ERIC Educational Resources Information Center
Feldman, David
1975-01-01
Stresses the importance of language laboratories and other technical devices used in foreign language teaching, particularly in programed language instruction. Illustrates, by means of taxonomies, the various stages a foreign language learning program should follow. (Text is in Spanish.) (DS)
ERIC Educational Resources Information Center
Feldman, David
1975-01-01
Presents a computerized program for foreign language learning giving drills for all the major language skills. The drills are followed by an extensive bibliography of documents in some way dealing with computer based instruction, particularly foreign language instruction. (Text is in Spanish.) (TL)
ERIC Educational Resources Information Center
Feldman, David
1975-01-01
This paper discusses the prerequisites to programed language instruction, the role of the native language and the level of skill, and then explains materials and machines needed for such a program. Particular attention is given to phonetics. (Text is in Spanish.) (CK)
ERIC Educational Resources Information Center
Peace Corps, Washington, DC.
This Spanish version of the Peace Corps Programming and Training System Manual is designed to help field staff members of the Peace Corps train volunteers. Its task descriptions, guidelines, examples, and definitions are intended to be practical and informative rather than restrictive. The manual is divided into six major sections: (1)…
NASA Astrophysics Data System (ADS)
Grum-Grzhimailo, Alexei N.; Popov, Yuri V.; Gryzlova, Elena V.; Solov'yov, Andrey V.
2017-07-01
The conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS-2016) brought together near to a hundred scientists in the field of electronic, photonic, atomic and molecular collisions, and spectroscopy from around the world. We deliver an Editorial of a topical issue presenting original research results from some of the participants on both experimental and theoretical studies involving many particle spectroscopy of atoms, molecules, clusters and surfaces. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu.V. Popov, and A.V. Solov'yov.
1986-06-01
la Armada (EMGAR)-- Staff of the Navy ------------------------- 18 b. Direction de Presupuesto Programac ion Ecomica (DIPPE)-Direction of Budget and...Economic Programming -------------------- 18 c. Cornite De Programacion y Presupuesto (CPP)-- Programming and Budget Committee-----------18 3. Major...development. This analysis is included in the annual budget. b. Direction de Presupuesto Programaclon Ecomica (DIPPE)- Direction of Budget and Economic
Forbidden atomic transitions driven by an intensity-modulated laser trap.
Moore, Kaitlin R; Anderson, Sarah E; Raithel, Georg
2015-01-20
Spectroscopy is an essential tool in understanding and manipulating quantum systems, such as atoms and molecules. The model describing spectroscopy includes the multipole-field interaction, which leads to established spectroscopic selection rules, and an interaction that is quadratic in the field, which is not often employed. However, spectroscopy using the quadratic (ponderomotive) interaction promises two significant advantages over spectroscopy using the multipole-field interaction: flexible transition rules and vastly improved spatial addressability of the quantum system. Here we demonstrate ponderomotive spectroscopy by using optical-lattice-trapped Rydberg atoms, pulsating the lattice light and driving a microwave atomic transition that would otherwise be forbidden by established spectroscopic selection rules. This ability to measure frequencies of previously inaccessible transitions makes possible improved determinations of atomic characteristics and constants underlying physics. The spatial resolution of ponderomotive spectroscopy is orders of magnitude better than the transition frequency would suggest, promising single-site addressability in dense particle arrays for quantum computing applications.
THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS
Three decades of study of environmental conditions necessary for the protection of freshwater
aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
The...
From Single Atoms to Nanoparticles — Spectroscopy on the Atomic Level
NASA Astrophysics Data System (ADS)
Nilius, Niklas
2003-12-01
The scanning tunneling microscope is not only a well-established tool for a topographic characterization of the sample surface on the atomic scale. It also provides a variety of spectroscopic techniques to examine electronic, magnetic, vibrational and optical properties of a localized system. The following presentation gives an overview, how scanning tunneling spectroscopy, inelastic electron tunneling spectroscopy and photon emission spectroscopy with the STM can be employed to investigate spatially confined metal systems and their interaction with molecular gases. The experiments were performed on single Pd and Au atoms, mono-atomic chains and individual Ag clusters on a NiAl support and a Al2O3 thin film.
ERIC Educational Resources Information Center
Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey
2004-01-01
An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…
2014-02-05
X - ray photoelectron spectroscopy (XPS), Raman spectroscopy , and atomic ...calculate thickness, n and k. X - ray photoelectron spectroscopy (XPS), Raman spectroscopy , and atomic force microscopy (AFM) were all performed on each of the... X - ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to measure and compare the composition of the films.6 In this paper,
Current Trends in Atomic Spectroscopy.
ERIC Educational Resources Information Center
Wynne, James J.
1983-01-01
Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi
2009-11-01
In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.
NASA Astrophysics Data System (ADS)
Peng, Shi-Guo; Liu, Xia-Ji; Hu, Hui; Jiang, Kaijun
2012-12-01
We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wave function, binding energy, and effective mass, are determined from the two-particle solution of two interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit-coupled Fermi gas and can be directly tested in atomic Fermi gases of 40K atoms at Shanxi University and 6Li atoms at the Massachusetts Institute of Technology.
Lewen, Nancy
2011-06-25
The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.
Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy
NASA Technical Reports Server (NTRS)
Schlagen, Kenneth J.
1992-01-01
Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.
Laser techniques for spectroscopy of core-excited atomic levels
NASA Technical Reports Server (NTRS)
Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.
1982-01-01
We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.
Colloquium: Laser probing of neutron-rich nuclei in light atoms
NASA Astrophysics Data System (ADS)
Lu, Z.-T.; Mueller, P.; Drake, G. W. F.; Nörtershäuser, W.; Pieper, Steven C.; Yan, Z.-C.
2013-10-01
The neutron-rich He6 and He8 isotopes exhibit an exotic nuclear structure that consists of a tightly bound He4-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms and have measured the atomic isotope shifts along the He4-He6-He8 chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.
ERIC Educational Resources Information Center
Chinni, Rosemarie C.
2012-01-01
This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…
Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy
ERIC Educational Resources Information Center
Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.
2008-01-01
Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…
On the way to unveiling the atomic structure of superheavy elements
NASA Astrophysics Data System (ADS)
Laatiaoui, Mustapha
2016-12-01
Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced "online" by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.
Spectroscopy, Understanding the Atom Series.
ERIC Educational Resources Information Center
Hellman, Hal
This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
Some historic and current aspects of plasma diagnostics using atomic spectroscopy
NASA Astrophysics Data System (ADS)
Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek
2010-07-01
In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.
Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...
2016-02-18
This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.
Study of clusters using negative ion photodetachment spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yuexing
1995-12-01
The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs -. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.
Solving a Mock Arsenic-Poisoning Case Using Atomic Spectroscopy
NASA Astrophysics Data System (ADS)
Tarr, Matthew A.
2001-01-01
A new upper-level undergraduate atomic spectroscopy laboratory procedure has been developed that presents a realistic problem to students and asks them to assist in solving it. Students are given arsenic-laced soda samples from a mock crime scene. From these samples, they are to gather evidence to help prosecute a murder suspect. The samples are analyzed by inductively coupled plasma atomic emission spectroscopy or by atomic absorbance spectroscopy to determine the content of specific metal impurities. By statistical comparison of the samples' composition, the students determine if the soda samples can be linked to arsenic found in the suspect's home. As much as possible, the procedures and interpretations are developed by the students. Particular emphasis is placed on evaluating the limitations and capabilities of the analytical method with respect to the demands of the problem.
NASA Astrophysics Data System (ADS)
Kolokolov, N. B.; Blagoev, A. B.
1993-03-01
Studies of reactions involving excited atoms, which result in the release of electrons with energies exceeding the mean plasma electron energy, are reviewed. Particular attention is devoted to plasma electron spectroscopy (PES) which combines the advantages of studies of elementary plasma processes with those of traditional electron spectroscopy. Data obtained by investigating the following reactions are reported: chemoionization with the participation of two excited inert-gas atoms, Penning ionization of atoms and molecules by metastable helium atoms, and electron quenching of excited inert-gas atoms and mercury atoms. The effect of processes in which fast electrons are emitted on plasma properties is discussed.
Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy
Neuman, Keir C.; Nagy, Attila
2012-01-01
Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917
USDA-ARS?s Scientific Manuscript database
Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...
Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic
2013-01-01
The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738
ERIC Educational Resources Information Center
Barrow, Gordon M.
1970-01-01
Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)
1998-01-01
Ferrography on High Performance Aircraft Engine Lubricating Oils Allison M. Toms, Sharon 0. Hem, Tim Yarborough Joint Oil Analysis Program Technical...turbine engines by spectroscopy (AES and FT-IR) and direct reading and analytical ferrography . A statistical analysis of the data collected is...presented. Key Words: Analytical ferrography ; atomic emission spectroscopy; condition monitoring; direct reading ferrography ; Fourier transform infrared
Code of Federal Regulations, 2010 CFR
2010-07-01
... Absorption Spectroscopy.” Published by Interscience Company, New York, NY (1968). 5. Kirkbright, G. F., and Sargent, M., “Atomic Absorption and Fluorescence Spectroscopy.” Published by Academic Press, New York, NY... County, IL, by Atomic Absorption Spectroscopy.” Envir. Sci. and Tech., 3, 472-475 (1969). 7. “Proposed...
The DTIC Review: Volume 2, Number 4, Surviving Chemical and Biological Warfare
1996-12-01
CHROMATOGRAPHIC ANALYSIS, NUCLEAR MAGNETIC RESONANCE, INFRARED SPECTROSCOPY , ARMY RESEARCH, DEGRADATION, VERIFICATION, MASS SPECTROSCOPY , LIQUID... mycotoxins . Such materials are not attractive as weapons of mass destruction however, as large amounts are required to produce lethal effects. In...VERIFICATION, ATOMIC ABSORPTION SPECTROSCOPY , ATOMIC ABSORPTION. AL The DTIC Review Defense Technical Information Center AD-A285 242 AD-A283 754 EDGEWOOO
Flameless Atomic Absorption Spectroscopy: Effects of Nitrates and Sulfates.
1980-05-01
ATTACHED DDJ~P 1413 EDITION 01 INO, 6 5 IabSoLEr J UjN!LbAa~ A- i SELU 0 IONOF I tG 651 J Flameless Atomic Absorption Spectroscopy: Effects of Nitrates...analytical techniques, flameless atomic absorption is subject to matrix or interference effects. Upon heating, nitrate and sulfate salts decompose to...Eklund and J.E. Smith, Anal Chem, 51, 1205 (1979) R.H. Eklund and J.A. Holcombe, Anal Chim. Acta, 109, 97 (1979) FLAMELESS ATOMIC ABSORPTION
Two-photon Direct Frequency Comb Spectroscopy of Alkali Atoms
NASA Astrophysics Data System (ADS)
Nguyen, Khoa; Pradhananga, Trinity; Palm, Christopher; Stalnaker, Jason; Kimball, Derek Jackson
2012-06-01
We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
Direct Frequency Comb Spectroscopy of Alkali Atoms
NASA Astrophysics Data System (ADS)
Pradhananga, Trinity; Palm, Christopher; Nguyen, Khoa; Guttikonda, Srikanth; Kimball, Derek Jackson
2011-11-01
We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
Partially autoionizing states of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Petrosky, V. E.
1974-01-01
Certain Rydberg states and an intershell transition of atomic oxygen were shown to partially autoionize, and to produce emission spectra competitive with autoionization. These states are forbidden to autoionize on the basis of LS coupling; but they were observed both in emission spectroscopy and in photoelectron spectroscopy. The results explain an unidentified structure in the 584 Angstrom He I atomic O spectrum observed by previous investigators.
Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre
Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi
2014-01-01
Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478
DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY
A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...
Raman-Ramsey multizone spectroscopy in a pure rubidium vapor cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Failache, H.; Lenci, L.; Lezama, A.
2010-02-15
In view of application to a miniaturized spectroscopy system, we consider an optical setup that splits a laser beam into several parallel narrow light sheets allowing an effective beam expansion and consequently longer atom-light interaction times. We analyze the multizone coherent population trapping (MZCPT) spectroscopy of alkali-metal-vapor atoms, without buffer gas, in the presence of a split light beam. We show that the MZCPT signal is largely insensitive to intensity broadening. Experimentally observed spectra are in qualitative agreement with the predictions of a simplified model that describes each spectrum as an integral over the atomic velocity distribution of Ramsey multizonemore » spectra.« less
Epi-cleaning of Ge/GeSn heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.
2015-01-28
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100–300 °C range.
Lebedev, Vyacheslav; Bartlett, Joshua H.; Malyzhenkov, Alexander; ...
2017-12-06
Here, we present a novel compact design for a multichannel atomic oven which generates collimated beams of refractory atoms for fieldable laser spectroscopy. Using this resistively heated crucible, we demonstrate spectroscopy of an erbium sample at 1300 °C with improved isotopic resolution with respect to a single-channel design. In addition, our oven has a high thermal efficiency. By minimizing the surface area of the crucible, we achieve 2000 °C at 140 W of applied electrical power. As a result, the design does not require any active cooling and is compact enough to allow for its incorporation into fieldable instruments.
Epi-cleaning of Ge/GeSn heterostructures
NASA Astrophysics Data System (ADS)
Di Gaspare, L.; Sabbagh, D.; De Seta, M.; Sodo, A.; Wirths, S.; Buca, D.; Zaumseil, P.; Schroeder, T.; Capellini, G.
2015-01-01
We demonstrate a very-low temperature cleaning technique based on atomic hydrogen irradiation for highly (1%) tensile strained Ge epilayers grown on metastable, partially strain relaxed GeSn buffer layers. Atomic hydrogen is obtained by catalytic cracking of hydrogen gas on a hot tungsten filament in an ultra-high vacuum chamber. X-ray photoemission spectroscopy, reflection high energy electron spectroscopy, atomic force microscopy, secondary ion mass spectroscopy, and micro-Raman showed that an O- and C-free Ge surface was achieved, while maintaining the same roughness and strain condition of the as-deposited sample and without any Sn segregation, at a process temperature in the 100-300 °C range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Vyacheslav; Bartlett, Joshua H.; Malyzhenkov, Alexander
Here, we present a novel compact design for a multichannel atomic oven which generates collimated beams of refractory atoms for fieldable laser spectroscopy. Using this resistively heated crucible, we demonstrate spectroscopy of an erbium sample at 1300 °C with improved isotopic resolution with respect to a single-channel design. In addition, our oven has a high thermal efficiency. By minimizing the surface area of the crucible, we achieve 2000 °C at 140 W of applied electrical power. As a result, the design does not require any active cooling and is compact enough to allow for its incorporation into fieldable instruments.
Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.
Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro
2014-12-01
We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
Atomic Absorption Spectroscopy. The Present and the Future.
ERIC Educational Resources Information Center
Slavin, Walter
1982-01-01
The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)
ERIC Educational Resources Information Center
Fulghum, J. E.; And Others
1989-01-01
This review is divided into the following analytical methods: ion spectroscopy, electron spectroscopy, scanning tunneling microscopy, atomic force microscopy, optical spectroscopy, desorption techniques, and X-ray techniques. (MVL)
Photoelectron spectroscopy of heavy atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.
1979-07-01
The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.
Chu, Ming-Wen; Chen, Cheng Hsuan
2013-06-25
With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.
Photoionization of atoms and molecules. [of hydrogen, helium, and xenon
NASA Technical Reports Server (NTRS)
Samson, J. A. R.
1976-01-01
A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.
Atomic charges of sulfur in ionic liquids: experiments and calculations.
Fogarty, Richard M; Rowe, Rebecca; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Smith, Emily F; Bourne, Richard A; Chamberlain, Thomas W; Thompson, Paul B J; Hunt, Patricia A; Lovelock, Kevin R J
2017-12-14
Experimental near edge X-ray absorption fine structure (NEXAFS) spectra, X-ray photoelectron (XP) spectra and Auger electron spectra are reported for sulfur in ionic liquids (ILs) with a range of chemical structures. These values provide experimental measures of the atomic charge in each IL and enable the evaluation of the suitability of NEXAFS spectroscopy and XPS for probing the relative atomic charge of sulfur. In addition, we use Auger electron spectroscopy to show that when XPS binding energies differ by less than 0.5 eV, conclusions on atomic charge should be treated with caution. Our experimental data provides a benchmark for calculations of the atomic charge of sulfur obtained using different methods. Atomic charges were computed for lone ions and ion pairs, both in the gas phase (GP) and in a solvation model (SMD), with a wide range of ion pair conformers considered. Three methods were used to compute the atomic charges: charges from the electrostatic potential using a grid based method (ChelpG), natural bond orbital (NBO) population analysis and Bader's atoms in molecules (AIM) approach. By comparing the experimental and calculated measures of the atomic charge of sulfur, we provide an order for the sulfur atoms, ranging from the most negative to the most positive atomic charge. Furthermore, we show that both ChelpG and NBO are reasonable methods for calculating the atomic charge of sulfur in ILs, based on the agreement with both the XPS and NEXAFS spectroscopy results. However, the atomic charges of sulfur derived from ChelpG are found to display significant, non-physical conformational dependence. Only small differences in individual atomic charge of sulfur were observed between lone ion (GP) and ion pair IL(SMD) model systems, indicating that ion-ion interactions do not strongly influence individual atomic charges.
NASA Astrophysics Data System (ADS)
Lomsadze, Bachana; Cundiff, Steven T.
2018-06-01
Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.
Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors
ERIC Educational Resources Information Center
Weidenhammer, Jeffrey D.
2007-01-01
A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.
Atomic vapor laser isotope separation process
Wyeth, R.W.; Paisner, J.A.; Story, T.
1990-08-21
A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.
Electronic structure of atoms: atomic spectroscopy information system
NASA Astrophysics Data System (ADS)
Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.
2017-10-01
The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.
Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozument, Kirill; Colombo, Anthony P.; Zhou Yan
2011-09-30
Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.
Recent progress of laser spectroscopy experiments on antiprotonic helium
NASA Astrophysics Data System (ADS)
Hori, Masaki
2018-03-01
The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons
Talirz, Leopold; Söde, Hajo; Dumslaff, Tim; ...
2017-01-27
The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. Within this paper, we report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl–aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactlymore » as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of ≈0.1 m e for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons’ electronic states to the tunneling current. Lastly, we propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy.« less
Polarization spectroscopy of atomic erbium in a hollow cathode lamp
NASA Astrophysics Data System (ADS)
Ang'ong'a, Jackson; Gadway, Bryce
2018-02-01
In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.
Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils
ERIC Educational Resources Information Center
Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.
2017-01-01
This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…
ERIC Educational Resources Information Center
Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly
2015-01-01
Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…
Stress corrosion in titanium alloys and other metallic materials
NASA Technical Reports Server (NTRS)
Harkins, C. G. (Editor); Brotzen, F. R.; Hightower, J. W.; Mclellan, R. B.; Roberts, J. M.; Rudee, M. L.; Leith, I. R.; Basu, P. K.; Salama, K.; Parris, D. P.
1971-01-01
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC.
Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee
2018-05-01
To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.
Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy
ERIC Educational Resources Information Center
Drew, John
2008-01-01
In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…
ERIC Educational Resources Information Center
Kerfoot, Henry B.
Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…
National Institute of Standards and Technology Data Gateway
SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access) This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stair, Peter C.
The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supportedmore » metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.« less
High quality atomically thin PtSe2 films grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun
2017-12-01
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
Physics through the 1990s: Atomic, molecular and optical physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.
Atomic Spectra Bibliography Databases at NIST
NASA Astrophysics Data System (ADS)
Kramida, Alexander
2010-03-01
NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) [http://physics.nist.gov/PhysRefData/ASBib1/index.html]: -- Atomic Energy Levels and Spectra (AEL BD), Atomic Transition Probability (ATP BD), and Atomic Spectral Line Broadening (ALB BD). This year marks new releases of these BDs -- AEL BD v.2.0, ATP BD v.9.0, and ALB DB v.3.0. These releases incorporate significant improvements in the quantity and quality of bibliographic data since the previous versions published first in 2006. The total number of papers in the three DBs grew from 20,000 to 30,000. The data search is now made easier, and the returned content is enriched with direct links to online journal articles and universal Digital Object Identifiers. Statistics show a nearly constant flow of new publications on atomic spectroscopy, about 600 new papers published each year since 1968. New papers are inserted in our BDs every two weeks on average.
Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Pengfei; Pu, Tiancheng; Nie, Anmin
Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less
Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion
Xie, Pengfei; Pu, Tiancheng; Nie, Anmin; ...
2018-04-03
Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less
NASA Astrophysics Data System (ADS)
Okabayashi, Norio; Gustafsson, Alexander; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J.
2016-04-01
Achieving a high intensity in inelastic scanning tunneling spectroscopy (IETS) is important for precise measurements. The intensity of the IETS signal can vary by up to a factor of 3 for various tips without an apparent reason accessible by scanning tunneling microscopy (STM) alone. Here, we show that combining STM and IETS with atomic force microscopy enables carbon monoxide front-atom identification, revealing that high IETS intensities for CO/Cu(111) are obtained for single-atom tips, while the intensity drops sharply for multiatom tips. Adsorption of the CO molecule on a Cu adatom [CO/Cu/Cu(111)] such that the molecule is elevated over the substrate strongly diminishes the tip dependence of IETS intensity, showing that an elevated position channels most of the tunneling current through the CO molecule even for multiatom tips, while a large fraction of the tunneling current bypasses the CO molecule in the case of CO/Cu(111).
Collisional quenching of atoms and molecules on spacecraft thermal protection surfaces
NASA Technical Reports Server (NTRS)
Marinelli, W. J.; Green, B. D.
1988-01-01
Preliminary results of a research program to determine energy partitioning in spacecraft thermal protection materials due to atom recombination at the gas-surface interface are presented. The primary focus of the research is to understand the catalytic processes which determine heat loading on Shuttle, Aeroassisted OTV, and NASP thermal protection surfaces in nonequilibrium flight regimes. Highly sensitive laser diagnostics based on laser-induced fluorescence and resonantly-enhanced multiphoton ionization spectroscopy are used to detect atoms and metastable molecules. At low temperatures, a discharge flow reactor is employed to measure deactivation/recombination coefficients for O-atoms, N-atoms, and O2. Detection methods are presented for measuring O-atoms, O2 and N2, and results for deactivation of O2 and O-atoms on reaction-cured glass and Ni surfaces. Both atom recombination and metastable product formation are examined. Radio-frequency discharges are used to produce highly dissociated beams of atomic species at energies characteristic of the surface temperature. Auger electron spectroscopy is employed as a diagnostic of surface composition in order to accurately define and control measurement conditions.
Measuring Gravitation Using Polarization Spectroscopy
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Yu, Nan; Maleki, Lute
2004-01-01
A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.
Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang
2015-05-01
Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frequency comb transferred by surface plasmon resonance
Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul
2016-01-01
Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of <6.51 × 10−19 in absolute position, 2.92 × 10−19 in stability and 1 Hz in linewidth. The results indicate that the superior performance of a well-defined frequency comb can be applied to nanoplasmonic spectroscopy, quantum metrology and subwavelength photonic circuits. PMID:26898307
Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; ...
2015-09-25
Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less
ERIC Educational Resources Information Center
Baird, Michael J.
2004-01-01
A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.
ERIC Educational Resources Information Center
Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.
2012-01-01
This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
Synthesis and characterization of germa[n]pericyclynes.
Tanimoto, Hiroki; Nagao, Tomohiko; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Iseda, Fumiyasu; Nagato, Yuko; Suzuka, Toshimasa; Tsutsumi, Ken; Kakiuchi, Kiyomi
2014-06-14
The synthesis and characterization of novel pericyclynes comprising germanium atoms and acetylenes, germa[n]pericyclynes, are described. The prepared germa[4]-, [6]-, and [8]pericyclynes were compared by (13)C NMR spectroscopy, X-ray crystallography, cyclic voltammetry, UV-visible spectroscopy, fluorescence emission spectroscopy, Raman spectroscopy, and density functional theory calculation analyses.
Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.
Lazar, Petr; Chua, Chun Kiang; Holá, Kateřina; Zbořil, Radek; Otyepka, Michal; Pumera, Martin
2015-08-01
Halogen functionalization of graphene is an important branch of graphene research as it provides opportunities to tailor the band gap and catalytic properties of graphene. Monovalent C-X bond obviates pitfalls of functionalization with atoms of groups 13, 15, and 16, which can introduce various poorly defined groups. Here, the preparation of functionalized graphene containing both fluorine and chlorine atoms is shown. The starting material, fluorographite, undergoes a reaction with dichlorocarbene to provide dichlorocarbene-functionalized fluorographene (DCC-FG). The material is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy with X-ray dispersive spectroscopy. It is found that the chlorine atoms in DCC-FG are distributed homogeneously over the entire area of the fluorographene sheet. Further density functional theory calculations show that the mechanism of dichlorocarbene attack on fluorographene sheet is a two-step process. Dichlorocarbene detaches fluorine atoms from fluorographene sheet and subsequently adds to the newly formed sp(2) carbons. Halogenated graphene consisting of two (or eventually three) types of halogen atoms is envisioned to find its way as new graphene materials with tailored properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of magnetic field gradients using Raman spectroscopy in a fountain
NASA Astrophysics Data System (ADS)
Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.
2017-02-01
In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.
Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao
2011-02-10
The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.
Positron annihilation induced Auger electron spectroscopy
NASA Technical Reports Server (NTRS)
Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.
1990-01-01
Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.
NASA Astrophysics Data System (ADS)
Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming
2014-01-01
The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.
Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows
NASA Astrophysics Data System (ADS)
Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.
2018-01-01
Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.
Synthesis of adenine-modified reduced graphene oxide nanosheets.
Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H
2012-03-05
We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
2017-02-23
Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less
Spectroscopy of lithium atoms sublimated from isolation matrix of solid Ne.
