Sample records for atomic size mismatch

  1. Effect of atomic size on undercoolability of binary solid solution alloy liquids with Zr, Ti, and Hf using electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Jeon, S.; Kang, D.-H.; Lee, Y. H.; Lee, S.; Lee, G. W.

    2016-11-01

    We investigate the relationship between the excess volume and undercoolability of Zr-Ti and Zr-Hf alloy liquids by using electrostatic levitation. Unlike in the case of Zr-Hf alloy liquids in which sizes of the constituent atoms are matched, a remarkable increase of undercoolability and negative excess volumes are observed in Zr-Ti alloy liquids as a function of their compositional ratios. In this work, size mismatch entropies for the liquids were obtained by calculating their hard sphere diameters, number densities, and packing fractions. We also show that the size mismatch entropy, which arises from the differences in atomic sizes of the constituent elements, plays an important role in determining the stabilities of metallic liquids.

  2. Method for enhancing the solubility of dopants in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  3. Local lattice distortion in high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian

    2017-07-01

    The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.

  4. Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay

    We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.

  5. Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO{sub 2} nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeters, Bob, E-mail: bob.schoeters@uantwerpen.be; IMEC, Kapeldreef 75, B-3001 Leuven; Leenaerts, Ortwin, E-mail: ortwin.leenaerts@uantwerpen.be

    We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO{sub 2} core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the hostmore » atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO{sub 2} NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO{sub 2} core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.« less

  6. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  7. Lattice distortions in complex oxides and their relation to the thermal properties

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Gaur, N. K.

    2018-05-01

    We have investigated the various lattice distortions in complex oxides Ca1-xLaxMnO3 and its effect on elastic and thermal properties of these perovskite manganites, especially Debye temperature of these complex oxides. The revealed data on Bulk modulus and Debye temperature studied as a function of lattice distortions using a novel atomistic approach of Atom in Molecules(AIM) theory and Modified Rigid Ion Model (MRIM) are in closer agreement with the available experimental data for some concentrations (x) of Ca1-xLaxMnO3. We demonstrate that the distortions introduced due to electron concentration, size mismatch and JT effects are the dominant factor, whereas charge mismatch and buckling of Mn-O-Mn angle influence the thermal properties to a lesser degree in the ferromagnetic state.

  8. Epitaxy: Programmable Atom Equivalents Versus Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mary X.; Seo, Soyoung E.; Gabrys, Paul A.

    The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of nanoparticle thin films. Under optimized equilibrium conditions, single crystal, multilayer thin filmsmore » can be synthesized over 500 × 500 μm2 areas on lithographically patterned templates. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in thin film atomic deposition, allowing for these processes to be understood in the context of well-studied atomic epitaxy, and potentially enabling a nanoscale model to study fundamental crystallization processes.« less

  9. The behavior of commensurate-incommensurate transitions using the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghui; Lu, Yanli; Chen, Zheng

    2018-02-01

    We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.

  10. Indium arsenide-on-SOI MOSFETs with extreme lattice mismatch

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    Both molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) have been used to explore the growth of InAs on Si. Despite 11.6% lattice mismatch, planar InAs structures have been observed by scanning electron microscopy (SEM) when nucleating using MBE on patterned submicron Si-on-insulator (SOI) islands. Planar structures of size as large as 500 x 500 nm 2 and lines of width 200 nm and length a few microns have been observed. MOCVD growth of InAs also generates single grain structures on Si islands when the size is reduced to 100 x 100 nm2. By choosing SOI as the growth template, selective growth is enabled by MOCVD. Post-growth pattern-then-anneal process, in which MOCVD InAs is deposited onto unpatterned SOI followed with patterning and annealing of InAs-on-Si structure, is found to change the relative lattice parameters of encapsulated 17/5 nm InAs/Si island. Observed from transmission electron diffraction (TED) patterns, the lattice mismatch of 17/5 nm InAs/Si island reduces from 11.2 to 4.2% after being annealed at 800°C for 30 minutes. High-k Al2O3 dielectrics have been deposited by both electron-beam-enabled physical vapor deposition (PVD) and atomic layer deposition (ALD). Films from both techniques show leakage currents on the order of 10-9A/cm2, at ˜1 MV/cm electric field, breakdown field > ˜6 MV/cm, and dielectric constant > 6, comparable to those of reported ALD prior arts by Groner. The first MOSFETs with extreme lattice mismatch InAs-on-SOI channels using PVD Al2O3 as the gate dielectric are characterized. Channel recess was used to improve the gate control of the drain current.

  11. Size mismatch in liver transplantation.

    PubMed

    Fukazawa, Kyota; Nishida, Seigo

    2016-08-01

    Size mismatch is an unique and inevitable but critical issue in live donor liver transplantation. Unmatched metabolic demand of recipient as well as physiologic mismatch aggravates the damage to liver graft, inevitably leading to graft failure on recipient. Also, an excessive resection of liver graft for better recipient outcome in live donor liver transplant may jeopardize the healthy donor well-being and even put donor life in danger. There is a fine balance between resected graft volume required to meet the recipient's metabolic demand and residual graft volume required for donor safety. The obvious clinical necessity of finding that balance has prompted a clinical need and promoted the improvement of knowledge and development of management strategies for size-mismatched transplants. The development of the size-matching methodology has significantly improved graft outcome and recipient survival in live donor liver transplants. On the other hand, the effect of size mismatch in cadaveric transplants has never been observed as being so pronounced. The importance of matching of the donor recipient size has been unrecognized in cadaveric liver transplant. In this review, we attempt to summarize the current most updated knowledge on the subject, particularly addressing the definition and complications of size-mismatched cadaveric liver transplant, as well as management strategies. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  12. Higher Rate of Revision in PFC Sigma Primary Total Knee Arthroplasty With Mismatch of Femoro-Tibial Component Sizes.

    PubMed

    Young, Simon W; Clarke, Henry D; Graves, Stephen E; Liu, Yen-Liang; de Steiger, Richard N

    2015-05-01

    Total knee arthroplasty (TKA) systems permit a degree of femoro-tibial component size mismatch. The effect of mismatched components on revision rates has not been evaluated in a large study. We reviewed 21,906 fixed-bearing PFC Sigma primary TKAs using the Australian Orthopaedic Association National Joint Replacement Registry, dividing patients into three groups: no femoro-tibial size mismatch, tibial component size > femoral component size, and femoral component > tibial component. Revision rates were higher when the femoral size was greater than the tibia, compared to both equal size (HR = 1.20 (1.00, 1.45), P = 0.047) and to tibial size greater than femoral (HR = 1.60 (1.08, 2.37), P = 0.019). Potential mechanisms to explain these findings include edge loading of polyethylene and increased tibial component stresses. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Entropy-driven crystal formation on highly strained substrates

    PubMed Central

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613

  14. Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F

    2007-01-01

    The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less

  15. Symmetry-Driven Atomic Rearrangement at a Brownmillerite-Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tricia L.; Jeen, Hyoungjeen; Gao, Xiang

    2015-12-15

    To those investigating new interfacial phenomena, symmetry mismatch is of immense interest. The interfacial and bulk microstructure of the brownmillerite–perovskite interface is probed using detailed transmission electron microscopy. Unique asymmetric displacements of the tetrahedra at the interface are observed, signifying a compensation mechanism for lattice and symmetry mismatch at the interface.

  16. Determination of atomic-scale chemical composition at semiconductor heteroepitaxial interfaces by high-resolution transmission electron microscopy.

    PubMed

    Wen, C; Ma, Y J

    2018-03-01

    The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 Å) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. High Entropy Alloys: Criteria for Stable Structure

    NASA Astrophysics Data System (ADS)

    Tripathy, Snehashish; Gupta, Gaurav; Chowdhury, Sandip Ghosh

    2018-01-01

    An effort has been made to reassess the phase predicting capability of various thermodynamic and topological parameters across a wide range of HEA systems. These parameters are valence electron concentration, atomic mismatch ( δ), electronegativity difference (Δ χ), mixing entropy (Δ S mix), entropy of fusion (Δ S f), and mismatch entropy ( S σ ). In continuation of that, two new parameters (a) Modified Darken-Gurry parameter ( A = Sσ * χ) and (b) Modified Mismatch Entropy parameter ( B = δ* Sσ) have been designed to predict the stable crystal structure that would form in the HEA systems considered for assessment.

  18. Mismatch Responses to Lexical Tone, Initial Consonant, and Vowel in Mandarin-Speaking Preschoolers

    ERIC Educational Resources Information Center

    Lee, Chia-Ying; Yen, Huei-ling; Yeh, Pei-wen; Lin, Wan-Hsuan; Cheng, Ying-Ying; Tzeng, Yu-Lin; Wu, Hsin-Chi

    2012-01-01

    The present study investigates how age, phonological saliency, and deviance size affect the presence of mismatch negativity (MMN) and positive mismatch response (P-MMR). This work measured the auditory mismatch responses to Mandarin lexical tones, initial consonants, and vowels in 4- to 6-year-old preschoolers using the multiple-deviant oddball…

  19. Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Merabia, Samy; Termentzidis, Konstantinos

    2012-09-01

    In this article, we compare the results of nonequilibrium (NEMD) and equilibrium (EMD) molecular dynamics methods to compute the thermal conductance at the interface between solids. We propose to probe the thermal conductance using equilibrium simulations measuring the decay of the thermally induced energy fluctuations of each solid. We also show that NEMD and EMD give generally speaking inconsistent results for the thermal conductance: Green-Kubo simulations probe the Landauer conductance between two solids which assumes phonons on both sides of the interface to be at equilibrium. On the other hand, we show that NEMD give access to the out-of-equilibrium interfacial conductance consistent with the interfacial flux describing phonon transport in each solid. The difference may be large and reaches typically a factor 5 for interfaces between usual semiconductors. We analyze finite size effects for the two determinations of the interfacial thermal conductance, and show that the equilibrium simulations suffer from severe size effects as compared to NEMD. We also compare the predictions of the two above-mentioned methods—EMD and NEMD—regarding the interfacial conductance of a series of mass mismatched Lennard-Jones solids. We show that the Kapitza conductance obtained with EMD can be well described using the classical diffuse mismatch model (DMM). On the other hand, NEMD simulation results are consistent with an out-of-equilibrium generalization of the acoustic mismatch model (AMM). These considerations are important in rationalizing previous results obtained using molecular dynamics, and help in pinpointing the physical scattering mechanisms taking place at atomically perfect interfaces between solids, which is a prerequisite to understand interfacial heat transfer across real interfaces.

  20. Manipulating the polar mismatch at the LaNi O 3 / SrTi O 3 (111) interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghayezhian, M.; Wang, Zhen; Guo, Hangwen

    2017-04-20

    Heteroepitaxial growth of transition-metal oxide films on the open (111) surface of SrTi O 3 results in significant restructuring due to the polar mismatch. Monitoring the structure and composition on an atomic scale of LaNi O 3 / SrTi O 3 (111) interface as a function of processing conditions has enabled the avoidance of the expected polar catastrophe. Using atomically resolved transmission electron microscopy and spectroscopy as well as low-energy electron diffraction, the structure of the thin film, from interface to the surface, has been studied. Here, we show that the proper processing can lead to a structure that ismore » ordered, coherent with the substrate without intermediate structural phase. Using angle-resolved x-ray photoemission spectroscopy we show that the oxygen content of thin films increases with the film thickness, which indicates that the polar mismatch is avoided by the presence of oxygen vacancies.« less

  1. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-12

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less

  2. Band crossing in isovalent semiconductor alloys with large size mismatch

    NASA Astrophysics Data System (ADS)

    Deng, Hui-Xiong; Wei, Su-Huai

    2012-02-01

    Mixing isovalent compounds AC with BC to form alloys A1-xBxC has been an effective way in band structure engineering to enhance the availability of material properties. In most cases, the mixed isovalent atoms A and B, such as Al and Ga in Al1-xGaxAs or As and Sb in GaAs1-xSbx are similar in their atomic sizes and chemical potentials; therefore, the physical properties of A1-xBxC change smoothly from AC to BC. However, in some cases when the chemical and size differences between the isovalent atoms A and B are large, adding a small amount of B to AC or vice versa can lead to a discontinuous change in the electronic band structure. These large size- and chemicalmismatched (LSCM) systems often show unusual and abrupt changes in the alloys' material properties, which provide great potential in material design for novel device applications. In this report, based on first-principles band-structure calculations we show that for LSCM GaAs1-xNx and GaAs1-xBix alloys at the impurity limit the N (Bi)-induced impurity level is above (below) the conduction-(valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

  3. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr; Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr

    2016-05-21

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, threemore » distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.« less

  4. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    NASA Astrophysics Data System (ADS)

    Vo, Truong Quoc; Barisik, Murat; Kim, BoHung

    2016-05-01

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an accurate understanding of thermal characteristics at the GB can be formulated by selecting a proper bin size.

  5. Mechanical Strength of the Side-to-Side Tendon Attachment for Mismatched Tendon Sizes and Shapes

    PubMed Central

    Fridén, Jan; Tirrell, Timothy F.; Bhola, Siddharth; Lieber, Richard L.

    2015-01-01

    Summary Certain combinations are advised against in tendon transfers due to size or shape mismatches between donor and recipient tendons. In this study, ultimate load, stiffness and Young’s modulus were measured in two tendon-to-tendon attachments with intentionally mismatched donor and recipient tendons - pronator teres (PT)-to-extensor carpi radialis brevis (ECRB) and flexor carpi ulnaris (FCU)-to-extensor digitorum communis (EDC). FCU-EDC attachments failed at higher loads than PT-to-ECRB attachments but they had similar modulus and stiffness values. Ultimate tensile strength of the tendon attachments exceeded the maximum predicted contraction force of any of the affected muscles, with safety factors of 4x and 2x for the FCU-to-EDC and PT-to-ECRB constructs, respectively. This implies that size and shape mismatch should not be a contraindication to tendon attachment in transfers. Further, these safety factors strongly suggest that no postoperative immobilization of these attachments is necessary. PMID:24413573

  6. Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

    PubMed

    Heilmann, Martin; Munshi, A Mazid; Sarau, George; Göbelt, Manuela; Tessarek, Christian; Fauske, Vidar T; van Helvoort, Antonius T J; Yang, Jianfeng; Latzel, Michael; Hoffmann, Björn; Conibeer, Gavin; Weman, Helge; Christiansen, Silke

    2016-06-08

    The monolithic integration of wurtzite GaN on Si via metal-organic vapor phase epitaxy is strongly hampered by lattice and thermal mismatch as well as meltback etching. This study presents single-layer graphene as an atomically thin buffer layer for c-axis-oriented growth of vertically aligned GaN nanorods mediated by nanometer-sized AlGaN nucleation islands. Nanostructures of similar morphology are demonstrated on graphene-covered Si(111) as well as Si(100). High crystal and optical quality of the nanorods are evidenced through scanning transmission electron microscopy, micro-Raman, and cathodoluminescence measurements supported by finite-difference time-domain simulations. Current-voltage characteristics revealed high vertical conduction of the as-grown GaN nanorods through the Si substrates. These findings are substantial to advance the integration of GaN-based devices on any substrates of choice that sustains the GaN growth temperatures, thereby permitting novel designs of GaN-based heterojunction device concepts.

  7. Scalable real space pseudopotential density functional codes for materials in the exascale regime

    NASA Astrophysics Data System (ADS)

    Lena, Charles; Chelikowsky, James; Schofield, Grady; Biller, Ariel; Kronik, Leeor; Saad, Yousef; Deslippe, Jack

    Real-space pseudopotential density functional theory has proven to be an efficient method for computing the properties of matter in many different states and geometries, including liquids, wires, slabs, and clusters with and without spin polarization. Fully self-consistent solutions using this approach have been routinely obtained for systems with thousands of atoms. Yet, there are many systems of notable larger sizes where quantum mechanical accuracy is desired, but scalability proves to be a hindrance. Such systems include large biological molecules, complex nanostructures, or mismatched interfaces. We will present an overview of our new massively parallel algorithms, which offer improved scalability in preparation for exascale supercomputing. We will illustrate these algorithms by considering the electronic structure of a Si nanocrystal exceeding 104 atoms. Support provided by the SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-FG02-12ER4 (Berkeley).

  8. Phonon cross-plane transport and thermal boundary resistance: effect of heat source size and thermal boundary resistance on phonon characteristics

    NASA Astrophysics Data System (ADS)

    Ali, H.; Yilbas, B. S.

    2016-09-01

    Phonon cross-plane transport across silicon and diamond thin films pair is considered, and thermal boundary resistance across the films pair interface is examined incorporating the cut-off mismatch and diffusive mismatch models. In the cut-off mismatch model, phonon frequency mismatch for each acoustic branch is incorporated across the interface of the silicon and diamond films pair in line with the dispersion relations of both films. The frequency-dependent and transient solution of the Boltzmann transport equation is presented, and the equilibrium phonon intensity ratios at the silicon and diamond film edges are predicted across the interface for each phonon acoustic branch. Temperature disturbance across the edges of the films pair is incorporated to assess the phonon transport characteristics due to cut-off and diffusive mismatch models across the interface. The effect of heat source size, which is allocated at high-temperature (301 K) edge of the silicon film, on the phonon transport characteristics at the films pair interface is also investigated. It is found that cut-off mismatch model predicts higher values of the thermal boundary resistance across the films pair interface as compared to that of the diffusive mismatch model. The ratio of equilibrium phonon intensity due to the cut-off mismatch over the diffusive mismatch models remains >1 at the silicon edge, while it becomes <1 at the diamond edge for all acoustic branches.

  9. The spatial mismatch effect is based on global configuration and not on perceptual records within the visual cache.

    PubMed

    Zimmer, Hubert D; Lehnert, Günther

    2006-01-01

    If configurations of objects are presented in a S1-S2 matching task for the identity of objects a spatial mismatch effect occurs. Changing the (irrelevant) spatial layout lengthens response times. We investigated what causes this effect. We observed a reliable mismatch effect that was not influenced by a secondary task during maintenance. Neither articulatory suppression (Experiment 1), nor unattended (Experiments 2 and 6) or attended visual material (Experiment 3) reduced the effect, and this was independent of the length of the retention interval (Experiment 6). The effect was also rather independent of the visual appearance of the local elements. It was of similar size with color patches (Experiment 4) and with completely different surface information when testing was cross modal (Experiment 5), and the name-ability of the global configuration was not relevant (Experiments 6 and 7). In contrast, the figurative similarity of the configurations of S1 and S2 systematically influenced the size of the spatial mismatch effect (Experiment 7). We conclude that the spatial mismatch effect is caused by a mismatch of the global shape of the configuration stored together with the objects of S1 and not by a mismatch of templates of perceptual records maintained in a visual cache.

  10. Nanoscale measurements of phosphorous-induced lattice expansion in nanosecond laser annealed germanium

    NASA Astrophysics Data System (ADS)

    Boninelli, S.; Milazzo, R.; Carles, R.; Houdellier, F.; Duffy, R.; Huet, K.; La Magna, A.; Napolitani, E.; Cristiano, F.

    2018-05-01

    Laser Thermal Annealing (LTA) at various energy densities was used to recrystallize and activate amorphized germanium doped with phosphorous by ion implantation. The structural modifications induced during the recrystallization and the related dopant diffusion were first investigated. After LTA at low energy densities, the P electrical activation was poor while the dopant distribution was mainly localized in the polycrystalline Ge resulting from the anneal. Conversely, full dopant activation (up to 1 × 1020 cm-3) in a perfectly recrystallized material was observed after annealing at higher energy densities. Measurements of lattice parameters performed on the fully activated structures show that P doping results in a lattice expansion, with a perpendicular lattice strain per atom βPs = +0.7 ± 0.1 Å3. This clearly indicates that, despite the small atomic radius of P compared to Ge, the "electronic contribution" to the lattice parameter modification (due to the increased hydrostatic deformation potential in the conduction band of P doped Ge) is larger than the "size mismatch contribution" associated with the atomic radii. Such behavior, predicted by theory, is observed experimentally for the first time, thanks to the high sensitivity of the measurement techniques used in this work.

  11. The effect of solvent upon molecularly thin rotaxane film formation

    NASA Astrophysics Data System (ADS)

    Farrell, Alan A.; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Jarvis, Suzanne P.

    2007-05-01

    We have investigated variations in molecularly thin rotaxane films deposited by solvent evaporation, using atomic force microscopy (AFM). Small changes in rotaxane structure result in significant differences in film morphology. The addition of exo-pyridyl moietes to the rotaxane macrocycle results in uniform domains having orientations corresponding to the underlying substrate lattice, while a larger, less symmetric molecule results in a greater lattice mismatch and smaller domain sizes. We have measured differences in film heights both as a function of the solvent of deposition and as a function of surface coverage of rotaxanes. Based on these observations we describe how the use of solvents with higher hydrogen-bond basicity results in films which are more likely to favour sub-molecular motion.

  12. The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: A DFT study.

    PubMed

    Masoodi, Hamid Reza; Bagheri, Sotoodeh; Ghaderi, Zahra

    2018-05-14

    In the present work, the influence of Cu + binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu + binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu + binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu + on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses.

  13. Band-gap bowing and p-type doping of (Zn, Mg, Be)O wide-gap semiconductor alloys: a first-principles study

    NASA Astrophysics Data System (ADS)

    Shi, H.-L.; Duan, Y.

    2008-12-01

    Using a first-principles band-structure method and a special quasirandom structure (SQS) approach, we systematically calculate the band gap bowing parameters and p-type doping properties of (Zn, Mg, Be)O related random ternary and quaternary alloys. We show that the bowing parameters for ZnBeO and MgBeO alloys are large and dependent on composition. This is due to the size difference and chemical mismatch between Be and Zn(Mg) atoms. We also demonstrate that adding a small amount of Be into MgO reduces the band gap indicating that the bowing parameter is larger than the band-gap difference. We select an ideal N atom with lower p atomic energy level as dopant to perform p-type doping of ZnBeO and ZnMgBeO alloys. For N doped in ZnBeO alloy, we show that the acceptor transition energies become shallower as the number of the nearest neighbor Be atoms increases. This is thought to be because of the reduction of p- d repulsion. The NO acceptor transition energies are deep in the ZnMgBeO quaternary alloy lattice-matched to GaN substrate due to the lower valence band maximum. These decrease slightly as there are more nearest neighbor Mg atoms surrounding the N dopant. The important natural valence band alignment between ZnO, MgO, BeO, ZnBeO, and ZnMgBeO quaternary alloy is also investigated.

  14. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  15. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  16. Abnormal elastic modulus behavior in a crystalline-amorphous core-shell nanowire system.

    PubMed

    Lee, Jeong Hwan; Choi, Su Ji; Kwon, Ji Hwan; Van Lam, Do; Lee, Seung Mo; Kim, An Soon; Baik, Hion Suck; Ahn, Sang Jung; Hong, Seong Gu; Yun, Yong Ju; Kim, Young Heon

    2018-06-13

    We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.

  17. Spontaneous Vortices in Imbalance Populated Fermion Gas, Finite Size System

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung; Shim, Yun-Pil; Duine, Rembert; MacDonald, Allan H.

    2006-05-01

    Atomic Fermion gases with mismatched densities have attracted much interest recently both experimentally and theoretically. These gases are related to superconductors in a magnetic field, to color superconductivity in high density QCD and to other systems. The main focus of recent research is on the possibility of unusual pairing states, the Larkin-Ovchinnikov-Fulde-Ferrel(LOFF)[1] phase, the Deformed Fermi surface(DFS)[2] and other states have been suggested in the past few years. We work specifically on two-dimensional systems with circular hard walls which contain atoms with two different hyperfine states and different populations. In addition to phase separation, a phenomenon that has already been observed[3], we consider the possibility of the spontaneous formation of vortices and giant vortices in some regions of parameter space. [1] Qinghong Cui, C.-R. Hu, J.Y.T. Wei, and Kun Yang, cond-mat/0510717 [2] Armen Sedrakian, Jordi Mur-Petit, Artur Polls, Herbert M"uther , cond-mat/0404577 [3] Guthrie B. Partridge, Wenhui Li, Ramsey I. Kamar, Yean-an Liao, Randall G. Hulet, cond-mat/0511752

  18. A model for the energy band gap of GaSbxAs1-x and InSbxAs1-x in the whole composition range

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan-Zhen; Ren, He-Yu; Wei, Tong; Wang, Sha-Sha; Wang, Jun

    2018-04-01

    The band gap evolutions of GaSbxAs1-x and InSbxAs1-x in the whole composition range are investigated. It is found that the band gap evolutions of GaSbxAs1-x and InSbxAs1-x are determined by two factors. One is the impurity-host interaction in the As-rich and Sb-rich composition ranges. The other is the intraband coupling within the conduction band and separately within the valence band in the moderate composition range. Based on the band gap evolutions of GaSbxAs1-x and InSbxAs1-x, a model is established. In addition, it is found that the impurity-host interaction is determined by not only the mismatches in size and electronegativity between the introduced atoms in the host material and the anions of the host material, but also the difference in electronegativity between the introduced atoms in the host material and the cations of the host material.

  19. Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants.

    PubMed

    Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario

    2017-10-01

    Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response.

  20. Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants

    PubMed Central

    Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario

    2017-01-01

    Background Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. Methods We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. Results We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Conclusions Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the rapid growth response. PMID:29026873

  1. Replication infidelity via a mismatch with Watson–Crick geometry

    PubMed Central

    Bebenek, Katarzyna; Pedersen, Lars C.; Kunkel, Thomas A.

    2011-01-01

    In describing the DNA double helix, Watson and Crick suggested that “spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms.” Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson–Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base–base mismatch with Watson–Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson–Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson–Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G•T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA. PMID:21233421

  2. Replication infidelity via a mismatch with Watson-Crick geometry.

    PubMed

    Bebenek, Katarzyna; Pedersen, Lars C; Kunkel, Thomas A

    2011-02-01

    In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base-base mismatch with Watson-Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson-Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson-Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G • T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.

  3. Structure and Dynamics of DNA and RNA Double Helices Obtained from the CCG and GGC Trinucleotide Repeats.

    PubMed

    Pan, Feng; Man, Viet Hoang; Roland, Christopher; Sagui, Celeste

    2018-04-26

    Expansions of both GGC and CCG sequences lead to a number of expandable, trinucleotide repeat (TR) neurodegenerative diseases. Understanding of these diseases involves, among other things, the structural characterization of the atypical DNA and RNA secondary structures. We have performed molecular dynamics simulations of (GCC) n and (GGC) n homoduplexes in order to characterize their conformations, stability, and dynamics. Each TR has two reading frames, which results in eight nonequivalent RNA/DNA homoduplexes, characterized by CpG or GpC steps between the Watson-Crick base pairs. Free energy maps for the eight homoduplexes indicate that the C-mismatches prefer anti-anti conformations, while G-mismatches prefer anti-syn conformations. Comparison between three modifications of the DNA AMBER force field shows good agreement for the mismatch free energy maps. The mismatches in DNA-GCC (but not CCG) are extrahelical, forming an extended e-motif. The mismatched duplexes exhibit characteristic sequence-dependent step twist, with strong variations in the G-rich sequences and the e-motif. The distribution of Na + is highly localized around the mismatches, especially G-mismatches. In the e-motif, there is strong Na + binding by two G(N7) atoms belonging to the pseudo GpC step created when cytosines are extruded and by extrahelical cytosines. Finally, we used a novel technique based on fast melting by means of an infrared laser pulse to classify the relative stability of the different DNA-CCG and -GGC homoduplexes.

  4. Understanding mismatches in body size, speed and power among adolescent rugby union players.

    PubMed

    Krause, Lyndon M; Naughton, Geraldine A; Denny, Greg; Patton, Declan; Hartwig, Tim; Gabbett, Tim J

    2015-05-01

    With adolescent sport increasingly challenged by mismatches in size, new strategies are important to maximize participation. The objectives were to (1) improve the understanding of mismatches in physical size, speed and power in adolescent rugby union players, (2) explore associations between size and performance with demographic, playing-history, and injury profiles, and (3) explore the applicability of existing criteria for age/body mass-based dispensation (playing-down) strategies. Cross-sectional study. Four hundred and eighty-five male community rugby union players were recruited from three Australian states selected to represent community-based U12, U13, U14 and U15 players. Body mass, stature, speed (10, 30, and 40 m sprints) and lower-leg power (relative peak power and relative peak force) were measured. Independent student t-tests, linear regressions and Chi square analyses were undertaken. Mean values in age groups for size, speed and power masked considerable overlap in the ranges within specific age groups of adolescent rugby players. Only a small proportion of players (approximately 5%) shared the highest and lowest tertiles for speed, relative peak power and body mass. Physical size was not related to injury. The mean body mass of current community rugby union players was above the 75th percentile on normative growth-charts. The notion that bigger, faster, and more powerful characteristics occur simultaneously in adolescent rugby players was not supported in the present study. Current practices in body mass-based criteria for playing down an age group lack a sufficient evidence for decision-making. Dispensation solely based on body mass may not address mismatch in junior rugby union. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Match or mismatch: the influence of phenology on size-dependent life history and divergence in population structure

    USGS Publications Warehouse

    Borcherding, Jost; Beeck, Peter; DeAngelis, Donald L.; Scharf, Werner R.

    2010-01-01

    Summary 1. In gape-limited predators, body size asymmetries determine the outcome of predator-prey interactions. Due to ontogenetic changes in body size, the intensity of intra- and interspecific interactions may change rapidly between the match situation of a predator-prey system and the mismatch situation in which competition, including competition with the prey, dominates. 2. Based on a physiologically structured population model using the European perch (Perca fluviatilis), analysis was performed on how prey density (bream, Abramis brama), initial size differences in the young-of-the-year (YOY) age cohort of the predator, and phenology (time-gap in hatching of predator and prey) influence the size structure of the predator cohort. 3. In relation to the seasonality of reproduction, the match situation of the predator-prey system occurred when perch hatched earlier than bream and when no gape-size limitations existed, leading to decreased size divergence in the predator age cohort. Decreased size divergence was also found when bream hatched much earlier than perch, preventing perch predation on bream occurring, which, in turn, increased the competitive interaction of the perch with bream for the common prey, zooplankton; i.e. the mismatch situation in which also the mean size of the age cohort of the predator decreased. 4. In between the total match and the mismatch, however, only the largest individuals of the perch age cohort were able to prey on the bream, while smaller conspecifics got trapped in competition with each other and with bream for zooplankton, leading to enlarged differences in growth that increased size divergence. 5. The modelling results were combined with 7 years of field data in a lake, where large differences in the length-frequency distribution of YOY perch were observed after their first summer. These field data corroborate that phenology and prey density per predator are important mechanisms in determining size differences within the YOY age cohort of the predator. 6. The results demonstrate that the switch between competitive interactions and a predator-prey relationship depended on phenology. This resulted in pronounced size differences in the YOY age cohort, which had far-reaching consequences for the entire predator population.

  6. Self-Selection of Frequency Tables with Bilateral Mismatches in an Acoustic Simulation of a Cochlear Implant

    PubMed Central

    Fitzgerald, Matthew B.; Prosolovich, Ksenia; Tan, Chin-Tuan; Glassman, E. Katelyn; Svirsky, Mario A.

    2017-01-01

    Background Many recipients of bilateral cochlear implants (CIs) may have differences in electrode insertion depth. Previous reports indicate that when a bilateral mismatch is imposed, performance on tests of speech understanding or sound localization becomes worse. If recipients of bilateral CIs cannot adjust to a difference in insertion depth, adjustments to the frequency table may be necessary to maximize bilateral performance. Purpose The purpose of this study was to examine the feasibility of using real-time manipulations of the frequency table to offset any decrements in performance resulting from a bilateral mismatch. Research Design A simulation of a CI was used because it allows for explicit control of the size of a bilateral mismatch. Such control is not available with users of CIs. Study Sample A total of 31 normal-hearing young adults participated in this study. Data Collection and Analysis Using a CI simulation, four bilateral mismatch conditions (0, 0.75, 1.5, and 3 mm) were created. In the left ear, the analysis filters and noise bands of the CI simulation were the same. In the right ear, the noise bands were shifted higher in frequency to simulate a bilateral mismatch. Then, listeners selected a frequency table in the right ear that was perceived as maximizing bilateral speech intelligibility. Word-recognition scores were then assessed for each bilateral mismatch condition. Listeners were tested with both a standard frequency table, which preserved a bilateral mismatch, or with their self-selected frequency table. Results Consistent with previous reports, bilateral mismatches of 1.5 and 3 mm yielded decrements in word recognition when the standard table was used in both ears. However, when listeners used the self-selected frequency table, performance was the same regardless of the size of the bilateral mismatch. Conclusions Self-selection of a frequency table appears to be a feasible method for ameliorating the negative effects of a bilateral mismatch. These data may have implications for recipients of bilateral CIs who cannot adapt to a bilateral mismatch, because they suggest that (1) such individuals may benefit from modification of the frequency table in one ear and (2) self-selection of a “most intelligible” frequency table may be a useful tool for determining how the frequency table should be altered to optimize speech recognition. PMID:28534729

  7. Lattice mismatch induced ripples and wrinkles in planar graphene/boron nitride superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandwana, Dinkar; Ertekin, Elif, E-mail: ertekin@illinois.edu; International Institute for Carbon Neutral Energy Research

    A continuum theory to describe periodic ripple formation in planar graphene/boron nitride superlattices is formulated. Due to the lattice mismatch between the two materials, it is shown that flat superlattices are unstable with respect to ripple formation of appropriate wavelengths. A competition between bending energy and transverse stretching energy gives rise to an optimal ripple wavelength that depends on the superlattice pitch. The optimal wavelengths predicted by the continuum theory are in good agreement with atomic scale total energy calculations previously reported by Nandwana and Ertekin [Nano Lett. 15, 1468 (2015)].

  8. Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique

    NASA Astrophysics Data System (ADS)

    Lenart, V. M.; Astrath, N. G. C.; Turchiello, R. F.; Goya, G. F.; Gómez, S. L.

    2018-02-01

    Ferrofluids are colloids of superparamagnetic nanoparticles that are envisaged for use in hyperthermia, which is based on nonradiative relaxation after interaction with a high-frequency magnetic field or light. For such applications, an important parameter is the thermal diffusivity. In this communication, we present an experimental study of the dependence of thermal diffusivity of ferrofluids on the size of the magnetite nanoparticles by employing the mode-mismatched thermal lens technique. The results show a huge enhancement of the thermal diffusivity by increasing the average size of the nanoparticles, while the number density of the nanoparticles is maintained as constant.

  9. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  10. Kinetic Monte Carlo Simulation of the Growth of Various Nanostructures through Atomic and Cluster Deposition: Application to Gold Nanostructure Growth on Graphite

    NASA Astrophysics Data System (ADS)

    Claassens, C. H.; Hoffman, M. J. H.; Terblans, J. J.; Swart, H. C.

    2006-01-01

    A Kinetic Monte Carlo (KMC) method is presented to describe the growth of metallic nanostructures through atomic and cluster deposition in the mono -and multilayer regime. The model makes provision for homo- and heteroepitaxial systems with small lattice mismatch. The accuracy of the model is tested with simulations of the growth of gold nanostructures on HOPG and comparisons are made with existing experimental data.

  11. Lattice mismatch modeling of aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwon; Roy, Shibayan; Watkins, Thomas R.

    We present a theoretical framework to accurately predict the lattice mismatch between the fcc matrix and precipitates in the multi-component aluminum alloys as a function of temperature and composition. We use a computational thermodynamic approach to model the lattice parameters of the multi-component fcc solid solution and θ'-Al2Cu precipitate phase. Better agreement between the predicted lattice parameters of fcc aluminum in five commercial alloys (206, 319, 356, A356, and A356 + 0.5Cu) and experimental data from the synchrotron X-ray diffraction (SXD) has been obtained when simulating supersaturated rather than equilibrium solid solutions. We use the thermal expansion coefficient of thermodynamicallymore » stable θ-Al2Cu to describe temperature-dependent lattice parameters of meta-stable θ' and to show good agreement with the SXD data. Both coherent and semi-coherent interface mismatches between the fcc aluminum matrix and θ' in Al-Cu alloys are presented as a function of temperature. Our calculation results show that the concentration of solute atoms, particularly Cu, in the matrix greatly affects the lattice mismatch« less

  12. Coevolution of female and male genital components to avoid genital size mismatches in sexually dimorphic spiders.

    PubMed

    Lupše, Nik; Cheng, Ren-Chung; Kuntner, Matjaž

    2016-08-17

    In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the 'positive genital divergence', the 'constant genital divergence', or the 'negative genital divergence' model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders.

  13. Influence of the frequency detuning on the four-wave mixing efficiency in three-level system coupled by standing-wave

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan

    2018-05-01

    In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.

  14. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    PubMed Central

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  15. Self-assembled Metallic Dots and Antidots: Epitaxial Co on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Yu, Chengtao; Li, Dongqi; Pearson, J.; Bader, S. D.

    2001-03-01

    We have grown 1-420 nm thick epitaxial Co wedge on Ru(0001) with molecular beam epitaxy at 350^oC to investigate self-assembly in metals utilizing ex-situ atomic force microscopy. A novel growth mode was observed whereby three-dimensional islands (dots) or a flat film network with deep holes (antidots) in truncated pyramidal shapes exist below or above 20 nm, respectively. The tops of the islands and the rims of the holes are flat with a root mean square roughness values of 0.3 nm. The lateral sizes of these dots/antidots, 10^2 nm, tend to be uniform. We postulate that this growth mode, similar to that of self-assembled quantum dots in semiconductors, is mainly driven by strain as a result of an 8% lateral mismatch between the basil plane lattice constants of bulk Co and Ru.

  16. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  17. Mismatch Considerations in Excitation of Single-Mode Circular Core Parabolic Index Fiber by Laser Diode via Upside Down Tapered Hemispherical Microlens on the Tip of the Fiber

    NASA Astrophysics Data System (ADS)

    Das, Bishuddhananda; Middya, Tapas Ranjan; Gangopadhyay, Sankar

    2017-12-01

    We report the theoretical investigation of the coupling optics involving laser diode to single-mode circular core parabolic index fiber via upside down tapered hemispherical microlens on the tip of the fiber in the presence of possible transverse and angular mismatches. Using the relevant ABCD matrix for such tapered hemispherical microlens, we formulate analytical expressions for the coupling efficiencies in the presence of the said two mismatches. Further, the transmitted spot size of the source via the hemispherical lens and the tapered region should match with the spot size of the fiber for obtaining maximum coupling. The investigations have been made for two practical wavelengths, namely 1.3 and 1.5 μm in order to find the tolerance of this coupling device with respect to the said kinds of mismatches at the concerned wavelengths. Although our simple method predicts the concerned coupling optics excellently, the evaluation of the concerned efficiencies and associated losses involve little computations. Thus this user-friendly technique and also the results found thereof will benefit the designers and packagers who are working in the field of optical technology.

  18. Dimensionality Controlled Octahedral Symmetry-Mismatch and Functionalities in Epitaxial LaCoO₃/SrTiO₃ Heterostructures.

    PubMed

    Qiao, Liang; Jang, Jae Hyuck; Singh, David J; Gai, Zheng; Xiao, Haiyan; Mehta, Apurva; Vasudevan, Rama K; Tselev, Alexander; Feng, Zhenxing; Zhou, Hua; Li, Sean; Prellier, Wilfrid; Zu, Xiaotao; Liu, Zijiang; Borisevich, Albina; Baddorf, Arthur P; Biegalski, Michael D

    2015-07-08

    Epitaxial strain provides a powerful approach to manipulate physical properties of materials through rigid compression or extension of their chemical bonds via lattice-mismatch. Although symmetry-mismatch can lead to new physics by stabilizing novel interfacial structures, challenges in obtaining atomic-level structural information as well as lack of a suitable approach to separate it from the parasitical lattice-mismatch have limited the development of this field. Here, we present unambiguous experimental evidence that the symmetry-mismatch can be strongly controlled by dimensionality and significantly impact the collective electronic and magnetic functionalities in ultrathin perovskite LaCoO3/SrTiO3 heterojunctions. State-of-art diffraction and microscopy reveal that symmetry breaking dramatically modifies the interfacial structure of CoO6 octahedral building-blocks, resulting in expanded octahedron volume, reduced covalent screening, and stronger electron correlations. Such phenomena fundamentally alter the electronic and magnetic behaviors of LaCoO3 thin-films. We conclude that for epitaxial systems, correlation strength can be tuned by changing orbital hybridization, thus affecting the Coulomb repulsion, U, instead of by changing the band structure as the common paradigm in bulks. These results clarify the origin of magnetic ordering for epitaxial LaCoO3 and provide a route to manipulate electron correlation and magnetic functionality by orbital engineering at oxide heterojunctions.

  19. Instrumental requirements for the detection of electron beam-induced object excitations at the single atom level in high-resolution transmission electron microscopy.

    PubMed

    Kisielowski, C; Specht, P; Gygax, S M; Barton, B; Calderon, H A; Kang, J H; Cieslinski, R

    2015-01-01

    This contribution touches on essential requirements for instrument stability and resolution that allows operating advanced electron microscopes at the edge to technological capabilities. They enable the detection of single atoms and their dynamic behavior on a length scale of picometers in real time. It is understood that the observed atom dynamic is intimately linked to the relaxation and thermalization of electron beam-induced sample excitation. Resulting contrast fluctuations are beam current dependent and largely contribute to a contrast mismatch between experiments and theory if not considered. If explored, they open the possibility to study functional behavior of nanocrystals and single molecules at the atomic level in real time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Elastic properties and atomic bonding character in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouxel, T., E-mail: tanguy.rouxel@univ-rennes1.fr; Yokoyama, Y.

    2015-07-28

    The elastic properties of glasses from different metallic systems were studied in the light of the atomic packing density and bonding character. We found that the electronegativity mismatch (Δe{sup −}) between the host- and the major solute-elements provides a plausible explanation to the large variation observed for Poisson's ratio (ν) among metallic glasses (MGs) (from 0.28 for Fe-based to 0.43 for Pd-based MGs), notwithstanding a similar atomic packing efficiency (C{sub g}). Besides, it is found that ductile MGs correspond to Δe{sup −} smaller than 0.5 and to a relatively steep atomic potential well. Ductility is, thus, favored in MGs exhibitingmore » a weak bond directionality on average and opposing a strong resistance to volume change.« less

  1. Lattice-Mismatch-Induced Oscillatory Feature Size and Its Impact on the Physical Limitation of Grain Size

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Li, Huihui; Dong, Kaifeng; Li, Run-Wei; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-03-01

    We find that the misfit strain may lead to the oscillatory size distributions of heteroepitaxial nanostructures. In heteroepitaxial FePt thin films grown on single-crystal MgO substrate, ⟨110 ⟩ -oriented mazelike and granular patterns with "quantized" feature sizes are realized in scanning-electron-microscope images. The physical mechanism responsible for the size oscillations is related to the oscillatory nature of the misfit strain energy in the domain-matching epitaxial FePt /MgO system, which is observed by transmission electron microscopy. Based on the experimental observations, a model is built and the results suggest that when the FePt island sizes are an integer times the misfit dislocation period, the misfit strain can be completely canceled by the misfit dislocations. With applying the mechanism, small and uniform grain is obtained on the TiN (200) polycrystalline underlayer, which is suitable for practical application. This finding may offer a way to synthesize nanostructured materials with well-controlled size and size distribution by tuning the lattice mismatch between the epitaxial-grown heterostructure.

