Samolyuk, German; Stoller, Roger; Tamm, Artur; Beland, Laurent; Stocks, G. Malcolm; Caro, Alfredo; Slipchenko4, Lyudmila; Osetskiy, Yury; Aabloo, Alvo; Klintenberg, Mattias; Wang, Yang

    Simulation of primary radiation damage formation in solid materials involves collisions between atoms with a few hundred keV of kinetic energy. As a result, during these collisions, the distance between two colliding atoms can approach 0.05 nm. For such small atomic separations, interatomic potentials significantly underestimate the potential energy. The common practice involves using a screened Coulomb pair potential to describe the high-energy interactions and to smoothly join this to the equilibrium potential. However, there is no standard method for choosing the joining parameters and defect production during cascade evolution has been shown to be sensitive to how the joining is done. We developed a new procedure, which includes the use of ab initio, calculations to determine the pair interactions at intermediate distances, together with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel. Research at the Oak Ridge National Laboratory and Los Alamos National Laboratory sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, ``Center for Energy Dissipation to Defect Evolution''.

  7. Formation and transformation of a short range ordered iron carbonate precursor

    NASA Astrophysics Data System (ADS)

    Dideriksen, Knud; Frandsen, Cathrine; Bovet, Nicolas; Wallace, Adam F.; Sel, Ozlem; Arbour, Tyler; Navrotsky, Alexandra; De Yoreo, James J.; Banfield, Jillian F.

    2015-09-01

    Fe(II)-carbonates, such as siderite, form in environments where O2 is scarce, e.g., during marine sediment diagenesis, corrosion and possibly CO2 sequestration, but little is known about their formation pathways. We show that early precipitates from carbonate solutions containing 0.1 M Fe(II) with varying pH produced broad peaks in X-ray diffraction and contained dominantly Fe and CO3 when probed with X-ray photoelectron spectroscopy. Reduced pair distribution function (PDF) analysis shows only peaks corresponding to interatomic distances below 15 Å, reflecting a material with no long range structural order. Moreover, PDF peak positions differ from those for known iron carbonates and hydroxides. Mössbauer spectra also deviate from those expected for known iron carbonates and suggest a less crystalline structure. These data show that a previously unidentified iron carbonate precursor phase formed. Its coherent scattering domains determined from PDF analysis are slightly larger than for amorphous calcium carbonate, suggesting that the precursor could be nanocrystalline. Replica exchange molecular dynamics simulations of Fe-carbonate polynuclear complexes yield PDF peak positions that agree well with those from experiments, offering the possibility that the material is a condensate of such complexes, assembled in a relatively unorganised fashion. If this is the case, the material could be nearly amorphous, rather than being composed of well defined nanocrystals. PDF measurements of samples ageing in solution coupled with refinement with the software PDFgui show that the material transforms to siderite or siderite/chukanovite mixtures within hours and that the transformation rate depends on pH. The identified Fe-carbonate precursor may potentially form during anaerobic corrosion or bacterial Fe reduction.

  8. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    PubMed Central

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-01-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys. PMID:25399835

  9. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys

    NASA Astrophysics Data System (ADS)

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-11-01

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn α-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1~6 and [Zn-Cu12](Zn,Cu)6, which explain the α-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, thus offering a fundamental and practical method towards composition interpretations of all kinds of alloys.

  10. Distinct Short-Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2 nm).

    PubMed

    Sun, Shengtong; Chevrier, Daniel M; Zhang, Peng; Gebauer, Denis; Cölfen, Helmut

    2016-09-26

    Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short-range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12-pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto-calcite short-range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection. PMID:27611501

  11. Amylose Phase Composition As Analyzed By FTIR In A Temperature Ramp: Influence Of Short Range Order On The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Delmas, Genevieve

    1998-03-01

    Amylose, a major component of starch, is one of the most important biopolymers, being mainly associated with the pharmacological and food industries. Although widely studied, a complete control and understanding of the physical properties of amylose is still lacking. It is well known that structure and phase transition are important aspects of the functionality of biopolymers since they influence physical attributes such as appearance, digestibility, water holding capacity, etc. In the past, we have studied polyethylene phase composition by DSC in a very slow temperature (T) ramp (1K/h) and have demonstrated the presence and importance of short-range order on the polymer and its characteristics. In this study, we evaluated the phase composition of potato amylose and associated the thermodynamic properties with the presence of short-range order. Two methods were correlated, DSC (in a 1K/h T-ramp) and FTIR as a function of temperature, also in a 1K/h T-ramp. The effects of the various phases on thermodynamic properties such as gelation and enzyme or chemical resistance are discussed.

  12. Chemical and topological short-range orders in the ternary Ni-Zr-Al metallic glasses studied by Monte Carlo simulations.

    PubMed

    Zhao, S Z; Li, J H; Liu, B X

    2013-03-01

    Based on the recently constructed Ni-Zr-Al n-body potential, Monte Carlo simulations are performed to study the glass formation and associated structural evolutions in the system. The micro-chemical inhomogeneity (MCI) parameter and Honeycutt and Anderson (HA) pair analysis are employed to investigate both the chemical short-range orders and topological short-range orders for the ternary Ni-Zr-Al metallic glasses. Results reveal that remarkable chemical short-range orders (CSROs) exist in the ternary Ni-Zr-Al metallic glasses and are strongly influenced by the chemical interactions among the constituent elements. Moreover, topological short-range orders are clearly formed in the ternary Ni-Zr-Al metallic glasses, with the most remarkable characteristic being the icosahedral local packing. Similarly to CSRO, the extent of icosahedral short-range orders formed in the Ni-Zr-Al system varies distinctly with the chemical composition. In addition, simulation results reveal that chemical short-range orders and topological short-range orders turn out to be influenced by different factors. Unlike CSRO, both chemical interactions and geometrical constraints play important roles in forming the topological short-range orders. PMID:23334440

  13. A short-range ordering in soft magnetic Fe-based metallic glasses studied by Mössbauer spectroscopy and Reverse Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Babilas, Rafał; Mariola, Kądziołka-Gaweł; Burian, Andrzej; Temleitner, László

    2016-05-01

    Selected soft magnetic amorphous alloys Fe80B20, Fe70Nb10B20 and Fe62Nb8B30 were produced by the melt-spinning and characterized by X-ray diffraction (XRD), transmission Mössbauer spectroscopy (MS), Reverse Monte Carlo modeling (RMC) and relative magnetic permeability measurements. The Mössbauer spectroscopy allowed to study the local environments of the Fe-centered atoms in the amorphous structure of binary and ternary glassy alloys. The MS provided also information about the changes in the amorphous structure due to the modification of chemical composition by various boron and niobium content. The RMC simulation based on the structure factors determined by synchrotron XRD measurements was also used in modeling of the atomic arrangements and short-range order in Fe-based model alloys. Addition of boron and niobium in the ternary model alloys affected the disorder in as-cast state and also influenced on the number of nearest neighbor Fe-Fe atoms, consequently. The distributions of Fe- and B-centered coordination numbers showed that N=10, 9 and 8 are dominated around Fe atoms and N=9, 8 and 7 had the largest population around B atoms in the examined amorphous alloys. Moreover, the relationship between the content of the alloying elements, the local atomic ordering and the magnetic permeability (magnetic after-effects) was mentioned.

  14. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    SciTech Connect

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn a-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1,6 and [Zn-Cu12](Zn,Cu)6, which explain the a-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and each cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, therefore offering a fundamental and practical method towards composition interpretations of all kinds of alloys.

  15. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys

    DOE PAGES

    Hong, H. L.; Wang, Q.; Dong, C.; Liaw, Peter K.

    2014-11-17

    Metallic alloys show complex chemistries that are not yet understood so far. It has been widely accepted that behind the composition selection lies a short-range-order mechanism for solid solutions. The present paper addresses this fundamental question by examining the face-centered-cubic Cu-Zn a-brasses. A new structural approach, the cluster-plus-glue-atom model, is introduced, which suits specifically for the description of short-range-order structures in disordered systems. Two types of formulas are pointed out, [Zn-Cu12]Zn1,6 and [Zn-Cu12](Zn,Cu)6, which explain the a-brasses listed in the American Society for Testing and Materials (ASTM) specifications. In these formulas, the bracketed parts represent the 1st-neighbor cluster, and eachmore » cluster is matched with one to six 2nd-neighbor Zn atoms or with six mixed (Zn,Cu) atoms. Such a cluster-based formulism describes the 1st- and 2nd-neighbor local atomic units where the solute and solvent interactions are ideally satisfied. The Cu-Ni industrial alloys are also explained, thus proving the universality of the cluster-formula approach in understanding the alloy selections. The revelation of the composition formulas for the Cu-(Zn,Ni) industrial alloys points to the common existence of simple composition rules behind seemingly complex chemistries of industrial alloys, therefore offering a fundamental and practical method towards composition interpretations of all kinds of alloys.« less

  16. Special quasiordered structures: Role of short-range order in the semiconductor alloy (GaN) 1 -x(ZnO) x

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Fernández-Serra, Maria V.; Allen, Philip B.

    2016-02-01

    This paper studies short-range order (SRO) in the semiconductor alloy (GaN) 1 -x(ZnO) x. Monte Carlo simulations performed on a density functional theory (DFT)-based cluster expansion model show that the heterovalent alloys exhibit strong SRO because of the energetic preference for the valence-matched nearest-neighbor Ga-N and Zn-O pairs. To represent the SRO-related structural correlations, we introduce the concept of special quasiordered structure (SQoS). Subsequent DFT calculations reveal the dramatic influence of SRO on the atomic, electronic, and vibrational properties of the (GaN) 1 -x(ZnO) x alloy. Due to the enhanced statistical presence of the energetically unfavored Zn-N bonds with the strong Zn 3 d -N 2 p repulsion, the disordered alloys exhibit much larger lattice bowing and band-gap reduction than those of the short-range ordered alloys. Lattice vibrational entropy tilts the alloy toward less SRO.

  17. Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok

    2016-05-01

    Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence

  18. Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement.

    PubMed

    Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok

    2016-05-19

    Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.

  19. Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag

    NASA Astrophysics Data System (ADS)

    Karalis, Konstantinos T.; Dellis, Dimitrios; Antipas, Georgios S. E.; Xenidis, Anthimos

    2016-07-01

    The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273–2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09–87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m3 vs. an experimental value of 2940 kg/m3) and for electrical conductivity (5.3–233 S/m within a temperature range of 1273.15–2273.15 K).

  20. Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag.

    PubMed

    Karalis, Konstantinos T; Dellis, Dimitrios; Antipas, Georgios S E; Xenidis, Anthimos

    2016-01-01

    The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273-2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09-87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m(3) vs. an experimental value of 2940 kg/m(3)) and for electrical conductivity (5.3-233 S/m within a temperature range of 1273.15-2273.15 K). PMID:27455915

  1. Bona-fide method for the determination of short range order and transport properties in a ferro-aluminosilicate slag

    PubMed Central

    Karalis, Konstantinos T.; Dellis, Dimitrios; Antipas, Georgios S. E.; Xenidis, Anthimos

    2016-01-01

    The thermodynamics, structural and transport properties (density, melting point, heat capacity, thermal expansion coefficient, viscosity and electrical conductivity) of a ferro-aluminosilicate slag have been studied in the solid and liquid state (1273–2273 K) using molecular dynamics. The simulations were based on a Buckingham-type potential, which was extended here, to account for the presence of Cr and Cu. The potential was optimized by fitting pair distribution function partials to values determined by Reverse Monte Carlo modelling of X-ray and neutron diffraction experiments. The resulting short range order features and ring statistics were in tight agreement with experimental data and created consensus for the accurate prediction of transport properties. Accordingly, calculations yielded rational values both for the average heat capacity, equal to 1668.58 J/(kg·K), and for the viscosity, in the range of 4.09–87.64 cP. The potential was consistent in predicting accurate values for mass density (i.e. 2961.50 kg/m3 vs. an experimental value of 2940 kg/m3) and for electrical conductivity (5.3–233 S/m within a temperature range of 1273.15–2273.15 K). PMID:27455915

  2. Pair correlations, short-range order, and dispersive excitations in the quasi-kagome quantum magnet volborthite

    NASA Astrophysics Data System (ADS)

    Nilsen, G. J.; Coomer, F. C.; de Vries, M. A.; Stewart, J. R.; Deen, P. P.; Harrison, A.; Rønnow, H. M.

    2011-11-01

    We present spatial and dynamic information on the s=1/2 distorted kagome antiferromagnet volborthite, Cu3V2O7(OD)2·2D2O, obtained by polarized and inelastic neutron scattering. The instantaneous structure factor, S(Q), is dominated by nearest-neighbor pair correlations, with short-range order at wave vectors Q1=0.65(3) Å-1 and Q2=1.15(5) Å-1 emerging below 5 K. The excitation spectrum, S(Q,ω), reveals two steep branches dispersing from Q1 and Q2, and a flat mode at ωf=5.0(2) meV. The results allow us to identify the crossover at T*˜1 K in 51V NMR and specific-heat measurements as the buildup of correlations at Q1. We compare our data to theoretical models proposed for volborthite, and also demonstrate that the excitation spectrum can be explained by spin-wave-like excitations with anisotropic exchange parameters, as suggested by recent local-density calculations.

  3. Chemical short-range order and the Meyer - Neldel rule for liquid alloys: AlCa and GaAlCa

    NASA Astrophysics Data System (ADS)

    You, D.; Schnyders, H. S.; Van Zytveld, J. B.

    1997-02-01

    We have measured the electrical resistivity, 0953-8984/9/7/006/img1, its specific temperature dependence, 0953-8984/9/7/006/img2, and the thermopower, S, of two series of ternary liquid alloys: 0953-8984/9/7/006/img3 and 0953-8984/9/7/006/img4. We also provide new analysis for the binary liquid alloy AlCa. We do not see the unusually large values for S that were found earlier for amorphous solid ternary alloys of the approximate composition 0953-8984/9/7/006/img5. We do find that, while chemical short-range order (CSRO) appears to occur in the liquid binary alloy 0953-8984/9/7/006/img6, CSRO is apparently destroyed by substitution of one Ga atom for one Al per complex: 0953-8984/9/7/006/img7. CSRO may exist in the liquid alloy 0953-8984/9/7/006/img8. And we find that the activated conductivities of these ternary liquid alloys (and also of liquid AlCa) are consistent with the Meyer - Neldel rule (MNR), extending the range of applicability of the MNR to systems with activation energies about an order of magnitude smaller than previously observed. These results appear to rule out two physical models as universal bases for the MNR, but are consistent with one based on a hopping conductivity whose characteristic energy is that of a polaron shift.

  4. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    SciTech Connect

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.

  5. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; Stock, C.; Gehring, P. M.; Birgeneau, R. J.; Xu, Guangyong

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg1/3Nb2/3O3 doped with 32% PbTiO3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E show no change. This anisotropicmore » field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  6. Fe2+-Ti4+ vs. Fe2+-Fe3+ charge-transfer and short-range order in single chains of face-sharing octahedra: ellenbergerite and dumortierite

    NASA Astrophysics Data System (ADS)

    Chopin, C.; Langer, K.; Khomenko, V.

    2009-04-01

    In zoned pyrope megacrysts from the Dora-Maira UHP terrane, new, dark-violet colour varieties of the hexagonal, high-pressure silicate ellenbergerite extend the range of known Fe contents for this mineral from 0-0.1 to 0-0.4 atom pfu, for Ti contents commonly in the range 0.2-0.4 pfu. The new varieties show an extremely intense pleochroism, colourless for E perpendicular to c to deep Prussian blue for E//c, as compared to colourless to lilac or reddish purple for classical Fe-poor ellenbergerite. These features were the incentive for an electronic absorption spectroscopic study and a reappraisal of the interpretation of the charge transfers (CT), colour and ordering schemes in this group and the structurally related borosilicate dumortierite. Both structures are characterized by the presence of infinite single chains of face-sharing, partly vacant octahedra along the 6-fold screw axis and pseudo-hexad axis, respectively, in which the Fe and Ti atoms are partitioned. In the spectra of Fe-poor ellenbergerite, the presence of a single Fe2+-Ti4+ CT band near 19000 cm˘1 was taken as evidence for complete short-range ordering of Mg(Fe), Ti and vacancies in the octahedral single chain [1]. The E//c spectra of Fe-rich ellenbergerite show the same absorption band near 19000 cm˘1 but consistently flanked by another CT band near 14000 cm˘1 , the intensity of which increases with total Fe content. The latter is similar to the 12400 cm˘1 CT band observed as the single feature in E//c spectra of the isotructural (Ti-free and Fe-bearing) phosphoellenbergerite, and clearly assigned to Fe2+-Fe3+ CT in the octahedral single chain [1]. The same colour pattern occurs in the dumortierite group, with red Fe-poor, Ti-rich crystals showing a single CT band near 20000 cm˘1, blue Ti-poor crystals showing a single CT band near 16500 cm˘1, and violet Fe- and Ti-rich crystals showing a combination of the two bands [2]. In the light of the new data, we reinterpret the dumortierite colour

  7. Comparing the activity of aluminum in two B horizons developed from volcanic ash deposits in Japan, dominated by short-range ordered aluminosilicates and crystalline clay minerals, respectively

    NASA Astrophysics Data System (ADS)

    Yagasaki, Yasumi; Mulder, Jan; Okazaki, Masanori

    2006-01-01

    Mechanisms controlling the activity of free aluminum (Al) in Bw1 horizons of soils developed from volcanic ash deposits in Japan were investigated by means of acid-base titrations and kinetic studies. In a Bw1 horizon, with a high content of acid-oxalate extractable Al, soil solution reached equilibrium with short-range ordered aluminosilicates in the order of days. Relatively fast kinetics of the release and precipitation of Al and Si indicate a high reactivity of short-range ordered aluminosilicates in the soil. In the Bw1 horizon of an adjacent soil, with a high content of crystalline clay minerals like halloysite and interlayered vermiculite, solution remained well undersaturated with respect to short-range ordered aluminosilicates and aluminum hydroxide. Apparent equilibrium with respect to halloysite occurred after more than 30 days. This halloysite ( logKso0=3.74±0.02 (25 °C)) has a solubility that is less than that reported in the literature ( logKso0=4.36 (25°C)). Our findings suggest that different reactive aluminosilicates may control the activity of free Al in sub-surface horizons of volcanic ash soils with different mineralogy.

  8. Experimental and theoretical study of the temperature and concentration dependence of the short-range order in Pt-V alloys

    NASA Astrophysics Data System (ADS)

    Le Bolloc'h, David; Caudron, René; Finel, Alphonse

    1998-02-01

    We present a detailed theoretical and experimental study of the short-range order in the Pt1-cVc system at two concentrations (c=14 and c=19). In situ neutron-scattering experiments were performed in order to measure the short-range-order parameters in the disordered phase. We found a drastic effect of the concentration on the short-range order: in Pt3V, the diffuse intensity is spread along the (1k0) directions with maxima at the (100) positions, despite the stability at low temperature of a DO22 phase. In contrast, the diffuse intensity in Pt8V displays a splitting around the (100) positions with incommensurate maxima. Through inverse Monte Carlo simulations the two experiments yield, within the Ising model, two sets of effective-pair interactions. Despite quite different short-range-order patterns, the interactions seem nearly concentration independent with a dominant first-neighbors interaction V1. This concentration independence allows us to predict the ordered states and the ordering temperatures. In particular, at low temperatures, these interactions stabilize a new phase of composition A5B, which to our knowledge has not been observed until now. Finally, we analyze the origin and behavior of the incommensurate split peaks in Pt8V within a high-temperature expansion and show analytically that the splitting is due to a large decrease of the influence of V1 on the short-range order as the concentration and/or the temperature decreases. This analysis shows also that the splitting distance should decrease with increasing temperature, in agreement with our Monte Carlo simulations, and in contrast with all the other alloys which have already been investigated, either experimentally or theoretically. More generally, we discuss the origin of the temperature behavior of a splitting distance in relation with the location in q space of the incommensurate maxima. Using very simple arguments, we show, provided the restriction that the first-neighbor interactions are

  9. Short-ranged and short-lived charge-density-wave order and pseudogap features in underdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Greco, Andrés; Bejas, Matías

    2011-06-01

    The pseudogap phase of high-Tc cuprates is controversially attributed to preformed pairs or to a phase which coexists and competes with superconductivity. One of the challenges is to develop theoretical and experimental studies in order to distinguish between both proposals. Very recently, researchers at Stanford have reported [M. Hashimoto , Nat. Phys.PRLTAO1745-247310.1038/nphys1632 6, 414 (2010); R.-H. He , ScienceSCIEAS0036-807510.1126/science.1198415 331, 1579 (2011)] angle-resolved photoemission spectroscopy experiments on Pb-Bi2201 supporting the point of view that the pseudogap is distinct from superconductivity and associated to a spacial symmetry breaking without long-range order. In this paper, we show that many features reported by these experiments can be described in the framework of the t-J model considering self-energy effects in the proximity to a d charge-density-wave instability.

  10. Crossover scaling of apparent first-order wetting in two-dimensional systems with short-ranged forces.

    PubMed

    Parry, Andrew O; Malijevský, Alexandr

    2016-06-01

    Recent analyses of wetting in the semi-infinite two-dimensional Ising model, extended to include both a surface coupling enhancement and a surface field, have shown that the wetting transition may be effectively first-order and that surprisingly the surface susceptibility develops a divergence described by an anomalous exponent with value γ_{11}^{eff}=3/2. We reproduce these results using an interfacial Hamiltonian model making a connection with previous studies of two-dimensional wetting, and we show that they follow from the simple crossover scaling of the singular contribution to the surface free-energy, which describes the change from apparent first-order to continuous (critical) wetting due to interfacial tunneling. The crossover scaling functions are calculated explicitly within both the strong-fluctuation and intermediate-fluctuation regimes, and they determine uniquely and more generally the value of γ_{11}^{eff}, which is nonuniversal for the latter regime. The location and the rounding of a line of pseudo-prewetting transitions occurring above the wetting temperature and off bulk coexistence, together with the crossover scaling of the parallel correlation length, are also discussed in detail. PMID:27415336

  11. Spin dynamics, short range order and spin freezing in Y0.5Ca0.5BaCo4O7

    SciTech Connect

    Stewart, John Ross; Ehlers, Georg; Fouquet, Peter; Mutka, Hannu; Payen, Christophe; Lortz, Rolf

    2011-01-01

    Y0.5Ca0.5BaCo4O7 was recently introduced as a possible candidate for capturing some of the predicted classical spin kagome ground-state features. Stimulated by this conjecture, we have taken up a more complete study of the spin correlations in this compound with neutron scattering methods on a powder sample characterized with high-resolution neutron diffraction and the temperature dependence of magnetic susceptibility and specific heat. We have found that the frustrated near-neighbor magnetic correlations involve not only the kagome planes but concern the full Co sublattice, as evidenced by the analysis of the wave-vector dependence of the short-range order. We conclude from our results that the magnetic moments are located on the Co sublattice as a whole and that correlations extend beyond the two-dimensional kagome planes. We identify intriguing dynamical properties, observing high-frequency fluctuations with a Lorentzian linewidth G?20 meV at ambient temperature. On cooling a low-frequency ({approx}1 meV) dynamical component develops alongside the high-frequency fluctuations, which eventually becomes static at temperatures below T {approx} 50 K. The high-frequency response with an overall linewidth of {approx}10 meV prevails at T?2 K, coincident with a fully elastic short-range-ordered contribution.

  12. X-ray diffuse scattering measurements of chemical short-range order and lattice strains in a highly magnetostrictive Fe0.813Ga0.187 alloy in an applied magnetic field

    SciTech Connect

    Du, Yingzhou; Lograsso, Thomas A.; McQueeney, Robert J.

    2012-06-28

    The rapid growth of the magnetostriction coefficient of ferromagnetic Fe1−xGax alloys that occurs at a composition range from 0order-disorder transition. The structurally anisotropic precipitates are proposed to rotate in an applied magnetic field, thereby resulting in a large magnetoelastic response. X-ray diffuse scattering measurements sensitive to the atomic short-range ordering and lattice strain were performed on a quenched 18.7 at. % Ga alloy and show no dependence on the application of a magnetic field. This negative result sets limits on the role of nanoscale precipitates in magnetostriction.

  13. Short-range Incommensurate Magnetic Order Near the Superconducting Phase Boundary in Fe1+δTe1−xSex

    SciTech Connect

    Wen, J.; Xu, G.; Xu, Z.; Lin, Z.W.; Li, Q.; Ratcliff, W.; Gu, G.; Tranquada, J.M.

    2009-09-10

    We performed elastic neutron-scattering and magnetization measurements on Fe{sub 1.07}Te{sub 0.75}Se{sub 0.25} and FeTe{sub 0.7}Se{sub 0.3}. Short-range incommensurate magnetic order is observed in both samples. In the former sample with higher Fe content, a broad magnetic peak appears around (0.46,0,0.5) at low temperature, while in FeTe{sub 0.7}Se{sub 0.3}, the broad magnetic peak is found to be closer to the antiferromagnetic (AFM) wave vector (0.5,0,0.5). The incommensurate peaks are only observed on one side of the AFM wave vector for both samples, which can be modeled in terms of an imbalance of ferromagnetic/antiferromagnetic correlations between nearest-neighbor spins. We also find that with higher Se (and lower Fe) concentration, the magnetic order becomes weaker while the superconducting temperature and volume increase.

  14. Two-dimensional short-range magnetic order in the tetragonal spinel Li[sub 2]Mn[sub 2]O[sub 4

    SciTech Connect

    Wills, A.S.; Raju, N.P.; Morin, C.; Greedan, J.E. . Brockhouse Inst. for Materials Research)

    1999-07-01

    Metastable, tetragonal Li[sub 2]Mn[sub 2]O[sub 4], prepared by chemical insertion of Li into the cubic spinel, LiMn[sub 2]O[sub 4], was studied by dc magnetic susceptibility and neutron diffraction. The susceptibility data show a very broad maximum at about 120 K, a sharp maximum at about 50 K, and no evidence for Curie-Weiss behavior even up to 600 K. This is consistent with the dominance of short-range, antiferromagnetic correlations attributed to the geometrical frustration inherent in the Mn[sup 3+] sublattice which is a slightly distorted pyrochlore lattice, a three-dimensional array of corner-sharing tetrahedra. The temperature dependence of two diffuse peaks in the neutron diffraction data correlate well with the 50 K anomaly but show, remarkably, an asymmetric Warren line-shape characteristic of two-dimensional correlations with no sign of long-range order down to 1.6 K. The magnetic reflections can be indexed as (2 0) and (1 3) of a [radical]3 x [radical]3 magnetic structure arising from a Kagome layer. The structure and properties of tetragonal Li[sub 2]Mn[sub 2]O[sub 4] are compared with the thermodynamically stable orthorhombic form.

  15. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE PAGES

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    Comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons < 0,0,12,0 > is dominant, and in the Cu-rich one the distorted icosahedral orders, especially < 0,2,8,2 > and < 0,2,8,1 >, are prominent. And the < 0,2,8,2 > polyhedra in Cu50Zr45Al5more » MG mainly originate from Al-centered clusters, while the < 0,0,12,0 > in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. Lastly, the relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  16. Paramagnetic interactions in 31P NMR spectroscopy as a probe for short-range order/disorder of flux-grown rare earth element orthophosphate (monazite/xenotime) solid solutions

    NASA Astrophysics Data System (ADS)

    Palke, A. C.; Stebbins, J. F.; Boatner, L. A.

    2013-12-01

    Many models of inorganic solid solutions relevant to earth scientists start with the assumption of a completely random distribution of substitutional species. This is, in large part, due to the difficulty of obtaining robust experimental confirmation of short-range order/disorder using standard diffraction techniques that provide information about long-range order. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy has long been used in this capacity, as the technique is characteristically sensitive to variations in local atomic structure around specific NMR-active nuclei. NMR studies of geologically important inorganic materials have historically concentrated on diamagnetic systems in which the complicating effects of unpaired electrons from paramagnetic species (most ions of the transition metals or rare-earth elements) can be ignored. In these diamagnetic materials, variations in small-scale atomic structure in the solid state typically cause shifts in the frequencies of NMR peaks of up to a few tens of ppm. However, NMR spectroscopy is increasingly being applied to inorganic solid solutions in which one of the end members is paramagnetic. In many cases, this leads to the observation of parmagnetically-shifted peaks. Paramagnetic interactions can be much stronger than in ordinary diamagnetic materials and these peaks are typically shifted from tens to thousands of ppm. In this study we present the results of a 31P NMR investigation of a series of flux-grown solid solutions of La1-xCexPO4 ('x' between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, 'x' between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted resonances were observed in the spectra of all samples shifted by up to -204 ppm due to the presence of paramagnetic Vn+, Ce3+, or Nd3+ in the diamagnetic host phase - either LaPO4 or YPO4. Analysis of the spectra and comparison to the crystal structures leads to the

  17. Short-range communication system

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  18. Crystal fields, disorder, and antiferromagnetic short-range order in (Yb{sub 0.24}Sn{sub 0.76})Ru

    SciTech Connect

    Klimczuk, T; Wang, C H; Lawrence, J M; Xu, Q; Durakiewicz, T; Ronning, F; Llobet, A; Trouw, F; Kurita, N; Tokiwa, Y; Lee, Han-oh; Booth, C H; Gardner, J S; Bauer, E D; Joyce, J J; Zandbergen, H W; Movshovich, R; Cava, R J; Thompson, J D

    2011-07-18

    We report extensive measurements on a new compound (Yb{sub 0.24}Sn{sub 0.76})Ru that crystallizes in the cubic CsCl structure. Valence band photoemission and L{sub 3} x-ray absorption show no divalent component in the 4f configuration of Yb. Inelastic neutron scattering (INS) indicates that the eight-fold degenerate J-multiplet of Yb{sup 3+} is split by the crystalline electric field (CEF) into a Γ{sub 7} doublet ground state and a Γ{sub 8} quartet at an excitation energy 20 meV. The magnetic susceptibility can be fit very well by this CEF scheme under the assumption that a Γ{sub 6} excited state resides at 32 meV; however, the Γ{sub 8}/Γ{sub 6} transition expected at 12 meV was not observed in the INS. The resistivity follows a Bloch-Grüneisen law shunted by a parallel resistor, as is typical of systems subject to phonon scattering with no apparent magnetic scattering. All of these properties can be understood as representing simple local moment behavior of the trivalent Yb ion. At 1 K, there is a peak in specific heat that is too broad to represent a magnetic phase transition, consistent with absence of magnetic reflections in neutron diffraction. On the other hand, this peak also is too narrow to represent the Kondo effect in the Γ{sub 7} ground state doublet. On the basis of the field-dependence of the specific heat, we argue that antiferromagnetic shortrange order (possibly co-existing with Kondo physics) occurs at low temperatures. The long-range magnetic order is suppressed because the Yb site occupancy is below the percolation threshold for this disordered compound.

  19. Magnetic properties of ultrathin discontinuous Co/Pt multilayers: Comparison with short-range ordered and isotropic CoPt3 films

    NASA Astrophysics Data System (ADS)

    Charilaou, M.; Bordel, C.; Berche, P.-E.; Maranville, B. B.; Fischer, P.; Hellman, F.

    2016-06-01

    Magnetic properties of thin Co/Pt multilayers have been investigated in order to study the dependence of magnetization M , uniaxial anisotropy Ku, and Curie temperature TC on the multilayer thickness, composition, and structure. A comparison between epitaxial submonolayer multilayers and epitaxial fcc CoPt3 alloy films with large perpendicular magnetic anisotropy (PMA) attributed to growth-induced Co clustering reveals significant differences in the temperature dependence of magnetization M (T ) , despite the presence of thin planar Co platelets in both cases. Even the thinnest discontinuous multilayered structure shows a Langevin-like M (T ) , while the alloy films with PMA show a broadened and enhanced M (T ) indicating a distribution of environments, including monolayer Co platelets separated by only 1-2 layers of Pt. These differences have been reproduced in Monte Carlo simulations, and are shown to be due to different distributions of Co-Co and Co-Pt nearest neighbors. The relatively uniform Co-Co coordination of even a discontinuous rough multilayer produces a Langevin-like M (T ) , whereas the broader distribution associated with platelets in the PMA films results in a nearly linear T dependence of M .

  20. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  1. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    SciTech Connect

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor; Bermejo, Francisco Javier; Cuello, Gabriel Julio

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  2. Short range order in amorphous polycondensates

    SciTech Connect

    Lamers, C.; Richter, D.; Schweika, W.; Batoulis, J.; Sommer, K.; Cable, J.W.; Shapiro, S.M.

    1992-12-01

    The static coherent structure factors S(Q) of the polymer glass Bisphenol-A-Polycarbonate and its chemical variation Bisphenol-A- Polyctherkctone- both in differently deuterated versions- have been measured by spin polarized neutron scattering. The method of spin polarization analysis provided an experimental separation of coherent and incoherent scattering and a reliable intensity calibration. Results are compared to structure factors calculated for model structures which were obtained by ``amorphous cell`` computer simulations. In general reasonable agreement is found between experiment and simulation; however, certain discrepancies hint at an insufficient structural relaxation in the amorphous cell method. 15 refs, 1 fig, 1 tab.

  3. Short-Range Nucleon-Nucleon Correlations

    SciTech Connect

    Douglas Higinbotham

    2011-10-01

    Valence-shell nucleon knock-out experiments, such as 12C(e,e'p)11B, measure less strength then is predicted by independent particle shell model calculations. The theoretical solution to this problem is to include the correlations between the nucleons in the nucleus in the calculations. Motivated by these results, many electron scattering experiments have tried to directly observe these correlations in order to gain new insight into the short-range part of the nucleon-nucleon potential. Unfortunately, many competing mechanisms can cause the same observable final-state as an initial-state correlation, making truly isolating the signal extremely challenging. This paper reviews the recent experimental evidence for short-range correlations, as well as explores the possibility that such correlations are responsible for the EMC effect in the 0.3 < xB < 0.7 deep inelastic scattering ratios.

  4. Relaxor-like ferroelectric behaviour favoured by short-range B-site ordering in 10% Ba{sup 2+} substituted MgFe{sub 2}O{sub 4}

    SciTech Connect

    Chithra Lekha, P.; Ramesh, G.; Revathi, V.; Subramanian, V.

    2014-05-01

    Graphical abstract: - Highlights: • Mechanism driving polarization in MgFe{sub 2}O{sub 4} is the Maxwell–Wagner polarization. • But Raman studies confirm the existence of local P4{sub 1}22/P4{sub 3}22 symmetry in MgFe{sub 2}O{sub 4}. • Ba{sup 2+} substitution increases ferroelectric ordering, ΔT{sub m} span, and masks electronic contribution. - Abstract: Using the molten salt method, pristine and Ba{sup 2+} substituted MgFe{sub 2}O{sub 4} are prepared. The relaxor-like behaviour observed in the dielectric dispersion indicates the existence of B-site short-range ordering with the local P4{sub 1}22/P4{sub 3}22 symmetry which is confirmed by the Raman spectroscopy. The paper further analyses the origin of polarization using Maxwell–Wagner fit and Nyquist plot. This work suggests a possible way to increase the relaxor-like ferroelectric ordering, larger span of relaxation temperature (ΔT{sub m}) and the effective masking of electronic contribution by the substitution of Ba{sup 2+} ion.

  5. Short-range charge ordering in Ho{sub 0.1}Sr{sub 0.9}CoO{sub 3-x} (0.15{<=}x{<=}0.49)

    SciTech Connect

    Streule, S.; Podlesnyak, A.; Mesot, J.; Medarde, M.; Pomjakushina, E.; Conder, K.; Kazakov, S.; Karpinski, J.

    2006-01-01

    We report the observation of Co{sup 3+}/Co{sup 4+} short-range charge ordering in 10% Ho-doped SrCoO{sub 3-x} by means of high resolution neutron powder diffraction. The associated one-dimensional commensurate modulation, which can be described with the propagation vector q{sub CO}=(0 0 1/2) with respect to the cubic perovskite cell Pm3m, occurs for compositions close to x=0.20, corresponding to a 1:1 Co{sup 3+}/Co{sup 4+} ratio and extends over clusters of finite size (D{approx}250 A). The bond valence sums for the Co{sup 3+} and Co{sup 4+} sites are +3.07(7) and +3.95(11) (x=0.19), very close to their nominal values +3 and +4. We attribute this astonishing observation to the one-dimensional (1D) character of the associated distortion pattern, whose elastic stabilization is eased with respect to the 3D arrays reported for other charge-ordered perovskite oxides.

  6. Gapped and gapless short-range-ordered magnetic states with (1/2 ,1/2 ,1/2 ) wave vectors in the pyrochlore magnet Tb2 +xTi2 -xO7 +δ

    NASA Astrophysics Data System (ADS)

    Kermarrec, E.; Maharaj, D. D.; Gaudet, J.; Fritsch, K.; Pomaranski, D.; Kycia, J. B.; Qiu, Y.; Copley, J. R. D.; Couchman, M. M. P.; Morningstar, A. O. R.; Dabkowska, H. A.; Gaulin, B. D.

    2015-12-01

    Recent low-temperature heat capacity (CP) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb2 +xTi2 -xO7 +δ have shown a strong sensitivity to the precise Tb concentration x , with a large anomaly exhibited for x ˜0.005 at TC˜0.5 K and no such anomaly and corresponding phase transition for x ≤0 . We have grown single-crystal samples of Tb2 +xTi2 -xO7 +δ , with approximate composition x =-0.001 ,+0.0042 , and +0.0147 , where the x =0.0042 single crystal exhibits a large CP anomaly at TC=0.45 K, but neither the x =-0.001 nor the x =+0.0147 single crystals display any such anomaly. We present new time-of-flight neutron scattering measurements on the x =-0.001 and the x =+0.0147 samples which show strong (1/2 ,1/2 ,1/2 )">1/2 ,1/2 ,1/2 quasi-Bragg peaks at low temperatures characteristic of short-range antiferromagnetic spin ice (AFSI) order at zero magnetic field but only under field-cooled conditions, as was previously observed in our x =0.0042 single crystal. Furthermore, the frozen AFSI state displays a gapped spin excitation spectrum around (1/2 ,1/2 ,1/2 ) quasi-Bragg peaks and gapped AFSI state at low temperatures under field-cooled conditions are robust features of Tb2Ti2O7 , and are not correlated with the presence or absence of the CP anomaly and phase transition at low temperatures. Further, these results show that the ordered state giving rise to the CP anomaly is confined to 0 ≤x ≤0.01 for Tb2 +xTi2 -xO7 +δ , and is not obviously connected with conventional order of magnetic dipole degrees of freedom.

  7. Short-Range Structure of Nuclei

    SciTech Connect

    Higinbotham, Douglas W.

    2008-10-13

    The nucleons in a nucleus can form short-range correlated pairs. A recent Jefferson Lab electron scattering experiment, where a proton was knocked-out of the nucleus with high momentum transfer and high missing momentum, has shown that in {sup 12}C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs has been shown to be due to the short-range tensor part of the nucleon-nucleon interaction.

  8. Connecting scaling with short-range correlations

    NASA Astrophysics Data System (ADS)

    Berardo, D.; Barbaro, M. B.; Cenni, R.; Donnelly, T. W.; Molinari, A.

    2011-11-01

    We reexamine several issues related to the physics of scaling in electron scattering from nuclei. A basic model is presented in which an assumed form for the momentum distribution having both long- and short-range contributions is incorporated in the single-particle Green’s function. From this one can obtain saturation of nuclear matter for an NN interaction with medium-range attraction and short-range repulsion and obtain the density-density polarization propagator and, hence, the electromagnetic response and scaling function. For the latter, the shape of the scaling function and how it approaches scaling as a function of momentum transfer are both explored.

  9. Nonperturbative short-range dynamics in TMDs

    SciTech Connect

    Weiss, Christian

    2013-05-01

    This presentation covers: deep inelastic processes and transverse momentum distributions; chiral symmetry breaking, including the physical picture, the dynamical model, and parton distributions; partonic structures, including transverse momentum distributions, coordinate space correlator, and short range correlations; and measurements of semi-inclusive deep inelastic scattering, correlations, and multi-parton processes in pp interactions.

  10. Combined Search for Lorentz Violation in Short-Range Gravity

    NASA Astrophysics Data System (ADS)

    Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G.; Long, J. C.; Weisman, E.; Xu, Rui; Kostelecký, V. Alan

    2016-08-01

    Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10-9 m2 , improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings.

  11. Combined Search for Lorentz Violation in Short-Range Gravity.

    PubMed

    Shao, Cheng-Gang; Tan, Yu-Jie; Tan, Wen-Hai; Yang, Shan-Qing; Luo, Jun; Tobar, Michael Edmund; Bailey, Quentin G; Long, J C; Weisman, E; Xu, Rui; Kostelecký, V Alan

    2016-08-12

    Short-range experiments testing the gravitational inverse-square law at the submillimeter scale offer uniquely sensitive probes of Lorentz invariance. A combined analysis of results from the short-range gravity experiments HUST-2015, HUST-2011, IU-2012, and IU-2002 permits the first independent measurements of the 14 nonrelativistic coefficients for Lorentz violation in the pure-gravity sector at the level of 10^{-9}  m^{2}, improving by an order of magnitude the sensitivity to numerous types of Lorentz violation involving quadratic curvature derivatives and curvature couplings. PMID:27563946

  12. Aspects of short-range interconnect packaging

    NASA Astrophysics Data System (ADS)

    Wohlfeld, Denis; Brenner, Karl-Heinz

    2012-01-01

    In short-range interconnect applications, one question arises frequently: When should optical solutions be chosen over electrical wiring? The answer to this question of course depends on several factors like costs, performance, reliability, availability of testing equipment and knowledge about optical technologies, and last but not least, it strongly depends on the application itself. Networking in high performance computing (HPC) is one such example. With bit rates around 10 Gbit/s per channel and cable length above 2 m, the high attenuation of electrical cables leads to a clear preference of optical or active optical cables (AOC) for most planned HPC systems. For AOCs, the electro-optical conversion is realized inside the connector housing, while for purely optical cables, the conversion is done at the edge of the board. Proceeding to 25 Gbit/s and higher, attenuation and loss of signal quality become critical. Therefore, either significantly more effort has to be spent on the electrical side, or the package for conversion has to be integrated closer to the chip, thus requiring new packaging technologies. The paper provides a state of the art overview of packaging concepts for short range interconnects, it describes the main challenges of optical package integration and illustrates new concepts and trends in this research area.

  13. Short Range Correlations and the EMC Effect

    SciTech Connect

    L.B. Weinstein, E. Piasetzky, D.W. Higinbotham, J. Gomez, O. Hen, R. Shneor

    2011-02-01

    This Letter shows quantitatively that the magnitude of the EMC effect measured in electron deep inelastic scattering at intermediate xB, 0.35≤xB≤0.7, is linearly related to the short range correlation (SRC) scale factor obtained from electron inclusive scattering at xB≥1. The observed phenomenological relationship is used to extract the ratio of the deuteron to the free pn pair cross sections and F2n/F2p, the ratio of the free neutron to free proton structure functions. We speculate that the observed correlation is because both the EMC effect and SRC are dominated by the high virtuality (high momentum) nucleons in the nucleus.

  14. Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na,K short- range order and implications for two-feldspar thermometry.

    USGS Publications Warehouse

    Haselton, H.T.; Hovis, G.L.; Hemingway, B.S.; Robie, R.A.

    1983-01-01

    Heat capacities (5-380 K) have been measured by adiabatic calorimetry for five highly disordered alkali feldspars (Ab99Or1, Ab85Or15, Ab55Or45, Ab25Or75 and Ab1Or99). The thermodynamic and mineralogical implications of the results are discussed. The new data are also combined with recent data for plagioclases in order to derive a revised expression for the two-feldspar thermometer. T calculated from the revised expression tend to be higher than previous calculations.-J.A.Z.

  15. An artificial boundary approach for short-ranged interactions

    NASA Astrophysics Data System (ADS)

    Jacobs, David M.