Sacramento, R L; Scudeller, L A; Lambo, R; Crivelli, P; Cesar, C L
2011-10-07
We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from a solid neon matrix at cryogenic temperatures. The Li atoms are implanted into the Ne matrix by laser ablation of a solid Li precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms at around 12 K. We find interesting differences in the velocity distribution of the released Li atoms from the model developed for our previous experiment with Cr [R. Lambo, C. C. Rodegheri, D. M. Silveira, and C. L. Cesar, Phys. Rev. A 76, 061401(R) (2007)]. This may be due to the sublimation regime, which is at much lower flux for the Li experiment than for the Cr experiment, as well as to the different collisional cross sections between those species to the Ne gas. We find a drift velocity compatible with Li being thermally sublimated at 11-13 K, while the velocity dispersion around this drift velocity is low, around 5-7 K. With a slow sublimation of the matrix we can determine the penetration depth of the laser ablated Li atoms into the Ne matrix, an important information that is not usually available in most matrix isolation spectroscopy setups. The present results with Li, together with the previous results with Cr suggest this to be a general technique for obtaining cryogenic atoms, for spectroscopic studies, as well as for trap loading. The release of the isolated atoms is also a useful tool to study and confirm details of the matrix isolated atoms which are masked or poorly understood in the solid. © 2011 American Institute of Physics
Practical Problems in the Cement Industry Solved by Modern Research Techniques
ERIC Educational Resources Information Center
Daugherty, Kenneth E.; Robertson, Les D.
1972-01-01
Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)
Atomic selectivity in dissociative electron attachment to dihalobenzenes.
Kim, Namdoo; Sohn, Taeil; Lee, Sang Hak; Nandi, Dhananjay; Kim, Seong Keun
2013-10-21
We investigated electron attachment to three dihalobenzene molecules, bromochlorobenzene (BCB), bromoiodobenzene (BIB) and chloroiodobenzene (CIB), by molecular beam photoelectron spectroscopy. The most prominent product of electron attachment in the anion mass spectra was the atomic fragment of the less electronegative halogen of the two, i.e., Br(-) for BCB and I(-) for BIB and CIB. Photoelectron spectroscopy and ab initio calculations suggested that the approaching electron prefers to attack the less electronegative atom, a seemingly counterintuitive finding but consistent with the mass spectrometric result. For the iodine-containing species BIB and CIB, the photoelectron spectrum consists of bands from both the molecular anion and atomic I(-), the latter of which is produced by photodissociation of the former. Molecular orbital analysis revealed that a large degree of orbital energy reordering takes place upon electron attachment. These phenomena were shown to be readily explained by simple molecular orbital theory and the electronegativity of the halogen atoms.
Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).
Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P
2015-12-01
Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.
Ashy, M A; Headridge, J B; Sowerbutts, A
1974-06-01
Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.
Fully methylated, atomically flat (111) silicon surface
NASA Astrophysics Data System (ADS)
Fidélis, A.; Ozanam, F.; Chazalviel, J.-N.
2000-01-01
The atomically flat hydrogenated (111) silicon surface has been methylated by anodization in a Grignard reagent and the surface obtained characterized by infrared spectroscopy. 100% substitution of the hydrogen atoms by methyl groups is observed. The resulting surface exhibits preserved ordering and superior chemical stability.
Fast Atom Bombardment Mass Spectrometry.
ERIC Educational Resources Information Center
Rinehart, Kenneth L., Jr.
1982-01-01
Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)
Diffusion induced atomic islands on the surface of Ni/Cu nanolayers
NASA Astrophysics Data System (ADS)
Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán
2018-05-01
Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.
Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W
2010-01-19
Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.
Precision Muonium Spectroscopy
NASA Astrophysics Data System (ADS)
Jungmann, Klaus P.
2016-09-01
The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.
Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva
2010-10-07
Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.
NASA Astrophysics Data System (ADS)
Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.
2017-12-01
Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.
Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P
2017-04-17
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.
Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets
NASA Astrophysics Data System (ADS)
Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.
2014-06-01
Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A
Cheng, Wang-Yau; Chen, Ting-Ju; Lin, Chia-Wei; Chen, Bo-Wei; Yang, Ya-Po; Hsu, Hung Yi
2017-02-06
Robust sub-millihertz-level offset locking was achieved with a simple scheme, by which we were able to transfer the laser frequency stability and accuracy from either cesium-stabilized diode laser or comb laser to the other diode lasers who had serious frequency jitter previously. The offset lock developed in this paper played an important role in atomic two-photon spectroscopy with which record resolution and new determination on the hyperfine constants of cesium atom were achieved. A quantum-interference experiment was performed to show the improvement of light coherence as an extended design was implemented.
The use of analytical surface tools in the fundamental study of wear. [atomic nature of wear
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1977-01-01
Various techniques and surface tools available for the study of the atomic nature of the wear of materials are reviewed These include chemical etching, x-ray diffraction, electron diffraction, scanning electron microscopy, low-energy electron diffraction, Auger emission spectroscopy analysis, electron spectroscopy for chemical analysis, field ion microscopy, and the atom probe. Properties of the surface and wear surface regions which affect wear, such as surface energy, crystal structure, crystallographic orientation, mode of dislocation behavior, and cohesive binding, are discussed. A number of mechanisms involved in the generation of wear particles are identified with the aid of the aforementioned tools.
Helium cluster isolation spectroscopy
NASA Astrophysics Data System (ADS)
Higgins, John Paul
Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.
NASA Astrophysics Data System (ADS)
Golubev, Ye A.; Isaenko, S. I.
2017-10-01
We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.
Atomic Force Microscope for Imaging and Spectroscopy
NASA Technical Reports Server (NTRS)
Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.
2000-01-01
We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.
Synthesis and Characteristics of HgCdSe for IR Detection
2014-03-11
Photoelectron Spectroscopy Study of Oxide Removal Using Atomic Hydrogen for Large-Area II–VI Material Growth, Journal of Electronic Materials...Workshop on the Physics and Chemistry of II-VI Materials, Chicago IL (October 1-3, 2013) “Use of Atomic Hydrogen to Prepare GaSb(211)B and GaSb(100...Workshop on the Physics and Chemistry of II-VI Materials, Chicago IL (October, 2011) "Xray photoelectron spectroscopy study of oxide removal using
Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco
2015-01-01
Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689
Hands-on Force Spectroscopy: Weird Springs and Protein Folding
ERIC Educational Resources Information Center
Euler, Manfred
2008-01-01
A force spectroscopy model experiment is presented using a low-cost tensile apparatus described earlier. Force-extension measurements of twisted rubber bands are obtained. They exhibit a complex nonlinear elastic behaviour that resembles atomic force spectroscopy investigations of molecules of titin, a muscle protein. The model experiments open up…
Local atomic and electronic structures of epitaxial strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.
2012-01-01
We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.
Morphology and topography study of graphene synthesized from plant oil
NASA Astrophysics Data System (ADS)
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Laila, M. O.; Salifairus, M. J.; Asli, N. A.
2018-05-01
The graphene is material consists of bonded atom carbon atoms in sheet form one atom thick. The different types of carbon sources which are refined corn oil, palm oil and waste cooking palm oil were used as carbon feedstock to supply carbon atom for synthesizing graphene on the nickel substrate by thermal chemical vapour deposition. The substrate and carbon sources were placed in double zone furnaces. The carbon sources and the substrate were heated at 300 °C and 900 °C respectively. The both furnaces were switched off after synthesis time for cooling process finish. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. FESEM, AFM, UV-VIS Spectroscopy and Raman Spectroscopy were used to characterize and synthesized graphene.
Precision spectroscopy of Mg atoms in a magneto-optical trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, A N; Brazhnikov, D V; Shilov, A M
2014-06-30
We report the results of experimental investigations aimed at creation of the optical frequency standard based on magnesium atoms cooled and localised in a magneto-optical trap (MOT). An experimentally realised MOT for magnesium made it possible to obtain a cloud comprising ∼10{sup 6} – 10{sup 7} atoms at a temperature of 3 – 5 mK. The results of ultra-high resolution spectroscopy of intercombination {sup 1}S{sub 0} – {sup 3}P{sub 1} transition for Mg atom are presented, the resonances in time-domain separated optical fields with the half-width of Γ = 500 Hz are recorded, which corresponds to the Q-factor of themore » reference line Q = ν/Δν ∼ 1.3 × 10{sup 12}. (extreme light fields and their applications)« less
Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone.
Cheng, Lanxia; Qin, Xiaoye; Lucero, Antonio T; Azcatl, Angelica; Huang, Jie; Wallace, Robert M; Cho, Kyeongjae; Kim, Jiyoung
2014-08-13
We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we observe when using TMA/H2O as precursors. Our Raman and X-ray photoelectron spectroscopy measurements indicate minimal variations in the MoS2 structure after ozone treatment at 200 °C, suggesting its excellent chemical resistance to ozone.
Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition.
Liu, Juanjuan; Kutty, R Govindan; Liu, Zheng
2016-11-29
Hexagonal boron nitrite (h-BN) is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.
Applications of beam-foil spectroscopy to atomic collisions in solids
NASA Technical Reports Server (NTRS)
Sellin, I. A.
1976-01-01
Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.
Adsorption of Atoms of 3 d Metals on the Surfaces of Aluminum and Magnesium Oxide Films
NASA Astrophysics Data System (ADS)
Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Grigorkina, G. S.; Fukutani, K.; Magkoev, T. T.
2018-01-01
The adsorption and formation of submonolayer structures of Ti, Cr, Fe, Ni, Cu on the surfaces of aluminum and magnesium oxide films formed on Mo(110) under ultrahigh vacuum conditions are studied via X-ray, ultraviolet photo-, and Auger electron spectroscopy (XPS, UVES, AES); spectroscopy of energy losses of high-resolution electrons (SELHRE); spectroscopy of the backscattering of low-energy ions (SBSLEI); infrared absorption spectroscopy (IAS); and the diffraction of slow electrons (DSE). Individual atoms and small clusters of all the investigated metals deposited on oxides acquire a positive charge, due presumably to interaction with surface defects. As the concentration of adatoms increases when the adsorption centers caused by defects are filled, charge transfer from adatoms to substrates is reduced. This is accompanied by further depolarization caused by the lateral interaction of adatoms.
NASA Astrophysics Data System (ADS)
McLean, W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.
1982-01-01
The adsorption of O2, CO, and CO2 on the thorium (111) crystal face and on polycrystalline α-uranium has been investigated by x-ray photoelectron spectroscopy, Auger electron spectroscopy (AES), and secondary-ion mass spectroscopy (SIMS) at 300 K. Oxygen adsorption on both metals resulted in the formation of the metal dioxide. CO and CO2 adsorption on Th(111) produced species derived from atomic carbon and oxygen; the presence of molecular CO was also detected. Only atomic carbon and oxygen were observed on uranium. Elemental depth profiles by AES and SIMS indicated that the carbon produced by the dissociation of CO or CO2 diffused into the bulk of the metals to form a carbide, while the oxygen remained on their surfaces as an oxide.
Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sacramento, R. L.; Alves, B. X.; Silva, B. A.
2015-07-15
We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.
Wideband laser locking to an atomic reference with modulation transfer spectroscopy.
Negnevitsky, V; Turner, L D
2013-02-11
We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.
Three-Dimensional Intercalated Porous Graphene on Si(111)
NASA Astrophysics Data System (ADS)
Pham, Trung T.; Sporken, Robert
2018-02-01
Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.
Gooch, E G
1993-01-01
Silicone defoamers are used to control foam during the processing of fruit juices. Residual silicones in fruit juices can be separated from the naturally occurring siliceous materials in fruit products and selectively recovered by solvent extraction, after suitable pretreatment. The recovered silicone is measured by atomic absorption spectroscopy. Silicone concentrations as low as about 1 ppm can be measured. The juices are accurately spiked for recovery studies by the addition of silicone dispersed in D-sorbitol.
Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.
Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young
2010-03-10
We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.
Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants
Hayano, Ryugo S.
2010-01-01
Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605
ERIC Educational Resources Information Center
Williamson, Mark A.
1989-01-01
Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…
Norman Ramsey and the Separated Oscillatory Fields Method
methods of investigation; in particular, he contributed many refinements of the molecular beam method for the study of atomic and molecular properties, he invented the separated oscillatory field method of atomic and molecular spectroscopy and it is the practical basis for the most precise atomic clocks
Bandgap modulation in photoexcited topological insulator Bi{sub 2}Te{sub 3} via atomic displacements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hada, Masaki, E-mail: hadamasaki@okayama-u.ac.jp; Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503; PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012
2016-07-14
The atomic and electronic dynamics in the topological insulator (TI) Bi{sub 2}Te{sub 3} under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novelmore » mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi{sub 2}Te{sub 3} trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Won Ja; Park, Kyungsu; Yu, Kyu-Sang
2015-10-07
Electrically-inactive arsenic (As) complexes in silicon are investigated using time-of-flight medium-energy ion scattering spectroscopy. In heavily As-doped Si, the As atoms that are segregated in the Si interface region just below the SiO{sub 2} are found to be in interstitial forms (As{sub i}), while the As atoms in the bulk Si region are found to be in the substitutional form (As{sub Si}). Despite the substitutional form of As, most of the As are found to be electrically inactive in the bulk region, and we identify the As to be in the form of a 〈111〉-oriented As{sub Si}-Si-vacancy (As{sub Si}-V{sub Si})more » complex. The As{sub i} atoms in the interface Si region are found to exist together with Si-interstitial atoms (Si{sub i}), suggesting that the As{sub i} atoms in the interface Si region accompany the Si{sub i} atoms.« less
NASA Astrophysics Data System (ADS)
Deng, Xiao-Jiao; Kong, Xiang-Yu; Liang, Xiaoqing; Yang, Bin; Xu, Hong-Guang; Xu, Xi-Ling; Feng, Gang; Zheng, Wei-Jun
2017-12-01
The structural, electronic, and magnetic properties of FeGen-/0 (n = 3-12) clusters were investigated by using anion photoelectron spectroscopy in combination with density functional theory calculations. For both anionic and neutral FeGen (n = 3-12) clusters with n ≤ 7, the dominant structures are exohedral. The FeGe8-/0 clusters have half-encapsulated boat-shaped structures, and the opening of the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage from n = 9 to 11. The structures of FeGe10-/0 can be viewed as two Ge atoms symmetrically capping the opening of the boat-shaped structure of FeGe8, and those of FeGe12-/0 are distorted hexagonal prisms with the Fe atom at the center. Natural population analysis shows that there is an electron transfer from the Ge atoms to the Fe atom at n = 8-12. The total magnetic moment of FeGen-/0 and local magnetic moment of the Fe atom have not been quenched.
INTRODUCTION: 26th EGAS Conference of the European Group for Atomic Spectroscopy
NASA Astrophysics Data System (ADS)
Corbalán, R.; Orriols, G.; Pi, F.
1995-01-01
The 26th conference of EGAS, the European Group for Atomic Spectroscopy, was held in Bellaterra (Barcelona), Spain, 12-15 July 1994. The conference was hosted by the Departament de Física, Universitat Autònoma de Barcelona, and brought together 216 participants from 29 countries. The program comprised 14 survey lectures by invited speakers and 230 contributed papers (45 oral and 185 posters). Applications of atomic spectroscopy are taking an increasingly important place in the EGAS conferences. This year a Symposium on Spectroscopy for Environmental Analysis was held during the meeting. Six of the survey lectures were presented at this Symposium. Thirteen of the invited lectures have been prepared for publication by the authors and are gathered in the present issue of Physica Scripta. The conference organizers thank all sponsors, especially the Spanish Direccción General de Investigación Científica y Técnica (DGICYT) and the Comisión Interministerial de Ciencia y Tecnología (CICYT), the Direcció General de Recerca (DGR) of the Generalitat de Catalunya, the Fundació Catalana per la Recerca, the Universitat Politècnica de Catalunya and the International Science Foundation (ISF), for supporting the 26th EGAS meeting.
NASA Astrophysics Data System (ADS)
Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna
2012-10-01
β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.
Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F
2018-01-22
Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faraday spectroscopy of ultracold atoms guided in hollow core optical fibers
NASA Astrophysics Data System (ADS)
Fatemi, Fredrik; Pechkis, Joseph
2013-05-01
We have performed spatially and temporally resolved magnetometry using Faraday spectroscopy of ultracold rubidium atoms confined in hollow core optical fibers. We first guide 105 Rb atoms into a 3-cm-long, 100-micron-core hollow fiber using blue-detuned hollow waveguide modes. Inside the fiber, the atoms are exposed to an optical pumping pulse, and the Larmor precession is monitored by the polarization rotation of a probe laser beam detuned by 50 GHz. The intense guide beams can perturb the detected Larmor precession frequencies, but we show that by confining the atoms to the intensity null of higher order blue-detuned hollow modes, these perturbations are reduced by over 95% compared to red-detuned guides. By adjusting the guide beam detuning and polarization, the deleterious effects of both photon scattering and frequency shifts can be suppressed such that multiple magnetic field measurements with sensitivity of 30 nT per sampling pulse can be obtained throughout the length of the fiber in a single loading cycle. Work supported by ONR and DARPA.
NASA Astrophysics Data System (ADS)
Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn
2017-04-01
We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.
Contemporary Aspects of Atomic Physics
ERIC Educational Resources Information Center
Knott, R. G. A.
1972-01-01
The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)
Optogalvanic photodetachment spectroscopy
NASA Technical Reports Server (NTRS)
Mcdermid, I. S.; Webster, C. R.
1983-01-01
A new extension to optogalvanic spectroscopy, in which electrons detached from negative ions formed in the discharge are observed as a function of incident laser wavelength, has been developed. The determination of the electron affinities of I(-) and Cl(-) atomic ions is described. The potential of the technique for studying the spectroscopy of molecular negative ions is also discussed.
Nonlinear Spectroscopy of Rubidium: An Undergraduate Experiment
ERIC Educational Resources Information Center
Jacques, V.; Hingant, B.; Allafort, A.; Pigeard, M.; Roch, J. F.
2009-01-01
In this paper, we describe two complementary nonlinear spectroscopy methods which both allow one to achieve Doppler-free spectra of atomic gases. First, saturated absorption spectroscopy is used to investigate the structure of the 5S[subscript 1/2] [right arrow] 5P[subscript 3/2] transition in rubidium. Using a slightly modified experimental…
Solar X-Ray and Gamma-Ray Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Dennis, B. R.; Christe, S. D.; Shih, A. Y.; Holman, G. D.; Emslie, A. G.; Caspi, A.
2018-02-01
X-ray and gamma-ray Sun observations from a lunar-based observatory would provide unique information on solar atmosphere thermal and nonthermal processes. EUV and energetic neutral atom imaging spectroscopy would augment the scientific value.
NASA Astrophysics Data System (ADS)
Smykalla, Lars; Shukrynau, Pavel; Hietschold, Michael
2017-09-01
The interaction of small amounts of Lutetium with the Si (111)-7 × 7 reconstructed surface was investigated in detail using a combination of Scanning Tunneling Microscopy (STM) and Photoelectron Spectroscopy (XPS and UPS). Various immobile and also fastly moving atoms and nanocluster were found in the initial growth of the Lu/Si interface. Density functional theory calculations and photoelectron spectroscopy results suggest that the most attractive adsorption sites for the Lu atoms are basins around Si rest-atoms and there is no strong interaction between Lu and Si at the initial steps of film growth. However Lu nanocluster could also be found on other adsorption sites which results in a different voltage dependence in STM. Coverage-dependent STM images reveal the growth of a closed Lu metal overlayer by joining of the clusters. The existence of a stoichiometric Lu silicide compound was not detected on the surface in the initial growth for deposition at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lüder, Johann; Sanyal, Biplab; Eriksson, Olle
In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less
NASA Astrophysics Data System (ADS)
Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária
2012-07-01
While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.
NASA Astrophysics Data System (ADS)
Milanova, M.; Donchev, V.; Kostov, K. L.; Alonso-Álvarez, D.; Valcheva, E.; Kirilov, K.; Asenova, I.; Ivanov, I. G.; Georgiev, S.; Ekins-Daukes, N.
2017-08-01
We present a study of melt grown dilute nitride InGaAsN layers by x-ray photoelectron spectroscopy (XPS), Raman and photoluminescence (PL) spectroscopy. The purpose of the study is to determine the degree of atomic ordering in the quaternary alloy during the epitaxial growth at near thermodynamic equilibrium conditions and its influence on band gap formation. Despite the low In concentration (˜3%) the XPS data show a strong preference toward In-N bonding configuration in the InGaAsN samples. Raman spectra reveal that most of the N atoms are bonded to In instead of Ga atoms and the formation of N-centred In3Ga1 clusters. PL measurements reveal smaller optical band gap bowing as compared to the theoretical predictions for random alloy and localised tail states near the conduction band minimum.
NASA Astrophysics Data System (ADS)
McBride, James R.
This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.
X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor.
Lancaster, Kyle M; Roemelt, Michael; Ettenhuber, Patrick; Hu, Yilin; Ribbe, Markus W; Neese, Frank; Bergmann, Uwe; DeBeer, Serena
2011-11-18
Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown. Fe Kβ x-ray emission spectroscopy (XES) of intact nitrogenase MoFe protein, isolated FeMoco, and the FeMoco-deficient nifB protein indicates that among the candidate atoms oxygen, nitrogen, and carbon, it is carbon that best fits the XES data. The experimental XES is supported by computational efforts, which show that oxidation and spin states do not affect the assignment of the central atom to C(4-). Identification of the central atom will drive further studies on its role in catalysis.
Experimental validation of calculated atomic charges in ionic liquids
NASA Astrophysics Data System (ADS)
Fogarty, Richard M.; Matthews, Richard P.; Ashworth, Claire R.; Brandt-Talbot, Agnieszka; Palgrave, Robert G.; Bourne, Richard A.; Vander Hoogerstraete, Tom; Hunt, Patricia A.; Lovelock, Kevin R. J.
2018-05-01
A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.
Du, Yingge; Chambers, Scott A.
2014-10-20
Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%,more » which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.« less
Del Vitto, Annalisa; Pacchioni, Gianfranco; Lim, Kok Hwa; Rösch, Notker; Antonietti, Jean-Marie; Michalski, Marcin; Heiz, Ulrich; Jones, Harold
2005-10-27
We report on the optical absorption spectra of gold atoms and dimers deposited on amorphous silica in size-selected fashion. Experimental spectra were obtained by cavity ringdown spectroscopy. Issues on soft-landing, fragmentation, and thermal diffusion are discussed on the basis of the experimental results. In parallel, cluster and periodic supercell density functional theory (DFT) calculations were performed to model atoms and dimers trapped on various defect sites of amorphous silica. Optically allowed electronic transitions were calculated, and comparisons with the experimental spectra show that silicon dangling bonds [[triple bond]Si(.-)], nonbridging oxygen [[triple bond]Si-O(.-)], and the silanolate group [[triple bond]Si-O(-)] act as trapping centers for the gold particles. The results are not only important for understanding the chemical bonding of atoms and clusters on oxide surfaces, but they will also be of fundamental interest for photochemical studies of size-selected clusters on surfaces.
Collisional transfer of population and orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Bai, J.; Beser, B.; Ahmed, E. H.; Lyyra, A. M.; Huennekens, J.
2011-05-01
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb2 molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)1Σ+(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 31Π ← 2(A)1Σ+spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Collisional transfer of population and orientation in NaK.
Wolfe, C M; Ashman, S; Bai, J; Beser, B; Ahmed, E H; Lyyra, A M; Huennekens, J
2011-05-07
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb(2) molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)(1)Σ(+)(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 3(1)Π ← 2(A)(1)Σ(+)spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Ramachandran, Gayathri
2017-01-01
Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.
Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas
NASA Technical Reports Server (NTRS)
Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.
1980-01-01
The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigutti, L., E-mail: lorenzo.rigutti@univ-rouen.fr; Mancini, L.; Hernández-Maldonado, D.
2016-03-14
The ternary semiconductor alloy Al{sub 0.25}Ga{sub 0.75}N has been analyzed by means of correlated photoluminescence spectroscopy and atom probe tomography (APT). We find that the composition measured by APT is strongly dependent on the surface electric field, leading to erroneous measurements of the alloy composition at high field, due to the different evaporation behaviors of Al and Ga atoms. After showing how a biased measurement of the alloy content leads to inaccurate predictions on the optical properties of the material, we develop a correction procedure which yields consistent transition and localization energies for the alloy photoluminescence.
Momentum-resolved spectroscopy of a Fermi liquid
Doggen, Elmer V. H.; Kinnunen, Jami J.
2015-01-01
We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C.B.
1982-01-01
Progress in lasers is discussed. The subjects addressed include: excimer lasers, surface spectroscopy, modern laser spectroscopy, free electron lasers, cavities and propagation, lasers in medicine, X-ray and gamma ray lasers, laser spectroscopy of small molecules and clusters, optical bistability, excitons, nonlinear optics in the X-ray and gamma ray regions, collective atomic phenomena, tunable IR lasers, far IR/submillimeter lasers, and laser-assisted collisions. Also treated are: special applications, multiphoton processes in atoms and small molecules, nuclear pumped lasers, material processing and applications, polarization, high energy lasers, laser chemistry, IR molecular lasers, laser applications of collision and dissociation phenomena, solid state laser materials,more » phase conjugation, advances in laser technology for fusion, metal vapor lasers, picosecond phenomena, laser ranging and geodesy, and laser photochemistry of complex molecules.« less
Quantitative tunneling spectroscopy of nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, Phillip N; Whetten, Robert L; Schaaff, T Gregory
2007-05-25
The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene"Â refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]).more » Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics« less
Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W
2016-02-01
This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.