  2. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    NASA Astrophysics Data System (ADS)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  3. The investigation of Ag/ZnO interface system by first principle: The structural, electronic and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Hai-Xia; Wang, Xiao-Xu; Beijing Computing Center, Beijing 100094

    Ag/ZnO interfaces have been investigated for both of Zn-termination and O-termination by the first principle based on density functional theory. Our calculations demonstrate that the Ag atoms go inward from the Ag/ZnO interface, and the Zn and O atoms are all move outward bulk in the Zn-termination interface, and the changes are just opposite for O-termination. These behaviors are in agreement with the other studies in literatures. Furthermore, an expansion situation is observed in the first two Zn-O bilayer and first three Ag monolayers for both of Zn-termination and O-termination interfaces by comparing with the pure ZnO(0001) and Ag(111) surfaces.more » Moreover, the valence-band both of O-2p and Zn-3d states of Ag/ZnO interface gradual close to Femi level as the Zn, O atoms locate at the deeper layer for Zn-termination, but it is the other way round for O-termination. Calculated absorption spectrum indicates that the absorption intensity of Zn-termination interface is stronger than that of O-termination in the lower energy range (visible light region). These properties of ZnO surfaces are also evaluated for comparison with interfaces. - Graphical abstract: The structures of Ag/ZnO interface: Zn-termination (left) and O-termination (right). In this Ag/ZnO interface system, the ZnO (0001) surface is rotated 30°(R30), and Ag (111) surface is built (2×2) supercell, then a (2×√3) R30 Ag/ZnO interface is constructed using the supercell method (i.e. periodically repeated slabs). The lattice mismatch of (2×√3) R30 Ag/ZnO (2.6% mismatch) is smaller than that of (1×1) Ag/ZnO (11% mismatch).« less

  4. Control wafer bow of InGaP on 200 mm Si by strain engineering

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Bao, Shuyu; Made, Riko I.; Lee, Kwang Hong; Wang, Cong; Eng Kian Lee, Kenneth; Fitzgerald, Eugene A.; Michel, Jurgen

    2017-12-01

    When epitaxially growing III-V compound semiconductors on Si substrates the mismatch of coefficients of thermal expansion (CTEs) between III-V and Si causes stress and wafer bow. The wafer bow is deleterious for some wafer-scale processing especially when the wafer size is large. Strain engineering was applied in the epitaxy of InGaP films on 200 mm silicon wafers having high quality germanium buffers. By applying compressive strain in the InGaP films to compensate the tensile strain induced by CTE mismatch, wafer bow was decreased from about 100 μm to less than 50 μm. X-ray diffraction studies show a clear trend between the decrease of wafer bow and the compensation of CTE mismatch induced tensile strain in the InGaP layers. In addition, the anisotropic strain relaxation in InGaP films resulted in anisotropic wafer bow along two perpendicular (110) directions. Etch pit density and plane-view transmission electron microscopy characterizations indicate that threading dislocation densities did not change significantly due to the lattice-mismatch applied in the InGaP films. This study shows that strain engineering is an effective method to control wafer bow when growing III-V semiconductors on large size Si substrates.

  5. Audiovisual speech perception in infancy: The influence of vowel identity and infants' productive abilities on sensitivity to (mis)matches between auditory and visual speech cues.

    PubMed

    Altvater-Mackensen, Nicole; Mani, Nivedita; Grossmann, Tobias

    2016-02-01

    Recent studies suggest that infants' audiovisual speech perception is influenced by articulatory experience (Mugitani et al., 2008; Yeung & Werker, 2013). The current study extends these findings by testing if infants' emerging ability to produce native sounds in babbling impacts their audiovisual speech perception. We tested 44 6-month-olds on their ability to detect mismatches between concurrently presented auditory and visual vowels and related their performance to their productive abilities and later vocabulary size. Results show that infants' ability to detect mismatches between auditory and visually presented vowels differs depending on the vowels involved. Furthermore, infants' sensitivity to mismatches is modulated by their current articulatory knowledge and correlates with their vocabulary size at 12 months of age. This suggests that-aside from infants' ability to match nonnative audiovisual cues (Pons et al., 2009)-their ability to match native auditory and visual cues continues to develop during the first year of life. Our findings point to a potential role of salient vowel cues and productive abilities in the development of audiovisual speech perception, and further indicate a relation between infants' early sensitivity to audiovisual speech cues and their later language development. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  6. Phononic crystals of spherical particles: A tight binding approach

    NASA Astrophysics Data System (ADS)

    Mattarelli, M.; Secchi, M.; Montagna, M.

    2013-11-01

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  7. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  8. Point defect weakened thermal contraction in monolayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Xian-Hu; Department of Physics, University of Science and Technology of China, Hefei; USTC-CityU Joint Advanced Research Centre, Suzhou 215123

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitudemore » and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.« less

  9. The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory

    PubMed Central

    Pogoryelov, Denys; Yu, Jinshu; Meier, Thomas; Vonck, Janet; Dimroth, Peter; Muller, Daniel J

    2005-01-01

    The oligomeric c ring of the F-ATP synthase from the alkaliphilic cyanobacterium Spirulina platensis was isolated and characterized. Mass spectroscopy analysis indicated a mass of 8,210 Da, reflecting that of a c monomer. The mass increased by 206 Da after treatment with the c-subunit-specific inhibitor dicyclohexylcarbodiimide (DCCD), which indicated modification of the ion-binding carboxylate by DCCD. Atomic force microscopy topographs of c rings from S. platensis showed 15 symmetrically assembled subunits. The c15-mer reported here is the largest c ring that is isolated and does not show the classical c-ring mismatch to the three-fold symmetry of the F1 domain. PMID:16170308

  10. Investigating a memory-based account of negative priming: support for selection-feature mismatch.

    PubMed

    MacDonald, P A; Joordens, S

    2000-08-01

    Using typical and modified negative priming tasks, the selection-feature mismatch account of negative priming was tested. In the modified task, participants performed selections on the basis of a semantic feature (e.g., referent size). This procedure has been shown to enhance negative priming (P. A. MacDonald, S. Joordens, & K. N. Seergobin, 1999). Across 3 experiments, negative priming occurred only when the repeated item mismatched in terms of the feature used as the basis for selections. When the repeated item was congruent on the selection feature across the prime and probe displays, positive priming arose. This pattern of results appeared in both the ignored- and the attended-repetition conditions. Negative priming does not result from previously ignoring an item. These findings strongly support the selection-feature mismatch account of negative priming and refute both the distractor inhibition and the episodic-retrieval explanations.

  11. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick J-M; Rodgers, Jocelyn M; Willems, Thomas F; Smit, Berend

    2010-12-01

    Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    PubMed Central

    Chen, Jianyi; Li, Dongdong

    2018-01-01

    The advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Density functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width. PMID:29740600

  13. CFD Growth of 3C-SiC on 4H/6H Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Huang, XianRong; Dudley, Michael

    2006-01-01

    This article describes growth and characterization of the highest quality reproducible 3C-SiC heteroepitaxial films ever reported. By properly nucleating 3C-SiC growth on top of perfectly on-axis (0001) 4H-SiC mesa surfaces completely free of atomic scale steps and extended defects, growth of 3C-SiC mesa heterofilms completely free of extended crystal defects can be achieved. In contrast, nucleation and growth of 3C-SiC mesa heterofilms on top of 4H-SiC mesas with atomic-scale steps always results in numerous observable dislocations threading through the 3C-SiC epilayer. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate non-trivial in-plane lattice mismatch between the 3C and 4H layers. This mismatch is somewhat relieved in the step-free mesa case via misfit dislocations confined to the 3C/4H interfacial region without dislocations threading into the overlying 3C-SiC layer. These results indicate that the presence or absence of steps at the 3C/4H heteroepitaxial interface critically impacts the quality, defect structure, and relaxation mechanisms of single-crystal heteroepitaxial 3C-SiC films.

  14. Influence of hydrophobic mismatch on the catalytic activity of Escherichia coli GlpG rhomboid protease

    PubMed Central

    Foo, Alexander C Y; Harvey, Brandon G R; Metz, Jeff J; Goto, Natalie K

    2015-01-01

    Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10–12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo. PMID:25307614

  15. Refinement of the magnetic resonance diffusion-perfusion mismatch concept for thrombolytic patient selection: insights from the desmoteplase in acute stroke trials.

    PubMed

    Warach, Steven; Al-Rawi, Yasir; Furlan, Anthony J; Fiebach, Jochen B; Wintermark, Max; Lindstén, Annika; Smyej, Jamal; Bharucha, David B; Pedraza, Salvador; Rowley, Howard A

    2012-09-01

    The DIAS-2 study was the only large, randomized, intravenous, thrombolytic trial that selected patients based on the presence of ischemic penumbra. However, DIAS-2 did not confirm the positive findings of the smaller DEDAS and DIAS trials, which also used penumbral selection. Therefore, a reevaluation of the penumbra selection strategy is warranted. In post hoc analyses we assessed the relationships of magnetic resonance imaging-measured lesion volumes with clinical measures in DIAS-2, and the relationships of the presence and size of the diffusion-perfusion mismatch with the clinical effect of desmoteplase in DIAS-2 and in pooled data from DIAS, DEDAS, and DIAS-2. In DIAS-2, lesion volumes correlated with National Institutes of Health Stroke Scale (NIHSS) at both baseline and final time points (P<0.0001), and lesion growth was inversely related to good clinical outcome (P=0.004). In the pooled analysis, desmoteplase was associated with 47% clinical response rate (n=143) vs 34% in placebo (n=73; P=0.08). For both the pooled sample and for DIAS-2, increasing the minimum baseline mismatch volume (MMV) for inclusion increased the desmoteplase effect size. The odds ratio for good clinical response between desmoteplase and placebo treatment was 2.83 (95% confidence interval, 1.16-6.94; P=0.023) for MMV >60 mL. Increasing the minimum NIHSS score for inclusion did not affect treatment effect size. Pooled across all desmoteplase trials, desmoteplase appears beneficial in patients with large MMV and ineffective in patients with small MMV. These results support a modified diffusion-perfusion mismatch hypothesis for patient selection in later time-window thrombolytic trials. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique Identifiers: NCT00638781, NCT00638248, NCT00111852.

  16. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology.

    PubMed

    Daher, Rana K; Stewart, Gale; Boissinot, Maurice; Boudreau, Dominique K; Bergeron, Michel G

    2015-04-01

    Recombinase polymerase amplification (RPA) technology relies on three major proteins, recombinase proteins, single-strand binding proteins, and polymerases, to specifically amplify nucleic acid sequences in an isothermal format. The performance of RPA with respect to sequence mismatches of closely-related non-target molecules is not well documented and the influence of the number and distribution of mismatches in DNA sequences on RPA amplification reaction is not well understood. We investigated the specificity of RPA by testing closely-related species bearing naturally occurring mismatches for the tuf gene sequence of Pseudomonas aeruginosa and/or Mycobacterium tuberculosis and for the cfb gene sequence of Streptococcus agalactiae. In addition, the impact of the number and distribution of mismatches on RPA efficiency was assessed by synthetically generating 14 types of mismatched forward primers for detecting five bacterial species of high diagnostic relevance such as Clostridium difficile, Staphylococcus aureus, S. agalactiae, P. aeruginosa, and M. tuberculosis as well as Bacillus atropheus subsp. globigii for which we use the spores as internal control in diagnostic assays. A total of 87 mismatched primers were tested in this study. We observed that target specific RPA primers with mismatches (n > 1) at their 3'extrimity hampered RPA reaction. In addition, 3 mismatches covering both extremities and the center of the primer sequence negatively affected RPA yield. We demonstrated that the specificity of RPA was multifactorial. Therefore its application in clinical settings must be selected and validated a priori. We recommend that the selection of a target gene must consider the presence of closely-related non-target genes. It is advisable to choose target regions with a high number of mismatches (≥36%, relative to the size of amplicon) with respect to closely-related species and the best case scenario would be by choosing a unique target gene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji

    2018-06-01

    Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.

  18. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  19. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.

  20. Atomic structures of Ruddlesden-Popper faults in LaCoO3/SrRuO3 multilayer thin films induced by epitaxial strain

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhang, Hui; Shen, Xi; Guan, Xiangxiang; Yao, Yuan; Wang, Yanguo; Sun, Jirong; Yu, Richeng

    2018-05-01

    In this paper, scanning transmission electron microscopy is used to study the microstructures of the defects in LaCoO3/SrRuO3 multilayer films grown on the SrTiO3 substrates, and these films have different thickness of SrRuO3 (SRO) layers. Several types of Ruddlesden-Popper (R.P.) faults at an atomic level are found, and these chemical composition fluctuations in the growth process are induced by strain fields originating from the film-film and film-substrate lattice mismatches. Furthermore, we propose four types of structural models based on the atomic arrangements of the R.P. planar faults, which severely affect the functional properties of the films.

  1. Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch.

    PubMed

    Bache, Morten; Nielsen, Hanne; Laegsgaard, Jesper; Bang, Ole

    2006-06-01

    We consider an index-guiding silica photonic crystal fiber with a triangular hole pattern and a periodically poled quadratic nonlinearity. By tuning the pitch and the relative hole size, second-harmonic generation with zero group-velocity mismatch is found for any fundamental wavelength above 780 nm. The nonlinear strength is optimized when the fundamental has maximum confinement in the core. The conversion bandwidth allows for femtosecond-pulse conversion, and 4%-180%W(-1)cm(-2) relative efficiencies were found.

  2. Injection envelope matching in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the {beta}-tron frequency indicate the presence of a {beta}-mismatch, while envelope oscillations at the {beta}-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  3. Injection envelope matching in storage rings

    NASA Astrophysics Data System (ADS)

    Minty, M. G.; Spence, W. L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the beta-tron frequency indicate the presence of a beta-mismatch, while envelope oscillations at the beta-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  4. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE PAGES

    Boichot, R.; Tian, L.; Richard, M. -I.; ...

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al 2O 3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  5. Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state

    NASA Astrophysics Data System (ADS)

    Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit

    2018-06-01

    We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.

  6. Anisotropic stress correlations in two-dimensional liquids

    DOE PAGES

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2015-03-01

    In this paper we demonstrate the presence of anisotropic stress correlations in the simulated 2D liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic level stresses in liquids without external shear has not been explored. Besides the apparent anisotropicity with well-defined symmetry, we found that the characteristic length of shear stress correlation depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The anisotropy of the stress correlations can be explained in termsmore » of the inclusion model by Eshelby, based upon which we suggest that the mismatch between the atom and its nearest neighbor cage produces the atomic level stress as well as the long-range stress fields.« less

  7. The anthropometric match between high school learners of the Cape Metropole area, Western Cape, South Africa and their computer workstation at school.

    PubMed

    van Niekerk, Sjan-Mari; Louw, Quinette Abigail; Grimmer-Somers, Karen; Harvey, Justin; Hendry, Kevan John

    2013-05-01

    Descriptive study. The objective of this study was to present anthropometric data from high school students in Cape Metropole area, Western Cape, South Africa that are relevant for chair design and whether the dimensions of computer laboratory chairs currently used in high schools match linear anthropometrics of high-school students. Summary of Background Data. Learner-chair mismatch is proposed as a cause of poor postural alignment and spinal pain in adolescents. A learner-chair mismatch is defined as the incompatibility between the dimensions of a chair and the anthropometric dimensions of the learner. Currently, there is no published research to ascertain whether the furniture dimensions in school computer laboratories match the anthropometrics of the students. This may contribute to the high prevalence of adolescent spinal pain. The sample consisted of 689 learners, 13-18 years old. The following body dimensions were measured: stature, popliteal height, buttock-to-popliteal length and hip width. These measurements were matched with the corresponding chair seat dimensions: height, depth and width. Popliteal and seat height mismatch was defined when the seat height is either >95% or <88% of the popliteal height. Buttock-popliteal length and seat depth mismatch was defined when the seat depth is either >95% or <80% of the buttock-popliteal length. Seat width mismatch is defined where the seat width should be at least 10% and at the most 30% larger than hip width. An 89% of learners did not match the seat. Five percent of learners matched the chair depth, the majority was found to be too big. In contrast, 65% of the learners matched the chair width dimension. A substantial mismatch was found. The school chairs failed standard ergonomics recommendations for the design of furniture to fit the user. This study supports the conclusion that there is no one-size-fits-all solution. There is an urgent need for chairs that are of different sizes or that are adjustable. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi

    Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less

  9. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices

    DOE PAGES

    Zhou, Wu; Zhang, Yu -Yang; Chen, Jianyi; ...

    2018-03-23

    Here, the advent of two-dimensional (2D) materials has led to extensive studies of heterostructures for novel applications. 2D lateral multiheterojunctions and superlattices have been recently demonstrated, but the available growth methods can only produce features with widths in the micrometer or, at best, 100-nm scale and usually result in rough and defective interfaces with extensive chemical intermixing. Widths smaller than 5 nm, which are needed for quantum confinement effects and quantum-well applications, have not been achieved. We demonstrate the growth of sub–2-nm quantum-well arrays in semiconductor monolayers, driven by the climb of misfit dislocations in a lattice-mismatched sulfide/selenide heterointerface. Densitymore » functional theory calculations provide an atom-by-atom description of the growth mechanism. The calculated energy bands reveal type II alignment suitable for quantum wells, suggesting that the structure could, in principle, be turned into a “conduit” of conductive nanoribbons for interconnects in future 2D integrated circuits via n-type modulation doping. This misfit dislocation–driven growth can be applied to different combinations of 2D monolayers with lattice mismatch, paving the way to a wide range of 2D quantum-well superlattices with controllable band alignment and nanoscale width.« less

  10. Tunable architecture for aircraft fault detection

    NASA Technical Reports Server (NTRS)

    Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)

    2012-01-01

    A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.

  11. Uncertainty of sensory signal explains variation of color constancy.

    PubMed

    Witzel, Christoph; van Alphen, Carlijn; Godau, Christoph; O'Regan, J Kevin

    2016-12-01

    Color constancy is the ability to recognize the color of an object (or more generally of a surface) under different illuminations. Without color constancy, surface color as a perceptual attribute would not be meaningful in the visual environment, where illumination changes all the time. Nevertheless, it is not obvious how color constancy is possible in the light of metamer mismatching. Surfaces that produce exactly the same sensory color signal under one illumination (metamerism) may produce utterly different sensory signals under another illumination (metamer mismatching). Here we show that this phenomenon explains to a large extent the variation of color constancy across different colors. For this purpose, color constancy was measured for different colors in an asymmetric matching task with photorealistic images. Color constancy performance was strongly correlated to the size of metamer mismatch volumes, which describe the uncertainty of the sensory signal due to metamer mismatching for a given color. The higher the uncertainty of the sensory signal, the lower the observers' color constancy. At the same time, sensory singularities, color categories, and cone ratios did not affect color constancy. The present findings do not only provide considerable insight into the determinants of color constancy, they also show that metamer mismatch volumes must be taken into account when investigating color as a perceptual property of objects and surfaces.

  12. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A MATLAB ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the wallsmore » of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (r{sub u}) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (>3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances >5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (<1.0°). Conclusions: Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (<0.01 difference), providing accurate dose measurements within ±2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.« less

  13. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids.

    PubMed

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

    2015-05-01

    In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1-5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5-1.47) and fluid (RI = 1.55-1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1-5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°-5.0°) were also investigated. As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is closely matched to the dosimeter at large gap sizes (> 3 mm). Increasing the telecentric lens tolerance increases the usable radius for all refractive media combinations and improves the maximum usable radius of mismatched media to that of perfectly matched media for tolerances > 5.0°. The maximum usable radius can be improved up to a factor of 2 when lens tolerances are small (< 1.0°). Dry solid-tank optical-CT imaging in a telecentric system is feasible if the dosimeter RI is a close match with the solid-tank (< 0.01 difference), providing accurate dose measurements within ± 2% of true dose to over 80% of the dosimeter volume. In order to achieve accurate measurements over 96% of the dosimeter volume (representing out to 2 mm from the dosimeter edge), the dosimeter-tank RI mismatch must be less than 0.005. Optimal results occur when the RI of the dosimeter and tank is the same, in which case the fluid will have the same RI. If mismatches between the tank and dosimeter RI occur, the RI of the matching fluid needs to be fine tuned to achieve the highest usable radius.

  14. Match between classroom dimensions and students' anthropometry: re-equipment according to European educational furniture standard.

    PubMed

    Macedo, Angela C; Morais, André V; Martins, Henriqueta F; Martins, João C; Pais, Silvina M; Mayan, Olga S

    2015-02-01

    The aim of this study was to investigate mismatch between students and classroom furniture dimensions and evaluate the improvement in implementing the European furniture standard. In Portugal, school furniture does not meet any national ergonomic criteria, so it cannot fit students' anthropometric measures. A total of 893 students belonging to third (7th through 9th grades) and secondary (10th through 12th grades) cycles participated in the study. Anthropometric measurements of the students were gathered in several physical education classes. The furniture dimensions were measured for two models of tables and seats. Several two-way equations for match criteria based on published studies were applied to data. The percentage of students who match with classroom furniture dimensions is low (24% and 44% between table and students, 4% and 9% between seat and students at 7th and 12th grades, respectively). Table is high for the third cycle, seat is high for both cycles, and seat depth fits well to students. No significant relationship was found between ergonomic mismatch and prevalence of pain. For each cycle, at least two different sizes indicated in the European standard should be available to students, considering the large variability in body dimensions within each cycle. The match criteria used gives a large percentage of students without pain in a mismatch situation. Future measures applying to secondary schools should revise the decision of selecting a single size of classroom furniture and improve the implementation of the European standard. New criteria for ergonomic mismatch are needed that more closely model the responses about discomfort/pain.

  15. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  16. Topics in the mechanics of self-organizing systems

    NASA Astrophysics Data System (ADS)

    Tambe, Dhananjay

    Self-organization, in one of its accepted definitions, is the appearance of non-random structures in a system without explicit constraints from forces outside the system. In this thesis two self-organizing systems are studied from the viewpoint of mechanics. In the first system---semiconductor crystal surfaces---the internal constraints that lead to self-assembly of nanoscale structures on silicon-germanium (SiGe) films are studied. In the second system---actin cytoskeleton---a consequence of dynamic self-organization of actin filaments in the form of motion of micron-sized beads through a cytoplasmic medium is studied. When Ge film is deposited on Si(001) substrate, nanoscale features form on the surface and self-organize by minimizing energy contributions from the surface and the strain resulting from difference in lattice constants of the film and the substrate. Clean Si(001) and Ge(001) surfaces are very similar, but experiments to date have shown that atomic scale defects such as dimer-vacancies self-organize into vacancy lines only on Si(001). Through atomic simulations, we show that the observed difference originate from the magnitude of compressive surface strain which reduces formation energy of the dimer-vacancies. During initial stages of the film deposition, the surface is composed of steps and vacancy lines organized in periodic patterns. Using theory of elasticity and atomic simulations we show that these line defects self-organize due to monopolar nature of steps and dipolar nature of the vacancy lines. This self-organized pattern further develops to form pyramidal islands bounded with (105) facets and high Ge content. Mismatch strain of the island is then reduced by incorporation of Si from the substrate surrounding the island leaving behind trenches whose depth is proportional to the basewidth of the island. Using finite element simulations we show that such a relationship is an outcome of competition between elastic energy and surface energy. Some experimental studies also report observation of steeper (103) and (104) facets on pyramidal islands. Using numerical simulations we derive a phase diagram which shows that the steeper facets are stabilized because they provide better relaxation of mismatch strain with only slight increase in surface energy. In the second system, the actin cytoskeleton is a key structural and propulsion element of eukaryotic cells. Micron-sized "cargoes", which under pathological conditions include bacteria, are propelled by dynamic self-organization of the actin filaments. Recently it is shown that the trajectories of a bacterium, Listeria monocytogenes, propelled by actin filaments are periodic; implying that the organization of actin filaments impart an effective force that spins about the axis of the bacterium. We show that the motion of spherical beads is also non-random; the effective force has an additional degree of freedom due to the spherical symmetry of the bead. Agreement of the theoretical trajectories with experimental observations suggest that the actin-based motility can be generally described using deterministic equations. We also propose microscopic basis for the effective force model which can guide development of microscopic theory to predict the long term trajectories of actin propelled objects.

  17. Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn

    2015-04-15

    A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reachesmore » 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.« less

  18. Conductivity of an atomically defined metallic interface

    PubMed Central

    Oliver, David J.; Maassen, Jesse; El Ouali, Mehdi; Paul, William; Hagedorn, Till; Miyahara, Yoichi; Qi, Yue; Guo, Hong; Grütter, Peter

    2012-01-01

    A mechanically formed electrical nanocontact between gold and tungsten is a prototypical junction between metals with dissimilar electronic structure. Through atomically characterized nanoindentation experiments and first-principles quantum transport calculations, we find that the ballistic conduction across this intermetallic interface is drastically reduced because of the fundamental mismatch between s wave-like modes of electron conduction in the gold and d wave-like modes in the tungsten. The mechanical formation of the junction introduces defects and disorder, which act as an additional source of conduction losses and increase junction resistance by up to an order of magnitude. These findings apply to nanoelectronics and semiconductor device design. The technique that we use is very broadly applicable to molecular electronics, nanoscale contact mechanics, and scanning tunneling microscopy. PMID:23129661

  19. First-principles calculation of the effects of tetragonal distortions on the Gilbert damping parameter of Co2MnSi

    NASA Astrophysics Data System (ADS)

    Pradines, B.; Arras, R.; Calmels, L.

    2017-05-01

    We present an ab initio study of the influence of the tetragonal distortion, on the static and dynamic (Gilbert damping parameter) magnetic properties of a Co2MnSi crystal. This tetragonal distortion can for instance be due to strain, when Co2MnSi is grown on a substrate with a small lattice mismatch. Using fully relativistic Korringa-Kohn-Rostoker (KKR) calculations, in conjunction with the coherent potential approximation (CPA) to describe atomic disorder and the linear response formalism to compute the Gilbert damping parameter, we show that a tetragonal distortion can substantially change the properties of Co2MnSi, in a way which depends on the kind of atomic disorder.

  20. Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter

    NASA Technical Reports Server (NTRS)

    Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila

    2007-01-01

    Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes

  1. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.

    2013-09-01

    Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.

  2. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less

  3. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites

    NASA Astrophysics Data System (ADS)

    Huo, Shiyan; Xie, Lijing; Xiang, Junfeng; Pang, Siqin; Hu, Fang; Umer, Usama

    2018-02-01

    Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.

  4. A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders.

    PubMed

    Cheng, Chia-Hsiung; Chan, Pei-Ying S; Hsieh, Yu-Wei; Chen, Kuan-Fu

    2016-01-26

    Mismatch negativity (MMN) is an optimal neurophysiological signal to assess the integrity of auditory sensory memory and involuntary attention switch. The generation of MMN is independent of overt behavioral requirements, concentration or motivation, and thus serves as a suitable tool to study the perceptual function in children with attention deficit-hyperactivity disorders (ADHD). It remains unclear whether ADHD children showed altered MMN responses. Therefore we performed a meta-analysis of peer-reviewed MMN studies that had targeted both typically developed and ADHD children to examine the pooled effect size. The published articles between 1990 and 2014 were searched in PubMed, Medline, Cochrane, and CINAHL. The mean effect size and a 95% confidence interval (CI) were estimated. Six studies, consisting of 10 individual investigations, were included in the final analysis. A significant effect size of 0.28 was found (p=0.028, 95% CI at 0.03-0.53). These results were also free from publication bias or heterogeneity. In conclusion, our meta-analysis results suggest ADHD children demonstrated a reduced MMN amplitude compared to healthy controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Affective and physiological correlates of the perception of unimodal and bimodal emotional stimuli.

    PubMed

    Rosa, Pedro J; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Gamito, Pedro

    2017-08-01

    Despite the multisensory nature of perception, previous research on emotions has been focused on unimodal emotional cues with visual stimuli. To the best of our knowledge, there is no evidence on the extent to which incongruent emotional cues from visual and auditory sensory channels affect pupil size. To investigate the effects of audiovisual emotional information perception on the physiological and affective response, but also to determine the impact of mismatched cues in emotional perception on these physiological indexes. Pupil size, electrodermal activity and affective subjective responses were recorded while 30 participants were exposed to visual and auditory stimuli with varied emotional content in three different experimental conditions: pictures and sounds presented alone (unimodal), emotionally matched audio-visual stimuli (bimodal congruent) and emotionally mismatched audio-visual stimuli (bimodal incongruent). The data revealed no effect of emotional incongruence on physiological and affective responses. On the other hand, pupil size covaried with skin conductance response (SCR), but the subjective experience was partially dissociated from autonomic responses. Emotional stimuli are able to trigger physiological responses regardless of valence, sensory modality or level of emotional congruence.

  6. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thermal conductance at atomically clean and disordered silicon/aluminum interfaces: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant

    2012-09-01

    Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.

  8. Effects of physiological aging on mismatch negativity: a meta-analysis.

    PubMed

    Cheng, Chia-Hsiung; Hsu, Wan-Yu; Lin, Yung-Yang

    2013-11-01

    Mismatch negativity (MMN) is a promising window on how the functional integrity of auditory sensory memory and change discrimination is modulated by age and relevant clinical conditions. However, the effects of aging on MMN have remained somewhat elusive, particularly at short interstimulus intervals (ISIs). We performed a meta-analysis of peer-reviewed MMN studies that had targeted both young and elderly adults to estimate the mean effect size. Nine studies, consisting of 29 individual investigations, were included and the final total study population consisted of 182 young and 165 elderly subjects. The effects of different deviant types and duration of ISIs on the effect size were assessed. The overall mean effect size was 0.63 (95% CI at 0.43-0.82). The effect sizes for long ISI (>2s, effect size 0.68, 95% CI at 0.31-1.06) and short ISI (<2s, effect size 0.61, 95% CI at 0.39-0.84) were both considered moderate. A further analysis showed a prominent aging-related decrease in MMN responses to duration and frequency changes at short ISIs. It was also interesting to note that the effect size was about 25% larger for duration deviant condition compared to the frequency deviant condition. In conclusion, a reduced MMN response to duration and frequency deviants is a robust feature among the aged adults, which suggests that there has been a decline in the functional integrity of central auditory processing in this population. © 2013.

  9. Detecting and correcting for family size differences in the study of sexual orientation and fraternal birth order.

    PubMed

    Blanchard, Ray

    2014-07-01

    The term "fraternal birth order effect" denotes a statistical relation most commonly expressed in one of two ways: Older brothers increase the odds of homosexuality in later born males or, alternatively, homosexual men tend to have more older brothers than do heterosexual men. The demonstrability of this effect depends partly on the adequate matching of the homosexual and heterosexual study groups with respect to mean family size. If the homosexual group has too many siblings, relative to the heterosexual group, the homosexual group will tend to show the expected excess of older brothers but may also show an excess of other sibling-types (most likely older sisters); if the homosexual group has too few siblings, it will tend not to show a difference in number of older brothers but instead may show a deficiency of other sibling-types (most likely younger brothers and younger sisters). In the first part of this article, these consequences are illustrated with deliberately mismatched groups selected from archived data sets. In the second part, two slightly different methods for transforming raw sibling data are presented. These are intended to produce family-size-corrected variables for each of the four original sibling parameters (older brothers, older sisters, younger brothers, and younger sisters). Both versions are shown to render the fraternal birth order effect observable in the deliberately mismatched groups. In the third part of the article, fraternal birth order studies published in the last 5 years were surveyed for failures to find a statistically significant excess of older brothers for the homosexual group. Two such studies were found in the nine examined. In both cases, the collective findings for older sisters, younger brothers, and younger sisters suggested that the mean family size of the homosexual groups was smaller than that of the heterosexual comparison groups. Furthermore, the individual findings for the four classes of siblings resembled those for the present experimentally mismatched groups in which the mean family size of the homosexual group was significantly smaller. This illustrates the necessity of comparing groups on measures of mean family size and removing this confound in some way when those means are markedly different.

  10. Feedback Augmented Sub-Ranging (FASR) Quantizer

    NASA Technical Reports Server (NTRS)

    Guilligan, Gerard

    2012-01-01

    This innovation is intended to reduce the size, power, and complexity of pipeline analog-to-digital converters (ADCs) that require high resolution and speed along with low power. Digitizers are important components in any application where analog signals (such as light, sound, temperature, etc.) need to be digitally processed. The innovation implements amplification of a sampled residual voltage in a switched capacitor amplifier stage that does not depend on charge redistribution. The result is less sensitive to capacitor mismatches that cause gain errors, which are the main limitation of such amplifiers in pipeline ADCs. The residual errors due to mismatch are reduced by at least a factor of 16, which is equivalent to at least 4 bits of improvement. The settling time is also faster because of a higher feedback factor. In traditional switched capacitor residue amplifiers, closed-loop amplification of a sampled and held residue signal is achieved by redistributing sampled charge onto a feedback capacitor around a high-gain transconductance amplifier. The residual charge that was sampled during the acquisition or sampling phase is stored on two or more capacitors, often equal in value or integral multiples of each other. During the hold or amplification phase, all of the charge is redistributed onto one capacitor in the feedback loop of the amplifier to produce an amplified voltage. The key error source is the non-ideal ratios of feedback and input capacitors caused by manufacturing tolerances, called mismatches. The mismatches cause non-ideal closed-loop gain, leading to higher differential non-linearity. Traditional solutions to the mismatch errors are to use larger capacitor values (than dictated by thermal noise requirements) and/or complex calibration schemes, both of which increase the die size and power dissipation. The key features of this innovation are (1) the elimination of the need for charge redistribution to achieve an accurate closed-loop gain of two, (2) a higher feedback factor in the amplifier stage giving a higher closed-loop bandwidth compared to the prior art, and (3) reduced requirement for calibration. The accuracy of the new amplifier is mainly limited by the sampling networks parasitic capacitances, which should be minimized in relation to the sampling capacitors.

  11. Atomic force microscopy study on crystal growth of Cu 2+-doped L-arginine phosphate monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Geng, Y. L.; Xu, D.; Wang, Y. L.; Du, W.; Liu, H. Y.; Zhang, G. H.; Wang, X. Q.; Sun, D. L.

    2005-01-01

    Sub-steps and defects of the {1 0 0} planes of Cu 2+-doped L-arginine phosphate monohydrate (LAP) crystals are observed by atomic force microscopy. Formation of sub-steps is not due to the stacking faults but a result of single LAP: Cu 2+ molecule acting as growth unit. Two-dimensional (2D) nuclei with the same height as sub-steps occur on the step-edges. Impurities of Cu 2+ ions cause steps bunch and macrosteps formation. Liquid inclusions in the form of long channels form when the macrosteps lose their stability. Numerous small 3D growth hillocks are found in the channels. The extra stress induced by the 3D islands can result in dislocations and steps mismatches.

  12. Interface control of bulk ferroelectric polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, P; Luo, Weidong; Yi, D.

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectricmore » hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.« less

  13. Manganese-calcium intermixing facilitates heteroepitaxial growth at the (1014) calcite-water interface

    DOE PAGES

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; ...

    2017-09-05

    For this research, in situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10more » $$\\bar{1}$$4) surface of calcite (CaCO 3) single crystals following reaction with Mn2 +-bearing aqueous solutions. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces. In situ time-sequenced measurements demonstrated that the growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2 +-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO 3) and calcite display a 10% lattice mismatch, based on the area of their (10$$\\bar{1}$$4) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO 3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals in calcite-equilibrated aqueous solutions with up to 250 μM MnCl 2. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO 3 solid solution. The epitaxial solid solution had a spatially complex composition, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO 3 for the thickest coatings. The effective lattice mismatch was therefore much smaller than the nominal mismatch thus explaining the measured growth rates. Lastly, these findings highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.« less

  14. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    PubMed

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua

    The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less

  16. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  17. Mismatching between nest volume and clutch volume reduces egg survival and fledgling success in black-tailed gulls

    PubMed Central

    Yoo, Jeong-Chil

    2016-01-01

    Abstract A longstanding suggestion posits that parents prefer to match nest volume and clutch size (clutch volume), but few studies have tested this in colonial seabirds that nest in the open. Here, we demonstrate the effects of nest–clutch volume matching on egg survival, hatching, and fledgling success in black-tailed gulls Larus crassirostris on Hongdo Island, Korea. We show that the volume mismatch, defined as the difference between nest volume and total egg volume (the sum of all eggs’ volume in the clutch), was positively related to egg and chick mortality caused by predation, but was not significantly related to hatching success incurred by insulation during the incubation period. Although nest volume was negatively related to laying date, we found that the mismatch was positively related to laying date. Our results support the claim that well-matched nest–clutch volume may contribute to survival of eggs and chicks, and ultimately breeding success. PMID:29491934

  18. Mismatch Negativity in Han Chinese Patients with Schizophrenia: A Meta-Analysis.

    PubMed

    Xiong, Yanbing; Ll, Xianbin; Zhao, Lei; Wang, Chuanyue

    2017-10-25

    Previous meta-analysis revealed that mismatch negativity(MMN) amplitude decreased in patients with schizophrenia compared with healthy controls (Cohen's d, d about 1), leading to the possibility of mismatch negativity being used as a biomarker for schizophrenia. However, it is unknown whether MMN is reliably changed in Chinese patients. It is necessary to carry out a meta-analysis on MMN of Han Chinese patients with schizophrenia. To investigate whether MMN could be used as a biomarker for Han Chinese patients with schizophrenia. A literature search was conducted to identify clinical trials on MMN in Han Chinese schizophrenia patients published before May 8, 2017, by searching the Chinese language databases CNKI, WanFang Data, VIP Data and PubMed. The effects of MMN deficits were evaluated for MMN amplitude by calculating standard mean difference (SMDs) between schizophrenia patient groups and healthy control groups. A total of 11 studies were included in the analysis. The total quality of all the studies were more than 6 as evaluated by Newcastle-Ottawa Scale (NOS). Meta-analysis of data from these studies had a pooled sample of 432 patients with schizophrenia and 392 healthy controls. There exists significant MMN deficit in schizophrenia patients compared to healthy controls (Cohen's d =1.004). When studies were excluded due to heterogeneity, the pooled effect size of the MMN differences between the patient group and healthy controls dropped to 0.79 (Cohen's d =0.79). Subgroup analysis showed that MMN amplitude deficits of schizophrenia over three years had the pooled effect size of 0.95, and less than three years had the pooled effect size of 0.77. Publication bias conducted via Egger regression test ( t = 1.83; p = 0.101), suggested that there was no publication bias. The effect size of MMN amplitude between Chinese patients with schizophrenia and healthy controls is consistent with other meta-analyses published on this topic, suggesting that Han Chinese patients with schizophrenia also exhibited MMN deficits.

  19. Theoretical studies on the electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/C*.A(WC)]-Au8 mismatch nucleobase complexes

    NASA Astrophysics Data System (ADS)

    Srivastava, Ruby

    2018-01-01

    The electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/ C*.A(WC)]-Au8 metal-mismatch nucleobase complexes are investigated by means of density functional theory and time-dependent methods. We selected these mispairs as 2-aminopurine (2AP) produces incorporation errors when binding with cytosine (C) into the wobble (w) C.2AP(w) mispair, and is tautomerised into Watson-Crick (WC)-like base mispair C*.2AP(WC) and less effectively produces A.2AP(w)/A*.2AP(WC) mispairs. The vertical ionisation potential, vertical electron affinity, hardness and electrophilicity index of these complexes have also been discussed. The modifications of energy levels and charge density distributions of the frontier orbitals are also analysed. The absorption spectra of these complexes lie in the visible region, which suggests their application in fluorescent-bio imaging. The mechanism of cooperativity effect is studied by molecular orbital potential (MEP), atoms-in-molecules (AIM) and natural bond orbital analyses. Most metalated pairs have smaller HOMO-LUMO band gaps than the isolated mismatch nucleobases which suggest interesting consequences for electron transfer through DNA duplexes.

  20. Improvement of electron mobility in La:BaSnO{sub 3} thin films by insertion of an atomically flat insulating (Sr,Ba)SnO{sub 3} buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiogai, Junichi, E-mail: junichi.shiogai@imr.tohoku.ac.jp; Nishihara, Kazuki; Sato, Kazuhisa

    One perovskite oxide, ASnO{sub 3} (A = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO{sub 3} substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO{sub 3} / (Sr,Ba)SnO{sub 3} for buffering this large lattice mismatch between La:BaSnO{sub 3} and SrTiO{sub 3} substrate. The insertion of 200-nm-thick BaSnO{sub 3} on (Sr,Ba)SnO{sub 3} bilayer buffer structures reduces the number of dislocationsmore » and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO{sub 3} buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO{sub 3} shows that the highest obtained value of mobility is 78 cm{sup 2}V{sup −1}s{sup −1} because of its fewer dislocations. High electron mobility films based on perovskite BaSnO{sub 3} can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.« less

  1. Engineering the Mechanical Properties of Ultrabarrier Films Grown by Atomic Layer Deposition for the Encapsulation of Printed Electronics

    DOE PAGES

    Bulusu, Anuradha; Singh, Ankit K.; Wang, Cheng-Yin; ...

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion (CTE) mismatch, elastic mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition.more » We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50{degree sign}C/85% RH. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.« less

  2. The substitution of nickel for cobalt in hot isostatically pressed powder metallurgy UDIMET 700 alloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Nickel was substituted in various proportions for cobalt in a series of five hot-isostatically-pressed powder metallurgy alloys based on the UDIMET 700 composition. These alloys were given 5-step heat treatments appropriate for use in turbine engine disks. The resultant microstructures displayed three distinct sizes of gamma-prime particles in a gamma matrix. The higher cobalt-content alloys contained larger amounts of the finest gamma-prime particles, and had the lowest gamma-gamma-prime lattice mismatch. While all alloys had approximately the same tensile properties at 25 and 650 gamma C, the rupture lives at 650 and 760 C peaked in the alloys with cobalt contents between 12.7 and 4.3 pct. Minimum creep rates increased as cobalt contents were lowered, suggesting their correlation with the gamma-prime particle size distribution and the gamma-gamma-prime mismatch. It was also found that, on overaging at temperatures higher than suitable for turbine disk use, the high cobalt-content alloys were prone to sigma phase formation.

  3. Effect of crystal structure on strontium titanate thin films and their dielectric properties

    NASA Astrophysics Data System (ADS)

    Kampangkeaw, Satreerat

    Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible causes that make dielectric behavior in STO thin films different from the bulk. We characterized such film structures as lattice parameters, out-of-plane grain size, in-plane grain size, thickness, roughness, strains, and defects using ellipsometry, atomic force microscopy, and a high-resolution X-ray diffractometry. In plane grain size and percentage of defects were found to play a major role on the dielectric performance of the films.

  4. The transition to modernity and chronic disease: mismatch and natural selection.

    PubMed

    Corbett, Stephen; Courtiol, Alexandre; Lummaa, Virpi; Moorad, Jacob; Stearns, Stephen

    2018-05-09

    The Industrial Revolution and the accompanying nutritional, epidemiological and demographic transitions have profoundly changed human ecology and biology, leading to major shifts in life history traits, which include age and size at maturity, age-specific fertility and lifespan. Mismatch between past adaptations and the current environment means that gene variants linked to higher fitness in the past may now, through antagonistic pleiotropic effects, predispose post-transition populations to non-communicable diseases, such as Alzheimer disease, cancer and coronary artery disease. Increasing evidence suggests that the transition to modernity has also altered the direction and intensity of natural selection acting on many traits, with important implications for public and global health.

  5. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.

    PubMed

    Zhang, W B; Liu, J; Lu, S H; Zhang, H; Wang, H; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-08-04

    The size effect on atomic structure of a Cu 64 Zr 36 amorphous system, including zero-dimensional small-size amorphous particles (SSAPs) and two-dimensional small-size amorphous films (SSAFs) together with bulk sample was investigated by molecular dynamics simulations. We revealed that sample size strongly affects local atomic structure in both Cu 64 Zr 36 SSAPs and SSAFs, which are composed of core and shell (surface) components. Compared with core component, the shell component of SSAPs has lower average coordination number and average bond length, higher degree of ordering, and lower packing density due to the segregation of Cu atoms on the shell of Cu 64 Zr 36 SSAPs. These atomic structure differences in SSAPs with various sizes result in different glass transition temperatures, in which the glass transition temperature for the shell component is found to be 577 K, which is much lower than 910 K for the core component. We further extended the size effect on the structure and glasses transition temperature to Cu 64 Zr 36 SSAFs, and revealed that the T g decreases when SSAFs becomes thinner due to the following factors: different dynamic motion (mean square displacement), different density of core and surface and Cu segregation on the surface of SSAFs. The obtained results here are different from the results for the size effect on atomic structure of nanometer-sized crystalline metallic alloys.

  6. HLA Matching at the Eplet Level Protects Against Chronic Lung Allograft Dysfunction.

    PubMed

    Walton, D C; Hiho, S J; Cantwell, L S; Diviney, M B; Wright, S T; Snell, G I; Paraskeva, M A; Westall, G P

    2016-09-01

    Donor selection in lung transplantation (LTx) is historically based upon clinical urgency, ABO compatibility, and donor size. HLA matching is not routinely considered; however, the presence or later development of anti-HLA antibodies is associated with poorer outcomes, particularly chronic lung allograft dysfunction (CLAD). Using eplet mismatches, we aimed to determine whether donor/recipient HLA incompatibility was a significant predictor of CLAD. One hundred seventy-five LTx undertaken at the Alfred Hospital between 2008 and 2012 met criteria. Post-LTx monitoring was continued for at least 12 months, or until patient death. HLA typing was performed by sequence-based typing and Luminex sequence-specific oligonucleotide. Using HLAMatchmaker, eplet mismatches between each donor/recipient pairing were analyzed and correlated against incidences of CLAD. HLA-DRB1/3/4/5+DQA/B eplet mismatch was a significant predictor of CLAD (hazard ratio [HR] 3.77, 95% confidence interval [CI]: 1.71-8.29 p < 0.001). When bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS) were analyzed independently, HLA-DRB1/3/4/5 + DQA/B eplet mismatch was shown to significantly predict RAS (HR 8.3, 95% CI: 2.46-27.97 p < 0.001) but not BOS (HR 1.92, 95% CI: 0.64-5.72, p = 0.237). HLA-A/B eplet mismatch was shown not to be a significant predictor when analyzed independently but did provide additional stratification of results. This study illustrates the importance of epitope immunogenicity in defining donor-recipient immune compatibility in LTx. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Self-interference of split HOLZ line (SIS-HOLZ) for z-dependent atomic displacement measurement: Theoretical discussion.