    2016-07-01

    Real physical systems are only understood, experimentally or theoretically, to a finite resolution so in their analysis there is generally an ignorance of possible short-range phenomena. It is also well-known that the boundary conditions of wavefunctions and fields can be used to model short-range interactions when those interactions are expected, a priori. Here, a real-space approach is described wherein an artificial boundary of ignorance is imposed to explicitly exclude from analysis the region of a system wherein short-distance effects may be obscure. The (artificial) boundary conditions encode those short-distance effects by parameterizing the possible UV completions of the wavefunction. Since measurable quantities, such as spectra and cross sections, must be independent of the position of the artificial boundary, the boundary conditions must evolve with the radius of the boundary in a particular way. As examples of this approach, an analysis is performed of the non-relativistic free particle, harmonic oscillator, and Coulomb potential, and some known results for point-like (contact) interactions are recovered, however from a novel perspective. Generically, observables differ from their canonical values and symmetries are anomalously broken compared to those of idealized models. Connections are made to well-studied physical systems, such as the binding of light nuclei and cold atomic systems. This method is arguably more physically transparent and mathematically easier to use than other techniques that require the regularization and renormalization of delta-function potentials, and may offer further generalizations of practical use.

  16. Short-range order in blends of polycarbonates with polystyrenes

    NASA Astrophysics Data System (ADS)

    Arrighi, Valeria; Zajac, Wojciech; Shenoy, Suresh; Martin y Marero, David; Gabrys, Barbara J.; T. Garay, Maria; Gagliardi, Simona; Andersen, Ken H.

    2000-03-01

    The local structure of a series of blends of bisphenol-A polycarbonate (BPA-PC) and tetramethyl BPA-PC (TMPC) with various styrene-based polymers (poly(para-chlorostyrene), polystyrene, poly(meta-chlorostyrene) and poly(ortho-chlorostyrene)) has been investigated. Measurements on the D7 diffractometer at ILL were carried out at room temperature. We show that while the amorphous halo of TMPC is only slightly perturbed by blending, major differences are observed in all BPA-PC blends. We conclude that inter-chain correlations in BPA-PC blends are considerably altered compared to the pure component.

  17. Short range magnetic exchange interaction favors ferroelectricity.

    PubMed

    Wan, Xiangang; Ding, Hang-Chen; Savrasov, Sergey Y; Duan, Chun-Gang

    2016-01-01

    Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science. To search multiferroics, currently most researches are focused on frustrated magnets, which usually have complicated magnetic structure and low magnetic ordering temperature. Here, we argue that actually simple interatomic magnetic exchange interaction already contains a driving force for ferroelectricity, thus providing a new microscopic mechanism for the coexistence and strong coupling between ferroelectricity and magnetism. We demonstrate this mechanism by showing that even the simplest antiferromagnetic insulator like MnO, could display a magnetically induced ferroelectricity under a biaxial strain. In addition, we show that such mechanism also exists in the most important single phase multiferroics, i.e. BiFeO3, suggesting that this mechanism is ubiquitous in systems with superexchange interaction. PMID:26956480

  18. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  19. Extracting short-ranged interactions from structure factors

    NASA Astrophysics Data System (ADS)

    Louis, A. A.

    2011-12-01

    Inverting scattering experiments to obtain effective interparticle interactions is generally a poorly conditioned problem. L. Reatto [Phil. Mag. A 58, 37 (1986)] showed that for atomic liquids close to the triple point, inversions are hard because the structure closely resembles that of an equivalent hard-sphere fluid. Here I demonstrate that at low concentrations and for particles with short-ranged attractive potentials, S(k) also exhibits a very weak dependence on potential shape. Instead, different potentials all generate an S(k) that closely resembles that of the Baxter model with a similar second-virial coefficient. By contrast, in this energetic fluid regime, the inversion of an attractive interaction from real-space correlations such as the radial distribution function g(r) is well conditioned. Nevertheless, one may extract further information from S(k) by measuring isosbestic points, values of k where the scattering intensity I(k) or the structure factor S(k) is invariant to changes in interaction-potential well depth. These points suggest a new extended corresponding states principle for particles in solution based on the packing fraction, the second osmotic virial coefficient, and a new measure of effective potential range.

  20. Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses

    SciTech Connect

    Zaccone, Alessio; Terentjev, Eugene M.

    2014-01-21

    The bulk modulus of many amorphous materials, such as metallic glasses, behaves nearly in agreement with the assumption of affine deformation, namely that the atoms are displaced just by the amount prescribed by the applied strain. In contrast, the shear modulus behaves as for nonaffine deformations, with additional displacements due to the structural disorder which induce a marked material softening to shear. The consequence is an anomalously large ratio of the bulk modulus to the shear modulus for disordered materials characterized by dense atomic packing, but not for random networks with point atoms. We explain this phenomenon with a microscopic derivation of the elastic moduli of amorphous solids accounting for the interplay of nonaffinity and short-range particle correlations due to excluded volume. Short-range order is responsible for a reduction of the nonaffinity which is much stronger under compression, where the geometric coupling between nonaffinity and the deformation field is strong, whilst under shear this coupling is weak. Predictions of the Poisson ratio based on this model allow us to rationalize the trends as a function of coordination and atomic packing observed with many amorphous materials.

  1. Effect of anisotropic exchange interactions and short-range phenomena on superfluidity in a homogeneous dipolar Fermi gas

    NASA Astrophysics Data System (ADS)

    Corro, I.; Martin, A. M.

    2016-08-01

    We develop a simple numerical method that allows us to calculate the BCS superfluid transition temperature Tc precisely for any interaction potential. We apply it to a polarized, ultracold Fermi gas with long-range, anisotropic, dipolar interactions and include the effects of anisotropic exchange interactions. We pay particular attention to the short-range behavior of dipolar gases and reexamine current renormalization methods. In particular, we find that dimerization of both atoms and molecules significantly hampers the formation of a superfluid. The end result is that at high density or interaction strengths, we find Tc is orders of magnitude lower than previous calculations.

  2. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Sung, Bong June

    2015-06-01

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  3. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  4. The three-boson system with short-range interactions

    NASA Astrophysics Data System (ADS)

    Bedaque, P. F.; Hammer, H.-W.; van Kolck, U.

    1999-02-01

    We discuss renormalization of the non-relativistic three-body problem with short-range forces. The problem is non-perturbative at momenta of the order of the inverse of the two-body scattering length. An infinite number of graphs must be summed, which leads to a cutoff dependence that does not appear in any order in perturbation theory. We argue that this cutoff dependence can be absorbed in one local three-body force counterterm and compute the running of the three-body force with the cutoff. This allows a calculation of the scattering of a particle and the two-particle bound state if the corresponding scattering length is used as input. We also obtain a model-independent relation between binding energy of a shallow three-body bound state and this scattering length. We comment on the power counting that organizes higher-order corrections and on relevance of this result for the effective field theory program in nuclear and molecular physics.

  5. Effective interactions and atomic ordering in Ni-rich Ni-Re alloys

    NASA Astrophysics Data System (ADS)

    He, Shuang; Peng, Ping; Gorbatov, Oleg I.; Ruban, Andrei V.

    2016-07-01

    Interatomic interactions and ordering in fcc Ni-rich Ni-Re alloys are studied by means of first-principles methods combined with statistical mechanics simulations based on the Ising Hamiltonian. First-principles calculations are employed to obtain effective chemical and strain-induced interactions, as well as ordering energies and enthalpies of formation of random and ordered Ni-Re alloys. Based on the nonmagnetic enthalpies of formation, we speculate that the type of ordering can be different in alloys with Re content less than 10 at.%. We demonstrate that effective chemical interactions in this system are quite sensitive to the alloy composition, atomic volume, and magnetic state. In statistical thermodynamic simulations, we have used renormalized interactions, which correctly reproduce ordering energies obtained in the direct total energy calculations. Monte Carlo simulations for Ni0.91Re0.09 alloy show that there exists a strong ordering tendency of the (1 1/2 0 ) type leading to precipitation of the D1 a ordered structure at about 940 K. Our results for the atomic short-range order indicate, however, that the presently applied theory overestimates the strength of the ordering tendency compared to that observed in the experiment.

  6. Hard probes of short-range nucleon-nucleon correlations

    SciTech Connect

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  7. Detection of antiferromagnetic order by cooling atoms in an optical lattice

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Lin; Teles, Rafael; Hazzard, Kaden; Hulet, Randall; Rice University Collaboration

    2016-05-01

    We have realized the Fermi-Hubbard model with fermionic 6 Li atoms in a three-dimensional compensated optical lattice. The compensated optical lattice has provided low enough temperatures to produce short-range antiferromagnetic (AF) spin correlations, which we detect via Bragg scattering of light. Previously, we reached temperatures down to 1.4 times that of the AFM phase transition, more than a factor of 2 below temperatures obtained previously in 3D optical lattices with fermions. In order to further reduce the entropy in the compensated lattice, we implement an entropy conduit - which is a single blue detuned laser beam with a waist size smaller than the overall atomic sample size. This repulsive narrow potential provides a conductive metallic path between the low entropy core and the edges of the atomic sample where atoms may be evaporated. In addition, the entropy conduit may store entropy, thus further lowering the entropy in the core. We will report on the status of these efforts to further cool atoms in the optical lattice. Work supported by ARO MURI Grant, NSF and The Welch Foundation.

  8. Short range prediction and monitoring of downbursts over Indian region

    NASA Astrophysics Data System (ADS)

    Johny, C. J.; Prasad, V. S.; Singh, S. K.; Basu, Swati

    2016-05-01

    Convective downdraft motions and related outflow wind considered as an eventual source of potential damage which can be more severe in the aviation sector. A great variety of atmospheric environments can produce these downdraft motions. These events are not easily detectable using conventional weather radar or wind shear alert systems, while Doppler radars are useful for identifying these Downbursts. In order to identify the situations that can cause these downdraft events different diagnostic tools are designed. Recently launched Indian satellite INSAT-3D, with atmospheric sounder and imager on board, is capable of identifying regions of downburst occurrence and can help in monitoring them in real time. Some Downburst events reported over different parts of India, during January-April period is investigated using Microburst Wind Speed Potential Index (MWPI) and thermodynamic characteristics derived from the NCMRWF GFS (NGFS) model. An attempt is made to make a short range prediction of these events using MWPI computed from NGFS model forecasts. The results are validated with in-situ observations and also by employing INSAT-3D data and it is shown that the method has a reasonable success. All the investigated downdraft events are associated with the hybrid Microburst environment.

  9. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    SciTech Connect

    Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas; Lufaso, Michael W.; Takeda, Seiji; Kohno, Hideo

    2014-08-15

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and a frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.

  10. Real space probe of short-range interaction between Cr in a ferromagnetic semiconductor ZnCrTe.

    PubMed

    Kanazawa, Ken; Nishimura, Taku; Yoshida, Shoji; Shigekawa, Hidemi; Kuroda, Shinji

    2014-12-21

    The short-range interaction between Cr atoms was directly examined by scanning tunneling microscopy measurements on a Zn(0.95)Cr(0.05)Te film. Our measurements revealed that a Cr atom formed a localized state within the bandgap of ZnTe and this state was broadened for a pair of Cr atoms within a distance of ∼ 1 nm.

  11. Direct observation of local atomic order in a metallic glass.

    PubMed

    Hirata, Akihiko; Guan, Pengfei; Fujita, Takeshi; Hirotsu, Yoshihiko; Inoue, Akihisa; Yavari, Alain Reza; Sakurai, Toshio; Chen, Mingwei

    2011-01-01

    The determination of the atomic configuration of metallic glasses is a long-standing problem in materials science and solid-state physics. So far, only average structural information derived from diffraction and spectroscopic methods has been obtained. Although various atomic models have been proposed in the past fifty years, a direct observation of the local atomic structure in disordered materials has not been achieved. Here we report local atomic configurations of a metallic glass investigated by nanobeam electron diffraction combined with ab initio molecular dynamics simulation. Distinct diffraction patterns from individual atomic clusters and their assemblies, which have been theoretically predicted as short- and medium-range order, can be experimentally observed. This study provides compelling evidence of the local atomic order in the disordered material and has important implications in understanding the atomic mechanisms of metallic-glass formation and properties.

  12. Short-range components of nuclear forces: Experiment versus mythology

    SciTech Connect

    Kukulin, V. I.; Platonova, M. N.

    2013-12-15

    The present-day situation around the description of various (central, spin-orbit, and tensor) components of short-range nuclear forces is discussed. A traditional picture of these interactions based on the idea of one-meson exchange is contrasted against numerous results of recent experiments. As is shown in the present study, these results often deviate strongly from the predictions of traditional models. One can therefore state that such models are inapplicable to describing short-range nuclear forces and that it is necessary to go over from a traditional description to some alternative QCD-based (or QCD-motivated) picture. This means that, despite the widespread popularity of traditional concepts of short-range nuclear forces and their applicability in many particular cases, these concepts are not more than scientific myths that show their inconsistency when analyzed from the viewpoint of the modern experiment.

  13. Floquet engineering from long-range to short-range interactions

    NASA Astrophysics Data System (ADS)

    Lee, Tony E.

    2016-10-01

    Quantum simulators based on atoms or molecules often have long-range interactions due to dipolar or Coulomb interactions. We present a method based on Floquet engineering to turn a long-range interaction into a short-range one. By modulating a magnetic-field gradient with one or a few frequencies, one reshapes the interaction profile, such that the system behaves as if it only had nearest-neighbor interactions. Our approach works in both one and two dimensions and for both spin-1/2 and spin-1 systems. It does not require individual addressing, and it is applicable to all experimental systems with long-range interactions: trapped ions, polar molecules, Rydberg atoms, nitrogen-vacancy centers, and cavity QED. Our approach allows one achieve a short-range interaction without relying on Hubbard superexchange.

  14. Short-Range Correlation Models in Electronic Structure Theory

    NASA Astrophysics Data System (ADS)

    Goldey, Matthew Bryant

    Correlation methods within electronic structure theory focus on recovering the exact electron-electron interaction from the mean-field reference. For most chemical systems, including dynamic correlation, the correlation of the movement of electrons proves to be sufficient, yet exact methods for capturing dynamic correlation inherently scale polynomially with system size despite the locality of the electron cusp. This work explores a new family of methods for enhancing the locality of dynamic correlation methodologies with an aim toward improving accuracy and scalability. The introduction of range-separation into ab initio wavefunction methods produces short-range correlation methodologies, which can be supplemented with much faster approximate methods for long-range interactions. First, I examine attenuation of second-order Moller-Plesset perturbation theory (MP2) in the aug-cc-pVDZ basis. MP2 treats electron correlation at low computational cost, but suffers from basis set superposition error (BSSE) and fundamental inaccuracies in long-range contributions. The cost differential between complete basis set (CBS) and small basis MP2 restricts system sizes where BSSE can be removed. Range-separation of MP2 could yield more tractable and/or accurate forms for short- and long-range correlation. Retaining only short-range contributions proves to be effective for MP2 in the small aug-cc-pVDZ (aDZ) basis. Using one range-separation parameter within either the complementary error function (erfc) or a sum of two error functions (terfc), superior behavior is obtained versus both MP2/aDZ and MP2/CBS for inter- and intra-molecular test sets. Attenuation of the long-range helps to cancel both BSSE and intrinsic MP2 errors. Direct scaling of the MP2 correlation energy (SMP2) proves useful as well. The resulting SMP2/aDZ, MP2(erfc, aDZ), and MP2(terfc, aDZ) methods perform far better than MP2/aDZ across systems with hydrogen-bonding, dispersion, and mixed interactions at a

  15. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    SciTech Connect

    Yan, Yaqi; Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia; Zhang, Yanpeng

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  16. Short-range inverse-square law experiment in space

    NASA Technical Reports Server (NTRS)

    Paik, H. J.; Moody, M. V.

    2002-01-01

    Newton's inverse-square law is a cornerstone of General Relativity. Its validity has been demonstrated to better than one part in thousand in ranges greater than 1 cm. The range below 1 mm has been left largely unexplored, due to the difficulties associated with designing sensitive short-range experiments. However, the theoretical rationale for testing Newton's law at ranges below 1 mm has become very strong recently.

  17. Short Range Correlations, Inclusive Electron-Nucleus Scattering, and Scaling

    SciTech Connect

    Day, Donal

    2008-10-13

    The presence of high momentum components in the nuclear wavefunction has been of great interest for many years. Unfortunately high momentum components, associated with the short range correlations (SRC), have been difficult to isolate unambiquously. Inclusive electron scattering cross sections in the quasielastic region have been measured over a wide range of energy and momentum transfers from very light to very heavy nuclei and the scaling analyses of these data can provide useful information on the presence of SRCs and more.

  18. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  19. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in ab Initio Force Fields.

    PubMed

    Van Vleet, Mary J; Misquitta, Alston J; Stone, Anthony J; Schmidt, J R

    2016-08-01

    Short-range repulsion within intermolecular force fields is conventionally described by either Lennard-Jones (A/r(12)) or Born-Mayer (A exp(-Br)) forms. Despite their widespread use, these simple functional forms are often unable to describe the interaction energy accurately over a broad range of intermolecular distances, thus creating challenges in the development of ab initio force fields and potentially leading to decreased accuracy and transferability. Herein, we derive a novel short-range functional form based on a simple Slater-like model of overlapping atomic densities and an iterated stockholder atom (ISA) partitioning of the molecular electron density. We demonstrate that this Slater-ISA methodology yields a more accurate, transferable, and robust description of the short-range interactions at minimal additional computational cost compared to standard Lennard-Jones or Born-Mayer approaches. Finally, we show how this methodology can be adapted to yield the standard Born-Mayer functional form while still retaining many of the advantages of the Slater-ISA approach. PMID:27337546

  20. Atomically ordered solute segregation behaviour in an oxide grain boundary

    NASA Astrophysics Data System (ADS)

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-03-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary.

  1. Atomically ordered solute segregation behaviour in an oxide grain boundary.

    PubMed

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-01-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary. PMID:27004614

  2. Atomically ordered solute segregation behaviour in an oxide grain boundary

    PubMed Central

    Feng, Bin; Yokoi, Tatsuya; Kumamoto, Akihito; Yoshiya, Masato; Ikuhara, Yuichi; Shibata, Naoya

    2016-01-01

    Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary. PMID:27004614

  3. Overlap populations, bond orders and valences for 'fuzzy' atoms

    NASA Astrophysics Data System (ADS)

    Mayer, I.; Salvador, P.

    2004-01-01

    Proper definitions are proposed to calculate interatomic overlap populations, bond order (multiplicity) indices and actual atomic valences from the results of ab initio quantum chemical calculations, in terms of 'fuzzy' atoms, i.e., such divisions of the three-dimensional physical space into atomic regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit a continuous transition from one to another. The results of test calculations are in agreement with the classical chemical notions, exhibit unexpectedly small basis sensitivity and do not depend too much on the selection of the weight function defining the actual division of the space into 'fuzzy' atomic regions. The scheme is applicable on both SCF and correlated levels of theory. A free program is available.

  4. Hand-Held Units for Short-Range Wireless Biotelemetry

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Simons, Rainee N.

    2008-01-01

    Special-purpose hand-held radiotransceiver units have been proposed as means of short-range radio powering and interrogation of surgically implanted microelectromechanical sensors and actuators. These units are based partly on the same principles as those of the units described in "Printed Multi- Turn Loop Antennas for RF Biotelemetry" (LEW-17879-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48. Like the previously reported units, these units would make it unnecessary to have wire connections between the implanted devices and the external equipment used to activate and interrogate them. Like a unit of the previously reported type, a unit of the type now proposed would include a printed-circuit antenna on a dielectric substrate. The antenna circuitry would include integrated surface-mount inductors for impedance tuning. Circuits for processing the signals transmitted and received by the antenna would be included on the substrate. During operation, the unit would be positioned near (but not in electrical contact with) a human subject, in proximity to a microelectromechanical sensor or actuator that has been surgically implanted in the subject. It has been demonstrated that significant electromagnetic coupling with an implanted device could be established at a distance of as much as 4 in. (.10 cm). During operation in the interrogation mode, the antenna of the unit would receive a radio telemetry signal transmitted by the surgically implanted device. The antenna substrate would have dimensions of approximately 3.25 by 3.75 inches (approximately 8.3 by 9.5 cm). The substrate would have a thickness of the order of 30 mils (of the order of a somewhat less than a millimeter). The substrate would be made of low-radiofrequency- loss dielectric material that could be, for example, fused quartz, alumina, or any of a number of commercially available radio-frequency dielectric composite materials. The antenna conductors would typically be made of copper or a

  5. Impact of prescribed diabatic heating on short range weather forecasts

    NASA Technical Reports Server (NTRS)

    Marx, L.; Shukla, J.

    1984-01-01

    Using the 9 layer general circulation model developed at the Goddard Laboratory for Atmospheric Sciences (GLAS), several 4 to 5 day integrations were made to assess the impact that latent heating processes (supersaturation and moist convective) have on the model forecasts. In an earlier study by Shukla (1981) it was hypothesized that because of strong interaction between dynamics and moist convection, small initial errors grow very fast and make short range forecasting difficult. The purpose of this study was to examine if prescribed heating rates can improve the forecasts for a few days.

  6. Unsupervised learning in neural networks with short range synapses

    NASA Astrophysics Data System (ADS)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  7. Enhanced survival of short-range magnetic correlations and frustrated interactions in R3T intermetallics

    SciTech Connect

    Baranov, Nikolai; Proshkin, Aleksei; Gubkin, Andrey; Cervellino, A.; Michor, H.; Hilsher, G.; Gerasimov, E.G.; Ehlers, Georg; Frontzek, Matthias D; Podlesnyak, Andrey A

    2012-01-01

    Elastic and inelastic neutron scattering and magnetization measurements have been used to study peculiarities of the magnetic state in R{sub 3}T compounds (R=Gd, Er, Tb; T=Ni, Co) below and above magnetic ordering temperatures. A pronounced non-Brillouin shape of the magnetization curves observed in the antiferromagnetic compounds Gd{sub 3}Ni and Tb{sub 3}Ni above their magnetic ordering temperatures together with earlier reported data about the retention of the magnetic contribution to the total specific heat of Gd{sub 3}T and anomalous behavior of the electrical resistivity above magnetic ordering temperatures are ascribed to the existence of short-range magnetic correlations in the wide temperature range in the paramagnetic state. The persistence of short-range magnetic order up to temperatures greater than 5-6 times the Neel temperature has been revealed by powder neutron diffraction measurements performed for Tb{sub 3}Ni and Tb{sub 3}Co. On the other hand, results from inelastic neutron scattering show that the low temperature magnetic excitations are strongly suppressed in both Tb{sub 3}Co and Er{sub 3}Co. It is suggested that the extended short-range magnetic correlations, which turn out to be an inherent feature of R{sub 3}T type compounds, are due to the layered crystal structure and to the difference between geometrically frustrated intra-layer exchange interactions and inter-layer exchange.

  8. Effect of the short-range interaction on critical phenomena in elastic interaction systems

    NASA Astrophysics Data System (ADS)

    Nishino, Masamichi; Miyashita, Seiji

    2013-07-01

    The elastic interaction, induced by the lattice distortion due to the difference of the molecular size, causes an effective long-range interaction. In spin-crossover (SC) compounds, local bistable states, i.e., high-spin and low-spin states, have different molecular sizes, and the elastic interaction is important. In bipartite lattices, e.g., the square lattice, the ground state can be two types of phases: ferromagneticlike and antiferromagneticlike phases. In systems like SC compounds, the former phase consists of all small or large molecules, and the latter phase has the configuration of alternating small and large molecules. In fact, both cases are observed in SC systems. In this paper we have studied the effect of the short-range interaction in the elastic system on the properties of those order-disorder phase transitions. We have obtained a phase diagram in the coordinates of the temperature and the strength of the short-range interaction, including the metastable structures. We show that effects of the short-range interaction are essentially different for ferromagneticlike and antiferromagneticlike phase transitions. In the ferromagneticlike transition, the long-range interaction of elasticity is relevant, and the system exhibits a phase transition in the mean-filed universality class. In this case, the long-range interaction strongly enhances the ferromagneticlike order, and it works cooperatively with the short-range interaction. In contrast, in the antiferromagneticlike transition, the elastic interaction slightly enhances the antiferromagneticlike order, but essentially it does not contribute to the ordering, and the system shows a transition in the Ising universality class. We have found that in the border region between ferromagneticlike and antiferromagneticlike phases, the antiferromagneticlike phase has an advantage at finite temperatures. We discuss the critical properties of two-step SC transitions with comparison between the elastic interaction

  9. Freely cooling granular gases with short-ranged attractive potentials

    SciTech Connect

    Murphy, Eric; Subramaniam, Shankar

    2015-04-15

    We treat the case of an undriven gas of inelastic hard-spheres with short-ranged attractive potentials via an extension of the pseudo-Liouville operator formalism. New evolution equations for the granular temperature and coordination number are obtained. The granular temperature exhibits deviation from both Haff’s law and the case of long-ranged potentials. We verify this departure using soft-sphere discrete element method simulations. Excellent agreement is found for the duration of the simulation even beyond where exclusively binary collisions are expected. Simulations show the emergence of strong spatial-velocity correlations on the length scale of the last peak in the pair-correlation function but do not show strong correlations beyond this length scale. We argue that molecular chaos may remain an adequate approximation if the system is modelled as a Smoluchowski type equation with aggregation and break-up processes.

  10. Gelation of particles with short-range attraction.

    PubMed

    Lu, Peter J; Zaccarelli, Emanuela; Ciulla, Fabio; Schofield, Andrew B; Sciortino, Francesco; Weitz, David A

    2008-05-22

    Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA, kinetic or dynamic arrest, phase separation, percolation and jamming. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood-even the location of the gelation phase boundary is not agreed on. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation-often considered a purely kinetic phenomenon-is in fact a direct consequence of equilibrium liquid-gas phase separation. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation, that corresponds to gelation in models for attractive

  11. Sensing short range forces with a nanosphere matter-wave interferometer

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew; Goldman, Hart

    2015-09-01

    We describe a method for sensing short range forces using matter-wave interference in dielectric nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results in reduced wave-packet expansion, enabling investigations of forces nearer to surfaces in a free-fall interferometer. By laser cooling a nanosphere to the ground state of an optical potential and releasing it by turning off the optical trap, acceleration sensing at the 10-8 m /s2 level is possible. The approach can yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at the 5 μ m length scale by a factor of 104 over current limits.

  12. Spontaneous atomic ordering in MOVPE grown gallium arsenide antimonide

    NASA Astrophysics Data System (ADS)

    Jiang, Weiyang

    Spontaneous atomic ordering of semiconductor alloys is of great practical and fundamental interest. Atomic ordering of III-V alloys such as InGaP has been extensively studied experimentally and theoretically. In this thesis, we investigate a little-studied, atomic-ordering phenomenon, the so-called CuAu structure in the III-V material GaAsSb, grown by the technique of metalorganic vapor-phase epitaxy (MOVPE). Despite being first observed in 1986 in this material, there is as yet no detailed microscopic model for its formation mechanism. A key part of the thesis involves the study of surfactant effects on the ordering process in GaAsSb. Surfactants are elements which modify the growth surface without incorporation in the bulk. Nevertheless, they influence the incorporation of the bulk elements. We first explored the surfactant behavior of Bi on GaAs in order to understand how Bi incorporates at the surface and in the bulk in a related III-V material. For GaAs (001), Bi surface layers are stable at temperatures below 500°C but rapidly desorb at temperatures of 550°C and higher. Bi coverages of over 1 ML induce the formation of Bi islands, whose sizes increase with increasing Bi exposure. Bulk incorporation of Bi remains essentially zero at typical MOVPE growth temperatures. In the case of GaAsSb alloys, Bi surfactant was found to induce CuAu ordering, with no measurable Bi incorporation in the bulk. High resolution TEM was used to study the detailed microstructural features for ordered and disordered samples. The domain sizes of the ordered regions are from 5 nm to 20 nm under all growth conditions. In contrast to orderings in other alloys such as InGaP, CuAu ordering had no observable effect on the bandgap. CuAu ordering in GaAsSb was studied in a function of growth conditions, including Bi surfactant concentration, growth temperature, growth rate, and substrate miscut. All of these experiments confirm that bulk CuAu ordering is a surface driven, rather than bulk

  13. Detecting magnetic ordering with atomic size electron probes

    DOE PAGES

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Cantoni, Claudia; Lupini, Andrew R.

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  14. Critical thickness of atomically ordered III-V alloys

    SciTech Connect

    France, R. M.; McMahon, W. E.; Guthrey, H. L.

    2015-10-12

    The critical thickness model is modified with a general boundary energy that describes the change in bulk energy as a dislocation regularly alters the atomic structure of an ordered material. The model is evaluated for dislocations gliding through CuPt-ordered GaInP and GaInAs, where the boundary energy is negative and the boundary is stable. With ordering present, the critical thickness is significantly lowered and remains finite as the mismatch strain approaches zero. The reduction in critical thickness is most significant when the order parameter is greatest and the amount of misfit energy is low. The modified model is experimentally validated for low-misfit GaInP epilayers with varying order parameters using in situ wafer curvature and ex situ cathodoluminescence. With strong ordering, relaxation begins at a lower thickness and occurs at a greater rate, which is consistent with a lower critical thickness and increased glide force. Thus, atomic ordering is an important consideration for the stability of lattice-mismatched devices.

  15. Hybrid gesture recognition system for short-range use

    NASA Astrophysics Data System (ADS)

    Minagawa, Akihiro; Fan, Wei; Katsuyama, Yutaka; Takebe, Hiroaki; Ozawa, Noriaki; Hotta, Yoshinobu; Sun, Jun

    2012-03-01

    In recent years, various gesture recognition systems have been studied for use in television and video games[1]. In such systems, motion areas ranging from 1 to 3 meters deep have been evaluated[2]. However, with the burgeoning popularity of small mobile displays, gesture recognition systems capable of operating at much shorter ranges have become necessary. The problems related to such systems are exacerbated by the fact that the camera's field of view is unknown to the user during operation, which imposes several restrictions on his/her actions. To overcome the restrictions generated from such mobile camera devices, and to create a more flexible gesture recognition interface, we propose a hybrid hand gesture system, in which two types of gesture recognition modules are prepared and with which the most appropriate recognition module is selected by a dedicated switching module. The two recognition modules of this system are shape analysis using a boosting approach (detection-based approach)[3] and motion analysis using image frame differences (motion-based approach)(for example, see[4]). We evaluated this system using sample users and classified the resulting errors into three categories: errors that depend on the recognition module, errors caused by incorrect module identification, and errors resulting from user actions. In this paper, we show the results of our investigations and explain the problems related to short-range gesture recognition systems.

  16. Standoff Stack Emissions Monitoring Using Short Range Lidar

    NASA Astrophysics Data System (ADS)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  17. Short range spread-spectrum radiolocation system and method

    DOEpatents

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  18. Short-range lidar for bioagent detection and classification

    NASA Astrophysics Data System (ADS)

    Hô, Nicolas; Émond, Frédéric; Babin, François; Healy, Dave; Simard, Jean-Robert; Buteau, Sylvie; McFee, John E.

    2010-04-01

    We have developed a small, relatively lightweight and efficient short range (<100 m) LIDAR instrument for remotely detecting harmful bioagents. The system is based on a pulsed, eye-safe, 355 nm laser exciting aerosols which then fluoresce with a typical spectrum. The system makes use of a novel technology for continuously monitoring for the presence of unusual concentrations of bioaerosols at a precise remote location within the monitored area, with response within seconds. Fluorescence is spectrally resolved over 32 channels capable of photon counting. Results show a sensitivity level of 40 ACPLA of Bacillus Globigii, an anthrax simulant, at a distance of 100 m (assumed worst case where 1 ppl = 1 ACPLA) considering particle sizes between 0.5 and 10 μm, with a geometric mean at 1 um. The apparatus has been tested in the field during three test and evaluation campaigns with multiple bioagents and public security products. Preliminary results show that the system is able to distinguish between harmful bioagents and naturally occurring ones. A classification algorithm was successfully tested with a single type of bioagent; experiments for daytime measurements are discussed.

  19. Quantum liquid-crystal order in resonant atomic gases

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2012-11-01

    I review recent studies that predict a realization of quantum liquid-crystalline orders in resonant atomic gases. As examples of such putative systems I will discuss an s-wave resonant imbalanced Fermi gas and a p-wave resonant Bose gas. In the former, the liquid-crystalline smectic, nematic and rich variety of other descendant states emerge from strongly quantum- and thermally-fluctuating Fulde-Ferrell and Larkin-Ovchinnikov states, driven by a competition between resonant pairing and Fermi-surface mismatch. In the latter, at intermediate detuning the p-wave resonant interaction generically drives Bose-condensation at a finite momentum, set by a competition between atomic kinetic energy and atom-molecule hybridization. Because of the underlying rotationally-invariant environment of the atomic gas trapped isotropically, the putative striped superfluid is a realization of a quantum superfluid smectic, that can melt into a variety of interesting phases, such as a quantum nematic. I will discuss the corresponding rich phase diagrams and transitions, as well the low-energy properties of the phases and fractional topological defects generic to striped superfluids and their fluctuation-driven descendants.

  20. Renormalization of the Three-Body System with Short-Range Interactions

    NASA Astrophysics Data System (ADS)

    Bedaque, P. F.; Hammer, H.-W.; van Kolck, U.

    1999-01-01

    We discuss renormalization of the nonrelativistic three-body problem with short-range forces. The problem becomes nonperturbative at momenta of the order of the inverse of the two-body scattering length, and an infinite number of graphs must be summed. This summation leads to a cutoff dependence that does not appear in any order in perturbation theory. We argue that this cutoff dependence can be absorbed in a single three-body counterterm and compute the running of the three-body force with the cutoff. We comment on the relevance of this result for the effective field theory program in nuclear and molecular physics.

  1. String order via Floquet interactions in atomic systems

    NASA Astrophysics Data System (ADS)

    Lee, Tony E.; Joglekar, Yogesh N.; Richerme, Philip

    2016-08-01

    We study the transverse-field Ising model with interactions that are modulated in time. In a rotating frame, the system is described by a time-independent Hamiltonian with many-body interactions, similar to the cluster Hamiltonians of measurement-based quantum computing. In one dimension, there is a three-body interaction, which leads to string order instead of conventional magnetic order. We show that the string order is robust to power-law interactions that decay with the cube of distance. In two and three dimensions, there are five- and seven-body interactions. We discuss adiabatic preparation of the ground state as well as experimental implementation with trapped ions, Rydberg atoms, and polar molecules.

  2. Minimal mechanism leading to discontinuous phase transitions for short-range systems with absorbing states

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.

    2014-02-01

    Motivated by recent findings, we discuss the existence of a direct and robust mechanism providing discontinuous absorbing transitions in short-range systems with single species, with no extra symmetries or conservation laws. We consider variants of the contact process, in which at least two adjacent particles (instead of one, as commonly assumed) are required to create a new species. Many interaction rules are analyzed, including distinct cluster annihilations and a modified version of the original pair contact process. Through detailed time-dependent numerical simulations, we find that for our modified models, the phase transitions are of first order, hence contrasting with their corresponding usual formulations in the literature, which are of second order. By calculating the order-parameter distributions, the obtained bimodal shapes as well as the finite-scale analysis reinforce coexisting phases and thus a discontinuous transition. These findings strongly suggest that the above particle creation requirements constitute a minimum and fundamental mechanism determining the phase coexistence in short-range contact processes.

  3. Roughness of undoped graphene and its short-range induced gauge field

    NASA Astrophysics Data System (ADS)

    Abedpour, N.; Neek-Amal, M.; Asgari, Reza; Shahbazi, F.; Nafari, N.; Tabar, M. Reza Rahimi

    2007-11-01

    We present both numerical and analytical studies of graphene roughness with a crystal structure including 500×500 atoms. The roughness can effectively result in a random gauge field and has important consequences for its electronic structure. Our results show that its height fluctuations in small scales have a scaling behavior with a temperature dependent roughness exponent in the interval of 0.6<χ<0.7 . The correlation function of height fluctuations depends on temperature with a characteristic length scale of ≈90Å (at room temperature). We show that the correlation function of the induced gauge field has a short-range nature with a correlation length of about ≃2-3Å . We also treat the problem analytically by using the Martin-Siggia-Rose method. The renormalization group flows did not yield any delocalized-localized transition arising from the graphene roughness. Our results are in good agreement with recent experimental observations.

  4. Short-range magnetic correlations and spin dynamics in the paramagnetic regime of (Mn,Fe)2(P,Si)

    NASA Astrophysics Data System (ADS)

    Miao, X. F.; Caron, L.; Cedervall, J.; Gubbens, P. C. M.; Dalmas de Réotier, P.; Yaouanc, A.; Qian, F.; Wildes, A. R.; Luetkens, H.; Amato, A.; van Dijk, N. H.; Brück, E.

    2016-07-01

    The spatial and temporal correlations of magnetic moments in the paramagnetic regime of (Mn,Fe ) 2(P ,Si ) have been investigated by means of polarized neutron diffraction and muon-spin relaxation techniques. Short-range magnetic correlations are present at temperatures far above the ferromagnetic transition temperature (TC). This leads to deviations of paramagnetic susceptibility from Curie-Weiss behavior. These short-range magnetic correlations extend in space, slow down with decreasing temperature, and finally develop into long-range magnetic order at TC.

  5. Short-range smectic fluctuations and the flexoelectric model of modulated nematic liquid crystals.

    PubMed

    Vaupotič, Nataša; Curk, Samo; Osipov, Mikhail A; Čepič, Mojca; Takezoe, Hideo; Gorecka, Ewa

    2016-02-01

    We show that the flexoelectric model of chiral and achiral modulated nematics predicts the compression modulus that is by orders of magnitude lower than the measured values. The discrepancy is much larger in the chiral modulated nematic phase, in which the measured value of the compression modulus is of the same order of magnitude as in achiral modulated nematics, even though the heliconical pitch is by an order of magnitude larger. The relaxation of a one-constant approximation in the biaxial elastic model used for chiral modulated nematics does not solve the problem. Therefore, we propose a structural model of the modulated nematic phase, which is consistent with the current experimental evidence and can also explain large compression modulus: the structure consists of short-range smectic clusters with a fourfold symmetry and periodicity of two molecular distances. In chiral systems, chiral interactions lead to a helicoidal structure of such clusters.

  6. Ultra-fast photo-carrier relaxation in Mott insulators with short-range spin correlations

    PubMed Central

    Eckstein, Martin; Werner, Philipp

    2016-01-01

    Ultra-fast spectroscopy can reveal the interplay of charges with low energy degrees of freedom, which underlies the rich physics of correlated materials. As a potential glue for superconductivity, spin fluctuations in Mott insulators are of particular interest. A theoretical description of the coupled spin and charge degrees of freedom is challenging, because magnetic order is often only short-lived and short-ranged. In this work we theoretically investigate how the spin-charge interactions influence the relaxation of a two-dimensional Mott-Hubbard insulator after photo-excitation. We use a nonequilibrium variant of the dynamical cluster approximation, which, in contrast to single-site dynamical mean-field theory, captures the effect of short-range correlations. The relaxation time is found to scale with the strength of the nearest-neighbor spin correlations, and can be 10–20 fs in the cuprates. Increasing the temperature or excitation density decreases the spin correlations and thus implies longer relaxation times. This may help to distinguish the effect of spin-fluctuations on the charge relaxation from the influence of other bosonic modes in the solid. PMID:26883536

  7. Electron Diffraction Evidence for the Ordering of Excess Nickel Atoms by Relation to Stoichiometry in Nickel-Rich Beta'-Nial Formation of a Nickel-Aluminum (Ni2al) Superlattices

    NASA Technical Reports Server (NTRS)

    Reynaud, F.

    1988-01-01

    In electron diffraction patterns of nickel-rich beta-NiAl alloys, many anomalies are observed. One of these is the appearance of diffuse intensity maxima between the reflexions of the B2 structure. This is explained by the short-range ordering of the excess nickel atoms on the simple cubic sublattice occupied only by aluminum atoms in the stoichiometric, perfectly ordered NiAl alloy. After annealing Ni 37.5 atomic percent Al and Ni 37.75 atomic percent Al for 1 week at 300 and 400 C, the diffuse intensity maxima transformed into sharp superstructure reflexions. These reflexions are explained by the formation of the four possible variants of an ordered hexagonal superstructure corresponding to the Ni2Al composition. This structure is closely related to the Ni2Al3 structure (same space group) formed by the ordering of vacancies on the nickel sublattice in aluminum-rich beta-NiAl alloys.

  8. Picosecond short-range disordering in isochorically heated aluminum at solid density.

    PubMed

    Mancić, A; Lévy, A; Harmand, M; Nakatsutsumi, M; Antici, P; Audebert, P; Combis, P; Fourmaux, S; Mazevet, S; Peyrusse, O; Recoules, V; Renaudin, P; Robiche, J; Dorchies, F; Fuchs, J

    2010-01-22

    Using ultrafast x-ray probing, we experimentally observed a progressive loss of ordering within solid-density aluminum as the temperature raises from 300 K to >10{4} K. The Al sample was isochorically heated by a short ( approximately ps), laser-accelerated proton beam and probed by a short broadband x-ray source around the Al K edge. The loss of short-range ordering is detected through the progressive smoothing of the time-resolved x-ray absorption near-edge spectroscopy (XANES) structure. The results are compared with two different theoretical models of warm dense matter and allow us to put an upper bound on the onset of ion lattice disorder within the heated solid-density medium of approximately 10 ps. PMID:20366651

  9. Search for exotic short-range interactions using paramagnetic insulators

    SciTech Connect

    Chu, Pinghan; Weisman, E.; Liu, C. -Y.; Long, J. C.

    2015-05-26

    We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique or unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.

  10. Search for exotic short-range interactions using paramagnetic insulators

    DOE PAGES

    Chu, Pinghan; Weisman, E.; Liu, C. -Y.; Long, J. C.

    2015-05-26

    We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique ormore » unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.« less

  11. Eye safe short range standoff aerosol cloud finder.

    SciTech Connect

    Bambha, Ray P.; Schroder, Kevin L.; Reichardt, Thomas A.

    2005-02-01

    Because many solid objects, both stationary and mobile, will be present in an indoor environment, the design of an indoor aerosol cloud finding lidar (light detection and ranging) instrument presents a number of challenges. The cloud finder must be able to discriminate between these solid objects and aerosol clouds as small as 1-meter in depth in order to probe suspect clouds. While a near IR ({approx}1.5-{micro}m) laser is desirable for eye-safety, aerosol scattering cross sections are significantly lower in the near-IR than at visible or W wavelengths. The receiver must deal with a large dynamic range since the backscatter from solid object will be orders of magnitude larger than for aerosol clouds. Fast electronics with significant noise contributions will be required to obtain the necessary temporal resolution. We have developed a laboratory instrument to detect aerosol clouds in the presence of solid objects. In parallel, we have developed a lidar performance model for performing trade studies. Careful attention was paid to component details so that results obtained in this study could be applied towards the development of a practical instrument. The amplitude and temporal shape of the signal return are analyzed for discrimination of aerosol clouds in an indoor environment. We have assessed the feasibility and performance of candidate approaches for a fieldable instrument. With the near-IR PMT and a 1.5-{micro}m laser source providing 20-{micro}J pulses, we estimate a bio-aerosol detection limit of 3000 particles/l.

  12. Short Range Photoassociation of Rb2 by a high power fiber laser

    NASA Astrophysics Data System (ADS)

    Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis

    2016-05-01

    Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.

  13. Short-range Cut-Off of the Summed-Up van der Waals Series

    NASA Astrophysics Data System (ADS)

    Patra, Abhirup; Perdew, John P.

    2015-03-01

    van der Waals interactions are important in typical van der Waals-bound systems such as noble-gas, hydrocarbon, alkali and alkaline-earth dimers. The summed-up van der Waals series works well and gives an accurate result at large separation between two atoms. But it has a strong singularity at short non-zero separation, where the two atoms touch. In this work we remove that singularity with a reasonable and physical choice of the cut-off distance. Only one fitting parameter has been introduced for the short-range cut off. The parameter in our model has been optimized for each system, and a system-averaged value has been used to get the final binding energy curves. When this correction is added to the binding energy curve from the semilocal density functional meta-GGA-MS2, we get vdW- corrected binding energy curve. These curves are compared with the results of other vdW-corrected methods such as PBE-D2 and vdW-DF2 .Binding energy curves are in reasonable agreement with those from experiment. These curves also predict reasonably good equilibrium bond length. Supported by NSF (DMR).