Balloon and Button Spectroscopy: A Hands-On Approach to Light and Matter
ERIC Educational Resources Information Center
Ribaudo, Joseph
2016-01-01
Without question, one of the most useful tools an astronomer or physicist can employ to study the universe is spectroscopy. However, for students in introductory physics or astronomy classes, spectroscopy is a relatively abstract concept that combines new physics topics such as thermal radiation, atomic physics, and the wave and particle nature of…
Theoretical Calculations of Atomic Data for Spectroscopy
NASA Technical Reports Server (NTRS)
Bautista, Manuel A.
2000-01-01
Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.
Optical Diagnostics in the Gaseous Electronics Conference Reference Cell
Hebner, G. A.; Greenberg, K. E.
1995-01-01
A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748
Laser spectroscopy of phonons and rotons in superfluid helium doped with Dy atoms
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Borel, A.; Kono, K.
2018-03-01
We report the results of a high-resolution laser-spectroscopy study of dysprosium atoms injected into superfluid 4He. A special attention is paid to the transitions between the inner 4 f and 5 d electronic shells of Dy. The characteristic gap is observed between the zero-phonon line and the phonon wing in the experimental excitation spectrum that arises due to the peculiar structure of the phonon-roton spectrum of superfluid He. This observation resolves the longstanding discrepancy between the studies of bulk superfluid He and He nanodroplets.
The Spectroscopy and Thermochemistry of Na and Na2.
ERIC Educational Resources Information Center
McSwiney, H. D.; And Others
1989-01-01
Presented is an experiment to show the connection between spectroscopy and thermochemistry by examining the spectra of atomic sodium and diatomic sodium. Background information; a description of the apparatus; procedures; calculations; and energy diagrams are included. (CW)
Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.
Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C
2015-12-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.
NASA Astrophysics Data System (ADS)
Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter
2015-06-01
Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.
Magnesium K-Edge NEXAFS Spectroscopy of Chlorophyll a in Solution.
Witte, Katharina; Streeck, Cornelia; Mantouvalou, Ioanna; Suchkova, Svetlana A; Lokstein, Heiko; Grötzsch, Daniel; Martyanov, Wjatscheslav; Weser, Jan; Kanngießer, Birgit; Beckhoff, Burkhard; Stiel, Holger
2016-11-17
The interaction of the central magnesium atom of chlorophyll a (Chl a) with the carbon and nitrogen backbone was investigated by magnesium K near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in fluorescence detection mode. A crude extract of Chl a was measured as a 1 × 10 -2 mol/L ethanol solution (which represents an upper limit of concentration without aggregation) and as dried droplets. For the first time, the investigation of Mg bound to Chl a in a liquid environment by means of X-ray absorption spectroscopy is demonstrated. A pre-edge feature in the dissolved as well as in dried Chl a NEXFAS spectra has been identified as a characteristic transition originating from Mg in the Chl a molecule. This result is confirmed by theoretical DFT calculations leading to molecular orbitals (MO) which are mainly situated on the magnesium atom and nitrogen and carbon atoms from the pyrrole rings. The description is the first referring to the MO distribution with respect to the central Mg ion of Chl a and the surrounding atoms. On this basis, new approaches for the investigations of dynamic processes of molecules in solution and structure-function relationships of photosynthetic pigments and pigment-protein complexes in their native environment can be developed.
Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy
ERIC Educational Resources Information Center
Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.
2015-01-01
Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…
The influence of atomic alignment on absorption and emission spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Heshou; Yan, Huirong; Richter, Philipp
2018-06-01
Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
NASA Astrophysics Data System (ADS)
Monz, L.; Hohmann, R.; Kluge, H.-J.; Kunze, S.; Lantzsch, J.; Otten, E. W.; Passler, G.; Senne, P.; Stenner, J.; Stratmann, K.; Swendt, K.; Zimmer, K.; Herrmann, G.; Trautmann, N.; Walter, K.
1993-12-01
Environmental assessment in the wake of a nuclear accident requires the rapid determination of the radiotoxic isotopes 89Sr and 90Sr. Useful measurements must be able to detect 10 8 atoms in the presence of about 10 18 atoms of the stable, naturally occurring isotopes. This paper describes a new approach to this problem using resonance ionization spectroscopy in collinear geometry, combined with classical mass separation. After collection and chemical separation, the strontium from a sample is surface-ionized and the ions are accelerated to an energy of about 30 keV. Initially, a magnetic mass separator provides an isotopic selectivity of about 10 6. The ions are then neutralized by charge exchange and the resulting fast strontium atoms are selectively excited into high-lying atomic Rydberg states by narrow-band cw laser light in collinear geometry. The Rydberg atoms are then field-ionized and detected. Thus far, a total isotopic selectivity of S > 10 10 and an overall efficiency of ξ = 5 × 10 -6 have been achieved. The desired detection limit of 10 8 atoms 90Sr has been demonstrated with synthetic samples.
Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces
NASA Astrophysics Data System (ADS)
Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.
2006-10-01
The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.
Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...
2017-02-10
Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung
2017-02-01
Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.
NASA Astrophysics Data System (ADS)
Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter
2009-05-01
For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are being used to determine fundamental quantities. Atomic data for programs in astronomical infrared spectroscopy were highlighted by both oral and poster contributions as being an important area in the near future. As part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent work with astrophysical applications. Professor Johansson was also honored with heart-felt acknowledgments at the conference dinner on an unusually warm Lund summer evening. Prior to the publication of these proceedings, we were extremely saddened to learn of Sveneric's passing on 10 October 2008. Sveneric Johansson, a founding father of the ASOS conference series, was widely known for his pioneering work on the atomic structure of heavy elements as a well as for his leadership of the international FERRUM Project, which successfully determined a definitive set of spectroscopic data for Fe II. His knowledge of spectroscopy, his leadership qualities and his friendship will be sadly missed. Acknowledgments The spirit of ASOS has been maintained by the dedication of the organizing committees that have kept a tight focus on the nature of the conference yet allowed for the incorporation of new areas of research in the field. The International Program Committee for ASOS9 are to be commended for their efforts in providing an interesting program. They have also served as the primary source of manuscript referees, who along with other referees have performed a valuable service. Many thanks must be given to the local organizing committee, who made the return of ASOS to Lund a memorable experience, both through the many opportunities for social gatherings during the conference and a post-conference outing through Skåne. We would also like to express our appreciation to the Royal Swedish Academy of Sciences, the Royal Physiographic Society in Lund, the Wenner-Gren Foundation and the Lund Laser Centre and Department of Physics for their generous support in making ASOS9 possible. Sveneric Johansson 1942-2008. Professor Sveneric Johansson 1942-2008.
Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.
Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo
2013-04-23
Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.
Remote laser evaporative molecular absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis
2016-09-01
We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.
Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmell, D. S.; Physics
2000-01-01
The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less
Gold atoms and clusters on MgO(100) films; an EPR and IRAS study
NASA Astrophysics Data System (ADS)
Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.
2009-06-01
Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.
New frontiers in quantum simulation enabled by precision laser spectroscopy
NASA Astrophysics Data System (ADS)
Rey, Ana M.
2014-05-01
Ultracold atomic systems have been proposed as ideal quantum simulators of real materials. Major breakthroughs have been achieved using neutral alkali atoms (one-outer-electron atoms) but their inherent ``simplicity'' introduces important limitations on the physics that can be investigated with them. Systems with more complex interactions and with richer internal structure offer an excellent platform for the exploration of a wider range of many-body phenomena. I will discuss our recent progress on the use of polar molecules, alkaline earth atoms -currently the basis of the most precise atomic clock in the world-, and trapped ions, as quantum simulators of iconic condensed matter Hamiltonians as well as Hamiltonians without solid state analogs. A promising direction under current exploration is the many-body physics that emerges at warmer temperatures (above quantum degeneracy) when there is a decoupling between motional and internal degrees of freedom. Even though in this regime the interaction energy scales can be small (~ Hz), they can be resolved thanks to the unprecedented level of control offered by modern precision laser spectroscopy. AFOSR, NSF, ARO and ARO-DARPA-OLE.
Magnetism in Pd: Magnetoconductance and transport spectroscopy of atomic contacts
NASA Astrophysics Data System (ADS)
Strigl, F.; Keller, M.; Weber, D.; Pietsch, T.; Scheer, E.
2016-10-01
Since the rapid technological progress demands for ever smaller storage units, the emergence of stable magnetic order in nanomaterials down to the single-atom regime has attracted huge scientific attention to date. Electronic transport spectroscopy has been proven to be a versatile tool for the investigation of electronic, magnetic, and mechanical properties of atomic contacts. Here we report a comprehensive experimental study of the magnetoconductance and electronic properties of Pd atomic contacts at low temperature. The analysis of electronic transport (d I /d V ) spectra and the magnetoconductance curves yields a diverse behavior of Pd single-atom contacts, which is attributed to different contact configurations. The magnetoconductance shows a nonmonotonous but mostly continuous behavior, comparable to those found in atomic contacts of band ferromagnets. In the d I /d V spectra, frequently, a pronounced zero-bias anomaly (ZBA) as well as an aperiodic and nonsymmetric fluctuation pattern are observed. While the ZBA can be interpreted as a sign of the Kondo effect, suggesting the presence of magnetic impurity, the fluctuations are evaluated in the framework of conductance fluctuations in relation to the magnetoconductance traces and to previous findings in Au atomic contacts. This thorough analysis reveals that the magnetoconductance and transport spectrum of Au atomic contacts can completely be accounted for by conductance fluctuations, while in Pd contacts the presence of local magnetic order is required.
Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time
NASA Astrophysics Data System (ADS)
Bragg, Arthur E.; Glover, William J.; Schwartz, Benjamin J.
2010-06-01
We use mixed quantum-classical molecular dynamics simulations and ultrafast transient hole-burning spectroscopy to build a molecular-level picture of the motions of solvent molecules around Na atoms in liquid tetrahydrofuran. We find that even at room temperature, the solvation of Na atoms occurs in discrete steps, with the number of solvent molecules nearest the atom changing one at a time. This explains why the rate of solvent relaxation differs for different initial nonequilibrium states, and reveals how the solvent helps determine the identity of atomic species in liquids.
Perforated hollow-core optical waveguides for on-chip atomic spectroscopy and gas sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraud-Carrier, M., E-mail: mgeecee@byu.edu; Hill, C.; Decker, T.
2016-03-28
A hollow-core waveguide structure for on-chip atomic spectroscopy is presented. The devices are based on Anti-Resonant Reflecting Optical Waveguides and may be used for a wide variety of applications which rely on the interaction of light with gases and vapors. The designs presented here feature short delivery paths of the atomic vapor into the hollow waveguide. They also have excellent environmental stability by incorporating buried solid-core waveguides to deliver light to the hollow cores. Completed chips were packaged with an Rb source and the F = 3 ≥ F′ = 2, 3, 4 transitions of the D2 line in {sup 85}Rb were monitored formore » optical absorption. Maximum absorption peak depths of 9% were measured.« less
Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields
Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.
2016-03-09
Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less
Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J
2017-04-01
Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.
Investigating biomolecular recognition at the cell surface using atomic force microscopy.
Wang, Congzhou; Yadavalli, Vamsi K
2014-05-01
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aggarwal, R.; Ingale, Alka A.; Dixit, V. K.
2018-01-01
Effects of lattice and polar/nonpolar mismatch between the GaP layer and Ge(111) substrate are investigated by spatially resolved Raman spectroscopy. The red shifted transverse optical (TO) and longitudinal optical (LO) phonons due to residual strain, along with asymmetry to TO phonon ∼358 cm-1 are observed in GaP/Ge(111). The peak intensity variation of mode ∼358 cm-1 with respect to TO phonon across the crystallographic morphed surface of GaP micro structures is associated with the topographical variations using atomic force microscopy mapping and Raman spectroscopy performed on both in plane and cross-sectional surface. Co-existence of GaP allotropes, i.e. wurtzite phase near heterojunction interface and dominant zinc-blende phase near surface is established using the spatially resolved polarized Raman spectroscopy from the cross sectional surface of heterostructures. This consistently explains effect of surface morphology on Raman spectroscopy from GaP(111). The study shows the way to identify crystalline phases in other advanced semiconductor heterostructures without any specific sample preparation.
Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.
Singh, Vivek Kumar; Rai, Awadhesh Kumar
2011-09-01
We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
NASA Astrophysics Data System (ADS)
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-06-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
NASA Astrophysics Data System (ADS)
Bitzer, T.; Richardson, N. V.; Reiss, S.; Wühn, M.; Wöll, Ch.
2000-06-01
The structure of benzoate on Na/Si(100)-2×1 has been studied by high resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy and near edge X-ray adsorption fine structure spectroscopy. At room temperature, benzoic acid (C 6H 5COOH) chemisorbs on Na/Si(100)-2×1 through a cleavage of the OH bond in the carboxylic group. The benzoate molecules formed are bonded exclusively to the sodium atoms in a bidentate coordination, in which the oxygen atoms are equivalent. At room temperature, benzoate saturation on Na/Si(100)-2×1 is reached at a coverage of one benzoate species for each Na atom or silicon dimer. At this coverage, the molecules are tilted in polar direction by 62°±4° to the surface plane and azimuthally rotated by 41°±4° with respect to the [01 1] surface azimuth. We propose an adsorbate structure, in which the benzoate molecules are oriented parallel to each other in densely packed rows.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.
Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E
2017-06-12
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-01-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10−9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration. PMID:28604657
Electron Spectroscopy: Ultraviolet and X-Ray Excitation.
ERIC Educational Resources Information Center
Baker, A. D.; And Others
1980-01-01
Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);…
WEATHERING DEGRADATION OF A POLYURETHANE COATING. (R828081E01)
The degradation of polyurethane topcoat over a chromate pigmented epoxy primer was examined by atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photo-electron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR) after the coated pane...
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
NASA Astrophysics Data System (ADS)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; Hartig, K. C.; Phillips, M. C.
2018-06-01
Rapid, in-field, and non-contact isotopic analysis of solid materials is extremely important to a large number of applications, such as nuclear nonproliferation monitoring and forensics, geochemistry, archaeology, and biochemistry. Presently, isotopic measurements for these and many other fields are performed in laboratory settings. Rapid, in-field, and non-contact isotopic analysis of solid material is possible with optical spectroscopy tools when combined with laser ablation. Laser ablation generates a transient vapor of any solid material when a powerful laser interacts with a sample of interest. Analysis of atoms, ions, and molecules in a laser-produced plasma using optical spectroscopy tools can provide isotopic information with the advantages of real-time analysis, standoff capability, and no sample preparation requirement. Both emission and absorption spectroscopy methods can be used for isotopic analysis of solid materials. However, applying optical spectroscopy to the measurement of isotope ratios from solid materials presents numerous challenges. Isotope shifts arise primarily due to variation in nuclear charge distribution caused by different numbers of neutrons, but the small proportional nuclear mass differences between nuclei of various isotopes lead to correspondingly small differences in optical transition wavelengths. Along with this, various line broadening mechanisms in laser-produced plasmas and instrumental broadening generated by the detection system are technical challenges frequently encountered with emission-based optical diagnostics. These challenges can be overcome by measuring the isotope shifts associated with the vibronic emission bands from molecules or by using the techniques of laser-based absorption/fluorescence spectroscopy to marginalize the effect of instrumental broadening. Absorption and fluorescence spectroscopy probe the ground state atoms existing in the plasma when it is cooler, which inherently provides narrower lineshapes, as opposed to emission spectroscopy which requires higher plasma temperatures to be able to detect thermally excited emission. Improvements in laser and detection systems and spectroscopic techniques have allowed for isotopic measurements to be carried out at standoff distances under ambient atmospheric conditions, which have expanded the applicability of optical spectroscopy-based isotopic measurements to a variety of scientific fields. These technological advances offer an in-situ measurement capability that was previously not available. This review will focus on isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing knowledge/technological gaps identified from the current literature and suggestions for the future work.
Blood-collection device for trace and ultra-trace metal specimens evaluated.
Moyer, T P; Mussmann, G V; Nixon, D E
1991-05-01
We evaluated the evacuated phlebotomy tube designed specifically for trace metal analysis by Sherwood Medical Co. Pools of human serum containing known concentrations of aluminum, arsenic, calcium, cadmium, copper, chromium, iron, lead, magnesium, manganese, mercury, selenium, and zinc were exposed to the tube and rubber stopper for defined periods ranging from 5 min to 24 h. Analysis for each element was performed in a randomized fashion under rigidly controlled conditions by use of standard electrothermal atomization atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and cold vapor atomic absorption spectrometry. In addition, for comparative purposes, we collected blood samples from normal volunteers by use of ultra-clean polystyrene phlebotomy syringes as well as standard evacuated phlebotomy tubes. We conclude that, except for lead, there was no significant contribution of any trace element studied from the evaluated tube and stopper to the serum. Because whole blood is the usual specimen for lead testing, the observation of a trace amount of lead in this tube designed for serum collection is trivial.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
One-dimensional ordering of Ge nanoclusters along atomically straight steps of Si(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekiguchi, Takeharu; Yoshida, Shunji; Itoh, Kohei M.
2007-01-01
Ge nanostructures grown by molecular beam epitaxy on a vicinal Si(111) surface with atomically well-defined steps are studied by means of scanning tunneling microscopy and spectroscopy. When the substrate temperature during deposition is around 250 degree sign C, Ge nanoclusters of diameters less than 2.0 nm form a one-dimensional array of the periodicity 2.7 nm along each step. This self-organization is due to preferential nucleation of Ge on the unfaulted 7x7 half-unit cells at the upper step edges. Scanning tunneling spectroscopy reveals localized electronic states of the nanoclusters.
Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.
Saurabh, Prasoon; Mukamel, Shaul
2014-04-28
Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; Brumfield, Brian E.; LaHaye, Nicole L.
2018-04-20
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
NASA Astrophysics Data System (ADS)
Takeuchi, Osamu; Miyakoshi, Takaaki; Taninaka, Atsushi; Tanaka, Katsunori; Cho, Daichi; Fujita, Machiko; Yasuda, Satoshi; Jarvis, Suzanne P.; Shigekawa, Hidemi
2006-10-01
The accuracy of dynamic-force spectroscopy (DFS), a promising technique of analyzing the energy landscape of noncovalent molecular bonds, was reconsidered in order to justify the use of an atomic-force microscopy (AFM) cantilever as a DFS force probe. The advantages and disadvantages caused, for example, by the force-probe hardness were clarified, revealing the pivotal role of the molecular linkage between the force probe and the molecular bonds. It was shown that the feedback control of the loading rate of tensile force enables us a precise DFS measurement using an AFM cantilever as the force probe.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...
2018-04-20
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Lastly, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Optical spectroscopy of laser-produced plasmas for standoff isotopic analysis
Harilal, S. S.; Brumfield, B. E.; LaHaye, N. L.; ...
2018-06-01
This review article covers the present status of isotope detection through emission, absorption, and fluorescence spectroscopy of atoms and molecules in a laser-produced plasma formed from a solid sample. A description of the physics behind isotope shifts in atoms and molecules is presented, followed by the physics behind solid sampling of laser ablation plumes, optical methods for isotope measurements, the suitable physical conditions of laser-produced plasma plumes for isotopic analysis, and the current status. Finally, concluding remarks will be made on the existing gaps between previous works in the literature and suggestions for future work.
Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films.
Weidman, Matthew; Baudelet, Matthieu; Palanco, Santiago; Sigman, Michael; Dagdigian, Paul J; Richardson, Martin
2010-01-04
Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO(2) lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C(2) and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C(2) emission was detected.
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
Error assessment in molecular dynamics trajectories using computed NMR chemical shifts.
Koes, David R; Vries, John K
2017-01-01
Accurate chemical shifts for the atoms in molecular mechanics (MD) trajectories can be obtained from quantum mechanical (QM) calculations that depend solely on the coordinates of the atoms in the localized regions surrounding atoms of interest. If these coordinates are correct and the sample size is adequate, the ensemble average of these chemical shifts should be equal to the chemical shifts obtained from NMR spectroscopy. If this is not the case, the coordinates must be incorrect. We have utilized this fact to quantify the errors associated with the backbone atoms in MD simulations of proteins. A library of regional conformers containing 169,499 members was constructed from 6 model proteins. The chemical shifts associated with the backbone atoms in each of these conformers was obtained from QM calculations using density functional theory at the B3LYP level with a 6-311+G(2d,p) basis set. Chemical shifts were assigned to each backbone atom in each MD simulation frame using a template matching approach. The ensemble average of these chemical shifts was compared to chemical shifts from NMR spectroscopy. A large systematic error was identified that affected the 1 H atoms of the peptide bonds involved in hydrogen bonding with water molecules or peptide backbone atoms. This error was highly sensitive to changes in electrostatic parameters. Smaller errors affecting the 13 C a and 15 N atoms were also detected. We believe these errors could be useful as metrics for comparing the force-fields and parameter sets used in MD simulation because they are directly tied to errors in atomic coordinates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jialing; Eller, Brianna S.; Nemanich, Robert J.
2014-03-15
In this research, Al{sub 2}O{sub 3} films were grown by remote plasma-enhanced atomic layer deposition using a nonpyrophoric precursor, dimethylaluminum isopropoxide (DMAI), and oxygen plasma. After optimization, the growth rate was determined to be ∼1.5 Å/cycle within a growth window of 25–220 °C; the higher growth rate than reported for thermal atomic layer deposition was ascribed to the higher reactivity of the plasma species compared with H{sub 2}O and the adsorption of active oxygen at the surface, which was residual from the oxygen plasma exposure. Both effects enhance DMAI chemisorption and increase the saturation density. In addition, a longer oxygen plasma timemore » was required at room temperature to complete the reaction and decrease the carbon contamination below the detection limit of x-ray photoemission spectroscopy. The properties of the subsequent Al{sub 2}O{sub 3} films were measured for different temperatures. When deposited at 25 °C and 200 °C, the Al{sub 2}O{sub 3} films demonstrated a single Al-O bonding state as measured by x-ray photoemission spectroscopy, a similar band gap of 6.8±0.2 eV as determined by energy loss spectroscopy, a similar index of refraction of 1.62±0.02 as determined by spectroscopic ellipsometry, and uniform growth with a similar surface roughness before and after growth as confirmed by atomic force microscopy. However, the room temperature deposited Al{sub 2}O{sub 3} films had a lower mass density (2.7 g/cm{sup 3} compared with 3.0 g/cm{sup 3}) and a higher atomic ratio of O to Al (2.1 compared with 1.6) as indicated by x-ray reflectivity and Rutherford backscattering spectroscopy, respectively.« less
Synthesis and Study of Silver Nanoparticles
ERIC Educational Resources Information Center
Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine
2007-01-01
A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.
Beyond the Spin Model Approximation for Ramsey Spectroscopy
2014-03-26
December 2013; revised manuscript received 31 January 2014; published 26 March 2014) Ramsey spectroscopy has become a powerful technique for probing...atomic systems without the need for ultralow temperatures. It is thus important to determine the parameter regime in which a pure interacting-spins picture
NASA Technical Reports Server (NTRS)
Housley, R. M.
1978-01-01
Flameless atomic abosrption, X-ray photoemission spectroscopy, ferromagnetic resonance, scanning electron microscopy, and Moessbauer spectroscopy were used to investigate the evolution of the lunar regolith, the transport of volatile trace metals, and the surface composition of lunar samples. The development of a model for lunar volcanic eruptions is also discussed.
Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S
2014-02-25
Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.
2016-04-04
This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less
Atomic Data Needs for X-ray Astronomy
NASA Technical Reports Server (NTRS)
Bautista, Manuel A. (Editor); Kallman, Timothy R. (Editor); Pradhan, Anil K. (Editor)
2000-01-01
This publication contains written versions of most of the invited talks presented at the workshop on "Atomic Data Needs for X-ray Astronomy," which was held at NASA's Goddard Space Flight Center on December 16-17, 1999. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters, Spectra Modeling, and Atomic Databases. These proceedings are expected to be of interest to producers and users of atomic data. Moreover, the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.
Spectroscopy of Lithium Atoms and Molecules on Helium Nanodroplets
2013-01-01
We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (HeN). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on HeN. The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–Hem, m = 1–3) formation process in the Li–HeN system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–HeN systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu+). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu+(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied. PMID:23895106
NASA Astrophysics Data System (ADS)
Stalnaker, J. E.; Ayer, H. M. G.; Baron, J. H.; Nuñez, A.; Rowan, M. E.
2017-07-01
We present an experimental determination of the 4 S1 /2→6 S1 /2 transition frequency in atomic potassium 39K, using direct frequency-comb spectroscopy. The output of a stabilized optical frequency comb was used to excite a thermal atomic vapor. The repetition rate of the frequency comb was scanned and the transitions were excited using stepwise two-photon excitation. The center-of-gravity frequency for the transition was found to be νcog=822 951 698.09 (13 ) MHz and the measured hyperfine A coefficient of the 6 S1 /2 state was 21.93 (11 ) MHz. The measurements are in agreement with previous values and represent an improvement by a factor of 700 in the uncertainty of the center-of-gravity measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yourshaw, Ivan
1998-07-09
The diatomic halogen atom-rare gas diatomic complexes KrBr -, XeBr -, and KrCl - are studied in this work by zero electron kinetic energy (ZEKE) spectroscopy in order to characterize the weak intermolecular diatomic potentials of these species. Also, the ZEKE and threshold photodetachment spectra of the polyatomic clusters Ar nBr - (n = 2-9) and Ar nI - (n = 2-19) are studied to obtain information about the non-additive effects on the interactions among the atoms. This work is part of an ongoing effort to characterize the pair and many-body potentials of the complete series of rare gas halidemore » clusters. In these studies we obtain information about both the anionic and neutral clusters.« less
Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D
2017-05-01
The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuominen, M., E-mail: tmleir@utu.fi, E-mail: pekka.laukkanen@utu.fi; Lång, J.; Dahl, J.