    PubMed

    Norouzpour, Mana; Rakhsha, Ramtin; Herring, Rodney

    2017-06-01

    A characteristic of the majority of semiconductors is the presence of lattice strain varying with the nanometer scale. Strain originates from the lattice mismatch between layers of different composition deposited during epitaxial growth. Strain can increase the mobility of the charge carriers by the band gap reduction. So, measuring atomic displacement inside crystals is an important field of interest in semiconductor industry. Among all available transmission electron microscopy techniques offering nano-scale resolution measurements, convergent beam electron diffraction (CBED) patterns show the highest sensitivity to the atomic displacement. Higher Order Laue Zone (HOLZ) lines split by small non-uniform variations of lattice constant allowing to measure the atomic displacement through the crystal. However, it could only reveal the atomic displacement in two dimensions, i.e., within the x-y plane of the thin film of TEM specimen. The z-axis atomic displacement which is along the path of the electron beam has been missing. This information can be obtained by recovering the phase information across the split HOLZ line using the self-interference of the split HOLZ line (SIS-HOLZ). In this work, we report the analytical approach used to attain the phase profile across the split HOLZ line. The phase profile is studied for three different atomic displacement fields in the Si substrate at 80nm away from its interface with Si/Si 0.8 Ge 0.2 superlattices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An Estimation of the Number and Size of Atoms in a Printed Period

    ERIC Educational Resources Information Center

    Schaefer, Beth; Collett, Edward; Tabor-Morris, Anne; Croman, Joseph

    2011-01-01

    Elementary school students learn that atoms are very, very small. Students are also taught that atoms (and molecules) are the fundamental constituents of the material world. Numerical values of their size are often given, but, nevertheless, it is difficult to imagine their size relative to one's everyday surroundings. In order for students to…

  9. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    PubMed Central

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  10. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  11. Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando x-ray spectroscopy and total scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petkov, Valeri; Maswadeh, Yazan; Zhao, Yinguang

    We introduce an experimental approach for structural characterization of catalysts for fuel cells combining synchrotron x-ray spectroscopy and total scattering. The approach allows probing catalysts inside operating fuel cells with atomic-level precision (~ 0.02 Å) and element specificity (~ 2–3 at%) in both time (~ 1 min) and space (~ μm) resolved manner. The approach is demonstrated on exemplary Pd-Sn and Pt-Ni-Cu nanoalloy catalysts for the oxygen reduction reaction (ORR) deposited on the cathode of an operating proton exchange membrane fuel cell. In operando x-ray data show that under operating conditions, the catalyst particles can undergo specific structural changes, rangingmore » from sub-Å atomic fluctuations and sharp nanophase transitions to a gradual strain relaxation and growth, which inflict significant losses in their ORR activity. Though triggered electrochemically, the changes are not driven solely by differences in the reduction potential and surface energy of the metallic species constituting the nanoalloys but also by the formation energy of competing nanophases, mismatch between the size of individual atomic species and their ability to interdiffuse fast in search of energetically favorable configurations. Given their complexity, the changes are difficult to predict and so the resulting ORR losses remain difficult to limit. We show that in operando knowledge of the structural evolution of nanoalloy catalysts helps create strategies for improving their activity and stability. In particular, we show that shaping Pd-Sn nanoalloys rich in Pd as cubes reduces the interdiffusion of atoms at their surface and so makes them better catalysts for ORR in fuel cells in comparison to other Pd-Sn nanoalloys. In addition, we demonstrate that the approach introduced here can provide knowledge of other major factors affecting the performance of fuel cells such as operating temperature and the overall catalyst utilization, in particular the evolution of elemental and mass distribution of catalyst particles over the cells’ cathode. Last but not least, we discuss how in operando x-ray spectroscopy and total x-ray scattering can bridge the knowledge gap between the widely used in situ SAXS, EXAFS and monocrystal surface XRD techniques for structural characterization of nanoalloy catalysts explored for energy related applications.« less

  12. Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando x-ray spectroscopy and total scattering

    DOE PAGES

    Petkov, Valeri; Maswadeh, Yazan; Zhao, Yinguang; ...

    2018-04-18

    We introduce an experimental approach for structural characterization of catalysts for fuel cells combining synchrotron x-ray spectroscopy and total scattering. The approach allows probing catalysts inside operating fuel cells with atomic-level precision (~ 0.02 Å) and element specificity (~ 2–3 at%) in both time (~ 1 min) and space (~ μm) resolved manner. The approach is demonstrated on exemplary Pd-Sn and Pt-Ni-Cu nanoalloy catalysts for the oxygen reduction reaction (ORR) deposited on the cathode of an operating proton exchange membrane fuel cell. In operando x-ray data show that under operating conditions, the catalyst particles can undergo specific structural changes, rangingmore » from sub-Å atomic fluctuations and sharp nanophase transitions to a gradual strain relaxation and growth, which inflict significant losses in their ORR activity. Though triggered electrochemically, the changes are not driven solely by differences in the reduction potential and surface energy of the metallic species constituting the nanoalloys but also by the formation energy of competing nanophases, mismatch between the size of individual atomic species and their ability to interdiffuse fast in search of energetically favorable configurations. Given their complexity, the changes are difficult to predict and so the resulting ORR losses remain difficult to limit. We show that in operando knowledge of the structural evolution of nanoalloy catalysts helps create strategies for improving their activity and stability. In particular, we show that shaping Pd-Sn nanoalloys rich in Pd as cubes reduces the interdiffusion of atoms at their surface and so makes them better catalysts for ORR in fuel cells in comparison to other Pd-Sn nanoalloys. In addition, we demonstrate that the approach introduced here can provide knowledge of other major factors affecting the performance of fuel cells such as operating temperature and the overall catalyst utilization, in particular the evolution of elemental and mass distribution of catalyst particles over the cells’ cathode. Last but not least, we discuss how in operando x-ray spectroscopy and total x-ray scattering can bridge the knowledge gap between the widely used in situ SAXS, EXAFS and monocrystal surface XRD techniques for structural characterization of nanoalloy catalysts explored for energy related applications.« less

  13. Thermoelectricity in atom-sized junctions at room temperatures

    PubMed Central

    Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru

    2013-01-01

    Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238

  14. Adiabatic passage in photon-echo quantum memories

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2013-11-01

    Photon-echo-based quantum memories use inhomogeneously broadened, optically thick ensembles of absorbers to store a weak optical signal and employ various protocols to rephase the atomic coherences for information retrieval. We study the application of two consecutive, frequency-chirped control pulses for coherence rephasing in an ensemble with a “natural” inhomogeneous broadening. Although propagation effects distort the two control pulses differently, chirped pulses that drive adiabatic passage can rephase atomic coherences in an optically thick storage medium. Combined with spatial phase-mismatching techniques to prevent primary echo emission, coherences can be rephased around the ground state to achieve secondary echo emission with close to unit efficiency. Potential advantages over similar schemes working with π pulses include greater potential signal fidelity, reduced noise due to spontaneous emission, and better capability for the storage of multiple memory channels.

  15. Surface optical vortices

    NASA Astrophysics Data System (ADS)

    Lembessis, V. E.; Babiker, M.; Andrews, D. L.

    2009-01-01

    It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners.

  16. Structural Studies of the Initial Stages of Fluoride Epitaxy on Silicon and GERMANIUM(111)

    NASA Astrophysics Data System (ADS)

    Denlinger, Jonathan David

    The epitaxial growth of ionic insulators on semiconductor substrates is of interest due to fundamental issues of interface bonding and structure as well as to potential technological applications. The initial stages of Group IIa fluoride insulator growth on (111) Si and Ge substrates by molecular beam epitaxy are studied with the in situ combination of X-ray Photoelectron Spectroscopy (XPS) and Diffraction (XPD). While XPS probes the electronic structure, XPD reveals atomic structure. In addition, low energy electron diffraction (LEED) is used to probe surface order and a separate study using X-ray standing wave (XSW) fluorescence reveals interface cation bonding sites. Following the formation of a chemically-reacted interface layer in CaF_2 epitaxy on Si(111), the morphology of the subsequent bulk layers is found to be dependent on substrate temperature and incident flux rate. At temperatures >=600 ^circC a transition from three -dimensional island formation at low flux to laminar growth at higher flux is observed with bulk- and interface-resolved XPD. At lower substrate temperatures, laminar growth is observed at all fluxes, but with different bulk nucleation behavior due to changes in the stoichiometry of the interface layer. This new observation of kinetic effects on the initial nucleation in CaF_2 epitaxy has important ramifications for the formation of thicker heterostructures for scientific or device applications. XPS and XPD are also used to identify for the first time, surface core-level species of Ca and F, and a secondary interface-shifted F Auger component arising from a second-layer site directly above interface-layer Ca atoms. The effects of lattice mismatch (from -3% to 8%) are investigated with various growths of Ca_{rm x}Sr _{rm 1-x}F_2 on Si and Ge (111) substrates. Triangulation of (111) and (220) XSW indicates a predominance of 3-fold hollow Sr bonding sites coexisting with 4-fold top sites for monolayers of SrF_2 on Si. XSW and LEED reveal a lateral discommensuration of the overlayer for lattice mismatches of >5% relative to the substrate. XPD also reveals a transition from single - to mixed-domains of overlayer crystallographic orientation for mismatches >=3.5%.

  17. First-Principles Study of Thermodynamic and Magnetic Properties of Alloys

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Ivan

    The standard theoretical framework for predicting phase diagrams and other thermodynamic properties of alloys requires an adequate representation of the formation enthalpy. An important part of the formation enthalpy in size-mismatched alloys comes from atomic relaxations. The harmonic Kanzaki-Krivoglaz-Khachaturyan model of strain-induced interaction is generalized to concentrated size-mismatched alloys and adapted to first-principles calculations. The configuration dependence of both Kanzaki forces and force constants is represented by real-space cluster expansions that can be constructed based on the calculated forces. Developed configuration-dependent lattice deformation model is implemented for the fcc lattice and applied to Cu1-x Aux and Fe1-x Ptx alloys for concentrations x = 0.25, 0.5, and 0.75. The model is further adapted to concentration wave analysis and Monte Carlo. Good agreement with experiment is found for all systems except CuAu3 and FePt3. The structural and ordering energetics are studied in Au-Fe alloys by combining DFT calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and CLDM. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L10 AuFe, L12 Au3Fe, and L1 2 AuFe3 structures are unstable in DFT. Effects of magnetism on the chemical ordering are also discussed. Magnetocrystalline anisotropy is one of the key properties of a magnetic material. Understanding of its temperature and concentration dependence is a challenging theoretical problem with implications for the design of better materials for permanent magnets and other applications. The origins of the anomalous temperature dependence of magnetocrystalline anisotropy in (Fe 1-xCox)2B alloys are elucidated using first-principles calculations within the disordered local moment model. Excellent agreement with experimental data is obtained. Electronic structure calculations are used to examine the magnetic properties of Fe2P-based alloys and the mechanisms through which the Curie temperature and magnetocrystalline anisotropy can be optimized for specific applications. It is found that at elevated temperatures the magnetic interaction in pure Fe2P develops a pronounced two-dimensional character. Co-alloying of Fe2P with Co (or Ni) and Si is suggested as a strategy for maximizing the magnetocrystalline anisotropy above room temperature.

  18. Analysis of the Alternative Conceptions of Preservice Teachers and High School Students Concerning Atomic Size

    ERIC Educational Resources Information Center

    Eymur, Guluzar; Çetin, Pinar; Geban, Ömer

    2013-01-01

    The purpose of this study was to analyze and compare the alternative conceptions of high school students and preservice teachers on the concept of atomic size. The Atomic Size Diagnostic Instrument was developed; it is composed of eight, two-tier multiple-choice items. The results of the study showed that as a whole 56.2% of preservice teachers…

  19. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics.

    PubMed

    Berns, Veronica M; Engelkemier, Joshua; Guo, Yiming; Kilduff, Brandon J; Fredrickson, Daniel C

    2014-08-12

    The notion of atomic size poses an important challenge to chemical theory: empirical evidence has long established that atoms have spatial requirements, which are summarized in tables of covalent, ionic, metallic, and van der Waals radii. Considerations based on these radii play a central role in the design and interpretation of experiments, but few methods are available to directly support arguments based on atomic size using electronic structure methods. Recently, we described an approach to elucidating atomic size effects using theoretical calculations: the DFT-Chemical Pressure analysis, which visualizes the local pressures arising in crystal structures from the interactions of atomic size and electronic effects. Using this approach, a variety of structural phenomena in intermetallic phases have already been understood in terms that provide guidance to new synthetic experiments. However, the applicability of the DFT-CP method to the broad range of the structures encountered in the solid state is limited by two issues: (1) the difficulty of interpreting the intense pressure features that appear in atomic core regions and (2) the need to divide space among pairs of interacting atoms in a meaningful way. In this article, we describe general solutions to these issues. In addressing the first issue, we explore the CP analysis of a test case in which no core pressures would be expected to arise: isolated atoms in large boxes. Our calculations reveal that intense core pressures do indeed arise in these virtually pressure-less model systems and allow us to trace the issue to the shifts in the voxel positions relative to atomic centers upon expanding and contracting the unit cell. A compensatory grid unwarping procedure is introduced to remedy this artifact. The second issue revolves around the difficulty of interpreting the pressure map in terms of interatomic interactions in a way that respects the size differences of the atoms and avoids artificial geometrical constraints. In approaching this challenge, we have developed a scheme for allocating the grid pressures to contacts inspired by the Hirshfeld charge analysis. Here, each voxel is allocated to the contact between the two atoms whose free atom electron densities show the largest values at that position. In this way, the differing sizes of atoms are naturally included in the division of space without resorting to empirical radii. The use of the improved DFT-CP method is illustrated through analyses of the applicability of radius ratio arguments to Laves phase structures and the structural preferences of AB5 intermetallics between the CaCu5 and AuBe5 structure types.

  20. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1992-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10.times. critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  1. Method for reducing or eliminating interface defects in mismatched semiconductor eiplayers

    DOEpatents

    Fitzgerald, Jr., Eugene A.; Ast, Dieter G.

    1991-01-01

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10x critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In.sub.0.05 Ga.sub.0.95 As/(001)GaAs interface was controlled by fabricating 2-.mu.m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500.ANG. of In.sub.0.05 Ga.sub.0.95 As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-.mu.m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 .mu.m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density.

  2. Method for reducing or eliminating interface defects in mismatched semiconductor epilayers

    DOEpatents

    Fitzgerald, E.A. Jr.; Ast, D.G.

    1992-10-20

    The present invention and process relates to crystal lattice mismatched semiconductor composite having a first semiconductor layer and a second semiconductor growth layer deposited thereon to form an interface wherein the growth layer can be deposited at thicknesses in excess of the critical thickness, even up to about 10[times] critical thickness. Such composite has an interface which is substantially free of interface defects. For example, the size of the growth areas in a mismatched In[sub 0.05]Ga[sub 0.95]As/(001)GaAs interface was controlled by fabricating 2-[mu]m high pillars of various lateral geometries and lateral dimensions before the epitaxial deposition of 3500 [angstrom] of In[sub 0.05]Ga[sub 0.95]As. The linear dislocation density at the interface was reduced from >5000 dislocations/cm to about zero for 25-[mu]m lateral dimensions and to less than 800 dislocations/cm for lateral dimensions as large as 100 [mu]m. The fabricated pillars control the lateral dimensions of the growth layer and block the glide of misfit dislocations with the resultant decrease in dislocation density. 7 figs.

  3. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  4. Nucleation, growth, and strain relaxation of lattice-mismatched 3-5 semiconductor epitaxial layers

    NASA Technical Reports Server (NTRS)

    Welser, R. E.; Guido, L. J.

    1994-01-01

    We have investigated the early stages of evolution of highly strained 2-D InAs layers and 3-D InAs islands grown by metal-organic chemical vapor deposition (MOCVD) on (100) and (111)B GaAs substrates. The InAs epilayer/GaAs substrate combination has been chosen because the lattice-mismatch is severe (approximately 7.2 percent), yet these materials are otherwise very similar. By examining InAs-on-GaAs composites instead of the more common In(x)Ga(1-x)As alloy we remove an additional degree of freedom (x) and thereby simplify data interpretation. A matrix of experiments is described in which the MOCVD growth parameters - susceptor temperature, Thin flux, and AsH3 flux - have been varied over a wide range. Scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and electron microprobe analysis have been employed to observe the thin film surface morphology. In the case of 3-D growth, we have extracted activation energies and power-dependent exponents that characterize the nucleation process. As a consequence, optimized growth conditions have been identified for depositing approximately 250 A thick (100) and (111)B oriented InAs layers with relatively smooth surfaces. Together with preliminary data on the strain relaxation of these layers, the above results on the evolution of thin InAs films indicate that the (111)B orientation is particularly promising for yielding lattice-mismatched films that are fully relaxed with only misfit dislocations at the epilayer/substrate interface.

  5. Structural variations of single and tandem mismatches in RNA duplexes: a joint MD simulation and crystal structure database analysis.

    PubMed

    Halder, Sukanya; Bhattacharyya, Dhananjay

    2012-10-04

    Internal loops within RNA duplex regions are formed by single or tandem basepairing mismatches with flanking canonical Watson-Crick basepairs on both sides. They are the most common motif observed in RNA secondary structures and play integral functional and structural roles. In this report, we have studied the structural features of 1 × 1, 2 × 2, and 3 × 3 internal loops using all-atom molecular dynamics (MD) simulation technique with explicit solvent model. As MD simulation is intricately dependent on the choice of force-field and these are often rather approximate, we have used both the most popular force-fields for nucleic acids-CHARMM27 and AMBER94-for a comparative analysis. We find that tandem noncanonical basepairs forming 2 × 2 and 3 × 3 internal loops are considerably more stable than the single mismatches forming 1 × 1 internal loops, irrespective of the force field. We have also analyzed crystal structure database to study the conservation of these helical fragments in the corresponding sets of RNA structures. We observe that the nature of stability in MD simulations mimic their fluctuating natures in crystal data sets also, probably indicating reliable natures of both the force fields to reproduce experimental results. We also notice significant structural changes in the wobble G:U basepairs present in these double helical stretches, leading to a biphasic stability for these wobble pairs to release the deformational strains introduced by internal loops within duplex regions.

  6. Emerging magnetic order in platinum atomic contacts and chains

    PubMed Central

    Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten

    2015-01-01

    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size. PMID:25649440

  7. Emerging magnetic order in platinum atomic contacts and chains

    NASA Astrophysics Data System (ADS)

    Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten

    2015-02-01

    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size.

  8. Emerging magnetic order in platinum atomic contacts and chains.

    PubMed

    Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten

    2015-02-04

    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size.

  9. Understanding and Controlling the Aggregative Growth of Platinum Nanoparticles in Atomic Layer Deposition: An Avenue to Size Selection

    PubMed Central

    2017-01-01

    We present an atomistic understanding of the evolution of the size distribution with temperature and number of cycles in atomic layer deposition (ALD) of Pt nanoparticles (NPs). Atomistic modeling of our experiments teaches us that the NPs grow mostly via NP diffusion and coalescence rather than through single-atom processes such as precursor chemisorption, atom attachment, and Ostwald ripening. In particular, our analysis shows that the NP aggregation takes place during the oxygen half-reaction and that the NP mobility exhibits a size- and temperature-dependent scaling. Finally, we show that contrary to what has been widely reported, in general, one cannot simply control the NP size by the number of cycles alone. Instead, while the amount of Pt deposited can be precisely controlled over a wide range of temperatures, ALD-like precision over the NP size requires low deposition temperatures (e.g., T < 100 °C) when growth is dominated by atom attachment. PMID:28178779

  10. Studies of local polarization in complex oxide multiferroic interfaces by aberration corrected STEM-EELS

    NASA Astrophysics Data System (ADS)

    Sanchez-Santolino, Gabriel; Tornos, Javier; Leon, Carlos; Varela, María; Pennycook, Stephen J.; Santamaría, Jacobo

    2014-03-01

    Interfaces in complex oxide heterostructures are responsible for exciting new physics, which is directly related to the chemical, structural and electronic properties at the atomic scale. Here, we study artificial multiferroic heterostructures combining ferromagnetic La0.7Sr0.3MnO3 with ferroelectric BaTiO3 by atomic resolution aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy. Measurements of the atomic positions in the STEM images permit calculating relative displacements and hence, local polarization. Polarization gradients can be observed in annular bright field images which seem to be correlated to strain gradients associated with the large lattice mismatch between barriers and electrodes. Spectroscopic measurements suggest the presence of O vacancies through the ferroelectric layers. Understanding the effect of the charge carriers associated with the oxygen vacancies may be the key to control the dynamics of domain walls in these heterostructures. Acknowledgements ORNL: U.S. DOE-BES, Materials Sciences and Engineering Division. UCM: ERC Starting Investigator Award, Spanish MICINN MAT2011-27470-C02 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), CAM S2009/MAT-1756 (Phama).

  11. Fabrication of monolayer MoS2/rGO hybrids with excellent tribological performances through a surfactant-assisted hydrothermal route

    NASA Astrophysics Data System (ADS)

    Chen, Jinsuo; Xia, Yunfei; Yang, Jin; Chen, Beibei

    2018-06-01

    The extremely low friction between incommensurate two-dimensional (2D) atomic layers has recently attracted a great interest. Here, we demonstrated a promising surfactant-assisted strategy for the synthesis of MoS2/reduced graphene oxide (MoS2/rGO) hybrid materials with monolayer MoS2 and rGO, which exhibited excellent tribological metrics with a friction coefficient of ˜ 0.09 and a wear rate of ˜ 2.08 × 10-5 mm3/Nm in the ethanol dispersion. The incommensurate 2D atomic layer interface formed due to intrinsic lattice mismatch between MoS2 and graphene was thought to be responsible for the excellent lubricating performances. In addition to the benefits of unique hybrid structure, MoS2/rGO hybrids could also adsorb on metal surfaces and screen the metal-metal interaction to passivate the metal surfaces with a consequent reduction of corrosion wear during sliding. This work could pave a new pathway to design novel materials for pursuing excellent tribological properties by hybridizing different 2D atomic-layered materials.

  12. Sensitivity Limits of Rydberg Atom-Based Radio Frequency Electric Field Sensing

    NASA Astrophysics Data System (ADS)

    Jahangiri, Akbar J.; Kumar, Santosh; Kuebler, Harald; Fan, Haoquan; Shaffer, James P.

    2017-04-01

    We present progress on Rydberg atom-based RF electric field sensing using Rydberg state electromagnetically induced transparency (EIT) in room temperature atomic vapor cells. In recent experiments on homodyne detection with a Mach-Zehnder interferometer and frequency modulation spectroscopy with active control of residual amplitude modulation we determined that photon shot noise on the probe laser detector limits the sensitivity. Another factor that limits the accuracy is residual Doppler broadening due to the wave-vector mismatch between the coupling and the probe lasers. The sensor as limited by project noise can be orders of magnitude better. A multi-photon scheme is presented that can eliminate the residual Doppler effect by matching the wave-vectors of three lasers and reduce the photon shot noise limit by correctly choosing the Rabi frequencies of the first two steps of the EIT scheme. Using density matrix calculations, we predict that the three-photon approach can improve the detection sensitivity to below 200 nV cm-1 Hz- 1 / 2 and expand the Autler-Townes regime which improves the accuracy. This work is supported by DARPA and the NRO.

  13. Study of the influence of strained superlattices introduced into a metamorphic buffer on the electrophysical properties and the atomic structure of InAlAs/InGaAs MHEMT heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s_s_e_r_p@mail.ru; Vasil'evskii, I. S.

    The results of studying the influence of strained superlattices introduced into a metamorphic buffer on the electrophysical properties and atomic crystal structure of In{sub 0.70}Al{sub 0.30}As/In{sub 0.76}Ga{sub 0.24}As/In{sub 0.70}Al{sub 0.30}As metamorphic high-electron-mobility transistor (MHEMT) nanoheterostructures on GaAs substrates are presented. Two types of MHEMT structures are grown by molecular beam epitaxy, namely, one with a linear increase in x in the In{sub x}Al{sub 1-x}As metamorphic buffer, and the second with two mismatched superlattices introduced inside the metamorphic buffer. The electrophysical and structural parameters of the grown samples are studied by the van der Pauw method, transmission electron microscopy (including scanningmore » and high-resolution microscopy), atomic-force microscopy, and energy dispersive X-ray analysis. It is revealed that the introduction of superlattices into a metamorphic buffer substantially improves the electrophysical and structural characteristics of MHEMT structures.« less

  14. Design and Production of Damage-Resistant Tray Pack Containers

    DTIC Science & Technology

    1985-07-01

    Types and causes of shipping container damage The most important defect of the current shipping con- tainer design is its inability to sustain crushing...loads. This defect makes it impossible to stack unit loads. SThe first defect in the current design is the mismatch in the sizes of the parts of the...were stacked four high, they would topple. A second design defect is the concept of the pads being sized to the inside dimensions of the liner’so that

  15. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  16. Molecular dynamics simulations of Ago silencing complexes reveal a large repertoire of admissible ‘seed-less’ targets

    PubMed Central

    Xia, Zhen; Clark, Peter; Huynh, Tien; Loher, Phillipe; Zhao, Yue; Chen, Huang-Wen; Rigoutsos, Isidore; Zhou, Ruhong

    2012-01-01

    To better understand the recognition mechanism of RISC and the repertoire of guide-target interactions we introduced G:U wobbles and mismatches at various positions of the microRNA (miRNA) ‘seed’ region and performed all-atom molecular dynamics simulations of the resulting Ago-miRNA:mRNA ternary complexes. Our simulations reveal that many modifications, including combinations of multiple G:U wobbles and mismatches in the seed region, are admissible and result in only minor structural fluctuations that do not affect overall complex stability. These results are further supported by analyses of HITS-CLIP data. Lastly, introduction of disruptive mutations revealed a bending motion of the PAZ domain along the L1/L2 ‘hinge’ and a subsequent opening of the nucleic-acid-binding channel. Our findings suggest that the spectrum of a miRNA's admissible targets is different from what is currently anticipated by the canonical seed-model. Moreover, they provide a likely explanation for the previously reported sequence-dependent regulation of unintended targeting by siRNAs. PMID:22888400

  17. Trends in the thermodynamic stability of ultrathin supported oxide films

    DOE PAGES

    Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...

    2016-05-05

    The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less

  18. Vacuum-induced coherence in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  19. Testing of commonly used mixing and sampling procedures to evaluate fertilizer blends prepared with matched and mismatched particle sizes.

    PubMed

    Hall, William L; Ramsey, Charles; Falls, J Harold

    2014-01-01

    Bulk blending of dry fertilizers is a common practice in the United States and around the world. This practice involves the mixing (either physically or volumetrically) of concentrated, high analysis raw materials. Blending is followed by bagging (for small volume application such as lawn and garden products), loading into truck transports, and spreading. The great majority of bulk blended products are not bagged but handled in bulk and transferred from the blender to a holding hopper. The product is then transferred to a transport vehicle, which may, or may not, also be a spreader. If the primary transport vehicle is not a spreader, then there is another transfer at the user site to a spreader for application. Segregation of materials that are mismatched due to size, density, or shape is an issue when attempting to effectively sample or evenly spread bulk blended products. This study, prepared in coordination with and supported by the Florida Department of Agriculture and Consumer Services and the Florida Fertilizer and Agrochemical Association, looks at the impact of varying particle size as it relates to blending, sampling, and application of bulk blends. The study addresses blends containing high ratios of N-P-K materials and varying (often small) quantities of the micronutrient Zn.

  20. Catching Audiovisual Interactions With a First-Person Fisherman Video Game.

    PubMed

    Sun, Yile; Hickey, Timothy J; Shinn-Cunningham, Barbara; Sekuler, Robert

    2017-07-01

    The human brain is excellent at integrating information from different sources across multiple sensory modalities. To examine one particularly important form of multisensory interaction, we manipulated the temporal correlation between visual and auditory stimuli in a first-person fisherman video game. Subjects saw rapidly swimming fish whose size oscillated, either at 6 or 8 Hz. Subjects categorized each fish according to its rate of size oscillation, while trying to ignore a concurrent broadband sound seemingly emitted by the fish. In three experiments, categorization was faster and more accurate when the rate at which a fish oscillated in size matched the rate at which the accompanying, task-irrelevant sound was amplitude modulated. Control conditions showed that the difference between responses to matched and mismatched audiovisual signals reflected a performance gain in the matched condition, rather than a cost from the mismatched condition. The performance advantage with matched audiovisual signals was remarkably robust over changes in task demands between experiments. Performance with matched or unmatched audiovisual signals improved over successive trials at about the same rate, emblematic of perceptual learning in which visual oscillation rate becomes more discriminable with experience. Finally, analysis at the level of individual subjects' performance pointed to differences in the rates at which subjects can extract information from audiovisual stimuli.

  1. Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe{sub 2} heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Anyuan; Liu, Erfu; Long, Mingsheng

    2016-05-30

    We studied electrical transport properties including gate-tunable rectification inversion and polarity inversion, in atomically thin graphene/WSe{sub 2} heterojunctions. Such engrossing characteristics are attributed to the gate tunable mismatch of Fermi levels of graphene and WSe{sub 2}. Also, such atomically thin heterostructure shows excellent performances on photodetection. The responsivity of 66.2 mA W{sup −1} (without bias voltage) and 350 A W{sup −1} (with 1 V bias voltage) can be reached. What is more, the devices show great external quantum efficiency of 800%, high detectivity of 10{sup 13} cm Hz{sup 1/2}/W, and fast response time of 30 μs. Our study reveals that vertical stacking of 2D materials has great potentialmore » for multifunctional electronic and optoelectronic device applications in the future.« less

  2. Metalorganic chemical vapor deposition growth of InAs/GaSb type II superlattices with controllable AsxSb1-x interfaces

    PubMed Central

    2012-01-01

    InAs/GaSb type II superlattices were grown on (100) GaSb substrates by metalorganic chemical vapor deposition (MOCVD). A plane of mixed As and Sb atoms connecting the InAs and GaSb layers was introduced to compensate the tensile strain created by the InAs layer in the SL. Characterizations of the samples by atomic force microscopy and high-resolution X-ray diffraction demonstrate flat surface morphology and good crystalline quality. The lattice mismatch of approximately 0.18% between the SL and GaSb substrate is small compared to the MOCVD-grown supperlattice samples reported to date in the literature. Considerable optical absorption in 2- to 8-μm infrared region has been realized. PACS: 78.67.Pt; 81.15.Gh; 63.22.Np; 81.05.Ea PMID:22373387

  3. Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Nazir, S.; Singh, N.; Schwingenschlögl, U.

    2011-03-01

    The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.

  4. NANOELECTRONICS. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface.

    PubMed

    Li, Ming-Yang; Shi, Yumeng; Cheng, Chia-Chin; Lu, Li-Syuan; Lin, Yung-Chang; Tang, Hao-Lin; Tsai, Meng-Lin; Chu, Chih-Wei; Wei, Kung-Hwa; He, Jr-Hau; Chang, Wen-Hao; Suenaga, Kazu; Li, Lain-Jong

    2015-07-31

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface. Copyright © 2015, American Association for the Advancement of Science.

  5. Theoretical characterization on the size-dependent electron and hole trapping activity of chloride-passivated CdSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Cui, Yingqi; Cui, Xianhui; Zhang, Li; Xie, Yujuan; Yang, Mingli

    2018-04-01

    Ligand passivation is often used to suppress the surface trap states of semiconductor quantum dots (QDs) for their continuous photoluminescence output. The suppression process is related to the electrophilic/nucleophilic activity of surface atoms that varies with the structure and size of QD and the electron donating/accepting nature of ligand. Based on first-principles-based descriptors and cluster models, the electrophilic/nucleophilic activities of bare and chloride-coated CdSe clusters were studied to reveal the suppression mechanism of Cl-passivated QDs and compared to experimental observations. The surface atoms of bare clusters have higher activity than inner atoms and their activity decreases with cluster size. In the ligand-coated clusters, the Cd atom remains as the electrophilic site, while the nucleophilic site of Se atoms is replaced by Cl atoms. The activities of Cd and Cl atoms in the coated clusters are, however, remarkably weaker than those in bare clusters. Cluster size, dangling atoms, ligand coverage, electronegativity of ligand atoms, and solvent (water) were found to have considerable influence on the activity of surface atoms. The suppression of surface trap states in Cl-passivated QDs was attributed to the reduction of electrophilic/nucleophilic activity of Cd/Se/Cl atoms. Both saturation to under-coordinated surface atoms and proper selection for the electron donating/accepting strength of ligands are crucial for eliminating the charge carrier traps. Our calculations predicted a similar suppressing effect of chloride ligands with experiments and provided a simple but effective approach to assess the charge carrier trapping behaviors of semiconductor QDs.

  6. On the role of the grain size in the magnetic behavior of sintered permanent magnets

    NASA Astrophysics Data System (ADS)

    Efthimiadis, K. G.; Ntallis, N.

    2018-02-01

    In this work the finite elements method is used to simulate, by micromagnetic modeling, the magnetic behavior of sintered anisotropic magnets. Hysteresis loops were simulated for different grain sizes in an oriented multigrain sample. By keeping out other parameters that contribute to the magnetic microstructure, such as the sample size, the grain morphology and the grain boundaries mismatch, it has been found that the grain size affects the magnetic properties only if the grains are exchange-decoupled. In this case, as the grain size decreases, a decrease in the nucleation field of a reverse magnetic domain is observed and an increase in the coercive field due to the pinning of the magnetic domain walls at the grain boundaries.

  7. Manganese-calcium intermixing facilitates heteroepitaxial growth at the 10 1 ¯ 4 calcite-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.

    2017-10-01

    In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display amore » 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.« less

  8. Pattern size tolerance of reverse offset printing: a proximity deformation effect related to local PDMS slipping

    NASA Astrophysics Data System (ADS)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Koutake, Masayoshi; Ushijima, Hirobumi

    2017-10-01

    We investigated the shape integrity of silver nanoparticle ink patterns formed by reverse offset printing, focusing particularly on the proximity effect of neighbouring patterns due to the local deformation of a polydimethylsiloxane (PDMS) blanket during contact with a hard cliché. We performed printing tests using a cliché having circular patterns with smaller neighbouring circles located at various distances (2-20 µm), and the results revealed that as we decrease the thickness of PDMS and the inter-pattern gap distance, and as we increase the printing indentations, the shape integrity of the printed pattern was worsened. A complementary numerical simulation of PDMS deformations suggested that the pattern distortion during the contact with clichés was caused by the horizontal deformation of PDMS during the printing, which becomes a significant burden when the uplifted region of PDMS is closer to the gap distance of each pattern. Our analysis further indicates that during printing, there is slipping of the ink at the PDMS interface. In addition, we examined the effects of a synchronization mismatch in a roll-to-sheet printing on the pattern size tolerance. The magnitude of the size distortions was severely influenced not only by the mismatch ratio but also by the nip width. This result verifies the scraping of the ink accompanied by the slipping of the PDMS during the printing process, and thereby determines the size tolerance of printed patterns in reverse offset printing. Finally, we discuss the optimization of process parameters to ensure the size integrity of reverse offset printing.

  9. A Kidney Graft Survival Calculator that Accounts for Mismatches in Age, Sex, HLA, and Body Size.

    PubMed

    Ashby, Valarie B; Leichtman, Alan B; Rees, Michael A; Song, Peter X-K; Bray, Mathieu; Wang, Wen; Kalbfleisch, John D

    2017-07-07

    Outcomes for transplants from living unrelated donors are of particular interest in kidney paired donation (KPD) programs where exchanges can be arranged between incompatible donor-recipient pairs or chains created from nondirected/altruistic donors. Using Scientific Registry of Transplant Recipients data, we analyzed 232,705 recipients of kidney-alone transplants from 1998 to 2012. Graft failure rates were estimated using Cox models for recipients of kidney transplants from living unrelated, living related, and deceased donors. Models were adjusted for year of transplant and donor and recipient characteristics, with particular attention to mismatches in age, sex, human leukocyte antigens (HLA), body size, and weight. The dependence of graft failure on increasing donor age was less pronounced for living-donor than for deceased-donor transplants. Male donor-to-male recipient transplants had lower graft failure, particularly better than female to male (5%-13% lower risk). HLA mismatch was important in all donor types. Obesity of both the recipient (8%-18% higher risk) and donor (5%-11% higher risk) was associated with higher graft loss, as were donor-recipient weight ratios of <75%, compared with transplants where both parties were of similar weight (9%-12% higher risk). These models are used to create a calculator of estimated graft survival for living donors. This calculator provides useful information to donors, candidates, and physicians of estimated outcomes and potentially in allowing candidates to choose among several living donors. It may also help inform candidates with compatible donors on the advisability of joining a KPD program. Copyright © 2017 by the American Society of Nephrology.

  10. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  11. Improved Root Normal Size Distributions for Liquid Atomization

    DTIC Science & Technology

    2015-11-01

    Jackson, Primary Breakup of Round Aerated- Liquid Jets in Supersonic Crossflows, Atomization and Sprays, 16(6), 657-672, 2006 H. C. Simmons, The...Breakup in Liquid - Gas Mixing Layers, Atomization and Sprays, 1, 421-440, 1991 P.-K. Wu, L.-K. Tseng, and G. M. Faeth, Primary Breakup in Gas / Liquid ...Improved Root Normal Size Distributions for Liquid Atomization Distribution Statement A. Approved for public release; distribution is unlimited

  12. Building chemistry one atom at a time: An investigation of the effects of two curricula in students' understanding of covalent bonding and atomic size

    NASA Astrophysics Data System (ADS)

    Bull, Barbara Jeanne

    Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four-week long investigation into the identity of an inorganic salt during their laboratory class. Students who completed the activity exhibited an improvement in their explanation of the identity of their salt's cation. After completing the activity, another question was posed about the identity of their anion. Both groups saw a decrease in the percentage of students who included reasoning in their answer; however, the activity group maintained a significantly higher percentage of responses with a reasoning than the control group.

  13. Eversion Bile Duct Anastomosis: A Safe Alternative for Bile Duct Size Discrepancy in Deceased Donor Liver Transplantation.

    PubMed

    Leal-Leyte, Pilar; McKenna, Greg J; Ruiz, Richard M; Anthony, Tiffany L; Saracino, Giovanna; Giuliano, Testa; Klintmalm, Goran B; Kim, Peter Tw

    2018-04-10

    Introduction Bile duct size discrepancy in liver transplantation may increase the risk of biliary complications. The aim of this study was to evaluate the safety and outcomes of the eversion bile duct anastomosis technique in deceased donor liver transplantation (DDLT) with duct to duct anastomosis. Methods A total of 210 patients who received a DDLT with duct to duct anastomosis from 2012 to 2017 were divided into two groups: those who had eversion bile duct anastomosis (N=70) and standard bile duct anastomosis (N=140). Biliary complications rates were compared between the two groups. Results There was no difference in the cumulative incidence of biliary strictures (P=0.20) and leaks (P=0.17) between the two groups. The biliary complication rate in the eversion group was 14.3% and 11.4% in the standard anastomosis group. All the biliary complications in the eversion group were managed with endoscopic stenting. A severe size mismatch (≥3:1 ratio) was associated with a significantly higher incidence of biliary strictures (44.4%) compared to 2:1 ratio (8.2%), (P=0.002). Conclusion The use of the eversion technique is a safe alternative for bile duct discrepancy in deceased donor liver transplantation; however, severe bile duct size mismatch may be a risk factor for biliary strictures with such technique. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  14. Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method.

    PubMed

    Alam, Md Ashraful; Piao, Mei-Lan; Bang, Le Thanh; Kim, Nam

    2013-10-01

    Viewing-zone control of integral imaging (II) displays using a directional projection and elemental image (EI) resizing method is proposed. Directional projection of EIs with the same size of microlens pitch causes an EI mismatch at the EI plane. In this method, EIs are generated computationally using a newly introduced algorithm: the directional elemental image generation and resizing algorithm considering the directional projection geometry of each pixel as well as an EI resizing method to prevent the EI mismatch. Generated EIs are projected as a collimated projection beam with a predefined directional angle, either horizontally or vertically. The proposed II display system allows reconstruction of a 3D image within a predefined viewing zone that is determined by the directional projection angle.

  15. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.

  16. Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization

    PubMed Central

    Barba, Anna Angela; d'Amore, Matteo

    2013-01-01

    Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested. PMID:24501580

  17. Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth-Characterization and Electrocatalysis.

    PubMed

    Zhou, Min; Dick, Jeffrey E; Bard, Allen J

    2017-12-06

    We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.

  18. Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys

    DOE PAGES

    Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...

    2015-09-03

    High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less

  19. Twisted MoSe 2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE PAGES

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; ...

    2016-01-14

    Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  20. Twisted MoSe 2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan

    Unique twisted bilayers of MoSe 2 with multiple stacking orientations and interlayer couplings in the narrow range of twist angles, 60 ± 3°, are revealed by low-frequency Raman spectroscopy and theoretical analysis. The slight deviation from 60 allows the concomitant presence of patches featuring all three high-symmetry stacking configurations (2H or AA', AB', A'B) in one unique bilayer system. In this case, the periodic arrangement of the patches and their size strongly depend on the twist angle. Ab initio modeling predicts significant changes in frequencies and intensities of low-frequency modes versus stacking and twist angle. Experimentally, the variable stacking andmore » coupling across the interface is revealed by the appearance of two breathing modes corresponding to the mixture of the high-symmetry stacking configurations and unaligned regions of monolayers. Only one breathing mode is observed outside the narrow range of twist angles. This indicates a stacking transition to unaligned monolayers with mismatched atom registry without the in-plane restoring force required to generate a shear mode. As a result, the variable interlayer coupling and spacing in transition metal dichalcogenide bilayers revealed in this study may provide a new platform for optoelectronic applications of these materials.« less

  1. Spinodal decomposition regions of InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z alloys

    NASA Astrophysics Data System (ADS)

    Elyukhin, Vyacheslav A.

    2017-07-01

    Considerable interest in highly mismatched semiconductor alloys as materials for device applications has recently been shown. However, the spinodal instability can be a serious obstacle to their use. Here, the spinodal decomposition regions of dilute nitride InxGa1-xSbyAszN1-y-z, InxGa1-xSbyPzN1-y-z and InxGa1-xAsyPzN1-y-z quinary alloys lattice matched to III-V compounds are studied from 0 °C to 1000 °C. The alloys contain six types of chemical bonds corresponding to the constituent compounds, and rearrangement of atoms changes the bonds between them. Therefore, a size and location of the spinodal decomposition regions depend on the enthalpies of constituent compounds, internal strain energy, coherency strain energy and entropy. Among the considered alloys, InxGa1-xSbyAszN1-y-z lattice matched to InAs, InxGa1-xSbyPzN1-y-z lattice matched to GaP and InP and InxGa1-xAsyPzN1-y-z lattice matched to GaAs and InP are most suitable for device applications.

  2. Mechanical Properties of Nanoscopic Lipid Domains

    DOE PAGES

    Nickels, Jonathan D.; Cheng, Xiaolin; Mostofian, Barmak; ...

    2015-09-28

    We found that the lipid raft hypothesis presents insight into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. Thus, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approachesmore » with inelastic neutron scattering, we isolate the bending modulus of ~13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. Moreover, from additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.« less

  3. "A Game for All Shapes and Sizes": Safeguarding Children from Sporting Mismatches

    ERIC Educational Resources Information Center

    Greenfield, Steve

    2015-01-01

    Sport is an increasingly important area of society both inside and outside of the school environment although this has not always been the case. Greater interest in sports policy is also emerging at both a European and International level with the prospective of a "Rights" based approach developing. The safety of those playing sport is…

  4. Efficient thermal diode with ballistic spacer

    NASA Astrophysics Data System (ADS)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  5. Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization

    PubMed Central

    Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela

    Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250

  6. Atomizing apparatus for making polymer and metal powders and whiskers

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  7. LOX/Hydrogen Coaxial Injector Atomization Test Program

    NASA Technical Reports Server (NTRS)

    Zaller, M.