  14. Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips.

    PubMed

    Tuniz, Alessandro; Schmidt, Markus A

    2016-04-01

    We present a broadband and efficient short-range plasmonic directional coupler design, for the delivery and collection of deeply sub-wavelength radiation to tapered plasmonic nanowires. We show a proof-of-concept design using a planar geometry operating at wavelengths between 1.2 -2.4 μm, showing that the propagation characteristics predicted by an Eigenmode analysis are in excellent agreement with finite element simulations. This analytical formulation is straightforward to implement and immediately provides the power-exchange properties of hybrid plasmonic waveguides. An investigation of both waveguide delivery and collection performance to and from a plasmonic nano-tip is performed. We show that this design strategy can be straightforwardly adapted to a realistic hybrid fiber geometry, containing wire diameters more than one order of magnitude larger than the planar geometries, with important applications in all-fiber plasmonic superfocussing, and nonlinear plasmonics. PMID:27137040

  15. Nuclear matrix elements for 0{nu}{beta}{beta} decay with improved short-range correlations

    SciTech Connect

    Kortelainen, M.; Suhonen, J.

    2007-10-12

    Nuclear matrix elements for the neutrinoless double beta minus (0{nu}{beta}{sup -}{beta}{sup -}) decays of all interesting (nearly) spherical nuclei are calculated for the light-neutrino exchange mechanism by using the proton-neutron quasiparticle random-phase approximation (pnQRPA) with a realistic nucleon-nucleon force. The finite size of a nucleon, the higher-order terms of nucleonic weak currents, and the nucleon-nucleon short-range correlations (s.r.c) are taken into account. The s.r.c. are computed by the use of the unitary correlation operator method (UCOM), superior to the traditional Jastrow method. The UCOM computed matrix elements turn out to be considerably larger than the Jastrow computed ones.

  16. Ultrafast short-range disordering of femtosecond-laser-heated warm dense aluminum.

    PubMed

    Leguay, P M; Lévy, A; Chimier, B; Deneuville, F; Descamps, D; Fourment, C; Goyon, C; Hulin, S; Petit, S; Peyrusse, O; Santos, J J; Combis, P; Holst, B; Recoules, V; Renaudin, P; Videau, L; Dorchies, F

    2013-12-13

    We have probed, with time-resolved x-ray absorption near-edge spectroscopy (XANES), a femtosecond-laser-heated aluminum foil with fluences up to 1  J/cm2. The spectra reveal a loss of the short-range order in a few picoseconds. This time scale is compared with the electron-ion equilibration time, calculated with a two-temperature model. Hydrodynamic simulations shed light on complex features that affect the foil dynamics, including progressive density change from solid to liquid (∼10  ps). In this density range, quantum molecular dynamics simulations indicate that XANES is a relevant probe of the ionic temperature. PMID:24483671

  17. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co3TeO6

    NASA Astrophysics Data System (ADS)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sharma, G.; Saha, J.; Patnaik, S.

    2016-01-01

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co3TeO6, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ˜17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable to single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.

  18. Analytical and empirical fluctuation functions of the EEG microstate random walk - Short-range vs. long-range correlations.

    PubMed

    von Wegner, F; Tagliazucchi, E; Brodbeck, V; Laufs, H

    2016-11-01

    We analyze temporal autocorrelations and the scaling behaviour of EEG microstate sequences during wakeful rest. We use the recently introduced random walk approach and compute its fluctuation function analytically under the null hypothesis of a short-range correlated, first-order Markov process. The empirical fluctuation function and the Hurst parameter H as a surrogate parameter of long-range correlations are computed from 32 resting state EEG recordings and for a set of first-order Markov surrogate data sets with equilibrium distribution and transition matrices identical to the empirical data. In order to distinguish short-range correlations (H ≈ 0.5) from previously reported long-range correlations (H > 0.5) statistically, confidence intervals for H and the fluctuation functions are constructed under the null hypothesis. Comparing three different estimation methods for H, we find that only one data set consistently shows H > 0.5, compatible with long-range correlations, whereas the majority of experimental data sets cannot be consistently distinguished from Markovian scaling behaviour. Our analysis suggests that the scaling behaviour of resting state EEG microstate sequences, though markedly different from uncorrelated, zero-order Markov processes, can often not be distinguished from a short-range correlated, first-order Markov process. Our results do not prove the microstate process to be Markovian, but challenge the approach to parametrize resting state EEG by single parameter models. PMID:27485754

  19. Electric field induced short range to long range structural ordering and its influence on the Eu{sup +3} photoluminescence in the lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}

    SciTech Connect

    Kalaskar, Abhijeet; Rao, Badari Narayana; Ranjan, Rajeev; Thomas, Tiju

    2015-06-28

    Eu{sup +3} was incorporated into the lattice of a lead-free ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) as per the nominal formula Na{sub 0.5}Bi{sub 0.5−x}Eu{sub x}TiO{sub 3}. This system was investigated with regard to the Eu{sup +3} photoluminescence (PL) and structural behaviour as a function of composition and electric field. Electric field was found to irreversibly change the features in the PL spectra and also in the x-ray diffraction patterns below the critical composition x = 0.025. Detailed analysis revealed that below the critical composition, electric field irreversibly suppresses the structural heterogeneity inherent of the host matrix NBT and brings about a long range ferroelectric state with rhombohedral (R3c) distortion. It is shown that the structural disorder on the nano-scale opens a new channel for radiative transition which manifests as a new emission line branching off from the main {sup 5}D{sub 0}→{sup 7}F{sub 0} line along with a concomitant change in the relative intensity of the other crystal field induced Stark lines with different J values. The study suggests that Eu{sup +3} luminescence can be used to probe the relative degree of field induced structural ordering in relaxor ferroelectrics and also in high performance piezoelectric alloys where electric field couples very strongly with the lattice and structural degrees of freedom.

  20. Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games

    NASA Astrophysics Data System (ADS)

    Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon

    2016-04-01

    The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.

  1. Short-range cytokine gradients to mimic paracrine cell interactions in vitro.

    PubMed

    Ansorge, Michael; Rastig, Nadine; Steinborn, Ralph; König, Tina; Baumann, Lars; Möller, Stephanie; Schnabelrauch, Matthias; Cross, Michael; Werner, Carsten; Beck-Sickinger, Annette G; Pompe, Tilo

    2016-02-28

    Cell fate decisions in many physiological processes, including embryogenesis, stem cell niche homeostasis and wound healing, are regulated by secretion of small signaling proteins, called cytokines, from source cells to their neighbors or into the environment. Concentration level and steepness of the resulting paracrine gradients elicit different cell responses, including proliferation, differentiation or chemotaxis. For an in-depth analysis of underlying mechanisms, in vitro models are required to mimic in vivo cytokine gradients. We set up a microparticle-based system to establish short-range cytokine gradients in a three-dimensional extracellular matrix context. To provide native binding sites for cytokines, agarose microparticles were functionalized with different glycosaminoglycans (GAG). After protein was loaded onto microparticles, its slow release was quantified by confocal microscopy and fluorescence correlation spectroscopy. Besides the model protein lysozyme, SDF-1 was used as a relevant chemokine for hematopoietic stem and progenitor cell (HSPC) chemotaxis. For both proteins we found gradients ranging up to 50μm from the microparticle surface and concentrations in the order of nM to pM in dependence on loading concentration and affinity modulation by the GAG functionalization. Directed chemotactic migration of cells from a hematopoietic cell line (FDCPmix) and primary murine HSPC (Sca-1(+) CD150(+) CD48(-)) toward the SDF-1-laden microparticles proved functional short-range gradients in a two-dimensional and three-dimensional setting over time periods of many hours. The approach has the potential to be applied to other cytokines mimicking paracrine cell-cell interactions in vitro. PMID:26763375

  2. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2

    PubMed Central

    Billington, David; Ernsting, David; Millichamp, Thomas E.; Lester, Christopher; Dugdale, Stephen B.; Kersh, David; Duffy, Jonathan A.; Giblin, Sean R.; Taylor, Jonathan W.; Manuel, Pascal; Khalyavin, Dmitry D.; Takatsu, Hiroshi

    2015-01-01

    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589

  3. Pel promotes symmetric, short-ranged surface attachment in P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Cooley, B. J.; Thatcher, Travis; Hashmi, Sara; L'Her, Guillaume; Touhami, Ahmed; Provenzano, Daniele; Gordon, Vernita

    2013-03-01

    Bacterial biofilms are surface mounted, multicellular communities of interacting bacteria that are often associated with chronic infections that resist antibiotics and damage host tissue. Bacteria in a biofilm are bound in a matrix of polymeric materials that adhere the bacteria to the surface, give the system spatial structure, and cluster the bacteria near each other. The opportunistic human pathogen Pseudomonas aeruginosa is widely studied as a model biofilm-forming organism. The polymeric matrix of P. aeruginosa strain PAO1 biofilms is dominated by two bacteria-produced extracellular polymers, Pel and Psl. We use both optical and atomic force microscopy to examine the roles of these polymers in very early biofilm development, in the hours after initial surface attachment. In agreement with other researchers, we find that Psl mediates strong attachment to a glass surface. Unexpectedly, we find that Pel promotes symmetric attachment, in the form of the rod-shaped bacteria lying flat on the surface, independently of permanent attachment to the surface. Further, the presence of Pel makes adhesion forces more short-ranged than they are with Psl alone. We suggest that these effects may result through synergistic interactions of Pel and Psl in the polymeric matrix.

  4. Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.

    PubMed

    García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E

    2015-12-01

    Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

  5. Study of the effect of short ranged ordering on the magnetism in FeCr alloys

    NASA Astrophysics Data System (ADS)

    Jena, Ambika Prasad; Sanyal, Biplab; Mookerjee, Abhijit

    2014-01-01

    For the study of magnetism in systems where the local environment plays an important role, we propose a marriage between the Monte Carlo simulation and Zunger's special quasi-random structures. We apply this technique on disordered FeCr alloys and show that our estimates of the transition temperature is in good agreement with earlier experiments.

  6. Divacancies and the hydrogenation of Mg-Ti films with short range chemical order

    SciTech Connect

    Leegwater, H.; Schut, H.; Eijt, S. W. H.; Egger, W.; Baldi, A.; Dam, B.

    2010-03-22

    We obtained evidence for the partial chemical segregation of as-deposited and hydrogenated Mg{sub 1-y}Ti{sub y} films (0<=y<=0.30) into nanoscale Ti and Mg domains using positron Doppler-broadening. We exclusively monitor the hydrogenation of Mg domains, owing to the large difference in positron affinity for Mg and Ti. The electron momentum distribution broadens significantly upon transformation to the MgH{sub 2} phase over the whole compositional range. This reveals the similarity of the metal-insulator transition for rutile and fluorite MgH{sub 2}. Positron lifetime studies show the presence of divacancies in the as-deposited and hydrogenated Mg-Ti metal films. In conjunction with the relatively large local lattice relaxations we deduce to be present in fluorite MgH{sub 2}, these may be responsible for the fast hydrogen sorption kinetics in this MgH{sub 2} phase.

  7. Short-range order in amorphous SiO{sub x} by x ray photoelectron spectroscopy

    SciTech Connect

    Novikov, Yu. N.; Gritsenko, V. A.

    2011-07-01

    The Si 2p x ray photoelectron spectra of SiO{sub x} with a different composition of 0 {<=} x {<=} 2 have been studied experimentally and theoretically. The SiO{sub x} films were prepared by low-pressure chemical vapor deposition from SiH{sub 4} and N{sub 2}O source at 750 deg. C. Neither random bonding nor random mixture models can adequately describe the structure of these compounds. The interpretation of the experimental results is discussed according to a large scale potential fluctuation due to the spatial variation of chemical composition in SiO{sub x}.

  8. Short-range effect at the semi-coherent metal/its native oxide interface

    NASA Astrophysics Data System (ADS)

    Yin, Deqiang; Wu, Mingxia; Cen, Wanglai; Li, Hongping; Yang, Yi; Fang, Hui

    2016-08-01

    Fundamentally understanding the variations of atomistic and electronic properties at the interface of metal/its native oxide systems plays a critical role in many important technological processes and applications, such as oxidization, corrosion, chemical catalysis, fuel reactions, and thin-film process. Here, we have adopted the representatively semi-coherent Cu2O(111)/Cu(100) interface and demonstrated, by first-principles calculations on energetic and electronic structures of a total 9 candidate interfacial models, that the preferred geometries (i.e., that having the largest adhesion energy) are those possess the shortest interfacial distance between O terminated Cu2O and substrate Cu. Using several analytic methods, we have thoroughly characterized the variation of electronic states from the interface to Cu2O constituent, and determined that the large degree of charge accumulation at the interface is at the expense of depletion of charge in both substrate Cu and neighboring Cu (Cu2O) to the interfacial O atoms. Strikingly, in Cu2O the conducting states appear only in monolayer proximal to Cu2O/Cu interface, as well, the second layer remains in semi-conducting state as its bulk, indicating a short-range effect in electronic properties induced by Cu substrate. The theoretical calculations provide insight into the complex electronic properties of the functional Cu2O/Cu interface, which was quite difficult to observe by experimental methods alone. The unique properties are of practical importance for further understanding and improvement of such a promising class of metal/native oxide interface at the atomic scale.

  9. Analysis of short range entangled topological phases protected by time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Dick, Sebastian

    We discuss a short-range entangled topological phase in 3+1 dimensions that is protected by time-reversal symmetry. Two models are compared that realize this phase: The first is a construction developed by Chen, Gu, Liu and Wen, which encodes the system's topological properties in the representation of the symmetry group. The second theory uses a non-linear sigma model in which the distinct topological phases differ by the way the symmetry acts on the order parameter. Both theories have in common that the modeled phases are in one to one correspondence with the elements of the co-homology group Hd+1(Z2 T, UT(1)). In this work, we extend the Chen-Gu construction to 3+1 dimensional systems. Furthermore, we show that both models coincide with respect to their topological properties. This is proved by comparing spin-flip processes and their associated topological phase factors. We derive spin-flip operators on the surface of the (3+1)-dimensional Chen-Gu construction that commute with time-reversal symmetry. To implement spin-flip processes in the non-linear sigma model, we interpolate spin-configurations from a discrete, triangular lattice into the continuum. We proceed by analyzing the phases, generated by the theta-term, for spacetime configurations of the O(4) order parameter that correspond to these spin-flip processes.

  10. Straightforward biodegradable nanoparticle generation through megahertz-order ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Forde, Gareth; Friend, James; Williamson, Tom

    2006-08-01

    Simple and reliable formation of biodegradable nanoparticles formed from poly-ɛ-caprolactone was achieved using 1.645MHz piston atomization of a source fluid of 0.5% w/v of the polymer dissolved in acetone; the particles were allowed to descend under gravity in air 8cm into a 1mM solution of sodium dodecyl sulfate. After centrifugation to remove surface agglomerations, a symmetric monodisperse distribution of particles ϕ 186nm (SD =5.7, n =6) was obtained with a yield of 65.2%.

  11. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Malinverno, Alberto

    2016-09-01

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein, we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Short-range advective migration can increase the amount of methane delivered to sands as compared to the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.

  12. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGES

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Malinverno, Alberto

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  13. Manganese Atom Ordered Monolayer on Wurtzite Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Chinchore, Abhijit; Wang, Kangkang; Lin, Wenzhi; Pak, Jeongihm; Liu, Yinghao; Smith, Arthur

    2009-03-01

    While transition-metal-doped gallium nitride (GaN) thin films have been explored as potential dilute magnetic semiconductor bulk layers, the structural and magnetic effects of various transition metal adatoms on GaN surfaces are not even well understood. In this work, we investigate the sub-monolayer deposition of manganese (Mn) onto the N-polar wurtzite GaN (000-1) 1x1 surface. The growth is monitored in-situ using reflection high energy electron diffraction (RHEED). A fresh GaN(000-1) 1x1 surface is prepared by rf nitrogen plasma-assisted MBE followed by annealing to remove excess gallium adatoms. The atomically flat GaN surface, held at 200^o C, is then exposed to submonolayer doses of Mn. The deposition rate is maintained at 0.007 ML per second, and a 3x pattern develops along [10-10]; whereas, only 1x is seen along [11-20]. Analysis of the RHEED pattern and subsequent modeling indicates a 3 x3 R 30^o structure consisting of 2/3 ML Mn atoms in a row-like arrangement having spacing 3a/2 along rows and 3a/2 between rows. Scanning tunneling microscopy/spectroscopy studies are currently underway to explore this surface further. This work is supported by DOE (Grant No.DE-FG02-06ER46317) and NSF (Grant No. 0730257).

  14. Atomic ordering periodicity and catalytic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Petkov, Valeri

    2008-03-01

    Often nanosized particles of crystals are catalytically very active while the corresponding crystals are not. A typical example is gold. The enhanced catalytic performance of nanosized particles, however, does not come merely from their greatly enhanced surface-to-volume ratio. We would like to draw attention to the often overlooked fact that nanosized particles of crystals do not necessarily possess the periodic 3D structure of their bulk counterparts, and this too may impact their catalytic properties substantially. In particular, nanoparticles that do not have a periodic 3D structure may not come in a well-defined, faceted shape, i.e. may not be terminated by well-defined (usually high energy) atomic planes, as crystalline objects of the same size would be. Hence, nanoparticles may be catalytically more (or less) active than ``nanosized'' crystals. Results from recent structure studies (synchrotron XRD and computer simulations) on 1 -- 5 nm Ru, Au and Pt particles will be presented as evidence.

  15. a Field-Theoretical Investigation of 2-D Coulomb Systems with Short-Range Yukawa Repulsion.

    NASA Astrophysics Data System (ADS)

    Jargocki, Krzysztof Piotr

    The two-dimensional Coulomb gas, consisting of positive and negative charges, is an important system which, on one hand, is equivalent to the vortex sector of the planar X-Y model, and, on the other, to the sine-Gordon field theory. In most treatments the charged particles are assumed to have a repulsive hard core which prevents arbitrarily close approaches. In the present work a new regularization scheme based on a soft short-range Yukawa repulsion between the Coulomb gas particles is presented. This formulation is transcribed into a local sine-Gordon-like field theory involving two Bose fields, one the original massless sine -Gordon field corresponding to the long-range Coulomb interaction and an auxiliary massive field corresponding to the short -range Yukawa repulsion. The resulting Lagrangian is not Hermitian. Using the techniques of functional integration, an effective field theory involving the Coulomb field alone is obtained by integrating out the massive field. The resulting Lagrangian is now Hermitian. Then a generalization of Peierls' inequality is used to make a variational calculation of the ground state energy of the Coulomb system. Unlike in the pure sine-Gordon case the theory has a well-defined ground state energy for (beta)q('2) > 2 (or (beta)c('2) > 8(pi)). A new method is used to derive the Kosterlitz -Thouless renormalization group equations, starting with the original sine-Gordon-like theory. The equations are identical to those found previously by other authors. A wave function renormalization is found to be necessary in addition to the normal ordering discussed by Coleman. A fermionized version of the theory is obtained, using the dictionary provided by Kogut and Susskind, which involves two Fermi fields and an electromagnetic potential. Position -space correlation functions are calculated at the critical point. The effective potential is computed in the one -loop approximation. A nonlinear field theory with derivative couplings is found to

  16. Chain-melting phase transition and short-range molecular interactions in phospholipid foam bilayers.

    PubMed

    Exerowa, Dotchi

    2002-02-25

    Occurrence of two-dimensional chain melting phase transition in foam bilayers was established for the first time. Microscopic horizontal foam bilayers [Newton black films (NBF)] were investigated by the microinterferometric method of Scheludko-Exerowa. The foam bilayers were formed from water-ethanol solutions of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine (Egg PC) and samples of amniotic fluid (AF) at different temperatures. The influence of temperature on the foam bilayer thickness h(w) and on the critical concentration Cc for formation of foam bilayer was studied. It was shown that in the range of the main phase transition the temperature dependence of h(w) and C(c) changed specifically in the case of DMPC and DPPC foam bilayers. The thickness of the foam bilayers increased with decreasing temperature in the range of the main phase transition due to the melting of hydrocarbon tails of phospholipid molecules. These changes took place at the temperatures of the bulk chain-melting phase transitions, as determined by differential scanning calorimetry (DSC) for both aqueous, and water/ethanol DMPC, DPPC, and DPPC dispersions. An effect of the 'disperse medium' on h(w) was found for foam bilayers from DPPC. The results that foam bilayers could have different thickness at different temperatures disproved the current concept that NBF acquired constant thickness at concentrations higher than C(el,cr). The data for Cc were analysed on the basis of the hole-nucleation theory of bilayer stability of Kashchiev and Exerowa. This theory considered the amphiphile bilayer as a two-dimensional ordered system with short-range molecular interactions between the first neighbour molecules (as in a crystal). The short-range molecular interactions were presented by the parameter binding energy Q of an amphiphile molecule in the bilayer. The binding energy Q of two neighbouring phospholipids was calculated for the gel (30

  17. Investigating short-range magnetism in strongly correlated materials via magnetic pair distribution function analysis and ab initio theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin; Page, Katharine; Brunelli, Michela; Staunton, Julie; Billinge, Simon

    Short-range magnetic correlations are known to exist in a variety of strongly correlated electron systems, but our understanding of the role they play is challenged by the difficulty of experimentally probing such correlations. Magnetic pair distribution function (mPDF) analysis is a newly developed neutron total scattering method that can reveal short-range magnetic correlations directly in real space, and may therefore help ameliorate this difficulty. We present temperature-dependent mPDF measurements of the short-range magnetic correlations in the paramagnetic phase of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. We observe significant correlations on a ~1 nm length scale that differ substantially from the low-temperature long-range-ordered spin arrangement. With no free parameters, ab initio calculations using the self-interaction-corrected local spin density approximation of density functional theory quantitatively reproduce the magnetic correlations to a high degree of accuracy. These results yield valuable insight into the magnetic exchange in MnO and showcase the utility of the mPDF technique for studying magnetic properties of strongly correlated electron systems.

  18. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  19. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants.

    PubMed

    Burgos-Mármol, J Javier; Solans, Conxita; Patti, Alessandro

    2016-06-21

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2 (+) CH3SO4 (-), which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC. PMID:27334191

  20. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants

    NASA Astrophysics Data System (ADS)

    Burgos-Mármol, J. Javier; Solans, Conxita; Patti, Alessandro

    2016-06-01

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2+ CH3SO4-, which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  1. Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction

    NASA Astrophysics Data System (ADS)

    Xuan, Y.; Cluckie, I. D.; Wang, Y.

    2009-03-01

    Advances in mesoscale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1) The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2) The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3) the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system.

  2. Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction

    NASA Astrophysics Data System (ADS)

    Cluckie, I. D.; Xuan, Y.; Wang, Y.

    2006-10-01

    Advances in meso-scale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1) The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2) The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3) the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system.

  3. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations.

  4. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range.

  5. Influence of short-range correlations in neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Van Cuyck, T.; Jachowicz, N.; González-Jiménez, R.; Martini, M.; Pandey, V.; Ryckebusch, J.; Van Dessel, N.

    2016-08-01

    Background: Nuclear short-range correlations (SRCs) are corrections to mean-field wave functions connected with the short-distance behavior of the nucleon-nucleon interaction. These SRCs provide corrections to lepton-nucleus cross sections as computed in the impulse approximation (IA). Purpose: We want to investigate the influence of SRCs on the one-nucleon (1 N ) and two-nucleon (2 N ) knockout channels for muon-neutrino induced processes on a 12 target at energies relevant for contemporary measurements. Method: The model adopted in this work corrects the impulse approximation for SRCs by shifting the complexity induced by the SRCs from the wave functions to the operators. Due to the local character of the SRCs, it is argued that the expansion of these operators can be truncated at a low order. Results: The model is compared with electron-scattering data, and two-particle two-hole responses are presented for neutrino scattering. The contributions from the vector and axial-vector parts of the nuclear current as well as the central, tensor, and spin-isospin parts of the SRCs are studied. Conclusions: Nuclear SRCs affect the 1 N knockout channel and give rise to 2 N knockout. The exclusive neutrino-induced 2 N knockout cross section of SRC pairs is shown and the 2 N knockout contribution to the QE signal is calculated. The strength occurs as a broad background which extends into the dip region.

  6. Demonstration of micro-projection enabled short-range communication system for 5G.

    PubMed

    Chou, Hsi-Hsir; Tsai, Cheng-Yu

    2016-06-13

    A liquid crystal on silicon (LCoS) based polarization modulated image (PMI) system architecture using red-, green- and blue-based light-emitting diodes (LEDs), which offers simultaneous micro-projection and high-speed data transmission at nearly a gigabit, serving as an alternative short-range communication (SRC) approach for personal communication device (PCD) application in 5G, is proposed and experimentally demonstrated. In order to make the proposed system architecture transparent to the future possible wireless data modulation format, baseband modulation schemes such as multilevel pulse amplitude modulation (M-PAM), M-ary phase shift keying modulation (M-PSK) and M-ary quadrature amplitude modulation (M-QAM) which can be further employed by more advanced multicarrier modulation schemes (such as DMT, OFDM and CAP) were used to investigate the highest possible data transmission rate of the proposed system architecture. The results demonstrated that an aggregative data transmission rate of 892 Mb/s and 900 Mb/s at a BER of 10^(-3) can be achieved by using 16-QAM baseband modulation scheme when data transmission were performed with and without micro-projection simultaneously. PMID:27410326

  7. Effective short-range Coulomb correction to model the aggregation behavior of ionic surfactants.

    PubMed

    Burgos-Mármol, J Javier; Solans, Conxita; Patti, Alessandro

    2016-06-21

    We present a short-range correction to the Coulomb potential to investigate the aggregation of amphiphilic molecules in aqueous solutions. The proposed modification allows to quantitatively reproduce the distribution of counterions above the critical micelle concentration (CMC) or, equivalently, the degree of ionization, α, of the micellar clusters. In particular, our theoretical framework has been applied to unveil the behavior of the cationic surfactant C24H49N2O2 (+) CH3SO4 (-), which offers a wide range of applications in the thriving and growing personal care market. A reliable and unambiguous estimation of α is essential to correctly understand many crucial features of the micellar solutions, such as their viscoelastic behavior and transport properties, in order to provide sound formulations for the above mentioned personal care solutions. We have validated our theory by performing extensive lattice Monte Carlo simulations, which show an excellent agreement with experimental observations. More specifically, our coarse-grained model is able to reproduce and predict the complex morphology of the micelles observed at equilibrium. Additionally, our simulation results disclose the existence of a transition from a monodisperse to a bidisperse size distribution of aggregates, unveiling the intriguing existence of a second CMC.

  8. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range. PMID:19045766

  9. Specificity in S-Nitrosylation: A Short-Range Mechanism for NO Signaling?

    PubMed Central

    Araújo, Inês M.; Izquierdo-Álvarez, Alicia; Hernansanz-Agustín, Pablo; Lamas, Santiago; Serrador, Juan M.

    2013-01-01

    Abstract Significance: Nitric oxide (NO) classical and less classical signaling mechanisms (through interaction with soluble guanylate cyclase and cytochrome c oxidase, respectively) operate through direct binding of NO to protein metal centers, and rely on diffusibility of the NO molecule. S-Nitrosylation, a covalent post-translational modification of protein cysteines, has emerged as a paradigm of nonclassical NO signaling. Recent Advances: Several nonenzymatic mechanisms for S-nitrosylation formation and destruction have been described. Enzymatic mechanisms for transnitrosylation and denitrosylation have been also studied as regulators of the modification of specific subsets of proteins. The advancement of modification-specific proteomic methodologies has allowed progress in the study of diverse S-nitrosoproteomes, raising clues and questions about the parameters for determining the protein specificity of the modification. Critical Issues: We propose that S-nitrosylation is mainly a short-range mechanism of NO signaling, exerted in a relatively limited range of action around the NO sources, and tightly related to the very controlled regulation of subcellular localization of nitric oxide synthases. We review the nonenzymatic and enzymatic mechanisms that support this concept, as well as physiological examples of mammalian systems that illustrate well the precise compartmentalization of S-nitrosylation. Future Directions: Individual and proteomic studies of protein S-nitrosylation-based signaling should take into account the subcellular localization in order to gain further insight into the functional role of this modification in (patho)physiological settings. Antioxid. Redox Signal. 19, 1220–1235. PMID:23157283

  10. Human motor control consequences of thixotropic changes in muscular short-range stiffness.

    PubMed

    Axelson, H W; Hagbarth, K E

    2001-08-15

    1. The primary aim of the present study was to explore whether in healthy subjects the muscle contractions required for unrestrained voluntary wrist dorsiflexions are adjusted in strength to thixotropy-dependent variations in the short-range stiffness encountered in measurements of passive torque resistance to imposed wrist dorsiflexions. 2. After a period of rest, only the first movement in a series of passive wrist dorsiflexions of moderate amplitude exhibited clear signs of short-range stiffness in the torque response. During analogous types of voluntary movements, the extensor EMG during the first movement after rest showed a steep initial rise of activity, which apparently served to compensate for the short-range stiffness. 3. The passive torque resistance to minute repetitive wrist dorsiflexions (within the range of short-range stiffness) was markedly reduced after various types of mechanical agitation. During analogous low-amplitude voluntary wrist dorsiflexions the extensor EMG signals were weaker after than before agitation. 4. Mechanical agitation also led to enhancement of passive dorsiflexion movements induced by weak constant torque pulses. In an analogous way, the movement-generating capacity of weak voluntary extensor activations (as determined by EMG recordings) was greatly enhanced by mechanical agitation. 5. The signals from a force transducer probe pressed against the wrist flexor tendons--during passive wrist dorsiflexions--revealed short-range stiffness responses which highly resembled those observed in the torque measurements, suggesting that the latter to a large extent emanated from the stretched, relaxed flexor muscles. During repetitive stereotyped voluntary wrist dorsiflexions, a close correspondence was observed between the degree of short-range stiffness as sensed by the wrist flexor tension transducer and the strength of the initial extensor activation required for movement generation. 6. The results provide evidence that the central

  11. Strong atomic ordering in Gd-doped GaN

    SciTech Connect

    Ishimaru, Manabu; Higashi, Kotaro; Hasegawa, Shigehiko; Asahi, Hajime; Sato, Kazuhisa; Konno, Toyohiko J.

    2012-09-03

    Gd-doped GaN (Ga{sub 1-x}Gd{sub x}N) thin films were grown on a GaN(001) template by radio frequency plasma-assisted molecular beam epitaxy and characterized by means of x-ray diffraction (XRD) and transmission electron microscopy (TEM). Three samples with a different Gd composition were prepared in this study: x = 0.02, 0.05, and 0.08. XRD and TEM results revealed that the low Gd concentration GaN possesses the wurtzite structure. On the other hand, it was found that an ordered phase with a quadruple-periodicity along the [001] direction in the wurtzite structure is formed throughout the film with x = 0.08. We proposed the atomistic model for the superlattice structure observed here.

  12. Second-order virial expansion for an atomic gas in a harmonic waveguide

    NASA Astrophysics Data System (ADS)

    Kristensen, Tom; Leyronas, Xavier; Pricoupenko, Ludovic

    2016-06-01

    The virial expansion for cold two-component Fermi and Bose atomic gases is considered in the presence of a waveguide and in the vicinity of a Feshbach resonance. The interaction between atoms and the coupling with the Feshbach molecules is modeled using a quantitative separable two-channel model. The scattering phase shift in an atomic waveguide is defined. This permits us to extend the Beth-Uhlenbeck formula for the second-order virial coefficient to this inhomogeneous case.

  13. Short-range nuclear structure and the EMC effect: understanding the connection

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia

    2013-04-01

    Inclusive electron scattering has proven to be an exceptional tool for studying short range structure in nuclei. Measurements of the EMC effect (at x < 1) are aimed at studying in-medium modification of the nucleon structure functions. On the other hand, inclusive measurements at x>1 focus on short range correlations (SRCs) between nucleons. Recent data on the EMC effect from Jefferson Lab suggest a sensitivity to short range nuclear structure related to NN correlations at x>1. The high precision results on the EMC effect and the ratios at x>1 have a linear relationship, suggesting a common physics explanation. Results from both experiments will be reviewed, the meaning of the correlation explored, plans for future measurements will be discussed.

  14. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  15. Bound States of Spinless Particles in a Short-Range Potential

    NASA Astrophysics Data System (ADS)

    Hassanabadi, Hassan; de Castro, Antonio Soares

    2015-04-01

    With a general mixing of vector and scalar couplings in a two-dimensional world, a short-range potential is used to explore certain features of the bound states of a spinless particle. Bound-state solutions are found in terms of the Gauss hypergeometric series when the potential parameters obey a certain constraint relation limiting the dosage of a vector coupling. The appearance of the Schiff-Snyder-Weinberg effect for a strong vector coupling and a short-range potential as well as its suppression by the addition of a scalar coupling is discussed.

  16. Thermoreversible Gels Composed of Colloidal Silica Rods with Short-Range Attractions.

    PubMed

    Murphy, Ryan P; Hong, Kunlun; Wagner, Norman J

    2016-08-23

    Dynamic arrest transitions of colloidal suspensions containing nonspherical particles are of interest for the design and processing of various particle technologies. To better understand the effects of particle shape anisotropy and attraction strength on gel and glass formation, we present a colloidal model system of octadecyl-coated silica rods, termed as adhesive hard rods (AHR), which enables control of rod aspect ratio and temperature-dependent interactions. The aspect ratios of silica rods were controlled by varying the initial TEOS concentration following the work of Kuijk et al. (J. Am. Chem. Soc., 2011, 133, 2346-2349) and temperature-dependent attractions were introduced by coating the calcined silica rods with an octadecyl-brush and suspending in tetradecane. The rod length and aspect ratio were found to increase with TEOS concentration as expected, while other properties such as the rod diameter, coating coverage, density, and surface roughness were nearly independent of the aspect ratio. Ultrasmall angle X-ray scattering measurements revealed temperature-dependent attractions between octadecyl-coated silica rods in tetradecane, as characterized by a low-q upturn in the scattered intensity upon thermal quenching. Lastly, the rheology of a concentrated AHR suspension in tetradecane demonstrated thermoreversible gelation behavior, displaying a nearly 5 orders of magnitude change in the dynamic moduli as the temperature was cycled between 15 and 40 °C. The adhesive hard rod model system serves as a tunable platform to explore the combined influence of particle shape anisotropy and attraction strength on the dynamic arrest transitions in colloidal suspensions with thermoreversible, short-range attractions. PMID:27466883

  17. Two-dimensional short-range disordered crystalline networks from flexible molecular modules.

    PubMed

    Ecija, David; Vijayaraghavan, Saranyan; Auwärter, Willi; Joshi, Sushobhan; Seufert, Knud; Aurisicchio, Claudia; Bonifazi, Davide; Barth, Johannes V

    2012-05-22

    Studies of complex condensed matter systems have led to the discovery of materials of unexpected spatial organization as glasses, glassy crystals, quasicrystals, and protein and virus crystals. Here, we present two-dimensional (2D) short-range disordered molecular crystalline networks, which, regarding spatial organization, can be considered as surface analogues of 3D glassy crystals. In particular, the deposition of a flexible molecular module on Cu(111) gives rise to distinct phases whose characteristics have been examined in real space by scanning tunneling microscopy: a 2D short-range distortional disordered crystalline network and a 2D short-range orientational disordered crystalline network, respectively. Both phases exhibit a random arrangement of nanopores that are stabilized by the simultaneous presence of metal-organic and pyridyl-pyridyl interactions. The 2D short-range distortional disordered crystalline network displayed intriguing flexibility, as probed by the STM tip that modifies the pore shape, a prerequisite for adaptive behavior in host-guest processes.

  18. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction

    NASA Astrophysics Data System (ADS)

    Guo, J. L.; Zhang, X. Z.

    2016-09-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented.

  19. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction.

    PubMed

    Guo, J L; Zhang, X Z

    2016-01-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050

  20. Future directions for probing two and three nucleon short-range correlations at high energies

    SciTech Connect

    Frankfurt, Leonid; Sargsian, Misak; Strikman, Mark

    2008-10-13

    We summarize recent progress in the studies of the short-rang correlations (SRC) in nuclei in high energy electron and hadron nucleus scattering and suggest directions for the future high energy studies aimed at establishing detailed structure of two-nucleon SRCs, revealing structure of three nucleon SRC correlations and discovering non-nucleonic degrees of freedom in nuclei.

  1. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction

    PubMed Central

    Guo, J. L.; Zhang, X. Z.

    2016-01-01

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented. PMID:27596050

  2. Short-range NN and N. Delta. correlations in pion double charge exchange (DCX)

    SciTech Connect

    Johnson, M.B.

    1990-01-01

    I will review several important results related to the short-range nucleon-nucleon and delta-nucleon interaction that have been obtained from recent studies of pion double charge exchange in selected nuclei. 32 refs., 5 figs., 3 tabs.

  3. Atomic Ordering in InGaN Alloys within Nanowire Heterostructures.

    PubMed

    Woo, Steffi Y; Bugnet, Matthieu; Nguyen, Hieu P T; Mi, Zetian; Botton, Gianluigi A

    2015-10-14

    Ternary III-nitride based nanowires (NWs) are promising for optoelectronic applications by offering advantageous design and control over composition, structure, and strain. Atomic-level chemical ordering in wurtzite InGaN alloys along the c-plane direction with a 1:1 periodicity within InGaN/GaN NW heterostructures was investigated by scanning transmission electron microscopy. Atomic-number-sensitive imaging contrast was used to simultaneously assign the In-rich and Ga-rich planes and determine the crystal polarity to differentiate unique sublattice sites. The nonrandom occupation of the c-planes in the InGaN alloys is confirmed by the occurrence of additional superlattice spots in the diffraction pattern within the ternary alloy. Compositional modulations in the ordered InGaN was further studied using atomic-resolution elemental mapping, outlining the substantial In-enrichment. Confirming the preferential site occupation of In-atoms provides experimental validation for the previous theoretical model of ordered InGaN alloys in bulk epilayers based on differences in surface site energy. Therefore, this study strongly suggests that atomic ordering in InGaN has a surface energetics-induced origin. Optimization of atomic ordering, in particular in III-nitride NW heterostructures, could be an alternative design tool toward desirable structural and compositional properties for various device applications operating at longer visible wavelengths.

  4. Scanning Transmission Electron Microscopy Using Selective High-Order Laue Zones: Three-Dimensional Atomic Ordering in Sodium Cobaltate

    NASA Astrophysics Data System (ADS)

    Huang, F.-T.; Gloter, A.; Chu, M.-W.; Chou, F. C.; Shu, G. J.; Liu, L.-K.; Chen, C. H.; Colliex, C.

    2010-09-01

    A new scanning transmission electron microscopy (STEM) imaging technique using high-order Laue zones (named HOLZ-STEM), a diffraction contrast which has been strenuously avoided or minimized in traditional STEM imaging, can be used to obtain the additional 1D periodic information along the electron propagation axis without sacrificing atomic resolution in the lateral (2D) dimension. HOLZ-STEM has been demonstrated to resolve the 3D long-range Na ordering of Na0.71CoO2. Direct evidence of spiral-like Na-trimer chains twisting along the c axis is unambiguously established in real space.

  5. Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking

    NASA Astrophysics Data System (ADS)

    Read, N.

    2014-09-01

    Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the

  6. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review.

    PubMed

    Gu, Changzhan

    2016-01-01

    Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends. PMID:27472330

  7. Cellular mechanisms of netrin function: long-range and short-range actions.

    PubMed

    Kennedy, T E

    2000-01-01

    Netrins are secreted proteins that direct axon extension and cell migration during neural development. They are bifunctional cues that act as an attractant for some cell types and as a repellent for others. Several lines of evidence suggest that two classes of receptors, the deleted in colorectal cancer (DCC) family and the UNC-5 family, mediate the attractant and repellent response to netrin. Although netrins were first identified as diffusible long-range cues for developing axons, recent findings provide evidence that they also function as short-range cues close to the surface of the cells that produce them. This short-range function of netrin contributes to guiding neurite outgrowth and mediating cell-cell interactions during development and perhaps also in adults.

  8. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    PubMed Central

    Gu, Changzhan

    2016-01-01

    Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends. PMID:27472330

  9. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review.

    PubMed

    Gu, Changzhan

    2016-07-26

    Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW) radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.

  10. Towards numerically accurate many-body perturbation theory: Short-range correlation effects

    SciTech Connect

    Gulans, Andris

    2014-10-28

    The example of the uniform electron gas is used for showing that the short-range electron correlation is difficult to handle numerically, while it noticeably contributes to the self-energy. Nonetheless, in condensed-matter applications studied with advanced methods, such as the GW and random-phase approximations, it is common to neglect contributions due to high-momentum (large q) transfers. Then, the short-range correlation is poorly described, which leads to inaccurate correlation energies and quasiparticle spectra. To circumvent this problem, an accurate extrapolation scheme is proposed. It is based on an analytical derivation for the uniform electron gas presented in this paper, and it provides an explanation why accurate GW quasiparticle spectra are easy to obtain for some compounds and very difficult for others.

  11. Short-range photoassociation from the inner wall of the lowest triplet potential of 85Rb2

    NASA Astrophysics Data System (ADS)

    Carollo, R. A.; Carini, J. L.; Eyler, E. E.; Gould, P. L.; Stwalley, W. C.

    2016-10-01

    Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck–Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck–Condon factors (FCFs) from the highest-energy bound state can almost precisely reproduce FCFs from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our current experimental conditions. We predict from FCFs that the strongest of these weaker short-range photoassociation transitions are one order of magnitude below our current sensitivity.

  12. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  13. Short range and proximity sensor for autonomous rendez-vous and docking

    NASA Astrophysics Data System (ADS)

    Flamenbaum, S.; Bomer, T.; Jamet, J.; Turon, P.; Krebs, J. P.

    1986-10-01

    Rendezvous and docking (RVD) sensors have currently been the subject of investigation on the part of MATRA and SODERN. The paper presents the 'future flight sensor' together with estimates of accuracy, mass, power, and reliability. The imager sensor for the short range and proximity phases of RVD appears to be the most suitable and promising in terms of performance capability. Moreover, this concept conforms to the present-day Columbus and Hermes specifications.

  14. Soviet short-range nuclear forces: flexible response or flexible aggression. Student essay

    SciTech Connect

    Smith, T.R.

    1987-03-23

    This essay takes a critical look at Soviet short-range nuclear forces in an effort to identify Soviet capabilities to fight a limited nuclear war with NATO. From an analysis of Soviet military art, weapon-system capabilities and tactics, the author concludes that the Soviets have developed a viable limited-nuclear-attack option. Unless NATO reacts to this option, the limited nuclear attack may become favored Soviet option and result in the rapid defeat of NATO.

  15. Carrier-wave Rabi-flopping signatures in high-order harmonic generation for alkali atoms.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-04-10

    We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors. PMID:25910125

  16. Carrier-wave Rabi-flopping signatures in high-order harmonic generation for alkali atoms.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Zimmermann, T; Lewenstein, M; Roso, L; Krausz, F

    2015-04-10

    We present a theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors.

  17. Atomic-Resolution Kinked Structure of an Alkylporphyrin on Highly Ordered Pyrolytic Graphite.

    PubMed

    Chin, Yiing; Panduwinata, Dwi; Sintic, Maxine; Sum, Tze Jing; Hush, Noel S; Crossley, Maxwell J; Reimers, Jeffrey R

    2011-01-20

    The atomic structure of the chains of an alkyl porphyrin (5,10,15,20-tetranonadecylporphyrin) self-assembled monolayer (SAM) at the solid/liquid interface of highly ordered pyrolytic graphite (HOPG) and 1-phenyloctane is resolved using calibrated scanning tunneling microscopy (STM), density functional theory (DFT) image simulations, and ONIOM-based geometry optimizations. While atomic structures are often readily determined for porphyrin SAMs, the determination of the structure of alkyl-chain connections has not previously been possible. A graphical calibration procedure is introduced, allowing accurate observation of SAM lattice parameters, and, of the many possible atomic structures modeled, only the lowest-energy structure obtained was found to predict the observed lattice parameters and image topography. Hydrogen atoms are shown to provide the conduit for the tunneling current through the alkyl chains.