2015-01-05
The pre-oxidized crystalline (3×1)-O structure of InAs(100) has been recently found to significantly improve insulator/InAs junctions for devices, but the atomic structure and formation of this useful oxide layer are not well understood. We report high-resolution photoelectron spectroscopy analysis of (3×1)-O on InAs(100) and InSb(100). The findings reveal that the atomic structure of (3×1)-O consists of In atoms with unexpected negative (between −0.64 and −0.47 eV) and only moderate positive (In{sub 2}O type) core-level shifts; highly oxidized group-V sites; and four different oxygen sites. These fingerprint shifts are compared to those of previously studied oxides of III-V to elucidate oxidation processes.
NASA Astrophysics Data System (ADS)
Cao, C. C.; Zhu, L.; Meng, Y.; Zhai, X. B.; Wang, Y. G.
2018-06-01
The evolution of local structure and defects in the Fe81Si4B10P4Cu1 amorphous alloy during the structural relaxation has been investigated by Mössbauer spectroscopy, positron annihilation lifetime spectroscopy and transmission electron microscopy to explore their effects on magnetic properties of the nanocrystalline. The atomic rearrangements at the early stage of the structural relaxation cause the density increase of the amorphous matrix, but the subsequent atomic rearrangements contribute to the transformation of Fe3B-like atomic arrangements to FeB-like ones with the temperature increasing. As the structural relaxation processes, the released Fe atoms both from Fe3B- and Fe3P-like atomic arrangements result in the formation of new Fe clusters and the increase of Fe-Fe coordination number in the existing Fe clusters and the nucleation sites for α-Fe gradually increase, both of which promote the crystallization. However, the homogeneity of amorphous matrix will be finally destroyed under excessive relaxation temperature, which coarsens nanograins during the crystallization instead. Therefore, soft magnetic properties of the Fe81Si4B10P4Cu1 nanocrystalline alloy can be improved by pre-annealing the amorphous precursor at an appropriate temperature due to the atomic level structural optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
König, Dirk, E-mail: dirk.koenig@unsw.edu.au
2016-08-15
Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCsmore » with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.« less
Doing Solar Science With Extreme-ultraviolet and X-ray High Resolution Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Doschek, G. A.
2005-12-01
In this talk I will demonstrate how high resolution extreme-ultraviolet (EUV) and/or X-ray imaging spectroscopy can be used to provide unique information for solving several current key problems of the solar atmosphere, e.g., the morphology and reconnection site of solar flares, the structure of the transition region, and coronal heating. I will describe the spectra that already exist relevant to these problems and what the shortcomings of the data are, and how an instrument such as the Extreme-ultraviolet Imaging Spectrometer (EIS) on Solar-B as well as other proposed spectroscopy missions such as NEXUS and RAM will improve on the existing observations. I will discuss a few particularly interesting properties of the spectra and atomic data for highly ionized atoms that are important for the science problems.
Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter
2014-01-01
In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.
USDA-ARS?s Scientific Manuscript database
The atomic force microscope (AFM) recognition and dynamic force spectroscopy (DFS) experiments provide both morphology and interaction information of the aptamer and protein, which can be used for the future study on the thermodynamics and kinetics properties of ricin-aptamer/antibody interactions. ...
Measurements of atomic splittings in atomic hydrogen and the proton charge radius
NASA Astrophysics Data System (ADS)
Hessels, E. A.
2016-09-01
The proton charge radius can be determined from precise measurements of atomic hydrogen spectroscopy. A review of the relevant measurements will be given, including an update on our measurement of the n=2 Lamb shift. The values obtained from hydrogen will be compared to those obtained from muonic hydrogen and from electron-proton elastic scattering measurements. This work is funded by NSERC, CRC and CFI.
Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy
NASA Technical Reports Server (NTRS)
Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.
1991-01-01
Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.
Probing Electronic States of Magnetic Semiconductors Using Atomic Scale Microscopy & Spectroscopy
2013-12-01
the metal- insulator transition, a feature that has long been predicted theoretically. We showed that a similar picture is at play in magnetic doping of... magnetic atoms on the surface of a superconductor can be used as a versatile platform for creating a topological superconductor . These initial...topological superconductivity and Majorana fermions in a chain of magnetic atoms on the surface of a superconductor Students and postdocs supported
Precision atomic beam density characterization by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxley, Paul; Wihbey, Joseph
2016-09-15
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less
Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M
2011-02-01
The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.
Precision atomic beam density characterization by diode laser absorption spectroscopy.
Oxley, Paul; Wihbey, Joseph
2016-09-01
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus
2008-02-27
The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaroundmore » times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.« less
Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, Leonidas E.; Connolly, Aine; Gosztola, David J.
We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (VO). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from VO states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles,more » the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications.« less
Improved graphite furnace atomizer
Siemer, D.D.
1983-05-18
A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.
Liu, Yongchun; He, Hong
2009-04-09
In situ diffuse reflectance infrared Fourier transform spectroscopy combined with derivative spectroscopy analysis, two-dimensional correlation spectroscopy analysis, and quantum chemical calculations were used to investigate the infrared absorbance assignment and the molecular structure of hydrogen thiocarbonate on magnesium oxide. The bands at 1283 and 1257 cm(-1), which had the typical characteristic of intermediate, were observed in experiments for the heterogeneous reaction of COS on MgO. On the basis of two-dimensional correlation spectroscopy analysis and quantum chemical calculations, the band at 1283 cm(-1) was assigned to the v(s) band of bridged thiocarbonate which formed on the two neighboring Mg atoms in the (100) face of MgO crystal, and the band at 1257 cm(-1) was the v(s) band of monodentate thiocarbonate on MgO. The v(as)(OCO) band of thiocarbonates was invisible in the experiment due to their weak absorbance and the interruption of surface carbonate. The formation mechanism of thiocarbonates is proposed, which occurred through a nucleophilic attack of preadsorbed COS by surface -OH groups followed by hydrogen atom transfer from the -OH group to the sulfur atom of preadsorbed COS. The activation energy for the intramolecular proton-transfer reaction of bridged thiocarbonate was calculated to be 18.52 kcal x mol(-1) at the B3LYP/6-31+G(d,p) level of theory.
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach
NASA Astrophysics Data System (ADS)
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j
Homogenization of Doppler broadening in spin-noise spectroscopy
NASA Astrophysics Data System (ADS)
Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.
2018-03-01
The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.
Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer
Fink, Samuel D [Aiken, SC; Fondeur, Fernando F [North Augusta, SC
2011-10-18
An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.
X-ray natural widths, level widths and Coster-Kronig transition probabilities
NASA Astrophysics Data System (ADS)
Papp, T.; Campbell, J. L.; Varga, D.
1997-01-01
A critical review is given for the K-N7 atomic level widths. The experimental level widths were collected from x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy (XES), x-ray spectra fluoresced by synchrotron radiation, and photoelectrons from x-ray absorption (PAX). There are only limited atomic number ranges for a few atomic levels where data are available from more than one source. Generally the experimental level widths have large scatter compared to the reported error bars. The experimental data are compared with the recent tabulation of Perkins et al. and of Ohno et al. Ohno et al. performed a many body approach calculation for limited atomic number ranges and have obtained reasonable agreement with the experimental data. Perkins et al. presented a tabulation covering the K-Q1 shells of all atoms, based on extensions of the Scofield calculations for radiative rates and extensions of the Chen calculations for non-radiative rates. The experimental data are in disagreement with this tabulation, in excess of a factor of two in some cases. A short introduction to the experimental Coster-Kronig transition probabilities is presented. It is our opinion that the different experimental approaches result in systematically different experimental data.
NASA Astrophysics Data System (ADS)
Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.
2003-10-01
Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.
DOT National Transportation Integrated Search
2016-10-01
Laser-induced breakdown spectroscopy (LIBS) has been studied as a fast method of detecting chlorine in concrete samples. Both single pulse (SP) and double pulse (DP) experiments have been tested. Several combinations of lasers (Neodymium-Yttrium Alum...
Li, Qian; Jesse, Stephen; Tselev, Alexander; ...
2015-01-05
In this paper, nanomechanical properties are closely related to the states of matter, including chemical composition, crystal structure, mesoscopic domain configuration, etc. Investigation of these properties at the nanoscale requires not only static imaging methods, e.g., contact resonance atomic force microscopy (CR-AFM), but also spectroscopic methods capable of revealing their dependence on various external stimuli. Here we demonstrate the voltage spectroscopy of CR-AFM, which was realized by combining photothermal excitation (as opposed to the conventional piezoacoustic excitation method) with the band excitation technique. We applied this spectroscopy to explore local bias-induced phenomena ranging from purely physical to surface electromechanical andmore » electrochemical processes. Our measurements show that the changes in the surface properties associated with these bias-induced transitions can be accurately assessed in a fast and dynamic manner, using resonance frequency as a signature. Finally, with many of the advantages offered by photothermal excitation, contact resonance voltage spectroscopy not only is expected to find applications in a broader field of nanoscience but also will provide a basis for future development of other nanoscale elastic spectroscopies.« less
Preparation And Analysis Of Specimens Of Ablative Materials
NASA Technical Reports Server (NTRS)
Solomon, William C.
1994-01-01
Procedure for chemical analysis of specimens of silicone-based ablative thermal-insulation materials SLA-561 and MA25 involves acid digestion of specimens to prepare them for analysis by inductively-coupled-plasma/atomic-emission spectroscopy (ICP/AES). In comparison with atomic-absorption spectroscopy (AAS), ICP/AES is faster and more accurate than AAS. Results of analyses stored in data base, used to trace variations in concentrations of chemical elements in materials during long-term storage, and used in timely manner in investigations of failures. Acid-digestion portion of procedure applied to other thermal-insulation materials containing room-temperature-vulcanizing silicones and enables instrumental analysis of these materials.
Atomic resolution Z-contrast imaging and energy loss spectroscopy of carbon nanotubes and bundles
NASA Astrophysics Data System (ADS)
Lupini, A. R.; Chisholm, M. F.; Puretzky, A. A.; Eres, G.; Melechko, A. V.; Schaaff, G.; Lowndes, D. H.; Geohegan, D. B.; Schittenhelm, H.; Pennycook, S. J.; Wang, Y.; Smalley, R. E.
2002-03-01
Single-wall carbon nanotubes and bundles were studied by a combination of techniques, including conventional imaging and diffraction, atomic resolution Z-contrast imaging in an aberration corrected STEM and electron energy loss spectroscopy (EELS). EELS is ideally suited for the analysis of carbon based structures because of the ability to distinguish between the different forms, specifically nanotubes, graphite, amorphous carbon and diamond. Numerous attempts were made to synthesize crystals of single walled carbon nanotubes, using both solution and vapor deposition of precursor structures directly onto TEM grids for in-situ annealing. The range of structures produced will be discussed.
Torun, H; Finkler, O; Degertekin, F L
2009-07-01
The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.
Far-infrared Spectroscopy of Interstellar Gas
NASA Technical Reports Server (NTRS)
Phillips, T. G.
1984-01-01
Research results of far-infrared spectroscopy with the Kuiper Airborne Observatory are discussed. Both high and intermediate resolution have been successfully employed in the detection of many new molecular and atomic lines including rotational transition of hydrides such as OH, H2O, NH3 and HCl; high J rotational transitions of CO; and the ground state fine structure transitions of atomic carbon, oxygen, singly ionized carbon and doubly ionized oxygen and nitrogen. These transitions have been used to study the physics and chemistry of clouds throughout the galaxy, in the galactic center region and in neighboring galaxies. This discussion is limited to spectroscopic studies of interstellar gas.
Spin noise spectroscopy of rubidium atomic gas under resonant and non-resonant conditions
NASA Astrophysics Data System (ADS)
Ma, Jian; Shi, Ping; Qian, Xuan; Li, Wei; Ji, Yang
2016-11-01
The spin fluctuation in rubidium atom gas is studied via all-optical spin noise spectroscopy (SNS). Experimental results show that the integrated SNS signal and its full width at half maximum (FWHM) strongly depend on the frequency detuning of the probe light under resonant and non-resonant conditions. The total integrated SNS signal can be well fitted with a single squared Faraday rotation spectrum and the FWHM dependence may be related to the absorption profile of the sample. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310 and 11404325) and the National Basic Research Program of China (Grant No. 2013CB922304).
Computer simulation in mechanical spectroscopy
NASA Astrophysics Data System (ADS)
Blanter, M. S.
2012-09-01
Several examples are given for use of computer simulation in mechanical spectroscopy. On one hand simulation makes it possible to study relaxation mechanisms, and on the other hand to use the colossal accumulation of experimental material to study metals and alloys. The following examples are considered: the effect of Al atom ordering on the Snoek carbon peak in alloys of the system Fe - Al - C; the effect of plastic strain on Finkel'shtein - Rozin relaxation in Fe - Ni - C austenitic steel; checking the adequacy of energy interactions of interstitial atoms, calculated on the basis of a first-principle model by simulation of the concentration dependence of Snoek relaxation parameters in Nb - O.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We report infrared spectra of nitromethane anion, CH3NO2-, in the region 700-2150 cm-1, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions.
Thompson, Michael C; Baraban, Joshua H; Matthews, Devin A; Stanton, John F; Weber, J Mathias
2015-06-21
We report infrared spectra of nitromethane anion, CH3NO2 (-), in the region 700-2150 cm(-1), obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Doping of the step-edge Si chain: Ag on a Si(557)-Au surface
NASA Astrophysics Data System (ADS)
Krawiec, M.; Jałochowski, M.
2010-11-01
Structural and electronic properties of monatomic Ag chains on the Au-induced, highly ordered Si(557) surface are investigated by scanning tunneling microscopy (STM)/spectroscopy and first-principles density functional theory (DFT) calculations. The STM topography data show that a small amount of Ag (0.25 ML) very weakly modifies the one-dimensional structure induced by Au atoms. However, the bias-dependent STM topography and spectroscopy point to the importance of the electronic effects in this system, which are further corroborated by the DFT calculations. The obtained results suggest that Ag atoms act as electron donors leaving the geometry of the surface almost unchanged.
Time-resolved atomic inner-shell spectroscopy
NASA Astrophysics Data System (ADS)
Drescher, M.; Hentschel, M.; Kienberger, R.; Uiberacker, M.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, Th.; Kleineberg, U.; Heinzmann, U.; Krausz, F.
2002-10-01
The characteristic time constants of the relaxation dynamics of core-excited atoms have hitherto been inferred from the linewidths of electronic transitions measured by continuous-wave extreme ultraviolet or X-ray spectroscopy. Here we demonstrate that a laser-based sampling system, consisting of a few-femtosecond visible light pulse and a synchronized sub-femtosecond soft X-ray pulse, allows us to trace these dynamics directly in the time domain with attosecond resolution. We have measured a lifetime of 7.9
NASA Astrophysics Data System (ADS)
Bates, Harry E.
1984-05-01
Holography is a new and exciting field that has found many applications in physics and engineering. Atomic spectroscopy has been the experimental cornerstone of modern physics and chemistry. This paper reports on an intermediate undergraduate laboratory experiment that combines fundamental ideas and techniques of both fields. The student utilizes holographic techniques to make a small sinusoidal diffraction grating and then uses this grating to analyze the spectrum of hydrogen. The Rydberg constant can be determined from the wavelength, the angle between the laser beams used to make the grating, and the observed diffractions angles of lines of the Balmer series.
Magic Angle Spinning NMR of Viruses
Quinn, Caitlin; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana
2015-01-01
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies. PMID:25919197
Atomic scale study of ball milled Ni-Fe{sub 2}O{sub 3} using Mössbauer spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Ravi Kumar; Govindaraj, R., E-mail: govind@igcar.gov.in; Vinod, K.
Evolution of hyperfine fields at Fe atoms has been studied in a detailed manner in a mixture of Ni and α-Fe{sub 2}O{sub 3} subjected to high energy ball milling using Mossbauer spectroscopy. Mossbauer results indicate the dispersion of α-Fe{sub 2}O{sub 3} particles in Ni matrix in the as ball milled condition. Evolution of α-Fe{sub 2}O{sub 3} due to ball milling, reduction of the valence of associated Fe and possible interaction between the oxide particles with Ni in the matrix due to annealing treatments has been elucidated in the present study.
Laser-Induced-Emission Spectroscopy In Hg/Ar Discharge
NASA Technical Reports Server (NTRS)
Maleki, Lutfollah; Blasenheim, Barry J.; Janik, Gary R.
1992-01-01
Laser-induced-emission (LIE) spectroscopy used to probe low-pressure mercury/argon discharge to determine influence of mercury atoms in metastable 6(Sup3)P(Sub2) state on emission of light from discharge. LIE used to study all excitation processes affected by metastable population, including possible effects on excitation of atoms, ions, and buffer gas. Technique applied to emissions of other plasmas. Provides data used to make more-accurate models of such emissions, exploited by lighting and laser industries and by laboratories studying discharges. Also useful in making quantitative measurements of relative rates and cross sections of direct and two-step collisional processes involving metastable level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, Luis A
This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, themore » only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garton, W.R.S.; Connerade, J.
In tribute to the great contributions of Charlotte Moore Sitterly in critical compilations of Atomic Energy Levels, we collate some of the results from a 15-year program of atomic absorption spectroscopy of neutral species. The work reviewed has been based mainly on the utilization of the 0.5- and 2.5-GeV synchrotrons in Bonn. Such results and interpretations illustrate that no atomic structure is of the simple kind formerly associated with line series. (This applies even to the hydrogen atom, as regards Zeeman spectra.) Conversely, series can often be found in traditionally complex spectra.
Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi
2016-06-16
Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the <110> direction, which is theoretically predicted to produce a high Curie temperature.
Distribution of Al atoms in the clathrate-I phase Ba8AlxSi46-x at x = 6.9.
Bobnar, Matej; Böhme, Bodo; Wedel, Michael; Burkhardt, Ulrich; Ormeci, Alim; Prots, Yurii; Drathen, Christina; Liang, Ying; Nguyen, Hong Duong; Baitinger, Michael; Grin, Yuri
2015-07-28
The clathrate-I phase Ba8AlxSi46-x has been structurally characterized at the composition x = 6.9 (space group Pm3[combining macron]n, no. 223, a = 10.4645(2) Å). A crystal structure model comprising the distribution of aluminium and silicon atoms in the clathrate framework was established: 5.7 Al atoms and 0.3 Si atoms occupy the crystallographic site 6c, while 1.2 Al atoms and 22.8 Si atoms occupy site 24k. The atomic distribution was established based on a combination of (27)Al and (29)Si NMR experiments, X-ray single-crystal diffraction and wavelength-dispersive X-ray spectroscopy.
Atomic and Molecular Gas Phase Spectrometry.
1983-09-30
between the thermometric levels, k is the Boltzmann constant (k = 0.695 cm-I K-1 ), Aik (s- 1) is the transition probability for spontaneous emission from...monitoring of the atomic absorption of M; information about the reaction processes were deduced from the shapes of the titration curves; (5) measure- ment of...Changes During Titration Based Upon The Releasing Effect Atomic Absorption Spectroscopy," D. Stojanovic and J.D. Winefordner, Anal Chim. Acta, 114, 295
Rusz, Ján; Idrobo, Juan Carlos
2016-03-24
It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.
Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili
2017-07-24
The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.
Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.; ...
2017-09-07
Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less
NASA Technical Reports Server (NTRS)
Dalins, I.; Karimi, M.
1992-01-01
Monochromatized angularly resolved X-ray photoelectron spectroscopy (ARXPS) was used to study PTFE (Teflon) that had been exposed to an earth orbital environment for approximately six years. The primary interest of the research is on a very reactive component of this environment (atomic oxygen) which, because of the typical orbital velocities of a spacecraft, impinge on exposed surfaces with 5 eV energy. This presentation deals with the method of analysis, the findings as they pertain to a rather complex carbon, oxygen, and fluorine XPS peak analysis, and the character of the valence bands. An improved bias referencing method, based on ARXPS, is also demonstrated for evaluating specimen charging effects. It was found that the polymer molecule tends to resist the atomic oxygen attack by reorienting itself, so that the most electronegative CF3 groups are facing the incoming hyperthermal oxygen atoms. The implications of these findings to ground-based laboratory studies are discussed.
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, In Soo; Li, Zhanyong; Zheng, Jian
Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novelmore » catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.« less
Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim
2018-04-13
We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-11-12
Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configurationmore » was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.« less
NASA Astrophysics Data System (ADS)
Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.
2010-11-01
Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to τ=1.38(0.21)h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spezzati, Giulia; Su, Yaqiong; Hofmann, Jan P.
Ceria-supported Pd is a promising heterogeneous catalyst for CO oxidation relevant to environmental cleanup reactions. Pd loaded onto a nanorod form of ceria exposing predominantly (111) facets is already active at 50 °C. Here we report a combination of CO-FTIR spectroscopy and theoretical calculations that allows assigning different forms of Pd on the CeO 2(111) surface during reaction conditions. Single Pd atoms stabilized in the form of PdO and PdO 2 in a CO/O 2 atmosphere participate in a catalytic cycle involving very low activation barriers for CO oxidation. In conclusion, the presence of single Pd atoms on the Pd/CeOmore » 2-nanorod, corroborated by aberration-corrected TEM and CO-FTIR spectroscopy, is considered pivotal to its high CO oxidation activity.« less
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Atomic-scale structure and electronic properties of GaN/GaAs superlattices
NASA Astrophysics Data System (ADS)
Goldman, R. S.; Feenstra, R. M.; Briner, B. G.; O'Steen, M. L.; Hauenstein, R. J.
1996-12-01
We have investigated the atomic-scale structure and electronic properties of GaN/GaAs superlattices produced by nitridation of a molecular beam epitaxially grown GaAs surface. Using cross-sectional scanning tunneling microscopy (STM) and spectroscopy, we show that the nitrided layers are laterally inhomogeneous, consisting of groups of atomic-scale defects and larger clusters. Analysis of x-ray diffraction data in terms of fractional area of clusters (determined by STM), reveals a cluster lattice constant similar to bulk GaN. In addition, tunneling spectroscopy on the defects indicates a conduction band state associated with an acceptor level of NAs in GaAs. Therefore, we identify the clusters and defects as nearly pure GaN and NAs, respectively. Together, the results reveal phase segregation in these arsenide/nitride structures, in agreement with the large miscibility gap predicted for GaAsN.
Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection
NASA Astrophysics Data System (ADS)
Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael
2018-03-01
Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.
Ultrafast quantum control of ionization dynamics in krypton.
Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta
2018-02-19
Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.
Basic Principles of Spectroscopy
NASA Astrophysics Data System (ADS)
Penner, Michael H.
Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.
Kim, Jun Woo; Kim, Byungwoo; Park, Suk Won; Kim, Woong; Shim, Joon Hyung
2014-10-31
It is challenging to realize a conformal metal coating by atomic layer deposition (ALD) because of the high surface energy of metals. In this study, ALD of ruthenium (Ru) on vertically aligned carbon nanotubes (CNTs) was carried out. To activate the surface of CNTs that lack surface functional groups essential for ALD, oxygen plasma was applied ex situ before ALD. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed surface activation of CNTs by the plasma pretreatment. Transmission electron microscopy analysis with energy-dispersive x-ray spectroscopy composition mapping showed that ALD Ru grew conformally along CNTs walls. ALD Ru/CNTs were electrochemically oxidized to ruthenium oxide (RuOx) that can be a potentially useful candidate for use in the electrodes of ultracapacitors. Electrode performance of RuOx/CNTs was evaluated using cyclic voltammetry and galvanostatic charge-discharge measurements.
NASA Astrophysics Data System (ADS)
McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Carr, Jerry, Jr.; Galante, Matthew; Magee, Richard; Scime, Earl
2013-10-01
Cavity Ring-Down Spectroscopy CRDS is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique. When combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the velocity distribution functions (IVDFs), can be measured. Measurements of IVDFS can be made using established techniques, such as laser induced fluorescence (LIF). However, LIF suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. CW-CRDS is considerably more sensitive than LIF and can potentially be applied to much lower density populations of ion and atom states. In this work we present ongoing measurements of the CW-CRDS diagnostic and discuss the technical challenges of using CW-CRDS to make measurements in a helicon plasma.
Reactions of atomic oxygen with the chlorate ion and the perchlorate ion
NASA Astrophysics Data System (ADS)
Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila
2014-06-01
The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.
USDA-ARS?s Scientific Manuscript database
Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...
Precision spectroscopy of the 2S-4P transition in atomic hydrogen
NASA Astrophysics Data System (ADS)
Maisenbacher, Lothar; Beyer, Axel; Matveev, Arthur; Grinin, Alexey; Pohl, Randolf; Khabarova, Ksenia; Kolachevsky, Nikolai; Hänsch, Theodor W.; Udem, Thomas
2017-04-01
Precision measurements of atomic hydrogen have long been successfully used to extract fundamental constants and to test bound-state QED. However, both these applications are limited by measurements of hydrogen lines other than the very precisely known 1S-2S transition. Moreover, the proton r.m.s.charge radius rp extracted from electronic hydrogen measurements currently disagrees by 4 σ with the much more precise value extracted from muonic hydrogen spectroscopy. We have measured the 2S-4P transition in atomic hydrogen using a cryogenic beam of hydrogen atoms optically excited to the initial 2S state. The first order Doppler shift of the one-photon 2S-4P transition is suppressed by actively stabilized counter-propagating laser beams and time-of-flight resolved detection. Quantum interference between excitation paths can lead to significant line distortions in our system. We use an experimentally verified, simple line shape model to take these distortions into account. With this, we can extract a new value for rp and the Rydberg constant R∞ with comparable accuracy as the combined previous H world data.
NASA Astrophysics Data System (ADS)
Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.
2015-02-01
This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.
NASA Astrophysics Data System (ADS)
Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.
2015-01-01
This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.