    1990-01-01

    Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.

  8. Evaluation of the Indonesian National Standard for elementary school furniture based on children's anthropometry.

    PubMed

    Yanto; Lu, Chih-Wei; Lu, Jun-Ming

    2017-07-01

    In Indonesia, National Standardization Agency of Indonesia issued the Indonesian National Standard SNI 12-1015-1989 and SNI 12-1016-1989 to define the type of furniture dimensions that should be used by children in the elementary school level. This study aims to examine whether the current national standards for elementary school furniture dimensions issued by National Standardization Agency of Indonesia match the up-to-date Indonesian children's anthropometry. Two types of school furniture, small type (Type I, for grade 1-3) and large type (Type II, for grade 4-6), were evaluated in terms of seat height, seat depth, seat width and backrest height of a chair as well as the height and underneath height of a desk. 1146 students aged between 6 and 12 years old participated in the study. Seven anthropometric measurements were taken including stature, sitting shoulder height, sitting elbow height, popliteal height, buttock-popliteal length, knee height and hip breadth. Based on the standard school furniture dimensions and students' body dimensions, numbers of matches and mismatches between them were computed. Results indicated a substantial degree of mismatch between children's anthropometry and the standard dimensions of school furniture. The standard seat height was not appropriate for students among different grades with the mismatch percentage ranging from 63.4% to 96.7% for Type I and 72.7% to 99.0% for Type II. For desk height, the standard dimensions were not appropriate for students among different grades with the mismatch percentage ranging from 32.3% to 88.9% for Type I and 67.7% to 99.0% for Type II. Apparently, the current standards are out of date and need to be updated. Four different sizes of school furniture were hence proposed to accommodate the variation in students' anthropometry from Grade 1 to Grade 6. The proposed standard dimensions (PrS) of school furniture cover a slightly broader range of age and present a higher cumulative fit than the current standard dimensions (CrS). In addition, a better strategy for sizing can be also developed to fit chairs and desks to a larger number of students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality.

    PubMed

    Ramezani-Dakhel, Hadi; Mirau, Peter A; Naik, Rajesh R; Knecht, Marc R; Heinz, Hendrik

    2013-04-21

    Surfactant-stabilized metal nanoparticles have shown promise as catalysts although specific surface features and their influence on catalytic performance have not been well understood. We quantify the thermodynamic stability, the facet composition of the surface, and distinct atom types that affect rates of atom leaching for a series of twenty near-spherical Pd nanoparticles of 1.8 to 3.1 nm size using computational models. Cohesive energies indicate higher stability of certain particles that feature an approximate 60/20/20 ratio of {111}, {100}, and {110} facets while less stable particles exhibit widely variable facet composition. Unique patterns of atom types on the surface cause apparent differences in binding energies and changes in reactivity. Estimates of the relative rate of atom leaching as a function of particle size were obtained by the summation of Boltzmann-weighted binding energies over all surface atoms. Computed leaching rates are in good qualitative correlation with the measured catalytic activity of peptide-stabilized Pd nanoparticles of the same shape and size in Stille coupling reactions. The agreement supports rate-controlling contributions by atom leaching in the presence of reactive substrates. The computational approach provides a pathway to estimate the catalytic activity of metal nanostructures of engineered shape and size, and possible further refinements are described.

  10. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.

    PubMed

    Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan

    2015-02-01

    To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.

  11. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics†

    PubMed Central

    Muluneh, Melaku

    2015-01-01

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm2 microfluidic chip that incorporated a commercial 565 × 1145 μm2 IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series. PMID:25284502

  12. Density dependence and phenological mismatch: consequences for growth and survival of sub-arctic nesting Canada Geese

    USGS Publications Warehouse

    Brook, Rodney W.; Leafloor, James O.; Douglas, David C.; Abraham, Kenneth F.

    2015-01-01

    The extent to which species are plastic in the timing of their reproductive events relative to phenology suggests how change might affect their demography. An ecological mismatch between the timing of hatch for avian species and the peak availability in quality and quantity of forage for rapidly growing offspring might ultimately affect recruitment to the breeding population unless individuals can adjust the timing of breeding to adapt to changing phenology. We evaluated effects of goose density, hatch timing relative to forage plant phenology, and weather indices on annual growth of pre-fledging Canada geese (Branta canadensis) from 1993-2010 at Akimiski Island, Nunavut. We found effects of both density and hatch timing relative to forage plant phenology; the earlier that eggs hatched relative to forage plant phenology, the larger the mean gosling size near fledging. Goslings were smallest in years when hatch was latest relative to forage plant phenology, and when local abundance of breeding adults was highest. We found no evidence for a trend in relative hatch timing, but it was apparent that in early springs, Canada geese tended to hatch later relative to vegetation phenology, suggesting that geese were not always able to adjust the timing of nesting as rapidly as vegetation phenology was advanced. Analyses using forage biomass information revealed a positive relationship between gosling size and per capita biomass availability, suggesting a causal mechanism for the density effect. The effects of weather parameters explained additional variation in mean annual gosling size, although total June and July rainfall had a small additive effect on gosling size. Modelling of annual first year survival probability using mean annual gosling size as an annual covariate revealed a positive relationship, suggesting that reduced gosling growth negatively impacts recruitment.

  13. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics.

    PubMed

    Muluneh, Melaku; Issadore, David

    2014-12-07

    In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm(2) microfluidic chip that incorporated a commercial 565 × 1145 μm(2) IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series.

  14. Influence of attrition milling on nano-grain boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawers, J.; Cook, D.

    1999-03-01

    Nanostructured materials have a relatively large proportion of their atoms associated with the grain boundary, and the method used to develop the nano-grains has a strong influence on the resulting grain boundary structure. In this study, attrition milling iron powders and blends of iron powders produced micron-size particles composed of nano-size grains. Mechanical cold-working powder resulted in dislocation generation, multiplication, and congealing that produced grain refinement. As the grain size approached nano-dimensions, dislocations were no longer sustained within the grain and once generated, rapidly diffused to the grain boundary. Dislocations on the grain boundary strained the local lattice structure which,more » as the grain size decreased, became the entire grain. Mechanical alloying of substitutional aluminium atoms into iron powder resulted in the aluminium atoms substituting for iron atoms in the grain boundary cells and providing a grain boundary structure similar to that of the iron powder processed in argon. Attrition milling iron powder in nitrogen gas resulted in nitrogen atoms being adsorbed onto the particle surface. Continued mechanical milling infused the nitrogen atoms into interstitial lattice sites on the grain boundary which also contributed to expanding and straining the local lattice.« less

  15. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex.

    PubMed

    Habraken, Y; Sung, P; Prakash, L; Prakash, S

    1997-10-01

    DNA mismatch repair has a key role in maintaining genomic stability. Defects in mismatch repair cause elevated spontaneous mutation rates and increased instability of simple repetitive sequences, while mutations in human mismatch repair genes result in hereditary nonpolyposis colorectal cancers. Mismatch recognition represents the first critical step of mismatch repair. Genetic and biochemical studies in yeast and humans have indicated a requirement for MSH2-MSH3 and MSH2-MSH6 heterodimers in mismatch recognition. These complexes have, to some extent, overlapping mismatch binding specificities. MLH1 and PMS1 are the other essential components of mismatch repair, but how they function in this process is not known. We have purified the yeast MLH1-PMS1 heterodimer to near homogeneity, and examined its effect on MSH2-MSH3 binding to DNA mismatches. By itself, the MLH1-PMS1 complex shows no affinity for mismatched DNA, but it greatly enhances the mismatch binding ability of MSH2-MSH3.

  16. Colorimetric Sensor for Label Free Detection of Porcine PCR Product (ID: 18)

    NASA Astrophysics Data System (ADS)

    Ali, M. E.; Hashim, U.; Bari, M. F.; Dhahi, Th. S.

    2011-05-01

    This report described the use of 40±5 nm in diameter citrate-coated gold nanoparticles (GNPs) as colorimetric sensor to visually detect the presence of a 17-base swine specific conserved sequence and nucleotide mismatch in the mixed PCR products of pig, deer and shad cytochrome b genes. The size of these PCR amplicons was 109 base-pair and was amplified with a pair of common primers. Colloidal GNPs changed color from pinkish- red to purple-gray in 2 mM PBS buffer by losing its characteristic surface plasmon resonance peak at 530 nm and gaining new features between 620 and 800 nm in the absorption spectrum indicating strong aggregation. The particles were stabilized against salt induced aggregation, retained spectral features and characteristic color upon adsorption of single-stranded DNA. The PCR products without any additional processing were hybridized with a 17-nucleotide swine probe prior to exposure to GNPs. At a critical annealing temperature (55° C) that differentiated between the match and mismatch pairing, the probe was hybridized with the pig PCR product and dehybridized from the deer's and shad's. The interaction of dehybridized probe to GNPs prevented them from salt-induced aggregation, retaining their characteristic red color. The assay did not need any surface modification chemistry or labeling steps. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The assay obviated the need of complex RFLP, sequencing or blotting to differentiate the same size PCR products. We find the application of the assay for species assignment in food analysis, mismatch detection in genetic screening and homology study among closely related species.

  17. Preliminary development of a workstation for craniomaxillofacial surgical procedures: introducing a computer-assisted planning and execution system.

    PubMed

    Gordon, Chad R; Murphy, Ryan J; Coon, Devin; Basafa, Ehsan; Otake, Yoshito; Al Rakan, Mohammed; Rada, Erin; Susarla, Srinivas; Susarla, Sriniras; Swanson, Edward; Fishman, Elliot; Santiago, Gabriel; Brandacher, Gerald; Liacouras, Peter; Grant, Gerald; Armand, Mehran

    2014-01-01

    Facial transplantation represents one of the most complicated scenarios in craniofacial surgery because of skeletal, aesthetic, and dental discrepancies between donor and recipient. However, standard off-the-shelf vendor computer-assisted surgery systems may not provide custom features to mitigate the increased complexity of this particular procedure. We propose to develop a computer-assisted surgery solution customized for preoperative planning, intraoperative navigation including cutting guides, and dynamic, instantaneous feedback of cephalometric measurements/angles as needed for facial transplantation and other related craniomaxillofacial procedures. We developed the Computer-Assisted Planning and Execution (CAPE) workstation to assist with planning and execution of facial transplantation. Preoperative maxillofacial computed tomography (CT) scans were obtained on 4 size-mismatched miniature swine encompassing 2 live face-jaw-teeth transplants. The system was tested in a laboratory setting using plastic models of mismatched swine, after which the system was used in 2 live swine transplants. Postoperative CT imaging was obtained and compared with the preoperative plan and intraoperative measures from the CAPE workstation for both transplants. Plastic model tests familiarized the team with the CAPE workstation and identified several defects in the workflow. Live swine surgeries demonstrated utility of the CAPE system in the operating room, showing submillimeter registration error of 0.6 ± 0.24 mm and promising qualitative comparisons between intraoperative data and postoperative CT imaging. The initial development of the CAPE workstation demonstrated that integration of computer planning and intraoperative navigation for facial transplantation are possible with submillimeter accuracy. This approach can potentially improve preoperative planning, allowing ideal donor-recipient matching despite significant size mismatch, and accurate surgical execution for numerous types of craniofacial and orthognathic surgical procedures.

  18. Method of making polymer powders and whiskers as well as particulate products of the method and atomizing apparatus

    DOEpatents

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2001-01-09

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  19. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  20. Further studies of iron adhesion: ( 1 1 1 ) surfaces

    NASA Astrophysics Data System (ADS)

    Spencer, Michelle J. S.; Hung, Andrew; Snook, Ian K.; Yarovsky, Irene

    2002-08-01

    Adhesion between ideal bulk-terminated bcc Fe(1 1 1) match and mismatch interfaces was simulated using density functional theory (DFT) within the plane-wave pseudopotential representation. Interfaces were modelled using the supercell approach where the interfacial separation was varied by changing the size of the vacuum spacer between image cells in the z-direction. The adhesive energy values were calculated for discrete interfacial separations and the data was fitted to the universal binding energy relation (UBER) [Rose et al., Phys. Rev. B 28 (1983) 1835]. The parameters obtained from these fits allowed the work of separation ( Wsep) to be determined and a comparison to be made of the adhesion properties of the match and mismatch interfaces. The results were also compared to those obtained previously for the (1 0 0) and (1 1 0) surfaces.

  1. Investigating the visual span in comparative search: the effects of task difficulty and divided attention.

    PubMed

    Pomplun, M; Reingold, E M; Shen, J

    2001-09-01

    In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.

  2. Immunohistochemical mismatch in a case of rhabdomyoblastic metastatic melanoma.

    PubMed

    Dumitru, Adrian Vasile; Tampa, Mircea Ştefan; Georgescu, Simona Roxana; Păunică, Stana; Matei, Clara Nicoleta; Nica, Adriana Elena; Costache, Mariana; Motofei, Ion; Sajin, Maria; Păunică, Ioana; Georgescu, Tiberiu Augustin

    2018-01-01

    Melanomas can exhibit a wide range of unusual morphologies due to the neural crest origin of melanocytes. Several authors have documented variations in size and shape of cells, cytoplasmic features and inclusions, nuclear features and cell architecture. Metastatic melanoma with rhabdomyoblastic differentiation is an extremely rare condition with poor prognosis. Few studies concerning rhabdoid or rhabdomyoblastic differentiation in melanoma are currently available and the current report highlights some of the most important immunohistochemical features of this rare entity. We report on a case of a rhabdomyoblastic metastatic melanoma showing intense positivity for both melanocytic and rhabdoid markers in two cell populations dissociated within the tumor with multiple mismatches in immunomarker expression. Improved recognition of this rare morphological pattern may provide the means for developing new techniques to identify novel therapeutic targets, which would improve the prognostic outlook for these patients.

  3. Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking

    NASA Astrophysics Data System (ADS)

    Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.

    2016-10-01

    We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.

  4. Cohesive detachment of an elastic pillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Khaderi, S. N.; McMeeking, R. M.; Arzt, E.

    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of intense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion-strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohesive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value Hc of the corner stress intensity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and substrate.

  5. Tautomeric transition between wobble A·C DNA base mispair and Watson-Crick-like A·C* mismatch: microstructural mechanism and biological significance.

    PubMed

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-06-21

    Here, we use MP2/DFT quantum-chemical methods combined with Quantum Theory of Atoms in Molecules to study the tautomeric transition between wobble A·C(w) mismatch and Watson-Crick-like A·C*(WC) base mispair, proceeding non-dissociatively via sequential proton transfer between bases through the planar, highly stable and zwitterionic TS(A∙C-)(A∙C(W)<-->A∙C&(WC)) transition state joined by the participation of (A)N6(+)H∙∙∙N4(-)(C), (A)N1(+)H∙∙∙N4(-)(C) and (A)C2(+)H∙∙∙N3(-)(C) H-bonds. Notably, the A·C(w) ↔ A·C*(WC) tautomerization reaction is accompanied by 10 unique patterns of the specific intermolecular interactions that consistently replace each other. Our data suggest that biologically significant A·C(w) → A·C*(WC) tautomerization is a kinetically controlled pathway for formation of the enzymatically competent Watson-Crick-like A·C*(WC) DNA base mispair in the essentially hydrophobic recognition pocket of the high-fidelity DNA-polymerase, responsible for the occurrence of spontaneous point AC/CA incorporation errors during DNA biosynthesis.

  6. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic

    USGS Publications Warehouse

    Ross, Megan V.; Alisaukas, Ray T.; Douglas, David C.; Kellett, Dana K.

    2017-01-01

    A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992–2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May–30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading to the recent attenuation in population growth of Snow Geese.

  7. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic.

    PubMed

    Ross, Megan V; Alisauskas, Ray T; Douglas, David C; Kellett, Dana K

    2017-07-01

    A full understanding of population dynamics depends not only on estimation of mechanistic contributions of recruitment and survival, but also knowledge about the ecological processes that drive each of these vital rates. The process of recruitment in particular may be protracted over several years, and can depend on numerous ecological complexities until sexually mature adulthood is attained. We addressed long-term declines (23 breeding seasons, 1992-2014) in the per capita production of young by both Ross's Geese (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) nesting at Karrak Lake in Canada's central Arctic. During this period, there was a contemporaneous increase from 0.4 to 1.1 million adults nesting at this colony. We evaluated whether (1) density-dependent nutritional deficiencies of pre-breeding females or (2) phenological mismatch between peak gosling hatch and peak forage quality, inferred from NDVI on the brood-rearing areas, may have been behind decadal declines in the per capita production of goslings. We found that, in years when pre-breeding females arrived to the nesting grounds with diminished nutrient reserves, the proportional composition of young during brood-rearing was reduced for both species. Furthermore, increased mismatch between peak gosling hatch and peak forage quality contributed additively to further declines in gosling production, in addition to declines caused by delayed nesting with associated subsequent negative effects on clutch size and nest success. The degree of mismatch increased over the course of our study because of advanced vegetation phenology without a corresponding advance in Goose nesting phenology. Vegetation phenology was significantly earlier in years with warm surface air temperatures measured in spring (i.e., 25 May-30 June). We suggest that both increased phenological mismatch and reduced nutritional condition of arriving females were behind declines in population-level recruitment, leading to the recent attenuation in population growth of Snow Geese. © 2017 by the Ecological Society of America.

  8. Effect of reinforcement morphology on matrix microcracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhar, N.; Srolovitz, D.J.; Rickman, J.M.

    1996-03-01

    The authors quantitatively examine the conditions under which a particle matrix misfit leads to matrix crack growth as a function of inclusion shape. Such misfit stresses and cracks can be generated by thermal expansion mismatch, generated by cooling a brittle matrix containing ductile inclusions. Using fracture mechanics and perturbation theory, they analyze the case of a penny-shaped crack interacting with a misfitting spheroidal inclusion. A simple and direct relationship is established between the strain energy release rate and the physical and geometrical properties of the system including: the thermal expansion mismatch, temperature change, the crack and inclusion sizes, the elasticmore » properties of the medium and the shape of the inclusion. In particular, the effects of inclusion shape on the stress intensity factors and strain energy release rate are analytically determined for nearly spherical inclusions. The authors use this information to determine the minimum crack size for crack growth to occur and the maximum size to which cracks may grown. The maximum crack size corresponds to the case where the elastic strain energy released upon crack growth is no longer sufficient to compensate for energy expended in extending the crack as the crack is growing into the rapidly decreasing stress field. The authors employ a nominally exact numerical procedure to study the effects of whiskers and platelets (i.e. spheroids very different from spheres) on matrix cracking. It is found that upon cooling a composite containing ductile inclusions, the propensity for matrix cracking is maximized for reinforcement shapes close to that of a sphere.« less

  9. The Association Between Broad Antigen HLA Mismatches, Eplet HLA Mismatches and Acute Rejection After Kidney Transplantation.

    PubMed

    Do Nguyen, Hung Thanh; Wong, Germaine; Chapman, Jeremy R; McDonald, Stephen P; Coates, Patrick T; Watson, Narelle; Russ, Graeme R; D'Orsogna, Lloyd; Lim, Wai Hon

    2016-12-01

    Epitope matching, which evaluates mismatched amino acids within antigen-antibody interaction sites (eplets), may better predict acute rejection than broad antigen matching alone. We aimed to determine the association between eplet mismatches and acute rejection in kidney transplant recipients. The association between eplet mismatches, broad antigen mismatches and acute rejection was assessed using adjusted Cox proportional hazard regression. Model discrimination for acute rejection was evaluated using the area under receiver operating characteristic curves. Of the 3,499 kidney transplant recipients from 2006 to 2011, the average (SD) number of broad antigen and eplet mismatches were 3.4 (1.7) and 22.8 (12.2), respectively. Compared with 0 to 2 eplet mismatches, the adjusted hazard ratio (HR) for acute rejection among those with 20 or greater eplet mismatches was 2.16 (95% confidence interval [CI], 1.33-3.52; P = 0.001). The adjusted area under the curve for broad antigen mismatches was 0.58 (95% CI, 0.56-0.61), similar to that for eplet mismatches (HR, 0.59; 95% CI, 0.56-0.61; P = 0.365). In recipients who were considered as low immunological risk (0-2 broad antigen HLA-ABDR mismatch), those with 20 or greater eplet mismatches experienced an increased risk of rejection compared to those with less than 20 mismatches (adjusted HR, 1.85; 95% CI, 1.11-3.08; P = 0.019). Increasing number of eplet mismatches is associated with acute rejection in kidney transplant recipients. Consideration of eplet HLA mismatches may improve risk stratification for acute rejection in a selected group of kidney transplant candidates.

  10. High ocular CMV copies and mismatched receipts may predict poor visual prognosis in CMV retinitis patients following allogeneic haematopoietic stem cell transplantation.

    PubMed

    Zhang, Yuehong; Ruan, Xiangcai; Yang, Weizhong; Li, Ling; Xian, Zhuanhua; Feng, Qiting; Mo, Wenjian

    2017-11-29

    To summarize the clinical characteristics and potential factors affecting the visual outcomes in patients with cytomegalovirus retinitis following allogeneic haematopoietic stem cell transplantation (HSCT). This retrospective study enrolled 12 patients (19 eyes) with cytomegalovirus retinitis after HSCT at Guangzhou First People's Hospital in China between January 2013 and December 2014. Demographic and clinical characteristics, ocular manifestations and visual outcomes were evaluated by reviewing medical records at the Departments of Hematology and Ophthalmology. All patients were followed up at least 6 months after stopping antiviral therapy. The visual outcome was defined as improvement, stabilization and deterioration. The subjects were composed of 7 human leucocyte antigen-matched and 5 mismatched receipts. All patients received combined systemic and intravitreous antiviral therapy. Eleven eyes gained improved or stabilized visual acuity, while 8 eyes suffered deterioration. Eyes with cytomegalovirus load less than 1 × 10 4 copies/ml in vitreous accounted for higher rate in eyes with good visual prognosis than those with cytomegalovirus copies above 1 × 10 4 copies/ml (52.63% vs 5.26%, P < 0.001). Human leucocyte antigen-matched receipts gained better visual prognosis than those mismatched ones (47.37% vs10.53%, P < 0.05). The virus types, cytomegalovirus peak in the blood, involved retinal zone and size had no influence on the visual outcomes (all P > 0.05). High ocular cytomegalovirus copies and mismatched receipts may be potential adverse factors affecting visual outcomes in cytomegalovirus retinitis patients following allogeneic HSCT.

  11. On the Nature of Disorder in Solid 4He

    NASA Astrophysics Data System (ADS)

    Krainyukova, N. V.

    2010-02-01

    We apply a modified Debye approach to calculate the Gibbs free energy for different structural phases and crystallite sizes in 4He. Atoms are assumed to interact via the Aziz potential. We have found that some intermediate (between hcp and bcc) phase predicted previously is more favorable than hcp at low temperatures and for small sizes. We show that it can exist in a wide pressure range up to 60 bar in 4He for crystallite sizes about 3,000 atoms. For larger sizes (10,000 atoms or more) this phase becomes unfavorable. In multidomain structures the intermediate phase competes with hcp and metastable fcc that can be a reason for disorder in solid 4He.

  12. Influence of fuel temperature on atomization performance of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Lefebvre, A. H.

    The influence of fuel temperature on mean drop size and drop-size distribution is examined for aviation gasoline and diesel oil, using three pressure-swirl simplex nozzles. Spray characteristics are measured over wide ranges of fuel injection pressure and ambient air pressure using a Malvern spray analyzer. Fuel temperatures are varied from -20 C to +50 C. Over this range of temperature, the overall effect of an increase in fuel temperature is to reduce the mean drop size and broaden the distribution of drop sizes in the spray. Generally, it is found that the influence of fuel temperature on mean drop size is far more pronounced for diesel oil than for gasoline. For both fuels the beneficial effect of higher fuel temperatures on atomization quality is sensibly independent of ambient air pressure.

  13. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations.

    PubMed Central

    Cotton, R G; Rodrigues, N R; Campbell, R D

    1988-01-01

    The chemical reactivity of thymine (T), when mismatched with the bases cytosine, guanine, and thymine, and of cytosine (C), when mismatched with thymine, adenine, and cytosine, has been examined. Heteroduplex DNAs containing such mismatched base pairs were first incubated with osmium tetroxide (for T and C mismatches) or hydroxylamine (for C mismatches) and then incubated with piperidine to cleave the DNA at the modified mismatched base. This cleavage was studied with an internally labeled strand containing the mismatched T or C, such that DNA cleavage and thus reactivity could be detected by gel electrophoresis. Cleavage at a total of 13 T and 21 C mismatches isolated (by at least three properly paired bases on both sides) single-base-pair mismatches was identified. All T or C mismatches studied were cleaved. By using end-labeled DNA probes containing T or C single-base-pair mismatches and conditions for limited cleavage, we were able to show that cleavage was at the base predicted by sequence analysis and that mismatches in a length of DNA could be readily detected by such an approach. This procedure may enable detection of all single-base-pair mismatches by use of sense and antisense probes and thus may be used to identify the mutated base and its position in a heteroduplex. Images PMID:3260032

  14. Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA

    PubMed Central

    Cristóvão, Michele; Sisamakis, Evangelos; Hingorani, Manju M.; Marx, Andreas D.; Jung, Caroline P.; Rothwell, Paul J.; Seidel, Claus A. M.; Friedhoff, Peter

    2012-01-01

    Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS–mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand. PMID:22367846

  15. Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.

    2018-05-01

    Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.

  16. X-ray probe of GaN thin films grown on InGaN compliant substrates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua

    2013-04-01

    GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.

  17. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    PubMed

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  18. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.

    PubMed

    Lin, Yongjing; Xu, Yang; Mayer, Matthew T; Simpson, Zachary I; McMahon, Gregory; Zhou, Sa; Wang, Dunwei

    2012-03-28

    Mg-doped hematite (α-Fe(2)O(3)) was synthesized by atomic layer deposition (ALD). The resulting material was identified as p-type with a hole concentration of ca. 1.7 × 10(15) cm(-3). When grown on n-type hematite, the p-type layer was found to create a built-in field that could be used to assist photoelectrochemical water splitting reactions. A nominal 200 mV turn-on voltage shift toward the cathodic direction was measured, which is comparable to what has been measured using water oxidation catalysts. This result suggests that it is possible to achieve desired energetics for solar water splitting directly on metal oxides through advanced material preparations. Similar approaches may be used to mitigate problems caused by energy mismatch between water redox potentials and the band edges of hematite and many other low-cost metal oxides, enabling practical solar water splitting as a means for solar energy storage.

  19. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  20. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    PubMed Central

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  1. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers

    PubMed Central

    Zhang, Chendong; Chuu, Chih-Piao; Ren, Xibiao; Li, Ming-Yang; Li, Lain-Jong; Jin, Chuanhong; Chou, Mei-Yin; Shih, Chih-Kang

    2017-01-01

    By using direct growth, we create a rotationally aligned MoS2/WSe2 hetero-bilayer as a designer van der Waals heterostructure. With rotational alignment, the lattice mismatch leads to a periodic variation of atomic registry between individual van der Waals layers, exhibiting a Moiré pattern with a well-defined periodicity. By combining scanning tunneling microscopy/spectroscopy, transmission electron microscopy, and first-principles calculations, we investigate interlayer coupling as a function of atomic registry. We quantitatively determine the influence of interlayer coupling on the electronic structure of the hetero-bilayer at different critical points. We show that the direct gap semiconductor concept is retained in the bilayer although the valence and conduction band edges are located at different layers. We further show that the local bandgap is periodically modulated in the X-Y direction with an amplitude of ~0.15 eV, leading to the formation of a two-dimensional electronic superlattice. PMID:28070558

  2. Characterization of single-crystalline Al films grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Fortuin, A. W.; Alkemade, P. F. A.; Verbruggen, A. H.; Steinfort, A. J.; Zandbergen, H.; Radelaar, S.

    1996-10-01

    Single-crystalline Al films have been grown by molecular beam epitaxy on a (7 × 7) reconstructed Si(111) surface at 50°C. The 100 nm thick Al films were extensively characterized by X-ray diffraction, transmission electron diffraction and microscopy, SIMS, and RBS in combination with ion channeling. The orientational relationship found was Al(111) t' | Si(111) and Al[11¯0] t'| Si[11¯0]. The film is single-crystalline over the entire 4″ Si wafer. TED and TEM showed that the lattice mismatch of 25.3% at room temperature is accommodated at the interface by alignment of every three Si atoms to four Al atoms. Annealing of the film at 400°C for 30 min led to a reduction of defects in the film and an increase at the interface. Furthermore, it increased the Si concentration in the Al film slightly. We regard this deposition method as the most appropriate one among the various techniques for epitaxial growth of Al on Si explored so far.

  3. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-01-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812

  4. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  5. Improved high temperature refractory. [MgCr/sub 2/O/sub 4/ composite with ZrO/sub 2/

    DOEpatents

    Singh, J.P.; James, J.; Picciolo, J.J.

    1985-12-10

    A high chromia refractory composite has been developed with improved thermal shock resistance and containing about 5 to 30 wt % of unstabilized ZrO/sub 2/ having a temperature-dependent phase change resulting in large expansion mismatch between the ZrO/sub 2/ and the chromia matrix which causes microcracks to form during cooling in the high chromia matrix. The particle size preferably is primarily between about 0.6 to 5 microns and particularly below about 3 microns with an average size in the order of 1.2 to 1.8 microns.

  6. High temperature refractory of MgCr.sub.2 O.sub.4 matrix and unstabilized ZrO.sub.2 particles

    DOEpatents

    Singh, Jitendra P.; James, Jawana J.; Picciolo, John J.

    1987-01-01

    A high chromia refractory composite has been developed with improved thermal shock resistance and containing about 5-30 wt. % of unstabilized ZrO.sub.2 having a temperature-dependent phase change resulting in large expansion mismatch between the ZrO.sub.2 and the chromia matrix which causes microcracks to form during cooling in the high chromia matrix. The particle size preferably is primarily between about 0.6-5 microns and particularly below about 3 microns with an average size in the order of 1.2-1.8 microns.

  7. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  8. Strain relaxation in (0001) AlN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido

    2001-06-01

    The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.

  9. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair

    PubMed Central

    2017-01-01

    Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ) and, surprisingly, single-stranded DNA (ssDNA), which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced formation of crossovers. Taken together, our results offer insights into the structure-function relationships of the MutLγ complex and reveal unanticipated genetic relationships between components of the meiotic recombination machinery. PMID:28505149

  10. Climate change is affecting mortality of weasels due to camouflage mismatch.

    PubMed

    Atmeh, Kamal; Andruszkiewicz, Anna; Zub, Karol

    2018-05-24

    Direct phenological mismatch caused by climate change can occur in mammals that moult seasonally. Two colour morphs of the weasel Mustela nivalis (M. n.) occur sympatrically in Białowieża Forest (NE Poland) and differ in their winter pelage colour: white in M. n. nivalis and brown in M. n. vulgaris. Due to their small body size, weasels are vulnerable to attacks by a range of different predators; thus cryptic coat colour may increase their winter survival. By analysing trapping data, we found that the share of white subspecies in the weasel population inhabiting Białowieża Forest decreases with decreasing numbers of days with snow cover. This led us to hypothesise that selective predation pressure should favour one of the two phenotypes, according to the prevailing weather conditions in winter. A simple field experiment with weasel models (white and brown), exposed against different background colours, revealed that contrasting models faced significantly higher detection by predators. Our observations also confirmed earlier findings that the plasticity of moult in M. n. nivalis is very limited. This means that climate change will strongly influence the mortality of the nivalis-type due to prolonged camouflage mismatch, which will directly affect the abundance and geographical distribution of this subspecies.

  11. Advanced overlay analysis through design based metrology

    NASA Astrophysics Data System (ADS)

    Ji, Sunkeun; Yoo, Gyun; Jo, Gyoyeon; Kang, Hyunwoo; Park, Minwoo; Kim, Jungchan; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Maruyama, Kotaro; Park, Byungjun; Yamamoto, Masahiro

    2015-03-01

    As design rule shrink, overlay has been critical factor for semiconductor manufacturing. However, the overlay error which is determined by a conventional measurement with an overlay mark based on IBO and DBO often does not represent the physical placement error in the cell area. The mismatch may arise from the size or pitch difference between the overlay mark and the cell pattern. Pattern distortion caused by etching or CMP also can be a source of the mismatch. In 2014, we have demonstrated that method of overlay measurement in the cell area by using DBM (Design Based Metrology) tool has more accurate overlay value than conventional method by using an overlay mark. We have verified the reproducibility by measuring repeatable patterns in the cell area, and also demonstrated the reliability by comparing with CD-SEM data. We have focused overlay mismatching between overlay mark and cell area until now, further more we have concerned with the cell area having different pattern density and etch loading. There appears a phenomenon which has different overlay values on the cells with diverse patterning environment. In this paper, the overlay error was investigated from cell edge to center. For this experiment, we have verified several critical layers in DRAM by using improved(Better resolution and speed) DBM tool, NGR3520.

  12. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligiblymore » small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for performing effective interaction energy analyses in biosystems.« less

  13. Size and diluted magnetic properties of diamond shaped graphene quantum dots: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2018-05-01

    The magnetic properties of diamond shaped graphene quantum dots have been investigated by varying their sizes with the Monte Carlo simulation. The magnetizations and magnetic susceptibilities have been studied with dilutions x (magnetic atom), several sizes L (carbon atom) and exchange interaction J between the magnetic atoms. The all magnetic susceptibilities have been situated at the transitions temperatures of each parameters. The obtained values increase when increases the values of x, L and J. The effect of exchanges interactions and crystal field on the magnetization has been discussed. The magnetic hysteresis cycles for several dilutions x, sizes L, exchange interactions J and temperatures T. The magnetic coercive increases with increasing the exchange interactions and decreases when the temperatures values increasing.

  14. Parent perspectives on attrition from tertiary care pediatric weight management programs.

    PubMed

    Hampl, Sarah; Demeule, Michelle; Eneli, Ihuoma; Frank, Maura; Hawkins, Mary Jane; Kirk, Shelley; Morris, Patricia; Sallinen, Bethany J; Santos, Melissa; Ward, Wendy L; Rhodes, Erinn

    2013-06-01

    To describe parent/caregiver reasons for attrition from tertiary care weight management clinics/programs. A telephone survey was administered to 147 parents from weight management clinics/programs in the National Association of Children's Hospitals and Related Institutions' (now Children's Hospital Association's) FOCUS on a Fitter Future II collaborative. Scheduling, barriers to recommendation implementation, and transportation issues were endorsed by more than half of parents as having a moderate to high influence on their decision not to return. Family motivation and mismatched expectations between families and clinic/program staff were mentioned as influential by more than one-third. Only mismatched expectations correlated with patient demographics and program characteristics. [corrected]. Although limited by small sample size, the study found that parents who left geographically diverse weight management clinics/programs reported similar reasons for attrition. Future efforts should include offering alternative visit times, more treatment options, and financial and transportation assistance and exploring family expectations.

  15. Indexing a sequence for mapping reads with a single mismatch.

    PubMed

    Crochemore, Maxime; Langiu, Alessio; Rahman, M Sohel

    2014-05-28

    Mapping reads against a genome sequence is an interesting and useful problem in computational molecular biology and bioinformatics. In this paper, we focus on the problem of indexing a sequence for mapping reads with a single mismatch. We first focus on a simpler problem where the length of the pattern is given beforehand during the data structure construction. This version of the problem is interesting in its own right in the context of the next generation sequencing. In the sequel, we show how to solve the more general problem. In both cases, our algorithm can construct an efficient data structure in O(n log(1+ε) n) time and space and can answer subsequent queries in O(m log log n + K) time. Here, n is the length of the sequence, m is the length of the read, 0<ε<1 and is the optimal output size.

  16. Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications.

    PubMed

    Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei

    2017-01-01

    In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.

  17. Structural and electronic properties of GaN nanowires with embedded In{sub x}Ga{sub 1−x}N nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kioseoglou, J., E-mail: sifisl@auth.gr; Pavloudis, Th.; Kehagias, Th.

    2015-07-21

    In the present study, the effects of various types of strain and indium concentration on the total energy and optoelectronic properties of GaN nanowires (NWs) with embedded In{sub x}Ga{sub 1−x}N nanodisks (NDs) are examined. In particular, the bi-axial, hydrostatic, and uniaxial strain states of the embedded In{sub x}Ga{sub 1−x}N NDs are investigated for multiple In concentrations. Density functional theory is employed to calculate the band structure of the NWs. The theoretical analysis finds that the supercell-size-dependent characteristics calculated for our 972-atom NW models are very close to the infinite supercell-size limit. It is established that the embedded In{sub x}Ga{sub 1−x}Nmore » NDs do not induce deep states in the band gap of the NWs. A bowing parameter of 1.82 eV is derived from our analysis in the quadratic Vegard's formula for the band gaps at the various In concentrations of the investigated In{sub x}Ga{sub 1−x}N NDs in GaN NW structures. It is concluded that up to ∼10% of In, the hydrostatic strain state is competitive with the bi-axial due to the radial absorption of the strain on the surfaces. Above this value, the dominant strain state is the bi-axial one. Thus, hydrostatic and bi-axial strain components coexist in the embedded NDs, and they are of different physical origin. The bi-axial strain comes from growth on lattice mismatched substrates, while the hydrostatic strain originates from the lateral relaxation of the surfaces.« less

  18. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  19. Photodissociation and caging of HBr and HI molecules on the surface of large rare gas clusters.

    PubMed

    Baumfalk, R; Nahler, N H; Buck, U

    2001-01-01

    Photodissociation experiments were carried out at a wavelength of 243 nm for single HBr and HI molecules adsorbed on the surface of large Nen, Arn, Krn and Xen clusters. The average size is about = 130; the size ranges = 62-139 for the system HBr-Arn and = 110-830 for HI-Xen were covered. In this way the dependence of the photodissociation dynamics on both the size and the rare gas host cluster was investigated. The main observable is the kinetic energy distribution of the outgoing H atoms. The key results are that we do not find any size dependence for either system but that we observe a strong dependence on the rare gas clusters. All systems exhibit H atoms with no energy loss that indicate direct cage exit and those with nearly zero energy that are an indication of complete caging. The intensity ratio of caged to uncaged H atoms is largest for Nen, decreases with increasing mass of the cage atoms, and is weakest for Xen. On the basis of accompanying calculations this behaviour is attributed to the large amplitude motion of the light H atom. This leads to direct cage exit and penetration of the atom through the cluster with different energy transfer per collision depending on the rare gas atoms. The differences between HBr and HI molecules are attributed to different surface states, a flat and an encapsulated site.

  20. A practical assessment of magnetic resonance diffusion-perfusion mismatch in acute stroke: observer variation and outcome.

    PubMed

    Kane, I; Hand, P J; Rivers, C; Armitage, P; Bastin, M E; Lindley, R; Dennis, M; Wardlaw, J M

    2009-11-01

    MR diffusion/perfusion mismatch may help identify patients for acute stroke treatment, but mixed results from clinical trials suggest that further evaluation of the mismatch concept is required. To work effectively, mismatch should predict prognosis on arrival at hospital. We assessed mismatch duration and associations with functional outcome in acute stroke. We recruited consecutive patients with acute stroke, recorded baseline clinical variables, performed MR diffusion and perfusion imaging and assessed 3-month functional outcome. We assessed practicalities, agreement between mismatch on mean transit time (MTT) or cerebral blood flow (CBF) maps, visually and with lesion volume, and the relationship of each to functional outcome. Of 82 patients starting imaging, 14 (17%) failed perfusion imaging. Overall, 42% had mismatch (56% at <6 h; 41% at 12-24 h; 23% at 24-48 h). Agreement for mismatch by visual versus volume assessment was fair using MTT (kappa 0.59, 95% CI 0.34-0.84) but poor using CBF (kappa 0.24, 95% CI 0.01-0.48). Mismatch by either definition was not associated with functional outcome, even when the analysis was restricted to just those with mismatch. Visual estimation is a reasonable proxy for mismatch volume on MTT but not CBF. Perfusion is more difficult for acute stroke patients than diffusion imaging. Mismatch is present in many patients beyond 12 h after stroke. Mismatch alone does not distinguish patients with good and poor prognosis; both can do well or poorly. Other factors, e.g. reperfusion, may influence outcome more strongly, even in patients without mismatch.

  1. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  2. Aluminum/hydrocarbon gel propellants: An experimental and theoretical investigation of secondary atomization and predicted rocket engine performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn Christopher

    1997-12-01

    Experimental and theoretical investigations of aluminum/hydrocarbon gel propellant secondary atomization and its potential effects on rocket engine performance were conducted. In the experimental efforts, a dilute, polydisperse, gel droplet spray was injected into the postflame region of a burner and droplet size distributions was measured as a function of position above the burner using a laser-based sizing/velocimetry technique. The sizing/velocimetry technique was developed to measure droplets in the 10-125 mum size range and avoids size-biased detection through the use of a uniformly illuminated probe volume. The technique was used to determine particle size distributions and velocities at various axial locations above the burner for JP-10, and 50 and 60 wt% aluminum gels. Droplet shell formation models were applied to aluminum/hydrocarbon gels to examine particle size and mass loading effects on the minimum droplet diameter that will permit secondary atomization. This diameter was predicted to be 38.1 and 34.7 mum for the 50 and 60 wt% gels, which is somewhat greater than the experimentally measured 30 and 25 mum diameters. In the theoretical efforts, three models were developed and an existing rocket code was exercised to gain insights into secondary atomization. The first model was designed to predict gel droplet properties and shell stresses after rigid shell formation, while the second, a one-dimensional gel spray combustion model was created to quantify the secondary atomization process. Experimental and numerical comparisons verify that secondary atomization occurs in 10-125 mum diameter particles although an exact model could not be derived. The third model, a one-dimensional gel-fueled rocket combustion chamber, was developed to evaluate secondary atomization effects on various engine performance parameters. Results show that only modest secondary atomization may be required to reduce propellant burnout distance and radiation losses. A solid propellant engine code was employed to estimate nozzle two-phase flow losses and engine performance for upper-stage and booster missions (3-6% and 2-3%, respectively). Given these losses and other difficulties, metallized gel propellants may be impractical in high-expansion ratio engines. Although uncertainties remain, it appears that performance gains will be minimal in gross-weight limited missions, but that significant gains may arise in volume-limited missions.

  3. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes

    PubMed Central

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.

    2015-01-01

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225

  4. Atomic-scale epitaxial aluminum film on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di

    2017-07-01

    Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  5. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  6. Size Dependence of S-bonding on (111) Facets of Cu Nanoclusters

    DOE PAGES

    Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.; ...

    2016-04-21

    We demonstrate a strong damped oscillatory size dependence of the adsorption energy for sulfur on the (111) facets of tetrahedral Cu nanoclusters up to sizes of ~300 atoms. This behavior reflects quantum size effects. Consistent results are obtained from density functional theory analyses utilizing either atomic orbital or plane-wave bases and using the same Perdew–Burke–Ernzerhof functional. Behavior is interpreted via molecular orbitals (MO), density of states (DOS), and crystal orbital Hamilton population (COHP) analyses.

  7. Band alignment and p -type doping of ZnSnN2

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-05-01

    Composed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p -type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p -type conductivity is likely as in GaN, yet it may be difficult to control unintentional n -type conductivity as in ZnO. Among possible p -type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.

  8. Nanocomposite Nd-Y-Fe-B-Mo bulk magnets prepared by injection casting technique

    NASA Astrophysics Data System (ADS)

    Tao, Shan; Ahmad, Zubair; Zhang, Pengyue; Yan, Mi; Zheng, Xiaomei

    2017-09-01

    The phase composition, magnetic and microstructural properties of Nd2Fe14B/(α-Fe, Fe3B) nanocomposite magnets produced by injection casting technique have been studied. Magnetic hysteresis loop of the Nd7Y6Fe61B22Mo4 permanent magnet demonstrates the coercivity as high as 1289 kA/m. Electron microscopy elucidates a microstructure composed of magnetically soft α-Fe, Fe3B and hard Nd2Fe14B/Y2Fe14B nanograins (20-50 nm) separated by ultra-thin grain boundary layer. The Henkel plot curve of the Nd7Y6Fe61B22Mo4 magnet yields the existence of exchange coupling interactions between soft and hard phases. Macroscopically large size sheet magnet is obtained due to high glass forming ability of the Nd7Y6Fe61B22Mo4 alloy derived from large atomic radius mismatch and negative enthalpy of alloy constituent elements. The high coercivity of the magnet is attributed to the magnetically hard phase increment, nucleation of reverse domains and the presence of thin grain boundary phase. Good magnetic properties such as remanence of 0.51 T, coercivity of 1289 kA/m and maximum energy product of 46.2 kJ/m3 are obtained in directly casted Nd7Y6Fe61B22Mo4 sheet magnets.