  18. High-order harmonic generation from Rydberg atoms in inhomogeneous fields.

    PubMed

    Wang, Zhe; He, Lixin; Luo, Jianghua; Lan, Pengfei; Lu, Peixiang

    2014-10-20

    We theoretically investigate the high-order harmonic generation (HHG) from Rydberg atoms considering the spatial inhomogeneity of the driving field. It is found that in the inhomogeneous field, the effect of the cutoff extension in the harmonic spectrum from Rydberg atoms can be extended to multi-cycle regime, while in the homogeneous field case, the extension of the harmonic cutoff is limited to the few-cycle regime (less than two optical cycles). The underlying physics of the cutoff extension from Rydberg atoms in the inhomogeneous field is analyzed based on the classical and quantum-mechanical models. Furthermore, by optimizing the field inhomogeneity, the electron dynamics can be well controlled to generate a smooth supercontinuum in the extended spectral region. This can support the efficient generation of isolated attosecond pulses in Rydberg atoms from multi-cycle laser fields.

  19. Atomic ordering in the phases of a nickel-chromium-based superalloy

    NASA Astrophysics Data System (ADS)

    Goman'kov, V. I.; Nosova, G. I.; Rtishchev, V. V.; Manaenkov, S. E.; Fykin, L. E.

    2008-12-01

    The distribution of alloying atoms over the sites of the ordered crystal lattices of the γ' phase and the Ni2Cr superstructure that form during aging of the EK78 superalloy is determined by neutron diffraction, and their long-range order parameters are measured. The size, shape, and orientation of the forming γ'-phase precipitates and the ordered matrix are determined by electron microscopy. The mechanism by which the ordered phases in the EK78 alloy form during complex heat treatment is described.

  20. Resolving all-order method convergence problems for atomic physics applications

    SciTech Connect

    Gharibnejad, H.; Derevianko, A.; Eliav, E.; Safronova, M. S.

    2011-05-15

    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for a large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction (CI)+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct inversion of iterative subspace. Examples are presented for B, Al, Zn{sup +}, and Yb{sup +}. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications.

  1. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions...

  2. Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses.

    PubMed

    Arguin, L-P; Newman, C M; Stein, D L

    2015-10-30

    We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process. PMID:26565493

  3. Thermodynamic Identities and Symmetry Breaking in Short-Range Spin Glasses

    NASA Astrophysics Data System (ADS)

    Arguin, L.-P.; Newman, C. M.; Stein, D. L.

    2015-10-01

    We present a technique to generate relations connecting pure state weights, overlaps, and correlation functions in short-range spin glasses. These are obtained directly from the unperturbed Hamiltonian and hold for general coupling distributions. All are satisfied in phases with simple thermodynamic structure, such as the droplet-scaling and chaotic pairs pictures. If instead nontrivial mixed-state pictures hold, the relations suggest that replica symmetry is broken as described by a Derrida-Ruelle cascade, with pure state weights distributed as a Poisson-Dirichlet process.

  4. Short-Range Correlations and Cooling of Ultracold Fermions in the Honeycomb Lattice

    NASA Astrophysics Data System (ADS)

    Tang, Baoming; Paiva, Thereza; Khatami, Ehsan; Rigol, Marcos

    2012-11-01

    We use determinantal quantum Monte Carlo simulations and numerical linked-cluster expansions to study thermodynamic properties and short-range spin correlations of fermions in the honeycomb lattice. We find that, at half filling and finite temperatures, nearest-neighbor spin correlations can be stronger in this lattice than in the square lattice, even in regimes where the ground state in the former is a semimetal or a spin liquid. The honeycomb lattice also exhibits a more pronounced anomalous region in the double occupancy that leads to stronger adiabatic cooling than in the square lattice. We discuss the implications of these findings for optical lattice experiments.

  5. Gelation as arrested phase separation in short-ranged attractive colloid polymer mixtures

    NASA Astrophysics Data System (ADS)

    Zaccarelli, Emanuela; Lu, Peter J.; Ciulla, Fabio; Weitz, David A.; Sciortino, Francesco

    2008-12-01

    We present further evidence that gelation is an arrested phase separation in attractive colloid-polymer mixtures, based on a method combining confocal microscopy experiments with numerical simulations recently established in Lu et al (2008 Nature 453 499). Our results are independent of the form of the interparticle attractive potential and therefore should apply broadly to any attractive particle system with short-ranged, isotropic attractions. We also give additional characterization of the gel states in terms of their structure, inhomogeneous character and local density.

  6. Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering

    SciTech Connect

    Ye, Zhihong

    2013-12-01

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  7. Vapor-liquid surface tension of strong short-range Yukawa fluid.

    PubMed

    Odriozola, G; Bárcenas, M; Orea, P

    2011-04-21

    The thermodynamic properties of strong short-range attractive Yukawa fluids, κ = 10, 9, 8, and 7, are determined by combining the slab technique with the standard and the replica exchange Monte Carlo (REMC) methods. A good agreement was found among the coexistence curves of these systems calculated by REMC and those previously reported in the literature. However, REMC allows exploring the coexistence at lower temperatures, where dynamics turns glassy. To obtain the surface tension we employed, for both methods, a procedure that yields the pressure tensor components for discontinuous potentials. The surface tension results obtained by the standard MC and REMC techniques are in good agreement.

  8. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  9. Global and short-range entanglement properties in excited, many-body localized spin chains

    NASA Astrophysics Data System (ADS)

    West, Colin; Wei, Tzu-Chieh

    Many-body localization is a manifestation of the violation of the eigenstate thermalization hypothesis. As one of many characteristic features, eigenstates in a many-body localized regime have been observed to obey an area law in the scaling of the entanglement entropy. Consequently, such states can be efficiently represented by matrix product states (MPS). Here, we use the SIMPS algorithm proposed by Yu, Pekker, and Clark to numerically access these excited states in spin chains with disorder, and study them from the perspective of their global and short range entanglement properties, as well as through other local observables. We compare the behavior across excited states as the strength of disorder varies.

  10. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  11. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  12. Ordered many-electron motions in atoms and x-ray lasers. [Subpicosecond ultraviolet laser radiation

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Subpicosecond ultraviolet laser technology is enabling the exploration of nonlinear atomic interactions with electric field strengths considerably in excess of an atomic unit. As this regime is approached, experiments studying multiple ionization, photoelectron energy spectra, and harmonically produced radiation all exhibit strong nonlinear coupling. Peak total energy transfer rates on the order of approx.2 x 10/sup -4/ W/atom have been observed at an intensity of approx.10/sup 16/ W/cm/sup 2/, and it is expected that energy transfer rates approaching approx.0.1 to 1 W/atom will occur under more extreme conditions for which the ultraviolet electric field E is significantly greater than e/a/sub 0//sup 2/. In this high intensity regime, a wide range of new nonlinear phenomena will be open to study. These will include the possibility of ordered driven motions in atoms, molecules, and plasmas, mechanisms involving collisions, and relativistic processes such as electron-positron pair production. An understanding of these physical interactions may provide a basis for the generation of stimulated emission in the x-ray range. 100 refs., 8 figs.

  13. Performance assessment of lower VHF band for short-range communication and geolocation applications

    NASA Astrophysics Data System (ADS)

    Dagefu, Fikadu T.; Choi, Jihun; Sheikhsofla, Morteza; Sadler, Brian M.; Sarabandi, Kamal

    2015-05-01

    The focus of this paper is to characterize near-ground wave propagation in the lower very high frequency (VHF) band and to assess advantages that this frequency band offers for reliable short-range low-data rate communications and geolocation applications in highly cluttered environments as compared to conventional systems in the microwave range. With the advent of palm-sized miniaturized VHF antennas, interest in low-power and low-frequency communication links is increasing because (1) channel complexity is far less in this frequency band compared to higher frequencies and (2) significant signal penetration through/over obstacles is possible at this frequency. In this paper, we quantify the excess path loss and small-scale fading at the lower VHF and the 2.4 GHz bands based on short-range measurements in various environments. We consider indoor-to-indoor, outdoor-to-indoor, and non-line-of-sight outdoor measurements and compare the results with measurements at higher frequencies which are used in conventional systems (i.e., 2.4 GHz). Propagation measurements at the lower VHF band are carried out by using an electrically small antenna to assess the possibility of achieving a miniaturized, mobile system for near-ground communication. For each measurement scenario considered, path loss and small-scale fading are characterized after calibrating the differences in the systems used for measurements at different frequencies, including variations in antenna performance.

  14. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    SciTech Connect

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomers and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.

  15. Searching for Short Range Correlations Using (e,e'NN) Reactions

    SciTech Connect

    Bin Zhang

    2003-02-01

    Electron induced two nucleon knockout reactions (e,e'pp) and (e,e'np) were performed for {sup 3}He, {sup 4}He, and {sup 12}C nuclei with incident energies of 2.261 GeV and 4.461 GeV using the CLAS detector at Jefferson Lab. Events with missing momenta lower than the Fermi level and missing energies smaller than the pion threshold were studied. The residual system was assumed to be a spectator and the process was considered as a quasi-free knockout of an NN pair. The data showed that the initial momentum extends up to 800 MeV/c with considerable strength. The cross sections for {sup 3}He(e,e'pp)n were compared to the calculations of J.M. Laget. It was found that the final state interactions (FSI) and the meson exchange currents (MEC) dominate the cross sections and the short range properties of the NN pair were substantially undermined. However, the node of the S state wave function of the pp pair at around 400 MeV/c initial momentum starts to be recognizable in the 4.461 GeV data. The data and the theory suggest that with higher momentum transfers, especially in the region x{sub Bj} > 1, the competing processes such as FSI and MEC will be less important and the detailed study of the short-range properties of nucleons inside nuclei will be more desirable.

  16. Gelation and glass transition of particles with short-range attraction induced by adsorbing microgel

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Luo, Junhua; Han, Charles C.

    2015-03-01

    Mixed suspensions of large hard polystyrene microsphere and small poly(N-isopropylacrylamide) microgel is used as model systems to investigate the static and viscoelastic properties of suspensions which go through liquid to gel and to glass transitions. The microgels cause short-range attraction between microspheres through bridging and depletion mechanism whose strength can be tuned by the microgel concentration. Baxter's sticky hard-sphere model is used to extract the effective inter-microsphere interaction introduced by bridging or depletion of microgels despite the fact that the physical mechanisms of bridging attraction and depletion attraction are different at a molecular level. A new state diagram of gelation and even of glass transition was constructed by taking the bridges as a short-ranged attractive interaction With the help of the well-defined bridging bonds, some controversies regarding to the interference between two origins for ergodic to\\ non-ergodic transition in condensed system, i.e. cage effect and bond effect, were clarified. This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503).

  17. Short-range interactions and scaling near integer quantum Hall transitions

    SciTech Connect

    Wang, Ziqiang; Fisher, Matthew P. A.; Girvin, S. M.; Chalker, J. T.

    2000-03-15

    We study the influence of short-range electron-electron interactions on scaling behavior near the integer quantum Hall plateau transitions. Short-range interactions are known to be irrelevant at the renormalization group fixed point which represents the transition in the noninteracting system. We find, nevertheless, that transport properties change discontinuously when interactions are introduced. Most importantly, in the thermodynamic limit the conductivity at finite temperature is zero without interactions, but nonzero in the presence of arbitrarily weak interactions. In addition, scaling as a function of frequency {omega} and temperature T is determined by the scaling variable {omega}/T{sup p} (where p is the exponent for the temperature dependence of the inelastic scattering rate) and not by {omega}/T, as it would be at a conventional quantum phase transition described by an interacting fixed point. We express the inelastic exponent p and the thermal exponent z{sub T} in terms of the scaling dimension -{alpha}<0 of the interaction strength and the dynamical exponent z (which has the value z=2), obtaining p=1+2{alpha}/z and z{sub T}=2/p. (c) 2000 The American Physical Society.

  18. Contribution of proton-induced short range secondaries to the LET spectra on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Csige, I.; Benton, E. V.; Frigo, L. A.

    1995-01-01

    The contribution to the LET (linear energy transfer) spectrum from proton-induced short range secondaries was investigated by making measurements of total track density and LET spectra in CR-39 Plastic Nuclear Track Detectors (PNTD's) at varying shielding depths in the A0015 West-side stack. Proton-induced short range secondaries were found to make a significant contribution to the LET spectra, especially in the region above 100 keV/micron. At present, calculational models do not include this component. Total track density was measured at five shielding depths and was seen to increase as a function of shielding. LET spectra were measured under two shielding depths (2.6 and 9.2 g/cm(exp 2)) and stayed fairly constant as a function of shielding. Prerecovery estimates of LET spectra dropped off rapidly in the 100-300 keV/micron region, while the measured LET spectra extended to higher LET's. Track density and LET spectra measurements of secondaries were made in a CR-39 PNTD stack exposed to 154 MeV accelerator protons. Similarities in LET spectra measured in the A0015 experiment and in the 154 MeV accelerator proton stack demonstrate that a useful first step in modeling the contribution to the LET spectra of secondaries induced by the spectrum of trapped protons would be to model a mono-energetic proton beam being transported through a one-dimensional geometry.

  19. Spatial concentration distribution model for short-range continuous gas leakage of small amount

    NASA Astrophysics Data System (ADS)

    Wang, Meirong; Wang, Lingxue; Li, Jiakun; Long, Yunting; Gao, Yue

    2012-06-01

    Passive infrared gas imaging systems have been utilized in the equipment leak detection and repair in chemical manufacturers and petroleum refineries. The detection performance mainly relates to the sensitivity of infrared detector, optical depth of gas, atmospheric transmission, wind speed, and so on. Based on our knowledge, the spatial concentration distribution of continuously leaking gas plays an important part in leak detection. Several computational model of gas diffusion were proposed by researchers, such as Gaussian model, BM model, Sutton model and FEM3 model. But these models focus on calculating a large scale gas concentration distribution for a great amount of gas leaks above over 100- meter height, and not applicable to assess detection limit of a gas imaging system in short range. In this paper, a wind tunnel experiment is designed. Under different leaking rate and wind speed, concentration in different spatial positions is measured by portable gas detectors. Through analyzing the experimental data, the two parameters σy(x) and σz (x) that determine the plume dispersion in Gaussian model are adjusted to produce the best curve fit to the gas concentration data. Then a concentration distribution model for small mount gas leakage in short range is established. Various gases, ethylene and methane are used to testify this model.

  20. Aggregation of heteropolyanions in aqueous solutions exhibiting short-range attractions and long-range repulsions

    DOE PAGES

    Bera, Mrinal K.; Qiao, Baofu; Seifert, Soenke; Burton-Pye, Benjamin P.; Monica Olvera de la Cruz; Antonio, Mark R.

    2015-12-15

    Charged colloids and proteins in aqueous solutions interact via short-range attractions and long-range repulsions (SALR) and exhibit complex structural phases. These include homogeneously dispersed monomers, percolated monomers, clusters, and percolated clusters. We report the structural architectures of simple charged systems in the form of spherical, Keggin-type heteropolyanions (HPAs) by small-angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations. Structure factors obtained from the SAXS measurements show that the HPAs interact via SALR. Concentration and temperature dependences of the structure factors for HPAs with –3e (e is the charge of an electron) charge are consistent with a mixture of nonassociated monomersmore » and associated randomly percolated monomers, whereas those for HPAs with –4e and –5e charges exhibit only nonassociated monomers in aqueous solutions. Our experiments show that the increase in magnitude of the charge of the HPAs increases their repulsive interactions and inhibits their aggregation in aqueous solutions. MD simulations were done to reveal the atomistic scale origins of SALR between HPAs. As a result, the short-range attractions result from water or proton-mediated hydrogen bonds between neighboring HPAs, whereas the long-range repulsions are due to the distributions of ions surrounding the HPAs.« less

  1. An x-ray setup to investigate the atomic order of confined liquids in slit geometry

    SciTech Connect

    Lippmann, M.; Ehnes, A.; Seeck, O. H.

    2014-01-15

    A setup has been designed to investigate thin films of confined liquids with the use of X-ray scattering methods. The confinement is realized between the flat culets of a pair of diamonds by positioning and orienting the lower diamond with nanometer and micro radian accuracy. We routinely achieve gaps between 5 and 50 nm at culet diameters of 200 μm. With this setup and a micro focused X-ray beam we have investigated the in-plane and the out-off-plane atomic order of benzene with atomic resolution.

  2. Atomic-scale structural evolution from disorder to order in an amorphous metal

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-12-01

    In this paper, we performed molecular dynamics simulations to study the atomic-scale structural evolution from disorder to order during the isothermal annealing of an amorphous Ni. Three plateaus in the time dependent potential energy and mean square displacement (MSD) curves were observed, indicating that the atomic ordering process from amorphous to nanocrystalline Ni undergoes three distinct stages. The structural analyses reveal that the atomic structural evolution is associated with these three stages: Disordered atoms adjust their relative positions to form a one-dimensional (1D) periodic structure at the first stage, then form a 2D periodic structure at the second stage, and finally form a 3D periodic nanocrystal. Further analyses of potential energy and MSD difference and dynamics demonstrate that the structural change from the 2D to 3D structure is more difficult than that from the 1D to 2D structure, because both the 1D and 2D quasi-ordered structures belong to transition states and have similar structural features in nature. Our findings may provide new insights into the nanocrystallization of amorphous alloys and implications for producing nanostructured materials.

  3. Confinement-induced orbital breathing, fusion, fission and re-ordering in semifilled shell atoms

    NASA Astrophysics Data System (ADS)

    Dolmatov, V. K.

    2013-05-01

    Alternate contraction and drastic expansion, i.e., ‘breathing’ of electronic subshells, the effects of the fusion of two subshells into one subshell and its subsequent fission (splitting) into the original subshells, as well as multiple alteration of the order of subshells in confined semifilled shell atoms with a progressively narrowing confinement are theoretically discovered. The confinement is represented by a repulsive penetrable spherical potential of an inner radius r0. The effects are exemplified by calculated data for confined semifilled shell atoms from the second, third and fourth rows of Mendeleev's table—Li, N, P and Cr atoms with semifilled 2s1, 2p3, 3p3 and 3d5 subshells, respectively—for the completeness of the study. The underlying physics behind the discovered effects is explained.

  4. Universal relationships for the phonon spectra in BCC, FCC, and HCP crystals with a short-range interatomic interaction

    SciTech Connect

    Vaks, V. G. Zhuravlev, I. A.; Zabolotskii, A. D.

    2012-03-15

    The frequencies of the phonon branches that correspond to the vibrations of the close-packed atomic planes in bcc, fcc, and hcp crystals with short-range interatomic interaction are shown to be described by a universal relationship, which only contains two parameters for each branch, for any polarization {lambda}. These phonon branches correspond to the ({xi}, {xi}, 0) direction in bcc crystals, the ({xi}, {xi}, {xi}) direction in fcc crystals, and the (0, 0, {xi}) direction in hcp crystals. This universal relationship can only be violated by long-range interactions, namely, the interactions outside the sixth coordination shell in a bcc crystal, the fifth coordination shell in an fcc crystal, and the eleventh or tenth coordination shell in an hcp crystal. The effect of these long-range interactions for each phonon branch can be quantitatively characterized by certain parameters {Delta}{sub n{lambda}}, which are simply expressed in terms of the frequencies of three phonons of the branch. The values of these parameters are presented for all bcc, fcc, and hcp metals whose phonon spectra are measured. In most cases, the proposed relationships for the frequencies are found to be fulfilled accurate to several percent. In the cases where the {Delta}{sub n{lambda}} parameters are not small, they can give substantial information on the type and scale of long-range interaction effects in various metals.

  5. Atomic and magnetic ordering in bcc Cu-Al-Mn: computational study

    NASA Astrophysics Data System (ADS)

    Alés, Alejandro; Lanzini, Fernando

    2014-12-01

    The β phase of the ternary alloy Cu-Al-Mn, with bcc structure, displays an interesting variety of long-range atomic ordering and magnetic transitions. In this work, we present a model that allows an accurate reproduction of the measured critical temperatures for alloys with compositions along the pseudobinary line Cu3Al ↔ Cu2AlMn. The method is based on the Monte Carlo technique, allowing simultaneous evolution of the atomic distribution and the magnetic state. The configurational part of the energy is represented with a three-state Hamiltonian; the six interchange energies that govern the chemical interactions between nearest and next-nearest neighbours atoms have been determined. The magnetic counterpart is modelled by means of an Ising model. The predicted Curie temperatures agree well with the experimental values when it is assumed that the crystal configuration remains fixed and with the maximum possible degree of atomic ordering. The effects of configurational disorder on the magnetic transition have been evaluated.

  6. Collective Light-matter Interactions via Emergent Order in Cold Atoms

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel A.

    Collective behavior in many-body systems, where the dynamics of an individual element depend on the state of the entire ensemble, play an important role in both basic science research and applied technologies. Over the last twenty years, studies of such effects in cold atomic vapors have lead to breakthroughs in areas such as quantum information science and atomic and condensed matter physics. Nevertheless, in order to generate photon-mediated atom-atom coupling strengths that are large enough to produce collective behavior, these studies employ techniques that intrinsically limit their applicability. In this thesis, I describe a novel nonlinear optical process that enables me to overcome these limitations and realize a new regime of collective light-matter interaction. My experiment involves an anisotropic cloud of cold rubidium atoms illuminated by a pair of counterpropagating optical (pump) fields propagating at an angle to the trap's long axis. When the pump beam intensities exceed a threshold value, a collective instability occurs in which new beams of light are generated spontaneously and counterpropagate along the trap's long axis. In order to understand the physical mechanism responsible for this behavior, I study first the system's nonlinear optical response when driven below the instability threshold. I find that the incident optical fields produce an optical lattice that causes the atoms to become spatially organized on the sub-wavelength length scale. This organization corresponds to the formation of an atomic density grating, which effectively couples the involved fields to one another and enables the transfer of energy between them. The loading of atoms into this grating is enhanced by my choice of field polarizations, which simultaneously results in cooling of the atoms from T ˜ 30 muK to T ˜ 3 muK via the Sisyphus effect. As a result, I observe a fifth-order nonlinear susceptibility chi(5)=1.9x10 -12 (m/V)4 that is 7 orders of magnitude larger

  7. Rapid resolution of crustal motion at short ranges with the global positioning system

    NASA Technical Reports Server (NTRS)

    Genrich, Joachim F.; Bock, Yehuda

    1992-01-01

    An analysis of GPS alignment array data collected in November 1990 and February 1991 are used to assess the temporal resolution of crustal deformation for GPS receiver systems operating as strain meters, and guidelines for achieving millimeter-level precision with short-range, kinematic-type GPS measurements are provided. Baselines between the array endpoints computed from 24 min of static observations on three consecutive days show an rms scatter of about 0.1 nm in the horizontal components and of about 0.3 mm in the vertical. They agree to within 0.2 mm with a solution calculated from measurements collected 3 mo earlier, indicating that this segment of the San Andreas fault appears to be locked at the surface over this period of time. Epoch-by-epoch solutions of array baselines with a six-satellite constellation show a multipath signature with typical amplitudes of several millimeters and periods of a few minutes.

  8. Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei

    SciTech Connect

    K. S. Egiyan; N. B. Dashyan; M. M. Sargsian; M. I. Strikman; L. B. Weinstein; G. Adams; P. Ambrozewicz; M. Anghinolfi; B. Asavapibhop; G. Asryan; H. Avakian; H. Baghdasaryan; N. Baillie; J. P. Ball; N. A. Baltzell; V. Batourine; M. Battaglieri; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; A. S. Biselli; B. E. Bonner; S. Bouchigny; S. Boiarinov; R. Bradford; D. Branford; W. K. Brooks; S. Bültmann; V. D. Burkert; C. Bultuceanu; J. R. Calarco; S. L. Careccia; D. S. Carman; B. Carnahan; S. Chen; P. L. Cole; P. Coltharp; P. Corvisiero; D. Crabb; H. Crannell; J. P. Cummings; E. De Sanctis; R. DeVita; P. V. Degtyarenko; H. Denizli; L. Dennis; K. V. Dharmawardane; C. Djalali; G. E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O. P. Dzyubak; H. Egiyan; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; R. J. Feuerbach; T. A. Forest; H. Funsten; G. Gavalian; N. G. Gevorgyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; E. Golovatch; R. W. Gothe; K. A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; J. Hardie; F. W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C. E. Hyde-Wright; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; M. M. Ito; D. Jenkins; H. S. Jo; K. Joo; H. G. Juengst; J. D. Kellie; M. Khandaker; K. Y. Kim; K. Kim; W. Kim; A. Klein; F. J. Klein; A. Klimenko; M. Klusman; L. H. Kramer; V. Kubarovsky; J. Kuhn; S. E. Kuhn; S. Kuleshov; J. Lachniet; J. M. Laget; J. Langheinrich; D. Lawrence; T. Lee; K. Livingston; L. C. Maximon; S. McAleer; B. McKinnon; J. W. C. McNabb; B. A. Mecking; M. D. Mestayer; C. A. Meyer; T. Mibe; K. Mikhailov; R. Minehart; M. Mirazita; R. Miskimen; V. Mokeev; S. A. Morrow; J. Mueller; G. S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; S. Niccolai; G. Niculescu; I. Niculescu; B. B. Niczyporuk; R. A. Niyazov; G. V. O'Rielly; M. Osipenko; A. I. Ostrovidov; K. Park; E. Pasyuk; C. Peterson; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; S. Pozdniakov; B. M. Preedom; J. W. Price; Y. Prok; D. Protopopescu; L. M. Qin; B. A. Raue; G. Riccardi; G. Ricco; M. Ripani; B. G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P. D. Rubin; F. Sabatié; C. Salgado; J. P. Santoro; V. Sapunenko; R. A. Schumacher; V. S. Serov; Y. G. Sharabian; J. Shaw; E. S. Smith; L. C. Smith; D. I. Sober; A. Stavinsky; S. Stepanyan; B. E. Stokes; P. Stoler; S. Strauch; R. Suleiman; M. Taiuti; S. Taylor; D. J. Tedeschi; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M. F. Vineyard; A. V. Vlassov; D. P. Weygand; M. Williams; E. Wolin; M. H. Wood; A. Yegneswaran; J. Yun; L. Zana; and J. Zhang

    2006-03-01

    The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 11.4 GeV2, the ratios exhibit two separate plateaus, at 1.52.25. This pattern is predicted by models that include 2- and 3-nucleon short-range correlations (SRC). Relative to A=3, the per-nucleon probabilities of 3-nucleon SRC are 2.3, 3.1, and 4.4 times larger for A=4, 12, and 56. This is the first measurement of 3-nucleon SRC probabilities in nuclei.

  9. 79 GHz UWB automotive short range radar - Spectrum allocation and technology trends

    NASA Astrophysics Data System (ADS)

    Bloecher, H.-L.; Sailer, A.; Rollmann, G.; Dickmann, J.

    2009-05-01

    Automotive UWB (Ultra-Wideband) short range radar (SSR) is on the market as a key technology for novel comfort and safety systems. SiGe based 79 GHz UWB SRR will be a definite candidate for the long term substitution of the 24 GHz UWB SRR. This paper will give an overview of the finished BMBF joint project KOKON and the recently started successing project RoCC, which concentrate on the development of this technology and sensor demonstrators. In both projects, the responsibilities of Daimler AG deal with application based sensor specification, test and evaluation of realized sensor demonstrators. Recent UWB SRR frequency regulation approaches and activitites will be introduced. Furthermore, some first results of Daimler activities within RoCC will be presented, dealing with the packaging and operation of these sensors within the complex car environment.

  10. Long-ranged solvation forces in a fluid with short-ranged interactions

    NASA Astrophysics Data System (ADS)

    Pertsin, Alexander J.; Grunze, Michael

    2003-05-01

    The grand canonical Monte Carlo technique is used to calculate the solvation force and interfacial tension in a simple Lennard-Jones fluid confined between two solid walls. Emphasis is placed on large wall-to-wall separations, where the oscillations of density and solvation force due to layering effects have decayed. Despite the short range of the fluid-fluid and fluid-wall interaction potentials used, the solvation force shows an unsuspectedly long-ranged behavior, remaining quite perceptible up to a separation of 100 molecular diameters. It is also found that the sign of the solvation force at large separations is not uniquely determined by the sign of the interfacial tension: The walls that are "philic" with respect to the constrained fluid may well exhibit both repulsive and attractive solvation forces.

  11. Ordering actions for visibility. [distributed computing based on idea of atomic actions operating on data

    NASA Technical Reports Server (NTRS)

    Mckendry, M. S.

    1985-01-01

    The notion of 'atomic actions' has been considered in recent work on data integrity and reliability. It has been found that the standard database operations of 'read' and 'write' carry with them severe performance limitations. For this reason, systems are now being designed in which actions operate on 'objects' through operations with more-or-less arbitrary semantics. An object (i.e., an instance of an abstract data type) comprises data, a set of operations (procedures) to manipulate the data, and a set of invariants. An 'action' is a unit of work. It appears to be primitive to its surrounding environment, and 'atomic' to other actions. Attention is given to the conventional model of nested actions, ordering requirements, the maximum possible visibility (full visibility) for items which must be controlled by ordering constraints, item management paradigms, and requirements for blocking mechanisms which provide the required visibility.

  12. Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.

    PubMed

    Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner

    2013-01-01

    Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.

  13. Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface.

    PubMed

    Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner

    2013-01-01

    Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about 'melted' phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic 'shadow bands' induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces. PMID:23535641

  14. Formation and atomic structure of ordered Sr-induced nanostrips on Ge(100)

    NASA Astrophysics Data System (ADS)

    Lukanov, Boris R.; Garrity, Kevin F.; Ismail-Beigi, Sohrab; Altman, Eric I.

    2014-04-01

    The deposition of alkaline earths onto Ge(100) surfaces leads to well-ordered arrays of narrow trenches and elongated plateaus that extend for thousands of angstroms. Using scanning tunneling microscopy (STM) in conjunction with density functional theory (DFT), the atomic scale details of these nanostructures are revealed and the driving force responsible for their formation is evaluated. The STM data reveal a dramatic contrast reversal when the polarity of the imaging bias is switched. An energetically favorable structure for the plateaus was found using DFT that can reproduce all of the observed features. This structure is based upon a double dimer vacancy model in which Sr atoms displace two Ge dimers from the surface. Interestingly, the ordered plateau-trench structure is unique to Ge(100) despite the structural and chemical similarities to the Si(100) surface.

  15. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-01

    We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.

  16. Short-range stabilizing potential for computing energies and lifetimes of temporary anions with extrapolation methods

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Thomas; Ehara, Masahiro

    2015-01-01

    The energy of a temporary anion can be computed by adding a stabilizing potential to the molecular Hamiltonian, increasing the stabilization until the temporary state is turned into a bound state, and then further increasing the stabilization until enough bound state energies have been collected so that these can be extrapolated back to vanishing stabilization. The lifetime can be obtained from the same data, but only if the extrapolation is done through analytic continuation of the momentum as a function of the square root of a shifted stabilizing parameter. This method is known as analytic continuation of the coupling constant, and it requires—at least in principle—that the bound-state input data are computed with a short-range stabilizing potential. In the context of molecules and ab initio packages, long-range Coulomb stabilizing potentials are, however, far more convenient and have been used in the past with some success, although the error introduced by the long-rang nature of the stabilizing potential remains unknown. Here, we introduce a soft-Voronoi box potential that can serve as a short-range stabilizing potential. The difference between a Coulomb and the new stabilization is analyzed in detail for a one-dimensional model system as well as for the 2Πu resonance of CO 2- , and in both cases, the extrapolation results are compared to independently computed resonance parameters, from complex scaling for the model, and from complex absorbing potential calculations for CO 2- . It is important to emphasize that for both the model and for CO 2- , all three sets of results have, respectively, been obtained with the same electronic structure method and basis set so that the theoretical description of the continuum can be directly compared. The new soft-Voronoi-box-based extrapolation is then used to study the influence of the size of diffuse and the valence basis sets on the computed resonance parameters.

  17. Detailed study of the nuclear dependence of the EMC effect and short-range correlations

    SciTech Connect

    Arrington, J.; Daniel, A.; Day, D. B.; Fomin, N.; Gaskell, D.; Solvignon, P.

    2012-12-01

    Background: The density of the nucleus has been important in explaining the nuclear dependence of the quark distributions, also known as the EMC effect, as well as the presence of high-momentum nucleons arising from short-range correlations (SRCs). Recent measurements of both of these effects on light nuclei have shown a clear deviation from simple density-dependent models. Purpose: A better understanding of the nuclear quark distributions and short-range correlations requires a careful examination of the experimental data on these effects to constrain models that attempt to describe these phenomena. Methods: We present a detailed analysis of the nuclear dependence of the EMC effect and the contribution of SRCs in nuclei, comparing to predictions and simple scaling models based on different pictures of the underlying physics. We also make a direct, quantitative comparison of the two effects to further examine the connection between these two observables related to nuclear structure. Results: We find that, with the inclusion of the new data on light nuclei, neither of these observables can be well explained by common assumptions for the nuclear dependence. The anomalous behavior of both effects in light nuclei is consistent with the idea that the EMC effect is driven by either the presence of high-density configurations in nuclei or the large virtuality of the high-momentum nucleons associated with these configurations. Conclusions: The unexpected nuclear dependence in the measurements of the EMC effect and SRC contributions appear to suggest that the local environment of the struck nucleon is the most relevant quantity for explaining these results. The common behavior suggests a connection between the two seemingly disparate phenomena, but the data do not yet allow for a clear preference between models which aim to explain this connection.

  18. Experimental study of the (4)0- short-range electronic state of the 85Rb133Cs molecule by high resolution photoassociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yanting; Yuan, Jinpeng; Ji, Zhonghua; Li, Chuanliang; Li, Zhonghao; Xiao, Liantuan; Jia, Suotang

    2016-11-01

    We present the formation of ultracold 85Rb133Cs molecules in the (4)0- short-range electronic state and the measurement of the permanent electric dipole moment by high resolution photoassociation spectroscopy. With the rotationally resolved photoassociation spectra via resonance-enhanced two-photon ionization, spectral data have been extended to more vibrational levels compared to previous observations. Precise electric dipole moments are obtained by using the DC Stark effect of the photoassociation spectrum. These studies containing previously unobserved electronic states are important to understand the molecular structure and discover transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state.

  19. Nanoscale Atomic Displacements Ordering for Enhanced Piezoelectric Properties in Lead-Free ABO3 Ferroelectrics.

    PubMed

    Pramanick, Abhijit; Jørgensen, Mads R V; Diallo, Souleymane O; Christianson, Andrew D; Fernandez-Baca, Jaime A; Hoffmann, Christina; Wang, Xiaoping; Lan, Si; Wang, Xun-Li

    2015-08-01

    In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation.

  20. Binary short-range colloidal assembly of magnetic iron oxides nanoparticles and fullerene (nC60) in environmental media.

    PubMed

    Ghosh, Saikat; Pradhan, Nihar R; Mashayekhi, Hamid; Dickert, Stefan; Thantirige, Rukshan; Tuominen, Mark T; Tao, Shu; Xing, Baoshan

    2014-10-21

    Colloidal assembly of nC60 fullerene with naturally abundant magnetic iron oxide NPs will affect their fate and transformation in environmental media. In solution, fullerene association to aggregating iron oxide NPs/clusters greatly enhanced the overall colloidal stability. Development of depletion-mediated structured fullerene layers between pure and surface modified γFe2O3 NPs possibly resulted in such stabilization. Here, we also report that on air-water interface, association of fullerene to pure and humic acid (HA7) coated γFe2O3 NPs led to the formation of ordered assemblies, e.g., binary wires and closed-packed "crystalline" and "glassy" structures in the presence and absence of electrolytes suggesting immobilization of the former. The interaction of fullerene to Fe3O4 NPs and clusters also produced ordered assemblies along with amorphous aggregates. Fullerene interaction with Fe3O4 NPs in low concentration of HA1 and Na(+) at pH 6 formed dendritic growth and polycrystalline circular assemblies on air-water interface. HRTEM study further revealed that the monolayer circular assemblies were highly ordered but structural degeneracy was evident in multilayers. Therefore, interfacial assemblies of fullerene with iron oxide NPs resulted in short-range periodic structures with concomitant immobilization and reduction in availability of the former, especially in soils or sediments rich in the latter.

  1. Effect of annealing on atomic ordering of amorphous ZrTaTiNbSi alloy

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Huang, Rong-Tang; Wu, Cheng-An; Chen, Fu-Rong; Gan, Jon-Yiew; Yeh, Jien-Wei; Narayan, Jagdish

    2009-12-01

    In this letter, we have reported on initial stages of atomic ordering in ZrTaTiNbSi amorphous films during annealing. The atomic ordering and structure evolution were studied in Zr17Ta16Ti19Nb22Si26 amorphous films as a function of annealing temperature in the temperature range from 473 to 1173 K. Up to annealing temperature of 1173 K, the films retained amorphous structure, but the degree of disorder is increased with the increase in temperature. The formation of Si-M covalent bonds, which contributed to the local atomic arrangement, occurred in the initial stages of ordering. The bonding reactions between Si and other metal species explain the anomalous structural changes which were observed in x-ray diffraction and transmission electron microscopy. We discuss the stages of phase transformation for amorphous films as a function of annealing temperature. From these results, we propose that annealing leads to formation of random Si-M4 tetrahedron, and two observed rings, a first and second in the electron diffraction patterns compared to M-M and Si-M bond length, respectively.

  2. Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects.

    PubMed

    Borisevich, A Y; Morozovska, A N; Kim, Young-Min; Leonard, D; Oxley, M P; Biegalski, M D; Eliseev, E A; Kalinin, S V

    2012-08-10

    Vacancy-ordered transition metal oxides have multiple similarities to classical ferroic systems including ferroelectrics and ferroelastics. The expansion coefficients for corresponding Ginzburg-Landau-type free energies are readily accessible from bulk phase diagrams. Here, we demonstrate that the gradient and interfacial terms can quantitatively be determined from the atomically resolved scanning transmission electron microscopy data of the topological defects and interfaces in model lanthanum-strontium cobaltite. With this knowledge, the interplay between ordering, chemical composition, and mechanical effects at domain walls, interfaces and structural defects can be analyzed.

  3. Molecular Positional Order in Langmuir-Blodgett Films by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Bourdieu, L.; Ronsin, O.; Chatenay, D.

    1993-02-01

    Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic and microscopic scales by atomic force microscopy. As prepared, the films exhibit a disordered hexagonal structure; molecularly resolved images in direct space establish a connection between the extent of the positional order and the presence of defects such as dislocations. Upon heating, the films reorganize into a more condensed state with a centered rectangular crystallographic arrangement; in this new state the films exhibit long-range positional order and unusual structural features, such as a height modulation of the arachidic acid molecules.

  4. Molecular positional order in langmuir-blodgett films by atomic force microscopy.

    PubMed

    Bourdieu, L; Ronsin, O; Chatenay, D

    1993-02-01

    Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic and microscopic scales by atomic force microscopy. As prepared, the films exhibit a disordered hexagonal structure; molecularly resolved images in direct space establish a connection between the extent of the positional order and the presence of defects such as dislocations. Upon heating, the films reorganize into a more condensed state with a centered rectangular crystallographic arrangement; in this new state the films exhibit long-range positional order and unusual structural features, such as a height modulation of the arachidic acid molecules.

  5. ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order

    NASA Astrophysics Data System (ADS)

    Verstraelen, T.; Ayers, P. W.; Van Speybroeck, V.; Waroquier, M.

    2013-02-01

    A new polarizable force field (PFF), namely atom-condensed Kohn-Sham density functional theory approximated to second order (ACKS2), is proposed for the efficient computation of atomic charges and linear response properties of extended molecular systems. It is derived from Kohn-Sham density functional theory (KS-DFT), making use of two novel ingredients in the context of PFFs: (i) constrained atomic populations and (ii) the Legendre transform of the Kohn-Sham kinetic energy. ACKS2 is essentially an extension of the Electronegativity Equalization Method (EEM) [W. J. Mortier, S. K. Ghosh, and S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986)], 10.1021/ja00275a013 in which two major EEM shortcomings are fixed: ACKS2 predicts a linear size-dependence of the dipole polarizability in the macroscopic limit and correctly describes the charge distribution when a molecule dissociates. All ACKS2 parameters are defined as atoms-in-molecules expectation values. The implementation of ACKS2 is very similar to that of EEM, with only a small increase in computational cost.

  6. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition.

    PubMed

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  7. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    PubMed Central

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications. PMID:26813143

  8. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    DOE PAGES

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-27

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe2O3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulatormore » transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less

  9. Controlled Phase and Tunable Magnetism in Ordered Iron Oxide Nanotube Arrays Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang

    2016-01-01

    Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.

  10. Improved short-range correlations and 0{nu}{beta}{beta} nuclear matrix elements of {sup 76}Ge and {sup 82}Se

    SciTech Connect

    Kortelainen, Markus; Suhonen, Jouni

    2007-05-15

    We calculate the nuclear matrix elements of the neutrinoless double beta (0{nu}{beta}{beta}) decays of {sup 76}Ge and {sup 82}Se for the light neutrino exchange mechanism. The nuclear wave functions are obtained by using realistic two-body forces within the proton-neutron quasiparticle random-phase approximation (pnQRPA). We include the effects that come from the finite size of a nucleon, from the higher-order terms of nucleonic weak currents, and from the nucleon-nucleon short-range correlations. Most importantly, we improve on the presently available calculations by replacing the rudimentary Jastrow short-range correlations by the more advanced unitary correlation operator method (UCOM). The UCOM-corrected matrix elements turn out to be notably larger in magnitude than the Jastrow-corrected ones. This has drastic consequences for the detectability of 0{nu}{beta}{beta} decay in present and future double beta experiments.

  11. Atomic ordering in cubic bismuth telluride alloy phases at high pressure

    NASA Astrophysics Data System (ADS)

    Loa, I.; Bos, J.-W. G.; Downie, R. A.; Syassen, K.

    2016-06-01

    Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. By using angle-dispersive x-ray diffraction, the compounds Bi4Te5 , BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14-19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ˜100 ∘C . Upon annealing, BiTe transforms from bcc to the B2 (CsCl) crystal-structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the BimTen series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.

  12. APPLICATION OF CFD SIMULATIONS FOR SHORT-RANGE ATMOSPHERIC DISPERSION OVER OPEN FIELDS AND WITHIN ARRAYS OF BUILDINGS

    EPA Science Inventory

    Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...

  13. EXAMPLE APPLICATION OF CFD SIMULATIONS FOR SHORT-RANGE ATMOSPHERIC DISPERSION OVER THE OPEN FIELDS OF PROJECT PRAIRIE GRASS

    EPA Science Inventory

    Computational Fluid Dynamics (CFD) techniques are increasingly being applied to air quality modeling of short-range dispersion, especially the flow and dispersion around buildings and other geometrically complex structures. The proper application and accuracy of such CFD techniqu...

  14. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  15. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography.

    PubMed

    Al-Kassab, T; Kompatscher, M; Kirchheim, R; Kostorz, G; Schönfeld, B

    2014-09-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3 at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ' state.

  16. Photoassociation of a cold-atom-molecule pair. II. Second-order perturbation approach

    SciTech Connect

    Lepers, M.; Vexiau, R.; Bouloufa, N.; Dulieu, O.; Kokoouline, V.

    2011-04-15

    The electrostatic interaction between an excited atom and a diatomic ground-state molecule in an arbitrary rovibrational level at large mutual separations is investigated with a general second-order perturbation theory, in the perspective of modeling the photoassociation between cold atoms and molecules. We find that the combination of quadrupole-quadrupole and van der Waals interactions competes with the rotational energy of the dimer, limiting the range of validity of the perturbative approach to distances larger than 100 Bohr radii. Numerical results are given for the long-range interaction between Cs and Cs{sub 2}, showing that the photoassociation is probably efficient for any Cs{sub 2} rotational energy.

  17. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.