Surface Functionalization of Polyethylene Granules by Treatment with Low-Pressure Air Plasma.
Šourková, Hana; Primc, Gregor; Špatenka, Petr
2018-05-25
Polyethylene granules of diameter 2 mm were treated with a low-pressure weakly ionized air plasma created in a metallic chamber by a pulsed microwave discharge of pulse duration 180 μs and duty cycle 70%. Optical emission spectroscopy showed rich bands of neutral nitrogen molecules and weak O-atom transitions, but the emission from N atoms was below the detection limit. The density of O atoms in the plasma above the samples was measured with a cobalt catalytic probe and exhibited a broad peak at the pressure of 80 Pa, where it was about 2.3 × 10 21 m -3 . The samples were characterized by X-ray photoelectron spectroscopy. Survey spectra showed oxygen on the surface, while the nitrogen concentration remained below the detection limit for all conditions. The high-resolution C1s peaks revealed formation of various functional groups rather independently from treatment parameters. The results were explained by extensive dissociation of oxygen molecules in the gaseous plasma and negligible flux of N atoms on the polymer surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.
The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can bemore » obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.« less
NASA Technical Reports Server (NTRS)
Ferrante, J.
1973-01-01
Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.
Introduction to Time of Flight Positron Annihilation Induced Auger Spectroscopy (TOF-PAES)
NASA Astrophysics Data System (ADS)
Joglekar, Prasad; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alex
2009-10-01
Time of flight- positron annihilation induced auger electron spectroscopy (TOF-PAES) is extremely surface selective with close to 95% of the PAES signal stemming from the top-most atomic layer. In PAES, a beam of low energy (1eV -- 25eV) positrons is made incident on a surface where they become trapped in an image potential well. A fraction (up to several percent) of the positrons in the surface state annihilate with the core electrons of atoms at the surface resulting in core-holes. Electrons in higher levels can fill these core-hole via an Auger transition in which the energy associated with this filling the core hole is transferred to another electron which can leave the atom and the surface. The energy of the outgoing (Auger) electrons is characteristic of the energy levels of the atom and can be used to identify the specific element taking part in the transition. In this talk I will present a brief review of how the TOF PAES technique can be used to obtain Auger spectra that is completely free of secondary electron background.
NASA Astrophysics Data System (ADS)
Lorenz, M. P. A.; Fuhrmann, T.; Streber, R.; Bayer, A.; Bebensee, F.; Gotterbarm, K.; Kinne, M.; Tränkenschuh, B.; Zhu, J. F.; Papp, C.; Denecke, R.; Steinrück, H.-P.
2010-07-01
The adsorption and thermal evolution of ethene (ethylene) on clean and oxygen precovered Ni(111) was investigated with high resolution x-ray photoelectron spectroscopy using synchrotron radiation at BESSY II. The high resolution spectra allow to unequivocally identify the local environment of individual carbon atoms. Upon adsorption at 110 K, ethene adsorbs in a geometry, where the two carbon atoms within the intact ethene molecule occupy nonequivalent sites, most likely hollow and on top; this new result unambiguously solves an old puzzle concerning the adsorption geometry of ethene on Ni(111). On the oxygen precovered surface a different adsorption geometry is found with both carbon atoms occupying equivalent hollow sites. Upon heating ethene on the clean surface, we can confirm the dehydrogenation to ethine (acetylene), which adsorbs in a geometry, where both carbon atoms occupy equivalent sites. On the oxygen precovered surface dehydrogenation of ethene is completely suppressed. For the identification of the adsorbed species and the quantitative analysis the vibrational fine structure of the x-ray photoelectron spectra was analyzed in detail.
Nanoscale Infrared Spectroscopy of Biopolymeric Materials
Curtis Marcott; Michael Lo; Kevin Kjoller; Craig Prater; Roshan Shetty; Joseph Jakes; Isao Noda
2012-01-01
Atomic Force Microscopy (AFM) and infrared (IR) spectroscopy have been combined in a single instrument capable of producing 100 nm spatial resolution IR spectra and images. This new capability enables the spectroscopic characterization of biomaterial domains at levels not previously possible. A tunable IR laser source generating pulses on the order of 10 ns was used...
Ecological-Evaluation of Organotin-Contaminated Sediment.
1985-07-01
the potential for bioaccumulation of cadmium, chromium, copper, mercury , silver, pesticides, PCBs, petroleum hydrocarbons, and organotins RESULTS The...tissues were frozen for subsequent bioaccumulation estimates. Tissues and sediment samples were analyzed for cadmium, chromium, copper, mercury , silver...spectroscopy; mercury was analyzed by cold vapor atomic absorption spectroscopy. Pesticides, PCBs, and petroleum hydrocarbons were measured by gas
Medical applications of atomic force microscopy and Raman spectroscopy.
Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk
2014-01-01
This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odedra, R.; Smith, L.M.; Rushworth, S.A.
2000-01-01
Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples andmore » with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.« less
NATO Advanced Study Institute on Spectroscopy
NASA Technical Reports Server (NTRS)
DiBartolo, Baldassare; Barnes, James (Technical Monitor)
2001-01-01
This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.
The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight.
Truong, Vi Khanh; Stefanovic, Miljan; Maclaughlin, Shane; Tobin, Mark; Vongsvivut, Jitraporn; Al Kobaisi, Mohammad; Crawford, Russell J; Ivanova, Elena P
2016-10-11
Corrosion of metallic surfaces is prevalent in the environment and is of great concern in many areas, including the military, transport, aviation, building and food industries, amongst others. Polyester and coatings containing both polyester and silica nanoparticles (SiO2NPs) have been widely used to protect steel substrata from corrosion. In this study, we utilized X-ray photoelectron spectroscopy, attenuated total reflection infrared micro-spectroscopy, water contact angle measurements, optical profiling and atomic force microscopy to provide an insight into how exposure to sunlight can cause changes in the micro- and nanoscale integrity of the coatings. No significant change in surface micro-topography was detected using optical profilometry, however, statistically significant nanoscale changes to the surface were detected using atomic force microscopy. Analysis of the X-ray photoelectron spectroscopy and attenuated total reflection infrared micro-spectroscopy data revealed that degradation of the ester groups had occurred through exposure to ultraviolet light to form COO·, -H2C·, -O·, -CO· radicals. During the degradation process, CO and CO2 were also produced.
Single-Cell Force Spectroscopy of Probiotic Bacteria
Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.
2013-01-01
Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831
Braga, Sheila Regina Maia; De Faria, Dalva Lúcia Araújo; De Oliveira, Elisabeth; Sobral, Maria Angela Pita
2011-12-01
This study evaluated and compared in vitro the morphology and mineral composition of dental enamel after erosive challenge in gastric juice and orange juice. Human enamel specimens were submitted to erosive challenge using gastric juice (from endoscopy exam) (n = 10), and orange juice (commercially-available) (n = 10), as follows: 5 min in 3 mL of demineralization solution, rinse with distilled water, and store in artificial saliva for 3 h. This cycle was repeated four times a day for 14 days. Calcium (Ca) loss after acid exposure was determined by atomic emission spectroscopy. The presence of carbonate (CO) and phosphate (PO) in the specimens was evaluated before and after the erosive challenge by FT-Raman spectroscopy. Data were tested using t-tests (P < 0.05). Morphology of enamel was observed in scanning electron microscopy (SEM). The mean loss of Ca was: 12.74 ± 3.33 mg/L Ca (gastric juice) and 7.07 ± 1.44 mg/L Ca (orange juice). The analysis by atomic emission spectroscopy showed statistically significant difference between erosive potential of juices (P = 0.0003). FT-Raman spectroscopy found no statistically significant difference in the ratio CO/PO after the erosive challenge. The CO/PO ratios values before and after the challenge were: 0.16/0.17 (gastric juice) (P = 0.37) and 0.18/0.14 (orange juice) (P = 0.16). Qualitative analysis by SEM showed intense alterations of enamel surface. The gastric juice caused more changes in morphology and mineral composition of dental enamel than orange juice. The atomic emission spectroscopy showed to be more suitable to analyze small mineral loss after erosive challenge than FT-Raman. Copyright © 2011 Wiley Periodicals, Inc.
Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.
2018-05-01
When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.
NASA Astrophysics Data System (ADS)
DuMont, Jaime Willadean
In this thesis, in situ Fourier transform infrared (FTIR) spectroscopy was used to study: i) the growth and pyrolysis of molecular layer deposition (MLD) films. ii) the surface chemistry of atomic layer etching (ALE) processes. Atomic layer processes such as molecular layer deposition (MLD) and atomic layer etching (ALE) are techniques that can add or remove material with atomic level precision using sequential, self-limiting surface reactions. Deposition and removal processes at the atomic scale are powerful tools for many industrial and research applications such as energy storage and semiconductor nanofabrication. The first section of this thesis describes the chemistry of reactions leading to the MLD of aluminum and tin alkoxide polymer films known as "alucone" and "tincone", respectively. The subsequent pyrolysis of these films to produce metal oxide/carbon composites was also investigated. In situ FTIR spectroscopy was conducted to monitor surface species during MLD film growth and to monitor the films background infrared absorbance versus pyrolysis temperature. Ex situ techniques such as transmission electron microscopy (TEM), four-point probe and X-ray diffraction (XRD) were utilized to study the properties of the films post-pyrolysis. TEM confirmed that the pyrolyzed films maintained conformality during post-processing. Four-point probe monitored film resistivity versus pyrolysis temperature and XRD determined the film crystallinity. The second section of this thesis focuses on the surface chemistry of Al2O3 and SiO2 ALE processes, respectively. Thermal ALE processes have been recently developed which utilize sequential fluorination and ligand exchange reactions. An intimate knowledge of the surface chemistry is important in understanding the ALE process. In this section, the competition between the Al2O3 etching and AlF 3 growth that occur during sequential HF (fluorinating agent) and TMA (ligand exchange) exposures is investigated using in situ FTIR spectroscopy. Also included in this section is the first demonstration of thermal ALE for SiO2. In situ FTIR spectroscopy was conducted to monitor the loss of bulk Si-O vibrational modes corresponding to the removal of SiO2. FTIR was also used to monitor surface species during each ALE half cycle and to verify self-limiting behavior. X-ray reflectivity experiments were conducted to establish etch rates on thermal oxide silicon wafers.
Continuum ionization transition probabilities of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Petrosky, V. E.
1974-01-01
The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.
NASA Technical Reports Server (NTRS)
Hartmann, S. R.; Happer, W.
1974-01-01
The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.
Relaxation channels of multi-photon excited xenon clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904
2015-09-21
The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
2017-02-01
Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skelly, E.M.
A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine,more » blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.« less
NASA Astrophysics Data System (ADS)
Takata, Fumiya; Ito, Keita; Takeda, Yukiharu; Saitoh, Yuji; Takanashi, Koki; Kimura, Akio; Suemasu, Takashi
2018-02-01
X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism measurements were performed at the Ni and Fe L2 ,3 absorption edges for N ixF e4 -xN (x =1 and 3) epitaxial films. Spectral line-shape analysis and element-specific magnetic moment evaluations are presented. Shoulders at approximately 2 eV above the Ni L2 ,3 main peaks in the XAS spectrum of N i3FeN were interpreted to originate from hybridization of orbitals between Ni 3 d at face-centered (II) sites and N 2 p at body-centered sites, while such features were missing in NiF e3N film. Similar shoulders were observed at Fe L2 ,3 edges in both films. These results indicate that the orbitals of Ni atoms did not hybridize with those of N atoms in the NiF e3N film. Hence, Ni atoms preferentially occupied corner (I) sites, where the hybridization was weak because of the relatively long distance between Ni at I sites and N atoms. The relatively large magnetic moment deduced from sum-rule analysis of NiF e3N also showed a good agreement with the presence of Ni atoms at I sites.
Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice
NASA Astrophysics Data System (ADS)
Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus
2013-05-01
Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24(-) cluster.
Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Wang, Lai-Sheng; Boldyrev, Alexander I
2013-10-14
The structure and chemical bonding of the 24-atom boron cluster are investigated using photoelectron spectroscopy and ab initio calculations. The joint experimental and theoretical investigation shows that B24(-) possesses a quasi-planar structure containing fifteen outer and nine inner atoms with six of the inner atoms forming a filled pentagonal moiety. The central atom of the pentagonal moiety is puckered out of plane by 0.9 Å, reminiscent of the six-atom pentagonal caps of the well-known B12 icosahedral unit. The next closest isomer at the ROCCSD(T) level of theory has a tubular double-ring structure. Comparison of the simulated spectra with the experimental data shows that the global minimum quasi-planar B24(-) isomer is the major contributor to the observed photoelectron spectrum, while the tubular isomer has no contribution to the experiment. Chemical bonding analyses reveal that the periphery of the quasi-planar B24 constitutes 15 classical 2c-2e B-B σ-bonds, whereas delocalized σ- and π-bonds are found in the interior of the cluster with one unique 6c-2e π-bond responsible for bonding in the B-centered pentagon. The current work suggests that the 24-atom boron cluster continues to be quasi-2D, albeit the tendency to form filled pentagonal units, characteristic of 3D cage-like structures of bulk boron, is observed.
NASA Astrophysics Data System (ADS)
Stanley, Matthew
2010-07-01
The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the Universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Crookes, John Tyndall, Agnes Clerke, William Huggins and Norman Lockyer.
NASA Astrophysics Data System (ADS)
Stanley, Matthew
2010-01-01
The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Thomson (Lord Kelvin), John Tyndall, Agnes Clerke, William Huggins, and Norman Lockyer.
1978-12-12
EPR and ultrafiltration studies are recommceided to conduct luture metal ion- IgG binding research. Using Scatchard plots, bind.ng levels can be...of the binding sites can be best pursued by EPR and ultrafiltration using the fragments of IgG . This report noted some difference in the binding...immunoelectrophoresis, ultrafiltration, UV spectroscopy, atomic absorption spectroscopy, and electron paramagnetic resonance (EPR). IgG used ,- ,is non
Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique
NASA Astrophysics Data System (ADS)
Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru
2017-06-01
Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).
Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.
1977-01-01
A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.
Kim, Kyong Nam; Kim, Tae Hyung; Seo, Jin Seok; Kim, Ki Seok; Bae, Jeong Woon; Yeom, Geun Young
2013-12-01
The properties of Pd/Ir/Au ohmic metallization on p-type GaN have been investigated. Contacts annealed at 400 degrees C in O2 atmosphere demonstrated excellent ohmic characteristics with a specific contact resistivity of 1.5 x 10(-5) Omega-cm2. This is attributed to the formation of Ga vacancies at the contact metal-semiconductor interfacial region due to the out-diffusion of Ga atoms. The out-diffusion of Ga atoms was confirmed by X-ray photoelectron spectroscopy depth profiles, high-resolution transmission electron microscopy, and electron energy loss spectroscopy using a scanning transmission electron microscope.
Laser-induced fluorescence spectroscopy for improved chemical analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbwachs, J.A.
1983-09-01
This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less
Laser diagnostics of welding plasma by polarization spectroscopy.
Lucas, Owen; Alwahabi, Zeyad T; Linton, Valerie; Meeuwissen, Karel
2007-05-01
The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.
Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R
2007-04-06
Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.
NASA Astrophysics Data System (ADS)
Sun, Xuzhuo; Li, Bo; Lu, Mingxia
2017-07-01
Chemical modification of graphene is a promising approach to manipulate its properties for its end applications. Herein we designed a two-step route through chlorination-Grignard reactions to covalently decorate the surface of graphene with adamantane groups. The chemically modified graphene was characterized by Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Chlorination of graphene occurred rapidly, and the substitution of chlorine atoms on chlorinated graphene by adamantane Grignard reagent afforded adamantane graphene in almost quantitative yield. Adamantane groups were found to be covalently bonded to the graphene carbons. The present two-step procedure may provide an effective and facile route for graphene modification with varieties of organic functional groups.
NASA Technical Reports Server (NTRS)
1977-01-01
Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.
2014-09-01
We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu; Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215
2015-06-21
We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Hyper-Ramsey spectroscopy with probe-laser-intensity fluctuations
NASA Astrophysics Data System (ADS)
Beloy, K.
2018-03-01
We examine the influence of probe-laser-intensity fluctuations on hyper-Ramsey spectroscopy. We assume, as is appropriate for relevant cases of interest, that the probe-laser intensity I determines both the Rabi frequency (∝√{I } ) and the frequency shift to the atomic transition (∝I ) during probe-laser interactions with the atom. The spectroscopic signal depends on these two quantities that covary with fluctuations in the probe-laser intensity. Introducing a simple model for the fluctuations, we find that the signature robustness of the hyper-Ramsey method can be compromised. Taking the Yb+ electric octupole clock transition as an example, we quantify the clock error under different levels of probe-laser-intensity fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korolev, D. S.; Mikhaylov, A. N.; Belov, A. I.
The composition and structure of silicon surface layers subjected to combined gallium and nitrogen ion implantation with subsequent annealing have been studied by the X-ray photoelectron spectroscopy, Rutherford backscattering, electron spin resonance, Raman spectroscopy, and transmission electron microscopy techniques. A slight redistribution of the implanted atoms before annealing and their substantial migration towards the surface during annealing depending on the sequence of implantations are observed. It is found that about 2% of atoms of the implanted layer are replaced with gallium bonded to nitrogen; however, it is impossible to detect the gallium-nitride phase. At the same time, gallium-enriched inclusions containingmore » ∼25 at % of gallium are detected as candidates for the further synthesis of gallium-nitride inclusions.« less
Scanning Tunneling Spectroscopy of Potassium on Graphene
NASA Astrophysics Data System (ADS)
Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew
2012-02-01
We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.
Lattice-Assisted Spectroscopy: A Generalized Scanning Tunneling Microscope for Ultracold Atoms.
Kantian, A; Schollwöck, U; Giamarchi, T
2015-10-16
We propose a scheme to measure the frequency-resolved local particle and hole spectra of any optical lattice-confined system of correlated ultracold atoms that offers single-site addressing and imaging, which is now an experimental reality. Combining perturbation theory and time-dependent density matrix renormalization group simulations, we quantitatively test and validate this approach of lattice-assisted spectroscopy on several one-dimensional example systems, such as the superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.
Spectral Line Shapes. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoppi, M.; Ulivi, L.
1997-02-01
These proceedings represent papers presented at the 13th International Conference on Spectral Line Shapes which was held in Firenze,Italy from June 16-21, 1996. The topics covered a wide range of subjects emphasizing the physical processes associated with the formation of line profiles: high and low density plasma; atoms and molecules in strong laser fields, Dopple{minus}free and ultra{minus}fine spectroscopy; the line shapes generated by the interaction of neutrals, atoms and molecules, where the relavant quantities are single particle properties, and the interaction{minus}induced spectroscopy. There were 131 papers presented at the conference, out of these, 6 have been abstracted for the Energymore » Science and Technology database.(AIP)« less
High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium
NASA Astrophysics Data System (ADS)
Schmidt-Kaler, F.; Leibfried, D.; Seel, S.; Zimmermann, C.; König, W.; Weitz, M.; Hänsch, T. W.
1995-04-01
Two-photon spectroscopy of the hydrogen 1S-2S transition in a cold atomic beam has reached a resolution Δν/ν of 1 part in 1011 in hydrogen and 7 parts in 1012 in deuterium. The hydrogen and deuterium 1S-2S transition frequencies have been determined with a precision of 1 part in 1011. This leads to an accurate value for the Rydberg constant, while the 1S Lamb shift and the isotope shift are determined with order of magnitude improvements over previous measurements. We describe in detail the 1S-2S spectrometer, calculate the line shape of the resonance, and compare it to the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Kurt D.; Slepko, Alex; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu
2016-08-14
First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp){sub 2}] on TiO{sub 2}-terminated strontium titanate, SrTiO{sub 3} (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp){sub 2} precursor is shown to adsorb on the TiO{sub 2}-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C–Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculationsmore » are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr({sup i}Pr{sub 3}Cp){sub 2}], adsorbed on TiO{sub 2}-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO{sub 2}-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp){sub 2}, may initiate film growth on non-hydroxylated surfaces.« less
Quantum control and measurement of atomic spins in polarization spectroscopy
NASA Astrophysics Data System (ADS)
Deutsch, Ivan H.; Jessen, Poul S.
2010-03-01
Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.
Combined wet and dry cleaning of SiGe(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong
Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less
NASA Astrophysics Data System (ADS)
Barnard, P. E.; Terblans, J. J.; Swart, H. C.
2015-12-01
The article takes a new look at the process of atomic segregation by considering the influence of surface relaxation on the segregation parameters; the activation energy (Q), segregation energy (ΔG), interaction parameter (Ω) and the pre-exponential factor (D0). Computational modelling, namely Density Functional Theory (DFT) and the Modified Darken Model (MDM) in conjunction with Auger Electron Spectroscopy (AES) was utilized to study the variation of the segregation parameters for S in the surface region of Fe(100). Results indicate a variation in each of the segregation parameters as a function of the atomic layer under consideration. Values of the segregation parameters varied more dramatically as the surface layer is approached, with atomic layer 2 having the largest deviations in comparison to the bulk values. This atomic layer had the highest Q value and formed the rate limiting step for the segregation of S towards the Fe(100) surface. It was found that the segregation process is influenced by two sets of segregation parameters, those of the surface region formed by atomic layer 2, and those in the bulk material. This article is the first to conduct a full scale investigation on the influence of surface relaxation on segregation and labelled it the "surface effect".
Towards ALD thin film stabilized single-atom Pd 1 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
Towards ALD thin film stabilized single-atom Pd 1 catalysts
Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; ...
2016-07-27
Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. In this paper, we study a strategy for synthesizing thin film stabilized single-atom Pd 1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd 1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd 1 was anchored on the surface through chlorine sites. The thin film stabilized Pd 1 catalysts weremore » thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd 1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO 2 protected Pd 1 was less active at high temperature. Pd L 3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. Lastly, these results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.« less
LIFS atomic hydrogen density measurements at the URAGAN-3M facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, E.D.; Zhmurin, P.N.; Letuchii, A.N.
1994-12-31
Molecular and atomic hydrogen behavior within a plasma column of the URAGAN-3M facility was numerically simulated for a low density regime ({bar n}{sub e} {approx_equal} 2 x 10{sup 12} cm{sup {minus}3}). Local density of hydrogen atoms in the axial region was measured by Laser-Induced Fluorescence Spectroscopy technique. A good agreement of the measurements and simulations was observed. In the regime under investigation the results of hydrogen density spectroscopic measurements were found to be greatly affected by dissociative population of hydrogen atom excited states. 2 refs., 3 figs.
Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms
Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu; ...
2017-04-06
Here, we observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. The role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We also measure the normal-mode splitting and √ n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.
Atomic Data Needs for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Kallman, Timothy; White, Nicholas E. (Technical Monitor)
1999-01-01
This publication contains written versions of most of the invited talks presented at the workshop on Atomic Data Needs for X-ray Astronomy which was held at NASA's Goddard Space Flight Center on December 16-1 7 1999. The idea of hosting such a workshop emerged from an imminent need to update and complete current atomic datasets in anticipation of a new era of high quality X-ray spectra starting with the launching of Chandra and XMM-Newton observatories. At first, our vision of the workshop was of a short and limited attendance event, given the specialization of the topic. But it, was soon realized, from the response to the first workshop announcement, that the topic was of much interest, to researchers working in X-ray spectra (physicists and astronomers). As a result, the workshop grew to approximately 120 participants from several countries. The kind of atomic data that interests us are those parameters needed for analysis and modeling of spectra shortward of about about 100 A and relevant to ionic species of astronomical interest. The physical mechanisms of interest in the formation of spectra include photoionization. collisional ionization, recombination (radiative and dielectronic). collisional excitation (by electrons and protons). and radiative deexcitation. Unique to X-ray spectroscopy are the ionization and excitation processes from inner-closed shells. in addition to the challenges in interpret,ing the medium resolution (epsilon/delta epsilon is about 0.05 - 0.1) data obtained by current X-ray astronomy experiments. Line wavelengths are of interest too, particularly owing to the high resolution spectra from the new experiments. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters. Spectra Modeling, and Atomic Databases. One comforting finding from the work shop is that the enthusiasm felt by X-ray astronomers about the new observational missions seems to be shared by theoretical and experimental physicists. Talks were presented about several exciting new projects and experimental and theoretical techniques devoted to X-ray spectroscopy. Simultaneously, several new tools for spectral analysis and modeling have recently been developed, together with improved atomic databases. These proceeding are expected to be of interests to producers and users of atomic data. Moreover. the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.
ERIC Educational Resources Information Center
Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad
2011-01-01
A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…
Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)
NASA Astrophysics Data System (ADS)
Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.
2017-03-01
This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovation Research) SDL, Inc., has developed the TC40 Single-Frequency Continuously Tunable 500 mw Laser Diode System. This is the first commercially available single frequency diode laser system that offers the broad tunability and the high powers needed for atomic cooling and trapping as well as a variety of atomic spectroscopy techniques. By greatly decreasing both the equipment and the costs of entry, the TC40 enables researchers to pursue some of the most interesting areas of physical chemistry, biochemistry, and atomic physics.
Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian
2011-02-22
Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.
Flow velocity measurements with stimulated Rayleigh-Brillouin-gain spectroscopy
NASA Technical Reports Server (NTRS)
Herring, G. C.; Moosmueller, H.; Lee, S. A.; She, C. Y.
1983-01-01
Using stimulated Rayleigh-Brillouin-gain spectroscopy, velocity measurements in an atmospheric-pressure subsonic nitrogen flow with 10 percent uncertainty have been conducted. It is shown that the accuracy of the velocity measurements increases with gas pressure, making this spectroscopic technique ideal for measuring velocity and other parameters of high-pressure (greater than 1-atm) atomic or molecular flows.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.