  9. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data.

    PubMed

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2018-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  10. Detecting magnetic ordering with atomic size electron probes

    DOE PAGES

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; ...

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  11. Outcomes of various transplant procedures (single, sparing, inverted) in living-donor lobar lung transplantation.

    PubMed

    Date, Hiroshi; Aoyama, Akihiro; Hijiya, Kyoko; Motoyama, Hideki; Handa, Tomohiro; Kinoshita, Hideyuki; Baba, Shiro; Mizota, Toshiyuki; Minakata, Kenji; Chen-Yoshikawa, Toyofumi F

    2017-02-01

    In standard living-donor lobar lung transplantation (LDLLT), the right and left lower lobes from 2 healthy donors are implanted. Because of the difficulty encountered in finding 2 donors with ideal size matching, various transplant procedures have been developed in our institution. The purpose of this retrospective study was to compare outcomes of nonstandard LDLLT with standard LDLLT. Between June 2008 and January 2016, we performed 65 LDLLTs for critically ill patients. Functional size matching was performed by estimating graft forced vital capacity based on the donor's measured forced vital capacity and the number of pulmonary segments implanted. For anatomical size matching, 3-dimensional computed tomography volumetry was performed. In cases of oversize mismatch, single-lobe transplant or downsizing transplant was performed. In cases of undersize mismatch, native upper lobe sparing transplant or right-left inverted transplant was performed. In right-left inverted transplants, the donor's right lower lobe was inverted and implanted into the recipient's left chest cavity. Twenty-nine patients (44.6%) received nonstandard LDLLT, including 12 single-lobe transplants, 7 native upper lobe sparing transplants, 6 right-left inverted transplants, 2 sparing + inverted transplants, and 2 others. Thirty-six patients (57.4%) received standard LDLLT. Three- and five-year survival rates were similar between the 2 groups (89.1% and 76.6% after nonstandard LDLLT vs 78.0% and 71.1% after standard LDLLT, P = .712). Various transplant procedures such as single, sparing and inverted transplants are valuable options when 2 donors with ideal size matching are not available for LDLLT. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  12. Lung size mismatch and primary graft dysfunction after bilateral lung transplantation *

    PubMed Central

    Eberlein, Michael; Reed, Robert M.; Bolukbas, Servet; Wille, Keith M.; Orens, Jonathan B.; Brower, Roy G.; Christie, Jason D.

    2014-01-01

    BACKGROUND Donor to recipient lung size matching at lung transplantation (LTx) can be estimated by the predicted total lung capacity (pTLC)ratio (donor pTLC/recipient pTLC). We aimed to determine whether the pTLC-ratio is associated with the risk of primary graft dysfunction (PGD) after bilateral LTx (BLT). METHODS We calculated the pTLC-ratio for 812 adult BLTs from the Lung Transplant Outcomes Group between 3/2002-12/2010. Patients were stratified by pTLC-ratio>1.0 (“oversized”) and pTLC-ratio≤1.0 (“undersized”). PGD was defined as any ISHLT grade 3 PGD within 72 hours of reperfusion (PGD 3). We analyzed the association between risk factors and PGD using multivariable conditional logistic regression. As transplant diagnoses can influence the size matching decisions and also modulate the risk for PGD, we performed pre-specified analyses by assessing the impact of lung size mismatch within diagnostic categories. RESULTS In univariate analyses oversizing was associated with a 39% lower odds of PGD3 (OR 0.61, 95% CI, p=0.003). In a multivariate model accounting for center effects and known PGD risks, oversizing remained independently associated with a decreased odds of PGD3 (OR 0.58, 95% CI 0.38-0.88, p=0.01). The risk adjusted point estimate was similar for the non-COPD diagnoses groups (OR 0.52, 95%CI 0.32-0.86, p=0.01); however there was no detected association within the COPD group (OR 0.72, 95% CI 0.29-1.78, p=0.5). CONCLUSION Oversized allografts are associated with a decreased risk of PGD3 after BLT; this effect appears most apparent in non-COPD patients. PMID:25447586

  13. Rethinking the advantage of zero-HLA mismatches in unrelated living donor kidney transplantation: implications on kidney paired donation.

    PubMed

    Casey, Michael Jin; Wen, Xuerong; Rehman, Shehzad; Santos, Alfonso H; Andreoni, Kenneth A

    2015-04-01

    The OPTN/UNOS Kidney Paired Donation (KPD) Pilot Program allocates priority to zero-HLA mismatches. However, in unrelated living donor kidney transplants (LDKT)-the same donor source in KPD-no study has shown whether zero-HLA mismatches provide any advantage over >0 HLA mismatches. We hypothesize that zero-HLA mismatches among unrelated LDKT do not benefit graft survival. This retrospective SRTR database study analyzed LDKT recipients from 1987 to 2012. Among unrelated LDKT, subjects with zero-HLA mismatches were compared to a 1:1-5 matched (by donor age ±1 year and year of transplantation) control cohort with >0 HLA mismatches. The primary endpoint was death-censored graft survival. Among 32,654 unrelated LDKT recipients, 83 had zero-HLA mismatches and were matched to 407 controls with >0 HLA mismatches. Kaplan-Meier analyses for death-censored graft and patient survival showed no difference between study and control cohorts. In multivariate marginal Cox models, zero-HLA mismatches saw no benefit with death-censored graft survival (HR = 1.46, 95% CI 0.78-2.73) or patient survival (HR = 1.43, 95% CI 0.68-3.01). Our data suggest that in unrelated LDKT, zero-HLA mismatches may not offer any survival advantage. Therefore, particular study of zero-HLA mismatching is needed to validate its place in the OPTN/UNOS KPD Pilot Program allocation algorithm. © 2014 Steunstichting ESOT.

  14. Student's Body Dimensions in Relation to Classroom Furniture.

    PubMed

    Baharampour, Samira; Nazari, Jalil; Dianat, Iman; Asgharijafarabadi, Mohamad

    2013-01-01

    This study was carried out to investigate the fit between university student's anthropometry and classroom furniture dimensions. In this cross-sectional and descriptive-analyzing study conducted in 2012, a total of 194 students (aged 18 through 30 years), were recruited randomly from Tabriz University of Medical Science community. The body size of each student was assessed using anthropometric measurements including shoulder height, elbow height, popliteal height, buttock-popliteal length, hip breadth and distance between elbows. Combinational equations defined the acceptable furni-ture dimensions according to anthropometry and match percentages were computed, according to either the existing situations assuming that they could use the most appropriate of the sizes available. Desk and seat height were higher than the accepted limits for most students (92.5% and 98.4%, respectively), while seat depth was appropriate for only 84.6% of students. The data indicate a mismatch between the students' bodily dimensions and the classroom furniture available to them. The chairs are too high and too deep and desks are also too high for the pupils. This situation may have negative effects on the sitting posture of the students especially when reading and writing. High mismatch percentages were found between furniture and stu-dents' anthropometry. The results confirm that furniture for university students should be selected and designed busied on their anthropometric dimensions.

  15. Compact Laser System for Field Deployable Ultracold Atom Sensors

    NASA Astrophysics Data System (ADS)

    Pino, Juan; Luey, Ben; Anderson, Mike

    2013-05-01

    As ultracold atom sensors begin to see their way to the field, there is a growing need for small, accurate, and robust laser systems to cool and manipulate atoms for sensing applications such as magnetometers, gravimeters, atomic clocks and inertial sensing. In this poster we present a laser system for Rb, roughly the size of a paperback novel, capable of generating and controlling light sufficient for the most complicated of cold atom sensors. The system includes >100dB of non-mechanical, optical shuttering, the ability to create short, microsecond pulses, a Demux stage to port light onto different optical paths, and an atomically referenced, frequency agile laser source. We will present data to support the system, its Size Weight and Power (SWaP) requirements, as well as laser stability and performance. funded under DARPA

  16. A New Type of Atom Interferometry for Testing Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Lorek, Dennis; Lämmerzahl, Claus; Wicht, Andreas

    We present a new type of atom interferometer (AI) that provides a tool for ultra-high precision tests of fundamental physics. As an example we present how an AI based on highly charged hydrogen-like atoms is affected by gravitational waves (GW). A qualitative description of the quantum interferometric measurement principle is given, the modifications in the atomic Hamiltonian caused by the GW are presented, and the size of the resulting frequency shifts in hydrogen-like atoms is estimated. For a GW amplitude of h = 10-23 the frequency shift is of the order of 110μHz for an AI based on a 91-fold charged uranium ion. A frequency difference of this size can be resolved by current AIs in 1s.

  17. Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Bi, Jun-Jie; Xie, Zhen; Yin, Kaikai; Wang, Dunyou; Zhang, Guang-Ping; Xiang, Dong; Wang, Chuan-Kui; Li, Zong-Liang

    2018-05-01

    The gap sizes between electrodes generated by typical methods are generally much larger than the dimension of a common molecule when fabricating a single-molecule junction, which dramatically suppresses the yield of single-molecule junctions. Based on the ab initio calculations, we develop a strategy named the field-aided method to accurately fabricate an atomic-sized gap between gold nanoelectrodes. To understand the mechanism of this strategy, configuration evolutions of gold nanojunction in stretching and compressing processes are calculated. The numerical results show that, in the stretching process, the gold atoms bridged between two electrodes are likely to form atomic chains. More significantly, lattice vacant positions can be easily generated in stretching and compressing processes, which make field-aided gap generation possible. In field-aided atom migration (FAAM), the external field can exert driving force, enhance the initial energy of the system, and decrease the barrier in the migration path, which makes the atom migration feasible. Conductance and stretching and compressing forces, as measurable variables in stretching and compressing processes, present very useful signals for determining the time to perform FAAM. Following this desirable strategy, we successfully fabricate gold nanogaps with a dimension of 0.38 ±0.05 nm in the experiment, as our calculation simulates.

  18. Topological mosaics in moiré superlattices of van der Waals heterobilayers

    NASA Astrophysics Data System (ADS)

    Tong, Qingjun; Yu, Hongyi; Zhu, Qizhong; Wang, Yong; Xu, Xiaodong; Yao, Wang

    2017-04-01

    Van der Waals (vdW) heterostructures formed by two-dimensional atomic crystals provide a powerful approach towards designer condensed matter systems. Incommensurate heterobilayers with small twisting and/or lattice mismatch lead to the interesting concept of moiré superlattices, where the atomic registry is locally indistinguishable from commensurate bilayers but has local-to-local variation over long range. Here we show that such moiré superlattices can lead to periodic modulation of local topological order in vdW heterobilayers formed by two massive Dirac materials. By tuning the vdW heterojunction from normal to the inverted type-II regime via an interlayer bias, the commensurate heterobilayer can become a topological insulator (TI), depending on the interlayer hybridization controlled by the atomic registry between the vdW layers. This results in a mosaic pattern of TI regions and normal insulator (NI) regions in moiré superlattices, where topologically protected helical modes exist at the TI/NI phase boundaries. By using symmetry-based k .p and tight-binding models, we predict that this topological phenomenon can be present in inverted transition metal dichalcogenides heterobilayers. Our work points to a new means of realizing programmable and electrically switchable topological superstructures from two-dimensional arrays of TI nano-dots to one-dimensional arrays of TI nano-stripes.

  19. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime

    NASA Astrophysics Data System (ADS)

    Du, Bujie; Jiang, Xingya; Das, Anindita; Zhou, Qinhan; Yu, Mengxiao; Jin, Rongchao; Zheng, Jie

    2017-11-01

    The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.

  20. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  1. Identification of a permissible HLA mismatch in hematopoietic stem cell transplantation

    PubMed Central

    Fernandez-Viña, Marcelo A.; Wang, Tao; Lee, Stephanie J.; Haagenson, Michael; Aljurf, Mahmoud; Askar, Medhat; Battiwalla, Minoo; Baxter-Lowe, Lee-Ann; Gajewski, James; Jakubowski, Ann A.; Marino, Susana; Oudshoorn, Machteld; Marsh, Steven G. E.; Petersdorf, Effie W.; Schultz, Kirk; Turner, E. Victoria; Waller, Edmund K.; Woolfrey, Ann; Umejiego, John; Spellman, Stephen R.; Setterholm, Michelle

    2014-01-01

    In subjects mismatched in the HLA alleles C*03:03/C*03:04 no allogeneic cytotoxic T-lymphocyte responses are detected in vitro. Hematopoietic stem cell transplantation (HSCT) with unrelated donors (UDs) showed no association between the HLA-C allele mismatches (CAMMs) and adverse outcomes; antigen mismatches at this and mismatches other HLA loci are deleterious. The absence of effect of the CAMM may have resulted from the predominance of the mismatch C*03:03/C*03:04. Patients with hematologic malignancies receiving UD HSCT matched in 8/8 and 7/8 HLA alleles were examined. Transplants mismatched in HLA-C antigens or mismatched in HLA-A, -B, or -DRB1 presented significant differences (P < .0001) in mortality (hazard ratio [HR] = 1.37, 1.30), disease-free survival (HR = 1.33, 1.27), treatment-related mortality (HR = 1.54, 1.54), and grade 3-4 acute graft-versus-host disease (HR = 1.49, 1.77) compared with the 8/8 group; transplants mismatched in other CAMMs had similar outcomes with HR ranging from 1.34 to 172 for these endpoints. The C*03:03/C*03:04 mismatched and the 8/8 matched groups had identical outcomes (HR ranging from 0.96-1.05). The previous finding that CAMMs do not associate with adverse outcomes is explained by the predominance (69%) of the mismatch C*03:03/03:04 in this group that is better tolerated than other HLA mismatches. PMID:24408320

  2. Quantum sized gold nanoclusters with atomic precision.

    PubMed

    Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun; Jin, Rongchao

    2012-09-18

    Gold nanoparticles typically have a metallic core, and the electronic conduction band consists of quasicontinuous energy levels (i.e. spacing δ ≪ k(B)T, where k(B)T is the thermal energy at temperature T (typically room temperature) and k(B) is the Boltzmann constant). Electrons in the conduction band roam throughout the metal core, and light can collectively excite these electrons to give rise to plasmonic responses. This plasmon resonance accounts for the beautiful ruby-red color of colloidal gold first observed by Faraday back in 1857. On the other hand, when gold nanoparticles become extremely small (<2 nm in diameter), significant quantization occurs to the conduction band. These quantum-sized nanoparticles constitute a new class of nanomaterial and have received much attention in recent years. To differentiate quantum-sized nanoparticles from conventional plasmonic gold nanoparticles, researchers often refer to the ultrasmall nanoparticles as nanoclusters. In this Account, we chose several typical sizes of gold nanoclusters, including Au(25)(SR)(18), Au(38)(SR)(24), Au(102)(SR)(44), and Au(144)(SR)(60), to illustrate the novel properties of metal nanoclusters imparted by quantum size effects. In the nanocluster size regime, many of the physical and chemical properties of gold nanoparticles are fundamentally altered. Gold nanoclusters have discrete electronic energy levels as opposed to the continuous band in plasmonic nanoparticles. Quantum-sized nanoparticles also show multiple optical absorption peaks in the optical spectrum versus a single surface plasmon resonance (SPR) peak at 520 nm for spherical gold nanocrystals. Although larger nanocrystals show an fcc structure, nanoclusters often have non-fcc atomic packing structures. Nanoclusters also have unique fluorescent, chiral, and magnetic properties. Due to the strong quantum confinement effect, adding or removing one gold atom significantly changes the structure and the electronic and optical properties of the nanocluster. Therefore, precise atomic control of nanoclusters is critically important: the nanometer precision typical of conventional nanoparticles is not sufficient. Atomically precise nanoclusters are represented by molecular formulas (e.g. Au(n)(SR)(m) for thiolate-protected ones, where n and m denote the respective number of gold atoms and ligands). Recently, major advances in the synthesis and structural characterization of molecular purity gold nanoclusters have made in-depth investigations of the size evolution of metal nanoclusters possible. Metal nanoclusters lie in the intermediate regime between localized atomic states and delocalized band structure in terms of electronic properties. We anticipate that future research on quantum-sized nanoclusters will stimulate broad scientific and technological interests in this special type of metal nanomaterial.

  3. Atomization, drop size, and penetration for cross-stream water injection at high-altitude reentry conditions with application to the RAM C-1 and C-3 flights

    NASA Technical Reports Server (NTRS)

    Gooderum, P. B.; Bushnell, D. M.

    1972-01-01

    Atomization, drop size, and penetration data are presented for cross stream water injection at conditions simulating high altitude reentry (low Weber number, high static temperature, high Knudsen number, and low static pressure). These results are applied to the RAM C-1 and C-3 flights. Two primary breakup modes are considered, vapor pressure or flashing and aerodynamic atomization. Results are given for breakup boundaries and mean drop size for each of these atomization mechanisms. Both standard and flight orifice geometries are investigated. The data were obtained in both a static environment and in conventional aerodynamic facilities at Mach numbers of 4.5 and 8. The high temperature aspects of reentry were simulated in a Mach 5.5 cyanogen-oxygen tunnel with total temperature of 4500 K.

  4. The effect of surface and interface on Neel transition temperature of low-dimensional antiferromagnetic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan

    2015-11-15

    Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less

  5. Emittance Growth in the DARHT-II Linear Induction Accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.

    2017-11-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  6. Structural phase transitions in SrTiO 3 nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Liu, Sizhan; Scofield, Megan E.

    2017-07-31

    Pressure dependent structural measurements on monodispersed nanoscale SrTiO3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = Pc) for larger particle sizes. The results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a large range of strain values, possibly enabling device use.

  7. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    PubMed Central

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. PMID:27877376

  8. Clinical-Radiological Parameters Improve the Prediction of the Thrombolysis Time Window by Both MRI Signal Intensities and DWI-FLAIR Mismatch.

    PubMed

    Madai, Vince Istvan; Wood, Carla N; Galinovic, Ivana; Grittner, Ulrike; Piper, Sophie K; Revankar, Gajanan S; Martin, Steve Z; Zaro-Weber, Olivier; Moeller-Hartmann, Walter; von Samson-Himmelstjerna, Federico C; Heiss, Wolf-Dieter; Ebinger, Martin; Fiebach, Jochen B; Sobesky, Jan

    2016-01-01

    With regard to acute stroke, patients with unknown time from stroke onset are not eligible for thrombolysis. Quantitative diffusion weighted imaging (DWI) and fluid attenuated inversion recovery (FLAIR) MRI relative signal intensity (rSI) biomarkers have been introduced to predict eligibility for thrombolysis, but have shown heterogeneous results in the past. In the present work, we investigated whether the inclusion of easily obtainable clinical-radiological parameters would improve the prediction of the thrombolysis time window by rSIs and compared their performance to the visual DWI-FLAIR mismatch. In a retrospective study, patients from 2 centers with proven stroke with onset <12 h were included. The DWI lesion was segmented and overlaid on ADC and FLAIR images. rSI mean and SD, were calculated as follows: (mean ROI value/mean value of the unaffected hemisphere). Additionally, the visual DWI-FLAIR mismatch was evaluated. Prediction of the thrombolysis time window was evaluated by the area-under-the-curve (AUC) derived from receiver operating characteristic (ROC) curve analysis. Factors such as the association of age, National Institutes of Health Stroke Scale, MRI field strength, lesion size, vessel occlusion and Wahlund-Score with rSI were investigated and the models were adjusted and stratified accordingly. In 82 patients, the unadjusted rSI measures DWI-mean and -SD showed the highest AUCs (AUC 0.86-0.87). Adjustment for clinical-radiological covariates significantly improved the performance of FLAIR-mean (0.91) and DWI-SD (0.91). The best prediction results based on the AUC were found for the final stratified and adjusted models of DWI-SD (0.94) and FLAIR-mean (0.96) and a multivariable DWI-FLAIR model (0.95). The adjusted visual DWI-FLAIR mismatch did not perform in a significantly worse manner (0.89). ADC-rSIs showed fair performance in all models. Quantitative DWI and FLAIR MRI biomarkers as well as the visual DWI-FLAIR mismatch provide excellent prediction of eligibility for thrombolysis in acute stroke, when easily obtainable clinical-radiological parameters are included in the prediction models. © 2016 S. Karger AG, Basel.

  9. The effect of shear and extensional viscosity on atomization in medical inhaler.

    PubMed

    Broniarz-Press, L; Ochowiak, M; Matuszak, M; Włodarczak, S

    2014-07-01

    The paper contains the results of experimental studies of water, aqueous solutions of glycerol and aqueous solutions of glycerol-polyethylene oxide (PEO) atomization process in a medical inhaler obtained by the use of the digital microphotography method. The effect of the shear and extensional viscosity on the drop size, drop size histogram and mean drop diameter has been analyzed. The obtained results have shown that the drop size increases with the increase in shear and extensional viscosity of liquid atomized. Extensional viscosity has a greater impact on the spraying process. It has been shown that the change in liquid viscosity leads to significant changes in drop size distribution. The correlation for Sauter mean diameter as function of the shear and extensional viscosity was proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The structural impact of DNA mismatches

    PubMed Central

    Rossetti, Giulia; Dans, Pablo D.; Gomez-Pinto, Irene; Ivani, Ivan; Gonzalez, Carlos; Orozco, Modesto

    2015-01-01

    The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins. PMID:25820425

  11. Big Atoms for Small Children: Building Atomic Models from Common Materials to Better Visualize and Conceptualize Atomic Structure

    ERIC Educational Resources Information Center

    Cipolla, Laura; Ferrari, Lia A.

    2016-01-01

    A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).

  12. Even the Odd Numbers Help: Failure Modes of SAM-Based Tunnel Junctions Probed via Odd-Even Effects Revealed in Synchrotrons and Supercomputers.

    PubMed

    Thompson, Damien; Nijhuis, Christian A

    2016-10-18

    This Account describes a body of research in atomic level design, synthesis, physicochemical characterization, and macroscopic electrical testing of molecular devices made from ferrocene-functionalized alkanethiol molecules, which are molecular diodes, with the aim to identify, and resolve, the failure modes that cause leakage currents. The mismatch in size between the ferrocene headgroup and alkane rod makes waxlike highly dynamic self-assembled monolayers (SAMs) on coinage metals that show remarkable atomic-scale sensitivity in their electrical properties. Our results make clear that molecular tunnel junction devices provide an excellent testbed to probe the electronic and supramolecular structures of SAMs on inorganic substrates. Contacting these SAMs to a eutectic "EGaIn" alloy top-electrode, we designed highly stable long-lived molecular switches of the form electrode-SAM-electrode with robust rectification ratios of up to 3 orders of magnitude. The graphic that accompanies this conspectus displays a computed SAM packing structure, illustrating the lollipop shape of the molecules that gives dynamic SAM supramolecular structures and also the molecule-electrode van der Waals (vdW) contacts that must be controlled to form good SAM-based devices. In this Account, we first trace the evolution of SAM-based electronic devices and rationalize their operation using energy level diagrams. We describe the measurement of device properties using near edge X-ray absorption fine structure spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy complemented by molecular dynamics and electronic structure calculations together with large numbers of electrical measurements. We discuss how data obtained from these combined experimental/simulation codesign studies demonstrate control over the supramolecular and electronic structure of the devices, tuning odd-even effects to optimize inherent packing tendencies of the molecules in order to minimize leakage currents in the junctions. It is now possible, but still very costly to create atomically smooth electrodes and we discuss progress toward masking electrode imperfections using cooperative molecule-electrode contacts that are only accessible by dynamic SAM structures. Finally, the unique ability of SAM devices to achieve simultaneously high and atom-sensitive electrical switching is summarized and discussed. While putting these structures to work as real world electronic devices remains very challenging, we speculate on the scientific and technological advances that are required to further improve electronic and supramolecular structure, toward the creation of high yields of long-lived molecular devices with (very) large, reproducible rectification ratios.

  13. Remarkable NO oxidation on single supported platinum atoms

    DOE PAGES

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; ...

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-alumina-supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al 2O 3-supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Ptmore » atoms are as active as fully formed platinum particles. The overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.« less

  14. Global measurements of coarse-mode aerosol size distributions - first results from the Atmospheric Tomography Mission (ATom)

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Dollner, M.; Schuh, H.; Brock, C. A.; Bui, T. V.; Gasteiger, J.; Froyd, K. D.; Schwarz, J. P.; Spanu, A.; Murphy, D. M.; Katich, J. M.; Kupc, A.; Williamson, C.

    2016-12-01

    Although coarse-mode aerosol (>1 µm diameter), composed mainly of mineral dust and sea-salt, is highly abundant over large regions of the world, these particles form a particularly poorly understood and characterized subset of atmospheric aerosol constituents. The NASA-sponsored Atmospheric Tomography Mission (ATom) is an unprecedented field program that investigates how human emissions affect air quality and climate change. ATom provides a singular opportunity to characterize the global coarse-mode size distribution by continuously profiling between 0.2 and 13 km with the NASA DC-8 research aircraft while traveling from the high Arctic down south the middle of the Pacific Ocean, to the Southern Ocean and back north over the Atlantic Ocean basin in four seasons. For ATom, the DC-8 aircraft has been equipped with multiple instruments to observe the composition of the air. The coarse mode and cloud particle size distribution is measured in-situ with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) mounted under the wing of the DC-8 research aircraft. The CAPS consists of an optical spectrometer providing size distributions in the size range between 0.5 and 50 µm and an imager detecting number concentration, size and shape of particles between 15 and 930 µm diameter. Early ATom flights indicated complicated vertical layering: over the sea, we regularly observed sea salt aerosol which extended from the ground up to 0.6-1 km altitude. In addition - depending on the location of the measurements - we frequently found layers with coarse mode aerosol originating from deserts and biomass burning aerosol aloft. In this study, we will present first results of coarse mode aerosol observations from the entire first ATom deployment in summer 2016. We will show vertical profiles of coarse mode aerosol number concentration, discuss their interhemispheric differences, and look into the question how frequently coarse-mode aerosol is externally mixed with submicron black carbon and other anthropogenic aerosol components. Furthermore, we will compare sequences with mineral dust observations made during ATom with results from the Saharan Aerosol Long-range Transport and Aerosol Cloud Interaction Experiment (SALTRACE) that took place around the tropical and northern Atlantic basin in 2013.

  15. HLA-DQ Mismatches and Rejection in Kidney Transplant Recipients

    PubMed Central

    Chapman, Jeremy R.; Coates, Patrick T.; Lewis, Joshua R.; Russ, Graeme R.; Watson, Narelle; Holdsworth, Rhonda; Wong, Germaine

    2016-01-01

    Background and objectives The current allocation algorithm for deceased donor kidney transplantation takes into consideration HLA mismatches at the ABDR loci but not HLA mismatches at other loci, including HLA-DQ. However, the independent effects of incompatibilities for the closely linked HLA-DQ antigens in the context of HLA-DR antigen matched and mismatched allografts are uncertain. We aimed to determine the effect of HLA-DQ mismatches on renal allograft outcomes. Design, setting, participants, & measurements Using data from the Australia and New Zealand Dialysis and Transplant Registry, we examined the association between HLA-DQ mismatches and acute rejections in primary live and deceased donor kidney transplant recipients between 2004 and 2012 using adjusted Cox regression models. Results Of the 788 recipients followed for a median of 2.8 years (resulting in 2891 person-years), 321 (40.7%) and 467 (59.3%) received zero and one or two HLA-DQ mismatched kidneys, respectively. Compared with recipients who have received zero HLA-DQ mismatched kidneys, those who have received one or two HLA-DQ mismatched kidneys experienced greater numbers of any rejection (50 of 321 versus 117 of 467; P<0.01), late rejections (occurring >6 months post-transplant; 8 of 321 versus 27 of 467; P=0.03), and antibody-mediated rejections (AMRs; 12 of 321 versus 38 of 467; P=0.01). Compared with recipients of zero HLA-DQ mismatched kidneys, the adjusted hazard ratios for any and late rejections in recipients who had received one or two HLA-DQ mismatched kidneys were 1.54 (95% confidence interval [95% CI], 1.08 to 2.19) and 2.85 (95% CI, 1.05 to 7.75), respectively. HLA-DR was an effect modifier between HLA-DQ mismatches and AMR (P value for interaction =0.02), such that the association between HLA-DQ mismatches and AMR was statistically significant in those who have received one or two HLA-DR mismatched kidneys, with adjusted hazard ratio of 2.50 (95% CI, 1.05 to 5.94). Conclusions HLA-DQ mismatches are associated with acute rejection, independent of HLA-ABDR mismatches and initial immunosuppression. Clinicians should be aware of the potential importance of HLA-DQ matching in the assessment of immunologic risk in kidney transplant recipients. PMID:27034399

  16. Production of fine calcium powders by centrifugal atomization with rotating quench bath

    DOE PAGES

    Tian, Liang; Ames Lab. and Iowa State Univ., Ames, IA; Anderson, Iver; ...

    2016-02-08

    Recently, a novel Al/Ca composite was produced by severe plastic deformation of Al powders and Ca granules for possible use as a high-voltage power transmission conductor. Since the strength of such composites is inversely proportional to the Ca filament size, fine Ca powders (less than ~250 μm) are needed to achieve the desired high strength for the powder metallurgy production of an Al-matrix composite reinforced by nano-scale Ca filaments. However, fine Ca powders are not commercially available. Therefore, we have developed a method to produce fine Ca powders via centrifugal atomization to supply Ca powder for prototype development of Al/Camore » composite conductor. A secondary goal of the project was to demonstrate that Ca powder can be safely prepared, stored, and handled and could potentially be scaled for commercial production. Our results showed that centrifugal atomization can yield as much as 83 vol. % Ca powder particles smaller than 250 μm. The mean particle size sometimes matches, sometimes deviates substantially from the predictions of the Champagne & Anger equation likely due to unexpected secondary atomization. The particle size distribution is typical for a ligament-disintegration atomization mode. Scanning electron micrographs showed that the morphology of these Ca powders varied with powder size. Spark testing and auto-ignition tests indicated that the atomized powders were difficult to ignite, providing confidence that this material can be handled safely in air.« less

  17. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  18. Genetic variation and population structure in Jamunapari goats using microsatellites, mitochondrial DNA, and milk protein genes.

    PubMed

    Rout, P K; Thangraj, K; Mandal, A; Roy, R

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation decision and management of the breed.

  19. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    PubMed Central

    Rout, P. K.; Thangraj, K.; Mandal, A.; Roy, R.

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation decision and management of the breed. PMID:22606053

  20. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE PAGES

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF 2 nanoparticles doped with Eu 3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  1. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    PubMed

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  2. Nonperturbative theory for the dispersion self-energy of atoms

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Persson, C.; Brevik, I.; Sernelius, Bo E.; Boström, Mathias

    2014-11-01

    We go beyond the approximate series expansions used in the dispersion theory of finite-size atoms. We demonstrate that a correct, and nonperturbative, theory dramatically alters the dispersion self-energies of atoms. The nonperturbed theory gives as much as 100 % corrections compared to the traditional series-expanded theory for the smaller noble gas atoms.

  3. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    PubMed Central

    2017-01-01

    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening. PMID:28910418

  4. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding Domain I in mismatch recognition.

    PubMed Central

    Lee, Susan D.; Surtees, Jennifer A.; Alani, Eric

    2007-01-01

    In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. In this study we showed that the msh2Δ1 mutation, containing a complete deletion of the conserved mismatch recognition Domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Δ1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of Domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that Domain I in MSH2 contributed a non-specific DNA binding activity while Domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA-binding. These observations reveal distinct requirements for the MSH2 DNA binding Domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding. PMID:17157869

  5. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.

    PubMed

    Lee, Susan D; Surtees, Jennifer A; Alani, Eric

    2007-02-09

    In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.

  6. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3.

    PubMed

    Habraken, Y; Sung, P; Prakash, L; Prakash, S

    1996-09-01

    DNA-mismatch repair removes mismatches from the newly replicated DNA strand. In humans, mutations in the mismatch repair genes hMSH2, hMLH1, hPMS1 and hPMS2 result in hereditary non-polyposis colorectal cancer (HNPCC) [1-8]. The hMSH2 (MSH for MutS homologue) protein forms a complex with a 160 kDa protein, and this heterodimer, hMutSalpha, has high affinity for a G/T mismatch [9,10]. Cell lines in which the 160 kDa subunit of hMutSalpha is mutated are specifically defective in the repair of base-base and single-nucleotide insertion/deletion mismatches [9,11]. Genetic studies in S. cerevisiae have suggested that MSH2 functions with either MSH3 or MSH6 in mismatch repair, and, in the absence of the latter two genes, MSH2 is inactive [12,13]. MSH6 encodes the yeast counterpart of the 160 kDa subunit of hMutSalpha [12,13]. As in humans, yeast MSH6 forms a complex with MSH2, and the MSH2-MSH6 heterodimer binds a G/T mismatch [14]. Here, we find that MSH2 and MSH3 form another stable heterodimer, and we purify this heterodimer to near homogeneity. We show that MSH2-MSH3 has low affinity for a G/T mismatch but binds to insertion/deletion mismatches with high specificity, unlike MSH2-MSH6.

  7. [Impact of HLA mismatch on transplant outcomes].

    PubMed

    Kanda, Junya

    Human leukocyte antigen (HLA) mismatch increases the risk of severe graft-versus-host disease (GVHD) and transplant-related mortality. However, the variety of stem cell sources such as cord blood units or the improvements in GVHD prophylaxis makes the interpretation of HLA mismatch more complex. In unrelated transplantation, the locus of HLA mismatch has a great impact on the donor candidate selection, whereas in related transplantation, it has an impact on the intensity of GVHD prophylaxis because donor availability is limited. Anti-thymocyte globulin and post-transplant cyclophosphamide are attractive GVHD prophylactic agents to reduce the risk of immune-associated complications in HLA-mismatched transplantations. HLA mismatch has a reduced impact in adult cord blood transplantation. In this review article, the impact of HLA mismatch based on graft sources is discussed.

  8. Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; Noble, Peter A.; El Fantroussi, Said; Kelly, John J.; Stahl, David A.

    2002-01-01

    The effects of single-base-pair near-terminal and terminal mismatches on the dissociation temperature (T(d)) and signal intensity of short DNA duplexes were determined by using oligonucleotide microarrays and neural network (NN) analyses. Two perfect-match probes and 29 probes having a single-base-pair mismatch at positions 1 to 5 from the 5' terminus of the probe were designed to target one of two short sequences representing 16S rRNA. Nonequilibrium dissociation rates (i.e., melting profiles) of all probe-target duplexes were determined simultaneously. Analysis of variance revealed that position of the mismatch, type of mismatch, and formamide concentration significantly affected the T(d) and signal intensity. Increasing the concentration of formamide in the washing buffer decreased the T(d) and signal intensity, and it decreased the variability of the signal. Although T(d)s of probe-target duplexes with mismatches in the first or second position were not significantly different from one another, duplexes with mismatches in the third to fifth positions had significantly lower T(d)s than those with mismatches in the first or second position. The trained NNs predicted the T(d) with high accuracies (R(2) = 0.93). However, the NNs predicted the signal intensity only moderately accurately (R(2) = 0.67), presumably due to increased noise in the signal intensity at low formamide concentrations. Sensitivity analysis revealed that the concentration of formamide explained most (75%) of the variability in T(d)s, followed by position of the mismatch (19%) and type of mismatch (6%). The results suggest that position of the mismatch at or near the 5' terminus plays a greater role in determining the T(d) and signal intensity of duplexes than the type of mismatch.

  9. Raman spectroscopy and atomic force microscopy study of interfacial polytypism in GaP/Ge(111) heterostructures

    NASA Astrophysics Data System (ADS)

    Aggarwal, R.; Ingale, Alka A.; Dixit, V. K.

    2018-01-01

    Effects of lattice and polar/nonpolar mismatch between the GaP layer and Ge(111) substrate are investigated by spatially resolved Raman spectroscopy. The red shifted transverse optical (TO) and longitudinal optical (LO) phonons due to residual strain, along with asymmetry to TO phonon ∼358 cm-1 are observed in GaP/Ge(111). The peak intensity variation of mode ∼358 cm-1 with respect to TO phonon across the crystallographic morphed surface of GaP micro structures is associated with the topographical variations using atomic force microscopy mapping and Raman spectroscopy performed on both in plane and cross-sectional surface. Co-existence of GaP allotropes, i.e. wurtzite phase near heterojunction interface and dominant zinc-blende phase near surface is established using the spatially resolved polarized Raman spectroscopy from the cross sectional surface of heterostructures. This consistently explains effect of surface morphology on Raman spectroscopy from GaP(111). The study shows the way to identify crystalline phases in other advanced semiconductor heterostructures without any specific sample preparation.

  10. In situ degradation studies of two-dimensional WSe₂-graphene heterostructures.

    PubMed

    Wang, B; Eichfield, S M; Wang, D; Robinson, J A; Haque, M A

    2015-09-14

    Heterostructures of two-dimensional materials can be vulnerable to thermal degradation due to structural and interfacial defects as well as thermal expansion mismatch, yet a systematic study does not exist in the literature. In this study, we investigate the degradation of freestanding WSe2-graphene heterostructures due to heat and charge flow by performing in situ experiments inside a transmission electron microscope. Experimental results show that purely thermal loading requires higher temperatures (>850 °C), about 150 °C higher than that under combined electrical and thermal loading. In both cases, selenium is the first element to decompose and migration of silicon atoms from the test structure to the freestanding specimen initiates rapid degradation through the formation of tungsten disilicide and silicon carbide. The role of the current flow is to enhance the migration of silicon from the sample holder and to knock-out the selenium atoms. The findings of this study provide fundamental insights into the degradation of WSe2-graphene heterostructures and inspire their application in electronics for use in harsh environments.

  11. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  12. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  13. High purity silica reflecting heat shield development

    NASA Technical Reports Server (NTRS)

    Congdon, W.

    1974-01-01

    A reflecting heat shield composed of fused silica in which the scattering results from the refractive index mismatch between silica particles and the voids introduced during the fabrication process is developed. Major considerations and conclusions of the development are: the best material to use is Type A, which is capable of ultra-high-purity and which does not show the 0.243 micrometer absorption band; the reflection efficiency of fused silica is decreased at higher temperatures due to the bathochromic shift of the ultraviolet cut-off; for a given silica material, over the wavelength region and particle sizes tested, the monodisperse particle size configurations produce higher reflectances than continuous particle size configurations; and the smaller monodisperse particle size configurations give higher reflectance than the larger ones. A reflecting silica configuration that is an efficient reflector of shock layer radiation at high ablation temperatures is achieved by tailoring the matrix for optimum scattering and using an ultra-high-purity material.

  14. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  15. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiko, M. E., E-mail: m.e.boiko@mail.ioffe.ru; Sharkov, M. D.; Boiko, A. M.

    2013-12-15

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  16. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    NASA Astrophysics Data System (ADS)

    Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.

    2013-12-01

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  17. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness

    PubMed Central

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    Objectives: This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Design: Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Results: Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a similar level of monaural performance (50%), binaural integration advantages were found regardless of whether a mismatch was simulated or not. When the CI-simulation ear supported a superior level of monaural performance (71%), evidence of binaural integration was absent when a mismatch was simulated using both the Realistic and the Ideal processing strategies. This absence of integration could not be accounted for by ceiling effects or by changes in SNR. Conclusions: If generalizable to unilaterally deaf CI users, the results of the current simulation study would suggest that benefits to speech perception in noise can be obtained by integrating information from an implanted ear and an NH ear. A mismatch in the delivery of spectral information between the ears due to a misalignment in the mapping of frequency to place may disrupt binaural integration in situations where both ears cannot support a similar level of monaural speech understanding. Previous studies that have measured the speech perception of unilaterally deaf individuals after CI but with nonindividualized frequency-to-electrode allocations may therefore have underestimated the potential benefits of providing binaural hearing. However, it remains unclear whether the size and nature of the potential incremental benefits from individualized allocations are sufficient to justify the time and resources required to derive them based on cochlear imaging or pitch-matching tasks. PMID:27116049

  18. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness.

    PubMed

    Ma, Ning; Morris, Saffron; Kitterick, Pádraig Thomas

    2016-01-01

    This study used vocoder simulations with normal-hearing (NH) listeners to (1) measure their ability to integrate speech information from an NH ear and a simulated cochlear implant (CI), and (2) investigate whether binaural integration is disrupted by a mismatch in the delivery of spectral information between the ears arising from a misalignment in the mapping of frequency to place. Eight NH volunteers participated in the study and listened to sentences embedded in background noise via headphones. Stimuli presented to the left ear were unprocessed. Stimuli presented to the right ear (referred to as the CI-simulation ear) were processed using an eight-channel noise vocoder with one of the three processing strategies. An Ideal strategy simulated a frequency-to-place map across all channels that matched the delivery of spectral information between the ears. A Realistic strategy created a misalignment in the mapping of frequency to place in the CI-simulation ear where the size of the mismatch between the ears varied across channels. Finally, a Shifted strategy imposed a similar degree of misalignment in all channels, resulting in consistent mismatch between the ears across frequency. The ability to report key words in sentences was assessed under monaural and binaural listening conditions and at signal to noise ratios (SNRs) established by estimating speech-reception thresholds in each ear alone. The SNRs ensured that the monaural performance of the left ear never exceeded that of the CI-simulation ear. The advantages of binaural integration were calculated by comparing binaural performance with monaural performance using the CI-simulation ear alone. Thus, these advantages reflected the additional use of the experimentally constrained left ear and were not attributable to better-ear listening. Binaural performance was as accurate as, or more accurate than, monaural performance with the CI-simulation ear alone. When both ears supported a similar level of monaural performance (50%), binaural integration advantages were found regardless of whether a mismatch was simulated or not. When the CI-simulation ear supported a superior level of monaural performance (71%), evidence of binaural integration was absent when a mismatch was simulated using both the Realistic and the Ideal processing strategies. This absence of integration could not be accounted for by ceiling effects or by changes in SNR. If generalizable to unilaterally deaf CI users, the results of the current simulation study would suggest that benefits to speech perception in noise can be obtained by integrating information from an implanted ear and an NH ear. A mismatch in the delivery of spectral information between the ears due to a misalignment in the mapping of frequency to place may disrupt binaural integration in situations where both ears cannot support a similar level of monaural speech understanding. Previous studies that have measured the speech perception of unilaterally deaf individuals after CI but with nonindividualized frequency-to-electrode allocations may therefore have underestimated the potential benefits of providing binaural hearing. However, it remains unclear whether the size and nature of the potential incremental benefits from individualized allocations are sufficient to justify the time and resources required to derive them based on cochlear imaging or pitch-matching tasks.

  19. Spontaneous Improvement of Compensatory Knee Flexion After Surgical Correction of Mismatch Between Pelvic Incidence and Lumbar Lordosis.

    PubMed

    Cheng, Xiaofei; Zhang, Feng; Wu, Jigong; Zhu, Zhenan; Dai, Kerong; Zhao, Jie

    2016-08-15

    A retrospective study. The aim of this study was to investigate the correlation between pelvic incidence (PI) and lumbar lordosis (LL) mismatch and knee flexion during standing in patients with lumbar degenerative diseases and to examine the effects of surgical correction of the PI-LL mismatch on knee flexion. Only several studies focused on knee flexion as a compensatory mechanism of the PI-LL mismatch. Little information is currently available on the effects of lumbar correction on knee flexion in patients with the PI-LL mismatch. A group of patients with lumbar degenerative diseases were divided into PI-LL match group (PI-LL ≤ 10°) and PI-LL mismatch group (PI-LL > 10°). A series of radiographic parameters and knee flexion angle (KFA) were compared between the two groups. The PI-LL mismatch group was further subdivided into operative and nonoperative group. The changes in KFA with PI-LL were examined. The PI-LL mismatch group exhibited significantly greater sagittal vertical axis (SVA), pelvic tilt (PT) and KFA, and smaller LL, thoracic kyphosis (TK), and sacral slope than the PI-LL match group. PI-LL, LL, PI, SVA, and PT were significantly correlated with KFA in the PI-LL mismatch group. From baseline to 6-month follow-up, all variables were significantly different in the operative group with the exception of PI, although there was no significant difference in any variable in the nonoperative group. The magnitude of surgical correction in the PI-LL mismatch was significantly correlated with the degree of spontaneous changes in KFA, PT, and TK. The PI-LL mismatch would contribute to compensatory knee flexion during standing in patients with lumbar degenerative disease. Surgical correction of the PI-LL mismatch could lead to a spontaneous improvement of compensatory knee flexion. The degree of improvement in knee flexion depends in part on the amount of correction in the PI-LL mismatch. 3.