    PubMed

    Hollman, David S; Wilke, Jeremiah J; Schaefer, Henry F

    2013-02-14

    The scope of problems treatable by ab initio wavefunction methods has expanded greatly through the application of local approximations. In particular, atomic orbital (AO) based wavefunction methods have emerged as powerful techniques for exploiting sparsity and have been applied to biomolecules as large as 1707 atoms [S. A. Maurer, D. S. Lambrecht, D. Flaig, and C. Ochsenfeld, J. Chem. Phys. 136, 144107 (2012)]. Correlated wavefunction methods, however, converge notoriously slowly to the basis set limit and, excepting the use of large basis sets, will suffer from a severe basis set incompleteness error (BSIE). The use of larger basis sets is prohibitively expensive for AO basis methods since, for example, second-order Møller-Plesset perturbation theory (MP2) scales linearly with the number of atoms, but still scales as O(N(5)) in the number of functions per atom. Explicitly correlated F12 methods have been shown to drastically reduce BSIE for even modestly sized basis sets. In this work, we therefore explore an atomic orbital based formulation of explicitly correlated MP2-F12 theory. We present working equations for the new method, which produce results identical to the widely used molecular orbital (MO) version of MP2-F12 without resorting to a delocalized MO basis. We conclude with a discussion of several possible approaches to a priori screening of contraction terms in our method and the prospects for a linear scaling implementation of AO-MP2-F12. The discussion includes concrete examples involving noble gas dimers and linear alkane chains.

  18. Low-temperature interface between the gas and solid phases of hard spheres with a short-ranged attraction.

    PubMed

    Sear, R P

    1999-06-01

    At low temperature, spheres with a very short-ranged attraction exist as a near-close-packed solid coexisting with an almost infinitely dilute gas. We find that the ratio of the interfacial tension between these two phases to the thermal energy diverges as the range of the attraction tends to zero. The large tensions when the interparticle attractions are short ranged may be why globular proteins only crystallize over a narrow range of conditions. PMID:11969672

  19. Cluster formation in fluids with competing short-range and long-range interactions.

    PubMed

    Sweatman, Martin B; Fartaria, Rui; Lue, Leo

    2014-03-28

    We investigate the low density behaviour of fluids that interact through a short-ranged attraction together with a long-ranged repulsion (SALR potential) by developing a molecular thermodynamic model. The SALR potential is a model of effective solute interactions where the solvent degrees of freedom are integrated-out. For this system, we find that clusters form for a range of interaction parameters where attractive and repulsive interactions nearly balance, similar to micelle formation in aqueous surfactant solutions. We focus on systems for which equilibrium behaviour and liquid-like clusters (i.e., droplets) are expected, and find in addition a novel coexistence between a low density cluster phase and a high density cluster phase within a very narrow range of parameters. Moreover, a simple formula for the average cluster size is developed. Based on this formula, we propose a non-classical crystal nucleation pathway whereby macroscopic crystals are formed via crystal nucleation within microscopic precursor droplets. We also perform large-scale Monte Carlo simulations, which demonstrate that the cluster fluid phase is thermodynamically stable for this system.

  20. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    PubMed

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-01

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state. PMID:26266528

  1. Short-range navigation: does it contribute to understanding navigation over longer distances?

    PubMed

    Collett

    1996-01-01

    A major reason for analysing short-range navigation is that it is relatively easy to record on video tape the details of an animal's behaviour over an area of about a square metre. Frequently, the orientation of the animal's body is revealed in addition to its trajectory through space. This is particularly useful in the study of insect navigation, the subject of the four contributions to this section. An insect's eyes are fixed in its head, and there are often no significant head movements during flight. Consequently, reasonable assumptions can be made about where the insect looks while it navigates and how the image of its surroundings moves over its retina. All four contributions depend to a large degree upon being able to freeze behaviour on video tape and to infer what the animal sees. To what extent do the conclusions using the abundant information that can be collected in this way extrapolate to navigation on a larger scale? Clearly, the coded information that instructs the monarch butterfly on its migrations from wide areas of North America to northern Michoacan in Mexico contains elements unique to long-distance travel. But there may be many similarities in the mechanisms available to an orchid bee as it travels over its 20 km foraging route from orchid to orchid and a wasp negotiating the last few metres through a complex environment to reach its nest.

  2. Predominance of short range Coulomb forces in phosphate-water interactions—a theoretical analysis

    NASA Astrophysics Data System (ADS)

    Fingerhut, Benjamin P.; Costard, Rene; Elsaesser, Thomas

    2016-09-01

    Electric forces play a key role in the interaction of negatively charged phosphate groups with the dipolar water molecules of an aqueous environment. Both fluctuation amplitudes and effective spatial range of the electric fields that fluctuate on a multitude of time scales have remained highly controversial. We employ the dimethylphosphate anion (DMP) as a fundamental building block of the phosphodiester backbone in DNA to model electric fields at the phosphate-water interface. DMP is considered to be solvated in bulk water and the fluctuating electric forces exerted on the (PO2)- moiety are calculated by combining the ab initio based effective fragment potential approach that accounts for electric fields due to static multipoles and polarization contributions due to induced dipoles, with molecular dynamics. We demonstrate that the total time-averaged electric field generated by water molecules arises to a large extent from the first water layer. The second layer contributes some 18% with noticeable contributions from induction. We further show that the solvent electric field experienced by the phosphate group is the dominant contribution to the pronounced solvatochromism of the asymmetric (PO2)- stretch vibration. Accounting for a field expansion up to quadrupoles and polarization due to induced dipoles allows us to simulate solvent induced frequency shifts and lineshapes in almost quantitative agreement to experiment. Our theoretical model strongly supports the picture of short-range electric forces that arise locally from the first and second hydration shell.

  3. Effects of Diffusion Time on Short-Range Hyperpolarized 3He Diffusivity Measurements in Emphysema

    SciTech Connect

    Gierada, David S.; Woods, Jason C.; Bierhals, Andrew J.; Bartel, Seth T.; Ritter, Jon H.; Choong, Cliff K.; Das, Nitin A.; Hong, Cheng; Pilgram, Thomas K.; Chang, Yulin V.; Jacob, Rick E.; Hogg, James C.; Battafarano, Richard J.; Cooper, Joel D.; Meyers, Bryan F.; Patterson, G Alexander; Yablonskiy, Dmitriy A.; Conradi, Mark S.

    2009-09-28

    Purpose: To characterize the effect of diffusion time on short-range hyperpolarized 3He MR diffusion measurements across a wide range of emphysema severity. Materials and Methods: 3He diffusion MR imaging was performed on 19 lungs or lobes resected from 18 subjects with varying degrees of emphysema using 3 diffusion times (1.6 msec, 5 msec, and 10 msec) at constant b value. Emphysema severity was quantified as the mean apparent diffusion coefficient (ADC) and as the percentage of pixels with ADC higher than multiple thresholds from 0.30-0.55 cm2/sec (ADC index). Quantitative histology (mean linear intercept) was obtained in 10 of the lung specimens from 10 of the subjects. Results: The mean ADCs with diffusion times of 1.6, 5.0, and 10.0 msec were 0.46, 0.40, and 0.37 cm2/sec, respectively (P <0.0001, ANOVA). There was no relationship between the ADC magnitude and the effect of diffusion time on ADC values. Mean linear intercept correlated with ADC (r=0.91-0.94, P<0.001) and ADC index (r=0.78-0.92, P<0.01) at all diffusion times.

  4. Short-range interactions versus long-range correlations in bird flocks.

    PubMed

    Cavagna, Andrea; Del Castello, Lorenzo; Dey, Supravat; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2015-07-01

    Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of flocking is the presence of long range velocity correlations between individuals, which allow them to influence each other over the large scales, keeping a high level of group coordination. A crucial question is to understand what is the mutual interaction between birds generating such nontrivial correlations. Here we use the maximum entropy (ME) approach to infer from experimental data of natural flocks the effective interactions between individuals. Compared to previous studies, we make a significant step forward as we retrieve the full functional dependence of the interaction on distance, and find that it decays exponentially over a range of a few individuals. The fact that ME gives a short-range interaction even though its experimental input is the long-range correlation function, shows that the method is able to discriminate the relevant information encoded in such correlations and single out a minimal number of effective parameters. Finally, we show how the method can be used to capture the degree of anisotropy of mutual interactions. PMID:26274201

  5. Meta-heuristic CRPS minimization for the calibration of short-range probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Mohammadi, Seyedeh Atefeh; Rahmani, Morteza; Azadi, Majid

    2016-08-01

    This paper deals with the probabilistic short-range temperature forecasts over synoptic meteorological stations across Iran using non-homogeneous Gaussian regression (NGR). NGR creates a Gaussian forecast probability density function (PDF) from the ensemble output. The mean of the normal predictive PDF is a bias-corrected weighted average of the ensemble members and its variance is a linear function of the raw ensemble variance. The coefficients for the mean and variance are estimated by minimizing the continuous ranked probability score (CRPS) during a training period. CRPS is a scoring rule for distributional forecasts. In the paper of Gneiting et al. (Mon Weather Rev 133:1098-1118, 2005), Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimize the CRPS. Since BFGS is a conventional optimization method with its own limitations, we suggest using the particle swarm optimization (PSO), a robust meta-heuristic method, to minimize the CRPS. The ensemble prediction system used in this study consists of nine different configurations of the weather research and forecasting model for 48-h forecasts of temperature during autumn and winter 2011 and 2012. The probabilistic forecasts were evaluated using several common verification scores including Brier score, attribute diagram and rank histogram. Results show that both BFGS and PSO find the optimal solution and show the same evaluation scores, but PSO can do this with a feasible random first guess and much less computational complexity.

  6. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    SciTech Connect

    Hedegård, Erik Donovan; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan; Kongsted, Jacob Jensen, Hans Jørgen Aagaard

    2015-03-21

    We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of DALTON. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.

  7. Statistical Short-Range Forecast Guidance for Cloud Ceilings Over the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2001-01-01

    This report describes the results of the AMU's Short-Range Statistical Forecasting task. The cloud ceiling forecast over the Shuttle Landing Facility (SLF) is a critical element in determining whether a Shuttle should land. Spaceflight Meteorology Group (SMG) forecasters find that ceilings at the SLF are challenging to forecast. The AMU was tasked to develop ceiling forecast equations to minimize the challenge. Studies in the literature that showed success in improving short-term forecasts of ceiling provided the basis for the AMU task. A 20-year record of cool-season hourly surface observations from stations in east-central Florida was used for the equation development. Two methods were used: an observations-based (OBS) method that incorporated data from all stations, and a persistence climatology (PCL) method used as the benchmark. Equations were developed for 1-, 2-, and 3-hour lead times at each hour of the day. A comparison between the two methods indicated that the OBS equations performed well and produced an improvement over the PCL equations. Therefore, the conclusion of the AMU study is that OBS equations produced more accurate forecasts than the PCL equations, and can be used in operations. They provide another tool with which to make the ceiling forecasts that are critical to safe Shuttle landings at KSC.

  8. Pair correlation function of short-ranged square-well fluids

    NASA Astrophysics Data System (ADS)

    Largo, J.; Solana, J. R.; Yuste, S. B.; Santos, A.

    2005-02-01

    We have performed extensive Monte Carlo simulations in the canonical (NVT) ensemble of the pair correlation function for square-well fluids with well widths λ -1 ranging from 0.1 to 1.0, in units of the diameter σ of the particles. For each one of these widths, several densities ρ and temperatures T in the ranges 0.1⩽ρσ3⩽0.8 and Tc(λ)≲T≲3Tc(λ), where Tc(λ) is the critical temperature, have been considered. The simulation data are used to examine the performance of two analytical theories in predicting the structure of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 100, 3079 (1994); 100, 6665 (1994)] and the nonperturbative model proposed by two of us [S. B. Yuste and A. Santos, J. Chem. Phys. 101 2355 (1994)]. It is observed that both theories complement each other, as the latter theory works well for short ranges and/or moderate densities, while the former theory works for long ranges and high densities.

  9. Evaluation of NCEP TIGGE short-range forecast for Indian summer monsoon intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Tirkey, Snehlata; Mukhopadhyay, P.

    2016-04-01

    This study focuses on the short-range prediction of Monsoon Intraseasonal Oscillations (MISOs) using the National Centers for Environmental Prediction(NCEP) Ensemble Prediction System (EPS) data from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive. The Indian Summer Monsoon Rainfall (ISMR), which plays an important role in the socio-economic growth of the country, is highly variable and is mostly governed by the MISOs. In addition to this, deterministic forecasts of ISMR are not very reliable. Hence, a probabilistic approach at daily scale is required. Keeping this in mind, the present analysis is done by using daily forecast data for up to 7-day lead time and compared with observations. The analysis shows that the ensemble forecast well captures the variability as compared to observations even up to 7 days. The spatial characteristics and the northward propagation of MISO are observed thoroughly in the EPS. The evolution of dynamical and thermodynamical parameters such as specific humidity, moist static energy, moisture divergence, and vorticity is also captured well but show deviation from the observation from 96 h lead time onwards. The tropospheric temperature forecast captures the observed gradient but with certain bias in magnitude whereas the wind shear is simulated quite well both in pattern and magnitude. These analyses bring out the biases in TIGGE EPS forecast and also point out the possible moist processes which needs to be improved.

  10. Evaluation of 'GLAMEPS'—a proposed multimodel EPS for short range forecasting

    NASA Astrophysics Data System (ADS)

    Iversen, Trond; Deckmyn, Alex; Santos, Carlos; Sattler, Kai; Bremnes, John Bjørnar; Feddersen, Henrik; Frogner, Inger-Lise

    2011-05-01

    Grand Limited Area Model Ensemble Prediction System (GLAMEPS) is prepared for pan-European, short-range probabilistic numerical weather prediction of fine synoptic-scale, quasi-hydrostatic atmospheric flows. Four equally sized ensembles are combined: EuroTEPS, a version of the global ECMWF EPS with European target; AladEPS, a downscaling of EuroTEPS using the ALADIN model; HirEPS_K and HirEPS_S, two ensembles using the HIRLAM model nested into EuroTEPS including 3DVar data-assimilation for two control forecasts. A 52-member GLAMEPS thus samples forecast uncertainty by three analysed initial states combined with 12 singular vector-based perturbations, four different models and the stochastic physics tendencies in EuroTEPS. Over a 7-week test period in winter 2008, GLAMEPS produced better results than ECMWF's EPS with 51 ensemble members. Apart from spatial resolution, the improvement is due to the multimodel combination and to a smaller extent the dedicated EuroTEPS. Ensemble resolution and reliability are both improved. Combining uncalibrated ensembles is seen to produce a better combined ensemble than the best single-model ensemble of the same size, except when one of the single-model ensembles is considerably better than the others. Bayesian Model Averaging improves reliability, but needs further elaboration to account for geographical variations. These conclusions need to be confirmed by long-period evaluations.

  11. Relations between short-range and long-range Ising models.

    PubMed

    Angelini, Maria Chiara; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2014-06-01

    We perform a numerical study of the long-range (LR) ferromagnetic Ising model with power law decaying interactions (J∝r{-d-σ}) on both a one-dimensional chain (d=1) and a square lattice (d=2). We use advanced cluster algorithms to avoid the critical slowing down. We first check the validity of the relation connecting the critical behavior of the LR model with parameters (d,σ) to that of a short-range (SR) model in an equivalent dimension D. We then study the critical behavior of the d=2 LR model close to the lower critical σ, uncovering that the spatial correlation function decays with two different power laws: The effect of the subdominant power law is much stronger than finite-size effects and actually makes the estimate of critical exponents very subtle. By including this subdominant power law, the numerical data are consistent with the standard renormalization group (RG) prediction by Sak [Phys. Rev. B 8, 281 (1973)], thus making not necessary (and unlikely, according to Occam's razor) the recent proposal by Picco [arXiv:1207.1018] of having a new set of RG fixed points in addition to the mean-field one and the SR one. PMID:25019738

  12. Supercoiling Effects on Short-Range DNA Looping in E. coli

    PubMed Central

    Mogil, Lauren S.; Becker, Nicole A.; Maher, L. James

    2016-01-01

    DNA-protein loops can be essential for gene regulation. The Escherichia coli lactose (lac) operon is controlled by DNA-protein loops that have been studied for decades. Here we adapt this model to test the hypothesis that negative superhelical strain facilitates the formation of short-range (6–8 DNA turns) repression loops in E. coli. The natural negative superhelicity of E. coli DNA is regulated by the interplay of gyrase and topoisomerase enzymes, adding or removing negative supercoils, respectively. Here, we measured quantitatively DNA looping in three different E. coli strains characterized by different levels of global supercoiling: wild type, gyrase mutant (gyrB226), and topoisomerase mutant (ΔtopA10). DNA looping in each strain was measured by assaying repression of the endogenous lac operon, and repression of ten reporter constructs with DNA loop sizes between 70–85 base pairs. Our data are most simply interpreted as supporting the hypothesis that negative supercoiling facilitates gene repression by small DNA-protein loops in living bacteria. PMID:27783696

  13. Structural properties of fluids with short-range attractive and repulsive tails: Inverse temperature expansion

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Young; Kim, Soon-Chul

    2014-03-01

    Thermodynamic perturbation theories based on a power series in the inverse temperature have been proposed for studying the structure of square-well and square-shoulder fluids in various ranges, and the results have compared with those from computer simulations. The perturbation theory based on the hard-sphere reference system seems to reproduce the simulation data at high temperature. However, it fails in the region of low density and low temperature. On the other hand, the perturbation theory based on the high-temperature reference system, which incorporates both repulsive and short-range attractive/repulsive tails is in excellent agreement with simulation results and is more accurate than the perturbation theory based on the hard-sphere reference system. In particular, the perturbation theory based on the high-temperature reference system is the most successful for a square-shoulder fluid with a purely repulsive potential and is more accurate than the rational function approximation of Yuste et al. [Mol. Phys. 109 987 (2011)] for the whole density range. In this case, the convergence of the power series in the inverse temperature is seen to be quiet satisfactory even for low density and low temperature.

  14. Long-time asymptotics of the periodic Toda lattice under short-range perturbations

    NASA Astrophysics Data System (ADS)

    Kamvissis, Spyridon; Teschl, Gerald

    2012-07-01

    We compute the long-time asymptotics of periodic (and slightly more generally of algebro-geometric finite-gap) solutions of the doubly infinite Toda lattice under a short-range perturbation. In particular, we prove that the perturbed lattice asymptotically approaches a modulated lattice. More precisely, let g be the genus of the hyperelliptic curve associated with the unperturbed solution. We show that, apart from the phenomenon of solitons travelling in a quasi-periodic background, the n/t-pane contains g + 2 areas where the perturbed solution is close to a finite-gap solution on the same isospectral torus. In between there are g + 1 regions where the perturbed solution is asymptotically close to a modulated lattice which undergoes a continuous phase transition (in the Jacobian variety) and which interpolates between these isospectral solutions. In the special case of the free lattice (g = 0), the isospectral torus consists of just one point and we recover the known result. Both the solutions in the isospectral torus and the phase transition are explicitly characterized in terms of Abelian integrals on the underlying hyperelliptic curve. Our method relies on the equivalence of the inverse spectral problem to a vector Riemann-Hilbert problem defined on the hyperelliptic curve and generalizes the so-called nonlinear stationary phase/steepest descent method for Riemann-Hilbert problem deformations to Riemann surfaces.

  15. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche.

    PubMed

    Farin, Henner F; Jordens, Ingrid; Mosa, Mohammed H; Basak, Onur; Korving, Jeroen; Tauriello, Daniele V F; de Punder, Karin; Angers, Stephane; Peters, Peter J; Maurice, Madelon M; Clevers, Hans

    2016-02-18

    Mammalian Wnt proteins are believed to act as short-range signals, yet have not been previously visualized in vivo. Self-renewal, proliferation and differentiation are coordinated along a putative Wnt gradient in the intestinal crypt. Wnt3 is produced specifically by Paneth cells. Here we have generated an epitope-tagged, functional Wnt3 knock-in allele. Wnt3 covers basolateral membranes of neighbouring stem cells. In intestinal organoids, Wnt3-transfer involves direct contact between Paneth cells and stem cells. Plasma membrane localization requires surface expression of Frizzled receptors, which in turn is regulated by the transmembrane E3 ligases Rnf43/Znrf3 and their antagonists Lgr4-5/R-spondin. By manipulating Wnt3 secretion and by arresting stem-cell proliferation, we demonstrate that Wnt3 mainly travels away from its source in a cell-bound manner through cell division, and not through diffusion. We conclude that stem-cell membranes constitute a reservoir for Wnt proteins, while Frizzled receptor turnover and 'plasma membrane dilution' through cell division shape the epithelial Wnt3 gradient.

  16. Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions

    NASA Astrophysics Data System (ADS)

    Gazzillo, Domenico; Giacometti, Achille; Fantoni, Riccardo; Sollich, Peter

    2006-11-01

    We investigate the dependence of the stickiness parameters tij=1/(12τij) —where the τij are the conventional Baxter parameters—on the solute diameters σi and σj in multicomponent sticky hard sphere (SHS) models for fluid mixtures of mesoscopic neutral particles. A variety of simple but realistic interaction potentials, utilized in the literature to model short-ranged attractions present in real solutions of colloids or reverse micelles, is reviewed. We consider: (i) van der Waals attractions, (ii) hard-sphere-depletion forces, (iii) polymer-coated colloids, and (iv) solvation effects (in particular hydrophobic bonding and attractions between reverse micelles of water-in-oil microemulsions). We map each of these potentials onto an equivalent SHS model by requiring the equality of the second virial coefficients. The main finding is that, for most of the potentials considered, the size-dependence of tij(T,σi,σj) can be approximated by essentially the same expression, i.e., a simple polynomial in the variable σiσj/σij2 , with coefficients depending on the temperature T , or—for depletion interactions—on the packing fraction η0 of the depletant particles.

  17. Polarizable embedding with a multiconfiguration short-range density functional theory linear response method

    NASA Astrophysics Data System (ADS)

    Hedegârd, Erik Donovan; Olsen, Jógvan Magnus Haugaard; Knecht, Stefan; Kongsted, Jacob; Jensen, Hans Jørgen Aagaard

    2015-03-01

    We present here the coupling of a polarizable embedding (PE) model to the recently developed multiconfiguration short-range density functional theory method (MC-srDFT), which can treat multiconfigurational systems with a simultaneous account for dynamical and static correlation effects. PE-MC-srDFT is designed to combine efficient treatment of complicated electronic structures with inclusion of effects from the surrounding environment. The environmental effects encompass classical electrostatic interactions as well as polarization of both the quantum region and the environment. Using response theory, molecular properties such as excitation energies and oscillator strengths can be obtained. The PE-MC-srDFT method and the additional terms required for linear response have been implemented in a development version of Dalton. To benchmark the PE-MC-srDFT approach against the literature data, we have investigated the low-lying electronic excitations of acetone and uracil, both immersed in water solution. The PE-MC-srDFT results are consistent and accurate, both in terms of the calculated solvent shift and, unlike regular PE-MCSCF, also with respect to the individual absolute excitation energies. To demonstrate the capabilities of PE-MC-srDFT, we also investigated the retinylidene Schiff base chromophore embedded in the channelrhodopsin protein. While using a much more compact reference wave function in terms of active space, our PE-MC-srDFT approach yields excitation energies comparable in quality to CASSCF/CASPT2 benchmarks.

  18. Long-ranged contributions to solvation free energies from theory and short-ranged models

    PubMed Central

    Remsing, Richard C.; Liu, Shule; Weeks, John D.

    2016-01-01

    Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object. PMID:26929375

  19. Study Of Short-Range Correlations With 6-9 GeV/c Protons

    SciTech Connect

    Watson, J. W.

    2008-10-13

    We studied the {sup 12}C(p,2p+n) reaction at beam momenta of 5.9, 8.0 and 9.0 GeV/c. For quasielastic (p,2p) events we reconstructed p{sub f}, the momentum of the knocked-out proton before the reaction;, p{sub f} was then compared (event-by-event) with p{sub n}, the measured, coincident neutron momentum. For |p{sub n}|>k{sub F} = 0.220 GeV/c(the Fermi momentum) a strong back-to-back directional correlation between p{sub f} and p{sub n} was observed, indicative of short-range n-p correlations. From these data we concluded that for nuclear protons with momenta >0.275 GeV/c, 92{+-}18% have correlated neutron partners. This result was recently corroborated by an experiment with 4.6 GeV electrons.

  20. Long-ranged contributions to solvation free energies from theory and short-ranged models

    NASA Astrophysics Data System (ADS)

    Remsing, Richard C.; Liu, Shule; Weeks, John D.

    2016-03-01

    Long-standing problems associated with long-ranged electrostatic interactions have plagued theory and simulation alike. Traditional lattice sum (Ewald-like) treatments of Coulomb interactions add significant overhead to computer simulations and can produce artifacts from spurious interactions between simulation cell images. These subtle issues become particularly apparent when estimating thermodynamic quantities, such as free energies of solvation in charged and polar systems, to which long-ranged Coulomb interactions typically make a large contribution. In this paper, we develop a framework for determining very accurate solvation free energies of systems with long-ranged interactions from models that interact with purely short-ranged potentials. Our approach is generally applicable and can be combined with existing computational and theoretical techniques for estimating solvation thermodynamics. We demonstrate the utility of our approach by examining the hydration thermodynamics of hydrophobic and ionic solutes and the solvation of a large, highly charged colloid that exhibits overcharging, a complex nonlinear electrostatic phenomenon whereby counterions from the solvent effectively overscreen and locally invert the integrated charge of the solvated object.

  1. Diagnosis of Short Range Forecast Errors Using Piecewise Inversion of Potential Vorticity

    NASA Astrophysics Data System (ADS)

    Klinker, E.

    Under the assumption of balanced flow dynamics the evolution of atmospheric sy stems such as cyclones are investigated in the single parameter environment of poten- tial vorticity (PV). Based on the property of invertibility, it is then possible to calculate the distribution of the balanced flow from a knowledge o f the 3-dimensional distribu- tion of Ertel's PV. The diagnosis of atmospheric model errors has to take into account the effects of all di- abatic and adiabatic processes. The difficulty of a comprehensive di agnostic approach arises from the fact that different processes produce tenden cies for different model parameters. A diabatic process may produce tendencies for temperature alone (like radiation); other processes may produce tendencie s for momentum, temperature and humidity (like vertical diffusion or cumulus c onvection). However, a one-parameter diagnosis has been achieved by combining temperature and momentum increments to appropriate increments of Ertel's PV. The advantage of using PV in the frame work of quasi-balanced dynamics is that the flow associated with diabatic PV perturbations can be obtained from the p iecewise in- version technique. The method provides a basis to identify atmosphe ric developments that are noticeably influenced by diabatic processes. For the diagnosis of ECMWF short range forecast tendencies and ultimately for an esti mate of model errors, a di- agnostic system has been set up that calculates the flow perturbations associated with all diabatic and adiabatic processes.

  2. A UHF RFID system with on-chip-antenna tag for short range communication

    NASA Astrophysics Data System (ADS)

    Qi, Peng; Chun, Zhang; Xijin, Zhao; Zhihua, Wang

    2015-05-01

    A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm2, which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna.

  3. The equilibria of vesicles adhered to substrates by short-ranged potentials.

    PubMed

    Blount, Maurice J; Miksis, Michael J; Davis, Stephen H

    2013-05-01

    In equilibrium, a vesicle that is adhered to a horizontal substrate by a long-range attractive, short-range repulsive force traps a thin layer of fluid beneath it. In the asymptotic limit that this layer is very thin, there are quasi-two-dimensional boundary-layer structures near the edges of the vesicle, where the membrane's shape is governed by a balance between bending and adhesive stresses. These boundary layers are analysed to obtain corrections to simpler models that instead represent the adhesive interaction by a contact potential, thereby resolving apparent discontinuities that arise when such models are used. Composite expansions of the shapes of two-dimensional vesicles are derived. When, in addition, the adhesive interaction is very strong, there is a nested boundary-layer structure for which the adhesive boundary layers match towards sharp corners where bending stresses remain important but adhesive stresses are negligible. Outside these corners, bending stresses are negligible and the vesicle's shape is given approximately by the arc of a circle. Simple composite expansions of the vesicle's shape are derived that account for the shape of the membrane inside these corners. PMID:23653527

  4. Evidence for short range corelations from high Q{sup 2} (e,e{prime}) reactions

    SciTech Connect

    Strikman, M.I.; Frankfurt, L.L.; Sargayan, M.M.

    1994-04-01

    For many years now short-range correlations (SRC) in nuclei have been considered as an essential feature of the nuclear wave function. At high energy (e,e{prime}) reactions, where Q{sup 2} > 1 (GeV/c){sup 2}, x = Q{sup 2}/2mq{sub o} > 1 and 1 GeV > q{sub o}> 300 {approximately} 400 MeV the scattering from low momentum nucleons is kinematically suppressed and there the evidence of SRC expected to be more prominent. These reactions have been intensively investigated during the last decade or so at SLAC on both light and heavy nuclei. The above kinematics allows one to compute the cross section through the processes local in space. To explain this the authors analyse the representation of the cross section as a Fourier transform of the commutator of electromagnetic currents and see that the major contribution in the cross section is given by the region of integration.

  5. Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar

    NASA Astrophysics Data System (ADS)

    Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan

    2016-09-01

    A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.

  6. Measurement of transparency ratios for protons from short-range correlated pairs

    SciTech Connect

    Hen, O.; Hakobyan, Hayk; Shneor, Ran; Piasetzky, Eliazer Israel; Weinstein, Lawrence B.

    2013-05-01

    Nuclear transparency, T{sub p}(A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extructed for quasi-elastic A(e,e'p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this paper we extract a novel observable, the transparency ratio, T{sub p}(A)/T{sub p}({sup 12}C), for knockout of high-missing-momentum protons from the breakup of short range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q^2 > 1.5 (GeV/c)^2 and x_B > 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20 - 30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A^-1/3, which is consistent with dominance of scattering from nucleons at the nuclear surface.

  7. Short-range interactions versus long-range correlations in bird flocks

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Dey, Supravat; Giardina, Irene; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano

    2015-07-01

    Bird flocks are a paradigmatic example of collective motion. One of the prominent traits of flocking is the presence of long range velocity correlations between individuals, which allow them to influence each other over the large scales, keeping a high level of group coordination. A crucial question is to understand what is the mutual interaction between birds generating such nontrivial correlations. Here we use the maximum entropy (ME) approach to infer from experimental data of natural flocks the effective interactions between individuals. Compared to previous studies, we make a significant step forward as we retrieve the full functional dependence of the interaction on distance, and find that it decays exponentially over a range of a few individuals. The fact that ME gives a short-range interaction even though its experimental input is the long-range correlation function, shows that the method is able to discriminate the relevant information encoded in such correlations and single out a minimal number of effective parameters. Finally, we show how the method can be used to capture the degree of anisotropy of mutual interactions.

  8. Gelation of anisotropic silica colloids with thermoreversible short-range interactions

    NASA Astrophysics Data System (ADS)

    Murphy, Ryan; Wagner, Norman

    Colloidal suspensions containing anisotropic particles are widely used in particle-based technologies including pharmaceuticals, consumer products, and coatings. The rheological properties of colloidal suspensions are known to be affected by particle shape; however, the combined influence of particle shape and attraction strength is not quantitatively understood for dynamic arrest transitions such as gelation. A model system of anisotropic silica colloids with thermoreversible, short-range attractions was developed to quantify the effect of particle shape and attractions on the gelation behavior. This tunable model system aims to map a fundamental state diagram for anisotropic particle suspensions as a function of particle shape, volume fraction, and interaction strength. Macroscopic rheological properties of thermoreversible gels were explored to determine the influence of particle shape on the gel transition. Neutron and x-ray scattering methods further probed the underlying fluid and gel microstructure at various temperatures, volume fractions, and aspect ratios. Linking these fundamental macroscopic and microscopic measurements will provide practical insight into particle technologies and manufacturing processes containing anisotropic colloidal suspensions.

  9. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  10. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    PubMed

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-01

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data. PMID:19425788

  11. The short range anion-H interaction is the driving force for crystal formation of ions in water.

    PubMed

    Alejandre, José; Chapela, Gustavo A; Bresme, Fernando; Hansen, Jean-Pierre

    2009-05-01

    The crystal formation of NaCl in water is studied by extensive molecular dynamics simulations. Ionic solutions at room temperature and various concentrations are studied using the SPC/E and TIP4P/2005 water models and seven force fields of NaCl. Most force fields of pure NaCl fail to reproduce the experimental density of the crystal, and in solution some favor dissociation at saturated conditions, while others favor crystal formation at low concentration. A new force field of NaCl is proposed, which reproduces the experimental phase diagram in the solid, liquid, and vapor regions. This force field overestimates the solubility of NaCl in water at saturation conditions when used with standard Lorentz-Berthelot combining rules for the ion-water pair potentials. It is shown that precipitation of ions is driven by the short range interaction between Cl-H pairs, a term which is generally missing in the simulation of ionic solutions. The effects of intramolecular flexibility of water on the solubility of NaCl ions are analyzed and is found to be small compared to rigid models. A flexible water model, extending the rigid SPC/E, is proposed, which incorporates Lennard-Jones interactions centered on the hydrogen atoms. This force field gives liquid-vapor coexisting densities and surface tensions in better agreement with experimental data than the rigid SPC/E model. The Cl-H, Na-O, and Cl-O pair distribution functions of the rigid and flexible models agree well with experiment. The predicted concentration dependence of the electric conductivity is in fair agreement with available experimental data.

  12. An all-atom simulation study of the ordering of liquid squalane near a solid surface

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin; Patnaik, Soumya S.

    2008-05-01

    An all-atom molecular dynamics study using the OPLS force field has been carried out to obtain new insights in to the orientation and ordering of liquid squalane near a solid surface. As observed in previous experiments, the squalane molecules closest to a SiO 2 substrate are found to be tightly bound with their molecular axis preferentially parallel to the interface. Unlike linear alkanes, the squalane molecules are also found to lie preferentially parallel to the liquid/vapor interface. The simulation results predict that the molecular plane orientation of the squalane molecules changes from mainly parallel to perpendicular to the substrate in going further away from the substrate.

  13. Rotational excitation of symmetric top molecules by collisions with atoms. II - Infinite order sudden approximation

    NASA Technical Reports Server (NTRS)

    Green, S.

    1979-01-01

    The infinite order sudden (IOS) approximation is extended to rotational excitation of symmetric tops by collisions with atoms. After development of a formalism for 'primitive' or 'one-ended' tops, proper parity-adapted linear combinations describing real rotors are considered and modifications needed for asymmetric rigid rotors are noted. The generalized spectroscopic relaxation cross sections are discussed. IOS calculations for NH3-He and H2CO-He are performed and compared with more accurate calculations, and the IOS approximation is found to provide a reasonably accurate description.

  14. Translationally invariant calculations of form factors, nucleon densities and momentum distributions for finite nuclei with short-range correlations included

    NASA Astrophysics Data System (ADS)

    Shebeko, A. V.; Grigorov, P. A.; Iurasov, V. S.

    2012-11-01

    Relying upon our previous treatment of the density matrices for nuclei (in general, nonrelativistic self-bound finite systems) we are studying a combined effect of center-of-mass motion and short-range nucleon-nucleon correlations on the nucleon density and momentum distributions in light nuclei (4He and 16O). Their intrinsic ground-state wave functions are constructed in the so-called fixed center-of-mass approximation, starting with mean-field Slater determinants modified by some correlator ( e.g., after Jastrow or Villars). We develop the formalism based upon the Cartesian or boson representation, in which the coordinate and momentum operators are linear combinations of the creation and annihilation operators for oscillatory quanta in the three different space directions, and get the own "Tassie-Barker" factors for each distribution and point out other model-independent results. After this separation of the center-of-mass motion effects we propose additional analytic means in order to simplify the subsequent calculations ( e.g., within the Jastrow approach or the unitary correlation operator method). The charge form factors, densities and momentum distributions of 4He and 16O evaluated by using the well-known cluster expansions are compared with data, our exact (numerical) results and microscopic calculations.

  15. A third-order mode high frequency biosensor with atomic resolution.

    PubMed

    Cai, Hua-Lin; Yang, Yi; Chen, Xiao; Mohammad, Mohammad Ali; Ye, Tian-Xiang; Guo, Cang-Ran; Yi, Li-Ting; Zhou, Chang-Jian; Liu, Jing; Ren, Tian-Ling

    2015-09-15

    An atomic resolution ultra-high sensitivity surface acoustic wave (SAW) biosensor for DNA sequences and cells detection is proposed. Interdigitated transducers (IDTs) fabricated on LiNbO3 substrate achieve a high quality factor (Q) of over 4000 at a frequency of 6.4 GHz (third-order harmonic mode) using an optimized design and process. The biosensor shows excellent linear responses to target DNA in the range from 1 μg/ml to 1 ng/ml with a high sensitivity of 6.7 × 10(-16)g/cm(2)/Hz, hence the difference of a single hybridized DNA base can also be distinguished. With such a high mass resolution, the biosensor is capable of quantitative detection of living cancer cells. The frequency responses of single mouse mammary adenocarcinoma (EMT6) cell and mouse fibroblast (3T3) cell are studied. The interferences in the experiments show insignificant influence on the frequency shift, which verifies the high selectivity of the biosensor. The biosensor is also able to repeat the sensing ability after rough cleaning, therefore cost reduction is achieved from the recycling process in practical applications. The detection limit is defined from the noise analysis of the device, atomic resolution is realized according to the calculation, thereby initiating a potential tool for high-precision medical diagnoses and phenomena observation at the atomic-level.

  16. Mössbauer study of short range order in frozen aqueous solutions of Fe(ClO4)2

    NASA Astrophysics Data System (ADS)

    Domes, H.; Leupold, O.; Nagy, D. L.; Ritter, G.; Spiering, H.; Molnár, B.; Szücs, I. S.

    1986-12-01

    Mössbauer spectra of frozen aqueous solutions of Fe(ClO4)2 were measured at T=4.2 K in external magnetic fields up to 5 T. It was found that the [Fe(H2O)6]2+ coordination ions are randomly distorted thereby retaining their C2h symmetry and obeying no significant Eg distortions.

  17. Short range structure of hadron and nuclear wave functions at high x

    SciTech Connect

    Hoyer, P.; Brodsky, S.J.

    1990-11-01

    We discuss the short-range structure of hadronic and nuclear wave functions expected in QCD. In addition to the extrinsic'' contributions associated with radiation from single partons, there is an intrinsic'' hardness of the high-mass fluctuations of the wave function due to the spatial overlap of two or more partons. We argue that intrinsically-hard partons, having large mass and/or large transverse momentum, will dominate in the region of large Feynman x{sub F}. Their rescattering in nuclear targets is expected to be larger than for extrinsically-hard partons, leading to a suppressed production cross section for hadrons scattering on heavy nuclei. Experimental evidence for this exists for open chars. J/{psi}, and {gamma} production at large x{sub F}. The effects of intrinsic hardness may be particularly striking in nuclear wave functions, where the overlap of partons belonging to different nucleons can give rise to cumulative (x > 1) phenomena. The data on backward cumulative particle production from nuclei supports the existence of an intrinsically-hard component in nuclear wave functions. Partons at large x{sub F} may also be associated with the enhanced subthreshold production of particles observed in hadron-nucleus and nucleus-nucleus collisions. We discuss the evidence for anomalies in the large angle pp {yields} pp cross section near the charm threshold. Arguments are presented that chromium states may bind to nuclei through the QCD Van der Waals force. This would lead to a striking signal in charm production near threshold. 49 refs., 7 figs.

  18. Importance of achromatic contrast in short-range fruit foraging of primates.

    PubMed

    Hiramatsu, Chihiro; Melin, Amanda D; Aureli, Filippo; Schaffner, Colleen M; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a 'red-green' chromatic channel in addition to luminance and 'blue-yellow' channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  19. Short-Range Structure of Clouds Studied by High Resolution Photography From the Surface

    NASA Astrophysics Data System (ADS)

    Schwartz, S. E.; Huang, D.; Vladutescu, D. V.

    2015-12-01

    Clouds exhibit structures at a wide range of length scales. Passive radiometry from satellite shows structure on scales of tens to thousands of kilometers, but there is much structure at short spatial scales not resolved by satellite imagery. Here we use a commercial camera having high spatial resolution (~20 μrad) and high dynamic range (16 bits in each of three color channels) in narrow field-of-view (20 mrad, 110 mrad), zenith-looking mode from the surface, to examine clouds at the scale of centimeters to a few hundred meters, focusing on non-precipitating single-layer clouds during daytime. Up-looking photography of clouds from the surface affords the further advantage, relative to satellite imagery, of black background (space) with contributions to radiance only from blue sky (Rayleigh scattering), aerosols, and clouds, permitting reconstruction of observed radiance by radiation transfer modeling. Contrast between cloudy and cloud-free sky is enhanced in Red/(Red + Blue), RRB, image Figure 1, but no unique value of RRB distinguishes a pixel as cloud vs. cloud-free. Short-range variability is characterized by the autocorrelation length scale, which is not uncommonly as short as a few meters; longer range variability, such as cloud characteristic size, separation distance, and cloud spatial organization, is also characterized. Scene reconstruction yields the 2D distribution of cloud optical depth; spatial inhomogeneity is attributed mainly to horizontal variation in vertical motion of the air and resultant condensation or evaporation associated with upward or downward motion, respectively. Alternative approaches to calculation of the radiative influence of such clouds from the autocorrelation structure of the cloud field are examined. Figure 1. RGB image of zenith sky at New York City, May 22, 2015, (field of view 21 mrad corresponding to 56 m at cloud altitude 2.6 km) showing broken single-layer cloud; corresponding RRB image; and autocorrelation of RRB image.

  20. Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates

    PubMed Central

    Hiramatsu, Chihiro; Melin, Amanda D.; Aureli, Filippo; Schaffner, Colleen M.; Vorobyev, Misha; Matsumoto, Yoshifumi; Kawamura, Shoji

    2008-01-01

    Trichromatic primates have a ‘red-green’ chromatic channel in addition to luminance and ‘blue-yellow’ channels. It has been argued that the red-green channel evolved in primates as an adaptation for detecting reddish or yellowish objects, such as ripe fruits, against a background of foliage. However, foraging advantages to trichromatic primates remain unverified by behavioral observation of primates in their natural habitats. New World monkeys (platyrrhines) are an excellent model for this evaluation because of the highly polymorphic nature of their color vision due to allelic variation of the L-M opsin gene on the X chromosome. In this study we carried out field observations of a group of wild, frugivorous black-handed spider monkeys (Ateles geoffroyi frontatus, Gray 1842, Platyrrhini), consisting of both dichromats (n = 12) and trichromats (n = 9) in Santa Rosa National Park, Costa Rica. We determined the color vision types of individuals in this group by genotyping their L-M opsin and measured foraging efficiency of each individual for fruits located at a grasping distance. Contrary to the predicted advantage for trichromats, there was no significant difference between dichromats and trichromats in foraging efficiency and we found that the luminance contrast was the main determinant of the variation of foraging efficiency among red-green, blue-yellow and luminance contrasts. Our results suggest that luminance contrast can serve as an important cue in short-range foraging attempts despite other sensory cues that could be available. Additionally, the advantage of red-green color vision in primates may not be as salient as previously thought and needs to be evaluated in further field observations. PMID:18836576

  1. Atomic self-ordering in a ring cavity with counterpropagating pump fields

    NASA Astrophysics Data System (ADS)

    Ostermann, S.; Grießer, T.; Ritsch, H.

    2015-02-01

    The collective dynamics of mobile scatterers and light in optical resonators generates complex behaviour. For strong transverse illumination a phase transition from homogeneous to crystalline particle order appears. In contrast, cold particles inside a single-side pumped ring cavity exhibit an instability towards bunching and collective acceleration called collective atomic recoil lasing (CARL). We demonstrate that by driving two orthogonally polarized counterpropagating modes of a ring resonator one realises both cases within one system. As a function of the two pump intensities the corresponding phase diagram exhibits regions in which either a generalized form of self-ordering towards a travelling density wave with constant centre-of-mass velocity or a CARL instability is formed. Time-dependent control of the cavity driving then allows to accelerate or slow down and trap a sufficiently dense beam of linearly polarizable particles.