Studies on lasers and laser devices
NASA Technical Reports Server (NTRS)
Harris, S. E.; Siegman, A. E.; Young, J. F.
1983-01-01
The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.
Minkowski, Rudolph Leo Bernhard (1895-1976)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Born in Strassburg, Germany, worked on atomic spectroscopy at Hamburg and had to flee the Nazi persecution, joined WALTER BAADE on the Mount Wilson Observatory staff, where he began to apply spectroscopy to astronomy. He investigated nebulae, including supernova remnants, especially the Crab nebula. He classified supernovae into Types I and II, leading to their identification as two similar implo...
Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons
NASA Astrophysics Data System (ADS)
De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy
2013-01-01
The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.
Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.
De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy
2013-01-09
The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.
Ionescu, Robert; Campbell, Brennan; Wu, Ryan; Aytan, Ece; Patalano, Andrew; Ruiz, Isaac; Howell, Stephen W; McDonald, Anthony E; Beechem, Thomas E; Mkhoyan, K Andre; Ozkan, Mihrimah; Ozkan, Cengiz S
2017-07-25
It is of paramount importance to improve the control over large area growth of high quality molybdenum disulfide (MoS 2 ) and other types of 2D dichalcogenides. Such atomically thin materials have great potential for use in electronics, and are thought to make possible the first real applications of spintronics. Here in, a facile and reproducible method of producing wafer scale atomically thin MoS 2 layers has been developed using the incorporation of a chelating agent in a common organic solvent, dimethyl sulfoxide (DMSO). Previously, solution processing of a MoS 2 precursor, ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 ), and subsequent thermolysis was used to produce large area MoS 2 layers. Our work here shows that the use of ethylenediaminetetraacetic acid (EDTA) in DMSO exerts superior control over wafer coverage and film thickness, and the results demonstrate that the chelating action and dispersing effect of EDTA is critical in growing uniform films. Raman spectroscopy, photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and high-resolution scanning transmission electron microscopy (HR-STEM) indicate the formation of homogenous few layer MoS 2 films at the wafer scale, resulting from the novel chelant-in-solution method.
Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A
2018-05-29
In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.
NASA Astrophysics Data System (ADS)
Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi
2000-08-01
A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.
2016-11-01
Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.
Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs
NASA Astrophysics Data System (ADS)
Picque, Nathalie
2013-06-01
The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T. Ideguchi et al., Optics letters 37, 4498-4500 (2012); T. Ideguchi et al. arXiv:1302.2414 (2013)
Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV
2015-11-20
AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized
Gallium interstitial in irradiated germanium: Deep level transient spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted
Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p-type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.
Gallium interstitial in irradiated germanium: Deep level transient spectroscopy
NASA Astrophysics Data System (ADS)
Kolkovsky, Vl.; Petersen, M. Christian; Mesli, A.; van Gheluwe, J.; Clauws, P.; Larsen, A. Nylandsted
2008-12-01
Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p -type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.
Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films
2010-01-05
Thermodynamic and spectroscopic properties of Nd:YAG-CO2 Double-Pulse Laser-Induced Iron Plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy (2009...absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969). 15. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a...and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At
Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs
NASA Astrophysics Data System (ADS)
Hipke, Arthur; Meek, Samuel A.; Ideguchi, Takuro; Hänsch, Theodor W.; Picqué, Nathalie
2014-07-01
Multiplex two-photon excitation spectroscopy is demonstrated at Doppler-limited resolution. We describe first Fourier-transform two-photon spectroscopy of an atomic sample with two mode-locked laser oscillators in a dual-comb technique. Each transition is uniquely identified by the modulation imparted by the interfering comb excitations. The temporal modulation of the spontaneous two-photon fluorescence is monitored with a single photodetector, and the spectrum of all excited transitions is revealed by a Fourier transform.
Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy
NASA Astrophysics Data System (ADS)
Vaughn, John S.
Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate that fluorine occupies a complex distribution of atomic positions, which give rise to complex 19F peak shapes owing to varied F-Ca distance. 13C NMR analysis of carbonate-hydroxylapatite indicates that AB-type carbonate hydroxylapatite can be prepared without the presence of sodium or heat treatment. Isotopic 17O enrichment of hydroxylapatite and 17O NMR analysis reveals distinct signals corresponding to phosphate and hydroxyl oxygens, and heat treatment under vacuum results in loss of hydroxyl signal due to decomposition to tricalcium phosphate, which was observed by powder X-Ray diffraction (PXRD).
NASA Astrophysics Data System (ADS)
Tillmann, W.; Hagen, L.; Kokalj, D.
2017-10-01
In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.
Mössbauer spectroscopy and the structure of interfaces on the atomic scale in metallic nanosystems
NASA Astrophysics Data System (ADS)
Uzdin, V. M.
2007-10-01
A microscopic model of the formation of an alloy on the interface has been constructed, which takes into account the exchange of atoms with the substrate atoms and the “floating up” of the latter into the upper layers in the process of epitaxial growth. The self-consistent calculations of atomic magnetic moments of spatially inhomogeneous structures obtained in this case are used for the interpretation of data of Mössbauer spectroscopy. The proposed scenario of mixing leads to the appearance of a preferred direction in the sample and the asymmetry of interfaces in the direction of epitaxial growth. In the multilayer M 1/ M 2 ( M 1,2 = Fe, Cr, V, Sn, or Ag) systems, this asymmetry makes it possible to understand the difference in the magnetic behavior of M 1-on M 2 and M 2-on- M 1 interfaces which has been observed experimentally. The correlation between the calculated distributions of magnetic moments and the measured distributions of hyperfine fields at iron atoms confirms the assumption about their proportionality for a broad class of metallic multilayer systems. However, a linear decrease of hyperfine fields at the 57Fe nuclei with increasing number of impurity atoms among the nearest and next-nearest neighbors is not confirmed for Fe/Cr systems, although is correct in Fe/V superlattices. In the Fe/Cr multilayer systems, the experimentally measured value of magnetoresistance grows with increasing fraction of the “floated up” atoms of 57Fe. Thus, it is the bulk scattering by impurity atoms that gives the basic contribution to the effect of giant magnetoresistance. The problem of the influence of mixing and adsorption of hydrogen in the vanadium layers on the state of the spin-density wave in V/Cr superlattices has been considered.
Tomography of a Probe Potential Using Atomic Sensors on Graphene.
Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A
2016-12-27
Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.
Radical Chemistry and Charge Manipulation with an Atomic Force Microscope
NASA Astrophysics Data System (ADS)
Gross, Leo
The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).
Self-limited growth of Si on B atomic-layer formed Ge(1 0 0) by ultraclean low-pressure CVD system
NASA Astrophysics Data System (ADS)
Yokogawa, Takashi; Ishibashi, Kiyohisa; Sakuraba, Masao; Murota, Junichi; Inokuchi, Yasuhiro; Kunii, Yasuo; Kurokawa, Harushige
2008-07-01
Utilizing BCl 3 reaction on Ge(1 0 0) and subsequent Si epitaxial growth by SiH 4 reaction at 300 °C, B atomic-layer doping in Si/Ge(1 0 0) heterostructure was investigated. Cl atoms on the B atomic-layer formed Ge(1 0 0) scarcely affect upon the SiH 4 reaction. It is also found that Si atom amount deposited by SiH 4 reaction on Ge(1 0 0) is effectively enhanced by the existence of B atomic layer and the deposition rate tends to decrease at around 2-3 atomic layers which is three times larger than that in the case without B. The results of angle-resolved X-ray photoelectron spectroscopy show that most B atoms are incorporated at the heterointerface between the Si and Ge.
Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin
2018-03-28
Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.
NASA Astrophysics Data System (ADS)
Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter
2008-07-01
For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy of Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and the Physics Department of Lund University during from 8 to 10 August 2007 and was attended by nearly 100 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume contains the submitted contributions from the poster presentations of the conference, and represents approximately forty percent of the presented posters. A complementary volume of Physica Scripta provides the written transactions of the ASOS9 invited presentations. With these two volumes the character of ASOS9 is more fully evident, and they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy where both the providers and users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths, and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, the latter including fusion energy and lighting research. As a part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent work with astrophysical applications. Professor Johansson was also honored with heart-felt acknowledgements at the conference dinner on an unusually warm Lund summer evening. Prior to the publication of these proceedings, we were extremely saddened to learn of Sveneric's passing on 10 October 2008. Sveneric Johansson, a founding father of the ASOS conference series, was widely known for his pioneering work on the atomic structure of heavy elements as a well as for his leadership of the international FERRUM Project, which successfully determined a definitive set of spectroscopic data for Fe II. His knowledge of spectroscopy, leadership qualities, and friendship will be dearly missed. Acknowledgements: The spirit of ASOS has been maintained by the dedication of the organizing committees who have kept a tight focus on the nature of the conference, yet allowed for the incorporation of new areas of research in the field. The International Program Committee for ASOS9 is to be commended for their efforts in providing an interesting program. They have also served as the primary source of referees, which along with other referees have performed a valuable service. Many thanks must be given to the local organizing committee, who made the return of ASOS to Lund a memorable experience through both the many opportunities for social gatherings during the conference and a post-conference outing through Skåne. We would also like to express our appreciation to the Royal Swedish Academy of Sciences, the Royal Physiographic Society in Lund, the Wenner-Gren Foundation, and the Lund Laser Centre and Department of Physics for their generous support in making ASOS9 possible. Glenn M Wahlgren Wolfgang L Wiese Peter Beiersdorfer Editors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Feng; Chen, YiPing, E-mail: ypchen007@sina.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002
2013-06-01
Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atomsmore » in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.« less
NASA Astrophysics Data System (ADS)
Hanna, Taku; Hiramatsu, Hidenori; Sakaguchi, Isao; Hosono, Hideo
2017-05-01
We developed a highly hydrogen-sensitive thermal desorption spectroscopy (HHS-TDS) system to detect and quantitatively analyze low hydrogen concentrations in thin films. The system was connected to an in situ sample-transfer chamber system, manipulators, and an rf magnetron sputtering thin-film deposition chamber under an ultra-high-vacuum (UHV) atmosphere of ˜10-8 Pa. The following key requirements were proposed in developing the HHS-TDS: (i) a low hydrogen residual partial pressure, (ii) a low hydrogen exhaust velocity, and (iii) minimization of hydrogen thermal desorption except from the bulk region of the thin films. To satisfy these requirements, appropriate materials and components were selected, and the system was constructed to extract the maximum performance from each component. Consequently, ˜2000 times higher sensitivity to hydrogen than that of a commercially available UHV-TDS system was achieved using H+-implanted Si samples. Quantitative analysis of an amorphous oxide semiconductor InGaZnO4 thin film (1 cm × 1 cm × 1 μm thickness, hydrogen concentration of 4.5 × 1017 atoms/cm3) was demonstrated using the HHS-TDS system. This concentration level cannot be detected using UHV-TDS or secondary ion mass spectroscopy (SIMS) systems. The hydrogen detection limit of the HHS-TDS system was estimated to be ˜1 × 1016 atoms/cm3, which implies ˜2 orders of magnitude higher sensitivity than that of SIMS and resonance nuclear reaction systems (˜1018 atoms/cm3).
Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system
NASA Astrophysics Data System (ADS)
Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.
2013-10-01
Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.
NASA Astrophysics Data System (ADS)
Klinger, E.; Sargsyan, A.; Leroy, C.; Sarkisyan, D.
2017-10-01
We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L λ 1,2/2 filled with Rb and Cs atoms, where λ 1 = 780 nm and λ 2 = 852 nm are the wavelengths resonant with the D 2 laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > λ/2 changes to the positive one for L < λ/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30-40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D 2 transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne-Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.
NASA Astrophysics Data System (ADS)
Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.; Lake, P. W.; Nash, T. J.; Noack, D. D.; Maron, Y.
2000-12-01
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)×1014 cm-3 for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)×1015 cm-3 for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.
Kalantzopoulos, Georgios N; Lundvall, Fredrik; Checchia, Stefano; Lind, Anna; Wragg, David S; Fjellvåg, Helmer; Arstad, Bjørnar
2018-02-19
In situ flow magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and synchrotron-based pair distribution function (PDF) analyses were applied to study water's interactions with the Brønsted acidic site and the surrounding framework in the SAPO-34 catalyst at temperatures up to 300 °C for NMR spectroscopy and 700 °C for PDF. 29 Si enrichment of the sample enabled detailed NMR spectroscopy investigations of the T-atom generating the Brønsted site. By NMR spectroscopy, we observed dehydration above 100 °C and a coalescence of Si peaks due to local framework adjustments. Towards 300 °C, the NMR spectroscopy data indicated highly mobile acidic protons. In situ total X-ray scattering measurements analyzed by PDF showed clear changes in the Al local environment in the 250-300 °C region, as the Al-O bond lengths showed a sudden change. This fell within the same temperature range as the increased Brønsted proton mobility. We suggest that the active site in this catalyst under industrial conditions comprises not only the Brønsted proton but also SiO 4 . To the best of our knowledge, this is the first work proposing a structural model of a SAPO catalyst by atomic PDF analysis. The combination of synchrotron PDF analysis with in situ NMR spectroscopy is promising in revealing the dynamic features of a working catalyst. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alkylation of Silicon(111) surfaces
NASA Astrophysics Data System (ADS)
Rivillon, S.; Chabal, Y. J.
2006-03-01
Methylation of chlorine-terminated silicon (111) (Si-Cl) is investigated by Infra Red Absorption Spectroscopy (IRAS). Starting from an atomically flat H-terminated Si(111), the surface is first chlorinated by a gas phase process, then methylated using a Grignard reagent. Methyl groups completely replace Cl, and are oriented normal to the surface. The surface remains atomically flat with no evidence of etching.
2001-11-01
electronic properties, i.e. oxygen coordination and cation valence at grain boundaries of the fluorite structured Gdo]2Ceo.gO 2_x ceramic membrane material...required to obtain a detailed understanding of the atomic scale phenomena in ceramics, as the polycrystalline nature of Gdo.2Ceo.802- ceramic membrane material
Yamaoka, Hitoshi; Schwier, Eike F.; Arita, Masashi; ...
2015-03-30
The electronic structure of Ce₃Pd₂₀X₆ (X = Si, Ge) has been studied using detailed density functional theory (DFT) calculations and high-resolution photoelectron spectroscopy (PES) measurements. The orbital decomposition of the electronic structure by DFT calculations indicates that Ce atoms at the (8c) site surrounded by 16 Pd atoms have a more localized nature and a tendency to be magnetic. Ce atoms in the (4a) site surrounded by 12 Pd and 6 X atoms, on the other, show only a negligible magnetic moment. In the photoemission valence-band spectra we observe a strong f⁰ (Ce⁴⁺) component with a small fraction of f¹more » (Ce³⁺) component. The spectral weight of f¹ component near the Fermi level Ce₃Pd₂₀Si₆ is stronger than that for Ce₃Pd₂₀Ge₆ at the 4d-4f resonance, suggesting stronger c-f hybridization in the former. This may hint to the origin of the large electronic specific coefficient of Ce₃Pd₂₀Si₆ compared to Ce₃Pd₂₀Ge₆.« less
Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M
2016-04-05
Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.
Loquet, Antoine; Tolchard, James; Berbon, Melanie; Martinez, Denis; Habenstein, Birgit
2017-09-17
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13 C/ 15 N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
Vu, Thi Kim Oanh; Lee, Kyoung Su; Lee, Sang Jun; Kim, Eun Kyu
2018-09-01
We studied defect states in In0.53Ga0.47As/InP heterojunctions with interface control by group V atoms during metalorganic chemical vapor (MOCVD) deposition. From deep level transient spectroscopy (DLTS) measurements, two defects with activation energies of 0.28 eV (E1) and 0.15 eV (E2) below the conduction band edge, were observed. The defect density of E1 for In0.53Ga0.47As/InP heterojunctions with an addition of As and P atoms was about 1.5 times higher than that of the heterojunction added P atom only. From the temperature dependence of current- voltage characteristics, the thermal activation energies of In0.53Ga0.47As/InP of heterojunctions were estimated to be 0.27 and 0.25 eV, respectively. It appeared that the reverse light current for In0.53Ga0.47As/InP heterojunction added P atom increased only by illumination of a 940 nm-LED light source. These results imply that only the P addition at the interface can enhance the quality of InGaAs/InP heterojunction.
Investigating ultraflexible freestanding graphene by scanning tunneling microscopy and spectroscopy
NASA Astrophysics Data System (ADS)
Breitwieser, R.; Hu, Yu-Cheng; Chao, Yen Cheng; Tzeng, Yi Ren; Liou, Sz-Chian; Lin, Keng Ching; Chen, Chih Wei; Pai, Woei Wu
2017-08-01
A strictly two-dimensional (2D) material such as freestanding graphene (FSG) is rarely investigated at the atomic scale by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). A basic difficulty in probing FSG by STM and STS is the mechanical instability when a highly compliant 2D atomic layer interacts with a proximal tip. Here we report a detailed method to conduct reliable STM and STS on FSG with atomic precision. We found that FSG is intrinsically rippled and exhibits a nonlinear strain-stress relation under applied normal forces; it shows a very soft region of bending strain and stiffer regions of in-plane tensile strain once the nanoscale ripples of FSG are eliminated. The elimination of the nanoripples can be controlled by tip-induced pulling or pushing force through the so-called closed-loop Z-V STS mode which can monitor the FSG deformation. A key factor for controllable STM and STS measurements is to select tunneling set points to place FSG in metastable configurations, as determined from stress-strain (i.e., Z-V) response. Atomic imaging and electronic states thus measured must be interpreted by considering the dynamical deformation of FSG as tunneling parameters, and therefore tip-FSG forces, are varied.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Hoyos, L. M.; Flores-Mijangos, J.; Ramírez-Martínez, F.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2018-04-01
Doppler-free optical double-resonance spectroscopy is used to study the 5S1/2 → 5P3/2 → 6Pj (j = 3/2,1/2) excitation sequence in room-temperature rubidium atoms. This involves a 5S1/2 → 5P3/2 electric dipole preparation step followed by the 5P3/2 → 6Pj electric quadrupole excitation. The electric dipole forbidden transitions occur at 911.0 nm (j = 3/2) and 917.5 nm (j = 1/2). Production of atoms in the 6Pj states is detected by observing their direct decay to the ground state through emission of blue photons (λ ≈ 420 nm). A detailed experimental and theoretical study of the dependence on the relative linear polarizations of excitation beams is made. It is shown that specific electric quadrupole selection rules over magnetic quantum numbers are directly related to the relative orientation of the linear polarization of the excitation beams.
Algan/Gan Hemt By Magnetron Sputtering System
NASA Astrophysics Data System (ADS)
Garcia Perez, Roman
In this thesis, the growth of the semiconductor materials AlGaN and GaN is achieved by magnetron sputtering for the fabrication of High Electron Mobility Transistors (HEMTs). The study of the deposited nitrides is conducted by spectroscopy, diffraction, and submicron scale microscope methods. The preparation of the materials is performed using different parameters in terms of power, pressure, temperature, gas, and time. Silicon (Si) and Sapphire (Al2O3) wafers are used as substrates. The chemical composition and surface topography of the samples are analyzed to calculate the materials atomic percentages and to observe the devices surface. The instruments used for the semiconductors characterization are X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscope (AFM). The project focused its attention on the reduction of impurities during the deposition, the controlled thicknesses of the thin-films, the atomic configuration of the alloy AlxGa1-xN, and the uniformity of the surfaces.
NASA Astrophysics Data System (ADS)
Kim, Gunn; Parq, Jae-Hyeon; Yu, Jaejun; Kwon, Young-Kyun; Kyung Hee University Collaboration; Seoul National University Collaboration
2011-03-01
Metal atoms on graphene, when ionized, can act as a point-charge impurity to probe a charge response of graphene with the Dirac cone band structure. To understand charge and spin polarization in graphene, we present scanning tunneling spectroscopy STS simulations based on density-functional theory calculations. We find that a Cs atom on graphene is fully ionized with a significant band-bending feature in the STS whereas the charge and magnetic states of Ba and La atoms on graphene appear to be complicated due to orbital hybridization and Coulomb interaction. By applying external electric field, we observe changes in charge donations and spin magnetic moments of the metal adsorbates on graphene. This work was supported by the National Research Foundation of Korea through the ARP (Grant No. R17-2008-033- 01000-0) (J.Y.) and the Basic Science Research Program through the NRF of Korea (Grant No. 2010-0007805) (G.K.).
Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian
2015-01-01
The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.
Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.
Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less
NASA Astrophysics Data System (ADS)
Marchiori, Cleber F. N.; Garcia-Basabe, Yunier; de A. Ribeiro, Fabio; Koehler, Marlus; Roman, Lucimara S.; Rocco, Maria Luiza M.
2017-01-01
We use X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), resonant Auger spectroscopy (RAS), Attenuation Total Reflection Infrared (ATR-IR) and Atomic Force Microscopy (AFM) to study the blend between the copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) and the fullerene derivative PC71BM submitted to different annealing temperatures. Those measurements indicate that there is an incidental anchoring of a fullerene derivative to the Si-bridging atoms of a copolymer induced by thermal annealing of the film. Insights about the physical properties of one possible PSiF-DBT/PC71BM anchored structure are obtained using Density Functional Theory calculations. Since the performance of organic photovoltaic based on polymer-fullerene blends depends on the chemical structure of the blend components, the anchoring effect might affect the photovoltaic properties of those devices.
Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J
2018-01-01
Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.
Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition
Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.; ...
2017-04-10
Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less
NASA Astrophysics Data System (ADS)
Purohit, Pablo; Fortes, Francisco J.; Laserna, J. Javier
2017-04-01
Laser-induced breakdown spectroscopy (LIBS) was employed for investigating the influence of particle size on the dissociation efficiency and the absolute production of photons per mass unit of airborne solid graphite spheres under single-particle regime. Particles of average diameter of 400 nm were probed and compared with 2 μm particles. Samples were first catapulted into aerosol form and then secluded in an optical trap set by a 532 nm laser. Trap stability was quantified before subjecting particles to LIBS analysis. Fine alignment of the different lines comprising the optical catapulting-optical trapping-laser-induced breakdown spectroscopy instrument and tuning of excitation parameters conditioning the LIBS signal such as fluence and acquisition delay are described in detail with the ultimate goal of acquiring clear spectroscopic data on masses as low as 75 fg. The atomization efficiency and the photon yield increase as the particle size becomes smaller. Time-resolved plasma imaging studies were conducted to elucidate the mechanisms leading to particle disintegration and excitation.
Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert
2008-02-19
Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.
Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin
2017-09-18
We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.
Indium diffusion through high-k dielectrics in high-k/InP stacks
NASA Astrophysics Data System (ADS)
Dong, H.; Cabrera, W.; Galatage, R. V.; Santosh KC, Brennan, B.; Qin, X.; McDonnell, S.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Wallace, R. M.
2013-08-01
Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.
Progress of reduction of graphene oxide by ascorbic acid
NASA Astrophysics Data System (ADS)
De Silva, K. Kanishka H.; Huang, Hsin-Hui; Yoshimura, Masamichi
2018-07-01
Graphene oxide (GO) and reduced graphene oxide (RGO) are in greater demand in many research fields. As a result, the synthesis of these materials on a large scale in a costeffective manner is more concerned for numerous applications. In the present work, GO was synthesized by oxidizing natural graphite and reduced by ascorbic acid (AA), which is a green reductant. The reduced products obtained at different time periods were in detail characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results showed that the oxidation of graphite has given highly oxidized GO with a 9.30 Å interlayer space and about 33% of oxygen atomic percentage. Until 50 min of the reduction, both GO and RGO coexist. The reduction rate is fast within the first 30 min. In addition, the suitability of natural graphite over synthetic graphite for the synthesis of GO is shown. The findings of this work pave the way to select GO and RGO for applications of interest in a cheap, green and efficient manner.
Zhao, Ran; Gao, Yuanhong; Guo, Zheng; Su, Yantao; Wang, Xinwei
2017-01-18
Ultrathin atomic-layer-deposited (ALD) vanadium oxide (VO x ) interlayer has recently been demonstrated for remarkably reducing the contact resistance in organic electronic devices (Adv. Funct. Mater. 2016, 26, 4456). Herein, we present an in situ photoelectron spectroscopy investigation (including X-ray and ultraviolet photoelectron spectroscopies) of ALD VO x grown on pentacene to understand the role of the ALD VO x interlayer for the improved contact resistance. The in situ photoelectron spectroscopy characterizations allow us to monitor the ALD growth process of VO x and trace the evolutions of the work function, pentacene HOMO level, and VO x defect states during the growth. The initial VO x growth is found to be partially delayed on pentacene in the first ∼20 ALD cycles. The underneath pentacene layer is largely intact after ALD. The ALD VO x is found to contain a high density of defect states starting from 0.67 eV below the Fermi level, and the energy level of these defect states is in excellent alignment with the HOMO level of pentacene, which therefore allows these VO x defect states to provide an efficient hole-injection pathway at the contact interface.
Kang, Jin; Liu, Huijuan; Zheng, Yu-Ming; Qu, Jiuhui; Chen, J Paul
2011-02-01
Extensive usage of tetracycline has resulted in its contamination in surface water and groundwater. The adsorption of tetracycline on zeolite beta was systematically investigated for the decontamination of the antibiotic polluted water in this study. Ninety percent of uptake by the zeolite beta occured in 0.25h, and the adsorption equilibrium was obtained within 3h, which was well described by an intraparticle diffusion model. The adsorption generally increased when pH was increased from 4.0 to 5.0, and then decreased significantly as the pH was further increased, which was caused by the pH-dependent speciation of tetracycline and surface charge of zeolite beta. Both Freundlich and Langmuir equations well described the adsorption isotherm. A thermodynamic analysis showed that the sorption process was spontaneous and endothermic. Aluminum atoms in the zeolite played a crucial role in the uptake; the adsorption increased with the increasing aluminum content in zeolite. The UV-Visible spectroscopy study showed that the spectra of tetracycline changed upon the interaction with zeolite beta, which could be ascribed to the formation of complexes of tetracycline and aluminum atoms in the zeolite surface. Nuclear magnetic resonance spectroscopy study further confirmed the participation of Al in the tetracycline adsorption. Fourier transform infrared spectroscopy studies showed that the amino functional groups in tetracycline were involved in the complexation with the zeolite surface. Copyright © 2010 Elsevier Inc. All rights reserved.