  20. Size dependence of single-photon superradiance of cold and dilute atomic ensembles

    NASA Astrophysics Data System (ADS)

    Kuraptsev, A. S.; Sokolov, I. M.

    2017-11-01

    We report a theoretical investigation of angular distribution of a single-photon superradiance from cold and dilute atomic clouds. In the present work we focus our attention on the dependence of superradiance on the size and shape of the cloud. We analyze the dynamics of the afterglow of atomic ensemble excited by pulse radiation. Two theoretical approaches are used. The first is the quantum microscopic approach based on a coupled-dipole model. The second approach is random walk approximation. We show that the results obtained in both approaches coincide with a good accuracy for incoherent fluorescence excited by short resonant pulses. We also show that the superradiance decay rate changes with size differently for radiation emitted into different directions.

  1. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization

    NASA Astrophysics Data System (ADS)

    Golod, V. M.; Sufiiarov, V. Sh

    2017-04-01

    Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.

  2. Band shift of 2D transition-metal dichalcogenide alloys: size and composition effects

    NASA Astrophysics Data System (ADS)

    Zhao, Yipeng; Zhang, Zhe; Ouyang, Gang

    2018-04-01

    Band engineering of 2D transition-metal dichalcogenides (2D-TMDs) is a vital task for their applications in electronic and optoelectronic nanodevices. In this study, we investigate the joint effect from size and composition contributions on the band shift of 2D-TMD alloys in terms of atomic bond relaxation consideration. A theoretical model is proposed to pursue the underlying mechanism, which can connect the band offset with the atomic bonding identities in the 2D-TMD alloys. We reveal that the bandgap of 2D-TMD alloys presents a bowing shape owing to the size-dependent interaction among atoms and shows blue shift or red shift due to different intermixing of components. It is demonstrated that both size and composition can be performed as the useful methods to modulate the band shift, which suggests an effective way to realize the desirable properties of 2D-TMD alloys.

  3. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements

    PubMed Central

    2017-01-01

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements. PMID:28890604

  4. Monitoring of Batch Industrial Crystallization with Growth, Nucleation, and Agglomeration. Part 2: Structure Design for State Estimation with Secondary Measurements.

    PubMed

    Porru, Marcella; Özkan, Leyla

    2017-08-30

    This work investigates the design of alternative monitoring tools based on state estimators for industrial crystallization systems with nucleation, growth, and agglomeration kinetics. The estimation problem is regarded as a structure design problem where the estimation model and the set of innovated states have to be chosen; the estimator is driven by the available measurements of secondary variables. On the basis of Robust Exponential estimability arguments, it is found that the concentration is distinguishable with temperature and solid fraction measurements while the crystal size distribution (CSD) is not. Accordingly, a state estimator structure is selected such that (i) the concentration (and other distinguishable states) are innovated by means of the secondary measurements processed with the geometric estimator (GE), and (ii) the CSD is estimated by means of a rigorous model in open loop mode. The proposed estimator has been tested through simulations showing good performance in the case of mismatch in the initial conditions, parametric plant-model mismatch, and noisy measurements.

  5. Unaccusative Mismatches in Japanese.

    ERIC Educational Resources Information Center

    Tsujimura, Natsuko

    Two instances of unaccusative verb mismatches in Japanese are examined. An unaccusative mismatch is the situation in which a different accusative diagnostic singles out different classes of intransitive verbs within and across languages. One type of unaccusative mismatch has to do with group C verbs, or verbs of manner with protagonist control.…

  6. Educational Mismatch and Self-Employment

    ERIC Educational Resources Information Center

    Bender, Keith A.; Roche, Kristen

    2013-01-01

    Previous research on educational mismatch concentrates on estimating its labor market consequences but with a focus on wage and salary workers. This paper examines the far less studied influence of mismatch on the self-employed. Using a sample of workers in science and engineering fields, results show larger earnings penalties for mismatch among…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Liang; Ames Lab. and Iowa State Univ., Ames, IA; Anderson, Iver

    Recently, a novel Al/Ca composite was produced by severe plastic deformation of Al powders and Ca granules for possible use as a high-voltage power transmission conductor. Since the strength of such composites is inversely proportional to the Ca filament size, fine Ca powders (less than ~250 μm) are needed to achieve the desired high strength for the powder metallurgy production of an Al-matrix composite reinforced by nano-scale Ca filaments. However, fine Ca powders are not commercially available. Therefore, we have developed a method to produce fine Ca powders via centrifugal atomization to supply Ca powder for prototype development of Al/Camore » composite conductor. A secondary goal of the project was to demonstrate that Ca powder can be safely prepared, stored, and handled and could potentially be scaled for commercial production. Our results showed that centrifugal atomization can yield as much as 83 vol. % Ca powder particles smaller than 250 μm. The mean particle size sometimes matches, sometimes deviates substantially from the predictions of the Champagne & Anger equation likely due to unexpected secondary atomization. The particle size distribution is typical for a ligament-disintegration atomization mode. Scanning electron micrographs showed that the morphology of these Ca powders varied with powder size. Spark testing and auto-ignition tests indicated that the atomized powders were difficult to ignite, providing confidence that this material can be handled safely in air.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Rui; Gao, Liming, E-mail: liming.gao@sjtu.edu.cn; Li, Ming, E-mail: mingli90@sjtu.edu.cn

    As the continuous shrinkage of the interconnect line width in microelectronics devices, there is a growing concern about the electromigration (EM) failure of bonding wire. In addition, an innovative Ag–8Au–3Pd alloy wire has shown promise as an economical substitute for gold wire interconnects due to the cost pressure of gold in the last decade. In present study of the Ag–8Au–3Pd alloy wire, the surface diffusion occupied the dominant position during EM failure, and the activation energy was found to be 0.61 eV. In order to reveal the failure mechanism, the cross-sections of the Ag–8Au–3Pd alloy wire during EM were preparedmore » by focused ion beam (FIB) micro-machining for electron backscatter diffraction (EBSD) analysis. The microstructure evolution of the Ag–8Au–3Pd alloy wire was characterized by the grain size and grain boundary. As a result, the EM failure originates in the atom transportation, which causes grain size increasing and atom diffusion on the wire surface. - Highlights: • The activation energy of Ag–8Au–3Pd alloy wire was obtained as 0.61 eV. • During EM, the silver atoms diffused from negative to the positive terminal on the wire surface. • The microstructure (grain size and grain boundary) was characterized by FIB-EBSD. • During EM, the atom transportation was found to cause grain size growth and atom diffusion on the wire surface.« less

  9. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver

    2014-08-05

    A novel gas atomization reaction synthesis (GARS) method was developed in this project to enable production (at our partner’s facility) a precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE) containing intermetallic compound (IMC) phase. Consolidation and heat-treatment experiments were performed at Ames Lab to promote the exchange of oxygen from the surface oxide to the RE intermetallic to form nano-metric oxide dispersoids. Alloy selection was aided by an internal oxidation and serial grinding experiments at Ames Lab and found that Hf-containing alloys may form more stable dispersoids than Ti-containing alloy, i.e., the Hf-containing system exhibitedmore » five different oxide phases and two different intermetallics compared to the two oxide phases and one intermetallic in the Ti-containing alloys. Since the simpler Ti-containing system was less complex to characterize, and make observations on the effects of processing parameters, the Ti-containing system was selected by Ames Lab for experimental atomization trials at our partner. An internal oxidation model was developed at Ames Lab and used to predict the heat treatment times necessary for dispersoid formation as a function of powder size and temperature. A new high-pressure gas atomization (HPGA) nozzle was developed at Ames Lab with the aim of promoting fine powder production at scales similar to that of the high gas-flow and melt-flow of industrial atomizers. The atomization nozzle was characterized using schlieren imaging and aspiration pressure testing at Ames Lab to determine the optimum melt delivery tip geometry and atomization pressure to promote enhanced secondary atomization mechanisms. Six atomization trials were performed at our partner to investigate the effects of: gas atomization pressure and reactive gas concentration on the particle size distribution (PSD) and the oxygen content of the resulting powder. Also, the effect on the rapidly solidified microstructure (as a function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.« less

  10. Optimists or realists? How ants allocate resources in making reproductive investments.

    PubMed

    Enzmann, Brittany L; Nonacs, Peter

    2018-04-24

    Parents often face an investment trade-off between either producing many small or fewer large offspring. When environments vary predictably, the fittest parental solution matches available resources by varying only number of offspring and never optimal individual size. However when mismatches occur often between parental expectations and true resource levels, dynamic models like multifaceted parental investment (MFPI) and parental optimism (PO) both predict offspring size can vary significantly. MFPI is a "realist" strategy: parents assume future environments of average richness. When resources exceed expectations and it is too late to add more offspring, the best-case solution increases investment per individual. Brood size distributions therefore track the degree of mismatch from right-skewed around an optimal size (slight underestimation of resources) to left-skewed around a maximal size (gross underestimation). Conversely, PO is an "optimist" strategy: parents assume maximally good resource futures and match numbers to that situation. Normal or lean years do not affect "core" brood as costs primarily fall on excess "marginal" siblings who die or experience stunted growth (producing left-skewed distributions). Investment patterns supportive of both MFPI and PO models have been observed in nature, but studies that directly manipulate food resources to test predictions are lacking. Ant colonies produce many offspring per reproductive cycle and are amenable to experimental manipulation in ways that can differentiate between MFPI and PO investment strategies. Colonies in a natural population of a harvester ant (Pogonomyrmex salinus) were protein-supplemented over 2 years, and mature sexual offspring were collected annually prior to their nuptial flight. Several results support either MFPI or PO in terms of patterns in offspring size distributions and how protein differentially affected male and female production. Unpredicted by either model, however, is that supplementation affected distributions more strongly across years than within (e.g., small females are significantly rarer in the year after colonies receive protein). Parental investment strategies in P. salinus vary dynamically across years and conditions. Finding that past conditions can more strongly affect reproductive decisions than current ones, however, is not addressed by models of parental investment. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  11. Versatile buffer layer architectures based on Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Roucka, R.; Tolle, J.; Cook, C.; Chizmeshya, A. V. G.; Kouvetakis, J.; D'Costa, V.; Menendez, J.; Chen, Zhihao D.; Zollner, S.

    2005-05-01

    We describe methodologies for integration of compound semiconductors with Si via buffer layers and templates based on the GeSn system. These layers exhibit atomically flat surface morphologies, low defect densities, tunable thermal expansion coefficients, and unique ductile properties, which enable them to readily absorb differential stresses produced by mismatched overlayers. They also provide a continuous selection of lattice parameters higher than that of Ge, which allows lattice matching with technologically useful III-V compounds. Using this approach we have demonstrated growth of GaAs, GeSiSn, and pure Ge layers at low temperatures on Si(100). These materials display extremely high-quality structural, morphological, and optical properties opening the possibility of versatile integration schemes directly on silicon.

  12. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO3 probed by X-ray diffractometry and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.

  13. Surface composition of alloys

    NASA Astrophysics Data System (ADS)

    Sachtler, W. M. H.

    1984-11-01

    In equilibrium, the composition of the surface of an alloy will, in general, differ from that of the bulk. The broken-bond model is applicable to alloys with atoms of virtually equal size. If the heat of alloy formation is zero, the component of lower heat of atomization is found enriched in the surface. If both partners have equal heats of sublimination, the surface of a diluted alloy is enriched with the minority component. Size effects can enhance or weaken the electronic effects. In general, lattice strain can be relaxed by precipitating atoms of deviating size on the surface. Two-phase alloys are described by the "cherry model", i.e. one alloy phase, the "kernel" is surrounded by another alloy, the "flesh", and the surface of the outer phase, the "skin" displays a deviating surface composition as in monophasic alloys. In the presence of molecules capable of forming chemical bonds with individual metal atoms, "chemisorption induced surface segregation" can be observed at low temperatures, i.e. the surface becomes enriched with the metal forming the stronger chemisorption bonds.

  14. Formation of graphene on BN substrate by vapor deposition method and size effects on its structure

    NASA Astrophysics Data System (ADS)

    Giang, Nguyen Hoang; Hanh, Tran Thi Thu; Ngoc, Le Nhu; Nga, Nguyen To; Van Hoang, Vo

    2018-04-01

    We report MD simulation of the growth of graphene by the vapor deposition on a two-dimensional hBN substrate. The systems (containing carbon vapor and hBN substrate) are relaxed at high temperature (1500 K), and then it is cooled down to room one (300 K). Carbon atoms interact with the substrate via the Lennard-Jones potential while the interaction between carbon atoms is computed via the Tersoff potential. Depending on the size of the model, different crystalline honeycomb structures have been found. Structural properties of the graphene obtained at 300 K are studied by analyzing radial distribution functions (RDFs), coordination numbers, ring statistics, interatomic distances, bond-angle distributions and 2D visualization of atomic configurations. We find that the models containing various numbers of atoms have a honeycomb structure. Besides, differences in structural properties of graphene formed by the vapor deposition on the substrate and free standing one are found. Moreover, the size effect on the structure is significant.

  15. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  16. Melting of size-selected gallium clusters with 60-183 atoms.

    PubMed

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  17. Comparison of gamma-gamma Phase Coarsening Responses of Three Powder Metal Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Johnson, D. F.; MacKay, R. A.; Rogers, R. B.; Sudbrack, C. K.; Garg, A.; Locci, I. E.; Semiatin, S. L.; Kang, E.

    2016-01-01

    The phase microstructures of several powder metal (PM) disk superalloys were quantitatively evaluated. Contents, chemistries, and lattice parameters of gamma and gamma strengthening phase were determined for conventionally heat treated Alloy 10, LSHR, and ME3 superalloys, after electrolytic phase extractions. Several of long term heat treatments were then performed, to allow quantification of the precipitation, content, and size distribution of gamma at a long time interval to approximate equilibrium conditions. Additional coarsening heat treatments were performed at multiple temperatures and shorter time intervals, to allow quantification of the precipitation, contents and size distributions of gamma at conditions diverging from equilibrium. Modest differences in gamma and gamma lattice parameters and their mismatch were observed among the alloys, which varied with heat treatment. Yet, gamma coarsening rates were very similar for all three alloys in the heat treatment conditions examined. Alloy 10 had higher gamma dissolution and formation temperatures than LSHR and ME3, but a lower lattice mismatch, which was slightly positive for all three alloys at room temperature. The gamma precipitates of Alloy 10 appeared to remain coherent at higher temperatures than for LSHR and ME3. Higher coarsening rates were observed for gamma precipitates residing along grain boundaries than for those within grains in all three alloys, during slow-moderate quenching from supersolvus solution heat treatments, and during aging at temperatures of 843 C and higher.

  18. Nanotechnology Investigated for Future Gelled and Metallized Gelled Fuels

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2003-01-01

    The objective of this research is to create combustion data for gelled and metallized gelled fuels using unique nanometer-sized gellant particles and/or nanometer-sized aluminum particles. Researchers at the NASA Glenn Research Center are formulating the fuels for both gas turbine and pulsed detonation engines. We intend to demonstrate metallized gelled fuel ignition characteristics for pulse detonation engines with JP/aluminum fuel and for gas turbine engines with gelled JP, propane, and methane fuel. The fuels to be created are revolutionary as they will deliver the highest theoretically maximum performance of gelled and metallized gelled fuels. Past combustion work has used micrometer-sized particles, which have limited the combustion performance of gelled and metallized gelled fuels. The new fuel used nanometer-sized aluminum oxide particles, which reduce the losses due to mismatch in the gas and solid phases in the exhaust. Gelled fuels provide higher density, added safety, reduced fuel slosh, reduced leakage, and increased exhaust velocity. Altogether, these benefits reduce the overall size and mass of the vehicle, increasing its flexibility.

  19. Detection of single base mismatches of thymine and cytosine residues by potassium permanganate and hydroxylamine in the presence of tetralkylammonium salts.

    PubMed Central

    Gogos, J A; Karayiorgou, M; Aburatani, H; Kafatos, F C

    1990-01-01

    In the presence of tetramethylammonium chloride, potassium permanganate specifically modifies mismatched thymines. Similarly, the modification of mismatched cytosines by hydroxylamine was enhanced by tetraethylammonium chloride. Modification followed by piperidine cleavage permits specific identification of the T and C mismatches and by extension, when the opposite DNA strand is analyzed, of A and G mismatches as well. These reactions can be performed conveniently with DNA immobilized on Hybond M-G paper. We describe conditions that exploit these reactions to detect mismatches, e.g. point mutations or genetic polymorphisms, using either synthetic oligonucleotide probes or PCR amplification of specific genomic DNA sequences. Images PMID:2263445

  20. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  1. Fragmentation of Newtonian and viscoelastic liquids during rotary atomization

    NASA Astrophysics Data System (ADS)

    Keshavarz, Bavand; Moore, John; Houze, Eric; Koerner, Michael; McKinley, Gareth; MIT Collaboration; Axalta Coating Systems Collaboration

    2015-11-01

    Animals drying their wet fur by rapidly shaking their body and rotary atomization in paint coating are just a few examples in which centripetal acceleration is used to disintegrate liquid films into smaller fragments. Narrower size distributions and well-defined geometrical fluid pathlines (similar to the involute of a circle) are the main advantages of this type of atomization as compared to air-assisted atomization. Despite these inherent advantages there is a paucity of fundamental knowledge about the roles of fluid rheology in this process. We study the effects of viscosity by performing rotary atomization tests on silicone oils with a wide range of viscosities (1-1000 mPa.s). Viscoelastic effects are also probed by spraying solutions of polyethylene oxide (PEO) dissolved in water at different concentrations. Our results show that understanding the effects of liquid properties on the instabilities that control rotary atomization (primarily Rayleigh-Taylor instability during the ligament formation followed by Rayleigh-Plateau instability during droplet pinch-off) can help us understand the resulting fragment size distributions.

  2. Structural phase transitions in SrTiO 3 nanoparticles

    DOE PAGES

    Zhang, Han; Liu, Sizhan; Scofield, Megan E.; ...

    2017-08-04

    We present that pressure dependent structural measurements on monodispersed nanoscale SrTiO 3 samples with average diameters of 10 to ~80 nm were conducted to enhance the understanding of the structural phase diagram of nanoscale SrTiO 3. A robust pressure independent polar structure was found in the 10 nm sample for pressures up to 13 GPa, while a size dependent cubic to tetragonal transition occurs (at P = P c) for larger particle sizes. In conclusion, the results suggest that the growth of ~10 nm STO particles on substrates with significant lattice mismatch may maintain a polar state for a largemore » range of strain values, possibly enabling device use.« less

  3. Technique to measure wavenumber mismatch between quadratically interacting modes

    NASA Astrophysics Data System (ADS)

    Hajj, M. R.; Davila, J. B.; Miksad, R. W.; Powers, E. J.

    1995-02-01

    Nonlinear energy cascade by means of three-wave resonant interactions is a characteristic feature of transitioning and turbulent flows. Resonant wavenumber mismatch between these interacting modes can arise from the dispersive characteristics of the interacting waves and from spectral broadening due to random effects. In this paper, a general technique is presented to estimate the average level of instantaneous wavenumber mismatch, (Delta k) = (k(sub m) - k(sub i) - k(sub j)), between components whose frequencies obey the resonant selection condition, f(sub m) - f(sub i) - f(sub j) = 0. Cross-correlation of the auto-bispectrum is used to quantify the level of mismatch. The concept of bispectrum coupling coherency is introduced to determine the confidence level in the wavenumber mismatch estimates. These techniques are then applied to measure wavenumber mismatch in the transitioning field of a plane wake. The results show that the average of the instantaneous mismatch between the actual interacting modes (k(sub m) - k(sub i) - k(sub j)) is in general not equal to the mismatch between the average wavenumbers of each interacting mode (k(sub m) - (k(sub i)) - (k(sub j)).

  4. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators

    PubMed Central

    Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.

    2006-01-01

    Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786

  5. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro.

    PubMed

    Larson, Erik D; Nickens, David; Drummond, James T

    2002-02-01

    The ability of cell-free extracts to correct DNA mismatches has been demonstrated in both prokaryotes and eukaryotes. Such an assay requires a template containing both a mismatch and a strand discrimination signal, and the multi-step construction process can be technically difficult. We have developed a three-step procedure for preparing DNA heteroduplexes containing a site-specific nick. The mismatch composition, sequence context, distance to the strand signal, and the means for assessing repair in each strand are adjustable features built into a synthetic oligonucleotide. Controlled ligation events involving three of the four DNA strands incorporate the oligonucleotide into a circular template and generate the repair-directing nick. Mismatch correction in either strand of a prototype G.T mismatch was achieved by placing a nick 10-40 bp away from the targeted base. This proximity of nick and mismatch represents a setting where repair has not been well characterized, but the presence of a nick was shown to be essential, as was the MSH2/MSH6 heterodimer, although low levels of repair occurred in extract defective in each protein. All repair events were inhibited by a peptide that interacts with proliferating cell nuclear antigen and inhibits both mismatch repair and long-patch replication.

  6. Analysis of in vivo correction of defined mismatches in the DNA mismatch repair mutants msh2, msh3 and msh6 of Saccharomyces cerevisiae.

    PubMed

    Lühr, B; Scheller, J; Meyer, P; Kramer, W

    1998-02-01

    We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.

  7. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  8. DNA Methylation-a Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy.

    PubMed

    Mishra, Manish; Kowluru, Renu A

    2018-04-21

    In the development of diabetic retinopathy, retinal mitochondria are dysfunctional, and mitochondrial DNA (mtDNA) is damaged with increased base mismatches and hypermethylated cytosines. DNA methylation is also a potential source of mutation, and in diabetes, the noncoding region, the displacement loop (D-loop), experiences more methylation and base mismatches than other regions of the mtDNA. Our aim was to investigate a possible crosstalk between mtDNA methylation and base mismatches in the development of diabetic retinopathy. The effect of inhibition of Dnmts (by 5-aza-2'-deoxycytidine or Dnmt1-siRNA) on glucose-induced mtDNA base mismatches was investigated in human retinal endothelial cells by surveyor endonuclease digestion and validated by Sanger sequencing. The role of deamination factors on increased base mismatches was determined in the cells genetically modulated for mitochondrial superoxide dismutase (Sod2) or cytidine-deaminase (APOBEC3A). The results were confirmed in an in vivo model using retinal microvasculature from diabetic mice overexpressing Sod2. Inhibition of DNA methylation, or regulation of cytosine deamination, significantly inhibited an increase in base mismatches at the D-loop and prevented mitochondrial dysfunction. Overexpression of Sod2 in mice also prevented diabetes-induced D-loop hypermethylation and increase in base mismatches. The crosstalk between DNA methylation and base mismatches continued even after termination of hyperglycemia, suggesting its role in the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Inhibition of DNA methylation limits the availability of methylated cytosine for deamination, suggesting a crosstalk between DNA methylation and base mismatches. Thus, regulation of DNA methylation, or its deamination, should impede the development of diabetic retinopathy by preventing formation of base mismatches and mitochondrial dysfunction.

  9. Mismatched HLA-DRB3 Can Induce a Potent Immune Response After HLA 10/10 Matched Stem Cell Transplantation.

    PubMed

    van Balen, Peter; van Luxemburg-Heijs, Simone A P; van de Meent, Marian; van Bergen, Cornelis A M; Halkes, Constantijn J M; Jedema, Inge; Falkenburg, J H Frederik

    2017-12-01

    Donors for allogeneic stem cell transplantation are preferentially matched with patients for HLA-A, -B, -C, and -DRB1. Mismatches between donor and patient in these alleles are associated with an increased risk of graft-versus-host disease (GVHD). In contrast, HLA-DRB3, 4 and 5, HLA-DQ and HLA-DP are usually assumed to be low expression loci with limited relevance, although mismatches in HLA-DQ and HLA-DP can result in alloimmune responses. Mismatches in HLA-DRB3, 4, and 5 are usually not taken into account in donor selection. Conversion of chimerism in the presence of GVHD after CD4 donor lymphocyte infusion was observed in a patient, HLA 10/10 matched, but mismatched for HLA-DRB3 and HLA-DPB1 compared with the donor. Alloreactive CD4 T cells were isolated from peripheral blood after CD4 donor lymphocyte infusion and recognition of donor-derived target cells transduced with the mismatched patient variant HLA-DRB3 and HLA-DPB1 molecule was tested. A dominant polyclonal CD4 T cell response against patient's mismatched HLA-DRB3 molecule was found in addition to an immune response against patient's mismatched HLA-DPB1 molecule. CD4 T cells specific for these HLA class II molecules recognized both hematopoietic target cells as well as GVHD target cells. In contrast to the assumption that mismatches in HLA-DRB3, 4, and 5 are not of immunogenic significance after HLA 10/10 matched allogeneic stem cell transplantation, we show that in this matched setting not only mismatches in HLA-DPB1, but also mismatches in HLA-DRB3 may induce a polyclonal allo-immune response associated with conversion of chimerism and severe GVHD.

  10. Impact of ABO incompatibility on patients' outcome after haploidentical hematopoietic stem cell transplantation for acute myeloid leukemia - a report from the Acute Leukemia Working Party of the EBMT.

    PubMed

    Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-Jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon

    2017-06-01

    A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II-IV acute graft- versus -host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22-4.66; P =0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft- versus -host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II-IV acute graft- versus -host disease rates (HR 2.03; 95% CI: 1.00-4.10; P =0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 - 3.18; P =0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. Copyright© Ferrata Storti Foundation.

  11. Impact of ABO incompatibility on patients’ outcome after haploidentical hematopoietic stem cell transplantation for acute myeloid leukemia - a report from the Acute Leukemia Working Party of the EBMT

    PubMed Central

    Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Huang, Xiao-jun; Ciceri, Fabio; Arcese, William; Tischer, Johanna; Koc, Yener; Bruno, Benedetto; Gülbas, Zafer; Blaise, Didier; Maertens, Johan; Ehninger, Gerhard; Mohty, Mohamad; Nagler, Arnon

    2017-01-01

    A significant proportion of hematopoietic stem cell transplants are performed with ABO-mismatched donors. The impact of ABO mismatch on outcome following transplantation remains controversial and there are no published data regarding the impact of ABO mismatch in acute myeloid leukemia patients receiving haploidentical transplants. Using the European Blood and Marrow Transplant Acute Leukemia Working Group registry we identified 837 patients who underwent haploidentical transplantation. Comparative analysis was performed between patients who received ABO-matched versus ABO-mismatched haploidentical transplants for common clinical outcome variables. Our cohort consisted of 522 ABO-matched patients and 315 ABO-mismatched patients including 150 with minor, 127 with major, and 38 with bi-directional ABO mismatching. There were no significant differences between ABO matched and mismatched patients in terms of baseline disease and clinical characteristics. Major ABO mismatching was associated with inferior day 100 engraftment rate whereas multivariate analysis showed that bi-directional mismatching was associated with increased risk of grade II–IV acute graft-versus-host disease [hazard ratio (HR) 2.387; 95% confidence interval (CI): 1.22–4.66; P=0.01). Non-relapse mortality, relapse incidence, leukemia-free survival, overall survival, and chronic graft-versus-host disease rates were comparable between ABO-matched and -mismatched patients. Focused analysis on stem cell source showed that patients with minor mismatching transplanted with bone marrow grafts experienced increased grade II–IV acute graft-versus-host disease rates (HR 2.03; 95% CI: 1.00–4.10; P=0.04). Patients with major ABO mismatching and bone marrow grafts had decreased survival (HR=1.82; CI 95%: 1.048 – 3.18; P=0.033). In conclusion, ABO incompatibility has a marginal but significant clinical effect in acute myeloid leukemia patients undergoing haploidentical transplantation. PMID:28255020

  12. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148

  14. Epitaxial hexagonal boron nitride on Ir(111): A work function template

    NASA Astrophysics Data System (ADS)

    Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter

    2014-06-01

    Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.

  15. Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.

    PubMed

    Schenk, Mariela; Krauss, Jochen; Holzschuh, Andrea

    2018-01-01

    Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  16. Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot

    NASA Astrophysics Data System (ADS)

    Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.

    2018-07-01

    Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.

  17. Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang

    2017-03-01

    Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1-xGaxSe2-ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (-1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.

  18. Tunable natural nano-arrays: controlling surface properties and light reflectance

    NASA Astrophysics Data System (ADS)

    Watson, Jolanta A.; Myhra, Sverre; Watson, Gregory S.

    2006-01-01

    The general principles of optical design based on the theories of reflection, refraction and diffraction have been rigorously developed and optimized over the last three centuries. Of increasing importance has been the ability to predict and devise new optical technologies designed for specific functions. A key design feature of many of today's optical materials is the control of reflection and light transmittance through the medium. A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. An alternative surface modification to the multi layered stack coating (gradient index coating) is to produce a surface with structures having a period and height shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. Bernhard and Miller some forty years ago were the first to observe such structures found on the surface of insects. These were found in the form of hexagonally close packed nanometre sized protrusions on the corneal surface of certain moths. In this study we report on similar structures which we have found on certain species of cicada wings demonstrating that the reflective/transmission properties of these natural nano-structures can be tuned by controlled removal of the structure height using Atomic Force Microscopy (AFM).

  19. Solar cells with low cost substrates and process of making same

    DOEpatents

    Mitchell, Kim W.

    1984-01-01

    A solar cell having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron.sup.2. The intermediate recrystallized film has a grain size in the range of from about 10 microns.sup.2 to about 10,000 microns.sup.2 and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns.sup.2. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  20. Solar cells with low cost substrates, process of making same and article of manufacture

    DOEpatents

    Mitchell, K.W.

    A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  1. Educational Mismatches and Labor Market Outcomes: Evidence from Both Vertical and Horizontal Mismatches in Thailand

    ERIC Educational Resources Information Center

    Pholphirul, Piriya

    2017-01-01

    Purpose: Educational mismatches constitute negative impacts on labor markets in most countries, Thailand is no exception. The purpose of this paper is to quantify the degree of educational mismatch in Thailand and its impacts on labor market outcomes. Design/methodology/approach: This study analyzes data obtained from Thailand's Labor Force Survey…

  2. Immigrants' Educational Mismatch and the Penalty of Over-Education

    ERIC Educational Resources Information Center

    Kalfa, Eleni; Piracha, Matloob

    2017-01-01

    This paper analyses immigrants' educational mismatch and its impact on wages in Spain. The incidence of immigrants' education-occupation mismatch in the Spanish labour market can largely be explained by the mismatch in the last job held in the home country. The probability of having been over-educated in the home country has a higher effect on the…

  3. The Mismatch between Student Educational Expectations and Realities: Prevalence, Causes, and Consequences

    ERIC Educational Resources Information Center

    Maloshonok, Natalia; Terentev, Evgeniy

    2017-01-01

    This article aims to answer three questions concerning (1) the prevalence of the mismatch between student expectations and real university life, (2) factors influencing this mismatch, and (3) the effect of the expectation-reality mismatch on academic performance during the first year of study at university. The results of this study suggest that a…

  4. Social, Spatial, and Skill Mismatch among Immigrants and Native-Born Workers in Los Angeles. Working Paper.

    ERIC Educational Resources Information Center

    Pastor, Manuel, Jr.; Marcelli, Enrico A.

    Racially different economic outcomes stem from multiple causes, including various "mismatches" between minority employees and available jobs. A skill mismatch occurs when individuals' education and job skills do not qualify them for existing jobs. A spatial mismatch means that people live far from the work for which they qualify. A…

  5. Entanglement verification with detection efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbao; Lütkenhaus, Norbert

    Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.

  6. Does the tautomeric status of the adenine bases change upon the dissociation of the A*·A(syn) Topal-Fresco DNA mismatch? A combined QM and QTAIM atomistic insight.

    PubMed

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2014-02-28

    We have scrupulously explored the tautomerisation mechanism via the double proton transfer of the A*·A(syn) Topal-Fresco base mispair (C(s) symmetry), formed by the imino and amino tautomers of the adenine DNA base in the anti- and syn-conformations, respectively, bridging quantum-mechanical calculations with Bader's quantum theory of atoms in molecules. It was found that the A*·A(syn) ↔ A·A*(syn) tautomerisation is the asynchronous concerted process. It was established that the A*·A(syn) DNA mismatch is stabilized by the N6H···N6 (6.35) and N1H···N7 (6.17) hydrogen (H) bonds, whereas the A·A*(syn) base mispair (Cs) by the N6H···N6 (8.82) and N7H···N1 (9.78) H-bonds and the C8H···HC2 HH-bond (0.30 kcal mol(-1)). Using the sweeps of the energies of the intermolecular H-bonds, it was observed that the N6H···N6 and N1H···N7/N7H···N1 H-bonds are anti-cooperative and mutually weaken each other in the A*·A(syn) and A·A*(syn) mispairs. It was revealed that the A·A*(syn) DNA mismatch is a dynamically unstable structure with a short lifetime of 1.12 × 10(-13) s and any of its 6 low-frequency intermolecular vibrations can develop during this period of time. This observation makes it impossible to change the tautomeric status of the A bases upon the dissociation of the A*·A(syn) base mispair into the monomers during DNA replication.

  7. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    PubMed

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  8. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template

    PubMed Central

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211

  9. The origins of particle size effects in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Bond, Geoffrey C.

    1985-06-01

    Model calculations are presented to show how the fraction of atoms at the surface of small metal particles increases as their size diminishes in the range 10 to 2 nm. Such particles are prepared either by condensing atoms or aggregates from the vapour phase onto a support, or by chemical methods in the liquid phase, i.e. the traditional routes for preparing supported metal catalysts. The first group of methods leads to artificially pure materials in which the contact between metal and support is poor. The second group of methods leads to the introduction of impurities, to a greater variety of forms of particle, but to a generally firmer binding of metal to support: this permits electronic interactions between the components to occur. Recent literature on the chemisorptive and catalytic properties of metal particles, usually less than 10 nm in size, suggests that certain classes of reaction may be designated as "structure-insensitive" in that their rates depend only minimally on particle size, whereas others, denoted as "structure-sensitive", have rates which either increase or decrease with size. After discounting trivial effects, a hard core of results remains, demanding explanation. Although certain hydrocarbon transformations appear to need sites comprising more than a certain minimum number of atoms, it is thought that the electronic character of surface atoms plays a greater role than their geometric disposition.

  10. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  11. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  12. Perspective: Size selected clusters for catalysis and electrochemistry

    DOE PAGES

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; ...

    2018-03-15

    We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less

  13. Perspective: Size selected clusters for catalysis and electrochemistry

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  14. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.

    PubMed

    Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria

    2017-03-01

    Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.

  15. Intelligent Sensors for Atomization Processing of Molten Metals and Alloys

    DTIC Science & Technology

    1988-06-01

    20ff. 12. Hirleman, Dan E. Particle Sizing by Optical , Nonimaging Techniques. Liquid Particle Size Measurement Techniques, ASTM, 1984, pp. 35ff. 13...sensors are based on electric, electromagnetic or optical principles, the latter being most developed in fields obviously related to atomization. Optical ...beams to observe various interference, diffraction, and heterodyning effects, and to observe, with high signal-to-noise ratio, even weak optical

  16. Fast resolution change in neutral helium atom microscopy

    NASA Astrophysics Data System (ADS)

    Flatabø, R.; Eder, S. D.; Ravn, A. K.; Samelin, B.; Greve, M. M.; Reisinger, T.; Holst, B.

    2018-05-01

    In neutral helium atom microscopy, a beam of atoms is scanned across a surface. Though still in its infancy, neutral helium microscopy has seen a rapid development over the last few years. The inertness and low energy of the helium atoms (less than 0.1 eV) combined with a very large depth of field and the fact that the helium atoms do not penetrate any solid material at low energies open the possibility for a non-destructive instrument that can measure topology on the nanoscale even on fragile and insulating surfaces. The resolution is determined by the beam spot size on the sample. Fast resolution change is an attractive property of a microscope because it allows different aspects of a sample to be investigated and makes it easier to identify specific features. However up till now it has not been possible to change the resolution of a helium microscope without breaking the vacuum and changing parts of the atom source. Here we present a modified source design, which allows fast, step wise resolution change. The basic design idea is to insert a moveable holder with a series of collimating apertures in front of the source, thus changing the effective source size of the beam and thereby the spot size on the surface and thus the microscope resolution. We demonstrate a design with 3 resolution steps. The number of resolution steps can easily be extended.

  17. Stabilizing effect of propionic acid derivative of anthraquinone--polyamine conjugate incorporated into α-β chimeric oligonucleotides on the alternate-stranded triple helix.

    PubMed

    Moriguchi, Tomohisa; Azam, A T M Zafrul; Shinozuka, Kazuo

    2011-06-15

    Two types of anthraquinone conjugates were synthesized as non-nucleosidic oligonucleotide components. These include an anthraquinone derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid and an anthraquinone--polyamine derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid. The conjugates were successfully incorporated into the "linking-region" of the α-β chimeric oligonucleotides via phosphoramidite method as non-nucleosidic backbone units. The resultant novel α-β chimeric oligonucleotides possessed two diastereomers that were generated by the introduction of the anthraquinone conjugate with a stereogenic carbon atom. The isomers were successfully separated by a reversed-phase HPLC. UV-melting experiments revealed that both stereoisomers formed a substantially stable alternate-strand triple helix, irrespective of the stereochemistry of the incorporated non-nucleosidic backbone unit. However, the enhancing effect on thermal stability depended on the length of the alkyl linker connecting anthraquinone moiety and the propionic acid moiety. The sequence discrimination ability of the chimeric oligonucleotides toward mismatch target duplex was also examined. The T(m) values of the triplexes containing the mismatch target were substantially lower than the T(m) values of those containing the full-match target. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) required for the dissociation of the triplexes into the third strand and target duplex were also measured.

  18. Building Atoms Shell by Shell.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1993-01-01

    Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…

  19. Atomizing nozzle and process

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  20. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  1. Snowshoe hares display limited phenotypic plasticity to mismatch in seasonal camouflage

    USGS Publications Warehouse

    Zimova, Marketa; Mills, L. Scott; Lukacs, Paul M.; Mitchell, Michael S.

    2014-01-01

    As duration of snow cover decreases owing to climate change, species undergoing seasonal colour moults can become colour mismatched with their background. The immediate adaptive solution to this mismatch is phenotypic plasticity, either in phenology of seasonal colour moults or in behaviours that reduce mismatch or its consequences. We observed nearly 200 snowshoe hares across a wide range of snow conditions and two study sites in Montana, USA, and found minimal plasticity in response to mismatch between coat colour and background. We found that moult phenology varied between study sites, likely due to differences in photoperiod and climate, but was largely fixed within study sites with only minimal plasticity to snow conditions during the spring white-to-brown moult. We also found no evidence that hares modify their behaviour in response to colour mismatch. Hiding and fleeing behaviours and resting spot preference of hares were more affected by variables related to season, site and concealment by vegetation, than by colour mismatch. We conclude that plasticity in moult phenology and behaviours in snowshoe hares is insufficient for adaptation to camouflage mismatch, suggesting that any future adaptation to climate change will require natural selection on moult phenology or behaviour.

  2. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

  3. Effect of Nb Addition to Ti-Bearing Super Martensitic Stainless Steel on Control of Austenite Grain Size and Strengthening

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoping; Langelier, Brian; Gault, Baptiste; Subramanian, Sundaresa

    2017-05-01

    The role of Nb in normalized and tempered Ti-bearing 13Cr5Ni2Mo super martensitic stainless steel is investigated through in-depth characterization of the bimodal chemistry and size of Nb-rich precipitates/atomic clusters and Nb in solid solution. Transmission electron microscopy and atom probe tomography are used to analyze the samples and clarify precipitates/atom cluster interactions with dislocations and austenite grain boundaries. The effect of 0.1 wt pct Nb addition on the promotion of (Ti, Nb)N-Nb(C,N) composite precipitates, as well as the retention of Nb in solution after cooling to room temperature, are analyzed quantitatively. (Ti, Nb)N-Nb(C,N) composite precipitates with average diameters of approximately 24 ± 8 nm resulting from epitaxial growth of Nb(C,N) on pre-existing (Ti,Nb)N particles, with inter-particle spacing on the order of 205 ± 68 nm, are found to be associated with mean austenite grain size of 28 ± 10 µm in the sample normalized at 1323 K (1050 °C). The calculated Zener limiting austenite grain size of 38 ± 13 µm is in agreement with the experimentally observed austenite grain size distribution. 0.08 wt pct Nb is retained in the as-normalized condition, which is able to promote Nb(C, N) atomic clusters at dislocations during tempering at 873 K (600 °C) for 2 hours, and increases the yield strength by 160 MPa, which is predicted to be close to maximum increase in strengthening effect. Retention of solute Nb before tempering also leads to it preferentially combing with C and N to form Nb(C, N) atom clusters, which suppresses the occurrence of Cr- and Mo-rich carbides during tempering.

  4. Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene

    NASA Astrophysics Data System (ADS)

    Sabzyan, Hassan; Sadeghpour, Narges

    2016-04-01

    Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.

  5. Neutron and weak-charge distributions of the 48Ca nucleus

    DOE PAGES

    Hagen, Gaute; Forssen, Christian; Nazarewicz, Witold; ...

    2015-11-02

    What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. Although the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus 48Ca. We show that the neutron skin (difference between the radii of the neutron and proton distributions)more » is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities that are at present targeted by precision measurements. Here, based on ab initio results for 48Ca, we provide a constraint on the size of a neutron star.« less

  6. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    PubMed

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  7. When the Battle is Lost and Won: Delayed Chest Closure After Bilateral Lung Transplantation.

    PubMed

    Soresi, Simona; Sabashnikov, Anton; Weymann, Alexander; Zeriouh, Mohamed; Simon, André R; Popov, Aron-Frederik

    2015-10-12

    In this article we summarize benefits of delayed chest closure strategy in lung transplantation, addressing indications, different surgical techniques, and additional perioperative treatment. Delayed chest closure seems to be a valuable and safe strategy in managing patients with various conditions after lung transplantation, such as instable hemodynamics, need for high respiratory pressures, coagulopathy, and size mismatch. Therefore, this approach should be considered in lung transplant centers to give patients time to recover before the chest is closed.

  8. Transmission Electron Microscope Measures Lattice Parameters

    NASA Technical Reports Server (NTRS)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  9. The effect of sociodemographic (mis)match between interviewers and respondents on unit and item nonresponse in Belgium.

    PubMed

    Vercruyssen, Anina; Wuyts, Celine; Loosveldt, Geert

    2017-09-01

    Interviewer characteristics affect nonresponse and measurement errors in face-to-face surveys. Some studies have shown that mismatched sociodemographic characteristics - for example gender - affect people's behavior when interacting with an interviewer at the door and during the survey interview, resulting in more nonresponse. We investigate the effect of sociodemographic (mis)matching on nonresponse in two successive rounds of the European Social Survey in Belgium. As such, we replicate the analyses of the effect of (mis)matching gender and age on unit nonresponse on the one hand, and of gender, age and education level (mis)matching on item nonresponse on the other hand. Recurring effects of sociodemographic (mis)match are found for both unit and item nonresponse. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. On the absence of a correlation between population size and 'toolkit size' in ethnographic hunter-gatherers.

    PubMed

    Aoki, Kenichi

    2018-04-05

    In apparent contradiction to the theoretically predicted effect of population size on the quality/quantity of material culture, statistical analyses on ethnographic hunter-gatherers have shown an absence of correlation between population size and toolkit size. This has sparked a heated, if sometimes tangential, debate as to the usefulness of the theoretical models and as to what modes of cultural transmission humans are capable of and hunter-gatherers rely on. I review the directly relevant theoretical literature and argue that much of the confusion is caused by a mismatch between the theoretical variable and the empirical observable. I then confirm that a model incorporating the appropriate variable does predict a positive association between population size and toolkit size for random oblique, vertical, best-of- K , conformist, anticonformist, success bias and one-to-many cultural transmission, with the caveat that for all populations sampled, the population size has remained constant and toolkit size has reached the equilibrium for this population size. Finally, I suggest three theoretical scenarios, two of them involving variable population size, that would attenuate or eliminate this association and hence help to explain the empirical absence of correlation.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  11. Measurement of mismatch loss in CPV modul

    NASA Astrophysics Data System (ADS)

    Liu, Mingguo; Kinsey, Geoffrey S.; Bagienski, Will; Nayak, Adi; Garboushian, Vahan

    2012-10-01

    A setup capable of simultaneously measuring I-V curves of a full string and its individual cells has been developed. This setup enables us to measure mismatch loss from individual cells in concert with various string combinations under varying field conditions. Mismatch loss from cells to plates at different off-track angles and mismatch from plates to strings in Amonix system during normal operation have been investigated.