  2. Higher-order C{sub n} dispersion coefficients for the alkali-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2005-04-01

    The van der Waals coefficients, from C{sub 11} through to C{sub 16} resulting from second-, third-, and fourth-order perturbation theory are estimated for the alkali-metal (Li, Na, K, and Rb) atoms. The dispersion coefficients are also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Comparisons of the radial dependence of the C{sub n}/r{sup n} potentials give guidance as to the radial regions in which the various higher-order terms can be neglected. It is seen that including terms up to C{sub 10}/r{sup 10} results in a dispersion interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a{sub 0}. This level of accuracy is mainly achieved due to the fortuitous cancellation between the repulsive (C{sub 11},C{sub 13},C{sub 15}) and attractive (C{sub 12},C{sub 14},C{sub 16}) dispersion forces.

  3. Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Li, Gang; Höpfner, Philipp; Schäfer, Jörg; Blumenstein, Christian; Meyer, Sebastian; Bostwick, Aaron; Rotenberg, Eli; Claessen, Ralph; Hanke, Werner

    2013-03-01

    Two-dimensional electron systems, as exploited for device applications, can lose their conducting properties because of local Coulomb repulsion, leading to a Mott-insulating state. In triangular geometries, any concomitant antiferromagnetic spin ordering can be prevented by geometric frustration, spurring speculations about ‘melted’ phases, known as spin liquid. Here we show that for a realization of a triangular electron system by epitaxial atom adsorption on a semiconductor, such spin disorder, however, does not appear. Our study compares the electron excitation spectra obtained from theoretical simulations of the correlated electron lattice with data from high-resolution photoemission. We find that an unusual row-wise antiferromagnetic spin alignment occurs that is reflected in the photoemission spectra as characteristic ‘shadow bands’ induced by the spin pattern. The magnetic order in a frustrated lattice of otherwise non-magnetic components emerges from longer-range electron hopping between the atoms. This finding can offer new ways of controlling magnetism on surfaces.

  4. Atomic study on the ordered structure in Al melts induced by liquid/substrate interface with Ti solute

    SciTech Connect

    Zhang, H. L.; Han, Y. F. E-mail: bdsun@sjtu.edu.cn; Zhou, W.; Dai, Y. B.; Wang, J.; Sun, B. D. E-mail: bdsun@sjtu.edu.cn

    2015-01-26

    Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energy in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.

  5. Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds

    DOE PAGES

    Wang, Wenlong; Kevrekidis, P. G.

    2015-03-09

    We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a “crystalline” configuration to that of a disordered state that can be characterized as a soliton “gas.” As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partialmore » differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. In addition, we define an “empirical” order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the “thermally” (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.« less

  6. Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds

    SciTech Connect

    Wang, Wenlong; Kevrekidis, P. G.

    2015-03-09

    We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a “crystalline” configuration to that of a disordered state that can be characterized as a soliton “gas.” As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. In addition, we define an “empirical” order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the “thermally” (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.

  7. Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds.

    PubMed

    Wang, Wenlong; Kevrekidis, P G

    2015-03-01

    We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas." As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.

  8. Tetrahedral atom ordering in a zeolite framework: a key factor affecting its physicochemical properties.

    PubMed

    Shin, Jiho; Bhange, Deu S; Camblor, Miguel A; Lee, Yongjae; Kim, Wha Jung; Nam, In-Sik; Hong, Suk Bong

    2011-07-13

    Three gallosilicate natrolites with closely similar chemical composition but differing in the distribution of Si and Ga over crystallographically different tetrahedral sites (T-sites) show striking differences in their cation exchange performance. The ability to exchange Na(+) by the larger alkali metal cations decreases upon increasing the size of the cation, as expected, but also with the degree of T-atom ordering. To seek an insight into this phenomenon, the crystal structures of 11 different zeolites, which show variations in degree of T-atom ordering, nature of countercation, and hydration state, have been refined using synchrotron diffraction data. While the three as-made sodium materials were characterized to have a low, medium, and high degree of ordering, respectively, their pore sizes are close to the size of the bare Na(+) cation and much smaller than that of the larger alkali cations, which are nonetheless exchanged into the materials, each one at a different level. Interestingly, large differences are also manifested when the Na(+) back-exchange is performed on the dehydrated K(+) forms, with crystallographic pore sizes too small even to allow the passage of Na(+). Although the thermodynamic data point to small differences in the enthalpy of the Na(+)/K(+) exchange in the three materials, comparison of the "static" crystallographic pore sizes and the diameter of the exchanged cations lead us to conclude that during the exchange process these zeolites undergo significant deformations that dynamically open the pores, allowing cation traffic even for Cs(+) in the case of the most disordered material. In addition to the very large topological flexibility typical of the natrolite framework, we propose as a hypothesis that there is an additional flexibility mechanism that decreases the rigidity of the natrolite chain itself and is dependent on preferential siting of Si or Ga on crystallographically different T-sites.

  9. Thermodynamically self-consistent theories of fluids interacting through short-range forces.

    PubMed

    Caccamo, C; Pellicane, G; Costa, D; Pini, D; Stell, G

    1999-11-01

    either the SCOZA or the MHNC; the GMSA prediction for the freezing line at lambda=7 and 9 is instead able to follow in a qualitative manner the pattern of the solid-vapor coexistence line as determined through computer simulation studies. The necessity of further assessments of the freezing predictions is also discussed. Finally, versions of the GMSA, SCOZA, and HRT that can be expected to be more accurate for interactions with extremely short-ranged attractions are identified.

  10. Ordering and site occupancy of D03 ordered Fe3Al-5 at%Cr evaluated by means of atom probe tomography.

    PubMed

    Rademacher, Thomas; Al-Kassab, Talaat; Deges, Johannes; Kirchheim, Reiner

    2011-05-01

    Addition of ternary elements to the D0(3) ordered Fe(3)Al intermetallic phase is a general approach to optimise its mechanical properties. To understand the physical influences of such additions the determination of the probability of site occupancies of these additions on the lattice site and ordering parameters is of high interest. Some common experimental techniques such as X-ray diffraction or Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) are usually applied to explore this interplay. Unfortunately, certain published results are partly inconsistent, imprecise or even contradictory. In this study, these aspects are evaluated systematically by atom probe tomography (APT) and a special data analysis method. Additionally, to account for possible field evaporation effects that can falsify the estimation of site occupancy and induce misinterpretations, APT evaporation sequences were also simulated. As a result, chromium occupies most frequently the next nearest neighbour sites of Al atoms and local ordering parameters could be achieved. PMID:21247699

  11. Surface atomic order of compound III-V semiconductor alloys at finite temperature

    NASA Astrophysics Data System (ADS)

    Thomas, John C.; Millunchick, Joanna Mirecki; Modine, Normand A.; van der Ven, Anton

    2009-09-01

    We investigate the role of alloying, atomic-size mismatch strain, and thermal effects on ordering and reconstruction stability of As-rich (2×4) surfaces on (InxGa1-x)As (001) ternary III-V alloys (in the dilute limit) using a first-principles cluster-expansion and Monte Carlo simulations. The cluster expansion accounts for configurational degrees of freedom associated with As dimer adsorption/desorption as well as Ga-In disorder in subsurface cation sites. We analyze the α2(2×4)-β2(2×4) transition at finite temperature and directly examine the entropy and cation-site filling in both reconstructions. A compositionally dependent “zigzag” ordering of dimers in the α2(2×4) is predicted as well as a hybrid α2(2×4)-β2(2×4) reconstruction, found to be stable in a reasonably large chemical-potential range. The hybrid dimer ordering drives pronounced nanoscale composition modulation of surface cations.

  12. Impact of Short-Range Forces on Defect Production from High-Energy Collisions.

    PubMed

    Stoller, R E; Tamm, A; Béland, L K; Samolyuk, G D; Stocks, G M; Caro, A; Slipchenko, L V; Osetsky, Yu N; Aabloo, A; Klintenberg, M; Wang, Y

    2016-06-14

    Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. During these collisions, the distance between two colliding atoms can approach 0.05 nm. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. However, there is no accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure. PMID:27110927

  13. Impact of Short-Range Forces on Defect Production from High-Energy Collisions

    DOE PAGES

    Stoller, R. E.; Tamm, A.; Béland, L. K.; Samolyuk, G. D.; Stocks, G. M.; Caro, A.; Slipchenko, L. V.; Osetsky, Yu. N.; Aabloo, A.; Klintenberg, M.; et al

    2016-04-25

    Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. The distance between two colliding atoms can approach 0.05 nm during these collisions. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. But, there is nomore » accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.« less

  14. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  15. Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion.

    PubMed

    Varga, Zsigmond; Swan, James

    2016-09-28

    We show that discrete element simulations of colloidal gelation must account for hydrodynamic interactions between suspended particles through investigation of gelation in a dispersion of colloids interacting pair-wise via short-ranged attraction and long-ranged repulsion (SALR). These dynamic simulations juxtapose self-assembly with and without hydrodynamic interactions between the particles. The long-ranged repulsion impacts the relative rates of coagulation and compaction of colloidal aggregates pre-gel, and introduces a surprising sensitivity to the nature of hydrodynamic interactions between the suspended colloids. For such SALR dispersions, we observe a significant disparity between the percolation boundaries predicted by simulations including and neglecting long-ranged hydrodynamic interactions. Additionally, we find that the percolation boundaries predicted by simulations including hydrodynamic interactions agree well with those measured experimentally. Long-ranged repulsion promotes gelation via growth of anisotropic clusters regardless of the hydrodynamic model employed. However, differences between the models, which persist far from the percolation boundary, are apparent via measurements of the fractal dimension, local bond order parameters, and the collective relaxation dynamics. Notably, the growth of elongated clusters is augmented in simulations that incorporate long-ranged hydrodynamic interactions due to the anisotropic diffusion of elongated bodies at low Reynolds numbers, which favors percolation over a transition of anisotropic clusters to their more isotropic ground states. It is only in relatively dense suspensions that a combination of hydrodynamic screening and significantly faster aggregation combine to bring the two simulation methods into agreement. These results demonstrate the necessity of long-ranged hydrodynamic forces in discrete element simulations of heterogeneous gelation at the colloidal scale. PMID:27550538

  16. Investigation of short range charge and spin correlation in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles

    SciTech Connect

    Shukla, Vinay Kumar Mukhopadhyay, Soumik

    2015-06-24

    The particle size effects on charge and spin correlation were studied for Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3}(PCMO) by Electron Paramagnetic Resonance spectroscopy. Magnetization measurements suggests long range charge/orbital ordering (CO/OO) in bulk Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} at T ∼230 K and antiferromagnetic (AFM) ordering at T∼140K. With the reduction of particle size, CO is suppressed, AFM ordering gives way to ferromagnetic (FM) ordering. We find that with the reduction of particle size in Pr{sub 0.67}Ca{sub 0.33}MnO{sub 3} nanoparticles, the short range correlation in charge and associated spin degrees of freedom also gets suppressed.

  17. Safety and Mission Assurance (SMA) Automated Task Order Management System (ATOMS) Operation Manual

    NASA Technical Reports Server (NTRS)

    Wallace, Shawn; Fikes, Lou A.

    2016-01-01

    This document describes operational aspects of the ATOMS system. The information provided is limited to the functionality provided by ATOMS and does not include information provided in the contractor's proprietary financial and task management system.

  18. The role of atomic ordering on phonon transport in substitutional solid solutions

    NASA Astrophysics Data System (ADS)

    Duda, John Charles

    The past several decades have seen sudden and rapid advances in micro- and nanotechnology. Consequently, a wide array of novel electronic, optical, and magnetic devices have been developed, all sharing one common feature: characteristic lengths scales on the order of a few to hundreds of nanometers. In almost all cases, it is the high density of interfaces that provides the material properties allowing for the purposeful and unique operation for which these devices were designed. However, these material boundaries have a marked impact on the thermal properties of the device as well. While thermal conductivity is often a critical property in modern device design, it frequently remains an afterthought. In many cases, the electrical or optical operating principles of a given device require a specific set of materials be used. As a result, the thermal performance of such a device can only be controlled through packaging techniques. Ultimately, it would be advantageous if the thermal transport properties of a given material system could be independently tuned while keeping the constituent components of the system fixed, a concept that has implications for both current- and next-generation applications. Many random substitutional solid solutions (alloys) will display a tendency to chemically order given the appropriate kinetic and thermodynamic conditions. Such order-disorder transitions result in crystallographic reconfigurations, where the atomic basis, symmetry, and periodicity of the alloy change dramatically. The objective of this work is to demonstrate that through exploitation of chemically-ordered solid-solutions, new strategies to gain control over the thermal conductivities of solid-state material systems are possible. Both non-equilibrium molecular dynamics (NEMD) simulations and harmonic lattice dynamics (LD) calculations will be implemented to achieve this goal. The results of these simulations will show that through the exploitation of chemical ordering

  19. An intercomparison of models used to simulate the short-range atmospheric dispersion of agricultural ammonia emissions

    EPA Science Inventory

    Ammonia emitted into the atmosphere from agricultural sources can have an impact on nearby sensitive ecosystems either through elevated ambient concentrations or dry/wet deposition to vegetation and soil surfaces. Short-range atmospheric dispersion models are often used to assess...

  20. 77 FR 55466 - Environmental Impact Statement for Short Range-Projects and Update of the Real Property Master...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Department of the Army Environmental Impact Statement for Short Range-Projects and Update of the Real Property Master Plan for Fort Belvoir, VA AGENCY: Department of the Army, DoD. ACTION: Notice of Intent. SUMMARY: The Department of the Army announces its intent to conduct public scoping under the...

  1. Intensity-dependent atomic-phase effects in high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Peatross, J.; Meyerhofer, D. D.

    1995-11-01

    The far-field angular distributions of high-order harmonics of a 1054-nm laser, with orders ranging from the lower teens to the upper thirties, have been measured in thin, low-density Ar, Kr, and Xe targets. The 1.25-times-diffraction-limited, 1.4-ps-duration, Gaussian laser pulses were focused to intensities ranging from 3×1013 to 3×1014 W/cm2, using f/70 optics. A gas target localized the gas distribution near the laser focus to a thickness of about 1 mm at pressures as low as 0.3 Torr. The weak focusing geometry and the low gas pressures created experimental conditions for which the harmonics could be thought of as emerging from a plane at the laser focus rather than a three-dimensional volume. The far-field distributions of nearly all of the harmonics exhibit narrow central peaks surrounded by broad wings of about the same angular divergence as the emerging laser beam. The spatial wings are due to an intensity-dependent phase variation among the dipole moments of the individual target atoms. This phase variation gives rise to broad spatial interferences in the scattered light due to the radial and temporal variation of the laser intensity.

  2. Phase diagram of the three-dimensional Anderson model for short-range speckle potentials

    NASA Astrophysics Data System (ADS)

    Pasek, M.; Zhao, Z.; Delande, D.; Orso, G.

    2015-11-01

    We investigate the localization properties of atoms moving in a three-dimensional optical lattice in the presence of a disorder potential having the same probability distribution P (V ) as laser speckles, and a spatial correlation length much shorter than the lattice spacing. We find that the disorder-averaged (single-particle) Green's function, calculated via the coherent-potential approximation, is in very good agreement with exact numerics. Using the transfer-matrix method, we compute the phase diagram in the energy-disorder plane and show that its peculiar shape can be understood from the self-consistent theory of localization. In particular, we recover the large asymmetry in the position of the mobility edge for blue and red speckles, which was recently observed numerically for spatially correlated speckle potentials.

  3. Effect of the Local Atomic Ordering on the Stability of β-Spodumene.

    PubMed

    Moore, Radhika L; Haynes, Brian S; Montoya, Alejandro

    2016-07-01

    This study focuses on the relative energetic stability of β-spodumene configurations with different atomic ordering, evaluated using electronic structure methods based on static periodic density functional theory. We found that β-spodumene configurations with a framework containing exclusively Al-O-Si linkages are energetically the most stable, consistent with the aluminum avoidance principle. A correlation between the interstitial sites occupied by lithium and the stability of the configuration was established: highly stable configurations contain greater proportions of lithium associated with the edges of AlO4 tetrahedrons. The identified low-energy configurations have a band gap of ∼4.8 eV, and similar electronic band structures and densities of states. Both the PBE and PBEsol functionals predict small differences in the relative stabilities of the different configurations of β-spodumene. However, only PBEsol is able to reproduce the experimentally observed stability differences between α-spodumene and β-spodumene. β-Spodumene is the preferred polymorph at high temperatures, with the PBEsol inversion temperature from α- to β-spodumene predicted to occur at 1070 K. PMID:27304711

  4. Effect of the Local Atomic Ordering on the Stability of β-Spodumene.

    PubMed

    Moore, Radhika L; Haynes, Brian S; Montoya, Alejandro

    2016-07-01

    This study focuses on the relative energetic stability of β-spodumene configurations with different atomic ordering, evaluated using electronic structure methods based on static periodic density functional theory. We found that β-spodumene configurations with a framework containing exclusively Al-O-Si linkages are energetically the most stable, consistent with the aluminum avoidance principle. A correlation between the interstitial sites occupied by lithium and the stability of the configuration was established: highly stable configurations contain greater proportions of lithium associated with the edges of AlO4 tetrahedrons. The identified low-energy configurations have a band gap of ∼4.8 eV, and similar electronic band structures and densities of states. Both the PBE and PBEsol functionals predict small differences in the relative stabilities of the different configurations of β-spodumene. However, only PBEsol is able to reproduce the experimentally observed stability differences between α-spodumene and β-spodumene. β-Spodumene is the preferred polymorph at high temperatures, with the PBEsol inversion temperature from α- to β-spodumene predicted to occur at 1070 K.

  5. Long- and/or short-range transportation of local Asian aerosols in DRAGON-Osaka Experiment

    NASA Astrophysics Data System (ADS)

    Nakata, M.; Sano, I.; Mukai, S.; Holben, B. N.

    2013-12-01

    same day afternoon, large value of PM mass concentration was measured in Osaka. It is found from the simultaneous measurements of atmospheric particles, especially those on March 11, which present the maximum efficiency of DRAGON-Osaka, and numerical model simulations indicate that the long- and/or short- range transportation factors influence the characterization of atmospheric particles.

  6. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  7. Development and application of a water calorimeter for the absolute dosimetry of short-range particle beams

    NASA Astrophysics Data System (ADS)

    Renaud, J.; Rossomme, S.; Sarfehnia, A.; Vynckier, S.; Palmans, H.; Kacperek, A.; Seuntjens, J.

    2016-09-01

    In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6–20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min‑1, with a short-term variation of 5–10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user’s beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.

  8. Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes.

    PubMed

    Weber, Daniel; Albella, Pablo; Alonso-González, Pablo; Neubrech, Frank; Gui, Han; Nagao, Tadaaki; Hillenbrand, Rainer; Aizpurua, Javier; Pucci, Annemarie

    2011-08-01

    Interaction between micrometer-long nanoantennas within an array considerably modifies the plasmonic resonant behaviour; for fundamental resonances in the infrared already at micrometer distances. In order to get systematic knowledge on the relationship between infrared plasmonic resonances and separation distances dx and dy in longitudinal and transverse direction, respectively, we experimentally studied the optical extinction spectra for rectangularly ordered lithographic gold nanorod arrays on silicon wafers. For small dy, strong broadening of resonances and strongly decreased values of far-field extinction are detected which come along with a decreased near-field intensity, as indicated by near-field amplitude maps of the interacting nanoantennas. In contrast, near-field interaction over small dx does only marginally broaden the resonance. Our findings set a path for optimum design of rectangular nanorod lattices for surface enhanced infrared spectroscopy. PMID:21934866

  9. Short-range screening potentials for classical Coulomb fluids: Reanalysis of Monte Carlo sampling and cluster model studies

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Yaakov

    1996-02-01

    Results for the short-range screening potentials of classical Coulomb fluids, which were significantly different from existing theory and from earlier approaches, were obtained by Ichimaru et al. by their analyses of extra long simulations. In a recent paper [Phys. Rev. E 50, 2977 (1994)], Ichimaru, Ogata, and Tsuruta (IOT) summarize these results and attempt to support them with more simulations and with cluster model studies. In this paper I present an alternative analysis of the same data, which is in contradiction with the analyses of Ichimaru et al., as portrayed by IOT. I present an analysis of general axially symmetric clusters that is different from that of IOT and provides insight into the short-range screening potentials of strongly coupled plasmas. In particular, I give an exact mathematical proof that questions the main conclusion of IOT from their cluster model studies [their Eq. (49b)].

  10. A massively parallel algorithm for grand canonical Monte Carlo computer simulation with the short-ranged Lennard-Jones potential

    SciTech Connect

    Heffelfinger, G.S.; Lewitt, M.E.

    1994-05-01

    We present a new massively parallel decomposition for grand canonical Monte Carlo computer simulation (GCMC) suitable for short ranged fluids. Our spatial algorithm relies on the fact that for short-ranged fluids, molecules separated by a greater distance than the reach of the potential act independently, thus different processors can work concurrently in regions of the same system which are sufficiently far apart. Several parallelization issues unique to GCMC are addressed such as the handling of the three different types of Monte Carlo move used in GCMC: the displacement of a molecule, the creation of a molecule, and the destruction of a molecule. The decomposition is shown to scale with system size, making it especially useful for systems where the physical problem dictates the system size, for example, fluid behavior in mesopores.

  11. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm

    PubMed Central

    Hu, Xiao; Murray, Wendy M.

    2011-01-01

    The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133

  12. Short range solvation of proton transfer complexes by 2,2-dimethyl-1,3-dioxane and trioxane

    NASA Astrophysics Data System (ADS)

    Chen, Andy; Schullery, Stephen E.; Scott, Ronald M.

    1994-06-01

    Bifurcated hydrogen bonds are involved in the short range solvation of amines by electron donating solvents. Further, six-membered ring cyclic diethers involve interaction of both oxygens of the diether with the amine proton. We report the expansion of these results to include 2,2-dimethyl-1,3-dioxane and trioxane. The results suggest that the latter is involved in a trifurcated hydrogen bond.

  13. Quantum oscillations of the impedance of layered conductors with elastic scattering of electrons by short-range impurity centers

    NASA Astrophysics Data System (ADS)

    Kirichenko, O. V.; Kozlov, I. V.

    2010-07-01

    The propagation of electromagnetic waves in layered conductors in a quantizing magnetic field B is investigated theoretically in the case where elastic scattering by short-range impurity centers is the main relaxation mechanism in the electronic system. Quantum oscillations of the impedance, including at high temperatures, are calculated under the conditions of the anomalous skin effect. The effect of spatial dispersion on the amplitude and phase of the oscillations is analyzed.

  14. Short-Range Action, Focusing, and Saturation of Nuclear Forces in a Gravitational-Electrodynamic Model of GRT

    NASA Astrophysics Data System (ADS)

    Sukhanova, L. A.; Khlestkov, Yu. A.

    2015-12-01

    An equation for a massive vector field that explains the short-range action of nuclear forces has been obtained via a consistent solution of the Einstein-Maxwell-Lorentz equations in curved spacetime. The nucleus is identified with the throat, whose radius of curvature is adopted as the radius of the nucleus. In this gravitational model the experimentally observed proportionality of the radius of the nucleus to the cubic root of the mass number is obtained.

  15. Short range potential parameters and electronic polarizabilities of β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Sahariah, Munima B.; Kadolkar, Charudatt Y.

    2007-04-01

    In this work we formulate and build algorithms based on the modified polarizable point ion model for simulating low symmetry perfect crystals in order to study the interionic interactions of the constituent ions. A set of potential parameters and electronic polarizabilities are computed for monoclinic β-Ga2O3 by optimizing the crystal with respect to the structural parameters and the static dielectric constant. The calculated polarizabilities of the participating ions are found to be significantly lower in the crystal environment than the free ion values. Stability of the optimized crystal has been verified by testing the positive definiteness of the Hessian matrix.

  16. Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals

    NASA Astrophysics Data System (ADS)

    Vydrov, Oleg A.; Heyd, Jochen; Krukau, Aliaksandr V.; Scuseria, Gustavo E.

    2006-08-01

    We consider a general class of hybrid density functionals with decomposition of the exchange component into short-range and long-range parts. The admixture of Hartree-Fock (HF) exchange is controlled by three parameters: short-range mixing, long-range mixing, and range separation. We study how the variation of these parameters affects the accuracy of hybrid functionals for thermochemistry and kinetics. For the density functional component of the hybrids, we test three nonempirical approximations: local spin-density approximation, generalized gradient approximation (GGA), and meta-GGA. We find a great degree of flexibility in choosing the mixing parameters in range-separated hybrids. For the studied properties, short-range and long-range HF exchange seem to have a similar effect on the errors. One may choose to treat the long-range portion of the exchange by HF to recover the correct asymptotic behavior of the exchange potential and improve the description of density tail regions. If this asymptote is not important, as in solids, one may use screened hybrids, where long-range HF exchange is excluded. Screened hybrids retain most of the benefits of global hybrids but significantly reduce the computational cost in extended systems.

  17. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  18. Development of a next generation short range gravity experiment NEWTON-V, using digital microscope

    NASA Astrophysics Data System (ADS)

    Saiba, Shuntaro; Ando, Hiroaki; Hatori, Mirei; Inaba, Shoki; Ninomiya, Kazufumi; Sakuta, Tomomi; Shinozaki, Natsumi; Murata, Jiro; Newton Collaboration

    2014-09-01

    According to a large extra dimensional model, a deviation from Newton's inverse square law is expected at sub-millimeter range. Current NEWTON-IVh project aims to test the inverse-square law at millimeter scale, using a torsion pendulum. In order to examine the gravitational force at around micrometer distances, we are developing the new apparatus NEWTON-V, using a digital microscope. This experiment is going to measure gravity between two wires of around 10 to 100 micrometer, which are separated by distances in the range of 100 micrometer. One wire is used as a cantilever for the force sensing, which motion is measured by a pico-precision displacement sensor. This method was originally developed for the micron precision optical alignment system (OASys) for the PHENIX muon tracking chambers at RHIC, using digital image analysis technique. In this presentation, development status and preliminary results will be reported.

  19. Short range, ultra-wideband radar with high resolution swept range gate

    DOEpatents

    McEwan, Thomas E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.

  20. Short range, ultra-wideband radar with high resolution swept range gate

    DOEpatents

    McEwan, T.E.

    1998-05-26

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.

  1. Short-Range Magnetic Correlations and Parimagnetism in RCo2

    SciTech Connect

    Bartolome, F.; Bonilla, C. M.; Herrero-Albillos, J.; Calvo-Almazan, I.; Castan, C.; Weschke, E.; Schmitz, D.; Paudyal, Durga; Mudryk, Yaroslav; Pecharsky, Vitalij; Gschneidner Jr., Karl A.; Stunault, A.; Garcia, L. M.

    2013-12-02

    X-ray circular magnetic dichroism, polarized neutron diffraction, ac susceptibility, and Seebeck effect have been measured for several members of the RCo2 series (R=Ho, Tm, Er) as a function of temperature and applied magnetic field. The experimental results show robust parimagnetism (a general behaviour along the RCo2 series with R being a heavy rare earth ion) and two reversal temperatures in some systems, which is an unexpected result. Polarised neutron diffraction show differences between results obtained on single crystals or polycrystalline ingots. We propose an interpretation of parimagnetic RCo2 as a Griffiths phase of the high temperature, magnetically ordered, amorphous RCo2 phase. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

  2. Magnetic ordering and exchange interactions in structural modifications of M n3Ga alloys: Interplay of frustration, atomic order, and off-stoichiometry

    NASA Astrophysics Data System (ADS)

    Khmelevskyi, Sergii; Ruban, Andrei V.; Mohn, Peter

    2016-05-01

    Mn-Ga alloys close to the M n3Ga stoichiometry can be synthesized in three different crystal modifications: hexagonal, tetragonal, and face-centered cubic, both in bulk and in thin-film forms. The magnetic ordering of these modifications is varying from noncollinear antiferromagnetic in the hexagonal case to ferrimagnetic order in the tetragonal one, whereas it is still unknown for the atomically disordered fcc structure. Here we study the onset of magnetic order at finite temperatures in these systems on a first-principles basis calculating the interatomic magnetic exchange interactions in the high-temperature paramagnetic regime. We employ the disordered local moment formalism and the magnetic force theorem within the framework of the local spin-density approximation and Monte Carlo simulations taking also the effects of atomic disorder in fcc alloys into account. In particular we find the origin of the stabilization of the noncollinear 3 k structure in competition between antiferromagnetic inter- and in-plane couplings of frustrated kagome planes in hexagonal M n3Ga and predict the antiferromagnetic-1 collinear order due to frustration in fcc alloys. Special attention is paid to the effects of the off-stoichiometry and the consequences of atomic disorder. We calculate the site-preference energy of Ga antisite atoms in the tetragonal structures in the range of the compositions from M n3Ga to M n2Ga and slightly beyond and confirm the earlier explanation of the effect of magnetization increase due to Ga preferentially occupying one of the Mn sites.

  3. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  4. Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes.

    PubMed

    Martins, Marccus V A; Pereira, Andressa R; Luz, Roberto A S; Iost, Rodrigo M; Crespilho, Frank N

    2014-09-01

    Direct electron transfer (DET) between redox enzymes and electrode surfaces is of growing interest and an important strategy in the development of biofuel cells and biosensors. Among the nanomaterials utilized at electrode/enzyme interfaces to enhance the electronic communication, graphene oxide (GO) has been identified as a highly promising candidate. It is postulated that GO layers decrease the distance between the flavin cofactor (FAD/FADH2) of the glucose oxidase enzyme (GOx) and the electrode surface, though experimental evidence concerning the distance dependence of the rate constant for heterogeneous electron-transfer (k(het)) has not yet been observed. In this work, we report the experimentally observed DET of the GOx enzyme adsorbed on flexible carbon fiber (FCF) electrodes modified with GO (FCF-GO), where the k(het) between GO and electroactive GOx has been measured at a structurally well-defined interface. The curves obtained from the Marcus theory were used to obtain k(het), by using the model proposed by Chidsey. In agreement with experimental data, this model proved to be useful to systematically probe the dependence of electron transfer rates on distance, in order to provide an empirical basis to understand the origin of interfacial DET between GO and GOx. We also demonstrate that the presence of GO at the enzyme/electrode interface diminishes the activation energy by decreasing the distance between the electrode surface and FAD/FADH2. PMID:24676540

  5. Get Your Atoms in Order--An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm.

    PubMed

    Schneider, Nadine; Sayle, Roger A; Landrum, Gregory A

    2015-10-26

    Finding a canonical ordering of the atoms in a molecule is a prerequisite for generating a unique representation of the molecule. The canonicalization of a molecule is usually accomplished by applying some sort of graph relaxation algorithm, the most common of which is the Morgan algorithm. There are known issues with that algorithm that lead to noncanonical atom orderings as well as problems when it is applied to large molecules like proteins. Furthermore, each cheminformatics toolkit or software provides its own version of a canonical ordering, most based on unpublished algorithms, which also complicates the generation of a universal unique identifier for molecules. We present an alternative canonicalization approach that uses a standard stable-sorting algorithm instead of a Morgan-like index. Two new invariants that allow canonical ordering of molecules with dependent chirality as well as those with highly symmetrical cyclic graphs have been developed. The new approach proved to be robust and fast when tested on the 1.45 million compounds of the ChEMBL 20 data set in different scenarios like random renumbering of input atoms or SMILES round tripping. Our new algorithm is able to generate a canonical order of the atoms of protein molecules within a few milliseconds. The novel algorithm is implemented in the open-source cheminformatics toolkit RDKit. With this paper, we provide a reference Python implementation of the algorithm that could easily be integrated in any cheminformatics toolkit. This provides a first step toward a common standard for canonical atom ordering to generate a universal unique identifier for molecules other than InChI.

  6. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  7. Coherence effects in scattering order expansion of light by atomic clouds.

    PubMed

    Rouabah, Mohamed-Taha; Samoylova, Marina; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola

    2014-05-01

    We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.

  8. Amazon river dolphins (Inia geoffrensis) use a high-frequency short-range biosonar.

    PubMed

    Ladegaard, Michael; Jensen, Frants Havmand; de Freitas, Mafalda; Ferreira da Silva, Vera Maria; Madsen, Peter Teglberg

    2015-10-01

    Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array. We identified 404 on-axis biosonar clicks having a mean SLpp of 190.3 ± 6.1 dB re. 1 µPa, mean SLEFD of 132.1 ± 6.0 dB re. 1 µPa(2)s, mean Fc of 101.2 ± 10.5 kHz, mean BWRMS of 29.3 ± 4.3 kHz and mean ICI of 35.1 ± 17.9 ms. Piston fit modelling resulted in an estimated half-power beamwidth of 10.2 deg (95% CI: 9.6-10.5 deg) and directivity index of 25.2 dB (95% CI: 24.9-25.7 dB). These results support the hypothesis that river-dwelling toothed whales operate their biosonars at lower amplitude and higher sampling rates than similar-sized marine species without sacrificing high directivity, in order to provide high update rates in acoustically complex habitats and simplify auditory scenes through reduced clutter and reverberation levels. We conclude that habitat, along with body size, is an important evolutionary driver of source parameters in toothed whale biosonars.

  9. 77 FR 36300 - In the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... COMMISSION In the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order... Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, DC 20555. Telephone: (301) 492... and safeguards information and to special nuclear material shall be controlled by Connecticut...

  10. A limited-area short-range ensemble prediction approach for heavy rain events

    NASA Astrophysics Data System (ADS)

    Sattler, K.; Feddersen, H.

    2003-04-01

    Quantitative precipitation forecasts (QPF) from numerical weather prediction (NWP) models exhibit a significant uncertainty, which is usually being addressed by an ensemble approach. The interest of doing this with a high-resolution limited-area NWP model (LAM) has grown during the last years, and there are many different possibilities of designing a LAM ensemble. The design may depend on the application of the ensemble predictions later on. While it is often attempted to address many aspects of severe weather with an ensemble, this work investigates the potential of an ensemble design targeted to rainfall events, that can lead to river flooding. The work is part of the EU funded project "An European Flood Forecasting System" (EFFS), where the LAM ensemble predictions are to be applied in hydrological models in order to assess water levels of European rivers. Two different approaches of creating a small LAM ensemble for rainfall prediction are investigated. They are both based on the Danish Meteorological Institute's (DMI) version of the HIgh Resolution Limited-Area Model DMI-HIRLAM, which receives initial as well as lateral boundary data from the ECMWF ensemble prediction system. The first ensemble is designed to represent an uncertainty in the initial condition (atmospheric state) as well as at the lateral LAM boundaries. It is created on basis of the ensemble prediction system (EPS) from ECMWF, from which a small set of significant members is selected. The significance of a member is estimated on basis of accumulated precipitation over the area of interest, which includes the river basin under consideration. The selected ECMWF-EPS members make up the initial and boundary data for the members of the first LAM ensemble. The second LAM ensemble consists of the variation of the physical representation of the condensation and convection processes within the LAM, where several parameterization schemes available in DMI-HIRLAM are utilized. The two ensemble designs are

  11. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  12. Rapid Chemical Ordering in Supercooled Liquid Cu46Zr54

    SciTech Connect

    Wessels, Victor; Gangopadhyay, Anup; Sahu, K. K.; Hyers, R. W.; Canepari, S. M.; Rogers, J. R.; Kramer, Matthew J.; Goldman, Alan; Robinson, D.; Lee, Jae W; Morris, James R; Kelton, K. F.

    2011-01-01

    Evidence for abrupt chemical ordering in a supercooled Cu46Zr54 liquid, obtained from high energy x-ray diffraction in a containerless processing environment, is presented. Relatively sudden changes were observed in the topological and chemical short-range order near 850oC, a temperature significantly below the liquidus and above the glass transition temperatures. A peak in the specific heat was observed with supercooling, with an onset near 850oC, the same temperature as the onset of chemical ordering, and a maximum near 700oC, consistent with the prediction of a molecular dynamics calculation using embedded atom potentials. The dominant short-range order below 850oC is incompatible with that of the primary crystallizing phases. This, and the possible development of strongly bonded, chemically ordered clustersmay explain unlikely bulk metallic glass formation in Cu-Zr and other binary alloys.

  13. Implementation of the electron propagator to second order on GPUs to estimate the ionization potentials of confined atoms

    NASA Astrophysics Data System (ADS)

    García-Hernández, Erwin; Díaz-García, Cecilia; Vargas, Rubicelia; Garza, Jorge

    2014-09-01

    The best way to estimate ionization potentials (I) for confined atoms is by using the same Hamiltonian for the neutral and the corresponding hypothetical ionized atom. For this purpose, we have implemented the electron propagator to second order (EP2) by using parallel programming techniques on graphic processing units (GPUs). These programming techniques exploit the GPUs for the evaluation of two-electron integrals, which is required for a self- consistent process and because of the reduction involved in the four-index integral transformation. As an example, we present results for confined helium, beryllium and neon atoms, and these are contrasted with previously reported results. Although Koopmans’ theorem (KT) provides good estimates for ionization potentials, it is evident that EP2 corrects these estimates. Unfortunately, the correction made by EP2 does not reveal a trend for confined atoms because in the case of certain confinement regions KT overestimates, whereas for other regions, KT underestimates the ionization potential. The orbital crossing between unoccupied orbitals is responsible for this behavior. In particular, if the lowest unoccupied atomic orbital (LUMO) crosses a virtual orbital, the difference {{I}_{EP2}}-{{I}_{KT}} will change its sign. Thus, EP2 approximation is required when the ionization potential is estimated for confined atoms.

  14. Short-range plasmonic nanofocusing within submicron regimes facilitates in situ probing and promoting of interfacial reactions

    NASA Astrophysics Data System (ADS)

    Yu, Chen-Chieh; Lin, Keng-Te; Su, Pao-Yun; Wang, En-Yun; Yen, Yu-Ting; Chen, Hsuen-Li

    2016-02-01

    In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this

  15. Stable mean-field solution of a short-range interacting SO(3) quantum Heisenberg spin glass.

    PubMed

    da Conceição, C M S; Marino, E C

    2008-07-18

    We present a mean-field solution for a quantum, short-range interacting, disordered, SO(3) Heisenberg spin model, in which the Gaussian distribution of couplings is centered in an antiferromagnetic (AF) coupling J[over ]>0, and which, for weak disorder, can be treated as a perturbation of the pure AF Heisenberg system. The phase diagram contains, apart from a Néel phase at T=0, spin-glass and paramagnetic phases whose thermodynamic stability is demonstrated by an analysis of the Hessian matrix of the free-energy. The magnetic susceptibilities exhibit the typical cusp of a spin-glass transition.

  16. Change of the short-range scattering in the graphene covered with Bi2O3 clusters

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Chen, Taishi; Pan, Haiyang; Fu, Dongzhi; Han, Yuyan

    2016-04-01

    In this work, we have studied the oxidation process of the bismuth doped graphene in the ambient air. Complete oxidation of the bismuth clusters and that of the graphene are firmly confirmed. The influence of oxygen on the graphene is characterized by means of Hall measurement and SdH oscillation. All transport measurements demonstrate a hole-type doping behavior. Our work also demonstrates that the short-range scattering mechanism is enhanced in doped graphene due to accumulated O-species adsorbates after being exposed in the atmosphere for 40 days and is suppressed after annealing. This investigation may open a new perspective for fabricating the graphene metal oxide devices.

  17. Path-integral calculations of heavy atom kinetic isotope effects in condensed phase reactions using higher-order Trotter factorizations.

    PubMed

    Vardi-Kilshtain, Alexandra; Azuri, Asaf; Major, Dan Thomas

    2012-02-01

    A convenient approach to compute kinetic isotope effects (KIEs) in condensed phase chemical reactions is via path integrals (PIs). Usually, the primitive approximation is used in PI simulations, although such quantum simulations are computationally demanding. The efficiency of PI simulations may be greatly improved, if higher-order Trotter factorizations of the density matrix operator are used. In this study, we use a higher-order PI method, in conjunction with mass-perturbation, to compute heavy-atom KIE in the decarboxylation of orotic acid in explicit sulfolane solvent. The results are in good agreement with experiment and show that the mass-perturbation higher-order Trotter factorization provides a practical approach for computing condensed phase heavy-atom KIE.

  18. Proposed NRC portable target case for short-range triangulation-based 3D imaging systems characterization

    NASA Astrophysics Data System (ADS)

    Carrier, Benjamin; MacKinnon, David; Cournoyer, Luc; Beraldin, J.-Angelo

    2011-03-01

    The National Research Council of Canada (NRC) is currently evaluating and designing artifacts and methods to completely characterize 3-D imaging systems. We have gathered a set of artifacts to form a low-cost portable case and provide a clearly-defined set of procedures for generating characteristic values using these artifacts. In its current version, this case is specifically designed for the characterization of short-range (standoff distance of 1 centimeter to 3 meters) triangulation-based 3-D imaging systems. The case is known as the "NRC Portable Target Case for Short-Range Triangulation-based 3-D Imaging Systems" (NRC-PTC). The artifacts in the case have been carefully chosen for their geometric, thermal, and optical properties. A set of characterization procedures are provided with these artifacts based on procedures either already in use or are based on knowledge acquired from various tests carried out by the NRC. Geometric dimensioning and tolerancing (GD&T), a well-known terminology in the industrial field, was used to define the set of tests. The following parameters of a system are characterized: dimensional properties, form properties, orientation properties, localization properties, profile properties, repeatability, intermediate precision, and reproducibility. A number of tests were performed in a special dimensional metrology laboratory to validate the capability of the NRC-PTC. The NRC-PTC will soon be subjected to reproducibility testing using an intercomparison evaluation to validate its use in different laboratories.

  19. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  20. Predicted Sensitivity for Tests of Short-range Gravity with a Novel Parallel-plate Torsion Pendulum

    NASA Astrophysics Data System (ADS)

    Richards, Matthew; Baxley, Brandon; Hoyle, C. D.; Leopardi, Holly; Shook, David

    2011-11-01

    The parallel-plate torsion pendulum apparatus at Humboldt State University is designed to test the Weak Equivalence Principle (WEP) and the gravitational inverse-square law (ISL) of General Relativity at unprecedented levels in the sub-millimeter regime. Some versions of String Theory predict additional dimensions that might affect the gravitational inverse-square law (ISL) at sub-millimeter levels. Some models also predict the existence of unobserved subatomic particles, which if exist, could cause a violation in the WEP at short distances. Short-range tests of gravity and the WEP are also instrumental in investigating possible proposed mechanisms that attempt to explain the accelerated expansion of the universe, generally attributed to Dark Energy. The weakness of the gravitational force makes measurement very difficult at small scales. Testing such a minimal force requires highly isolated experimental systems and precise measurement and control instrumentation. Moreover, a dedicated test of the WEP has not been performed below the millimeter scale. This talk will discuss the improved sensitivity that we expect to achieve in short-range gravity tests with respect to previous efforts that employ different experimental configurations.

  1. Coarse-grained ions without charges: Reproducing the solvation structure of NaCl in water using short-ranged potentials

    NASA Astrophysics Data System (ADS)

    DeMille, Robert C.; Molinero, Valeria

    2009-07-01

    A coarse-grained model of NaCl in water is presented where the ions are modeled without charge to avoid computationally challenging electrostatics. A monatomic model of water [V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009)] is used as the basis for this coarse-grain approach. The ability of Na+ to disrupt the native tetrahedral arrangement of water molecules, and of Cl- to integrate within this organization, is preserved in this mW-ion model through parametrization focused on water's solvation of these ions. This model successfully reproduces the structural effect of ions on water, referenced to observations from experiments and atomistic molecular dynamics simulations, while using extremely short-ranged potentials. Without Coulomb interactions the model replicates details of the ion-water structure such as distinguishing contact and solvent-separated ion pairs and the free energy barriers between them. The approach of mimicking ionic effects with short-ranged interactions results in performance gains of two orders of magnitude compared to Ewald methods. Explored over a broad range of salt concentration, the model reproduces the solvation structure and trends of diffusion relative to atomistic simulations and experimental results. The functional form of the mW-ion model can be parametrized to represent other electrolytes. With increased computational efficiency and reliable structural fidelity, this model promises to be an asset for accessing significantly longer simulation time scales with an explicit solvent in a coarse-grained system involving, for example, polyelectrolytes such as proteins, nucleic acids, and fuel-cell membranes.