Local order study of YFe 2D x (0⩽ x⩽3.5) compounds by X-ray absorption and Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Paul-Boncour, V.; Wiesinger, G.; Reichl, Ch.; Latroche, M.; Percheron-Guégan, A.; Cortes, R.
2001-12-01
The local order in YFe 2D x deuterides has been characterized by EXAFS and 57Fe Mössbauer spectroscopy. For all the deuterides several Fe sites and a large distribution of Fe-Fe distances are observed. The Y-Fe and Y-Y distances are close to those calculated for a cubic C15 type structure, but with significant static disorder. These large distance distributions are related to the influence of hydrogen atoms which induce local distortions of the interstitial sites with a displacement of Y and Fe atoms. However, the bulk and mean local magnetic properties remain sensitive to the long range order structure of the deuterides.
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach.
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO(2) composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO(2) nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. This journal is © The Royal Society of Chemistry 2011
The quantum defect: Early history and recent developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.R.; Inokuti, M.
1997-03-01
The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term {open_quotes}quantum defect{close_quotes} does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schr{umlt o}dinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. We present the early history of the quantum-defect idea, and sketch its recent developments. {copyright}more » {ital 1997 American Association of Physics Teachers.}« less
A study of the UV and VUV degradation of FEP
NASA Technical Reports Server (NTRS)
George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1993-01-01
UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.
Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbwachs, J.A.
1983-09-01
This report summarizes the progress achieved over the past five years in the laser-induced fluorescence spectroscopy (LIFS) for improved chemical analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the firstmore » time, to the study of energy transfer in ions.« less
Laser-induced-fluorescence spectroscopy for improved chemical analysis. Progress report, 1978-1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbwachs, J.A.
1983-09-01
This report summarizes the progress achieved over the past five years in the laser-induced-fluorescence spectroscopy (LIFS) for improved chemical-analysis program. Our initial efforts yielded significantly lower detection limits for trace elemental analysis by the use of both cw and pulsed-laser excitations. New methods of LIFS were developed that were shown to overcome many of the traditional limitations to LIFS techniques. LIFS methods have been applied to yield fundamental scientific data that further the understanding of forces between atoms and other atoms and molecules. In recent work, two-photon ionization was combined with LIFS and applied, for the first time, to themore » study of energy transfer in ions.« less
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.
1993-10-01
X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.
NASA Astrophysics Data System (ADS)
Bjelkevig, Cameron; Mi, Zhou; Xiao, Jie; Dowben, P. A.; Wang, Lu; Mei, Wai-Ning; Kelber, Jeffry A.
2010-08-01
A significant BN-to-graphene charge donation is evident in the electronic structure of a graphene/h-BN(0001) heterojunction grown by chemical vapor deposition and atomic layer deposition directly on Ru(0001), consistent with density functional theory. This filling of the lowest unoccupied state near the Brillouin zone center has been characterized by combined photoemission/k vector resolved inverse photoemission spectroscopies, and Raman and scanning tunneling microscopy/spectroscopy. The unoccupied σ*(Γ1 +) band dispersion yields an effective mass of 0.05 me for graphene in the graphene/h-BN(0001) heterostructure, in spite of strong perturbations to the graphene conduction band edge placement.
Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro
2017-12-01
Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4 cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.
NASA Technical Reports Server (NTRS)
Ferrante, J.
1972-01-01
Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.
Correlation of reaction sites during the chlorine extraction by hydrogen atom from Cl /Si(100)-2×1
NASA Astrophysics Data System (ADS)
Hsieh, Ming-Feng; Chung, Jen-Yang; Lin, Deng-Sung; Tsay, Shiow-Fon
2007-07-01
The Cl abstraction by gas-phase H atoms from a Cl-terminated Si(100) surface was investigated by scanning tunneling microscopy (STM), high-resolution core level photoemission spectroscopy, and computer simulation. The core level measurements indicate that some additional reactions occur besides the removal of Cl. The STM images show that the Cl-extracted sites disperse randomly in the initial phase of the reaction, but form small clusters as more Cl is removed, indicating a correlation between Cl-extracted sites. These results suggest that the hot-atom process may occur during the atom-adatom collision.
Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra
NASA Technical Reports Server (NTRS)
Valenti, J. A.; Piskunov, N.
1996-01-01
We describe a new software package that may be used to determine stellar and atomic parameters by matching observed spectra with synthetic spectra generated from parameterized atmospheres. A nonlinear least squares algorithm is used to solve for any subset of allowed parameters, which include atomic data (log gf and van der Waals damping constants), model atmosphere specifications (T(sub eff, log g), elemental abundances, and radial, turbulent, and rotational velocities. LTE synthesis software handles discontiguous spectral intervals and complex atomic blends. As a demonstration, we fit 26 Fe I lines in the NSO Solar Atlas (Kurucz et al.), determining various solar and atomic parameters.
NASA Astrophysics Data System (ADS)
Itakura, Masaru; Watanabe, Natsuki; Nishida, Minoru; Daio, Takeshi; Matsumura, Syo
2013-05-01
We have investigated local element distributions in a Dy-doped Nd2Fe14B hot-deformed magnet by atomic-column resolution chemical mapping using an X-ray energy-dispersive spectrometer (XEDS) attached to an aberration-corrected scanning transmission electron microscope (Cs-corrected STEM). The positions of the Nd and Dy atomic columns were visualized in the XEDS maps. The substitution of Dy was limited to a surface layer 2-3 unit cells thick in the Nd2Fe14B grains, and the Dy atoms preferentially occupied the 4f-Nd sites of Nd2Fe14B. These results provide further insights into the principal mechanism governing the coercivity enhancement due to Dy doping.
Triangular lattice atomic layer of Sn(1 × 1) at graphene/SiC(0001) interface
NASA Astrophysics Data System (ADS)
Hayashi, Shingo; Visikovskiy, Anton; Kajiwara, Takashi; Iimori, Takushi; Shirasawa, Tetsuroh; Nakastuji, Kan; Miyamachi, Toshio; Nakashima, Shuhei; Yaji, Koichiro; Mase, Kazuhiko; Komori, Fumio; Tanaka, Satoru
2018-01-01
Sn atomic layers attract considerable interest owing to their spin-related physical properties caused by their strong spin-orbit interactions. We performed Sn intercalation into the graphene/SiC(0001) interface and found a new type of Sn atomic layer. Sn atoms occupy on-top sites of Si-terminated SiC(0001) with in-plane Sn-Sn bondings, resulting in a triangular lattice. Angle-resolved photoemission spectroscopy revealed characteristic dispersions at \\bar{\\text{K}} and \\bar{\\text{M}} points, which agreed well with density functional theory calculations. The Sn triangular lattice atomic layer at the interface showed no oxidation upon exposure to air, which is useful for characterization and device fabrication ex situ.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole
Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.
We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.
Bespamyatnov, I O; Rowan, W L; Liao, K T; Granetz, R S
2010-10-01
A novel integrated charge exchange recombination spectroscopy (CXRS)/beam emission spectroscopy (BES) system is proposed for C-Mod, in which both measurements are taken from a shared viewing geometry. The supplementary BES system serves to quantify local beam densities and supplants the common calculation of beam attenuation. The new system employs two optical viewing arrays, 20 poloidal and 22 toroidal channels. A dichroic filter splits the light between two spectrometers operating at different wavelengths for impurity ion and beam neutrals emission. In this arrangement, the impurity density is inferred from the electron density, measured BES and CXRS spectral radiances, and atomic emission rates.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...
2017-06-19
Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.
Optical spectroscopy of atomic and molecular positronium
NASA Astrophysics Data System (ADS)
Mills, A. P., Jr.
2014-04-01
Positronium (Ps) is a purely leptonic hydrogen-like atom formed from an electron and a positron. Since the interactions of electrons and positrons are thought to be almost entirely electromagnetic, precision measurements of the Ps energy levels should constitute a good test of QED theory. The ultimate precision is limited by the rapid annihilation of the various Ps states and the number of Ps atoms available. Much progress in making better Ps sources has been made since the 1950's when Ps was discovered and its principle characteristics measured in by the pioneering experiments of Martin Deutsch. The most notable milestones were the first reproducible schemes for making slow positrons and Ps in vacuum by Canter and his co-workers in the 1970's and the discovery of the enabling technology for accumulating slow positrons by Surko and co-workers in 1989. These techniques have made it possible to generate high density bursts of slow Ps atoms that has led to the production of di-positronium molecules, Ps2, and the observation of the Lyman-alpha-like transition in Ps2 at a wavelength of 251 nm predicted by Varga and co-workers. The possibilities for 1S-2S spectroscopy of triplet and singlet Ps with precisions relevant to the proton charge radius problem and efficient production of slow Rydberg Ps atoms useful for measuring Ps free fall are discussed.
NASA Astrophysics Data System (ADS)
Stanciu, A. E.; Greculeasa, S. G.; Bartha, C.; Schinteie, G.; Palade, P.; Kuncser, A.; Leca, A.; Filoti, G.; Birsan, A.; Crisan, O.; Kuncser, V.
2018-04-01
Local atomic configuration, phase composition and atomic intermixing in Fe-rich Fe1-xCrx and Fe1-xMox ribbons (x = 0.05, 0.10, 0.15), of potential interest for high-temperature applications and nuclear devices, are investigated in this study in relation to specific processing and annealing routes. The Fe-based thin ribbons have been prepared by induction melting, followed by melt spinning and further annealed in He at temperatures up to 1250 °C. The complex structural, compositional and atomic configuration characterisation has been performed by means of X-ray diffraction (XRD), transmission Mössbauer spectroscopy and differential scanning calorimetry (TG-DSC). The XRD analysis indicates the formation of the desired solid solutions with body-centred cubic (bcc) structure in the as-quenched state. The Mössbauer spectroscopy results have been analysed in terms of the two-shell model. The distribution of Cr/Mo atoms in the first two coordination spheres is not homogeneous, especially after annealing, as supported by the short-range order parameters. In addition, high-temperature annealing treatments give rise to oxidation of Fe (to haematite, maghemite and magnetite) at the surface of the ribbons. Fe1-xCrx alloys are structurally more stable than the Mo counterpart under annealing at 700 °C. Annealing at 1250 °C in He enhances drastically the Cr clustering around Fe nuclei.
Zhang, Zeng-Guang; Xu, Hong-Guang; Zhao, Yuchao; Zheng, Weijun
2010-10-21
Small titanium-aluminum oxide clusters, TiAlO(y) (-) (y=1-3) and TiAl(2)O(y) (-) (y=2-3), were studied by using anion photoelectron spectroscopy. The adiabatic detachment energies of TiAlO(y) (-) (y=1-3) were estimated to be 1.11±0.05, 1.70±0.08, and 2.47±0.08eV based on their photoelectron spectra; those of TiAl(2)O(2) (-) and TiAl(2)O(3) (-) were estimated to be 1.17±0.08 and 2.2±0.1eV, respectively. The structures of these clusters were determined by comparison of density functional calculations with the experimental results. The structure of TiAlO(-) is nearly linear with the O atom in the middle. That of TiAlO(2) (-) is a kite-shaped structure. TiAlO(3) (-) has a kite-shaped TiAlO(2) unit with the third O atom attaching to the Ti atom. TiAl(2)O(2) (-) has two nearly degenerate Al-O-Ti-O-Al chain structures that can be considered as cis and trans forms. TiAl(2)O(3) (-) has two low-lying isomers, kite structure and book structure. The structures of these clusters indicate that the Ti atom tends to bind to more O atoms.
NASA Astrophysics Data System (ADS)
Kumi Barimah, E.; Hömmerich, U.; Brown, E.; Yang, C. S.-C.; Trivedi, S. B.; Jin, F.; Wijewarnasuriya, P. S.; Samuels, A. C.; Snyder, A. P.
2013-05-01
Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique to detect the elemental composition of solids, liquids, and gases in real time. For example, recent advances in UV-VIS LIBS have shown great promise for applications in chemical, biological, and explosive sensing. The extension of conventional UVVIS LIBS to the near-IR (NIR), mid-IR (MIR) and long wave infrared (LWIR) regions (~1-12 μm) offers the potential to provide additional information due to IR atomic and molecular signatures. In this work, a Q-switched Nd: YAG laser operating at 1064 nm was employed as the excitation source and focused onto several chlorate and nitrate compounds including KClO3, NaClO3, KNO3, and NaNO3 to produce intense plasma at the target surface. IR LIBS studies on background air, KCl , and NaCl were also included for comparison. All potassium and sodium containing samples revealed narrow-band, atomic-like emissions assigned to transitions of neutral alkali-metal atoms in accordance with the NIST atomic spectra database. In addition, first evidence of broad-band molecular LIBS signatures from chlorate and nitrate compounds were observed at ~10 μm and ~7.3 μm, respectively. The observed molecular emissions showed strong correlation with FTIR absorption spectra of the investigated materials.
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi
2018-06-01
The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
Miller, C.M.; Nogar, N.S.
1982-09-02
Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.
Methods for analysis of selected metals in water by atomic absorption
Fishman, Marvin J.; Downs, Sanford C.
1966-01-01
This manual describes atomic-absorption-spectroscopy methods for determining calcium, copper, lithium, magnesium, manganese, potassium, sodium, strontium and zinc in atmospheric precipitation, fresh waters, and brines. The procedures are intended to be used by water quality laboratories of the Water Resources Division of the U.S. Geological Survey. Detailed procedures, calculations, and methods for the preparation of reagents are given for each element along with data on accuracy, precision, and sensitivity. Other topics discussed briefly are the principle of atomic absorption, instrumentation used, and special analytical techniques.
Raman fingerprints of atomically precise graphene nanoribbons
Verzhbitskiy, Ivan A.; Corato, Marzio De; Ruini, Alice; ...
2016-02-23
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. As a result, the low-energy spectral region below 1000 cm –1 is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp 2 carbon nanostructures.
Biswas, Soma; Leitao, Samuel; Theillaud, Quentin; Erickson, Blake W; Fantner, Georg E
2018-06-20
Atomic force microscope (AFM) based single molecule force spectroscopy (SMFS) is a valuable tool in biophysics to investigate the ligand-receptor interactions, cell adhesion and cell mechanics. However, the force spectroscopy data analysis needs to be done carefully to extract the required quantitative parameters correctly. Especially the large number of molecules, commonly involved in complex networks formation; leads to very complicated force spectroscopy curves. One therefore, generally characterizes the total dissipated energy over a whole pulling cycle, as it is difficult to decompose the complex force curves into individual single molecule events. However, calculating the energy dissipation directly from the transformed force spectroscopy curves can lead to a significant over-estimation of the dissipated energy during a pulling experiment. The over-estimation of dissipated energy arises from the finite stiffness of the cantilever used for AFM based SMFS. Although this error can be significant, it is generally not compensated for. This can lead to significant misinterpretation of the energy dissipation (up to the order of 30%). In this paper, we show how in complex SMFS the excess dissipated energy caused by the stiffness of the cantilever can be identified and corrected using a high throughput algorithm. This algorithm is then applied to experimental results from molecular networks and cell-adhesion measurements to quantify the improvement in the estimation of the total energy dissipation.
Dokukin, M; Sokolov, I
2015-07-28
Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.
Vacuum-ultraviolet lasers and spectroscopy
NASA Astrophysics Data System (ADS)
Hollenstein, U.
2012-01-01
Single-photon ionisation of most atoms and molecules requires short-wavelength radiation, typically in the vacuum-ultraviolet (VUV, λ < 200 nm) or extreme ultraviolet (XUV, λ < 105 nm) region of the electromagnetic spectrum. The first VUV and XUV radiation sources used to study molecular photoabsorption and photoionisation spectra were light sources emitting a broad continuous spectrum, such as high pressure lamps or synchrotrons. Monochromatic VUV and XUV radiation was obtained using diffraction gratings in evacuated monochromators, which resulted in a resolving power ν/Δv of at best 106 (i. e. 0.1 cm-1 at 100 000 cm-1), but more typically in the range 104-105 . The invention of the laser and the development of nonlinear optical frequency-upconversion techniques enabled the development of table-top narrow-bandwidth, coherent VUV and XUV laser sources with which VUV photoabsorption, photoionisation and photoelectron spectra of molecules can be recorded at much higher resolution, the best sources having bandwidths better than 50 MHz. Such laser sources are ideally suited to study the structure and dynamics of electronically excited states of atoms and molecules and molecular photoionisation using photoabsorption, photoionisation and photoelectron spectroscopy. This chapter presents the general principles that are exploited to generate tunable narrow-band laser radiation below 200 nm and describes spectroscopic methods such as photoabsorption spectroscopy, photoionisation spectroscopy and threshold photoelectron spectroscopy that relay on the broad tunability and narrow-bandwidth of VUV radiation sources.
Dokukin, M.; Sokolov, I.
2015-01-01
Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10–70 nm) and temporal resolution (to 0.7s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs. PMID:26218346
Direct Absorption Spectroscopy with Electro-Optic Frequency Combs
NASA Astrophysics Data System (ADS)
Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.
2017-06-01
The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)
In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
Braymen, Steven D.
1996-06-11
A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.
Fundamental Studies and Isolation Strategies for Metal Compound Nanoclusters
2009-02-28
probe nanocluster structure, bonding and stability, metal oxide, carbide and silicide clusters with up to 50 atoms were investigated with mass...transition metal compounds (carbides, oxides, silicides ) that are expected to have high stability, an essential property for their isolation...Metal carbide, oxide and silicide nanoclusters are studied in the size range from a few up to about 300 atoms. New infrared laser spectroscopy
Formation of Low-Energy Antihydrogen
NASA Astrophysics Data System (ADS)
Holzscheiter, Michael H.
1999-02-01
Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invarianz. We describe our plans to trap antiprotons and positrons in a combined Penning trap and to form a significant number of cold antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen.
Optogalvanic spectroscopy of lanthanum hyperfine structure
NASA Astrophysics Data System (ADS)
Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven
2017-04-01
Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.
Optimizing soft X-ray NEXAFS spectroscopy in the laboratory
NASA Astrophysics Data System (ADS)
Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.
2017-05-01
Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.
Tungsten devices in analytical atomic spectrometry
NASA Astrophysics Data System (ADS)
Hou, Xiandeng; Jones, Bradley T.
2002-04-01
Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yuan; Xing, Yaya; Ma, Guanxiong
2015-07-15
The (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} (x = 0.06, 0.08, 0.15, and 0.20) films prepared by RF-magnetron sputtering were investigated by the combination of x-ray absorption spectroscopy (XAS) at Fe, Cu, and O K-edge. Although the Fe and O K-edge XAS spectra show that the Fe atoms substitute for the In sites of In{sub 2}O{sub 3} lattice for all the films, the Cu K-edge XAS spectra reveal that the codoped Cu atoms are separated to form the Cu metal clusters. After being annealed in air, the Fe atoms are still substitutionally incorporated into the In{sub 2}O{sub 3} lattice, while the Cumore » atoms form the CuO secondary phases. With the increase of Fe concentration, the bond length R{sub Fe-O} shortens and the Debye–Waller factor σ{sup 2}{sub Fe-O} increases in the first coordination shell of Fe, which are attributed to the relaxation of oxygen environment around the substitutional Fe ions. The forming of Cu relating secondary phases in the films is due to high ionization energy of Cu atoms, leading that the Cu atoms are energetically much harder to be oxidized to substitute for the In sites of In{sub 2}O{sub 3} lattice than Fe atoms. These results provide new experimental guidance in the preparation of the codoped In{sub 2}O{sub 3} based dilute magnetic oxides.« less
Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick
2006-01-01
The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...
NASA Technical Reports Server (NTRS)
Eckert, Juergen; Varma, Ravi; Diebolt, Lisa; Reid, Margaret
1998-01-01
The objectives of this presentation are: identify atomic-level signatures of electrochemical activity of the active material on the Ni positive plates of Ni-H2 batteries, relate finding to cycling conditions and histories, and develop INS spectroscopy as a non-destructive testing technique for the evaluation of Ni-positive plates of Ni-H2 batteries.
The theory of spin noise spectroscopy: a review
Sinitsyn, Nikolai A.; Pershin, Yuriy V.
2016-09-12
Direct measurements of spin fluctuations are becoming the mainstream approach for studies of complex condensed matter, molecular, nuclear, and atomic systems. Our review covers recent progress in the field of optical spin noise spectroscopy (SNS) with an additional goal to establish an introduction into its theoretical foundations. Finally we used various theoretical techniques recently to interpret results of SNS measurements are explained alongside examples of their applications.
Microfluidics, Chromatography, and Atomic-Force Microscopy
NASA Technical Reports Server (NTRS)
Anderson, Mark
2008-01-01
A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.
NASA Astrophysics Data System (ADS)
Stöhr, Joachim
2011-03-01
My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.
Muñoz-García, Juan C; Inacio Dos Reis, Rosana; Taylor, Richard J; Henry, Alistair J; Watts, Anthony
2018-05-18
Saturation transfer difference (STD) NMR spectroscopy is one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. This is due to its robustness and the fact that it is focused on the signals of the ligand, without any need for NMR information on the macromolecular target. This technique is most commonly applied to systems involving different types of ligands (e.g., small organic molecules, carbohydrates or lipids) and a protein as the target, in which the latter is selectively saturated. However, only a few examples have been reported where membrane mimetics are the macromolecular binding partners. Here, we have employed STD NMR spectroscopy to investigate the interactions of the neurotransmitter dopamine with mimetics of lipid bilayers, such as nanodiscs, by saturation of the latter. In particular, the interactions between dopamine and model lipid nanodiscs formed either from charged or zwitterionic lipids have been resolved at the atomic level. The results, in agreement with previous isothermal titration calorimetry studies, show that dopamine preferentially binds to negatively charged model membranes, but also provide detailed atomic insights into the mode of interaction of dopamine with membrane mimetics. Our findings provide relevant structural information for the design of lipid-based drug carriers of dopamine and its structural analogues and are of general applicability to other systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Komolov, A S; Akhremtchik, S N; Lazneva, E F
2011-08-15
The paper reports the results on the interface formation of 5-10 nm thick conjugated layers of Cu-phthalocyanine (CuPc) with a number of solid surfaces: polycrystalline Au, (SiO(2))n-Si, ZnO(0 0 0 1), Si(1 0 0), Ge(1 1 1), CdS(0 0 0 1) and GaAs(1 0 0). The results were obtained using Auger electron spectroscopy (AES) and low-energy target current electron spectroscopy (TCS). The organic overlayers were thermally deposited in situ in UHV onto substrate surfaces. The island-like organic deposits were excluded from the analysis so that only uniform organic deposits were considered. In the cases of polycrystalline Au, Si(1 0 0) and Ge(1 1 1) substrates the AES peaks of the substrate material attenuated down to the zero noise level upon the increase of the CuPc film thickness of 8-10 nm. The peaks corresponding to oxygen atoms in the case of SiO(2) substrate, and to atoms from the ZnO, GaAs and CdS substrates were clearly registered in the AES spectra of the 8-10 nm thick CuPc deposits. The relative concentration of the substrate atomic components diffused into the film was different from their relative concentration at the pure substrate surface. The concentration of the substrate dopant atoms in the CuPc film was estimated as one atom per one CuPc molecule. Using the target current electron spectroscopy, it was shown that the substrate atoms admixed in the CuPc film account for the appearance of a new peak in the density of unoccupied electronic states. Formation of intermediate TCS spectra until the CuPc deposit reaches 2-3 nm was observed in the cases of GaAs(1 0 0), ZnO(0 0 0 1), Ge(1 1 1) surfaces. The intermediate spectra show a less pronounced peak structure different from the one typical for the CuPc films. It was suggested that the intermediate layer was formed by the CuPc molecules fully or partially decomposed due to the interaction with the relatively reactive semiconductor surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Leger, Lubert J.; Visentine, James T.; Hunton, Don E.; Cross, Jon B.; Hakes, Charles L.
1995-01-01
The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen reactivity data and was conducted during Space Transportation System Mission 46 (STS-46), July 31 to August 7, 1992. In this paper, we present an overview of EOIM-3 and the results of the Lyndon B. Johnson Space Center (JSC) materials reactivity and mass spectrometer/carousel experiments. Mass spectrometer calibration methods are discussed briefly, as a prelude to a detailed discussion of the mass spectrometric results produced during STS-46. Mass spectrometric measurements of ambient O-atom flux and fluence are in good agreement with the values calculated using the MSIS-86 model of the thermosphere as well as estimates based on the extent of O-atom reaction with Kapton polyimide. Mass spectrometric measurements of gaseous products formed by O-atom reaction with C(13) labeled Kapton revealed CO, CO2, H2O, NO, and NO2. Finally, by operating the mass spectrometer so as to detect naturally occurring ionospheric species, we characterized the ambient ionosphere at various times during EOIM-3 and detected the gaseous reaction products formed when ambient ions interacted with the C(13) Kapton carousel sector. By direct comparison of the results of on-orbit O-atom exposures with those conducted in ground-based laboratory systems, which provide known O-atom fluences and translational energies, we have demonstrated the strong translational energy dependence of O-atom reactions with a variety of polymers. A 'line-of-centers' reactive scattering model was shown to provide a reasonably accurate description of the translational energy dependence of polymer reactions with O atoms at high atom kinetic energies while a Beckerle-Ceyer model provided an accurate description of O-atom reactivity over a three order-of-magnitude range in translational energy and a four order-of-magnitude range in reaction efficiency. Postflight studies of the polymer samples by x-ray photoelectron spectroscopy and infrared spectroscopy demonstrate that O-atom attack is confined to the near-surface region of the sample, i.e. within 50 to 100 A of the surface.