  12. Description of atomic burials in compact globular proteins by Fermi-Dirac probability distributions.

    PubMed

    Gomes, Antonio L C; de Rezende, Júlia R; Pereira de Araújo, Antônio F; Shakhnovich, Eugene I

    2007-02-01

    We perform a statistical analysis of atomic distributions as a function of the distance R from the molecular geometrical center in a nonredundant set of compact globular proteins. The number of atoms increases quadratically for small R, indicating a constant average density inside the core, reaches a maximum at a size-dependent distance R(max), and falls rapidly for larger R. The empirical curves turn out to be consistent with the volume increase of spherical concentric solid shells and a Fermi-Dirac distribution in which the distance R plays the role of an effective atomic energy epsilon(R) = R. The effective chemical potential mu governing the distribution increases with the number of residues, reflecting the size of the protein globule, while the temperature parameter beta decreases. Interestingly, betamu is not as strongly dependent on protein size and appears to be tuned to maintain approximately half of the atoms in the high density interior and the other half in the exterior region of rapidly decreasing density. A normalized size-independent distribution was obtained for the atomic probability as a function of the reduced distance, r = R/R(g), where R(g) is the radius of gyration. The global normalized Fermi distribution, F(r), can be reasonably decomposed in Fermi-like subdistributions for different atomic types tau, F(tau)(r), with Sigma(tau)F(tau)(r) = F(r), which depend on two additional parameters mu(tau) and h(tau). The chemical potential mu(tau) affects a scaling prefactor and depends on the overall frequency of the corresponding atomic type, while the maximum position of the subdistribution is determined by h(tau), which appears in a type-dependent atomic effective energy, epsilon(tau)(r) = h(tau)r, and is strongly correlated to available hydrophobicity scales. Better adjustments are obtained when the effective energy is not assumed to be necessarily linear, or epsilon(tau)*(r) = h(tau)*r(alpha,), in which case a correlation with hydrophobicity scales is found for the product alpha(tau)h(tau)*. These results indicate that compact globular proteins are consistent with a thermodynamic system governed by hydrophobic-like energy functions, with reduced distances from the geometrical center, reflecting atomic burials, and provide a conceptual framework for the eventual prediction from sequence of a few parameters from which whole atomic probability distributions and potentials of mean force can be reconstructed. Copyright 2006 Wiley-Liss, Inc.

  13. I Like Them…Will They Like Me? Evidence for the Role of the Ventrolateral Prefrontal Cortex During Mismatched Social Appraisals in Anxious Youth.

    PubMed

    Smith, Ashley R; Nelson, Eric E; Rappaport, Brent I; Pine, Daniel S; Leibenluft, Ellen; Jarcho, Johanna M

    2018-05-24

    Socially anxious adolescents report distress during social decision-making, wherein their favorable view of peers directly conflicts with their expectation to be viewed negatively by peers; a phenomenon we refer to as "mismatch bias." The present study utilizes a novel paradigm with dynamic social stimuli to explore the correlates of mismatch biases in anxious and healthy youth. The behavioral and neural correlates of mismatch biases were assessed in healthy (N = 17) and anxious (N = 14) youth during functional MRI. Participants completed a novel task where they viewed silent videos of unknown peers. After viewing each video, participants appraised the social desirability of the peer ("How much do you think you would like them [if you met them]") or predicted how socially desirable the peer would find them ("How much do you think they would like you [if you met them]"). Each participant's mismatch bias was calculated as the difference between their appraisal of peers and their prediction of peers' appraisal of them. We found that anxious youth exhibited mismatch bias: they rated unknown peers as more desirable than they predicted peers would rate them. This effect was not present in the healthy group. Mismatch biases were associated with increased engagement of the ventrolateral prefrontal cortex (vlPFC), a region broadly involved in flexible cognitions and behavioral selection. In addition, greater mismatch biases and vlPFC activation during mismatch biases were associated with more severe anxiety symptoms. The findings highlight the importance of understanding mismatch biases to inform treatments that target distress elicited by discrepant social appraisals in anxious youth.

  14. Effect of HLA mismatch on acute graft-versus-host disease.

    PubMed

    Kanda, Junya

    2013-09-01

    HLA matching between donors and recipients is the most important factor associated with acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. With improvements in GVHD prophylaxis and supportive care, transplantations from HLA mismatched donors are performed increasingly frequently, drawing greater attention to the effects of HLA mismatch. In related transplantation, HLA 1-antigen mismatch at the HLA-A, HLA-B, and HLA-DR loci is considered acceptable, but the incidence of severe acute GVHD under standard prophylaxis is higher than that for matched related and unrelated transplantation, highlighting the need for a modification of GVHD prophylaxis. Development of new GVHD prophylaxes has now made HLA 2-3-antigen mismatched related transplantation feasible, and has almost overcome the HLA barrier. In unrelated bone marrow or peripheral blood stem cell transplantation, donors matched for HLA-A, HLA-B, HLA-C, and HLA-DRB1 alleles are the most preferable. The impact of allele or antigen mismatch has been evaluated in a number of studies, but the results of these have not been consistent, partly due to differences in race and HLA distribution. The effects of HLA mismatch may differ depending on the year of transplantation and the form of GVHD prophylaxis administered. In cord blood transplantation, successful transplantation can be achieved with up to two HLA mismatches. In children, compared to the use of HLA mismatched units, the use of HLA-matched units is associated with a lower risk of acute GVHD and mortality, while in adults HLA mismatches may have a lower impact on outcome. Thus, the effect of HLA matching should be evaluated separately for different stem cell sources.

  15. Femoral head retroposition as a potential compensatory mechanism in patients with a severe mismatch between pelvic incidence and lumbar lordosis.

    PubMed

    Cheng, Xiaofei; Zhang, Kai; Sun, Xiaojiang; Zhao, Changqing; Li, Hua; Zhao, Jie

    2017-12-01

    Severe mismatch between pelvic incidence (PI) and lumbar lordosis (LL) leads to extra anterior displacement of the gravity line. The objective of this study is to investigate whether femoral head retroposition is a separate compensatory mechanism responsible for the extra anterior displacement. Based on the values of PI and LL, 94 patients were divided into the PI-LL match group (PI-LL ≤ 0°), the mild PI-LL mismatch group (20°> PI-LL >0°), and the severe PI-LL mismatch group (PI-LL ≥ 20°). A series of parameters including PI, LL, PI-LL, thoracic kyphosis (TK), pelvic tilt (PT), sacral slope (SS), knee flexion angle (KFA), tibial obliquity angle (TOA), sagittal vertical axis (SVA), S1 overhang, femoral head shift (FHS), and pelvic shift (PS) were measured and compared among the three groups. The severe PI-LL mismatch group exhibited significantly greater PI, PI-LL, PT, KFA, SVA, PS, and FHS, and less LL and TK, compared with the control and mild PI-LL mismatch group. The mild PI-LL mismatch group had significantly greater PI-LL, PT, KFA, TOA, and S1 overhang, and less LL and SS than the control group. SS, TOA, and S1 overhang in the severe PI-LL mismatch group differed significantly from that in the control group, but did not differ significantly from that in the mild PI-LL mismatch group. Femoral head retroposition is an entirely separate compensatory mechanism and, in this study, participated in the compensation for the anterior displacement of the gravity line induced by extra-sagittal spinal malalignment in patients with severe PI-LL mismatch.

  16. Recognition of T·G mismatched base pairs in DNA by stacked imidazole-containing polyamides: surface plasmon resonance and circular dichroism studies

    PubMed Central

    Lacy, Eilyn R.; Cox, Kari K.; Wilson, W. David; Lee, Moses

    2002-01-01

    An imidazole-containing polyamide trimer, f-ImImIm, where f is a formamido group, was recently found using NMR methods to recognize T·G mismatched base pairs. In order to characterize in detail the T·G recognition affinity and specificity of imidazole-containing polyamides, f-ImIm, f-ImImIm and f-PyImIm were synthesized. The kinetics and thermodynamics for the polyamides binding to Watson–Crick and mismatched (containing one or two T·G, A·G or G·G mismatched base pairs) hairpin oligonucleotides were determined by surface plasmon resonance and circular dichroism (CD) methods. f-ImImIm binds significantly more strongly to the T·G mismatch-containing oligonucleotides than to the sequences with other mismatched or with Watson–Crick base pairs. Compared with the Watson–Crick CCGG sequence, f-ImImIm associates more slowly with DNAs containing T·G mismatches in place of one or two C·G base pairs and, more importantly, the dissociation rate from the T·G oligonucleotides is very slow (small kd). These results clearly demonstrate the binding selectivity and enhanced affinity of side-by-side imidazole/imidazole pairings for T·G mismatches and show that the affinity and specificity increase arise from much lower kd values with the T·G mismatched duplexes. CD titration studies of f-ImImIm complexes with T·G mismatched sequences produce strong induced bands at ∼330 nm with clear isodichroic points, in support of a single minor groove complex. CD DNA bands suggest that the complexes remain in the B conformation. PMID:11937638

  17. The nuclear size and mass effects on muonic hydrogen-like atoms embedded in Debye plasma

    NASA Astrophysics Data System (ADS)

    Poszwa, A.; Bahar, M. K.; Soylu, A.

    2016-10-01

    Effects of finite nuclear size and finite nuclear mass are investigated for muonic atoms and muonic ions embedded in the Debye plasma. Both nuclear charge radii and nuclear masses are taken into account with experimentally determined values. In particular, isotope shifts of bound state energies, radial probability densities, transition energies, and binding energies for several atoms are studied as functions of Debye length. The theoretical model based on semianalytical calculations, the Sturmian expansion method, and the perturbative approach has been constructed, in the nonrelativistic frame. For some limiting cases, the comparison with previous most accurate literature results has been made.

  18. Melting of Cu nanoclusters by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying

    2003-04-01

    We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to Tm, N= Tm,Bulk- αN-1/3, dropping from Tm,Bulk=1360 K to Tm,456=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.

  19. Study of thermal stability of disordered alloy AgxCu1-x nanoparticles by molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Baidyshev, V. S.; Chepkasov, I. V.; Artemova, N. D.

    2018-05-01

    In this paper melting processes of particles of disordered AgCu alloy in the size range of D=3-5 nm were investigated. The simulation was carried out with molecular dynamics, using the embedded atom potential. It was defined that for nanoparticles of D=3 nm, the melting process is connected with the formation of the outer layer consisting of Ag atoms as well as with the further transition of the particle into an amorphous state. The increase of the particle size to D=5 nm did not show the processes of redistributing Ag atoms on the particle surface.

  20. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  1. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  2. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng; Liu, Xinjuan

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the bandmore » gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.« less

  3. Harnessing the damping properties of materials for high-speed atomic force microscopy.

    PubMed

    Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  4. Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices.

    PubMed

    Zhao, Zhikai; Liu, Ran; Mayer, Dirk; Coppola, Maristella; Sun, Lu; Kim, Youngsang; Wang, Chuankui; Ni, Lifa; Chen, Xing; Wang, Maoning; Li, Zongliang; Lee, Takhee; Xiang, Dong

    2018-04-01

    A straightforward method to generate both atomic-scale sharp and atomic-scale planar electrodes is reported. The atomic-scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic-scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal-driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine-linked molecular junctions can be enhanced ≈50% as the atomic-scale sharp electrodes are used. However, the atomic-scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite-element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy of Supported Metal Catalysts: From Single Atoms to Large Metal Nanoparticles

    DOE PAGES

    James, Trevor E.; Hemmingson, Stephanie L.; Campbell, Charles T.

    2015-08-14

    It is known that many catalysts consist of late transition metal nanoparticles dispersed across oxide supports. The chemical potential of the metal atoms in these particles correlate with their catalytic activity and long-term thermal stability. This chemical potential versus particle size across the full size range between the single isolated atom and bulklike limits is reported here for the first time for any metal on any oxide. The chemical potential of Cu atoms on CeO 2(111) surfaces, determined by single crystal adsorption calorimetry of gaseous Cu atoms onto slightly reduced CeO 2(111) at 100 and 300 K is shown tomore » decrease dramatically with increasing Cu cluster size. The Cu chemical potential is ~110 kJ/mol higher for isolated Cu adatoms on stoichometric terrace sites than for Cu in nanoparticles exceeding 2.5 nm diameter, where it reaches the bulk Cu(solid) limit. In Cu dimers, Cu’s chemical potential is ~57 kJ/mol lower at step edges than on stoichiometric terrace sites. Since Cu avoids oxygen vacancies, these monomer and dimer results are not strongly influenced by the 2.5% oxygen vacancies present on this CeO 2 surface and are thus considered representative of stoichiometric CeO 2(111) surfaces.« less

  6. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  7. Advanced nickel-metal hydride cell development. Final report, September 1993--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hong S.

    1996-03-01

    Inert gas atomization using metal hydride alloys for a Ni/MH{sub x}cell was studied. Atomization of the alloys was demonstrated on a small production scale up to batch size of several kg. Relative performance of the atomized and nonatomized alloys was investigated for the electrode material in a Ni/MH{sub x} cell. The study included effects of charge-discharge rates, temperature, and particle size on cell voltage (polarization) and specific capacity. Results show that the specific capacity of the present atomized alloys was apprecialy smaller than that of the nonatomized powder, especially for initial cycles. Full activation of the atomized alloys oftentook severalmore » hundreds of cycles. However, no appreciable difference in discharge rate capability was observed with R10 and R12 alloys. Chemical compositions were indistinguishable, although the oxygen contents of the atomized alloys were always higher. Effects of Ni and Cu coating on alloy performance were studied after electroless coating; the coatings noticeably improved the electrode rate capability for all the alloys. The electrode polarization was esecially improved, but not the cycle life. Further studies are needed.« less

  8. Atomic dynamics and the problem of the structural stability of free clusters of solidified inert gases

    NASA Astrophysics Data System (ADS)

    Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.

    2003-05-01

    The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.

  9. Making Sense of Missense in the Lynch Syndrome: The Clinical Perspective

    PubMed Central

    Lynch, Henry T.; Jascur, Thomas; Lanspa, Stephen; Boland, C. Richard

    2010-01-01

    The DNA mismatch repair system provides critical genetic housekeeping, and its failure is associated with tumorigenesis. Through distinct domains on the DNA mismatch repair proteins, the system recognizes and repairs errors occurring during DNA synthesis, but signals apoptosis when the DNA damage cannot be repaired. Certain missense mutations in the mismatch repair genes can selectively alter just one of these functions. This impacts the clinical features of tumors associated with defective DNA mismatch repair activity. New work reported by Xie et al. in this issue of the journal (beginning on page XXX) adds to the understanding of DNA mismatch repair. PMID:20978117

  10. Decentralized Adaptive Control of Systems with Uncertain Interconnections, Plant-Model Mismatch and Actuator Failures

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Decentralized adaptive control is considered for systems consisting of multiple interconnected subsystems. It is assumed that each subsystem s parameters are uncertain and the interconnection parameters are not known. In addition, mismatch can exist between each subsystem and its reference model. A strictly decentralized adaptive control scheme is developed, wherein each subsystem has access only to its own state but has the knowledge of all reference model states. The mismatch is estimated online for each subsystem and the mismatch estimates are used to adaptively modify the corresponding reference models. The adaptive control scheme is extended to the case with actuator failures in addition to mismatch.

  11. Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications.

    PubMed

    Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei

    2016-01-01

    The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.

  12. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  13. Investigation of Strain-Relaxation Characteristics of Nitrides Grown on Si(110) by Metalorganic Chemical Vapor Deposition Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Lewins, Christopher J.; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.

    2013-08-01

    This paper describes the effect of an interfacial biaxial stress field on the dislocation formation dynamics during epitaxial growth of nitrides on Si(110). The anisotropic mismatch stress between a 2-fold symmetry Si(110) atomic plane and the AlN basal plane of 6-fold symmetry may be relaxed through the creation of additional characteristic dislocations, as proposed by Ruiz-Zepeda et al. with Burgers vectors: b= 1/2[bar 2110] and b= [1bar 210], +/-60° from [11bar 20]. The dislocations generated under such a biaxial stress field appear annihilating more efficiently with increasing thickness, leading to high-quality nitride epilayers on Si(110) for improved quantum efficiency of InGaN/GaN quantum wells.

  14. Two-temperature Brownian dynamics of a particle in a confining potential

    NASA Astrophysics Data System (ADS)

    Mancois, Vincent; Marcos, Bruno; Viot, Pascal; Wilkowski, David

    2018-05-01

    We consider the two-dimensional motion of a particle in a confining potential, subject to Brownian orthogonal forces associated with two different temperatures. Exact solutions are obtained for an asymmetric harmonic potential in the overdamped and underdamped regimes. For more general confining potentials, a perturbative approach shows that the stationary state exhibits some universal properties. The nonequilibrium stationary state is characterized with a nonzero orthoradial mean current, corresponding to a global rotation of the particle around the center. The rotation is due to two broken symmetries: two different temperatures and a mismatch between the principal axes of the confining asymmetric potential and the temperature axes. We confirm our predictions by performing a Brownian dynamics simulation. Finally, we propose to observe this effect on a laser-cooled atomic gas.

  15. Band-gap corrected density functional theory calculations for InAs/GaSb type II superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Zhang, Yong

    2014-12-07

    We performed pseudopotential based density functional theory (DFT) calculations for GaSb/InAs type II superlattices (T2SLs), with bandgap errors from the local density approximation mitigated by applying an empirical method to correct the bulk bandgaps. Specifically, this work (1) compared the calculated bandgaps with experimental data and non-self-consistent atomistic methods; (2) calculated the T2SL band structures with varying structural parameters; (3) investigated the interfacial effects associated with the no-common-atom heterostructure; and (4) studied the strain effect due to lattice mismatch between the two components. This work demonstrates the feasibility of applying the DFT method to more exotic heterostructures and defect problemsmore » related to this material system.« less

  16. BatMis: a fast algorithm for k-mismatch mapping.

    PubMed

    Tennakoon, Chandana; Purbojati, Rikky W; Sung, Wing-Kin

    2012-08-15

    Second-generation sequencing (SGS) generates millions of reads that need to be aligned to a reference genome allowing errors. Although current aligners can efficiently map reads allowing a small number of mismatches, they are not well suited for handling a large number of mismatches. The efficiency of aligners can be improved using various heuristics, but the sensitivity and accuracy of the alignments are sacrificed. In this article, we introduce Basic Alignment tool for Mismatches (BatMis)--an efficient method to align short reads to a reference allowing k mismatches. BatMis is a Burrows-Wheeler transformation based aligner that uses a seed and extend approach, and it is an exact method. Benchmark tests show that BatMis performs better than competing aligners in solving the k-mismatch problem. Furthermore, it can compete favorably even when compared with the heuristic modes of the other aligners. BatMis is a useful alternative for applications where fast k-mismatch mappings, unique mappings or multiple mappings of SGS data are required. BatMis is written in C/C++ and is freely available from http://code.google.com/p/batmis/

  17. Bacterial genes mutL, mutS, and dcm participate in repair of mismatches at 5-methylcytosine sites.

    PubMed Central

    Lieb, M

    1987-01-01

    Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity. PMID:2959653

  18. Characterizing property distributions of polymeric nanogels by size-exclusion chromatography.

    PubMed

    Mourey, Thomas H; Leon, Jeffrey W; Bennett, James R; Bryan, Trevor G; Slater, Lisa A; Balke, Stephen T

    2007-03-30

    Nanogels are highly branched, swellable polymer structures with average diameters between 1 and 100nm. Size-exclusion chromatography (SEC) fractionates materials in this size range, and it is commonly used to measure nanogel molar mass distributions. For many nanogel applications, it may be more important to calculate the particle size distribution from the SEC data than it is to calculate the molar mass distribution. Other useful nanogel property distributions include particle shape, area, and volume, as well as polymer volume fraction per particle. All can be obtained from multi-detector SEC data with proper calibration and data analysis methods. This work develops the basic equations for calculating several of these differential and cumulative property distributions and applies them to SEC data from the analysis of polymeric nanogels. The methods are analogous to those used to calculate the more familiar SEC molar mass distributions. Calibration methods and characteristics of the distributions are discussed, and the effects of detector noise and mismatched concentration and molar mass sensitive detector signals are examined.

  19. Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.-W, E-mail: attwl@asu.edu; An, Keju

    2016-06-15

    We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

  20. Self-assembly of endohedral metallofullerenes: a decisive role of cooling gas and metal-carbon bonding

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Heine, Thomas; Irle, Stephan; Popov, Alexey A.

    2016-02-01

    The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3).The endohedral metallofullerene (EMF) self-assembly process in Sc/carbon vapor in the presence and absence of an inert cooling gas (helium) is systematically investigated using quantum chemical molecular dynamics simulations. It is revealed that the presence of He atoms accelerates the formation of pentagons and hexagons and reduces the size of the self-assembled carbon cages in comparison with analogous He-free simulations. As a result, the Sc/C/He system simulations produce a larger number of successful trajectories (i.e. leading to Sc-EMFs) with more realistic cage-size distribution than simulations of the Sc/C system. The main Sc encapsulation mechanism involves nucleation of several hexagons and pentagons with Sc atoms already at the early stages of carbon vapor condensation. In such proto-cages, both Sc-C σ-bonds and coordination bonds between Sc atoms and the π-system of the carbon network are present. Sc atoms are thus rather labile and can move along the carbon network, but the overall bonding is sufficiently strong to prevent dissociation even at temperatures around 2000 kelvin. Further growth of the fullerene cage results in the encapsulation of one or two Sc atoms within the fullerene. In agreement with experimental studies, an extension of the simulations to Fe and Ti as the metal component showed that Fe-EMFs are not formed at all, whereas Ti is prone to form Ti-EMFs with small cage sizes, including Ti@C28-Td and Ti@C30-C2v(3). Electronic supplementary information (ESI) available: Additional information on metal-carbon bonding and MD simulations. See DOI: 10.1039/c5nr08645k

  1. Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomography.

    PubMed

    Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S

    2010-08-01

    Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.

  2. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant

    NASA Astrophysics Data System (ADS)

    Guan, Hao-Sen; Li, Guo-Xiu; Zhang, Nai-Yuan

    2018-03-01

    Due to the current global energy shortage and increasingly serious environmental issues, green propellants are attracting more attention. In particular, the ammonium dinitramide (ADN)-based monopropellant thruster is gaining world-wide attention as a green, non-polluting and high specific impulse propellant. Gel propellants combine the advantages of liquid and solid propellants, and are becoming popular in the field of spaceflight. In this paper, a swirling atomization experimental study was carried out using an ADN aqueous gel propellant under different injection pressures. A high-speed camera and a Malvern laser particle size analyzer were used to study the spray process. The flow coefficient, cone angle of swirl atomizing spray, breakup length of spray membrane, and droplet size distribution were analyzed. Furthermore, the effects of different injection pressures on the swirling atomization characteristics were studied.

  3. Generation of a focused hollow beam by an 2π-phase plate and its application in atom or molecule optics

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Yin, Jianping

    2005-03-01

    We propose a new scheme to generate a focusing hollow beam (FHB) by use of an azimuthally distributed 2π-phase plate and a convergent thin lens. From the Fresnel diffraction theory, we calculate the intensity distributions of the FHB in free propagation space and study the relationship between the waist w0 of the incident Gaussian beam (or the focal length f of the lens) and the dark spot size (or the beam radius) at the focal point and the relationship between the maximum radial intensity of the FHB and the dark spot size (or the beam radius) at the focal point, respectively. Our study shows that the FHB can be used to cool and trap neutral atoms by intensity-gradient-induced Sisyphus cooling due to an extremely high intensity gradient of the FHB itself near the focal point, or to guide and focus a cold molecular beam. We also calculate the optical potential of the blue-detuned FHB for 85Rb atoms and find that in the focal plane, the smaller the dark spot size of the FHB is, the higher the optical potential is, and the greater the corresponding optimal detuning δ is; these qualities are beneficial to an atomic lens not only because it is profitable to obtain an atomic lens with a higher resolution, but also because it is helpful to reduce the spontaneous photon-scattering effect of atoms in the FHB.

  4. Atomic physics constraints on the X boson

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich D.; Nándori, István

    2018-04-01

    Recently, a peak in the light fermion pair spectrum at invariant q2≈(16.7MeV ) 2 has been observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a "nuclear halo." Here we analyze the X boson in terms of its consequences for both electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms of low and intermediate nuclear charge numbers.

  5. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    PubMed

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A portable magneto-optical trap with prospects for atom interferometry in civil engineering

    NASA Astrophysics Data System (ADS)

    Hinton, A.; Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.

    2017-06-01

    The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue 'Quantum technology for the 21st century'.

  7. A portable magneto-optical trap with prospects for atom interferometry in civil engineering

    PubMed Central

    Perea-Ortiz, M.; Winch, J.; Briggs, J.; Freer, S.; Moustoukas, D.; Powell-Gill, S.; Squire, C.; Lamb, A.; Rammeloo, C.; Stray, B.; Voulazeris, G.; Zhu, L.; Kaushik, A.; Lien, Y.-H.; Niggebaum, A.; Rodgers, A.; Stabrawa, A.; Boddice, D.; Plant, S. R.; Tuckwell, G. W.; Bongs, K.; Metje, N.; Holynski, M.

    2017-01-01

    The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 107 atoms within a system package of 20 l and 10 kg, consuming 80 W of power. This article is part of the themed issue ‘Quantum technology for the 21st century’. PMID:28652493

  8. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance

    NASA Astrophysics Data System (ADS)

    Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena

    2017-11-01

    A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.

  9. A portable magneto-optical trap with prospects for atom interferometry in civil engineering.

    PubMed

    Hinton, A; Perea-Ortiz, M; Winch, J; Briggs, J; Freer, S; Moustoukas, D; Powell-Gill, S; Squire, C; Lamb, A; Rammeloo, C; Stray, B; Voulazeris, G; Zhu, L; Kaushik, A; Lien, Y-H; Niggebaum, A; Rodgers, A; Stabrawa, A; Boddice, D; Plant, S R; Tuckwell, G W; Bongs, K; Metje, N; Holynski, M

    2017-08-06

    The high precision and scalable technology offered by atom interferometry has the opportunity to profoundly affect gravity surveys, enabling the detection of features of either smaller size or greater depth. While such systems are already starting to enter into the commercial market, significant reductions are required in order to reach the size, weight and power of conventional devices. In this article, the potential for atom interferometry based gravimetry is assessed, suggesting that the key opportunity resides within the development of gravity gradiometry sensors to enable drastic improvements in measurement time. To push forward in realizing more compact systems, techniques have been pursued to realize a highly portable magneto-optical trap system, which represents the core package of an atom interferometry system. This can create clouds of 10 7 atoms within a system package of 20 l and 10 kg, consuming 80 W of power.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  10. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    DOE PAGES

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; ...

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms aremore » the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.« less

  11. Prosthesis-patient mismatch after transcatheter aortic valve implantation: impact of 2D-transthoracic echocardiography versus 3D-transesophageal echocardiography.

    PubMed

    da Silva, Cristina; Sahlen, Anders; Winter, Reidar; Bäck, Magnus; Rück, Andreas; Settergren, Magnus; Manouras, Aristomenis; Shahgaldi, Kambiz

    2014-12-01

    To investigate the role of 2D-transthoracic echocardiography (2D-TTE) and 3D-transesophageal echocardiography (3D-TEE) in the determination of aortic annulus size prior transcatheter aortic valve implantation (TAVI) and its' impact on the prevalence of patient prosthesis mismatch (PPM). Echocardiography plays an important role in measuring aortic annulus dimension in patients undergoing TAVI. This has great importance since it determines both eligibility for TAVI and selection of prosthesis type and size, and can be potentially important in preventing an inadequate ratio between the prosthetic valvular orifice and the patient's body surface area, concept known as prosthesis-patient mismatch (PPM). A total of 45 patients were studied pre-TAVI: 20 underwent 3D-TEE (men/women 12/8, age 84.8 ± 5.6) and 25 2D-TTE (men/women 9/16, age 84.4 ± 5.4) in order to measure aortic annulus diameter. The presence of PPM was assessed before hospital discharge and after a mean period of 3 months. Moderate PPM was defined as indexed aortic valve area (AVAi) ≤ 0.85 cm(2)/m(2) and severe PPM as AVAi < 0.65 cm(2)/m(2). Immediately post-TAVI, moderate PPM was present in 25 and 28 % of patients worked up using 3D-TEE and 2D-TTE respectively p value = n.s) and severe PPM occurred in 10 % of the patients who underwent 3D-TEE and in 20 % in those with 2D-TTE (p value = n.s). The echocardiographic evaluation 3 months post-TAVI showed 25 % moderate PPM in the 3D-TEE group compared with 24 % in the 2D-TTE group (p value = n.s) and no cases of severe PPM in the 3DTEE group comparing to 20 % in the 2D-TTE group (p = 0.032). Our results indicate a higher incidence of severe PPM in patients who performed 2DTTE compared to those performing 3DTEE prior TAVI. This suggests that the 3D technique should replace the 2DTTE analysis when investigating the aortic annulus diameter in patients undergoing TAVI.

  12. Do schools differ in suicide risk? The influence of school and neighbourhood on attempted suicide, suicidal ideation and self-harm among secondary school pupils.

    PubMed

    Young, Robert; Sweeting, Helen; Ellaway, Anne

    2011-11-17

    Rates of suicide and poor mental health are high in environments (neighbourhoods and institutions) where individuals have only weak social ties, feel socially disconnected and experience anomie - a mismatch between individual and community norms and values. Young people spend much of their time within the school environment, but the influence of school context (school connectedness, ethos and contextual factors such as school size or denomination) on suicide-risk is understudied. Our aim is to explore if school context is associated with rates of attempted suicide and suicide-risk at age 15 and self-harm at age 19, adjusting for confounders. A longitudinal school-based survey of 1698 young people surveyed when aged 11, (primary school), 15 (secondary school) and in early adulthood (age 19). Participants provided data about attempted suicide and suicide-risk at age 15 and deliberate self-harm at 19. In addition, data were collected about mental health at age 11, social background (gender, religion, etc.), and at age 15, perception of local area (e.g. neighbourhood cohesion, safety/civility and facilities), school connectedness (school engagement, involvement, etc.) and school context (size, denomination, etc.). A dummy variable was created indicating a religious 'mismatch', where pupils held a different faith from their school denomination. Data were analysed using multilevel logistic regression. After adjustment for confounders, pupils attempted suicide, suicide-risk and self-harm were all more likely among pupils with low school engagement (15-18% increase in odds for each SD change in engagement). While holding Catholic religious beliefs was protective, attending a Catholic school was a risk factor for suicidal behaviours. This pattern was explained by religious 'mismatch': pupils of a different religion from their school were approximately 2-4 times more likely to attempt suicide, be a suicide-risk or self-harm. With several caveats, we found support for the importance of school context for suicidality and self-harm. School policies promoting school connectedness are uncontroversial. Devising a policy to reduce risks to pupils holding a different faith from that of their school may be more problematic.

  13. Do schools differ in suicide risk? the influence of school and neighbourhood on attempted suicide, suicidal ideation and self-harm among secondary school pupils

    PubMed Central

    2011-01-01

    Background Rates of suicide and poor mental health are high in environments (neighbourhoods and institutions) where individuals have only weak social ties, feel socially disconnected and experience anomie - a mismatch between individual and community norms and values. Young people spend much of their time within the school environment, but the influence of school context (school connectedness, ethos and contextual factors such as school size or denomination) on suicide-risk is understudied. Our aim is to explore if school context is associated with rates of attempted suicide and suicide-risk at age 15 and self-harm at age 19, adjusting for confounders. Methods A longitudinal school-based survey of 1698 young people surveyed when aged 11, (primary school), 15 (secondary school) and in early adulthood (age 19). Participants provided data about attempted suicide and suicide-risk at age 15 and deliberate self-harm at 19. In addition, data were collected about mental health at age 11, social background (gender, religion, etc.), and at age 15, perception of local area (e.g. neighbourhood cohesion, safety/civility and facilities), school connectedness (school engagement, involvement, etc.) and school context (size, denomination, etc.). A dummy variable was created indicating a religious 'mismatch', where pupils held a different faith from their school denomination. Data were analysed using multilevel logistic regression. Results After adjustment for confounders, pupils attempted suicide, suicide-risk and self-harm were all more likely among pupils with low school engagement (15-18% increase in odds for each SD change in engagement). While holding Catholic religious beliefs was protective, attending a Catholic school was a risk factor for suicidal behaviours. This pattern was explained by religious 'mismatch': pupils of a different religion from their school were approximately 2-4 times more likely to attempt suicide, be a suicide-risk or self-harm. Conclusions With several caveats, we found support for the importance of school context for suicidality and self-harm. School policies promoting school connectedness are uncontroversial. Devising a policy to reduce risks to pupils holding a different faith from that of their school may be more problematic. PMID:22093491

  14. Two-dimensional grid-free compressive beamforming.

    PubMed

    Yang, Yang; Chu, Zhigang; Xu, Zhongming; Ping, Guoli

    2017-08-01

    Compressive beamforming realizes the direction-of-arrival (DOA) estimation and strength quantification of acoustic sources by solving an underdetermined system of equations relating microphone pressures to a source distribution via compressive sensing. The conventional method assumes DOAs of sources to lie on a grid. Its performance degrades due to basis mismatch when the assumption is not satisfied. To overcome this limitation for the measurement with plane microphone arrays, a two-dimensional grid-free compressive beamforming is developed. First, a continuum based atomic norm minimization is defined to denoise the measured pressure and thus obtain the pressure from sources. Next, a positive semidefinite programming is formulated to approximate the atomic norm minimization. Subsequently, a reasonably fast algorithm based on alternating direction method of multipliers is presented to solve the positive semidefinite programming. Finally, the matrix enhancement and matrix pencil method is introduced to process the obtained pressure and reconstruct the source distribution. Both simulations and experiments demonstrate that under certain conditions, the grid-free compressive beamforming can provide high-resolution and low-contamination imaging, allowing accurate and fast estimation of two-dimensional DOAs and quantification of source strengths, even with non-uniform arrays and noisy measurements.

  15. Mg/Ti multilayers: Structural and hydrogen absorption properties

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Pálsson, G. K.; Gonzalez-Silveira, M.; Schreuders, H.; Slaman, M.; Rector, J. H.; Krishnan, G.; Kooi, B. J.; Walker, G. S.; Fay, M. W.; Hjörvarsson, B.; Wijngaarden, R. J.; Dam, B.; Griessen, R.

    2010-06-01

    Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a “spinodal-like” microstructure with a small degree of chemical short-range order in the atomic distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities. Notwithstanding the large lattice mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. On exposure to H2 gas a two-step hydrogenation process occurs with the Ti layers forming the hydride before Mg. From in situ measurements of the bilayer thickness Λ at different hydrogen pressures, we observe large out-of-plane expansions of Mg and Ti layers on hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. On unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces.

  16. Quantifying the atomic-level mechanics of single long physisorbed molecular chains.

    PubMed

    Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst

    2014-03-18

    Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.

  17. An Atomic Lens Using a Focusing Hollow Beam

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Yin, Jian-Ping; Wang, Yu-Zhu

    2003-05-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2pi-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist wo of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  18. Catalysis by clusters with precise numbers of atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyo, Eric C.; Vajda, Stefan

    2015-07-03

    Clusters that contain only a small number of atoms can exhibit unique and often unexpected properties. The clusters are of particular interest in catalysis because they can act as individual active sites, and minor changes in size and composition – such as the addition or removal of a single atom – can have a substantial influence on the activity and selectivity of a reaction. Here we review recent progress in the synthesis, characterization and catalysis of well-defined sub-nanometre clusters. We examine work on size-selected supported clusters in ultra-high vacuum environments and under realistic reaction conditions, and explore the use ofmore » computational methods to provide a mechanistic understanding of their catalytic properties. We also highlight the potential of size-selected clusters to provide insights into important catalytic processes and their use in the development of novel catalytic systems.« less

  19. Thermodynamic properties of small aggregates of rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Kaelberer, J.

    1975-01-01

    The present work reports on the equilibrium thermodynamic properties of small clusters of xenon, krypton, and argon atoms, determined from a biased random-walk Monte Carlo procedure. Cluster sizes ranged from 3 to 13 atoms. Each cluster was found to have an abrupt liquid-gas phase transition at a temperature much less than for the bulk material. An abrupt solid-liquid transition is observed for thirteen- and eleven-particle clusters. For cluster sizes smaller than 11, a gradual transition from solid to liquid occurred over a fairly broad range of temperatures. Distribution of number of bond lengths as a function of bond length was calculated for several systems at various temperatures. The effects of box boundary conditions are discussed. Results show the importance of a correct description of boundary conditions. A surprising result is the slow rate at which system properties approach bulk behavior as cluster size is increased.

  20. Atom chip microscopy: A novel probe for strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin

    2010-03-01

    Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.

  1. Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema.

    PubMed

    Chang, Yin-Jung; Lai, Chi-Sheng

    2013-09-01

    The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%-53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.

  2. An Msh3 ATPase domain mutation has no effect on MMR function.

    PubMed

    Edwards, Yasmin

    2017-11-25

    To demonstrate that the Msh3 ATPase domain is required for DNA mismatch repair and tumor suppression in a murine model. The DNA mismatch repair proteins are members of the ABC family of ATPases. ATP binding and hydrolysis regulates their mismatch repair function. In the current study, a mouse model was generated harboring a glycine to aspartic acid residue change in the Walker A motif of the ATPase domain of Msh3. Impaired ATP mediated release of the Msh2-Msh3 GD/GD complex from it's DNA substrate in vitro confirmed the presence of an ATPase defect. However, the mismatch repair function of the protein was not significantly affected. Therefore, mutation of a critical residue within the ATPase domain of Msh3 did not preclude mismatch repair at the genomic sequences tested. Indicating that Msh3 mediated mismatch function is retained the absence of a functional ATPase domain.

  3. Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells†

    PubMed Central

    Ernst, Russell J.; Komor, Alexis C.; Barton, Jacqueline K.

    2011-01-01

    Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents. PMID:22103240

  4. Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator

    PubMed Central

    Pierre, Valérie C.; Kaiser, Jens T.; Barton, Jacqueline K.

    2007-01-01

    We report the 1.1-Å resolution crystal structure of a bulky rhodium complex bound to two different DNA sites, mismatched and matched in the oligonucleotide 5′-(dCGGAAATTCCCG)2-3′. At the AC mismatch site, the structure reveals ligand insertion from the minor groove with ejection of both mismatched bases and elucidates how destabilized mispairs in DNA may be recognized. This unique binding mode contrasts with major groove intercalation, observed at a matched site, where doubling of the base pair rise accommodates stacking of the intercalator. Mass spectral analysis reveals different photocleavage products associated with the two binding modes in the crystal, with only products characteristic of mismatch binding in solution. This structure, illustrating two clearly distinct binding modes for a molecule with DNA, provides a rationale for the interrogation and detection of mismatches. PMID:17194756

  5. Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis.

    PubMed

    Al-Sukhun, Jehad; Lindqvist, Christian; Ashammakhi, Nureddin; Penttilä, Heikki

    2007-03-01

    To develop a finite element model (FEM) to study the effect of the stress and strain, in microvascular anastomoses that result from the geometrical mismatch of anastomosed vessels. FEMs of end-to-end and end-to-side anastomoses were constructed. Simulations were made using finite element software (NISA). We investigated the angle of inset in the end-to-side anastomosis and the discrepancy in the size of the opening in the vessel between the host and recipient vessels. The FEMs were used to predict principal and shear stress and strain at the position of each node. Two types of vascular deformation were predicted during different simulations: longitudinal distortion, and rotational distortion. Stress values ranged from 151.1 to 282.4MPa for the maximum principal stress, from -122.9 to -432.2MPa for the minimum principal stress, and from 122.1 to 333.1MPa for the maximum shear stress. The highest values were recorded when there was a 50% mismatch in the diameter of the vessels at the site of the end-to-end anastomosis. The effect of the vessel's size discrepancy on the blood flow and deformation was remarkable in the end-to-end anastomosis. End-to-side anastomosis was superior to end-to-end anastomosis. FEM is a powerful tool to study vascular deformation, as it predicts deformation and biomechanical processes at sites where physical measurements are likely to remain impossible in living humans.

  6. Exciton shelves for charge and energy transport in third-generation quantum-dot devices

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel; Singh, Vivek; Noh, Hyunwoo; Casamada, Josep; Chatterjee, Anushree; Cha, Jennifer; Nagpal, Prashant

    2014-03-01

    Quantum dots are semiconductor nanocrystallites with size-dependent quantum-confined energy levels. While they have been intensively investigated to utilize hot-carriers for photovoltaic applications, to bridge the mismatch between incident solar photons and finite bandgap of semiconductor photocells, efficient charge or exciton transport in quantum-dot films has proven challenging. Here we show development of new coupled conjugated molecular wires with ``exciton shelves'', or different energy levels, matched with the multiple energy levels of quantum dots. Using single nanoparticle and ensemble device measurements we show successful extraction and transport of both bandedge and high-energy charge carriers, and energy transport of excitons. We demonstrate using measurements of electronic density of states, that careful matching of energy states of quantum-dot with molecular wires is important, and any mismatch can generate midgap states leading to charge recombination and reduced efficiency. Therefore, these exciton-shelves and quantum dots can lead to development of next-generation photovoltaic and photodetection devices using simultaneous transport of bandedge and hot-carriers or energy transport of excitons in these nanostructured solution-processed films.

  7. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    PubMed Central

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  9. Influence of misfit stresses on dislocation glide in single crystal superalloys: A three-dimensional discrete dislocation dynamics study

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander

    2015-03-01

    In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.

  10. Institute for Science and Engineering Simulation (ISES)

    DTIC Science & Technology

    2015-12-18

    performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ

  11. The Return of the Black Box

    ERIC Educational Resources Information Center

    Yayon, Malka; Scherz, Zahava

    2008-01-01

    "If protons, quarks, and other elementary particles are too small to be seen, how do scientists know they exist? And if these particles do exist, how can one estimate their size, structure, and or their arrangement in atoms?" These are some of the most frequently asked questions by students who study atomic theory. Atomic structure is an important…

  12. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core-shell nanowires.

    PubMed

    Weng, Wei-Lun; Hsu, Chin-Yu; Lee, Jheng-Syun; Fan, Hsin-Hsin; Liao, Chien-Neng

    2018-05-31

    Lattice-mismatch is an important factor for the heteroepitaxial growth of core-shell nanostructures. A large lattice-mismatch usually leads to a non-coherent interface or a polycrystalline shell layer. In this study, a conformal Ag layer is coated on Cu nanowires with dense nanoscale twin boundaries through a galvanic replacement reaction. Despite a large lattice mismatch between Ag and Cu (∼12.6%), the Ag shell replicates the twinning structure in Cu nanowires and grows epitaxially on the nanotwinned Cu nanowire. A twin-mediated growth mechanism is proposed to explain the epitaxy of high lattice-mismatch bimetallic systems in which the misfit dislocations are accommodated by coherent twin boundaries.

  13. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    PubMed

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Solving the nanostructure problem: exemplified on metallic alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Petkov, Valeri; Prasai, Binay; Ren, Yang; Shan, Shiyao; Luo, Jin; Joseph, Pharrah; Zhong, Chuan-Jian

    2014-08-01

    With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now.With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modeling results. See DOI: 10.1039/c4nr01633e

  15. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    PubMed

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  16. Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles.

    PubMed

    Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji

    2017-09-20

    Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.

  17. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr04678e

  18. Patient-prosthesis mismatch in aortic valve replacement: really tolerable?

    PubMed

    Fuster, Rafael García; Montero Argudo, José A; Albarova, Oscar Gil; Sos, Fernando Hornero; López, Sergio Cánovas; Codoñer, María Bueno; Buendía Miñano, José A; Albarran, Ignacio Rodríguez

    2005-03-01

    Several studies have demonstrated favorable results despite patient-prosthesis mismatch after aortic valve replacement with the use of third generation prostheses. Our aim was to determine whether this mismatch is always tolerable. A clinical-echocardiographic study has been performed in 339 consecutive patients who underwent aortic valve replacement because of aortic stenosis. In-hospital outcome and left ventricular mass index regression (1st month-1st year) were analyzed in the presence or absence of mismatch (indexed effective orifice area < or =0.85cm(2)/m(2)). The influence of high degrees of preoperative left ventricular mass on in-hospital mortality has also been evaluated. Left ventricular mass index was considered increased if the calculated value was over the superior quartile of the frequency distribution of all the values observed in both sexes. Mismatch was found in 38% of the patients. In the absence of mismatch, the absolute mass regression was proportional to the preoperative left ventricular mass. This regression was higher in patients with increased left ventricular mass indexed (vs not increased): -38.0+/-7.8 vs -8.8+/-4.7g/m(2), p<0.01 (1st month) and -67.7+/-16.9vs -23.5+/-6.7g/m(2), p<0.05 (1st year). Mass regression was impaired in the presence of mismatch, particularly, in patients with previously increased left ventricular mass: -8.2+/-11.6 vs -5.6+/-6.3g/m(2) (p=0.83) and -24.6+/-12.6 vs -11.7+/-10.5g/m(2) (p=0.54). This worse regression was reflected on a 100% incidence of residual hypertrophy at follow-up (1st month-1st year). In the presence of mismatch, increased ventricular mass was associated with higher mortality: 14.7% vs 2.1% (p<0.01). In the absence of mismatch, ventricular mass was not associated with mortality: 4.1 vs 2.5% (p=0.55). In patients with severe ventricular hypertrophy it may be important to elude patient-prosthesis mismatch to avoid a significant increase in mortality and improve ventricular mass regression. Mismatch may be tolerable in those patients with lesser degree of hypertrophy.