  2. High Contrast X-ray Speckle from Atomic-Scale Order in Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Sutton, M.; Fuoss, P. H.; Adams, B.; Rosenkranz, S.; Ludwig, K. F., Jr.; Roseker, W.; Fritz, D.; Cammarata, M.; Zhu, D.; Lee, S.; Lemke, H.; Gutt, C.; Robert, A.; Grübel, G.; Stephenson, G. B.

    2012-11-01

    The availability of ultrafast pulses of coherent hard x rays from the Linac Coherent Light Source opens new opportunities for studies of atomic-scale dynamics in amorphous materials. Here, we show that single ultrafast coherent x-ray pulses can be used to observe the speckle contrast in the high-angle diffraction from liquid Ga and glassy Ni2Pd2P and B2O3. We determine the thresholds above which the x-ray pulses disturb the atomic arrangements. Furthermore, high contrast speckle is observed in scattering patterns from the glasses integrated over many pulses, demonstrating that the source and optics are sufficiently stable for x-ray photon correlation spectroscopy studies of dynamics over a wide range of time scales.

  3. Atomic-scale imaging of cation ordering in inverse spinel Zn2SnO4 nanowires.

    PubMed

    Bao, Lihong; Zang, Jianfeng; Wang, Guofeng; Li, Xiaodong

    2014-11-12

    By using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with density functional theory (DFT) calculations, we demonstrate the atomic-level imaging of cation ordering in inverse spinel Zn2SnO4 nanowires. This cation ordering was identified as 1:1 ordering of Zn(2+) and Sn(4+) at the octahedral sites of the inverse spinel crystal with microscopic symmetry transition from original cubic Fd3̅m to orthorhombic Imma group. This ordering generated a 67.8% increase in the elastic modulus and 1-2 order of magnitude lower in the electric conductivity and electron mobility compared to their bulk counterpart.

  4. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water.

    PubMed

    Reinhardt, Aleks; Doye, Jonathan P K; Noya, Eva G; Vega, Carlos

    2012-11-21

    We present a local order parameter based on the standard Steinhardt-Ten Wolde approach that is capable both of tracking and of driving homogeneous ice nucleation in simulations of all-atom models of water. We demonstrate that it is capable of forcing the growth of ice nuclei in supercooled liquid water simulated using the TIP4P/2005 model using over-biassed umbrella sampling Monte Carlo simulations. However, even with such an order parameter, the dynamics of ice growth in deeply supercooled liquid water in all-atom models of water are shown to be very slow, and so the computation of free energy landscapes and nucleation rates remains extremely challenging.

  5. Electrokinetic properties of monovalent electrolytes confined in charged nanopores: effect of geometry and ionic short-range correlations.

    PubMed

    Sánchez-Arellano, Enrique; Olivares, Wilmer; Lozada-Cassou, Marcelo; Jiménez-Angeles, Felipe

    2009-02-15

    The electrokinetic properties (such as capillary conductance, electroviscosity, and the streaming potential) are obtained for a restricted primitive model electrolyte confined in a slitlike nanopore made up of two infinite parallel plates and in a cylindrical cavity of infinite extension. The hypernetted chain/mean spherical approximation (HNC/MSA) is used to obtain the equilibrium ionic concentration profiles inside the pores, which in turn are used to calculate the electrokinetic properties via linear hydrodynamic equations. Our results are compared with those obtained via the classical Poisson-Boltzmann (PB) theory. Important quantitative and qualitative effects, attributed to geometry and to the proper consideration of short-range correlations by HNC/MSA, are discussed. PMID:19062031

  6. Performance analysis of short-range NLOS UV communication system using Monte Carlo simulation based on measured channel parameters.

    PubMed

    Luo, Pengfei; Zhang, Min; Han, Dahai; Li, Qing

    2012-10-01

    The research presented in this paper is a performance study of short-range NLOS ultraviolet (UV) communication system, using a Monte-Carlo-based system-level model, in which the channel parameters, such as the path loss and the background noise are experimentally measured using an outdoor UV communication test-bed. Various transceiver geometry and background noise condition are considered. Furthermore, 4 modulation schemes are compared, which provides an insight into the performance prediction and the system trade-offs among the path loss, the optical power, the distance, the link geometry, the bit rate and the bit error rate. Finally, advices are given on UV system design and performance improvement.

  7. Reconstruction and rehabilitation of short-range gunshot injury to lower part of face: A systematic approach of three cases.

    PubMed

    Vatsyayan, Ashutosh; Adhyapok, Apurba-Kumar; Debnath, Subhas-Chandra; Malik, Kapil

    2016-08-01

    Gunshot injuries are always known to cause severe morbidity and mortality when head and neck are involved. They vary in morbidity, which can occur in civilian surroundings. The wound largely depends on the type of weapon, mass and velocity of the bullet, and the distance from where it has been shot. Close-range gunshot wounds in the head and neck region can result in devastating aesthetic and functional impairment. The complexity in facial skeletal anatomy cause multiple medical and surgical challenges to an operating surgeon, demanding elaborate soft and hard tissue reconstruction. Here we presented the successful management of three patients shot by short-range pistol with basic life support measures, wound management, reconstruction and rehabilitation. PMID:27578384

  8. Derivation of a non-local interfacial Hamiltonian for short-ranged wetting: II. General diagrammatic structure

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Rascón, C.; Bernardino, N. R.; Romero-Enrique, J. M.

    2007-10-01

    In our first paper, we showed how a non-local effective Hamiltonian for short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson model. Here, we combine the Green's function method with standard perturbation theory to determine the general diagrammatic form of the binding potential functional beyond the double-parabola approximation for the Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic interactions is simply to alter the coefficients of the double parabola-like zigzag diagrams and also to introduce curvature and tube-interaction corrections (also represented diagrammatically), which are of minor importance. Non-locality generates effective long-ranged many-body interfacial interactions due to the reflection of tube-like fluctuations from the wall. Alternative wall boundary conditions (with a surface field and enhancement) and the diagrammatic description of tricritical wetting are also discussed.

  9. Estimating the short-range forecast impact of observations in the CPTEC/INPE LETKF during an extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Diniz, F. L.; Herdies, D. L.; Todling, R.; Goncalves, L.

    2013-05-01

    The Center for Weather Forecast and Climate Studies from the Brazilian National Institute for Space Research (CPTEC/INPE) through its Group on Data Assimilation Developments (GDAD) is evaluating the observation impacts in the Local Ensemble Transform Kalman Filter (LETKF) that is on the way to complete development and testing at that center. Since 2011 an ensemble-based approach, following Liu and Kalnay (2008; QJRMS, 134, 1327-1355), for observation impact evaluation has been added to the CPTEC/INPE LETKF data assimilation system. Currently this capability only applies for conventional observations since the use of radiances within the LETKF framework is a work on the way. Thus the purpose of this presentation is to evaluate the short range forecasts impact of in situ and remote sensing observations currently available at CPTEC/INPE LETKF during an extratropical cyclone occurred at the South Atlantic ocean.

  10. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    PubMed

    Mahoney, J Matthew; Titiz, Ali S; Hernan, Amanda E; Scott, Rod C

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  11. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    PubMed

    Mahoney, J Matthew; Titiz, Ali S; Hernan, Amanda E; Scott, Rod C

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597

  12. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay

    PubMed Central

    Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.

    2016-01-01

    Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597

  13. Diagnosing the possible dynamics controlling Sahel precipitation in the short-range ensemble community atmospheric model hindcasts

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Lin, Yen-heng; Lo, Min-hui; Yang, Shu-chih

    2016-01-01

    The actual dynamics and physical mechanisms affecting the Sahel precipitation pattern and amplitude in the climate models remain under debate due to the inconsistent drying and rainfall variability/pattern among them. We diagnose the boreal summer rainfall pattern in the Sahel and its possible causes using short-range ensemble hindcasts based on NCAR community atmospheric model with the local ensemble transform Kalman filter (CAM-LETKF) data assimilation. The CAM-LETKF assimilation was conducted using 64 ensemble members with an assimilation cycle of 6-h. By comparing the superior and inferior groups within these 64 ensembles, we confirmed the influence of the Atlantic in the West Sahel rainfall (a robust feature in the ensembles) and a severe model bias resulting from erroneously modeled locations and magnitudes of low-level Sahara heat low (SHL) and African easterly jet (AEJ). This bias is highly related to atmospheric jet dynamics as shown in recent studies and local wave instability triggered mainly by the boundary-layer temperature gradient and amplified by land-atmosphere interactions. In particular, our results demonstrated that more accurate divergence and convergence fields resulting from improved SHL and AEJ in the superior groups enabled more accurate rainbelt patterns to be discerned, thus improving the ensemble mean model hindcast prediction by more than 25 % in precipitation and 16 % in temperature. We concluded that the use of low-resolution climate models to project future rainfall in the Sahel requires caution because the model hindcasts may quickly diverge even the same boundary conditions and forcings are applied. The model bias may easily grow up within a few months in the short-range CAM-LETKF hindcast, let along the free model centennial simulations. Unconstrained future climate model projections for the Sahel must more effectively capture the short-term key boundary-layer dynamics in the boreal summer to be credible regardless model dynamics

  14. Improving Global Reanalyses and Short Range Forecast Using TRMM and SSM/I-Derived Precipitation and Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; deSilva, Arlindo M.

    2000-01-01

    Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a "1+1"D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the "1+1"D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+lD scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSM/I rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.

  15. Improving Global Reanalyses and Short-Range Forecast Using TRMM and SSM/I-Derived Precipitation and Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.

    1999-01-01

    Global reanalyses currently contain significant errors in the primary fields of the hydrological cycle such as precipitation, evaporation, moisture, and the related cloud fields, especially in the tropics. The Data Assimilation Office (DAO) at the NASA Goddard Space Flight Center has been exploring the use of tropical rainfall and total precipitable water (TPW) observations from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments to improve short-range forecast and reanalyses. We describe a 1+1D procedure for assimilating 6-hr averaged rainfall and TPW in the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The algorithm is based on a 6-hr time integration of a column version of the GEOS DAS, hence the 1+1D designation. The scheme minimizes the least-square differences between the observed TPW and rain rates and those produced by the column model over the 6-hr analysis window. This 1+1D scheme, in its generalization to four dimensions, is related to the standard 4D variational assimilation but uses analysis increments instead of the initial condition as the control variable. Results show that assimilating the TMI and SSW rainfall and TPW observations improves not only the precipitation and moisture fields but also key climate parameters such as clouds, the radiation, the upper-tropospheric moisture, and the large-scale circulation in the tropics. In particular, assimilating these data reduce the state-dependent systematic errors in the assimilated products. The improved analysis also provides better initial conditions for short-range forecasts, but the improvements in forecast are less than improvements in the time-averaged assimilation fields, indicating that using these data types is effective in correcting biases and other errors of the forecast model in data assimilation.

  16. Short-range and long-range cross-linking effects of polygenipin on gelatin-based composite materials.

    PubMed

    Ge, Liming; Xu, Yongbin; Liang, Weijie; Li, Xinying; Li, Defu; Mu, Changdao

    2016-11-01

    Genipin is an ideal cross-linking agent in biomedical applications, which can undergo ring-opening polymerization in alkaline condition. The polygenipin can create short-range and long-range intermolecular cross-linking between protein chains. In this article, the polygenipin with different degree of polymerization was successfully prepared and used to fix gelatin composite materials. The short-range and long-range cross-linking effects of polygenipin were systematically studied. The results show that the composite materials present porous structure with tunable pore sizes in the gel state, which can be easily controlled by adjusting the degree of polymerization of polygenipin. Long-range cross-linking can increase the pore size of the gel. However, during the drying process, the composite films cross-linked by polygenipin with higher degree of polymerization shrank to smaller size to create more compact structure, resulting in the improvement of water resistance properties, thermal stability, tensile strength, and darker color for the composite films. It is interesting that the composite films can partly swell to the original gel structure when in contact with water and saturated water vapor. All the composite films have excellent barrier properties against UV light. However, the compatibility of gelatin and polygenipin is reduced when the degree of polymerization of polygenipin increases to a certain extent, which will result in the formation of phase separation structure. The obtained composite films are ideal candidates for food and pharmaceutical packaging materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2712-2722, 2016.

  17. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    NASA Astrophysics Data System (ADS)

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-03-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2-25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions.

  18. Global and regional cortical connectivity maturation index (CCMI) of developmental human brain with quantification of short-range association tracts

    PubMed Central

    Ouyang, Minhui; Jeon, Tina; Mishra, Virendra; Du, Haixiao; Wang, Yu; Peng, Yun; Huang, Hao

    2016-01-01

    From early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI). To evaluate the spatiotemporal sensitivity of CCMI as a potential biomarker, dMRI and T1 weighted datasets of 21 healthy subjects 2–25 years were acquired. Brain cortex was parcellated into 68 gyral labels using T1 weighted images, then transformed into dMRI space to serve as the seed region of interest for dMRI-based tractography. Cortico-cortical association fibers initiated from each gyrus were categorized into long- and short-range ones, based on the other end of fiber terminating in non-adjacent or adjacent gyri of the seed gyrus, respectively. The regional CCMI was defined as the ratio between number of short-range association tracts and that of all association tracts traced from one of 68 parcellated gyri. The developmental trajectory of the whole brain CCMI follows a quadratic model with initial decreases from 2 to 16 years followed by later increases after 16 years. Regional CCMI is heterogeneous among different cortical gyri with CCMI dropping to the lowest value earlier in primary somatosensory cortex and visual cortex while later in the prefrontal cortex. The proposed CCMI may serve as sensitive biomarker for brain development under normal or pathological conditions. PMID:27076697

  19. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications.

    PubMed

    El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed S; Deen, M Jamal

    2015-05-07

    The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN).

  20. Toward Realization of 2.4 GHz Balunless Narrowband Receiver Front-End for Short Range Wireless Applications

    PubMed Central

    El-Desouki, Munir M.; Qasim, Syed Manzoor; BenSaleh, Mohammed S.; Deen, M. Jamal

    2015-01-01

    The demand for radio frequency (RF) transceivers operating at 2.4 GHz band has attracted considerable research interest due to the advancement in short range wireless technologies. The performance of RF transceivers depends heavily on the transmitter and receiver front-ends. The receiver front-end is comprised of a low-noise amplifier (LNA) and a downconversion mixer. There are very few designs that focus on connecting the single-ended output LNA to a double-balanced mixer without the use of on-chip transformer, also known as a balun. The objective of designing such a receiver front-end is to achieve high integration and low power consumption. To meet these requirements, we present the design of fully-integrated 2.4 GHz receiver front-end, consisting of a narrow-band LNA and a double balanced mixer without using a balun. Here, the single-ended RF output signal of the LNA is translated into differential signal using an NMOS-PMOS (n-channel metal-oxide-semiconductor, p-channel metal-oxide-semiconductor) transistor differential pair instead of the conventional NMOS-NMOS transistor configuration, for the RF amplification stage of the double-balanced mixer. The proposed receiver circuit fabricated using TSMC 0.18 µm CMOS technology operates at 2.4 GHz and produces an output signal at 300 MHz. The fabricated receiver achieves a gain of 16.3 dB and consumes only 6.74 mW operating at 1.5 V, while utilizing 2.08 mm2 of chip area. Measurement results demonstrate the effectiveness and suitability of the proposed receiver for short-range wireless applications, such as in wireless sensor network (WSN). PMID:25961380

  1. Fifth-order raman spectrum of an atomic liquid: simulation and instantaneous-normal-mode calculation

    PubMed

    Ma; Stratt

    2000-07-31

    Experimental artifacts and technical difficulties in carrying out theoretical calculations have consistently frustrated attempts to obtain the two-dimensional (5th-order) Raman spectrum of a liquid. We report here a new theoretical development: the first microscopic numerical simulation of the 5th-order Raman signal in a liquid. Comparison with an instantaneous-normal-mode treatment, a fully microscopic model which interprets liquid dynamics as arising from coherent harmonic modes, shows that the 5th-order spectrum reveals profound effects stemming from dynamical anharmonicity.

  2. Relativistic all-order calculations of In I and Sn II atomic properties

    SciTech Connect

    Safronova, U. I.; Safronova, M. S.; Kozlov, M. G.

    2007-08-15

    We use all-order relativistic many-body perturbation theory to study 5s{sup 2}nl configurations of In I and Sn II. Energies, E1 amplitudes, and hyperfine constants are calculated using all-order method, which accounts for single and double excitations of the Dirac-Fock wave functions. A comprehensive review of experimental and theoretical studies of In I and Sn II properties is given. Our results are compared with other studies were available.

  3. Magnetic properties and atomic ordering of BCC Heusler alloy Fe2MnGa ribbons

    NASA Astrophysics Data System (ADS)

    Xin, Yuepeng; Ma, Yuexing; Luo, Hongzhi; Meng, Fanbin; Liu, Heyan

    2016-05-01

    The electronic structure, atomic disorder and magnetic properties of the Heusler alloy Fe2MnGa have been investigated experimentally and theoretically. BCC Fe2MnGa ribbon samples were prepared. Experimentally, a saturation magnetic moment (3.68 μB at 5 K) much larger than the theoretical value (2.04 μB) has been reported. First-principles calculations indicate that the difference is related to the Fe-Mn disorder between A, B sites, as can also be deduced from the XRD pattern. L21 type Fe2MnGa is a ferrimagnet with antiparallel Fe and Mn spin moments. However, when Fe-Mn disorder occurs, part of Mn moments will be parallel to Fe moments, and the Fe moments also clearly increase simultaneously. All this results in a total moment of 3.74 μB, close to the experimental value.

  4. Exchange effects and second-order Born corrections in laser-assisted (e ,2 e ) collisions with helium atoms

    NASA Astrophysics Data System (ADS)

    Ajana, I.; Makhoute, A.; Khalil, D.; Chaddou, S.

    2015-04-01

    The triple differential cross section for laser-assisted ionization of a helium target by slow electrons is analyzed within the framework of the second Born approximation. We evaluate the S -matrix elements using Volkov and Coulomb-Volkov wave functions for describing the continuum states of the scattered and the ejected electrons, respectively. The required scattering amplitudes are performed by expanding the atomic wave functions onto a complex-scaled Sturmian basis, which allows us to exactly take into account the contribution of the continuous spectrum to the dressing of the atomic states. Our results have been improved by taking into account exchange effects. Furthermore, the second-order Born correction is seen to be important and significantly affects the magnitudes of the binary and recoil peaks.

  5. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure

    NASA Astrophysics Data System (ADS)

    Finzel, Kati

    2016-01-01

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  6. Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure.

    PubMed

    Finzel, Kati

    2016-01-21

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possible to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.

  7. Constraints on Short-Range Spin-Dependent Interactions from Scalar Spin-Spin Coupling in Deuterated Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Romalis, M. V.; Kimball, D. F. Jackson

    2013-01-01

    A comparison between existing nuclear magnetic resonance measurements and calculations of the scalar spin-spin interaction (J coupling) in deuterated molecular hydrogen yields stringent constraints on anomalous spin-dependent potentials between nucleons at the atomic scale (˜1Å). The dimensionless coupling constant gPpgPN/4π associated with the exchange of pseudoscalar (axionlike) bosons between nucleons is constrained to be less than 3.6×10-7 for boson masses in the range of 5 keV, representing improvement by a factor of 100 over previous constraints. The dimensionless coupling constant gApgAN/4π associated with the exchange of an axial-vector boson between nucleons is constrained to be gApgAN/4π<1.3×10-19 for bosons of mass ≲1000eV, improving constraints at this distance scale by a factor of 100 for proton-proton couplings and more than 8 orders of magnitude for neutron-proton couplings.

  8. Atomically resolved orientational ordering of C60 molecules on epitaxial graphene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Jung, Minbok; Shin, Dongbin; Sohn, So-Dam; Kwon, Soon-Yong; Park, Noejung; Shin, Hyung-Joon

    2014-09-01

    A detailed understanding of interactions between molecules and graphene is one of the key issues for tailoring the properties of graphene-based molecular devices, because the electronic and structural properties of molecular layers on surfaces are determined by intermolecular and molecule-substrate interactions. Here, we present the atomically resolved experimental measurements of the self-assembled fullerene molecules on single-layer graphene on Cu(111). Fullerene molecules form a (4 × 4) superstructure on graphene/Cu(111), revealing only single molecular orientation. We can resolve the exact adsorption site and the configuration of fullerene by means of low-temperature scanning tunnelling microscopy (LT-STM) and density functional theory (DFT) calculations. The adsorption orientation can be explained in terms of the competition between intermolecular interactions and molecule-substrate interactions, where strong Coulomb interactions among the fullerenes determine the in-plane orientation of the fullerene. Our results provide important implications for developing carbon-based organic devices using a graphene template in the future.A detailed understanding of interactions between molecules and graphene is one of the key issues for tailoring the properties of graphene-based molecular devices, because the electronic and structural properties of molecular layers on surfaces are determined by intermolecular and molecule-substrate interactions. Here, we present the atomically resolved experimental measurements of the self-assembled fullerene molecules on single-layer graphene on Cu(111). Fullerene molecules form a (4 × 4) superstructure on graphene/Cu(111), revealing only single molecular orientation. We can resolve the exact adsorption site and the configuration of fullerene by means of low-temperature scanning tunnelling microscopy (LT-STM) and density functional theory (DFT) calculations. The adsorption orientation can be explained in terms of the competition

  9. 77 FR 24538 - Fukushima-Related Orders Modifying Licenses; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Pursuant to delegation by the Commission dated December 29, 1972, published in the Federal Register, 37 FR..., published in the Federal Register on March 19, 2012 (77 FR 16,098); and (2) an immediately effective order... in the Federal Register on March 19, 2012 (77 FR 16,082). The Board is comprised of the...

  10. General dispersion formulae for atomic third-order non-linear optical properties

    NASA Astrophysics Data System (ADS)

    Bishop, David M.

    1988-12-01

    Dispersion formulae for the parallel and perpendicular optical hyperpolarizabilities γ ∥ω=γ xxxx(—ω σ;ω 1,ω 2ω 3) and γ ·ω =γ xzzx(—ω σ;ω 1,ω 2,ω 3), where ω σ=ω 1+ω 2+ω 3, are (for atoms): γ ∥ω/γ ∥0=1+ Aω L2+ O(ω 4),γ ·ω/γ ·0=1+ Bω L2+ O(ω 4), 1/3γ ∥ω/γ ·ω=1+ Cω L2+ O(ω 4), where A is independent of the process, B is proportional to 1+ az where z is independent of the process and a=(ω σω 3—ω 1ω 2)/ω L2, C is proportional to 1-6 a, and ω L2=ω σ2+ω 12+ω 22+ω 32. The coefficients A, B and C are related by C= A— B. These results are more general than those previously reported and asymptotically exact for low frequencies.

  11. Collective Weibull behavior of social atoms: Application of the rank-ordering statistics to historical extreme events

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chih; Tseng, Chih-Yuan; Telesca, Luciano; Chi, Sung-Ching; Sun, Li-Chung

    2012-02-01

    Analogous to crustal earthquakes in natural fault systems, we here consider the dynasty collapses as extreme events in human society. Duration data of ancient Chinese and Egyptian dynasties provides a good chance of exploring the collective behavior of the so-called social atoms. By means of the rank-ordering statistics, we demonstrate that the duration data of those ancient dynasties could be described with good accuracy by the Weibull distribution. It is thus amazing that the distribution of time to failure of human society, i.e. the disorder of a historical dynasty, follows the widely accepted Weibull process as natural material fails.

  12. Second order classical perturbation theory for the sticking probability of heavy atoms scattered on surfaces

    SciTech Connect

    Sahoo, Tapas; Pollak, Eli

    2015-08-14

    A second order classical perturbation theory is developed to calculate the sticking probability of a particle scattered from an uncorrugated thermal surface. An analytic expression for the temperature dependent energy loss of the particle to the surface is derived by employing a one-dimensional generalized Langevin equation. The surface temperature reduces the energy loss, since the thermal surface transfers energy to the particle. Using a Gaussian energy loss kernel and the multiple collision theory of Fan and Manson [J. Chem. Phys. 130, 064703 (2009)], enables the determination of the fraction of particles trapped on the surface after subsequent momentum reversals of the colliding particle. This then leads to an estimate of the trapping probability. The theory is tested for the model scattering of Ar on a LiF(100) surface. Comparison with numerical simulations shows excellent agreement of the analytical theory with simulations, provided that the energy loss is determined by the second order perturbation theory.

  13. O(3P) atoms as a chemical probe of surface ordering in ionic liquids.

    PubMed

    Waring, Carla; Bagot, Paul A J; Slattery, John M; Costen, Matthew L; McKendrick, Kenneth G

    2010-04-15

    The reactivity of photolytically generated, gas-phase, ground-state atomic oxygen, O((3)P), with the surfaces of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([NTf(2)]) ionic liquids has been investigated. The liquids differ only in the length of the linear C(n)H(2n+1) alkyl side chain on the cation, with n = 2, 4, 5, 8, and 12. Laser-induced fluorescence was used to detect gas-phase OH v' = 0 radicals formed at the gas-liquid interface. The reactivity of the ionic liquids increases nonlinearly with n, in a way that cannot simply be explained by stoichiometry. We infer that the alkyl chains must be preferentially exposed at the interface to a degree that is dependent on chain length. A relatively sharp onset of surface segregation is apparent in the region of n = 4. The surface specificity of the method is confirmed through the nonthermal characteristics of both the translational and rotational distributions of the OH v' = 0. These reveal that the dynamics are dominated by a direct, impulsive scattering mechanism at the outer layers of the liquid. The OH v' = 0 yield is effectively independent of the bulk temperature of the longest-chain ionic liquid in the range 298-343 K, also consistent with a predominantly direct mechanism. These product attributes are broadly similar to those of the benchmark pure hydrocarbon liquid, squalane, but a more detailed analysis suggests that the interface may be microscopically smoother for the ionic liquids.

  14. Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes

    SciTech Connect

    Gao, Qi; Gu, Meng; Nie, Anmin; Mashayek, Farzad; Wang, Chong M.; Odegard, Gregory M.; Shahbazian-Yassar, Reza

    2014-01-27

    In this paper, we report the first direct chemical and imaging evidence of lithium-induced atomic ordering in amorphous TiO2 nanomaterials and propose new reaction mechanisms that contradict the many works in the published literature on the lithiation behavior of these materials. The lithiation process was conducted in situ inside an atomic resolution transmission electron microscope. Our results indicate that the lithiation started with the valence reduction of Ti4+ to Ti3+ leading to a LixTiO2 intercalation compound. The continued intercalation of Li ions in TiO2 nanotubes triggered an amorphous to crystalline phase transformation. The crystals were formed as nano-islands and identified to be Li2Ti2O4 with cubic structure (a = 8.375 Å). The tendency for the formation of these crystals was verified with density functional theory (DFT) simulations. The size of the crystalline islands provides a characteristic length scale (~5 nm) at which the atomic bonding configuration has been changed within a short time period. This phase transformation is associated with local inhomogeneities in Li distribution. On the basis of these observations, a new reaction mechanism is proposed to explain the first cycle lithiation behavior in amorphous TiO2 nanotubes.

  15. 0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations

    SciTech Connect

    Simkovic, Fedor; Faessler, Amand; Muether, Herbert; Rodin, Vadim; Stauf, Markus

    2009-05-15

    A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.

  16. Single-chip fully integrated direct-modulation CMOS RF transmitters for short-range wireless applications.

    PubMed

    El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M Jamal

    2013-01-01

    Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of -122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of -120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications. PMID:23917260

  17. A two-pulse, pump-probe method for short-range, remote standoff detection of chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Bisson, Scott E.; Headrick, Jeffrey M.; Reichardt, Thomas A.; Farrow, Roger L.; Kulp, Thomas J.

    2011-05-01

    We describe a photofragment laser-induced fluorescence (PF-LIF) method that can be applied to the short-range-standoff detection of low-volatility organophosphonate chemical warfare agents (OP-CWAs) on surfaces. It operates by photofragmenting a surface-bound analyte and then actively interrogating a released phosphorous monoxide (PO) fragment using LIF. We demonstrate a single-pulse-pair (pump = 500 μJ @ 266 nm; probe = 20 μJ @ 248 nm) surface detection sensitivity of 30 μg/cm2 for the organophosphonate diisopropyl isothiocyanate phosphonate (DIPP) on aluminum and 210 μg/cm2 for the same analyte on a more porous concrete surface. By detecting the PO photofragment, the method indicates the presence of organophosphonates; however, we show that it also responds to other phosphorouscontaining compounds. Because of its limited specificity, we believe that the method may have most immediate use as a mapping tool to rapidly identify "hotspots" of OP-CWAs. These would then be confirmed using a more specific tool. As one method of confirming the presence of OP-CWAs (and identifying the agent), we demonstrate that the probe beam can be used to acquire Raman-scattering spectra of the target area.

  18. Light scattering associated with tension changes in the short-range elastic component of resting frog's muscle.

    PubMed Central

    Flitney, F W

    1975-01-01

    1. A study has been made of some optical and associated mechanical properties of resting frog's sartorius muscles in isotonic and hypertonic solutions. Tension and transparency changes accompanying small alterations of muscle length (smaller than 1-5%) were recorded simultaneously. 2. The form of the transparency change is complex. It has three phases, two of which occur during the length change and the third (delayed phase) after it is complete. Directional recording of the response reveals both scattering and diffraction components. 3. The change of light scattering is associated with tension changes in the short-range elastic component (SREC) of the muscle. Its magnitude is related to the stiffness of the SREC; both increase when the osmotic strength of the external solution is raised and when muscle length is increased. 4. The change of light scattering is not much affected by the velocity of the applied length change. This is true also of the mechanical stiffness of the SREC. 5. The origin of the diffraction change is not known. 6. It is concluded that the scattering effect is caused by conformational changes in the SREC. PMID:1079049

  19. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    NASA Technical Reports Server (NTRS)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  20. The politics of NATO short-range nuclear modernization, 1983-1990: The follow-on to Lance missile decisions

    SciTech Connect

    Larsen, J.A.

    1991-01-01

    The follow-on to Lance (FOTL) missile was born in 1983 with a consensual decision by NATO, in the face of a worsening strategic situation, to pursue short-range nuclear force (SNF) modernization. The program continued despite increasing popular and political opposition in Europe. It ended with a May 1990 cancellation decision by the American bureaucracy that reflected converging pressures from the international system, from America's allies, and from the domestic arena. The study asks three questions concerning the FOTL case. Why did NATO decide to upgrade its SNF forces, particularly FOTL Why did NATO continue to support FOTL's development in the face of increasing public opposition as the decade wore on Why did the United States cancel FOTL when it did The thesis attempts to answer each question through the use of one of three analytical perspective: systemic theory, alliance politics, or domestic politics. It concludes that during this time of diminishing threat at the systemic level, domestic-level factors within the German and American milieu became more important.

  1. THE INFLUENCE OF SHORT-RANGE INTERACTIONS ON PROTEIN CONFORMATION, III. DIPEPTIDE DISTRIBUTIONS IN PROTEINS OF KNOWN SEQUENCE AND STRUCTURE*

    PubMed Central

    Kotelchuck, D.; Dygert, M.; Scheraga, H. A.

    1969-01-01

    A statistical analysis is made of the distribution into α-helical and non-α-helical regions of the various dipeptide types appearing in a sample of seven proteins of known sequence and structure. By considering as a group all dipeptide types occurring at a given location relative to the reported helix-coil boundaries and examining the percentage of cases in which these appear in non-α-helical regions throughout the protein sample, we find a sharp change in the nature of the observed dipeptide types when the helix-coil boundary is crossed. Furthermore, we find that dipeptide types which occur in the coil region near the C-terminal end of helical segments are non-α-helical in almost 90 per cent of the cases in which they appear throughout the sample. No similar effect is found in the coil region near the N-terminal end of helical segments. These results give evidence for the importance of short-range interactions in determining protein conformation. They are also consistent with predictions based on a model for helix formation given in the second paper of this series.1 PMID:5259754

  2. Thermophysical properties of gases, liquids, and solids composed of particles interacting with a short-range attractive potential.

    PubMed

    Hess, S; Kröger, M

    2001-07-01

    A short-range polynomial interaction potential is introduced which has both a repulsive core and an attractive part. It is cut off smoothly such that its first and second derivatives vanish at the cutoff distance. The potential therefore enables efficient simulation studies of a model material that exhibits similarities to a full (but computationally expensive) classical Lennard-Jones system. Thermophysical properties of the model are calculated by (nonequilibrium) molecular dynamics computer simulations and compared with analytical results. Among the quantities studied is the pressure as a function of the density for various temperatures. Equations of state for the fluid and the solid are tested. The coexistence of gaseous, (metastable) liquid, and fcc solid phases is found for a range of temperatures. Bulk and shear moduli are computed. The response of the system to a shear deformation with a constant shear rate is analyzed. The liquid shows viscoelastic behavior that can be described with a Maxwell model. The solid behaves as an elastic medium up to a finite deformation and then undergoes a transition to plastic flow, which is stick-slip-like at small shear rates and continuous at higher ones. PMID:11461234

  3. Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy

    SciTech Connect

    Liu Yu; Guo Qiuquan; Nie Hengyong; Lau, W. M.; Yang Jun

    2009-12-15

    The mechanism of dynamic force modes has been successfully applied to many atomic force microscopy (AFM) applications, such as tapping mode and phase imaging. The high-order flexural vibration modes are recent advancement of AFM dynamic force modes. AFM optical lever detection sensitivity plays a major role in dynamic force modes because it determines the accuracy in mapping surface morphology, distinguishing various tip-surface interactions, and measuring the strength of the tip-surface interactions. In this work, we have analyzed optimization and calibration of the optical lever detection sensitivity for an AFM cantilever-tip ensemble vibrating in high-order flexural modes and simultaneously experiencing a wide range and variety of tip-sample interactions. It is found that the optimal detection sensitivity depends on the vibration mode, the ratio of the force constant of tip-sample interactions to the cantilever stiffness, as well as the incident laser spot size and its location on the cantilever. It is also found that the optimal detection sensitivity is less dependent on the strength of tip-sample interactions for high-order flexural modes relative to the fundamental mode, i.e., tapping mode. When the force constant of tip-sample interactions significantly exceeds the cantilever stiffness, the optimal detection sensitivity occurs only when the laser spot locates at a certain distance from the cantilever-tip end. Thus, in addition to the 'globally optimized detection sensitivity', the 'tip optimized detection sensitivity' is also determined. Finally, we have proposed a calibration method to determine the actual AFM detection sensitivity in high-order flexural vibration modes against the static end-load sensitivity that is obtained traditionally by measuring a force-distance curve on a hard substrate in the contact mode.

  4. Atomic and magnetic order in the shape memory alloy Mn2NiGa.

    PubMed

    Brown, P J; Kanomata, T; Neumann, K; Neumann, K U; Ouladdiaf, B; Sheikh, A; Ziebeck, K R A

    2010-12-22

    Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory alloy Mn(2)NiGa have confirmed that it is ferromagnetic with a Curie temperature above 500 K. The compound undergoes a broad structural phase transformation ΔT ∼ 90 K with a mean transition temperature T(M) ∼ 270 K. The high temperature parent phase is cubic (a = 5.937 Å) and has a modified L 2(1) structure. At 500 K the ordered magnetic moment essentially all on the 4a site is 1.35 μ(B)/Mn. The low temperature martensite has space group I4/mmm and is related to the cubic phase through a Bain transformation a(tet) = (a(cub) + b(cub))/2, b(tet) = (a(cub) - b(cub)) and c(tet) = c(cub) in which the change in cell volume is < 2.6%. In this structure at 5 K the ordered moment of ≈2.3 μ(B) is again found to be confined to the sites with full Mn occupation and is aligned parallel to c. Neutron diffraction patterns obtained at 5 K suggested the presence of a weak incommensurate antiferromagnetic phase characterized by either a ((1/3)0(1/3)) or (00(1/3)) propagation vector.

  5. Local atomic and electronic structure in LaMnO{sub 3} across the orbital ordering transition

    SciTech Connect

    Souza, Raquel A.; Souza-Neto, Narcizo M.; Ramos, Aline Y.; Tolentino, Helio C.N.; Granado, Eduardo

    2004-12-01

    The local atomic disorder and electronic structure in the environment of manganese atoms in LaMnO{sub 3} has been studied by x-ray absorption spectroscopy over a temperature range (300-870 K) covering the orbital ordering transition ({approx}710 K). The Mn-O distance splitting into short and long bonds (1.95 and 2.15 A) is kept across the transition temperature, so that the MnO{sub 6} octahedra remain locally Jahn-Teller distorted. Discontinuities in the Mn local structure are identified in the extended x-ray fine structure spectra at this temperature, associated with a reduction of the disorder in the superexchange angle and to the removal of the anisotropy in the radial disorder within the coordination shell. Subtle changes in the electronic local structure also take place at the Mn site at the transition temperature. The near-edge spectra show a small drop of the Mn 4p hole count and a small enhancement in the pre-edge structures at the transition temperature. These features are associated with an increase of the covalence of the Mn-O bonds. Our results shed light on the local electronic and structural phenomena in a model of order-disorder transition, where the cooperative distortion is overcome by the thermal disorder.

  6. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  7. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  8. A new variation of the Buckingham exponential-6 potential with a tunable, singularity-free short-range repulsion and an adjustable long-range attraction

    SciTech Connect

    Werhahn, Jasper C.; Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-01-05

    We introduce new generalized (reverting to the original) and extended (not reverting to the original) 4-parameter forms of the (B-2) Potential Energy Function (PEF) of Wang etal. (L.-P. Wang, J. Chen and T. van Voorhis, J. Chem. Theor. Comp. 9, 452 (2013)), which is itself a modification of the Buckingham exponential-6 PEF. The new forms have a tunable, singularity-free short-range repulsion and an adjustable long-range attraction. They produce fits to high quality ab initio data for the X–(H2O), X=F, Cl, Br, I and M+(H2O), M=Li, Na, K, Rb, Cs dimers that are between 1 and 2 orders of magnitude better than the original 3-parameter (B-2) and modified Buckingham exponential-6 PEFs. They are also slightly better than the 4-parameter generalized Buckingham exponential-6(gBe-6) and of comparable quality with the 4-parameter extended Morse (eM) PEFs introduced recently by us.

  9. Surface structures from low energy electron diffraction: Atoms, small molecules and an ordered ice film on metal surfaces

    SciTech Connect

    Materer, N.F.

    1995-09-01

    We investigated the surface bonding of various adsorbates (0, S, C{sub 2}H{sub 3} and NO) along with the resulting relaxation of the Pt(111) surface using low energy electron diffiraction (LEED). LEED experiments have been performed on these ordered overlayers along with theoretical structural analysis using automated tensor LEED (ATLEED). The resulting surface structures of these ordered overlayers exhibit similar adsorbate-induced relaxations. In all cases the adsorbate occupies the fcc hollow site and induces an approximately 0.1 A buckling of the metal surface. The three metal atoms directly bonded to the adsorbate are ``pulled`` out of the surface and the metal atom that is not bound to the adsorbate is `pushed`` inward. In order to understand the reliability of such details, we have carried out a comprehensive study of various non-structural parameters used in a LEED computation. We also studied the adsorption of water on the Pt(lll) surface. We ordered an ultra thin ice film on this surface. The film`s surface is found to be the (0001) face of hexagonal ice. This surface is apparently terminated by a full-bilayer, in which the uppermost water molecules have large vibrational amplitudes even at temperatures as low as 90 K. We examined two other metal surfaces besides Pt(111): Ni(111) and Fe(lll). On Ni(111), we have studied the surface under a high coverage of NO. On both Ni(111) and Pt(111) NO molecules occupy the hollow sites and the N-0 bond distances are practically identical. The challenging sample preparation of an Fe(111) surface has been investigated and a successful procedure has been obtained. The small interlayer spacing found on Fe(111) required special treatment in the LEED calculations. A new ATLEED program has been developed to handle this surface.

  10. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    PubMed Central

    El-Desouki, Munir M.; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M. Jamal

    2013-01-01

    Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 μm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of −122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of −120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications. PMID:23917260

  11. CFD simulation of short-range plume dispersion from a point release in an urban like environment

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Feiz, Amir-Ali; Ngae, Pierre; Singh, Sarvesh Kumar; Issartel, Jean-Pierre

    2015-12-01

    An accurate simulation of the short-range plume dispersion of a hazardous pollutant in a geometrically complex urban region is a prerequisite in emergency preparedness and to assist regulators for developing effective policies. This study critically examines the real predictive capability of a three-dimensional Computational Fluid Dynamics (CFD) model, Fluidyn-PANACHE, to apply it in emergency contexts of an accidental or deliberate airborne release in urban regions. The model is evaluated with the Mock Urban Setting Test (MUST) field experiment of a continuous point source release in an idealized urban geometry of a regular array of shipping containers in various atmospheric stability varying from neutral to stable, and very stable conditions. The simulations are performed using three combinations (cases 1, 2, & 3) of inflow boundary conditions for wind and turbulence profiles. A detailed analysis with statistical measures shows that the performance of the Fluidyn-PANACHE against MUST experiment with all the three cases of the inflow boundary conditions is well achieved within the acceptable standards for air quality applications. The model with three cases 1, 2, & 3 predicts respectively 52.8%, 59.9%, and 67.9% of the total concentrations within a factor of two and shows an overall under-prediction. The sampling line maximum concentrations are better simulated by the CFD model with case-3 (95% within a factor of two) in comparison to other cases 1 & 2. A comparative statistical analysis is also performed with other evaluation studies in the literature for the averaged and sampling line maximum concentrations. The present evaluation of the Fluidyn-PANACHE strengthen the evidence that it is capable of dealing properly with the dispersion phenomena in geometrically complex urban environments.

  12. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    NASA Technical Reports Server (NTRS)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  13. Fuel Cell Airframe Integration Study for Short-Range Aircraft. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Gummalla, Mallika; Pandy, Arun; Braun, Robert; Carriere, Thierry; Yamanis, Jean; Vanderspurt, Thomas; Hardin, Larry; Welch, Rick

    2006-01-01

    The objective of this study is to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future short range commercial aircraft, and to define the technology gaps to enable such a system. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate a baseline aircraft and several SOFC architectures. The technology benefits were captured as reductions of the mission fuel burn, life cycle cost, noise and emissions. As a result of the study, it was recognized that system integration is critical to maximize benefits from the SOFC APU for aircraft application. The mission fuel burn savings for the two SOFC architectures ranged from 4.7 percent for a system with high integration to 6.7 percent for a highly integrated system with certain technological risks. The SOFC APU itself produced zero emissions. The reduction in engine fuel burn achieved with the SOFC systems also resulted in reduced emissions from the engines for both ground operations and in flight. The noise level of the baseline APU with a silencer is 78 dBA, while the SOFC APU produced a lower noise level. It is concluded that a high specific power SOFC system is needed to achieve the benefits identified in this study. Additional areas requiring further development are the processing of the fuel to remove sulfur, either on board or on the ground, and extending the heat sink capability of the fuel to allow greater waste heat recovery, resolve the transient electrical system integration issues, and identification of the impact of the location of the SOFC and its size on the aircraft.

  14. Use of atomic force microscopy in the forensic application of chronological order of toners and stamping inks in questioned documents.