NASA Astrophysics Data System (ADS)
Foltynowicz, Aleksandra; Picqué, Nathalie; Ye, Jun
2018-05-01
Frequency combs are becoming enabling tools for many applications in science and technology, beyond the original purpose of frequency metrology of simple atoms. The precisely evenly spaced narrow lines of a laser frequency comb inspire intriguing approaches to molecular spectroscopy, designed and implemented by a growing community of scientists. Frequency-comb spectroscopy advances the frontiers of molecular physics across the entire electro-magnetic spectrum. Used as frequency rulers, frequency combs enable absolute frequency measurements and precise line shape studies of molecular transitions, for e.g. tests of fundamental physics and improved determination of fundamental constants. As light sources interrogating the molecular samples, they dramatically improve the resolution, precision, sensitivity and acquisition time of broad spectral-bandwidth spectroscopy and open up new opportunities and applications at the leading edge of molecular spectroscopy and sensing.
NASA Astrophysics Data System (ADS)
Davis, Barry M.; Gervais, Benoit; McCaffrey, John G.
2018-03-01
A detailed characterisation of the luminescence recorded for the 6p 1P1-6s 1S0 transition of atomic barium isolated in annealed solid xenon has been undertaken using two-dimensional excitation-emission (2D-EE) spectroscopy. In the excitation spectra extracted from the 2D-EE scans, two dominant thermally stable sites were identified, consisting of a classic, three-fold split Jahn-Teller band, labeled the blue site, and an unusual asymmetric 2 + 1 split band, the violet site. A much weaker band has also been identified, whose emission is strongly overlapped by the violet site. The temperature dependence of the luminescence for these sites was monitored revealing that the blue site has a non-radiative channel competing effectively with the fluorescence even at 9.8 K. By contrast, the fluorescence decay time of the violet site was recorded to be 4.3 ns and independent of temperature up to 24 K. The nature of the dominant thermally stable trapping sites was investigated theoretically with Diatomics-in-Molecule (DIM) molecular dynamics simulations. The DIM model was parameterized with ab initio multi-reference configuration interaction calculations for the lowest energy excited states of the BaṡXe pair. The simulated absorption spectra are compared with the experimental results obtained from site-resolved excitation spectroscopy. The simulations allow us to assign the experimental blue feature spectrum to a tetra-vacancy trapping site in the bulk xenon fcc crystal—a site often observed when trapping other metal atoms in rare gas matrices. By contrast, the violet site is assigned to a specific 5-atom vacancy trapping site located at a grain boundary.
NASA Astrophysics Data System (ADS)
Haseman, Micah; Saadatkia, P.; Winarski, D. J.; Selim, F. A.; Leedy, K. D.; Tetlak, S.; Look, D. C.; Anwand, W.; Wagner, A.
2016-12-01
Aluminum-doped zinc oxide (ZnO:Al) thin films were synthesized by atomic layer deposition on silicon, quartz and sapphire substrates and characterized by x-ray diffraction (XRD), high-resolution scanning electron microscopy, optical spectroscopy, conductivity mapping, Hall effect measurements and positron annihilation spectroscopy. XRD showed that the as-grown films are of single-phase ZnO wurtzite structure and do not contain any secondary or impurity phases. The type of substrate was found to affect the orientation and degree of crystallinity of the films but had no effect on the defect structure or the transport properties of the films. High conductivity of 10-3 Ω cm, electron mobility of 20 cm2/Vs and carrier density of 1020 cm-3 were measured in most films. Thermal treatments in various atmospheres induced a large effect on the thickness, structure and electrical properties of the films. Annealing in a Zn and nitrogen environment at 400°C for 1 h led to a 16% increase in the thickness of the film; this indicates that Zn extracts oxygen atoms from the matrix and forms new layers of ZnO. On the other hand, annealing in a hydrogen atmosphere led to the emergence of an Al2O3 peak in the XRD pattern, which implies that hydrogen and Al atoms compete to occupy Zn sites in the ZnO lattice. Only ambient air annealing had an effect on film defect density and electrical properties, generating reductions in conductivity and electron mobility. Depth-resolved measurements of positron annihilation spectroscopy revealed short positron diffusion lengths and high concentrations of defects in all as-grown films. However, these defects did not diminish the electrical conductivity in the films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected duringmore » Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12--1.5)x10{sup 14}cm{sup -3} for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16--1.2)x10{sup 15}cm{sup -3} for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less
NASA Astrophysics Data System (ADS)
Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala
2015-03-01
Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.
Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.
Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan
2018-05-10
Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.
Mavadat, Maryam; Ghasemzadeh-Barvarz, Massoud; Turgeon, Stéphane; Duchesne, Carl; Laroche, Gaétan
2013-12-23
We investigated the effect of various plasma parameters (relative density of atomic N and H, plasma temperature, and vibrational temperature) and process conditions (pressure and H2/(N2 + H2) ratio) on the chemical composition of modified poly(tetrafluoroethylene) (PTFE). The plasma parameters were measured by means of near-infrared (NIR) and UV-visible emission spectroscopy with and without actinometry. The process conditions of the N2-H2 microwave discharges were set at various pressures ranging from 100 to 2000 mTorr and H2/(N2+H2) gas mixture ratios between 0 and 0.4. The surface chemical composition of the modified polymers was determined by X-ray photoelectron spectroscopy (XPS). A mathematical model was constructed using the partial least-squares regression algorithm to correlate the plasma information (process condition and plasma parameters as determined by emission spectroscopy) with the modified surface characteristics. To construct the model, a set of data input variables containing process conditions and plasma parameters were generated, as well as a response matrix containing the surface composition of the polymer. This model was used to predict the composition of PTFE surfaces subjected to N2-H2 plasma treatment. Contrary to what is generally accepted in the literature, the present data demonstrate that hydrogen is not directly involved in the defluorination of the surface but rather produces atomic nitrogen and/or NH radicals that are shown to be at the origin of fluorine atom removal from the polymer surface. The results show that process conditions alone do not suffice in predicting the surface chemical composition and that the plasma characteristics, which cannot be easily correlated with these conditions, should be considered. Process optimization and control would benefit from plasma diagnostics, particularly infrared emission spectroscopy.
Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.
Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo
2017-01-11
Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.
Toward Single Atom Chains with Exfoliated Tellurium.
Churchill, Hugh O H; Salamo, Gregory J; Yu, Shui-Qing; Hironaka, Takayuki; Hu, Xian; Stacy, Jeb; Shih, Ishiang
2017-08-10
We demonstrate that the atom chain structure of Te allows it to be exfoliated as ultra-thin flakes and nanowires. Atomic force microscopy of exfoliated Te shows that thicknesses of 1-2 nm and widths below 100 nm can be exfoliated with this method. The Raman modes of exfoliated Te match those of bulk Te, with a slight shift (4 cm -1 ) due to a hardening of the A 1 and E modes. Polarized Raman spectroscopy is used to determine the crystal orientation of exfoliated Te flakes. These experiments establish exfoliation as a route to achieve nanoscale trigonal Te while also demonstrating the potential for fabrication of single atom chains of Te.
NASA Astrophysics Data System (ADS)
Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.
2011-08-01
We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.
Unimolecular Logic Gate with Classical Input by Single Gold Atoms.
Skidin, Dmitry; Faizy, Omid; Krüger, Justus; Eisenhut, Frank; Jancarik, Andrej; Nguyen, Khanh-Hung; Cuniberti, Gianaurelio; Gourdon, Andre; Moresco, Francesca; Joachim, Christian
2018-02-27
By a combination of solution and on-surface chemistry, we synthesized an asymmetric starphene molecule with two long anthracenyl input branches and a short naphthyl output branch on the Au(111) surface. Starting from this molecule, we could demonstrate the working principle of a single molecule NAND logic gate by selectively contacting single gold atoms by atomic manipulation to the longer branches of the molecule. The logical input "1" ("0") is defined by the interaction (noninteraction) of a gold atom with one of the input branches. The output is measured by scanning tunneling spectroscopy following the shift in energy of the electronic tunneling resonances at the end of the short branch of the molecule.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
X-ray photoelectron spectroscopy study of excimer laser treated alumina films
NASA Astrophysics Data System (ADS)
Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.
1998-01-01
Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less
Probing New Long-Range Interactions by Isotope Shift Spectroscopy.
Berengut, Julian C; Budker, Dmitry; Delaunay, Cédric; Flambaum, Victor V; Frugiuele, Claudia; Fuchs, Elina; Grojean, Christophe; Harnik, Roni; Ozeri, Roee; Perez, Gilad; Soreq, Yotam
2018-03-02
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca^{+} data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
NASA Astrophysics Data System (ADS)
Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.
2014-10-01
Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.
Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L
2008-10-01
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.
The determination of vanadium in brines by atomic absorption spectroscopy
Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.
1971-01-01
A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric; ...
2018-02-26
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less
A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods
Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter
2017-01-01
Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850
NASA Astrophysics Data System (ADS)
Marsman, A.; Hessels, E. A.; Horbatsch, M.
2014-04-01
Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23S-to-23P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector, the intensity and size of laser beams, and the properties of the atomic beam. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23P fine structure.
The temperature dependence of atomic incorporation characteristics in growing GaInNAs films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jingling; Gao, Fangliang; Wen, Lei
We have systematically studied the temperature dependence of incorporation characteristics of nitrogen (N) and indium (In) in growing GaInNAs films. With the implementation of Monte-Carlo simulation, the low N adsorption energy (−0.10 eV) is demonstrated. To understand the atomic incorporation mechanism, temperature dependence of interactions between Group-III and V elements are subsequently discussed. We find that the In incorporation behaviors rather than that of N are more sensitive to the T{sub g}, which can be experimentally verified by exploring the compositional modulation and structural changes of the GaInNAs films by means of high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope,more » and secondary ion mass spectroscopy.« less
Anal, Jasha Momo H.
2014-01-01
Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.
Dynamic of cold-atom tips in anharmonic potentials
Menold, Tobias; Federsel, Peter; Rogulj, Carola; Hölscher, Hendrik; Fortágh, József
2016-01-01
Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion. Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics. Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control. PMID:28144505
Vilmart, G; Dorval, N; Orain, M; Lambert, D; Devillers, R; Fabignon, Y; Attal-Tretout, B; Bresson, A
2018-05-10
Planar laser-induced fluorescence on atomic iron is investigated in this paper, and a measurement strategy is proposed to monitor the fluorescence of iron atoms with good sensitivity. A model is proposed to fit the experimental fluorescence spectra, and good agreement is found between simulated and experimental spectra. Emission and laser-induced fluorescence measurements are performed in the flames of ammonium perchlorate composite propellants containing iron-based catalysts. A fluorescence signal from iron atoms after excitation at 248 nm is observed for the first time in propellant flames. Images of the spatial distribution of iron atoms are recorded in the flame in which turbulent structures are generated. Iron fluorescence is detected up to 1.0 MPa, which opens the way to application in propellant combustion.
Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy
2009-05-01
have been studied analogously by seeding thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic...effects of self-absorption. Additionally, candidate thermometric species must produce several strong emission lines in the spectrum that originate from...different upper energy levels in order to allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric
Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.
Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J
2012-12-03
We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.
Frequency modulation detection atomic force microscopy in the liquid environment
NASA Astrophysics Data System (ADS)
Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.
True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.
NASA Astrophysics Data System (ADS)
Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.
2015-01-01
In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikukawa, Daisuke; Hori, Masaru; Honma, Koichiro
2006-11-15
Microwave excited plasma source operating at a low pressure of 1.5 Pa was newly developed. This plasma source was successfully applied to the formation of hydrogenated microcrystalline silicon films in a glass substrate with a mixture gas of silane (SiH{sub 4}), hydrogen (H{sub 2}), and xenon (Xe). It was found that the crystallinity of films was dramatically improved with decreasing pressure. The crystalline fraction was evaluated to be 82% at a substrate temperature of 400 deg. C, a mixture gas of SiH{sub 4}/H{sub 2}/Xe: 5/200/30 SCCM, and a total pressure of 1.5 Pa by Raman spectroscopy. The absolute density ofmore » hydrogen atoms and the behavior of higher radicals and molecules in the mixture gas were evaluated using vacuum ultraviolet absorption spectroscopy and quadrupole mass spectrometer, respectively. H atom densities were of the order of 10{sup 11} cm{sup -3}. The fraction of H atom density increased, while higher radicals and molecules decreased with decrease in the total pressure. The increase in H atom density and decrease in higher radicals and molecules improved the crystallinity of films in low pressures below 10 Pa.« less
Lu, Ping; Moya, Jaime M.; Yuan, Renliang; ...
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ping; Moya, Jaime M.; Yuan, Renliang
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maximamore » (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K+L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. In conclusion, with increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping.« less
Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min
2018-03-01
The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.
Mechanism for Ring-Opening of Aromatic Polymers by Remote Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Gonzalez, Eleazar; Barankin, Michael; Guschl, Peter; Hicks, Robert
2009-10-01
A low-temperature, atmospheric pressure oxygen and helium plasma was used to treat the surfaces of polyetheretherketone, polyphenylsulfone, polyethersulfone, and polysulfone. These aromatic polymers were exposed to the afterglow of the plasma, which contained oxygen atoms, and to a lesser extent metastable oxygen (^1δg O2) and ozone. After less than 2.5 seconds treatment, the polymers were converted from a hydrophobic state with a water contact angle of 85±5 to a hydrophilic state with a water contact angle of 13±5 . It was found that plasma activation increased the bond strength to adhesives by as much as 4 times. X-ray photoelectron spectroscopy revealed that between 7% and 27% of the aromatic carbon atoms on the polymer surfaces was oxidized and converted into aldehyde and carboxylic acid groups. Analysis of polyethersulfone by internal reflection infrared spectroscopy showed that a fraction of the aromatic carbon atoms were transformed into C=C double bonds, ketones, and carboxylic acids after plasma exposure. It was concluded that the oxygen atoms generated by the atmospheric pressure plasma insert into the double bonds on the aromatic rings, forming a 3-member epoxy ring, which subsequently undergoes ring opening and oxidation to yield an aldehyde and a carboxylic acid group.
Fullerene-like (IF) Nb(x)Mo(1-x)S2 nanoparticles.
Deepak, Francis Leonard; Cohen, Hagai; Cohen, Sidney; Feldman, Yishay; Popovitz-Biro, Ronit; Azulay, Doron; Millo, Oded; Tenne, Reshef
2007-10-17
IF-Mo1-xNbxS2 nanoparticles have been synthesized by a vapor-phase reaction involving the respective metal halides with H2S. The IF-Mo1-xNbxS2 nanoparticles, containing up to 25% Nb, were characterized by a variety of experimental techniques. Analysis of the powder X-ray powder diffraction, X-ray photoelectron spectroscopy, and different electron microscopy techniques shows that the majority of the Nb atoms are organized as nanosheets of NbS2 within the MoS2 host lattice. Most of the remaining Nb atoms (3%) are interspersed individually and randomly in the MoS2 host lattice. Very few Nb atoms, if any, are intercalated between the MoS2 layers. A sub-nanometer film of niobium oxide seems to encoat the majority of the nanoparticles. X-ray photoelectron spectroscopy in the chemically resolved electrical measurement mode (CREM) and scanning probe microscopy measurements of individual nanoparticles show that the mixed IF nanoparticles are metallic independent of the substitution pattern of the Nb atoms in the lattice of MoS2 (whereas unsubstituted IF-MoS2 nanoparticles are semiconducting). Furthermore the IF-Mo1-xNbxS2 nanoparticles are found to exhibit interesting single electron tunneling effects at low temperatures.
NASA Astrophysics Data System (ADS)
Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.
2010-06-01
The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.
Stereo-selective binding of chlorobenzene on Si(111)-7×7
NASA Astrophysics Data System (ADS)
Cao, Y.; Deng, J. F.; Xu, G. Q.
2000-03-01
The adsorption and binding of chlorobenzene (C6H5Cl) on clean and D-modified Si(111)-7×7 surfaces have been investigated using high resolution electron energy loss spectroscopy (HREELS) and thermal desorption spectroscopy (TDS). On a clean surface, both chemisorbed and physisorbed C6H5Cl are observed at an adsorption temperature of 110 K. The HREEL spectra show direct evidence for the presence of both sp2 and sp3 carbon atoms in chemisorbed C6H5Cl molecules on Si(111)-7×7. Upon D-modification, the chemisorption of C6H5Cl decreases rapidly with increasing D-coverage (θD). At θD=1/3 ML, only physisorbed chlorobenzene is detected, which strongly suggests the involvement of rest-atoms in the chemisorption of C6H5Cl. Combined with the scanning tunneling microscopy (STM) results by Chen et al. [Surf. Sci. 340, 224 (1995)] showing the participation of adatoms in the binding, we propose that the 2,5-carbon atoms in C6H5Cl are stereo-selectively di-σ bonded to a pair of adjacent adatom and rest-atom on the Si(111)-7×7 surface, yielding a 2,5-chlorocyclohexadienelike surface adduct.
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
Tao, Franklin Feng; Nguyen, Luan
2018-04-18
Studies of the surface of a catalyst in the gas phase via photoelectron spectroscopy is an important approach to establish a correlation between the surface of a catalyst under reaction conditions or during catalysis and its corresponding catalytic performance. Unlike the well understood interactions between photoelectrons and the atomic layers of a surface in ultrahigh vacuum (UHV) and the well-developed method of quantitative analysis of a solid surface in UHV, a fundamental understanding of the interactions between X-ray photons and gaseous molecules and between photoelectrons and molecules of the gas phase in ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is lacking. Through well designed experiments, here the impact of the interactions between photoelectrons and gaseous molecules and interactions between X-ray photons and gaseous molecules on the intensity of the collected photoelectrons have been explored. How the changes in photoelectron intensity resulting from these interactions influence measurement of the authentic atomic ratio of element M to A of a solid surface has been discussed herein, and methods to correct the measured nominal atomic ratio of two elements of a solid surface upon travelling through a gas phase to its authentic atomic ratio have been developed.
NASA Astrophysics Data System (ADS)
Nakamura, Takako; Ohana, Tsuguyori; Yabuno, Hajime; Kasai, Rumiko; Suzuki, Tetsuya; Hasebe, Terumitsu
2013-01-01
We have developed a simple and useful process for fabricating nanodiamond (ND) particles modified with an organogadolinium moiety by chemical modification for their use as a magnetic resonance imaging (MRI) contrast agent. The introduction of the organogadolinium moiety on the surface of the ND particles was performed by the condensation of ND and diethylenetriaminepentaacetic acid (DTPA) followed by treatment with GdCl3. The modified surfaces were evaluated by X-ray photoelectron spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, mass spectroscopy, and inductively coupled plasma atomic emission spectroscopy analyses. MRI experiments on the Gd-DTPA-ND particles indicated their high signal intensity on T1-weighted images.
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent studies of the spectroscopy of large (up to approx. 50 carbon atoms) neutral and Ionized polycyclic aromatic hydrocarbons (PAHs) and Fullerenes isolated in inert gas matrices will be presented. The advantages and the limitations of matrix isolation spectroscopy for the study of the molecular spectroscopy of interstellar dust analogs will be discussed. The laboratory data will be compared to the astronomical spectra (the interstellar extinction, the diffuse interstellar bands). Finally, the spectra of PAH ions isolated in neon/argon matrices will be compared to the spectra obtained for PAH ion seeded in a supersonic expansion. The astrophysical implications and future perspectives will be discussed.
Quantum Gravitational Spectroscopy
Nesvizhevsky, Valery V.; Antoniadis, Ignatios; Baessler, Stefan; ...
2015-01-01
We report that one of the main goals for improving the accuracy of quantum gravitational spectroscopy with neutrons is searches for extra short-range fundamental forces. We discuss also any progress in all competing nonneutron methods as well as constraints at other characteristic distances. Among major methodical developments related to the phenomenon of gravitational quantum states are the detailed theoretical analysis and the planning experiments on observation of gravitational quantum states of antihydrogen atoms.
Confirming the 3D Solution Structure of a Short Double-Stranded DNA Sequence Using NMR Spectroscopy
ERIC Educational Resources Information Center
Ruhayel, Rasha A.; Berners-Price, Susan J.
2010-01-01
2D [superscript 1]H NOESY NMR spectroscopy is routinely used to give information on the closeness of hydrogen atoms through space. This work is based on a 2D [superscript 1]H NOESY NMR spectrum of a 12 base-pair DNA duplex. This 6-h laboratory workshop aims to provide advanced-level chemistry students with a basic, yet solid, understanding of how…
Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun
2005-01-01
The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...
NASA Astrophysics Data System (ADS)
Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam
2018-04-01
TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.
Electronic spectroscopy of diatomic molecules
NASA Technical Reports Server (NTRS)
Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.
1994-01-01
This article provides an overview of the principal computational approaches and their accuracy for the study of electronic spectroscopy of diatomic molecules. We include a number of examples from our work that illustrate the range of application. We show how full configuration interaction benchmark calculations were instrumental in improving the understanding of the computational requirements for obtaining accurate results for diatomic spectroscopy. With this understanding it is now possible to compute radiative lifetimes accurate to within 10% for systems involving first- and second-row atoms. We consider the determination of the infrared vibrational transition probabilities for the ground states of SiO and NO, based on a globally accurate dipole moment function. We show how we were able to assign the a(sup "5)II state of CO as the upper state in the recently observed emission bands of CO in an Ar matrix. We next discuss the assignment of the photoelectron detachment spectra of NO and the alkali oxide negative ions. We then present several examples illustrating the state-of-the-art in determining radiative lifetimes for valence-valence and valence-Rydberg transitions. We next compare the molecular spectroscopy of the valence isoelectronic B2, Al2, and AlB molecules. The final examples consider systems involving transition metal atoms, which illustrate the difficulty in describing states with different numbers of d electrons.
Benning, C; Huang, Z H; Gage, D A
1995-02-20
Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.
Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles
NASA Astrophysics Data System (ADS)
Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria
2018-02-01
We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.
Scanning tunneling microscopy of atomically precise graphene nanoribbons exfoliated onto H:Si(100)
NASA Astrophysics Data System (ADS)
Radocea, Adrian; Mehdi Pour, Mohammad; Vo, Timothy; Shekhirev, Mikhail; Sinitskii, Alexander; Lyding, Joseph
Atomically precise graphene nanoribbons (GNRs) are promising materials for next generation transistors due to their well-controlled bandgaps and the high thermal conductivity of graphene. The solution synthesis of graphene nanoribbons offers a pathway towards scalable manufacturing. While scanning tunneling microscopy (STM) can access size scales required for characterization, solvent residue increases experimental difficulty and precludes band-gap determination via scanning tunneling spectroscopy (STS). Our work addresses this challenge through a dry contact transfer method that cleanly transfers solution-synthesized GNRs onto H:Si(100) under UHV using a fiberglass applicator. The semiconducting silicon surface avoids problems with image charge screening enabling intrinsic bandgap measurements. We characterize the nanoribbons using STM and STS. For chevron GNRs, we find a 1.6 eV bandgap, in agreement with computational modeling, and map the electronic structure spatially with detailed spectra lines and current imaging tunneling spectroscopy. Mapping the electronic structure of graphene nanoribbons is an important step towards taking advantage of the ability to form atomically precise nanoribbons and finely tune their properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.
2016-07-14
The photodissociation dynamics of the methyl perthiyl radical (CH{sub 3}SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH{sub 3}SS{sup −} anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH{sub 3}S and S fragments, indicating that the dissociationmore » occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S{sub 2} loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S{sub 2} and S atom products in several excited electronic states.« less
Bashkin, S
1965-05-21
The new spectroscopy is in its infancy, and many fascinating aspects are yet to be studied. The properties of thin films may be studied by means of the excitation they induce in a given kind of beam. The production of ions with but a single electron offers a means of carefully mapping the nuclear charge distribution without the complications introduced by the normal complement of electrons. The study of high-purity, multiply ionized particles should make for better temperature determinations in hot plasmas. Possibly the data on lifetimes and modes of decay of excited energy levels may assist in the quantitative assignment of element abundances in the stars. One can even attempt to use the glowing beams as sources for absorption spectroscopy. The method seems to permit study of every stage of excitation for every stage of ionization for every element in the periodic table. Practical problems may interfere with so complete a study, but a major extension of our knowledge of atomic structure seems to be at hand.
Atomic and Molecular Spectroscopic Studies of the DIII-D Neutral Beam Ion Source and Neutralizer
NASA Astrophysics Data System (ADS)
Crowley, B.; Rauch, J.; Scoville, J. T.; Sharma, S. K.; Choksi, B.
2015-11-01
The neutral beam system is interesting in that it comprises two distinct low temperature plasmas. Firstly, the ion source is typically a filament or RF driven plasma from which ions are extracted by a high voltage accelerator grid system. Secondly the neutralizer is essentially a low temperature plasma system with the beam serving as the primary ionization source and the neutralizer walls serving as conducting boundaries. Atomic spectroscopy of Doppler shifted D-alpha light emanating from the fast atoms is studied to determine the composition of the source and the divergence of the beam. Molecular spectroscopy involves measuring fine structure in electron-vibrational rotational bands. The technique has applications in low temperature plasmas and here it is used to determine gas temperature in the neutralizer. We describe the experimental set-up and the physics model used to relate the spectroscopic data to the plasma parameters and we present results of recent experiments exploring how to increase neutralization efficiency. Supported by the US DOE under DE-FC02-04ER54698.