  19. Correlated Debye model for atomic motions in metal nanocrystals

    NASA Astrophysics Data System (ADS)

    Scardi, P.; Flor, A.

    2018-05-01

    The Correlated Debye model for the mean square relative displacement of atoms in near-neighbour coordination shells has been extended to include the effect of finite crystal size. This correctly explains the increase in Debye-Waller coefficient observed for metal nanocrystals. A good match with Molecular Dynamics simulations of Pd nanocrystals is obtained if, in addition to the phonon confinement effect of the finite domain size, proper consideration is also given to the static disorder component caused by the undercoordination of surface atoms. The new model, which addresses the analysis of the Pair Distribution Function and powder diffraction data collected at different temperatures, was preliminarily tested on recently published experimental data on nanocrystalline Pt powders.

  20. Chemical synthesis and structural characterization of small AuZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.

    2007-03-01

    In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.

  1. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    PubMed

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial carcinoma; however, mismatch repair protein loss of MSH2 and/or MSH6 by immunohistochemistry seems relatively sensitive and specific for identifying patients with potential Lynch syndrome.

  2. Indoleamine 2,3-dioxygenase in endometrial cancer: a targetable mechanism of immune resistance in mismatch repair-deficient and intact endometrial carcinomas.

    PubMed

    Mills, Anne; Zadeh, Sara; Sloan, Emily; Chinn, Zachary; Modesitt, Susan C; Ring, Kari L

    2018-03-20

    Mismatch repair-deficient endometrial carcinomas are optimal candidates for immunotherapy given their high neoantigen loads, robust lymphoid infiltrates, and frequent PD-L1 expression. However, co-opting the PD-1/PD-L1 pathway is just one mechanism that tumors can utilize to evade host immunity. Another immune modulatory molecule that has been demonstrated in endometrial carcinoma is indoleamine 2,3-dioxygenase (IDO). We herein evaluate IDO expression in 60 endometrial carcinomas and assess results in relation to PD-L1 and mismatch repair status. IDO immunohistochemistry was performed on 60 endometrial carcinomas (20 Lynch syndrome (LS)-associated, 20 MLH1 promoter hypermethylated, and 20 mismatch repair-intact). Eight-five percent of endometrial carcinomas showed IDO tumor staining in >1% of cells. Twenty-five percent were positive in >25% of tumor cells and only 7% exceeded 50% staining. Mismatch repair-deficient cancers were more likely than mismatch repair-intact cancers to be >25% IDO-positive (35% vs. 5% p = 0.024). Differences were amplified when Lynch syndrome-associated cases were evaluated in isolation (50% Lynch syndrome-associated vs. 10% mismatch repair-intact and MLH1-hypermethylated, p = 0.001). Of the four cases showing >50% staining, three were Lynch syndrome-associated and one was MLH1-hypermethylated; no mismatch repair-intact cases had >50% staining. Forty-three percent of IDO-positive tumors were also positive for PD-L1, whereas only two cases showed tumoral PD-L1 in the absence of IDO. In summary, IDO expression is prevalent in endometrial carcinomas and diffuse staining is significantly more common in mismatch repair-deficient cancers, particularly Lynch syndrome-associated cases. Given that the majority of PD-L1 positive cancers also express IDO, synergistic combination therapy with anti-IDO and anti-PD1/PD-L1 may be relevant in this tumor type. Furthermore, anti-IDO therapy may be an option for a small subset of mismatch repair-intact cancers.

  3. Repeated human leukocyte antigen mismatches in lung re-transplantation.

    PubMed

    Sommer, Wiebke; Hallensleben, Michael; Ius, Fabio; Kühn, Christian; Tudorache, Igor; Avsar, Murat; Salman, Jawad; Siemeni, Thierry; Greer, Mark; Gottlieb, Jens; Boethig, Dietmar; Blasczyk, Rainer; Haverich, Axel; Warnecke, Gregor

    2017-02-01

    The role of HLA-sensitization in the absence of detectable DSA in lung re-transplantation is unclear. Antigens of the second donor matching the HLA typing of the first donor are considered 'unacceptable', by some tissue typing laboratories, especially in kidney re-transplantation. Thus, we performed a retrospective analysis of all lung re-transplantations focussing on the impact of HLA-homologies between the first and the second donor ('unacceptable' antigens; repeated HLA mismatch) on patient and graft survival. A total of 132 lung re-transplantations were performed at our centre between 1985 and 2014, of which 120 with complete HLA data were analysed. 55.8% of the recipients received re-transplants with repeated HLA mismatched antigens whereas 43.2% of the re-transplants were transplanted without repeated HLA mismatched antigens. Postoperative survival showed no difference between re-transplant procedures with or without repeated HLA mismatches (p=0.99). While neither homologies on the HLA-A, -B, -C, or -DR locus, nor the addition of several locus homologies (p=0.72) had an impact on survival, unexpectedly, repeated HLA mismatching on the HLA-DQ locus was correlated with better survival. Re-transplantations with repeated HLA mismatches did not result in more development of CLAD as compared to recipients without repeated HLA mismatches (p=0.99). Neither the number of repeated HLA mismatched antigens (p=0.52) nor the HLA locus (HLA-A(p=0.34), HLA-B(p=0.97), HLA-C (p=0.80), HLA-DR(p=0.49) and HLA-DQ(p=0.07)) had an impact on the development of CLAD after re-transplantation. Transplantation with repeated HLA mismatches due to sensitization by a previous transplantation in the absence of detectable HLA-antibodies does not have a negative impact on patient or graft survival. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Measurement of Droplet Sizes by the Diffraction Ring Method

    DTIC Science & Technology

    1948-07-27

    for measuring the droplet size distribution in sprays ob- tained by pressure injection of a liquid through an orifice «roby air- stream atomization...Diameter vs Injection Pressure 10 6. Distribution Curves for Spray Sample of Water Injected into Air Stream .... 11 Page ii Page Hi i^ujJa-je jii...tion in sprays obtained by pressure injection of a liquid through an orifice or by air- stream atomization. Perhaps the most widely used method

  5. Ultimate Atomic Bling: Nanotechnology of Diamonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  6. Crystal Face Distributions and Surface Site Densities of Two Synthetic Goethites: Implications for Adsorption Capacities as a Function of Particle Size.

    PubMed

    Livi, Kenneth J T; Villalobos, Mario; Leary, Rowan; Varela, Maria; Barnard, Jon; Villacís-García, Milton; Zanella, Rodolfo; Goodridge, Anna; Midgley, Paul

    2017-09-12

    Two synthetic goethites of varying crystal size distributions were analyzed by BET, conventional TEM, cryo-TEM, atomic resolution STEM and HRTEM, and electron tomography in order to determine the effects of crystal size, shape, and atomic scale surface roughness on their adsorption capacities. The two samples were determined by BET to have very different site densities based on Cr VI adsorption experiments. Model specific surface areas generated from TEM observations showed that, based on size and shape, there should be little difference in their adsorption capacities. Electron tomography revealed that both samples crystallized with an asymmetric {101} tablet habit. STEM and HRTEM images showed a significant increase in atomic-scale surface roughness of the larger goethite. This difference in roughness was quantified based on measurements of relative abundances of crystal faces {101} and {201} for the two goethites, and a reactive surface site density was calculated for each goethite. Singly coordinated sites on face {210} are 2.5 more dense than on face {101}, and the larger goethite showed an average total of 36% {210} as compared to 14% for the smaller goethite. This difference explains the considerably larger adsorption capacitiy of the larger goethite vs the smaller sample and points toward the necessity of knowing the atomic scale surface structure in predicting mineral adsorption processes.

  7. Impact of HLA compatibility on lung transplant survival and evidence for an HLA restriction phenomenon: a collaborative transplant study report.

    PubMed

    Opelz, Gerhard; Süsal, Caner; Ruhenstroth, Andrea; Döhler, Bernd

    2010-10-27

    Data concerning the impact of human leukocyte antigen (HLA) compatibility on lung transplant survival rates are limited. Using the Collaborative Transplant Study database, 5-year graft outcome according to HLA mismatch was examined in 8020 deceased donor lung transplants performed during 1989 to 2009. Graft survival rates showed a stepwise decrease as the combined number of HLA-A+B+DR mismatches increased from one to six (P<0.001). Surprisingly, the 28 grafts with 0 mismatches at all 3 loci had a 1-year survival rate of only 49.7%, significantly lower than for 1, 2, 3, 4, 5, or 6 mismatches (P=0.002, <0.001, <0.001, <0.001, 0.002, and 0.003, respectively). Multivariate regression analysis confirmed that, paradoxically, transplantation of grafts with zero HLA-A+B+DR mismatches was associated with a 19% increase in relative risk of failure. Donor lung preservation for up to 12 hr was not associated with inferior graft survival versus shorter preservation times (P=0.60). Our data show that a high number of HLA mismatches or zero mismatches impacts unfavorably on lung transplant survival.

  8. Evaluation of the match between anthropometric measures and school furniture dimensions in Chile.

    PubMed

    Castellucci, H I; Catalán, M; Arezes, P M; Molenbroek, J F M

    2015-01-01

    Students are exposed to the first systematic tasks or activities that a human being carries out in his/her life while at school. In this workplace situation, school furniture is a key factor for the adoption of proper body posture. The aim of this paper was to observe and determine the potential mismatch between school furniture dimensions and anthropometric characteristics of the students from the Valparaíso region of Chile. The sample consisted of 3,078 volunteer participants from 18 schools (public, semi-public, private). Eight anthropometric measures were gathered, together with six furniture dimensions. Mismatch analyses were carried out by using pre-defined mismatch criteria. Many different types of school furniture were presented at the schools. Also, a high level of mismatch was registered for seat height, desk height and seat-to-desk clearance. Finally, the analysis of all considered dimensions together showed that there was a high level of cumulative mismatch. It can be concluded that there were high levels of mismatch between the school furniture and student anthropometric characteristics and that this mismatch varied within the difference types of schools. This situation may have occurred because furniture acquisition was made without considering any ergonomic criteria.

  9. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    PubMed

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  10. Recombination activity of nickel, copper, and oxygen atoms segregating at grain boundaries in mono-like silicon crystals

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Kutsukake, Kentaro; Deura, Momoko; Yonenaga, Ichiro; Shimizu, Yasuo; Ebisawa, Naoki; Inoue, Koji; Nagai, Yasuyoshi; Yoshida, Hideto; Takeda, Seiji

    2016-10-01

    Three-dimensional distribution of impurity atoms was determined at functional Σ5{013} and small-angle grain boundaries (GBs) in as-grown mono-like silicon crystals by atom probe tomography combined with transmission electron microscopy, and it was correlated with the recombination activity of those GBs, CGB, revealed by photoluminescence imaging. Nickel (Ni), copper (Cu), and oxygen atoms preferentially segregated at the GBs on which arrays of dislocations existed, while those atoms scarcely segregated at Σ5{013} GBs free from dislocations. Silicides containing Ni and Cu about 5 nm in size and oxides about 1 nm in size were formed along the dislocation arrays on those GBs. The number of segregating impurity atoms per unit GB area for Ni and that for Cu, NNi and NCu, were in a trade-off correlation with that for oxygen, NO, as a function of CGB, while the sum of those numbers was almost constant irrespective of the GB character, CGB, and the dislocation density on GBs. CGB would be explained as a linear combination of those numbers: CGB (in %) ˜400(0.38NO + NNi + NCu) (in atoms/nm2). The GB segregation of oxygen atoms would be better for solar cells, rather than that of metal impurities, from a viewpoint of the conversion efficiency of solar cells.

  11. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  12. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a sampling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less effected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  13. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop-size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a smapling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less affected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  14. Modeling of the Structure of Disordered Metallic Alloys and Its Transformation Under Thermal Forcing

    NASA Astrophysics Data System (ADS)

    Cress, Ryan Paul

    The morphology of disordered binary metallic alloys is investigated. The structure of disordered binary metallic alloys is modeled as a randomly close packed (RCP) assembly of atoms. It was observed through a 2-D binary hard sphere experiment that RCP structure can be modeled as a mixture of nano-crystallites and glassy matter. We define the degree of crystallinity as the fraction of atoms contained in nano-crystallites in an RCP medium. Nano-crystallites by size in a crystallite size distribution were determined experimentally to define the morphology of the RCP medium. Both the degree of crystallinity and the crystallite size distribution have been found to be determined by the composition of a given binary mixture. A 2-D Monte Carlo simulation was developed in order to replicate the RCP structure observed in the experiment which is then extended to cases of arbitrary composition. Crystallites were assumed to be spherical with isotropic cross sections. The number of atoms in an individual crystallite in 2-D is simply transformed into the number of atoms in 3-D; we then obtain the crystallite size distribution in 3-D. This experiment accounts for the contribution from the repulsive core of the inter-atomic potential. The attractive part of the potential is recovered by constructing spherical nano-crystallites of a given radius from a crystalline specimen of each given alloy. A structural model of a disordered alloy is thus obtained. With the basic structure of the RCP medium defined, the response to heating would be in the form of changes to the crystallite size distribution. This was first investigated in a hard sphere mechanical oven experiment. The experimental setup consists of a 2-D cell which is driven by two independent stepper motors. The motors drive a binary RCP bed of spheres on a slightly tilted plane according to a chaotic algorithmm. The motors are driven at four different speed settings. The RCP medium was analyzed using a sequence of digital images taken of the beds. The bursts of images provide a Gaussian distribution of particle speeds in x and y directions thus giving rise to the notion of "temperature." This temperature scales with the motor speed settings. The measured average degree of crystallinity is found to decrease as the effective temperature was raised suggesting that nano-crystallites dissociate under thermal forcing. The evolution of a specimen's structure is calculated rigorously by means of the law of mass action formalism. A system of thermal dissociation reaction equations is written out for the set of nano-crystallites according to the 3-D crystallite size distribution. The equilibrium treatment is justified because the energy differences between metastable RCP structures fall within kT. Thermal dissociation of one surface atom at a time is assumed because the energy cost in dissociation of a surface atom on a nano-crystallite is significantly less than that of a multi atom cluster. The full set of reaction equations cover all possible dissociation steps, which may amount to several thousand for a disordered alloy specimen. The primary determining factor in each of these dissociation equations is the dissociation potential or the amount of attractive energy needed to remove a surface atom on a nano-crystallite of a given size. The attractive potential between atoms is calculated using a Lennard-Jones potential between a pair of atoms for which quantum chemistry calculations exist in the literature. All interactions impinged on the surface atom by all other atoms in a crystallite are summed. As the nano-crystallites dissociate due to heating, the structure of the alloy changes, and this leads to modifications of alloy's transport properties. The model is found to predict the melting temperature of various disordered binary alloys as well as refractory metals in good agreement with known data. The structure model for disordered binary alloys gives an excellent characterization of the alloy morphology. It therefore provides fruitful avenues for making predictions about how thermophysical properties of disordered binary alloys change as the alloy temperature is raised by heating.

  15. Gold atoms and dimers on amorphous SiO(2): calculation of optical properties and cavity ringdown spectroscopy measurements.

    PubMed

    Del Vitto, Annalisa; Pacchioni, Gianfranco; Lim, Kok Hwa; Rösch, Notker; Antonietti, Jean-Marie; Michalski, Marcin; Heiz, Ulrich; Jones, Harold

    2005-10-27

    We report on the optical absorption spectra of gold atoms and dimers deposited on amorphous silica in size-selected fashion. Experimental spectra were obtained by cavity ringdown spectroscopy. Issues on soft-landing, fragmentation, and thermal diffusion are discussed on the basis of the experimental results. In parallel, cluster and periodic supercell density functional theory (DFT) calculations were performed to model atoms and dimers trapped on various defect sites of amorphous silica. Optically allowed electronic transitions were calculated, and comparisons with the experimental spectra show that silicon dangling bonds [[triple bond]Si(.-)], nonbridging oxygen [[triple bond]Si-O(.-)], and the silanolate group [[triple bond]Si-O(-)] act as trapping centers for the gold particles. The results are not only important for understanding the chemical bonding of atoms and clusters on oxide surfaces, but they will also be of fundamental interest for photochemical studies of size-selected clusters on surfaces.

  16. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    NASA Astrophysics Data System (ADS)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  17. The interaction between atomic displacement cascades and tilt symmetrical grain boundaries in α-zirconium

    NASA Astrophysics Data System (ADS)

    Kapustin, P.; Svetukhin, V.; Tikhonchev, M.

    2017-06-01

    The atomic displacement cascade simulations near symmetric tilt grain boundaries (GBs) in hexagonal close packed-Zirconium were considered in this paper. Further defect structure analysis was conducted. Four symmetrical tilt GBs -∑14?, ∑14? with the axis of rotation [0 0 0 1] and ∑32?, ∑32? with the axis of rotation ? - were considered. The molecular dynamics method was used for atomic displacement cascades' simulation. A tendency of the point defects produced in the cascade to accumulate near the GB plane, which was an obstacle to the spread of the cascade, was discovered. The results of the point defects' clustering produced in the cascade were obtained. The clusters of both types were represented mainly by single point defects. At the same time, vacancies formed clusters of a large size (more than 20 vacancies per cluster), while self-interstitial atom clusters were small-sized.

  18. Defect-Induced Luminescence Quenching vs. Charge Carrier Generation of Phosphorus Incorporated in Silicon Nanocrystals as Function of Size.

    PubMed

    Hiller, Daniel; López-Vidrier, Julian; Gutsch, Sebastian; Zacharias, Margit; Nomoto, Keita; König, Dirk

    2017-04-13

    Phosphorus doping of silicon nanostructures is a non-trivial task due to problems with confinement, self-purification and statistics of small numbers. Although P-atoms incorporated in Si nanostructures influence their optical and electrical properties, the existence of free majority carriers, as required to control electronic properties, is controversial. Here, we correlate structural, optical and electrical results of size-controlled, P-incorporating Si nanocrystals with simulation data to address the role of interstitial and substitutional P-atoms. Whereas atom probe tomography proves that P-incorporation scales with nanocrystal size, luminescence spectra indicate that even nanocrystals with several P-atoms still emit light. Current-voltage measurements demonstrate that majority carriers must be generated by field emission to overcome the P-ionization energies of 110-260 meV. In absence of electrical fields at room temperature, no significant free carrier densities are present, which disproves the concept of luminescence quenching via Auger recombination. Instead, we propose non-radiative recombination via interstitial-P induced states as quenching mechanism. Since only substitutional-P provides occupied states near the Si conduction band, we use the electrically measured carrier density to derive formation energies of ~400 meV for P-atoms on Si nanocrystal lattice sites. Based on these results we conclude that ultrasmall Si nanovolumes cannot be efficiently P-doped.

  19. Septal and Anterior Reverse Mismatch of Myocardial Perfusion and Metabolism in Patients With Coronary Artery Disease and Left Bundle Branch Block

    PubMed Central

    Wang, Jian-Guang; Fang, Wei; Yang, Min-Fu; Tian, Yue-Qin; Zhang, Xiao-Li; Shen, Rui; Sun, Xiao-Xin; Guo, Feng; Wang, Dao-Yu; He, Zuo-Xiang

    2015-01-01

    Abstract The effects of left bundle branch block (LBBB) on left ventricular myocardial metabolism have not been well investigated. This study evaluated these effects in patients with coronary artery disease (CAD). Sixty-five CAD patients with complete LBBB (mean age, 61.8 ± 9.7 years) and 65 without LBBB (mean age, 59.9 ± 8.4 years) underwent single photon emission computed tomography, positron emission tomography, and contrast coronary angiography. The relationship between myocardial perfusion and metabolism and reverse mismatch score, and that between QRS length and reverse mismatch score and wall motion score were evaluated. The incidence of left ventricular septum and anterior wall reverse mismatching between the two groups was significantly different (P < 0.001 and P = 0.002, respectively). The incidences of normal myocardial perfusion and metabolism in the left ventricular lateral and inferior walls were also significantly different between the two groups (P < 0.001 and P < 0.001, respectively). The incidence of septal reverse mismatching in patients with mild to moderate perfusion was significantly higher among those with LBBB than among those without LBBB (P < 0.001). In CAD patients with LBBB, septal reverse mismatching was significantly more common among those with mild to moderate perfusion than among those with severe perfusion defects (P = 0.002). The correlation between the septal reverse mismatch score and QRS length was significant (P = 0.026). In patients with CAD and LBBB, septal and anterior reverse mismatching of myocardial perfusion and metabolism was frequently present; the septal reverse mismatch score negatively correlated with the QRS interval. PMID:25997045

  20. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas.

    PubMed

    Djordjevic, Bojana; Barkoh, Bedia A; Luthra, Rajyalakshmi; Broaddus, Russell R

    2013-10-01

    Loss of PTEN (phosphatase and tensin homolog) expression and microsatellite instability are two of the more common molecular alterations in endometrial carcinoma. From the published literature, it is controversial as to whether there is a relationship between these different molecular mechanisms. Therefore, a cohort of 187 pure endometrioid and non-endometrioid endometrial carcinomas, carefully characterized as to clinical and pathological features, was examined for PTEN sequence abnormalities and the immunohistochemical expression of PTEN and the DNA mismatch repair proteins MLH1, MSH2, MSH6, and PMS2. MLH1 methylation analysis was performed when tumors had loss of MLH1 protein. Mismatch repair protein loss was more frequent in endometrioid carcinomas compared with non-endometrioid carcinomas, a difference primarily attributable to the presence of MLH1 methylation in a greater proportion of endometrioid tumors. Among the non-endometrioid group, mixed endometrioid/non-endometrioid carcinomas were the histotype that most commonly had loss of a mismatch repair protein. In endometrioid tumors, the frequency of PTEN loss measured by immunohistochemistry and mutation did not differ significantly between the mismatch repair protein intact or mismatch repair protein loss groups, suggesting that PTEN loss is independent of mismatch protein repair status in this group. However, in non-endometrioid carcinomas, both intact positive PTEN immunohistochemical expression and PTEN wild type were highly associated with retained positive expression of mismatch repair proteins in the tumor. Relevant to screening endometrial cancers for Lynch Syndrome, an initial PTEN immunohistochemistry determination may be able to replace the use of four mismatch repair immunohistochemical markers in 63% of patients with non-endometrioid endometrial carcinoma. Therefore, PTEN immunohistochemistry, in combination with tumor histotype, is a useful adjunct in the clinical evaluation of endometrial carcinomas for Lynch Syndrome.

  1. The influence of voxel size on atom probe tomography data.

    PubMed

    Torres, K L; Daniil, M; Willard, M A; Thompson, G B

    2011-05-01

    A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. First-principles study of the binding energy between nanostructures and its scaling with system size

    NASA Astrophysics Data System (ADS)

    Tao, Jianmin; Jiao, Yang; Mo, Yuxiang; Yang, Zeng-Hui; Zhu, Jian-Xin; Hyldgaard, Per; Perdew, John P.

    2018-04-01

    The equilibrium van der Waals binding energy is an important factor in the design of materials and devices. However, it presents great computational challenges for materials built up from nanostructures. Here we investigate the binding-energy scaling behavior from first-principles calculations. We show that the equilibrium binding energy per atom between identical nanostructures can scale up or down with nanostructure size, but can be parametrized for large N with an analytical formula (in meV/atom), Eb/N =a +b /N +c /N2+d /N3 , where N is the number of atoms in a nanostructure and a , b , c , and d are fitting parameters, depending on the properties of a nanostructure. The formula is consistent with a finite large-size limit of binding energy per atom. We find that there are two competing factors in the determination of the binding energy: Nonadditivities of van der Waals coefficients and center-to-center distance between nanostructures. To decode the detail, the nonadditivity of the static multipole polarizability is investigated from an accurate spherical-shell model. We find that the higher-order multipole polarizability displays ultrastrong intrinsic nonadditivity, no matter if the dipole polarizability is additive or not.

  3. Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.

    Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less

  4. Atomic spin-chain realization of a model for quantum criticality

    NASA Astrophysics Data System (ADS)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.

    2016-07-01

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

  5. Different Topological Quantum States in Ternary Zintl compounds: BaCaX (X = Si, Ge, Sn and Pb)

    DOE PAGES

    Wang, Lin-Lin; Kaminski, Adam; Canfield, Paul C.; ...

    2017-12-14

    Topological quantum states require stringent combination of crystal symmetry and spin–orbit coupling (SOC) strength. Here in this paper, we report that the ternary Zintl compound series BaCaX (X = Si, Ge, Sn and Pb, Group IV) in the same crystal structure having eight valence electrons per formula unit can host two different topological quantum phases, controlled by atomic size and SOC strength. BaCaSi is a nodal-line semimetal (NLSM) with band inversion protected by mirror symmetry and hosts a strong topological insulator (TI) state when SOC is turned on, thus, a NLSM-TI phase. Moving to larger atomic sizes and heavier atoms,more » BaCaGe and BaCaSn are normal insulators (NIs); then, with the strongest SOC in BaCaPb, a different band inversion is induced, giving a strong TI phase without the need of NLSM. Thus, we also predict two types of topological transitions in a phase diagram for BaCaX: (1) NLSM-TI to NI, then to TI by tuning atomic size and SOC strength via alloying, and (2) NI or TI to NLSM-TI via pressure.« less

  6. Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.

    PubMed

    Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke

    2015-12-01

    We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.

  7. Communication: Finite size correction in periodic coupled cluster theory calculations of solids.

    PubMed

    Liao, Ke; Grüneis, Andreas

    2016-10-14

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  8. Small-angle x-ray scattering measurement of a mist of ethanol nanodroplets: An approach to understanding ultrasonic separation of ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Yano, Yohko F.; Matsuura, Kazuo; Fukazu, Tetsuo; Abe, Fusatsugu; Wakisaka, Akihiro; Kobara, Hitomi; Kaneko, Kazuyuki; Kumagai, Atsushi; Katsuya, Yoshio; Tanaka, Masahiko

    2007-07-01

    Small-angle x-ray scattering measurements using a brilliant x-ray source revealed nanometer sized liquid droplets in a mist formed by ultrasonic atomization. Ultrasonic atomization of ethanol-water mixtures produced a combination of water-rich droplets of micrometer order and ethanol-rich droplets as small as 1nm, which is 10-3 times smaller than the predicted size. These sizes were also obtained for mists generated from the pure liquids. These results will help to clarify the mechanism of "ultrasonic ethanol separation," which has the potential to become an alternative to distillation.

  9. Technical Note: exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials.

    PubMed

    Saito, Masatoshi; Tsukihara, Masayoshi

    2014-07-01

    For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU-ρe conversion), which provides a single linear relationship between ΔHU and ρe over a wide ρe range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU-ρe conversion process. The authors performed numerical analyses of the ΔHU-ρe conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1-40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80-140 kV/Sn under well-calibrated and poorly calibrated conditions. The accuracy of the resultant calibrated electron density,[Formula: see text], for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of [Formula: see text]ρe - 1 is assumed to be within ± 2%, the predicted upper limit of Z applicable for the ΔHU-ρe conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU-ρe linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU-ρe conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x-ray energies owing to beam-hardening effects arising from the mismatch between the sizes of the object and the calibration phantom.

  10. First principles study of size and external electric field effects on the atomic and electronic properties of gallium nitride nanostructures

    NASA Astrophysics Data System (ADS)

    Yilmaz, Hulusi

    A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.

  11. Spatial Mismatch: A Third Generation Survey.

    ERIC Educational Resources Information Center

    Eagan, J. Vincent

    1999-01-01

    The spatial mismatch argument hypothesizes that racial discrimination in the housing market, together with the suburbanization of low skilled jobs, contributes significantly to the high unemployment and/or low wages of inner city minority workers. Surveys recent spatial mismatch literature and discusses policy alternatives, focusing on areas…

  12. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    PubMed Central

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  13. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair.

    PubMed

    Hodel, Karl P; de Borja, Richard; Henninger, Erin E; Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam; Pursell, Zachary F

    2018-02-28

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. © 2018, Hodel et al.

  14. Coordination success and interpersonal perceptions: matching versus mismatching.

    PubMed

    Abele, Susanne; Stasser, Garold

    2008-09-01

    Coordination is an essential part of social functioning. The authors distinguish 2 types of coordination: matching and mismatching. In matching, coordination is successful if parties choose the same action. In mismatching, coordination is successful if people choose different actions. In 3 studies, the authors investigated the downstream social consequences of tacit coordination for interpersonal perceptions. In all studies, participants repeatedly choose between 2 bets with equivalent expected values, and payoffs increased either when they choose the same bet or when they choose different bets. In the 1st 2 studies, coordination success increased the perceptions of interpersonal similarity and liking when matching was required but not when mismatching was required. The authors' interpretation is that matching responses and coordination success had countervailing effects in the mismatching task. Also, percentage of matched responses did not affect perceptions when coordination was not required (Experiment 2). In 4 person teams, a frequently matching partner was viewed more favorably (smarter, more similar to self, and more liked) than were other teammates, even when mismatching increased payoffs (Experiment 3).

  15. Electric field imaging of single atoms

    PubMed Central

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  16. Multidisciplinary Approach to the Science and Technology of Sub-Micron Electronics.

    DTIC Science & Technology

    1987-03-10

    19densities as high as 3x1O1 2 electrons cm- 2 could be obtained with GaAs doping densities on the order of 3x1O18 cm-3 . Many-body effects are shown to be...heterinterfaces include studies of the effects of paramagnetic impurities and structural disorder at the interface of mismatched Mo-Ni superlattices in Dr...inverted mecelles. The ’caoing’ effect of the inverted micelles ensures a narrow distribution of particle size, and a uniform composition. This

  17. Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection.

    PubMed

    Romano, Christine A; Sontz, Pamela A; Barton, Jacqueline K

    2011-07-12

    Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75, and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. On the basis of circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome.

  18. Mutants of the Base Excision Repair Glycosylase, Endonuclease III: DNA Charge Transport as a First Step in Lesion Detection

    PubMed Central

    Romano, Christine A.; Sontz, Pamela A.; Barton, Jacqueline K.

    2011-01-01

    Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75 and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. Based on circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome. PMID:21651304

  19. Catalysis applications of size-selected cluster deposition

    DOE PAGES

    Vajda, Stefan; White, Michael G.

    2015-10-23

    In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less

  20. Atomically Precise Metal Nanoclusters for Catalytic Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Rongchao

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily highmore » selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au 25(SR) 18, Au 28(SR) 20, Au 38(SR) 24, Au 99(SR) 42, Au 144(SR) 60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our works include: i) Effects of ligand, cluster charge state, and size on the catalytic reactivity in CO oxidation, semihydrogenation of alkynes; ii) Size-controlled synthesis of Au-n clusters and structural elucidation; iii) Catalytic mechanisms and correlation with structures of cluster catalyst; iv) Catalytic properties of Au nanorods in chemoselective hydrogenation of nitrobenzaldehyde and visible light driven photocatalytic reactions.« less

  1. ABO incompatibility in mismatched unrelated donor allogeneic hematopoietic cell transplantation for acute myeloid leukemia: A report from the acute leukemia working party of the EBMT.

    PubMed

    Canaani, Jonathan; Savani, Bipin N; Labopin, Myriam; Michallet, Mauricette; Craddock, Charles; Socié, Gerard; Volin, Lisa; Maertens, Johan A; Crawley, Charles; Blaise, Didier; Ljungman, Per T; Cornelissen, Jan; Russell, Nigel; Baron, Frédéric; Gorin, Norbert; Esteve, Jordi; Ciceri, Fabio; Schmid, Christoph; Giebel, Sebastian; Mohty, Mohamad; Nagler, Arnon

    2017-08-01

    ABO incompatibility is commonly observed in stem cell transplantation and its impact in this setting has been extensively investigated. HLA-mismatched unrelated donors (MMURD) are often used as an alternative stem cell source but are associated with increased transplant related complications. Whether ABO incompatibility affects outcome in MMURD transplantation for acute myeloid leukemia (AML) patients is unknown. We evaluated 1,013 AML patients who underwent MMURD transplantation between 2005 and 2014. Engraftment rates were comparable between ABO matched and mismatched patients, as were relapse incidence [34%; 95% confidence interval (CI), 28-39; for ABO matched vs. 36%; 95% CI, 32-40; for ABO mismatched; P = .32], and nonrelapse mortality (28%; 95% CI, 23-33; for ABO matched vs. 25%; 95% CI, 21-29; for ABO mismatched; P = .2). Three year survival was 40% for ABO matched and 43% for ABO mismatched patients (P = .35), Leukemia free survival rates were also comparable between groups (37%; 95% CI, 32-43; for ABO matched vs. 38%; 95% CI, 33-42; for ABO mismatched; P = .87). Incidence of grade II-IV acute graft versus host disease was marginally lower in patients with major ABO mismatching (Hazard ratio of 0.7, 95% CI, 0.5-1; P = .049]. ABO incompatibility probably has no significant clinical implications in MMURD transplantation. © 2017 Wiley Periodicals, Inc.

  2. Future HLA matching strategies in clinical transplantation.

    PubMed

    Claas, Frans H J; Roelen, Dave L; Oudshoorn, Machteld; Doxiadis, Ilias I N

    2003-01-01

    HLA matching has shown to be beneficial in clinical transplantation. Due to the enormous polymorphism of the HLA system, however, it is not feasible to select a completely HLA-matched donor for every potential recipient. Only for patients with frequently occurring HLA phenotypes is it realistic to expect a well-matched donor within a reasonable waiting time. The majority of patients will be transplanted with a partially mismatched donor. In order to select the optimal donor for this category of patients, it is important to take advantage of the differential immunogenicity and thus differential importance of mismatched HLA antigens. Based on retrospective analyses of graft survival data and in vitro tests measuring T-cell alloreactivity, the relative importance of different mismatches was evaluated. It has been possible to define acceptable or permissible mismatches with a low immunogenicity, which are associated with a good graft survival, versus taboo mismatches with a high immunogenicity and a poor graft survival. Further developing this new line of permissible versus taboo mismatches, a new strategy will emerge for future HLA matching, which will not only suit a rare number of patients with frequent haplotypes but a great percentage of all patients. This principle of different immunogenicity of different mismatches can not only be applied to T-cell alloreactivity as shown here, but also to B-cell alloreactivity, where a recently developed computer algorithm (HLA matchmaker) can be instrumental in selecting donors with HLA mismatches, which do not lead to alloantibody formation.

  3. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the angular distribution parameter values of the two-spin-orbit components from Ar 2p clusters are slightly different. When comparing the beta values for Ar between atoms and clusters, we found different results between Ar 3s atoms and clusters, and between Ar 3p atoms and clusters. Argon cluster resonance from surface and bulk were also measured. Furthermore, the angular distribution parameters of Ar cluster photoelectrons and Ar atom photoelectrons in the 3s → np ionization region were obtained.

  4. Mismatch in cation size causes rapid anion dynamics in solid electrolytes: the role of the Arrhenius pre-factor.

    PubMed

    Breuer, Stefan; Wilkening, Martin

    2018-03-28

    Crystalline ion conductors exhibiting fast ion dynamics are of utmost importance for the development of, e.g., sensors or rechargeable batteries. In some layer-structured or nanostructured compounds fluorine ions participate in remarkably fast self-diffusion processes. As has been shown earlier, F ion dynamics in nanocrystalline, defect-rich BaF 2 is much higher than that in the coarse-grained counterpart BaF 2 . The thermally metastable fluoride (Ba,Ca)F 2 , which can be prepared by joint high-energy ball milling of the binary fluorides, exhibits even better ion transport properties. While long-range ion dynamics has been studied recently, less information is known about local ion hopping processes to which 19 F nuclear magnetic resonance (NMR) spin-lattice relaxation is sensitive. The present paper aims at understanding ion dynamics in metastable, nanocrystalline (Ba,Ca)F 2 by correlating short-range ion hopping with long-range transport properties. Variable-temperature NMR line shapes clearly indicate fast and slow F spin reservoirs. Surprisingly, from an atomic-scale point of view increased ion dynamics at intermediate values of composition is reflected by increased absolute spin-lattice relaxation rates rather than by a distinct minimum in activation energy. Hence, the pre-factor of the underlying Arrhenius relation, which is determined by the number of mobile spins, the attempt frequency and entropy effects, is identified as the parameter that directly enhances short-range ion dynamics in metastable (Ba,Ca)F 2 . Concerted ion migration could also play an important role to explain the anomalies seen in NMR spin-lattice relaxation.

  5. Metallurgy Beyond Iron

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella; Busch, Ralf

    2009-08-01

    Metallurgy is one of the oldest sciences. Its history can be traced back to 6000 BCE with the discovery of Gold, and each new discovery - Copper, Silver, Lead, Tin, Iron and Mercury - marked the beginning of a new era of civilization. Currently there are 86 known metals, but until the end of the 17th century, only 12 of these were known. Steel (Fe-C alloy) was discovered in the 11th century BCE; however, it took until 1709 CE before we mastered the smelting of pig-iron by using coke instead of charcoal and started the industrial revolution. The metallurgy of nowadays is mainly about discovering better materials with superior properties to fulfil the increasing demand of the global market. Promising are the Glassy Metals or Bulk Metallic Glasses (BMGs) - discovered at first in the late 50s at the California Institute of Technology - which are several times stronger than the best industrial steels and 10-times springier. The unusual structure that lacks crystalline grains makes BMGs so promising. They have a liquid-like structure that means they melt at lower temperatures, can be moulded nearly as easily as plastics, and can be shaped into features just 10 nm across. The best BMG formers are based on Zr, Pd, Pt, Ca, Au and, recently discovered, also Fe. They have typically three to five components with large atomic size mismatch and a composition close to a deep eutectic. Packing in such liquids is very dense, with a low content of free volume, resulting in viscosities that are several orders of magnitude higher than in pure metal melts.

  6. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula.

    PubMed

    Izadi, Zahra; Sheikh-Zeinoddin, Mahmoud; Ensafi, Ali A; Soleimanian-Zad, Sabihe

    2016-06-15

    This paper describes fabrication of a DNA-based Au-nanoparticle modified pencil graphite electrode (PGE) biosensor for detection of Bacillus cereus, causative agent of two types of food-borne disease, i.e., emetic and diarrheal syndrome. The sensing element of the biosensor was comprised of gold nanoparticles (GNPs) self-assembled with single-stranded DNA (ssDNA) of nheA gene immobilized with thiol linker on the GNPs modified PGE. The size, shape and dispersion of the GNPs were characterized by field emission scanning electron microscope (FESEM). Detection of B. cereus was carried out based on an increase in the charge transfer resistance (Rct) of the biosensor due to hybridization of the ss-DNA with target DNA. An Atomic force microscope (AFM) was used to confirm the hybridization. The biosensor sensitivity in pure cultures of B. cereus was found to be 10(0) colony forming units per milliliter (CFU/mL) with a detection limit of 9.4 × 10(-12) mol L(-1). The biosensor could distinguish complementary from mismatch DNA sequence. The proposed biosensor exhibited a rapid detection, low cost, high sensitivity to bacterial contamination and could exclusively and specifically detect the target DNA sequence of B. cereus from other bacteria that can be found in dairy products. Moreover, the DNA biosensor exhibited high reproducibility and stability, thus it may be used as a suitable biosensor to detect B. cereus and to become a portable system for food quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Theoretical Investigation of the Infrared Spectroscopic Properties of Closed-Shell Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.

  8. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801

  9. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1-6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.

    PubMed

    Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc

    2017-04-11

    All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.

  10. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    PubMed

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  11. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties.

    PubMed

    Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun

    2017-11-16

    Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.

  12. Measurements of the Diameter and Velocity Distributions of Atomized Tablet-Coating Solutions for Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Osterday, Kathryn; Aliseda, Alberto; Lasheras, Juan

    2009-11-01

    The atomization of colloidal suspensions is of particular interest to the manufacturing of tablets and pills used as drug delivery systems by the pharmaceutical industry. At various stages in the manufacturing process, the tablets are coated with a spray of droplets produced by co-axial atomizers. The mechanisms of droplet size and spray formation in these types of atomizers are dominated by Kelvin-Helmholtz and Raleigh-Taylor instabilities for both low[1] and high[2] Ohnesorge numbers. We present detailed phase Doppler measurements of the Sauter Mean Diameter of the droplets produced by co-axial spray atomizers using water-based colloidal suspensions with solid concentrations ranging from fifteen to twenty percent and acetone-based colloidal suspensions with solid concentrations ranging from five to ten percent. Our results compare favorably with predictions by Aliseda's model. This suggests that the final size distribution is mainly determined by the instabilities caused by the sudden acceleration of the liquid interface. [1]Varga, C. M., et al. (2003) J. Fluid Mech. 497:405-434 [2]Aliseda, A. et al. (2008). J. Int. J. Multiphase Flow, 34(2), 161-175.

  13. Development of ultrasonic atomizer and its application to S. I. engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namiyama, K.; Nakamura, H.; Kokubo, K.

    1989-01-01

    This paper describes a fuel atomizer developed for S.I. engines based on ultrasonic vibrations. As the spray is characterized by fine droplet size and low penetration, it facilitates fuel movement and the formation of a homogeneous mixture. The spray behavior of this atomizer is easily influenced by ambient air motion. Therefore, the spray is most effectively delivered to the cylinders by precise injection timing. The ultrasonic atomizer disperses a fine spray over a wide flow rate range. A single cylinder engine fitted with the atomizer showed advantages in combustion speed and transient response performance.

  14. Near Hartree-Fock quality GTO basis sets for the second-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1987-01-01

    Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.

  15. Are Educational Mismatches Responsible for the "Inequality Increasing Effect" of Education?

    ERIC Educational Resources Information Center

    Budria, Santiago

    2011-01-01

    This paper asks whether educational mismatches can account for the positive association between education and wage inequality found in the data. We use two different data sources, the European Community Household Panel and the Portuguese Labour Force Survey, and consider several types of mismatch, including overqualification, underqualification…

  16. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  17. Lattice QCD with mismatched fermi surfaces.

    PubMed

    Yamamoto, Arata

    2014-04-25

    We study two flavor fermions with mismatched chemical potentials in quenched lattice QCD. We first consider a large isospin chemical potential, where a charged pion is condensed, and then introduce a small mismatch between the chemical potentials of the up quark and the down antiquark. We find that the homogeneous pion condensate is destroyed by the mismatch of the chemical potentials. We also find that the two-point correlation function shows spatial oscillation, which indicates an inhomogeneous ground state, although it is not massless but massive in the present simulation setup.

  18. HLA mismatches and hematopoietic cell transplantation: structural simulations assess the impact of changes in peptide binding specificity on transplant outcome

    PubMed Central

    Yanover, Chen; Petersdorf, Effie W.; Malkki, Mari; Gooley, Ted; Spellman, Stephen; Velardi, Andrea; Bardy, Peter; Madrigal, Alejandro; Bignon, Jean-Denis; Bradley, Philip

    2013-01-01

    The success of hematopoietic cell transplantation from an unrelated donor depends in part on the degree of Human Histocompatibility Leukocyte Antigen (HLA) matching between donor and patient. We present a structure-based analysis of HLA mismatching, focusing on individual amino acid mismatches and their effect on peptide binding specificity. Using molecular modeling simulations of HLA-peptide interactions, we find evidence that amino acid mismatches predicted to perturb peptide binding specificity are associated with higher risk of mortality in a large and diverse dataset of patient-donor pairs assembled by the International Histocompatibility Working Group in Hematopoietic Cell Transplantation consortium. This analysis may represent a first step toward sequence-based prediction of relative risk for HLA allele mismatches. PMID:24482668

  19. A teleofunctional account of evolutionary mismatch.

    PubMed

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  20. The Effect of Basepair Mismatch on DNA Strand Displacement.

    PubMed

    Broadwater, D W Bo; Kim, Harold D

    2016-04-12

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Top