    PubMed

    Kang, Tae-Yi; Lee, Joong; Park, Byung-Wook

    2016-04-01

    This paper describes the application of the atomic force microscopy (AFM) as a nano-indentation method and introduces a new method of identifying the chronological order of the application of the toner and stamping ink on the surface of documents by removing either of them. Various toners were used as samples for the AFM nano-indentation method. The chronological order of the application of the toner and stamping ink with either the toner placed over the stamping ink or the stamping ink placed over the toner, could be identified, regardless of the kinds of toners made by various companies. This paper provides the new approach for physically removing the toner and checking the material below it to identify questioned documents, which allows the method to be used to appraise documents forensically. Blind testing has shown that the method to analyze the chronological order of toner-printed documents and the seal stamping on them could accurately identify the order in all samples, while minimizing damage to the samples. PMID:26874052

  15. Investigation of atomic anti-site disorder and ferrimagnetic order in the half-metallic Heusler alloy Mn2VGa.

    PubMed

    Ramesh Kumar, K; Harish Kumar, N; Babu, P D; Venkatesh, S; Ramakrishnan, S

    2012-08-22

    The band structure calculation for the compound Mn(2)VGa carried out using the plane wave self-consistent field package with generalized gradient approximation shows that the compound is nearly half-metallic at the equilibrium lattice parameter. However, theoretical investigations have shown that a certain percentage of atomic anti-site disorder can destroy the half-metallic nature of the sample. Hence it is important to quantify the site disorder in these systems. We have deduced the percentage of atomic anti-site disorder from the refinement of the higher angle room temperature (300 K) neutron diffraction (ND) pattern and it was observed to be roughly 8% in our sample. The field variation of resistance recorded at different temperatures shows a positive slope at low temperatures and a negative slope at higher temperatures, indicating the half-metallic character at low temperatures. The ab initio calculations predict a ferrimagnetic ground state for this system. The analysis of the magnetic structure from ND data measured at 6 K yields magnetic moment values of 1.28 μ(B) and -0.7 μ(B) for Mn and V, respectively, confirming the ferrimagnetic ordering.

  16. Planckian Information (Ip): A New Measure of Order in Atoms, Enzymes, Cells, Brains, Human Societies, and the Cosmos

    NASA Astrophysics Data System (ADS)

    Ji, Sungchul

    A new mathematical formula referred to as the Planckian distribution equation (PDE) has been found to fit long-tailed histograms generated in various fields of studies, ranging from atomic physics to single-molecule enzymology, cell biology, brain neurobiology, glottometrics, econophysics, and to cosmology. PDE can be derived from a Gaussian-like equation (GLE) by non-linearly transforming its variable, x, while keeping the y coordinate constant. Assuming that GLE represents a random distribution (due to its symmetry), it is possible to define a binary logarithm of the ratio between the areas under the curves of PDE and GLE as a measure of the non-randomness (or order) underlying the biophysicochemical processes generating long-tailed histograms that fit PDE. This new function has been named the Planckian information, IP, which (i) may be a new measure of order that can be applied widely to both natural and human sciences and (ii) can serve as the opposite of the Boltzmann-Gibbs entropy, S, which is a measure of disorder. The possible rationales for the universality of PDE may include (i) the universality of the wave-particle duality embedded in PDE, (ii) the selection of subsets of random processes (thereby breaking the symmetry of GLE) as the basic mechanism of generating order, organization, and function, and (iii) the quantity-quality complementarity as the connection between PDE and Peircean semiotics.

  17. Correlation of atomic packing with the boson peak in amorphous alloys

    SciTech Connect

    Yang, W. M.; Liu, H. S. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Zhao, Y. C.; Liu, X. J.; Chen, G. X.; Man, Q. K.; Chang, C. T.; Li, R. W. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Dun, C. C.; Shen, B. L. E-mail: blshen@seu.edu.cn E-mail: jiangjz@zju.edu.cn; Inoue, A.; and others

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  18. High-momentum components of the nuclear wave function: Short range correlations, EMC effect, and the tensor parts of the N-N interaction

    SciTech Connect

    Eli Piasetzky

    2012-09-01

    The combination of inclusive and exclusive electron scattering data from JLab in kinematic regimes that were not reachable before, together with the analysis and interpretation of older data from hadronic reactions at BNL is finally revealing the details of short-range nucleon-nucleon correlations in nuclei. The most significant result is the demonstration of the dominance of correlated np pairs over pp and nn pairs. I will review these results, discuss them in terms of short-range tensor-force dominance and also discuss the connection to the EMC effect.

  19. Effects of the interplay between atomic and magnetic order on the properties of metamagnetic Ni-Co-Mn-Ga shape memory alloys

    SciTech Connect

    Seguí, C.

    2014-03-21

    Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic behavior for a range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic transformation between any magnetic state of austenite and martensite. This work presents a detailed analysis of the effect of atomic order on Ni-Co-Mn-Ga alloys through the evolution of structural and magnetic transitions after quench from high temperatures and during post-quest ageing. It is found that the way in which the atomic order affects the martensitic transformation temperatures and entropy depends on the magnetic order of austenite and martensite. The results can be explained assuming that improvement of atomic order decreases the free energy of the structural phases according to their magnetic order. However, it is assumed in this work that changes in the slope—that is, the entropy—of the Gibbs free energy curves are also decisive to the stability of the two-phase system. The experimental transformation entropy values have been compared with a phenomenological model, based on a Bragg–Williams approximation, accounting for the magnetic contribution. The excellent agreement obtained corroborates the magnetic origin of changes in transformation entropy brought about by atomic ordering.

  20. Suppression of Bragg scattering by collective interference of spatially ordered atoms with a high-Q cavity mode.

    PubMed

    Zippilli, Stefano; Morigi, Giovanna; Ritsch, Helmut

    2004-09-17

    When N driven atoms emit in phase into a high-Q cavity mode, the intracavity field generated by collective scattering interferes destructively with the pump driving the atoms. Hence atomic fluorescence is suppressed and cavity loss becomes the dominant decay channel for the whole ensemble. Microscopically, 3D light-intensity minima are formed in the vicinity of the atoms that prevent atomic excitation and form a regular lattice. The effect gets more pronounced for large atom numbers, when the sum of the atomic decay rates exceeds the rate of cavity losses and one would expect the opposite behavior. These results provide new insight into recent experiments on collective atomic dynamics in cavities. PMID:15447259

  1. Relationship between short- and long-range orders in nonstoichiometric titanium monoxide (TiO{sub y})

    SciTech Connect

    Kostenko, M. G.; Valeeva, A. A. Rempel', A. A.

    2010-11-15

    The relationship between the short- and long-range orders in various phases of nonstoichiometric titanium monoxide (TiO{sub y}) has been analyzed for the first time. The types of the local environment of lattice sites in the metal and nonmetal (oxygen) sublattices of Ti{sub 5}O{sub 5}, Ti{sub 3}O{sub 2}, Ti{sub 2}O{sub 3}, and Ti{sub 4}O{sub 5} superstructures are described. It is established that, in phases where ordering takes place simultaneously in both sublattices, all parameters of the superstructural short-range order determining the positions of atoms and vacancies in the first three coordination spheres can be uniquely expressed via the long-range order parameters. If the ordering takes place only in one sublattice, then five of the six short-range order parameters vanish. It is shown that, using data on the maximum absolute values of six short-range order parameters and on the fractions of occupied atomic positions in titanium and oxygen sublattices, it is possible to predict the type of ordered phase expected to form in the nonstoichiometric titanium monoxide TiO{sub y}.

  2. Coupling and Stacking Order of ReS2 Atomic Layers Revealed by Ultralow-Frequency Raman Spectroscopy.

    PubMed

    He, Rui; Yan, Jia-An; Yin, Zongyou; Ye, Zhipeng; Ye, Gaihua; Cheng, Jason; Li, Ju; Lui, C H

    2016-02-10

    We investigate the ultralow-frequency Raman response of atomically thin ReS2, a special type of two-dimensional (2D) semiconductors with unique distorted 1T structure. Bilayer and few-layer ReS2 exhibit rich Raman spectra at frequencies below 50 cm(-1), where a panoply of interlayer shear and breathing modes are observed. The emergence of these interlayer phonon modes indicate that the ReS2 layers are coupled and orderly stacked. Whereas the interlayer breathing modes behave similarly to those in other 2D layered crystals, the shear modes exhibit distinctive behavior due to the in-plane lattice distortion. In particular, the two shear modes in bilayer ReS2 are nondegenerate and clearly resolved in the Raman spectrum, in contrast to the doubly degenerate shear modes in other 2D materials. By carrying out comprehensive first-principles calculations, we can account for the frequency and Raman intensity of the interlayer modes and determine the stacking order in bilayer ReS2.

  3. Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Krasovskii, A. N.; Novikov, D. V.; Vasina, E. S.; Matveichikova, P. V.; Sychev, M. M.; Rozhkova, N. N.

    2015-12-01

    The distribution of barium titanate (BaTiO3) microparticles in the matrix of cyano-ethyl ester of polyvinyl alcohol and the change in the surface energy upon introduction of shungite carbon nanoclusters into the dielectric composite have been investigated using the methods of scanning electron microscopy and contact angles. The computer processing of the electron microscopy data has demonstrated that the introduction of 0.04% shungite carbon nanoparticles into the composite leads to a decrease in the spatial homogeneity of the quasi-lattice and to an increase in the local density distribution of BaTiO3 microparticles, as well as in the correlation length corresponding to the formation of an infinite cluster of BaTiO3 particles. It has been found that, in this case, the surface energy and dielectric permittivity of the composite extremely increase.

  4. Detection of short range order in SiO2 thin-films by grazing-incidence wide and small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Nagata, Kohki; Ogura, Atsushi; Hirosawa, Ichiro; Suwa, Tomoyuki; Teramoto, Akinobu; Ohmi, Tadahiro

    2016-04-01

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO2 thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure in an amorphous thin film was not revealed owing to detection difficulties.

  5. Spin-orbital short-range order in the honeycomb-based quantum magnet Ba3CuSb2O9

    NASA Astrophysics Data System (ADS)

    Nakatsuji, Satoru

    2013-03-01

    The realization of quantum correlated matter beyond one dimension has been vigorously pursued in geometrically frustrated spin systems for decades. In frustrated magnetic materials, however, symmetry breaking of orbital and chemical origin is usually found to induce semi-classical spin freezing. In this talk, I present a contrast case where spins and possibly orbitals remain in a liquid state down to low temperature even in a highly disordered structure of 6H-perovskite Ba3CuSb2O9. Our comprehensive experimental analysis indicates that the geometrical frustration of Wannier's Ising antiferromagnet on a triangular lattice can be exploited to build a nano-structured bipartite honeycomb lattice from electric dipolar spin-1/2 molecules. Despite a strong local Jahn-Teller distortion about the Cu2+ ion, the resulting spin-orbital random bond lattice not only retains hexagonal symmetry averaged over time and space, but it supports a gapless excitation spectrum without spin freezing down to ultralow temperatures. This is the work based on the collaboration with K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, C. Broholm. This work is partially supported by Grant-in-Aid for Scientific Research (No. 20340089,21684019) from JSPS, by Grant-in-Aid for Scientific Research on Priority Areas (No. 1951010,19052003) from MEXT, Japan.

  6. High-order harmonic emission in bowtie-shaped nanostructure with few-cycle spatially inhomogeneous laser fields when the atom is placed at different spatial positions

    NASA Astrophysics Data System (ADS)

    Luo, Xiang-Yi; Wang, Tian; Wang, Qun; Liu, Xue-Shen

    2016-11-01

    In this study, we investigate the harmonic spectra in the vicinity of the center of the nanostructure gap when helium atom is placed at different spatial positions. We find that the high-order harmonic spectra is very sensitive to the atomic spatial positions in a inhomogeneous laser field. When the initial atomic spatial position is changed from  ‑9.0 a.u. to 9.0 a.u., the cutoff of the high-order harmonic generation (HHG) can be extended, and the supercontinuum harmonic spectrum of the second plateau is extended to the high-order and the low-order simultaneously. The HHG process is demonstrated by using the time-frequency analysis, the semi-classical three-step model and the ionization probability.

  7. Resolving the aluminum ordering in aluminosilicates by a combined experimental/theoretical study of 27Al electric field gradients.

    PubMed

    Rocquefelte, Xavier; Clabau, Frédéric; Paris, Michael; Deniard, Philippe; Le Mercier, Thierry; Jobic, Stéphane; Whangbo, Myung-Hwan

    2007-07-01

    The discrimination between atomic species in light-element materials is a challenging question. An archetypal example is the resolution of the Al/Si ordering in aluminosilicates. Only an average long-range order can be deduced from powder X-ray or neutron diffraction, while magic-angle-spinning NMR provides an accurate picture of the short-range order. The long- and short-range orders thus obtained usually differ, hence raising the question of whether the difference between local and extended orders is intrinsic or caused by the difficulty of obtaining an accurate picture of the long-range order from diffraction techniques. In this communication we resolve this question for the monoclinic phases of BaAl2Si2O8 and SrAl2Si2O8 on the basis of 27Al NMR measurements and ab initio simulation of electric field gradient. Although the long- and short-range orders deduced from our XRD and NMR experiments differ, they become similar when the XRD atomic positions are optimized by ab initio electronic structure calculations.

  8. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  9. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    NASA Astrophysics Data System (ADS)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  10. Thermal stability and atomic ordering of epitaxial Heusler alloy Co{sub 2}FeSi films grown on GaAs(001)

    SciTech Connect

    Hashimoto, M.; Herfort, J.; Schoenherr, H.-P.; Ploog, K.H.

    2005-11-15

    The thermal stability and the atomic ordering of single-crystal Heusler alloy Co{sub 2}FeSi layers grown by molecular beam epitaxy on GaAs(001) have been studied. We found that the Co{sub 2}FeSi layers have a long-range atomic order and crystallize in a partly disordered L2{sub 1} structure in the low growth temperature (T{sub G}) regime. The long-range atomic order of the layers is further improved with increasing T{sub G} up to 350 deg. C. However, the increase of T{sub G} induces an interfacial reaction between the Co{sub 2}FeSi layer and the GaAs substrate. The analysis of the in-plane magnetic anisotropy reveals that the interface perfection is improved up to T{sub G}=200 deg. C and deteriorated due to an interfacial reaction above 200 deg. C.

  11. Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers

    PubMed Central

    Wang, Suhao; Fabiano, Simone; Himmelberger, Scott; Puzinas, Skomantas; Crispin, Xavier; Salleo, Alberto; Berggren, Magnus

    2015-01-01

    Efficiency, current throughput, and speed of electronic devices are to a great extent dictated by charge carrier mobility. The classic approach to impart high carrier mobility to polymeric semiconductors has often relied on the assumption that extensive order and crystallinity are needed. Recently, however, this assumption has been challenged, because high mobility has been reported for semiconducting polymers that exhibit a surprisingly low degree of order. Here, we show that semiconducting polymers can be confined into weakly ordered fibers within an inert polymer matrix without affecting their charge transport properties. In these conditions, the semiconducting polymer chains are inhibited from attaining long-range order in the π-stacking or alkyl-stacking directions, as demonstrated from the absence of significant X-ray diffraction intensity corresponding to these crystallographic directions, yet still remain extended along the backbone direction and aggregate on a local length scale. As a result, the polymer films maintain high mobility even at very low concentrations. Our findings provide a simple picture that clarifies the role of local order and connectivity of domains. PMID:26261305

  12. Structure of ordered and disordered {alpha}-brass

    SciTech Connect

    Mu''ller, S.; Zunger, Alex

    2001-03-01

    Alloys of copper and zinc (brass) have been widely used since Neolithic times due to the discovery that unlike regular copper this alloy can be worked ''cold'' around a 3:1 copper-to-zinc ratio. While it is now known that the as-grown system is a disordered fcc solid solution, no 3:1 ordered phase has yet been directly observed even though the negative mixing enthalpy of the disordered alloy suggests ordering tendencies. Moreover, neutron scattering experiments have been deduced that this disordered alloy contains peculiar chains of Zn atoms. We have expressed the first-principles calculated total energy of general Cu-Zn fcc-lattice configurations using a mixed-space cluster expansion. Application of Monte Carlo--simulated annealing to this generalized Ising-like Hamiltonian produces the predicted low-temperature ground state as well as finite-temperature phase diagram and short-range order. We find (i) that at low temperature the disordered fcc alloy will order into the DO{sub 23} structure, (ii) the high-temperature short-range order in close agreement with experiment, and (iii) chains of Zn atoms in the [001] direction, as seen experimentally. Furthermore, our model allows a detailed study of the influence and importance of strain on the phase stability.

  13. Probabilities of octahedral clusters depending on long-range order parameters and composition in nonstoichiometric titanium monoxide TiO{sub y}

    SciTech Connect

    Kostenko, M. G.; Rempel, A. A.

    2012-12-15

    A method for calculating the probabilities of cluster configurations in ordered superstructures of strongly nonstoichiometric compounds depending on the composition and the order parameter is described using the Ti{sub 5}O{sub 5} superstructure of nonstoichiometric titanium monoxide TiO{sub y}. Analytic expressions are derived for the dependences of the probabilities of the main cluster configurations in the Ti{sub 5}O{sub 5} superstructure on the fraction of atomic positions in the titanium and oxygen sublattices and on the long-range order parameter. The probabilities of configurations are calculated for various long-range order parameters taking into account experimental data on the concentration of structural vacancies in the titanium and oxygen sublattices. The dependences of the probabilities of cluster configurations on the short-range order parameter are established from the relations between the superstructure long-range and short-range order parameters.

  14. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies

    NASA Astrophysics Data System (ADS)

    Alam Mollick, Safiul; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-01

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  15. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies.

    PubMed

    Mollick, Safiul Alam; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-28

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture  presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  16. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies.

    PubMed

    Mollick, Safiul Alam; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-28

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture  presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them. PMID:27655211

  17. MODERN RESONANT X-RAY STUDIES OF ALLOYS: Local Order and Displacements1

    NASA Astrophysics Data System (ADS)

    Ice, G. E.; Sparks, C. J.

    1999-08-01

    The recent availability of intense synchrotron sources with selectable X-ray energies permits high-precision measurements of chemically specific atomic-pair correlations in solid-solution alloys. Short-range chemical order can be accurately measured to identify one atom in a 100 for 10 or more shells, even in alloys with elements nearby in the periodic table, and chemically specific static displacements can be measured with 0.0001 nm resolution. This new information tests theoretical models of alloy phase stability and structure and gives new insights into the physical properties of alloys.

  18. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array

    PubMed Central

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-01-01

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372

  19. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array.

    PubMed

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-03-11

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.

  20. Procedures for the interpretation and use of elevation scanning laser/multi-sensor data for short range hazard detection and avoidance for an autonomous planetary rover

    NASA Technical Reports Server (NTRS)

    Troiani, N.; Yerazunis, S. W.

    1978-01-01

    An autonomous roving science vehicle that relies on terrain data acquired by a hierarchy of sensors for navigation was one method of carrying out such a mission. The hierarchy of sensors included a short range sensor with sufficient resolution to detect every possible obstacle and with the ability to make fast and reliable terrain characterizations. A multilaser, multidetector triangulation system was proposed as a short range sensor. The general system was studied to determine its perception capabilities and limitations. A specific rover and low resolution sensor system was then considered. After studying the data obtained, a hazard detection algorithm was developed that accounts for all possible terrains given the sensor resolution. Computer simulation of the rover on various terrains was used to test the entire hazard detection system.

  1. Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations.

    PubMed

    Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang

    2011-12-12

    The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations.

  2. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2011-08-01

    We provide an approximate analytical expression of the mass-radius relation of a Newtonian self-gravitating Bose-Einstein condensate (BEC) with short-range interactions described by the Gross-Pitaevskii-Poisson system. These equations model astrophysical objects such as boson stars and, presumably, dark matter galactic halos. Our study connects the noninteracting case studied by Ruffini and Bonazzola (1969) to the Thomas-Fermi limit studied by Böhmer and Harko (2007). For repulsive short-range interactions (positive scattering lengths), there exists configurations of arbitrary mass but their radius is always larger than a minimum value. For attractive short-range interactions (negative scattering lengths), equilibrium configurations only exist below a maximum mass. Above that mass, the system is expected to collapse and form a black hole. We also study the radius versus scattering length relation for a given mass. We find that equilibrium configurations only exist above a (negative) minimum scattering length. Our approximate analytical solution, based on a Gaussian ansatz, provides a very good agreement with the exact solution obtained by numerically solving a nonlinear differential equation representing hydrostatic equilibrium. Our analytical treatment is, however, easier to handle and permits one to study the stability problem, and derive an expression of the pulsation period, by developing an analogy with a simple mechanical problem.

  3. The role of short-ranged and long-ranged hydrodynamic interactions on aggregation of colloidal particle in colloid-polymer mixtures

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2014-11-01

    Colloidal Gels i.e. disordered arrested systems has been studied extensively during the past decades both experimentally and computationally. Despite their widespread applications in various industries e.g. cosmetic, food, their physical principals are still far beyond being understood. The interplay between different types of interactions e.g. quantum scale, short-ranged, and long-ranged turned dynamics and thermodynamics of the colloidal systems to one the most intriguing areas in Physics. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation in colloidal system with short-ranged attractive force e.g. colloid-polymer mixtures. However, BD neglects multi-body hydrodynamic interactions (HI) and MD is limited considering the time and length scale of gel formation and long-time dynamics. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal systems. Due to the possibility to study short- and long-ranged HI separately in this method we studied the effect of each of those interactions on the final morphology and report on one of the controversial question in this field. In the second part of the presentation, we include colloidal-polymer interactions to extend/modify the Asakura-Oosawa potential model to semi-dilute region of polymer solution.

  4. Spatial Configuration of Atoms with High-Energy Atomic Displacement Cascade in α-Fe

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Lu; Wu, Xuebang; Liu, Wei; Fang, Q. F.; Liu, C. S.; Huang, Qun-Ying; Wu, Y. C.

    2012-11-01

    Molecular dynamics simulations were performed to study the primary damage formation in α-Fe through collision cascades with a cascade energy of up to 100 keV. The pair analysis technique was introduced to characterize the spatial local structure distributions of atoms. The damaged microstructural unit characteristics of the body-centered cubic (bcc) crystal structure, as well as the number of point defects, followed a similar trend. Furthermore, the damaged atoms exist mostly in the microstructural characteristics of icosahedral and short-range ordering in amorphous states during and at the end of cascades. Most local spatial structures of the damaged atoms can be divided into two groups based on their corresponding non-characteristic index-pair change trends with time. The curves of the first group coincided with the vacancy (V) that exhibited one peak, whereas the curves of the second group exhibiting two peaks corresponded to the self-interstitial atoms (SIA). The maximum distance at which defects could interact with each other in space was the fifth nearest-neighbor distance of the atoms of perfect lattices in the bcc lattice. The number of local structural units of the damaged atoms that were connected with a single point defect (either V or SIA) continued to increase with increasing cascade energy by the end of the simulation. By contrast, the number of units that were connected with both V and SIA decreased. These results may help us understand the spatial configuration of atoms in the course of collision cascades.

  5. PAC experiments for a short range study of the Zr(10%Pr)O2 solid solution

    NASA Astrophysics Data System (ADS)

    Martínez, J. A.; Caracoche, M. C.; Rivas, P. C.; Rodríguez, A. M.

    2006-07-01

    A Zr(10 mol % Pr)O2 powder obtained by high-energy ball milling has been investigated at nanoscopic scale using primarily the Perturbed Angular Correlations technique. The aim has been to determine the nanoconfigurations around Zr4+ cations present in the solid solution and their thermal evolution with the intention of providing knowledge on the stability of the system. Results indicate that the milled product is a substitutional cubic solid solution described by two hyperfine interactions: a highly disordered interaction due to oxygen vacancies located very close to Zr4+ and an ordered interaction probably depicting a charge distribution including Pr3+ as nearest neighbor to Zr4+ probes. On cooling from high temperatures, monoclinic zirconia appears mostly at the expense of the oxygen defective cubic form. A gradual cooling indicates that destabilization of the solid solution takes place around 500°C. Thermal cycling leads to increasing amounts of the monoclinic phase.

  6. Short-range, spin-dependent interactions of electrons: a sensitive probe for exotic pseudo-Goldstone bosons

    NASA Astrophysics Data System (ADS)

    Terrano, William; Adelberger, Eric; Lee, John; Heckel, Blayne

    2016-03-01

    We used a torsion pendulum and rotating attractor with 20-pole electron-spin distributions to probe dipole-dipole interactions mediated by exotic pseudo-Goldstone bosons with mbc2 <= 500 μ eV and coupling strengths up to 14 orders of magnitude weaker than electromagnetism. Our 95% confidence result indicates that any hidden global symmetry involving electrons must have a symmetry-breaking scale F >= 70 TeV, the highest reached in any laboratory experiment. We used an attractor with a 20-pole unpolarized mass distribution to improve laboratory bounds on CP -violating monopole-dipole forces with 1 . 5 μ eV

  7. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOEpatents

    McEwan, T.E.

    1998-06-30

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.

  8. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  9. MADS domain transcription factors mediate short-range DNA looping that is essential for target gene expression in Arabidopsis.

    PubMed

    Mendes, Marta Adelina; Guerra, Rosalinda Fiorella; Berns, Markus Christian; Manzo, Carlo; Masiero, Simona; Finzi, Laura; Kater, Martin M; Colombo, Lucia

    2013-07-01

    MADS domain transcription factors are key regulators of eukaryotic development. In plants, the homeotic MIKC MADS factors that regulate floral organ identity have been studied in great detail. Based on genetic and protein-protein interaction studies, a floral quartet model was proposed that describes how these MADS domain proteins assemble into higher order complexes to regulate their target genes. However, despite the attractiveness of this model and its general acceptance in the literature, solid in vivo proof has never been provided. To gain deeper insight into the mechanisms of transcriptional regulation by MADS domain factors, we studied how SEEDSTICK (STK) and SEPALLATA3 (SEP3) directly regulate the expression of the reproductive meristem gene family transcription factor-encoding gene VERDANDI (VDD). Our data show that STK-SEP3 dimers can induce loop formation in the VDD promoter by binding to two nearby CC(A/T)6GG (CArG) boxes and that this is essential for promoter activity. Our in vivo data show that the size and position of this loop, determined by the choice of CArG element usage, is essential for correct expression. Our studies provide solid in vivo evidence for the floral quartet model. PMID:23847151

  10. Clicking in Shallow Rivers: Short-Range Echolocation of Irrawaddy and Ganges River Dolphins in a Shallow, Acoustically Complex Habitat

    PubMed Central

    Jensen, Frants H.; Rocco, Alice; Mansur, Rubaiyat M.; Smith, Brian D.; Janik, Vincent M.; Madsen, Peter T.

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes. PMID:23573197

  11. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta₂O₅)

    SciTech Connect

    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; Lin, Angie C.; Kim, Namjun; Mehta, Apurva; Shyam, Badri; Byer, Robert L.; Gustafson, Eric K.; Hart, Martin; MacLaren, Ian; Martin, Iain W.; Route, Roger K.; Rowan, Sheila; Stebbins, Jonathan F.; Fejer, Martin M.

    2015-03-01

    Amorphous tantala (a-Ta₂O₅) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta₂O₅ coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta₂O₅ and other a-T₂O₅ studies.

  12. Atomic Scale coexistence of Periodic and quasiperiodic order in a2-fold A1-Ni-Co decagonal quasicrystal surface

    SciTech Connect

    Park, Jeong Young; Ogletree, D. Frank; Salmeron, Miquel; Ribeiro,R.A.; Canfield, P.C.; Jenks, C.J.; Thiel, P.A.

    2005-11-14

    Decagonal quasicrystals are made of pairs of atomic planes with pentagonal symmetry periodically stacked along a 10-fold axis. We have investigated the atomic structure of the 2-fold surface of a decagonal Al-Ni-Co quasicrystal using scanning tunneling microscopy (STM). The surface consists of terraces separated by steps of heights 1.9, 4.7, 7.8, and 12.6{angstrom} containing rows of atoms parallel to the 10-fold direction with an internal periodicity of 4{angstrom}. The rows are arranged aperiodically, with separations that follow a Fibonacci sequence and inflation symmetry. The results indicate that the surfaces are preferentially Al-terminated and in general agreement with bulk models.

  13. Enhanced high-order-harmonic generation and wave mixing via two-color multiphoton excitation of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2016-07-01

    We consider harmonics generation and wave mixing by two-color multiphoton resonant excitation of three-level atoms and molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of a generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atoms and homonuclear diatomic molecular ions show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.

  14. 77 FR 12087 - Atomic Safety and Licensing Board Panel; Strata Energy, Inc.; Memorandum and Order (Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Document Access to Sensitive Unclassified Non-Safeguards Information for Contention Preparation, 76 FR 41... Council and the Powder River Basin Resource Council (collectively Joint Intervenors), filed a timely... proceeding. See ; Establishment of Atomic Safety and Licensing Board, 76 FR 69,295 (Nov. 8, 2011). \\*\\...

  15. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli.

    PubMed

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements.

  16. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli

    PubMed Central

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  17. Short-range verification experiment of a trial one-dimensional synthetic aperture infrared laser radar operated in the 10-microm band.

    PubMed

    Yoshikado, S; Aruga, T

    2000-03-20

    A trial one-dimensional (1-D) synthetic aperture infrared laser radar (SAILR) system for imaging static objects, with two CO(2) lasers as a transmitter and a local oscillator for heterodyne detection, was constructed. It has a single receiving aperture mounted on a linearly movable stage with a length of 1 m and a position accuracy of 1 microm. In an indoor short-range experiment to confirm the fundamental functions of the system and demonstrate its unique imaging process we succeeded in obtaining 1-D synthetic aperture images of close specular point targets with theoretically expected resolution.

  18. Field shifts and lowest order QED corrections for the ground 1 1S and 2 3S states of the helium atoms.

    PubMed

    Frolov, Alexei M

    2007-03-14

    The bound state properties of the ground 1 1S(L=0) state and the lowest triplet 2 3S(L=0) state of the 3He, 4He, and infinityHe helium atoms are determined to very high accuracy from the results of direct numerical computations. To compute the bound state properties of these atoms the author applied his exponential variational expansion in relative/perimetric three-body coordinates. For the ground 1 1S(L=0) state and the lowest triplet 2 3S(L=0) state of the 3He, 4He, and infinityHe atoms the author also determined the lowest order QED corrections and the field component of isotopic shift (=field shift). For the 2 3S(L=0) state of the 3He atom the hyperfine structure splitting is evaluated. The considered properties of the ground 1 1S state and the lowest 2 3S state in the 3He and 4He atoms are of great interest in a number of applications.

  19. Short range miniaturized biotelemetry system

    NASA Technical Reports Server (NTRS)

    Lorenz, R.

    1975-01-01

    A biotelemetry system for measuring and transmitting EKG, EMG, and EEG data by an RF link to a receiver was designed, developed, and delivered. The system is battery operated with the batteries and transmitting electronics an integral part of the electrode sensors. The low frequency response of 0.05 Hz assures faithful reproduction of detailed EKG and all measurements are made by the utilization of two electrode sensors.

  20. Short Range Tests of Gravity

    NASA Astrophysics Data System (ADS)

    Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David

    2014-03-01

    Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.

  1. Short range radio locator system

    DOEpatents

    McEwan, T.E.

    1996-12-31

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information. 5 figs.

  2. Short range radio locator system

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  3. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  4. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    PubMed

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. PMID:26814845

  5. High resolution probabilistic precipitation forecast over Spain combining the statistical downscaling tool PROMETEO and the AEMET short range EPS system (AEMET/SREPS)

    NASA Astrophysics Data System (ADS)

    Cofino, A. S.; Santos, C.; Garcia-Moya, J. A.; Gutierrez, J. M.; Orfila, B.

    2009-04-01

    The Short-Range Ensemble Prediction System (SREPS) is a multi-LAM (UM, HIRLAM, MM5, LM and HRM) multi analysis/boundary conditions (ECMWF, UKMetOffice, DWD and GFS) run twice a day by AEMET (72 hours lead time) over a European domain, with a total of 5 (LAMs) x 4 (GCMs) = 20 members. One of the main goals of this project is analyzing the impact of models and boundary conditions in the short-range high-resolution forecasted precipitation. A previous validation of this method has been done considering a set of climate networks in Spain, France and Germany, by interpolating the prediction to the gauge locations (SREPS, 2008). In this work we compare these results with those obtained by using a statistical downscaling method to post-process the global predictions, obtaining an "advanced interpolation" for the local precipitation using climate network precipitation observations. In particular, we apply the PROMETEO downscaling system based on analogs and compare the SREPS ensemble of 20 members with the PROMETEO statistical ensemble of 5 (analog ensemble) x 4 (GCMs) = 20 members. Moreover, we will also compare the performance of a combined approach post-processing the SREPS outputs using the PROMETEO system. References: SREPS 2008. 2008 EWGLAM-SRNWP Meeting (http://www.aemet.es/documentos/va/divulgacion/conferencias/prediccion/Ewglam/PRED_CSantos.pdf)

  6. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  7. Evaluating the impact of AMDAR data quality control in China on the short-range convection forecasts using the WRF model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Jiang, Qin; Zhang, Lei

    2016-04-01

    A quality control system for the Aircraft Meteorological Data Relay (AMDAR) data has been implemented in China. This system is an extension to the AMDAR quality control system used at the US National Centers for Environmental Prediction. We present a study in which the characteristics of each AMDAR data quality type were examined and the impact of the AMDAR data quality system on short-range convective weather forecasts using the WRF model was investigated. The main results obtained from this study are as follows. (1) The hourly rejection rate of AMDAR data during 2014 was 5.79%, and most of the rejections happened in Near Duplicate Check. (2) There was a significant diurnal variation for both quantity and quality of AMDAR data. Duplicated reports increased with the increase of data quantity, while suspicious and disorderly reports decreased with the increase of data quantity. (3) The characteristics of the data quality were different in each model layer, with the quality problems occurring mainly at the surface as well as at the height where the power or the flight mode of the aircraft underwent adjustment. (4) Assimilating the AMDAR data improved the forecast accuracy, particularly over the region where strong convection occurred. (5) Significant improvements made by assimilating AMDAR data were found after six hours into the model forecast. The conclusion from this study is that the newly implemented AMDAR data quality system can help improve the accuracy of short-range convection forecasts using the WRF model.

  8. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  9. Electron correlation in extended systems: Fourth-order many-body perturbation theory and density-functional methods applied to an infinite chain of hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Suhai, Sándor

    1994-11-01

    Linear equidistant and bond-alternating infinite chains of hydrogen atoms have been investigated by the ab initio crystal-orbital method at the Hartree-Fock (HF) level, by including electron correlation up to the complete fourth order of the Mo/ller-Plesset perturbation theory (MP4-PT), and by using different versions of density-functional theory (DFT). The Bloch functions have been expanded in all cases in a series of high-quality atomic-orbital basis sets and complemented by extended sets of polarization functions up to 6s3p2d1f per H atom. In order to compare the performance of the PT and DFT methods, several physical properties have been computed at all theoretical levels including lattice geometry, cohesive energy, mechanisms of bond alternation (Peierls instability), and energetic features of nonequilibrium configurations (dissociation). For these latter quantities, both spin-restricted (RHF) and unrestricted (UHF) wave functions have been employed in all orders of PT. The methods described have been used parallel to infinite chains and to the H2 molecule, to be able to check their accuracy on experiments. In the case of the DFT, six different functionals (combining Slater and Becke exchange with local and gradient-corrected correlation potentials) have been utilized to test their accuracy in comparison with the MP4 results.

  10. Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography.

    PubMed

    Marceau, R K W; Choi, P; Raabe, D

    2013-09-01

    A high-Mn TWIP steel having composition Fe-22Mn-0.6C (wt%) is considered in this study, where the need for accurate and quantitative analysis of clustering and short-range ordering by atom probe analysis requires a better understanding of the detection of carbon in this system. Experimental measurements reveal that a high percentage of carbon atoms are detected as molecular ion species and on multiple hit events, which is discussed with respect to issues such as optimal experimental parameters, correlated field evaporation and directional walk/migration of carbon atoms at the surface of the specimen tip during analysis. These phenomena impact the compositional and spatial accuracy of the atom probe measurement and thus require careful consideration for further cluster-finding analysis.

  11. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    PubMed

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. PMID:26190007

  12. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    PubMed

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data.

  13. Magnetic exchange force microscopy with atomic resolution.

    PubMed

    Kaiser, Uwe; Schwarz, Alexander; Wiesendanger, Roland

    2007-03-29

    The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding of magnetism on the nanometre scale therefore calls for information on the arrangement of spins in real space and with atomic resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force microscopy can be used on any sample independent of its conductivity. In particular, magnetic force microscopy is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Magnetic exchange force microscopy has been proposed for overcoming this limitation: by using an atomic force microscope with a magnetic tip, it should be possible to detect the short-range magnetic exchange force between tip and sample spins. Here we show for a prototypical antiferromagnetic insulator, the (001) surface of nickel oxide, that magnetic exchange force microscopy can indeed reveal the arrangement of both surface atoms and their spins simultaneously. In contrast with previous attempts to implement this method, we use an external magnetic field to align the magnetic polarization at the tip apex so as to optimize the interaction between tip and sample spins. This allows us to observe the direct magnetic exchange coupling between the spins of the tip atom and sample atom that are closest to each other, and thereby demonstrate the potential of magnetic exchange force microscopy for investigations of inter-spin interactions at the atomic level.

  14. XAS and XMCD study of the influence of annealing on the atomic ordering and magnetism in an NiMnGa alloy.

    PubMed

    Chaboy, J; Lázpita, P; Barandiarán, J M; Gutiérrez, Jon; Fernández-Gubieda, Maria Luisa; Kawamura, N

    2009-01-01

    The proper annealing of Ni(51)Mn(28)Ga(21) ribbon alloy gives rise to an increase of the saturation magnetization and of the magnetic order T(C) (up to 20 K) and martensitic transition T(M) (up to 10 K) temperatures. The combined x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies indicate that the annealing treatment drives the alloy to a more ordered structure without significantly affecting the local structure in terms of interatomic distances and bonding geometry. By contrast, the annealing strongly affects the near-edge absorption at the Mn K-edge while no effect is observed at either the Ni or Ga K-edge. These results suggest that annealing leads to a modification of the electronic structure of the Mn atoms while that of Ni and Ga atoms remains unvaried. However, strong XMCD signals are detected at both Ni and Ga K-edges whose amplitude increases after annealing. These results point out that despite the change of the magnetic properties of the system being mainly associated with the modification of the electronic properties of the Mn atoms, both Ni and Ga may play a non-negligible role through the polarization of the conduction band. PMID:21817239

  15. XAS and XMCD study of the influence of annealing on the atomic ordering and magnetism in an NiMnGa alloy

    NASA Astrophysics Data System (ADS)

    Chaboy, J.; Lázpita, P.; Barandiarán, J. M.; Gutiérrez, Jon; Fernández-Gubieda, Maria Luisa; Kawamura, N.

    2009-01-01

    The proper annealing of Ni51Mn28Ga21 ribbon alloy gives rise to an increase of the saturation magnetization and of the magnetic order TC (up to 20 K) and martensitic transition TM (up to 10 K) temperatures. The combined x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) studies indicate that the annealing treatment drives the alloy to a more ordered structure without significantly affecting the local structure in terms of interatomic distances and bonding geometry. By contrast, the annealing strongly affects the near-edge absorption at the Mn K-edge while no effect is observed at either the Ni or Ga K-edge. These results suggest that annealing leads to a modification of the electronic structure of the Mn atoms while that of Ni and Ga atoms remains unvaried. However, strong XMCD signals are detected at both Ni and Ga K-edges whose amplitude increases after annealing. These results point out that despite the change of the magnetic properties of the system being mainly associated with the modification of the electronic properties of the Mn atoms, both Ni and Ga may play a non-negligible role through the polarization of the conduction band.

  16. A comparative study of the second-order hydrophobic moments for globular proteins: the consensus scale of hydrophobicity and the CHARMM partial atomic charges.

    PubMed

    Tsai, Cheng-Fang; Lee, Kuei-Jen

    2011-01-01

    In this paper, the second-order hydrophobic moment for fifteen globular proteins in 150 nonhomologous protein chains was performed in a comparative study involving two sets of hydrophobicity: one selected from the consensus scale and the other derived from the CHARMM partial atomic charges. These proteins were divided into three groups, based on their number of residues (N) and the asphericity (δ). Proteins in Group I were spherical and those in Groups II and III were prolate. The size of the proteins is represented by the mean radius of gyration (R(g) ), which follows the Flory scaling law, R(g) ∝ N(ν). The mean value of v was 0.35, which is similar to a polymer chain in a poor solvent. The spatial distributions of the second-order moment for each of the proteins, obtained from the two sets of hydrophobicity, were compared using the Pearson correlation coefficient; the results reveal that there is a strong correlation between the two data sets for each protein structure when the CHARMM partial atomic charges, |q(i)| ≥ 0.3, assigned for polar atoms, are used. The locations at which these distributions vanish and approach a negative value are at approximately 50% of the percentage of solvent accessibility, indicating that there is a transition point from hydrophobic interior to hydrophilic exterior in the proteins. This may suggest that there is a position for the proteins to determine the residues at exposed sites beyond this range.

  17. EIT resonance features in strong magnetic fields in rubidium atomic columns with length varying by 4 orders

    NASA Astrophysics Data System (ADS)

    Mirzoyan, R.; Sargsyan, A.; Sarkisyan, D.; Wojciechowski, A.; Stabrawa, A.; Gawlik, W.

    2016-06-01

    Electromagnetically induced transparency (EIT) resonances are investigated with the 85Rb D 1 line (795 nm) in strong magnetic fields (up to 2 kG) with three different types of spectroscopic vapor cells: the nano-cell with a thickness along the direction of laser light L ≈ 795 nm, the micro-cell with L = 30 μm with the addition of a neon buffer gas, and the centimeter-long glass cell. These cells allowed us to observe systematic changes of the EIT spectra when the increasing magnetic field systematically decoupled the total atomic electron and nuclear angular moments (the Paschen-Back/Back-Goudsmit effects). The observations agree well with a theoretical model. The advantages and disadvantages of a particular type of cell are discussed along with the possible practical applications.

  18. Toward an understanding of intermediate- and short-range defects in ZnO single crystals. A combined experimental and theoretical study.

    PubMed

    Lima, R C; Macario, L R; Espinosa, J W M; Longo, V M; Erlo, R; Marana, N L; Sambrano, J R; dos Santos, M L; Moura, A P; Pizani, P S; Andrés, J; Longo, E; Varela, J A

    2008-09-25

    A joint use of experimental and theoretical techniques allows us to understand the key role of intermediate- and short-range defects in the structural and electronic properties of ZnO single crystals obtained by means of both conventional hydrothermal and microwave-hydrothermal synthesis methods. X-ray diffraction, Raman spectra, photoluminescence, scanning electronic and transmission electron microscopies were used to characterize the thermal properties, crystalline and optical features of the obtained nano and microwires ZnO structures. In addition, these properties were further investigated by means of two periodic models, crystalline and disordered ZnO wurtzite structure, and first principles calculations based on density functional theory at the B3LYP level. The theoretical results indicate that the key factor controlling the electronic behavior can be associated with a symmetry breaking process, creating localized electronic levels above the valence band.

  19. A new variation of the Buckingham exponential-6 potential with a tunable, singularity-free short-range repulsion and an adjustable long-range attraction

    NASA Astrophysics Data System (ADS)

    Werhahn, Jasper C.; Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-01-01

    We introduce new generalized (reverting to) and extended (not reverting to the original) 4-parameter forms of the (B-2) Potential Energy Functional (PEF) of Wang et al. [13], which itself is a modification of the Buckingham exponential-6. The new forms have a tunable, singularity-free short-range repulsion and an adjustable long-range attraction and are capable of describing even the strong ion-dipole interactions present in the halide- and alkali metal-water dimers. They are slightly better than the 4-parameter generalized Buckingham exponential-6 (gBe-6) and of comparable quality with the 4-parameter extended Morse (eM) PEFs introduced recently by us.

  20. A simulation study of microwave field effects on a 3D orthorhombic lattice of rotating dipoles: short-range potential energy variation

    NASA Astrophysics Data System (ADS)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2016-05-01

    Variation of the short-range potential energy of interaction of nearest dipoles in a three-dimensional (3D) orthorhombic lattice exposed to microwave electric fields is studied by means of the Langevin dynamics simulations. The global increase of the mean potential energy is typical for all the frequencies and intensities at lower temperatures, whereas separate potential energy peaks or peak chains are observed at intermediate temperatures. A simple statistical model proposed to account for the temperature dependence of the field intensity for potential energy peaks suggests the concerted collective rotation of the dipoles. The temperature dependence of the peak frequency is explained using a combination of the one-dimensional Kramers and the resonant activation theories applied to the field-driven collective rotation, with the nearly degenerate angular coordinates of the dipoles being used as a single effective coordinate.